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ABSTRACT

Multi-class classification problems have been studied for pure
nominal and pure ordinal responses. However, there are some
cases where the multi-class responses are a mixture of nomi-
nal and ordinal. To address this problem we build a hierarchi-
cal multinomial probit model with a mixture of both types of
responses using latent variables. The nominal responses are
each associated to distinct latent variables whereas the ordi-
nal responses have a single latent variable. Our approach first
treats the ordinal responses as a single nominal category and
then separates the ordinal responses within this category. We
introduce sparsity into the model using Bayesian variable se-
lection (BVS) within the regression in order to improve vari-
able selection classification accuracy. Two indicator vectors
(indicating presence of the covariate) are used, one for nom-
inal and one for ordinal responses. We develop efficient pos-
terior sampling. Using simulated data, we compare the clas-
sification accuracy of our method to existing ones.

Index Terms— Hierarchical probit model, Bayesian vari-
able selection, classification, nominal and ordinal responses,
latent variables

1. INTRODUCTION

The motivation for this research was an application to Barretts
oesophagus, where progression from healthy through three
stages of the disease can be viewed as a continuum and thus
may benefit from being treated as an ordinal sequence, whilst
a possible progression to cancer is qualitatively different and
not part of this continuum.

When analyzing multi-class responses, it is important to
note whether each one of the responses is nominal or ordi-
nal. Some types of models are appropriate only for ordinal
responses and others for nominal. For example, support vec-
tor machines (SVMs) have been introduced for pure nominal
[1] and, recently, pure ordinal [2]. In frequentist statistics, the
four most common models are multinomial probit model for
pure nominal/ordinal responses and multinomial logit model
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for pure nominal/ordinal responses [3]. The Bayesian ap-
proach for the multinomial probit models uses latent variables
[4]. Treating the responses as entirely nominal when in fact
they are a mixture of nominal and ordinal leads to loss of in-
formation which may be important.

Including all the predictors in the model is inefficient, as
most of them do not inform the response variable. Introducing
sparsity in the model can improve prediction accuracy, espe-
cially in the context of a large number of predictors [5]. Vari-
able selection has been implemented, for example, via classi-
fication trees (CT) and random forests (RF) using pure nom-
inal [1] or ordinal responses [6], [7]. In frequentist statistics,
least absolute shrinkage and selection operator (Lasso) [8] is
one of the best known techniques for variable selection. In
Bayesian statistics, penalized methods have a Bayesian inter-
pretation that can take advantage of prior knowledge. Priors
that offer penalisation in variable selection are usually a mix-
ture of two distributions, known as a spike and slab prior [9].
A classical choice is a spike at zero and a normal slab. We fo-
cus on BVS in multi-class classification problems, where the
literature is limited. References in multi-class BVS have stud-
ied either just the (nominal) multinomial probit model [10] or
just the ordinal multinomial probit model [11].

In the current study we build a hierarchical model for a
mixture of nominal and ordinal responses with BVS for the
latent regression, combining [10] and [11] under different as-
sumptions. The advantage of our model is that it harnesses
the structural feature of both nominal and ordinal responses.
The proposed variable selection approach gives high classifi-
cation accuracy by allowing the model to incorporate the ad-
ditional information of the ordinal structure, as well as using
a different set of important variables for the ordinal and nom-
inal pieces. The added flexibility can accommodate a wider
range of features observed in the data which can be learnt
efficiently through our tailored posterior sampler. The new
method can be applied, for example, in finance (loan appli-
cations, income), bioinformatics (microarrays) and social sci-
ences (nursery application, students’ grades).
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2. HIERARCHICAL MODEL FOR MIXTURE OF
RESPONSES

We denote the observed data by X and Y, where X is an n×p
design matrix (n is the number of samples, p is the number of
variables) and Y is an n× 1 response vector. We assume that
from the total of M responses that the response vector can
take, |t| are ordinal, t = (t0, . . . , t|t|−1). Then the remaining
M − |t| responses are nominal. Assuming that zero is the
‘baseline’ category, we proposed a hierarchical multinomial
probit model using latent variables for the mixture of nominal
and ordinal responses. We use a latent variable representation
of the response classes, where subsets of continuous latent
variables correspond to the different response classes.

2.1. Nominal approach: treat ordinal responses as one
nominal

At the first step, we treat all ordinal responses as one nominal
response (one extra group), and so the total number of nomi-
nal responses is M − |t| + 1. Then, we built a probit model
with latent variables that takes into account the nominal re-
sponses (including the one group of ordinal responses). Since
zero is the ‘baseline’, we need s = M − |t| latent variables.
We introduce Z as the n × s matrix of latent variables and
assume matrix normal (MN ) distribution

Z− 1nα
′
− XB ∼MN(In,Σ), (1)

where 1n is a n dimensional column vector of ones, α is the
s × 1 vector of intercepts (prime denotes transposition) and
B is a p × s matrix of regression coefficients. Σ is the s × s
covariance matrix that can be unknown [10] or known Σ =
σ2
rIs, r = 1, . . . , s. We denote by Z?

i = max1≤r≤s{Zi,r},
i = 1, . . . , n. The relation between nominal responses and
latent variables is given by

Yi =

{
0, if Z?

i ≤ 0
r, if Z?

i > 0 and Zi,r = Z?
i .

(2)

In order to perform variable selection for the model of
M − |t| + 1 nominal responses, we use a common indicator
vector γ across different latent variables,

γj =

{
1, if Bj,r 6= 0 for all r,
0, if Bj,r = 0 for all r,

where Bj,r is the entry in the j-th row and r-th column of
B, for j = 1, . . . , p and r = 1, . . . , s. Selection of the j-th
variable corresponds to γj = 1.

2.2. Treat ordinal responses

At the second hierarchical step, ordinal responses have a sin-
gle latent variable and are specified via a boundary vector

k = (k0 = −∞, k1 = 0, k2, . . . , k|t| = +∞) on the la-
tent variables. Let us denote by Z the n × 1 vector of latent
variables that is distributed as multivariate normal (MVN )
with common variance across different responses

Z− 1nλ+ Xβ ∼MVN(0, σ2In), (3)

where the scale λ is the intercept, β is a p × 1 vector of re-
gression coefficients, σ2 is the variance which may be known
(σ2 = 1) [11] or unknown. The relationship between the la-
tent variable and ordinal responses, according to [4], is the
following

Yi = tg , if kg < Zi ≤ kg+1, (4)

where g = 0, . . . , |t| − 1. Note that in the ordinal case Z is a
latent vector in contrast to nominal where Z is a matrix.

In this case we use an indicator vector ξ, distinct from γ,
to indicate the inclusion or exclusion of the coefficient βj of
ordinal response.

2.3. Model summary

In summary, the hierarchical multinomial probit model with
mixture of nominal and ordinal responses using latent vari-
ables is given via (1) and (3) under two different settings: co-
variance matrix Σ and variance σ2 are known or unknown.

3. HIERARCHICAL BVS FOR MIXTURE OF
RESPONSES

3.1. Prior distributions

For the model in Sec. 2.1 the priors are: α
′ − α

′

0 ∼
MN(h,Σ), Bγ − B0γ ∼ MN(Hγ ,Σ) which corresponds
to the non-zero coefficients, γj ∼ Bernoulli(w(nom)) and
Σ ∼ InverseWishart(δ;Q), where δ = n− s+1 [10] or we
consider that the covariance matrix is fixed.

For the model in Sec. 2.2 the priors are: λ ∼ N(λ0, σ
2h),

for non-zero coefficients βξ ∼ MVN(β0ξ, σ
2Fξ), ξj ∼

Bernoulli(w(ord)) [11] and we consider a conjugate prior
σ2 ∼ InverseGamma(d1, d2). Finally, k2, k3, . . . , k|t|−1 are
uniformly distributed on the interval (0,+∞) subject to the
constrain that k2 < k3 < . . . < k|t|−1.

In both cases sparsity in the models is considered by as-
signing spike and slab priors on the coefficients, with the
spike at zero. In addition, the probability of success of a
Bernoulli distribution corresponds to the probability of in-
cluding variables in the model a-priori.

3.2. Posterior inference

If the covariance matrix and variance of latent variables are
unknown, posterior inference for the model in Sec. 2.1 is done
in [10], but we need to derive the posteriors for the model in
Sec. 2.2 (ordinal responses). Setting λ0 = 0 and β0ξ = 0
we derive the conditional distribution of the vector of latent
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variable, which is a multivariate Student distribution (MVT)
[12],

Z|ξ,k,X,Y ∼MV T

(
2d1; 0,

d2
d1

Pξ

) n∏
i=1

1(Zi ∈ Ai),

where Pξ = In + h1n1
′

n + XξFξX
′

ξ and 1(.) is the indicator
function of the set Ai = {Zi : kg < Zi ≤ kg+1} if Yi = tg
according to (4). The conditional distribution of boundaries
is uniform [11].

On the other hand, if the covariance matrix and vari-
ance are known, we can derive the posterior inference for
the model in Sec. 2.1 (nominal responses), similarly to [11].
Setting α0 = 0 and B0γ = 0, we can sample from latent
matrix Z according to

Z|γ,X,Y ∼MN(Pγ ,Σ)
n∏

i=1

1(Zi ∈ Ri),

where Pγ = In + h1n1
′

n + XγHγX
′

γ and the set Ri can be
calculated according to (2).

Since the full conditional distributions of both indica-
tor vectors γ and ξ do not have a closed form solution, the
Metropolis algorithm [13] is applied within the Gibbs step,
using a symmetric proposal, with probability of 0.5 to add or
delete a variable and probability 0.5 to swap two variables. In
both cases, to speed up the process of sampling γ’s and ξ’s
we apply QR-decomposition [14].

3.3. Method

We would like to build a variable selection algorithm based
on the hierarchical mixture model of both types of responses
that is proposed in the previous section. We construct an algo-
rithm that consist of the following two parts. BVS approach
is implemented for nominal (included the one group of ordi-
nal) responses with unknown parameters Z and γ (see part A
of Algorithm 1). BVS approach is implemented for ordinal
responses for the unknown parameters Z, ξ and k (see part B
of Algorithm 1). The two models may have some variables in
common but the models that are most frequently selected by
the approach may be different for those two parts. Taking the
combined results of the two parts into account we can identify
the best models and the important variables for the mixture of
nominal and ordinal responses.

Let us denote the sample of jA-th iteration of the part A
with the upper index (jA), and the sample of jB-th iteration
of the part B with the upper index (jB). We construct the
Gibbs steps as summarized in Algorithm 1. This consists of
two parts, A and B, and the final conclusion, which is the
combination of both. Since the two parts are independent, for
the training procedure the order of the parts it does not matter.

Algorithm 1 Hierarchical BVS: mixture of nominal and or-
dinal responses

PartA: BVS onM−|t|+1 nominal responses (M−|t|:
nominal responses and all ordinal responses are treated as
one nominal response)

1: Initialize values γ(0) and Z(0)

2: Draw γ(jA) from p(γ|Z(jA−1),X,Y)

3: Draw Z(jA) from p(Z|γ(jA),X,Y)
4: Repeat steps 2 and 3 until the number of iterations

achieved and stop (Results: V SA andMSA, see footnote
1 for abbreviations)

Part B: BVS on |t| ordinal responses
1: Initialize values ξ(0),Z(0) and k(0)

2: Draw ξ(jB) from p(ξ|Z(jB−1),X,Y)

3: Draw k(jB) from p(k|Z(jB−1),X,Y)

4: Draw Z(jB) from p(Z|ξ(jB),k(jB),X,Y)
5: Repeat steps 2, 3 and 4 until the number of iterations

achieved and stop (Results: V SB and MSB)

Combine parts A and B
V S = V SA ∪ V SB and MS =MSA ∪MSB

3.4. Classification and prediction

The classification procedure for a new sample is done accord-
ing to the following process: First, we find the best model
(the model with the highest posterior probability) for nomi-
nal responses and we do predictions according to (2). If the
predicted response is nominal, then we finish the prediction.
If the predicted response corresponds to the group of ordinal
responses that are treated as one nominal case, then we find
the best model for ordinal responses and we do predictions
according to (4).

4. RESULTS

The experimental study was performed using simulated data
from the proposed probit model with multi-class nominal and
ordinal responses. Simulations are created according to the
two step approach.

We ran two different simulations to cover the follow-
ing scenarios: (i) Σ and σ2 are unknown and (ii) Σ and
σ2 are known. In both cases, for generating simulated data
we set n = 100, p = 200, M = 5, t = [1, 2, 3] and the
error terms of latent variables distributed as standard nor-
mal. The majority of B’s entries (related to the nominal
responses) are zero except for B[3,8],1 = [0.85,−0.81] and
B[3,8],2 = [−0.83,−0.62]. In addition, the majority of β’s

1V SA (V SB): the set of selected variables for nominal (ordinal) re-
sponses using marginal probabilities, V S: the final set of selected variables
(nominal and ordinal responses jointly), MS: the corresponding set of vari-
ables in the most probable model.
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Fig. 1. Marginal posterior probabilities (top) and posterior
probabilities in log. scale (bottom) of average of chains for
scenario (i).

entries (related to the ordinal responses) are zero except for
β5 = −1.4, β100 = 1.2 and β150 = 1.3.

For scenario (i), in the variable selection approach we set
the values for the hyperparameters. In part A, the hyperpa-
rameters of the unknown covariance matrix Σ are δ = 3,
Q = Is [10]. In addition, we set h = 106 (flat prior for the
intercept), Hγ = c1Ipγ (easy for calibration), where pγ =∑p

j=1 γj , c1 = 5 [10] and w(nom) = 2/200. We initialize
the γ(0) selecting randomly two variables. Then we initial-
ize Z(0). We ran four different chains with 5000 iterations
after 2000 burn-in iterations. In part B, the hyperparame-
ters of the variance σ2 are d1 = δ/2 = 1.5 and d2 = 0.5
(inverse Gamma is the univariate case of inverse Wishart).
In addition, we select h = 106, Fξ = c2Ipξ

, c2 = 5 and
w(ord) = 3/200. We initialize the ξ(0) selecting randomly
three variables. Then, we initialize Z(0) and k(0). Fig. 1 con-
tains the results of variable and model selection of two parts,
for the average of the chains. Our proposed algorithm cor-
rectly identifies the individual important variables 3, 8 (part
A) and 5, 100, 150 (part B). The remaining variables have
marginal posterior probabilities close to zero. In addition, the
combination of variables 3 and 8 is the best model for part
A (bottom of Fig.1: first line of x−axis) and the model with
the variable 5, 100, 150 is the best model for part B (bottom
of Fig.1: second line of x−axis), with posterior probability
much higher than the the second, third, etc. following best
models respectively.

For scenario (ii), in the variable selection approach we set
Σ equal to Is (σ2 = 1, known). The remaining parameters
and hyperparameters are the same as in the scenario (i). The
figure is similar to the Fig. 1.

In order to do prediction of a new (future) sample, we gen-
erate new data (a hundred samples that will be referred to as
the test set) according to the parameters of each specific sce-
nario. We pick from the test design matrix only the variables
that had been selected after applying Algorithm 1 and we do

Table 1. The comparison of classification accuracy for the
test set after applying variable selection approaches with Σ to
be unknown.

Accuracy (%)
Nominal Ordinal

’Highest’ accuracy 66
Our proposed method 60

BVS 46 23
Lasso 50 47

CT 41 29
RF 48 31

SVMs 36 35

prediction. Then, we repeat one hundred times the process of
generating test sets. Based on the inherent amount of error
that the simulated data have, the highest classification accu-
racy that we can achieve is on average 66.02%. The proposed
method achieves on average a 61.55% classification accuracy
for the test set, which is very close to the highest possible.

In order to compare the proposed method with exist-
ing methods, we select one test set (out of a hundred). For
scenario (i), the highest classification accuracy for this test
set is 66% and our method achieves classification accuracy
60%. Table 1 contains the results of the comparison with
other methods that were proposed for pure nominal or pure
ordinal responses. The BVS with the wrong latent structure
(nominal) seems to be able to identify a satisfactory amount
of the structure by using latent variables, here in a higher
4-dimensional space, but is beaten by our proposed BVS
method. The poor performance of the BVS with the wrong
latent structure (ordinal) is not surprising in a situation where
the simulated data have a structure that cannot be modelled
properly. When the responses are all treated as ordinal, the
other methods cope better with the misspecification, but are
beaten by our proposed BVS with the correct latent structure.
For scenario (ii), our method achieves 61% accuracy (66% is
the ‘highest’ possible) in both cases beating existing methods.

5. CONCLUSIONS

We propose a hierarchical Bayesian probit model, that is ap-
propriate for mixtures of nominal and ordinal responses, us-
ing latent variables. Then we proposed a hierarchical BVS
method for model selection using mixture of nominal and
ordinal responses. The hierarchical approach consist of two
parts: ordinal responses treated as one nominal response and
apply BVS for nominal responses and afterwards apply BVS
just for ordinal responses. We use two indicator vectors (one
for each hierarchical part) to represent the presence of ab-
sence of a predictor in the regression. The hierarchical pro-
posed algorithm for variable selection is simple and computa-
tionally efficient because the nominal and ordinal parts are de-
coupled and can be performed in parallel. The novel method
does automated classification via the model and achieves bet-
ter classification accuracy compared to other methods.
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