
From Smart to Deep: Robust Activity Recognition
on Smartwatches using Deep Learning

Sourav Bhattacharya and Nicholas D. Lane
Bell Labs

Abstract—The use of deep learning for the activity recog-
nition performed by wearables, such as smartwatches, is an
understudied problem. To advance current understanding in this
area, we perform a smartwatch-centric investigation of activity
recognition under one of the most popular deep learning methods
– Restricted Boltzmann Machines (RBM). This study includes
a variety of typical behavior and context recognition tasks
related to smartwatches (such as transportation mode, physical
activities and indoor/outdoor detection) to which RBMs have
previously never been applied. Our findings indicate that even a
relatively simple RBM-based activity recognition pipeline is able
to outperform a wide-range of common modeling alternatives
for all tested activity classes. However, usage of deep models
is also often accompanied by resource consumption that is
unacceptably high for constrained devices like watches. There-
fore, we complement this result with a study of the overhead
of specifically RBM-based activity models on representative
smartwatch hardware (the Snapdragon 400 SoC, present in
many commercial smartwatches). These results show, contrary to
expectation, RBM models for activity recognition have acceptable
levels of resource use for smartwatch-class hardware already on
the market. Collectively, these two experimental results make
a strong case for more widespread adoption of deep learning
techniques within smartwatch designs moving forward.

I. INTRODUCTION

By leveraging the sensors present in wearables like smart-
watches, powerful new mobile experiences are being offered to
users. For example, it is possible for a smartwatch to track: ex-
ercise and sleep patterns [12], commute routines [29], or even
emotional states [27]. The key to these advances is the use of
activity recognition algorithms to infer behaviors and contexts
from mobile sensor data. However, unfortunately recognizing
activities under real-world conditions remains inaccurate and
prone to failure (e.g., [12]). Reasons that performing robust
sensor inference remains difficult are numerous and include:
uncontrolled device positions [23] (e.g., in a pocket, in a
bag); background noise (e.g., outdoors, while driving) when
sampling data [24]; and differences in data generated by a
diverse user population [20] (e.g., lifestyle, demographics).

This paper investigates the challenge of error-prone real-
world activity recognition as it manifests within smartwatches
specifically; although, we also believe our findings will have
broader relevance to activity recognition on any mobile plat-
form. Our approach is grounded in the use of deep learn-
ing [6], [13]. In recent years, this growing field of machine
learning has completely changed the way many inference tasks
closely related to smartwatches (e.g., speech recognition [16])
are performed. Early exploration of deep learning benefits
within these mobile systems is already underway (e.g., [10],

[15], [17]), with promising early results. But we still know
very little about how to apply deep learning to perform a
variety of activity recognition inferences; for example: Which
activity categories are best suited to these methods, and
which are too simple for it to be useful? How best should
sensors not conventionally used by deep learning algorithms
(e.g., accelerometers, magnetometers, GPS), but common on
smartwatches, be processed and utilized within these models?

Broadly speaking, activity recognition algorithms for smart-
watches have carefully considered how to remain computa-
tionally light-weight. This is one of the factors why deep
learning has not been carefully examined for such purposes
until very recently. But now as the SoCs in smartwatches (and
other wearables) evolve they are squeezing in an increasingly
wide range of different computational units (DSPs, GPUs, low-
power CPU cores, multi-core CPUs) along with ever increas-
ing amounts of memory. Resources of this nature are changing
the way we should think of wearable computation. Even the
Android-based LG G Watch R [4] includes a Snapdragon
400 [5] that pairs a DSP and a dual-core CPU. Similarly,
the Intel Edison [3], designed for wearable use includes 1GB
of RAM, as well as again a dual-core CPU and low-power
unit. We now have the computational resources necessary to
consider much more complex models like deep learning.

Motivated by the untapped potential of mobile deep learning
combined with increased embedded systems resources, we
report here on a systematic study of the benefits to smartwatch-
based activity recognition using of one of the most commonly
used deep learning algorithms today – Restricted Boltzmann
Machines (RBMs). Specifically in this work we study two
questions. First, how should RBMs be integrated into an activ-
ity recognition pipeline? Second, how well can an RBM based
model and pipeline operate on a bleeding edge smartwatch-
used platform – the Qualcomm Snapdragon 400? The goal
being to understand the feasibility of RBM deep learning on
this class of device, and address key issues such as: How much
model complexity can a smartwatch of this type afford?

The outcome of our study into these methods is (to the best
of our knowledge) the first deep learning pipeline for activity
and context inference for smartwatches. Through experiments
under a range of common smartwatch sensor inference tasks,
we develop the necessary pipelines of: feature representation
and RBM layer activation functions, for a range of smartwatch
sensor types to be integrated within our model. Importantly,
we discover this general-purpose RBM-based sensor modeling
approach is able to significantly outperform existing sensing



systems, even in comparison to purpose-built techniques for
specific inference tasks. We combine with this pipeline with
a proof-of-concept smartwatch-like device that supports ap-
plications scenarios through this RBM pipeline to recognize:
physical activity states, hand gestures, transportation mode and
when the user is either outside or inside – these tasks provide a
challenging representative sensing workload. Importantly, we
find that the increased complexity of our modeling approach
does not overly comprise: device lifetime, form-factor, weight;
in comparison to the norms established by existing commercial
smartwatch systems.

The scientific contributions of this work include:

• The design and development of the first RBM-based ac-
tivity and context recognition pipeline for smartwatches.

• A systematic evaluation of this RBM-based pipeline
under 3 common smartwatch-related sensing tasks; ex-
periments include 5 state-of-the-art classification methods
designed for each sensing task, and real-world datasets
that highlight task-specific recognition challenges.

• A feasibility analysis, using a prototype smartwatch
implementation, that demonstrates RBM-based activity
modeling is viable under typical hardware constraints.

II. RBM-BASED ACTIVITY RECOGNITION PIPELINE

Our activity recognition pipeline for smartwatches spans 4
phases: (i) data pre-processing, (ii) input layer representation,
(iii) the RBM model itself, and finally (iv) model inference. We
now describe each of these in turn.

A. Data Pre-processing

The main purpose of this stage is to segment a continuous
stream of measurements and extract measurement windows.
The key parameters are: window width (wd) and window over-
lap (lp). In line with previous work on activity recognition [7],
[25] we use typically wd = 1/2 second (though this may vary
based on the target activities, see Section III for details) and
lp = 50%. For any accelerometer data, to reduce the effect
of sensor placement and orientation, we use the magnitude of
measurements (i.e., take the norm of the three axis).

B. Input Layer Representation

Activity recognition approaches predominantly rely on super-
vised learning, where a classifier is trained with a large amount
of labeled data using handcrafted (ad-hoc) features. However,
collecting a very large amount of ground-truth labels is dif-
ficult and costly [7]. Deep learning mitigates both limitations
by automatically finding a good hierarchical representation of
the sensor data (as part of the pre-training procedure). Pre-
training also helps to initialize the model parameters in a
unsupervised manner, thereby decreasing the requirement of
large ground-truth information [22]. Therefore, we use only
a generic representation and compute frequency banks from
each window that then acts as the input layer. The RBM is
left to learn more discriminative representations from the data.

C. Restricted Boltzmann Machine

A RBM can be represented as an undirected bipartite graph,
consisting of a set of stochastic visible units v ∈ {0, 1}d and a
set of stochastic hidden units h ∈ {0, 1}k. Each visible unit is
connected to all the hidden units with an weighted edge Wij .
The energy function E : 0, 1d+k 7→ R associated with a RBM
model is given as:

E(v, h; Θ) = −
d∑

i=1

k∑
j=1

viWijhj −
d∑

i=1

bivi −
k∑

j=1

ajhj (1)

where Θ = {a,b,W} represents the set of model parameters
(a and b are the biases for the hidden and input layers
respectively). The joint distribution over all the visible and
hidden units are given as:

P (v, h; Θ) =
1

Z(Θ)
exp(−E(v, h; Θ) (2)

where Z(Θ) is the normalizing function. In case of Gaussian
RBMs, the visible units accept real-valued measurements (i.e.,
v ∈ Rd) and the hidden units are binary stochastic as before
(i.e., h ∈ {0, 1}k). The energy function for the Gaussian RBM
can then be given as:

E(v, h; Θ) = −
d∑

i=1

k∑
j=1

vi
σi
Wijhj −

d∑
i=1

(vi − bi)2

2σ2
i

vi

−
k∑

j=1

ajhj (3)

where Θ = {a,b,W, σ} are the model parameters.

D. Model Inference

Although obtaining an exact solution for Equation 3 is non-
trivial, efficient Markov Chain Monte Carlo (MCMC)-based
stochastic approximation techniques have been proposed to
estimate the expected sufficient statistics of the model [31]. In
line with common approaches to RBM training, we initialize
the model parameters using greedy layer-wise pre-training
before performing backpropagation using available labeled
data. Training a RBM is a computationally heavy task and
can be efficiently done offline, e.g., using cloud infrastructure
equipped with GPUs. Once the RBM is trained, the model can
be transferred to the smartwatch platform for online inference.

III. PIPELINE EVALUATION AND COMPARISONS

To understand the potential benefits of our RBMs within an ac-
tivity recognition pipeline, we examine 3 diverse multi-sensor
recognition tasks relevant to smartwatches (and by extension
other wearables). For each task we compare RBM pipeline
performance against task-specific state-of-the-art baseline clas-
sifiers. The key result from these experiments is that our
generic RBM classification pipeline is able to outperform all
baselines for all 3 tasks; although this result is still preliminary,
we believe this is a clear sign of the power and importance
that this form of machine learning will have for wearables and
mobile sensors in the years ahead.



Recognition Task Classifier Baselines
Transportation & Physical JigSaw [23], Wang [33]
Indoor/Outdoor IODector [34], Radu [28]
Gestures Plötz [26]

TABLE I: Mapping of Baseline Classifiers to Recognition Task

A. Experiment RBM Setup

We report RBM performance assuming the same model archi-
tecture across all recognition tasks. Specifically, each model
uses 3 hidden layers each of which contain 256 nodes. Models
diverge in architecture only in terms of their input and output
layers. While baseline classifiers use a custom set of features
for the respective task, our RBM pipeline simply uses a set
of frequency banks for virtually all sensor inputs; the only
exception to this are low-dimensional inputs for which we
simply use those features proposed by comparison classifiers.

B. Comparison Baseline Models

In total, 5 different baselines are compared with RBM pipeline
performance. Each classifier is customized to a specific recog-
nition class and so none of them are used for multiple recog-
nition tasks. Table I summarizes the mapping of classifiers to
recognition task.

Wang. [33] proposes a set of accelerometer features that is
highly optimized for inferring transportation modes on users’
personal devices. Transportation mode inference is then carried
out with a C4.5 decision tree based on user annotated data.

JigSaw. [23] uses a range of sensors including audio (which
we do not consider in this work). We focus on its treatment of
inertial sensors and its general approach that has been widely
adopted since publication. The classifier pipeline after some
initial calibration and allowances for gravity has a series of
time and frequency domain features over which a Gaussian
Mixture Model is fit. Data is processed in 1.28 sec frames
and classifications are smoothed with a Markov Model.

IODectector. [34] takes the approach of building hand
engineered data processing components for each sensor. Each
component has the objective of determining if the environ-
ment is either indoors or outdoors. The authors integrate this
information using a Hidden Markov Model that captures also
temporal patterns between these two environment types.

Radu. [28] evaluates dozens of potential classifier designs but
ultimately selects a co-training approach that interleaves data
from 7 sensor types. The approach uses very thin features,
that include often raw data as well as simple statistics such as
variance. However, the approach does exceed prior work that
examines indoor/outdoor detection (including IODetector).

Plötz. [26] proposes a series of statistical features with high
discriminative power for tasks like recognizing gestures from
accelerometer data. These features are designed for use with
any classifier; therefore in our experiments we combine these
features with 3 well-known learning algorithms (viz. SVM,
Decision Trees, Random Forests) to compare against RBMs.

C. Experiment Results

We now detail the comparison of RBM performance under
each recognition task. For each task we also describe the un-
derlying dataset used for analysis. In all experiments accuracy
is calculated assuming 5-fold cross validation.

Gestures. Our first experiment is based on the Opportunity
dataset [30]. This dataset is popular within the wearable and
ubiquitous computing research community and perfectly suited
to examine a number of smartwatch-relevant activities. Oppor-
tunity contains human physical activities from 4 users recorded
in an intelligent environment, combining measurements from
72 different sensors across 10 different sensing modalities. In
this paper we only focus on the gesture recognition task (B2)
as part of the publicly available challenge dataset. The task
involves recognizing right-hand gestures, such as ‘opening
a door’, ‘cleaning table’ and ‘toggling a switch’, from mea-
surements of an Inertial Measurement Unit (IMU) attached to
the right lower arm (RLA). The sampling frequency of IMU
sensor was 30 Hz. We compare the RBM against the feature-
engineering approach of Plötz, which was shown to work well
on Opportunity previously [25]. We extract windows, where
wd = 2 sec and lp = 50%, and test the same set of Plötz
features using 3 well-known classifiers.

Accuracy of the baseline algorithms for the gesture recog-
nition tasks, together with that of the RBM, are shown in
Figure 1(a). The accuracy of the SVM classifier, while using
domain specific and handcrafted features, is found to be at
the level of 43.7% (lowest). C4.5 decision tree-based gesture
recognition shows a much improved accuracy of 67.7%.
The performance is further improved by the random forest
classifier, which achieves an accuracy of 68.9%. However, the
best performance for gesture recognition is shown by the RBM
algorithm, achieving an accuracy of 72.1%.

Transportation & Physical. For the next experiment, we
collect ≈ 8 hours of data from 4 users as they perform 3
types of physical activities (walking, running, standing) and
a transportation mode (motorized). The dataset also contains
a large null class. Tracking these activities and transportation
mode from noisy sensor data has been performed frequently
in the literature to enable health, fitness and environmental
applications [32].

Figure 1(b) shows overall accuracy for our technique against
those of Wang and JigSaw. The figure shows that the RBM is
able to exceed the accuracy of these two techniques by 27%
(Wang) and 12% (JigSaw). Wang specializes in transportation
mode, but includes support for physical activities. JigSaw in-
stead, aims at broad behavioral inference support. Even though
our model is general purpose and does not include inference-
specific techniques, we still observe significant performance
improvement.

Indoor/Outdoor. Our final scenario is based on a dataset
provided by the authors of [28], it includes ≈ 3 hours of sensor
measurements collected by users as they perform routine activ-
ities in either indoor or outdoor environments. It also includes



LinSVM C4.5 R. Forest RBM
40

45

50

55

60

65

70

75

A
cc

u
ra

cy
 (

%
)

(a)
Wang JigSaw RBM

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

(b)
IODetector Radu RBM

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

(c)

Fig. 1: Comparisons of the general-purpose RBM pipeline performance against task-specific baseline classifiers for 3 recognition tasks;
these include: (a) Gestures, (b) Transportation and Physical, (c) Indoor/Outdoor. All baselines correspond to those described in Table I; the
exception being in (a) generic classifiers are shown that all use domain specific features (Plötz).

Fig. 2: Experimental setup, including: Snapdragon 400 development
board, power monitor and additional sensors as required.

a number of transition events between the two situations. We
use 7 modalities present in this dataset, but ignore sensor types
that are not typically present in wearable devices, such as
cellular signals and the microphone. This particular task is
not common in the literature, but is increasingly being found
to be a useful contextual signal.

Figure 1(c) compares our RBM model against IODetector
and Radu when attempting to distinguish indoor environments
from outdoor ones. Again, the deep learning pipeline achieves
higher (relative) accuracy levels of 31% (IODetector) and
5.6% (Radu) respectively. As always, this is the same pipeline
design and RBM architecture performing a completely differ-
ent inference task. We do not alter the features, layer depth
or any other model parameter within our approach. Yet, RBM
accuracy is again higher.

IV. SMARTWATCH PERFORMANCE EXPERIMENTS

We now examine the viability of our RBM pipeline on real
smartwatch hardware. After first detailing the implementation,
we provide energy and execution time performance results.

A. Prototype Implementation

The heart of this prototype is the Qualcomm Snapdragon
400 SoC [5]. This SoC is widely found in many existing
smartwaches, such as the LG G smartwatch R [4]. Internally,
the Snapdragon has a quad-core ARM Cortex CPU and 1 GB
of memory, though when shipped in smartwatches the RAM is
often reduced to 512 MB. Figure 2 shows the Snapdragon 400
development board used, as well as the experimental setup.

Sensors Sampling Rate
accelerometer, gyroscope 32.00 Hz
barometer, magnetometer 2.00 Hz
light, temperature
WiFi 0.03 Hz

TABLE II: Sensors present in our smartwatch prototype, grouped
by their respective sampling rates

The RBMs within our pipeline are implemented in the
Torch [2] deep learning framework, which we cross-compile
to run directly on the Snapdragon. Any relatively standard
algorithms such as feature extraction routines used in some of
the previously discussed scenarios (such as FFT) are ported
from Matlab or the HTK Speech Recognition Toolkit [1]. All
model training occurs off-line; training occurs on Amazon
EC2 instances with GPU-enabled machines, after which model
parameters are transfered to the smartwatch.

The design of prototype device (seen in Figure 2) assumes a
400 mAH battery, this is similar to those seen in current gener-
ation smartwatches. Table II lists all 7 sensors we incorporate
into the system, the sampling rates for each sensor are based on
values successfully used either the MSP device [11] or JigSaw
framework [23]. All sensor inference and feature extraction
is performed by the CPU of the Snapdragon as a periodic
batch process. We select this period so that inference results
remain reasonably fresh, while also keeping energy demands
at reasonable levels. Most existing wearable-targeted personal
sensing applications (e.g., tracking exercise routines or sleep
patterns) can tolerate such delays in inferences. During any
profiling experiments, we replay traces of actual sensor data
and measure the energy usage through a Monsoon power
measurement device. Note, our prototype does not include
a smartwatch screen and so the energy demands of such a
component are not considered by our experiments.

B. Experiment Results

We begin by examining the system performance of the com-
plete RBM pipeline, and the model architecture assumed for
the sensing tasks studied in Section III. All RBM models



Memory Battery Execution Time Execution Time
Life (whole pipeline) (RBM model-only)

1066KB 32 hrs 5.00 msec 0.94 msec.

TABLE III: Average smartphone resource use for all 3 forms of our
RBM-based activity recognition pipeline (viz. gestures, transportation
mode & physical activities, indoor/outdoor detection).

(across the 3 inference types) have the same basic architecture
of 3 hidden layers, with each hidden layer containing 256
nodes. The only difference being minor variations in the input
and output layers depending on the number of activity classes
and the range of sensor inputs used. We assume inference is
repeated 3 times per second, until the battery is exhausted;
but with sensor sampling fixed to rates provided in Table II.
Table III presents the average result for each model we test.
(We find only minor variations in the results of all three
models). The key observation is that the resource usage of the
RBM-based activity pipeline is well within acceptable levels of
performance in terms of memory, energy and execution time.

Given the ease with which the pipelines and models func-
tion on the smartwatch prototype, we next examine system
behavior as the complexity of the RBM-models within the
pipeline are increased. Table IV summarizes the architecture of
8 different RBM models; 2 models are smaller and 5 are larger
than the model in the previous experiment (3 hidden layers of
256 nodes each). Execution times required by these models on
smartwatch prototype are also summarized in Table IV. The
largest model in this experiment has 50 hidden layers (each
with 256 nodes each), and this results in the model having
more than 3 million parameters (i.e., sum of all weight and
bias parameters across layers) and footprint of ≈ 13 MB. But
even at this size execution time for inference on the model
remains just ≈ 20 msec. Similarly because Snapdragon 400s
in smartwatches have between 500MB and 1GB of RAM, this
model footprint is not a concern.

Finally, we estimate the overall battery life of the smart-
watch prototype assuming each of the 8 RBM model varia-
tions (considered in the previous experiment) are incorporated
within the overall activity recognition pipeline. In estimating
battery life we also consider 3 batching periods that determine
how often inference is performed over the collected sensor
data (i.e., how often is the model executed); specifically these
periods are 2, 3 and 5 Hz respectively. Figure 3 shows the
results of this experiment. For the smallest model (single
hidden layer with 256 nodes) the overall battery life spans
between 52 and 21 hours (for 2 to 5 Hz inference frequency).
However, for the largest model the battery lifetime is observed
between 15 and 6 hours (for 2 to 5 Hz). Although, it should
be noted this largest model contains 16× the number of
parameters than the models evaluated in Section III (the
performance of which is seen in Table III).

V. RELATED WORK

We briefly overview 3 core areas that our work touches upon:
activity recognition, deep learning and wearables.

Model Hidden Parameters Execution
ID Layers Time (msec.)
1 1 65, 792 0.25
2 2 131, 584 0.53
3 3 197, 376 0.94
4 5 328, 960 1.72
5 10 657, 920 3.98
6 15 986, 880 6.15
7 25 1, 644, 800 10.36
8 50 3, 289, 600 20.78

TABLE IV: RBM specification of 8 different models, and the
resulting execution time under the smartwatch prototype. Models vary
number of hidden layers, but all hidden layer have 256 nodes.

0 1 2 3 4 5 6 7 8 9

Different RBM models

0

10

20

30

40

50

60

B
a
tt

e
ry

 L
if
e
 (

H
)

2 times / sec.
3 times / sec.
5 times / sec.

Fig. 3: Smartwatch battery Life under various sizes of RBM models
within the activity recognition pipeline. Model IDs (x-axis) shown
correspond to those listed in Table IV. For each model, the impact
of three batch periods are shown. Model ID 3 matches the default
RBM architecture evaluated in Section III.

Activity Recognition. There has been an enormous amount of
work on activity recognition, and it has been hugely successful
in demonstrating a wide variety of everday activities can be
detected [21]. Much of this work has focused on how the
accuracies of these techniques can be improved. Researchers
are attempting this in many ways; for example addressing how
differences between people can be overcome [20], searching
for new features [25], coping with device differences [32] or
exploring how unlabeled data can be incorporated [7]. Within
this direction our work contributes by exploring how a specific
type of deep learning can also contribute towards increasing
the accuracy of various activity recognition scenarios. There
has not previously been a study like this one focused on
RBMs, which both attempts to develop an RBM activity
recognition pipeline and understand how feasible it can be
on real hardware. A two-fold contribution missing from prior
activity recognition works.

Deep Learning. Only recently has the exploration into deep
learning methods for mobile sensing scenarios begun (e.g.,
[17], [15], [19]). To the best of our knowledge, the work
presented here is the first time that many of the sensing tasks
evaluated (such as indoor/outdoor context and transportation
mode) have been attempted with any form of deep learning.
There is still much to be understood in how such models



should be architected, and which variety of algorithms will
be most effective – our work adds to this knowledge, that
is still in a nascent stage. Similarly, none of the existing
RBM papers consider wearable sensor data types nor the
classification objectives we study here. Furthermore, none
consider a smartwatch platform as the operating environment
of their models. In fact, little study of this aspect of our work
exists – the best example being likely [9] that custom design
small-footprint deep models for classification goals of high-
value to mobiles.

Wearable Devices. Our RBM-based classification pipeline
and implementation, is – as far as we know – the first
time smartwatches inferences have been provided by locally
executing deep learning models. Typically such techniques
are thought too heavy for wearable hardware to support.
Existing wearables such as the Microsoft Band, Lumo Lift,
LG G Watch R [4] all use alternative modeling approaches.
As do earlier research prototypes like the MSP [11] and
SATIRE [14]. The closest academic work in this respect is
Zoe [18] that use one small scale DNN for spoken key-
word recognition, among a number of other classifiers that
are executed. Commercial smartphones systems from Baidu,
Amazon, Google use deep learning but these are not wearable-
class platforms, and most of the computation occurs remotely
in the cloud.

VI. CONCLUSION

This paper contains 3 core empirical contributions with impor-
tance to smartwatch design, and more broadly the field activity
recognition. First, we systematically demonstrate and evaluate
the benefits of the deep learning method of RBMs, when
applied to a variety of common forms of behavior and context
recognition. Second, we develop a full RBM-based activity
recognition pipeline and investigate key design considerations
of including representation, and feature usage. Third, we show
that these algorithms are in fact feasible for use on state-
of-the art smartwatch hardware; we empirically measure the
performance of our RBM-based activity recognition pipeline,
highlighting the limits of model complexity that are possible
with acceptable energy and execution time performance.

REFERENCES

[1] Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk/.
[2] Torch. http://torch.ch/.
[3] Intel Edison. https://software.intel.com/iot/hardware/edison.
[4] LG G Watch R. http://www.lg.com/mobile-phone-accessories/lg-W110.
[5] Qualcomm Snapdragon 400. https://www.qualcomm.com/products/

snapdragon/processors/400.
[6] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press,

2016.
[7] S. Bhattacharya, P. Nurmi, N. Hammerla, T. Plötz. Using Unlabeled

Data In A Sparse-coding Framework For Human Activity Recognition.
PMC, 15:242–262, 2014.

[8] L. Breiman. Random Forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[9] G. Chen, C. Parada, G. Heigold. Small-footprint Keyword Spotting

Using Deep Neural Networks. IEEE ICASSP’14.
[10] T. Chen, et al. Diannao: A Small-footprint High-throughput Accelerator

For Ubiquitous Machine-learning. ASPLOS ’14.
[11] T. Choudhury, et al. The Mobile Sensing Platform: An Embedded

Activity Recognition System. Pervasive Computing, 7(2):32–41, 2008.

[12] S. Consolvo, et al. Activity Sensing In The Wild: A Field Trial Of Ubifit
Garden. CHI ’08.

[13] L. Deng, D. Yu. Deep Learning: Methods And Applications. Now
Publishers, 2014.

[14] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, J. A. Stankovic. Satire:
A Software Architecture For Smart Attire. MobiSys ’06.

[15] N. Hammerla, et al. PD Disease State Assessment In Naturalistic
Environments Using Deep Learning. AAAI ’15.

[16] G. Hinton, et al. Deep Neural Networks For Acoustic Modeling In
Speech Recognition. Signal Processing Magazine, 2012.

[17] N. Lane, P. Georgiev. Can Deep Learning Revolutionize Mobile
Sensing? HotMobile ’15.

[18] N. Lane, P. Georgiev, C. Mascolo, Y. Gao. ZOE: A Cloud-less
Dialog-enabled Continuous Sensing Wearable Exploiting Heterogeneous
Computation. MobiSys ’15.

[19] N. Lane, P. Georgiev, L. Qendro. DeepEar: Robust Smartphone Audio
Sensing In Unconstrained Acoustic Environments Using Deep Learning.
UbiComp ’15.

[20] N. Lane, et al. Enabling Large-scale Human Activity Inference On
Smartphones Using Community Similarity Networks (CSN). UbiComp
’11.

[21] O. D. Lara, M. A. Labrador. A Survey On Human Activity Recognition
Using Wearable Sensors. IEEE Communications Surveys & Tutorials,
15(3):1192–1209, 2013.

[22] Y. LeCun, K. Kavukcuoglu, C. Farabet. Convolutional Networks And
Applications In Vision. ISCAS ’10.

[23] H. Lu, et al. The JigSaw Continuous Sensing Engine For Mobile Phone
Applications. SenSys ’10.

[24] E. Miluzzo, et al. Darwin Phones: The Evolution Of Sensing And
Inference On Mobile Phones. MobiSys ’10.

[25] T. Plötz, N. Y. Hammerla, P. Olivier. Feature Learning For Activity
Recognition In Ubiquitous Computing. IJCAI ’11.

[26] T. Plötz, P. Moynihan, C. Pham, P. Olivier. Activity Recognition And
Healthier Food Preparation. Activity Recognition in Pervasive Intelligent
Environments, pages 313–329, 2010.

[27] K. K. Rachuri, et al. Emotionsense: A Mobile Phones Based Adaptive
Platform For Experimental Social Psychology Research. Ubicomp ’10.

[28] V. Radu, P. Katsikouli, R. Sarkar, M. K. Marina. A Semi-supervised
Learning Approach For Robust Indoor-outdoor Detection With Smart-
phones. SenSys ’14.

[29] S. Reddy, et al. Using Mobile Phones To Determine Transportation
Modes. ACM TOSN, 6(2):13:1–13:27, Mar. 2010.

[30] D. Roggen, et al. Collecting Complex Activity Datasets In Highly Rich
Networked Sensor Environments. INSS ’10.

[31] R. Salakhutdinov, G. Hinton. Deep Boltzmann Machines. AISTATS,
volume 12, 2009.

[32] A. Stisen, et al. Smart Devices Are Different: Assessing And Mitigating
Mobile Sensing Heterogeneities For Activity Recognition. SenSys ’15.

[33] S. Wang, C. Chen, J. Ma. Accelerometer-based Transportation Mode
Recognition On Mobile Phones. APWCS ’10.

[34] P. Zhou, et al. IODetector: A Generic Service For Indoor Outdoor
Detection. SenSys ’12.


