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Basis mapping methods for forward and inverse problems
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SUMMARY

This paper describes a novel method for mapping between basis representation of a field variable over
a domain in the context of numerical modelling and inverse problems. In the numerical solution of
inverse problems, a continuous scalar or vector field over a domain may be represented in different finite-
dimensional basis approximations, such as an unstructured mesh basis for the numerical solution of the
forward problem, and a regular grid basis for the representation of the solution of the inverse problem. Map-
ping between the basis representations is generally lossy, and the objective of the mapping procedure is to
minimise the errors incurred. We present in this paper a novel mapping mechanism that is based on a minimi-
sation of the L2 or H ! norm of the difference between the two basis representations. We provide examples
of mapping in 2D and 3D problems, between an unstructured mesh basis representative of an FEM approx-
imation, and different types of structured basis including piecewise constant and linear pixel basis, and blob
basis as a representation of the inverse basis. A comparison with results from a simple sampling-based
mapping algorithm shows the superior performance of the method proposed here. © 2016 The Authors.
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1. INTRODUCTION

Inverse problems arise in almost all areas of science whenever the parameters of a model need
to be inferred from observed data. A standard approach is to define a model-based reconstruction
problem as the inversion of a mapping f : X — Y between function spaces X (solution space) and
Y (data space). The topology of these spaces is determined by the physical nature of the parameters
and data for a given problem. Except in a limited set of special cases, the mapping f cannot be
inverted explicitly, and the problem is set in variational form. The task of the reconstruction is then
to find parameters X that minimise an objective function ¥ (x), defined as a norm between model
and measurement data y°°:

Y (x) =D (y™, f(x)) + TR(x) ¢))

X = argmin ¢ (x) 2)

where D is a data fit function (typically the negative log-likelihood) and R is regularisation term
with regularisation parameter 7.

In many inverse problems in imaging, the forward operator represents the propagation of waves
or radiation, such as electromagnetic, acoustic or optical, and needs to be modelled computationally.
For many problems, f is then represented by a partial differential equation (PDE) in a domain of
interest 2, with appropriate boundary conditions on boundary 92, and a projection operator that
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maps the solution of the PDE to a discrete set of measurements. The inverse problem is then one
of parameter identification and is often non-linear and strongly ill-posed. Examples include the
following: Electrical Impedance Tomography, where the forward model is the generalised Laplace
Equation (a low-frequency approximation of Maxwell’s Equations) and the parameter of the inverse
problem is admittivity [1]; Diffuse Optical Tomography, and its variants including Fluorescence
Diffuse Optical Tomography where the forward model is the diffusion equation (a high-scattering
approximation of the Radiative Transfer Equation) and the parameter of the inverse problem is
absorption and/or diffusivity [2]; and Seismic Tomography, where the forward model is a hyperbolic
equation for acoustic propagation (a simplification of the Elasticity Equation), and the parameter
of the inverse problem represents various mechanical characteristics of rock such as density and/or
stiffness [3].

In most practical applications, evaluation of f requires a numerical solution strategy that discre-
tises the continuous into a finite-dimensional problem and represents the parameters x (r) and field
variables by a finite-dimensional basis expansion U. We denote the discretised forward problem by

FUiXY s Y 3)

where x* is the approximation of spatial parameters x in basis U. The most common numerical
approaches include the finite element method (FEM)), finite difference method and boundary element
method.

In this paper, we consider FEM as the numerical realisation of the forward problem, where €2 is
subdivided into an unstructured mesh of non-overlapping elements of simple shape, such as triangles
in 2D problems and tetrahedra in 3D problems, that define U as a local, piecewise polynomial basis
expansion.

The choice of basis for the forward problem is governed by considerations of computational sta-
bility and accuracy of the numerical model. This is often not an optimal choice for the inverse
problem, where it may be more appropriate to adapt the basis expansion to physical limits of
resolution of the reconstruction and to enforce smoothness constraints in the admissible solutions.

It is therefore often desirable to represent the inverse problem Equation 2 in a different basis
representation V at a different resolution and with different basis functions:

A% = argmin ¢ (x”) 4)

For example, V might be a regular pixel or voxel grid representing an image of the reconstructed
parameter distribution or a blob basis that imposes smoothness constraints on the reconstruction.

Where U and V are different, a mapping must be devised to transfer the expansion of a variable
x (r) between basis representations x* and xV. For example, in an iterative minimisation approach,
an updated parameter set x” must be mapped to x* to evaluate the forward model for computing .
The mapping algorithm should be optimal in the sense that the discretisation error of the mapped
basis expansion is minimal. In general, the mapping is non-trivial, because the basis expansions are
non-conforming and require the integration of basis functions over partial support areas. Previously,
[4] we have presented a simple mapping method that relied on U being of higher resolution than V
such that basis functions of V can be adequately represented by an expansion in U, reducing the
mapping problem to operations in U that can be performed with standard FEM tools.

In this paper, we propose an optimisation-based approach to define the mapping, which avoids
these limitations; either or both bases may be of arbitrary, variable or multi-resolution. The key
technique is the splitting of mesh elements comprising basis U such that the subdivided elements
align with the boundaries of support of the basis functions of V. This allows to compute the integrals
of products of mixed basis functions. The integrals are evaluated with a quadrature rule that is either
exact, where V is piecewise polynomial, or approximate in the general case.

2. METHOD

2.1. Finite element basis

We consider the model to be a finite element discretisation of a PDE over a simply connected domain
Q c R?, d ={2, 3} with boundary 9. Q is divided into P non-overlapping elements ¢;, i =1..P
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with element subdomain S(e;) C € such that U f;l S(ei) = Q, where  is an approximation of
that replaces boundary d$2 with a polygonal or polyhedral approximation a<2.

We define a piecewise polynomial basis expansion U®) of order k composed of N basis func-
tions u;(r), i = 1..N, r € © with limited support, such that a continuous variable x(r) in € is
represented by the basis approximation

N
x(r) =~ x*(r) = ZXZ?‘ui(r), reQ 5)

i=1
where X* = {X{,...,X}} € RY is the coefficient vector representing x in basis U =
{u1,...,un}. For k = 0, we have N = P and u; are piecewise constant, u;(r) = 1 if r €

S(e;); 0 otherwise. More frequently, orders k > 1 are chosen that provide a piecewise C¥ con-
tinuous basis expansion. In this case, each u; is associated with a node n; € R4 , I = 1..N that
participates in a subset of elements e (;), and u; is a piecewise polynomial function of order k with
support S(u;) = UjiS(e;) C Q. For k = 1, the nodes are given by the element vertices. For
k > 1, additional nodes are required along element edges, faces and volumes to define u;. For sim-
plicity, we restrict the discussion in this paper to polynomial basis functions, and most frequently
to k = 1. To simplify notation, we abbreviate U = U, The methods discussed after this can be
directly applied to other choices of FEM basis expansion.

2.2. Inverse problem basis

While the choice of model basis U is governed by considerations of numerical stability and accuracy
of the FEM forward model, it may not be suitable to represent the results of the solution of an inverse
problem, nor be a natural representation of the parameters of the forward model. We therefore
introduce a separate inverse problem basis V consisting of M basis functions v;(r), j =1.M, r €
2 of limited support S(v;) C €. V may be chosen to match the physical resolution limits of the
problem or to impose a specific level of smoothness in the images it can represent.

N
x(r) & x"(r) = > X vi(r). reQ (6)

i=1

A large number of choices for V can be considered. In the simplest case, V may represent a
piecewise constant pixel or voxel image, such that v;(r) = 1; if r € pixel j; O otherwise.
Alternatively, in analogy to the unstructured FEM basis, V can be continuous polynomial basis with
v; associated with the vertices of the basis grid and support over neighbouring pixels according to
the order of expansion.

Further, V can represent a blob basis, consisting of radially symmetric basis functions that depend
only on the distance d = ||r — R} || from a reference point R, and are truncated to a support radius
dmax, such that

Sy)={reQ:|r—R;|| < dun) @)

and v;(r) = 0 if d > dpax. The blob centres R; may be arranged in a regular grid or some other
distribution [5, 6]. Blobs are often preferred in image reconstruction problems because they enforce
an inherent smoothness in the solution that can be controlled by the choice of v; and by selecting
specific shape parameters and the support radius [7].

Let v;(d) denote the radial profile of v; (r). Different choices for v, (d) exist [4], including

e Kaiser-Bessel window functions,

— [m]m I [a,/l — (d/dmax)z] o d < dipas, ®)
m(@)

where [, is the modified Bessel function of order m and « is an adjustable shape parameter,

vj(d) =
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e Gaussian with truncated support,

vj(d):exp(—dz/ﬁz), dgdmaxy (9)
where o defines the shape,
e cubic B-spline,
4
(d —dp)}
vi(d)=4) ————, d < dna, (10)
j(d) kgo o)
where dy = (k — 2)dunax/2 and
o(dy) = T _g ;2 (dx — dj) (11
N3 (d —dy)3 ifd > dy
(d —di)y = {0 otherwise (12)

2.3. Basis mapping

Having defined forward model basis U and inverse problem basis V, we need to define mappings
U — Vand V — U that map the basis representation x* in U of a field variable x(r) to the
corresponding representation x¥ in V and vice versa. In general, the mapping will not be lossless,
because x¥ cannot be represented exactly in V. We therefore define the mapping problem as follows:
given a coefficient vector X* for basis U, find the corresponding vector XV of basis coefficients in
V such that a norm of the difference ||x* — x?||¢, for some choice of a normed linear space C, is
minimised. We have previously [4] presented a simplistic sampling-based method of basis mapping,
where the coefficients given in one basis expansion are projected onto the other basis expansion by
sampling at the node or grid positions of the target basis. The mapping V — U is then given by

M
X' mx"(ng) =Y XVvj(n) (13)
j=1

where v; (n;) denotes the value of basis function v; on node n; of basis U. Likewise, the mapping
U — V is given by

N
XP~oxt(g) = ) Xfui(g)) (14)
i=1
where g ; denotes the position of the grid point associated with basis function v ;. We can thus define

a projection matrix G*¥ € RVN*M for mapping the coefficients of the two basis representations from
V to U (Algorithm 1).

Algorithm 1 Sampling-based mapping (SM) V — U
1. for:=1..N do

2 for j =1..M do

3: G = vj(n;)

4

5

end for
: end for
6: XU — GUUXI'

The construction of the reverse projection matrix GY e RM*N for mapping from U to V is
performed analogously.

In the following section, we will introduce a more rigorous basis mapping approach that provides
the solution as the optimisation of an error functional.
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2.4. Error norms for basis mapping

Define an objective function based on the L? norm of the difference between the basis representa-
tions,

1
00" X") = 3 [ v = 'l Par
— %XuTBquu _XuTBquv + %XvTvaXv

(15)

where

B € RN*Nwith Bl* = [o u;(r)u;(r)dr
B € RM*Myith BPY = [o v;(r)v; (r)dr (16)
B¥Y ¢ RV>*M ywith Bl = [qui(r)v;(r)dr

We define B** and B? as self-mass-matrices, that is, the symmetric positive definite mass matrices
of the respective bases U and V. We define B*" as the co-mass-matrix containing mixed integrals
of products of basis coefficients from U and V.

The mapping of a function x* in U to x” in V is then given by minimising

XY = arg rr)}}}n O(X*, X") 17)
which is found by solving
BUUXY — puvTxH (18)
Likewise, the mapping from V to U of function x? is given by

X" = arg min &(X*, X") (19)

In the following, we will denote the mapping procedure given by Equations 18 and 20 as the least
squares mapping (LSM) method, to distinguish it from the sampling mapping (SM) method outlined
in Algorithm 1.

Instead of the previous L? norm, we also consider the Sobolev norm H!:

1
2o X0 = 3 ([ e wPar+a [ 95t - o pPar)
Q Q

1

— 3 [XuT(Buu + aDuu)Xu:I _XuT(Buv + aD¥")X? 20
1 vT mov VU WU

+§[X (BY + aD )X]

where « is a scalar, positive parameter and

D** € RN Nwith DI = [, Vu;(r) - Vu (r)dr
D" € RM*Myith DY? = [, Vv, (r) - Vv, (r)dr (22)
D*? € RV*Mwith DY = [o, Vu;(r) - Vv, (r)dr

In analogy with the simpler least-squares case, we define D** and DY as self-stiffness-matrices,
that is, the symmetric positive stiffness matrices of the respective bases U and V and D*? as the co-
stiffness-matrix containing mixed integrals of scalar products of the gradients of basis coefficients
from U and V.
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2.5. Element subdivision

The computation of the co-mass-matrix B*Y in Equation 16 and the co-stiffness-matrix D*? in
Equation 22 requires the calculation of the integrals of mixed products u;v; and their derivatives
Vu; - Vv;j. These are generally not trivial to compute, because U and V are non-conforming, and
the intersection of the areas of support of S(u;) N S(v;) may not coincide with element boundaries
in either basis. We solve this problem by element subdivision: split the elements representing the
support of u; into sub-elements along a cutting surface defined by the support boundary of v ;. Then
compute the integrals over all sub-elements within the support of v; and sum them up. For some
choices of U and V, the integrals may be evaluated analytically, for example, where both U and V
are piecewise polynomial. Otherwise, a numerical quadrature scheme may be employed.

Element subdivision and integration over partial elements is a well-known problem in different
applications of the FEM. It occurs for example in the computation of non-matching and overlapping
meshes, where a mesh representing an object is overlayed on a mesh representing a background [8,
9], where elastic materials are inserted into an elastic background of different properties [10], or
where an elastic body is immersed into a fluid [11]. Cut element problems also arise in ficticious
domain problems, where physical domain boundaries may intersect a mesh [12, 13]. A common
approach for treating interface problems on unfitted meshes is the use of Nitsche’s method [14],
which allows for discontinuities across element volumes. Dolbow et al. [15] and Hansbo et al. [16]
use Nitsche’s method for computing jumps in a field without re-aligning the mesh.

The subdivision of tetrahedral elements has been described in the context of physical cutting of
materials, for example, soft tissue cutting during surgical interventions [17, 18], fracture modelling
[19] or surgical reconstruction [20].

Where V represents a regular pixel or voxel basis, with planar boundaries between basis func-
tions, the resulting subdivided elements are polyhedra, which can then be further subdivided into
simple elements such as triangles and tetrahedra, and standard FEM techniques can be applied
to compute the integrals. If V represents a more complex basis with non-planar boundaries, such
as a blob basis composed of overlapping radially symmetric basis functions, the subdivided ele-
ments have non-trivial curved boundaries. In this case, we propose to represent the boundaries by a
polygonal approximation and proceed as before by further subdividing into triangles and tetrahedra.

In general, for arbitrary basis definitions V, a numerical quadrature scheme may have to be
employed to compute B¥¥ and D*?.

In the following subsections we describe the methods of element subdivision for 2D prob-
lems using an unstructured triangular basis and 3D problems using an unstructured tetrahedral
basis for U.

Algorithm 2 Element splitting and matrix assembly in 2D

1. for j =1..M do
2 approximate S(v;) with polygonal approximation S, if required
3 fori =1..N do
4 B« 0, DY <= 0
5: for each element e, C S(u;) do
6: compute W = S(ej) N S(v;) using Sutherland-Hodgman
7 construct Py, sub-triangles é,,, with Ufr)f:lS (em) =W
8 for m = 1..P;, do
9: Bl < B + fS(Em) w;(r)v;(r)dr
10: DY < DY + fS(Em) Vu,(r) - Vu;(r)dr
11: end for
12: end for
13: end for
14: end for
© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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2.5.1. Subdivision in 2D.. For 2D problems, we consider triangular elements with piecewise poly-
nomial basis functions for the FEM basis U, while V may be either a regular pixel basis with
piecewise bi-polynomial basis functions or a blob basis with radially symmetric basis functions.
The element-splitting algorithm for the calculation of co-matrices B¥Y and D*’ is shown in
Algorithm 2. For each combination of basis functions vj, j = 1..M and u;, i = 1..N, loop
over all triangles e C S(u;). Calculate the intersection W = S(ex) N S(v;), using a Sutherland—
Hodgman [21] algorithm. If S(v;) is not polygonal, as is the case for blob basis functions, we
replace S(v;) with an n-sided polygonal approximation S (v;) (Figure 1(b)). The accuracy of the
mapping and its computational cost depend on n. For the computations in this paper, support
areas for 2D blob basis functions were approximated by a regular polygon with n = 32. As both
S(ex) and S(v;) (or its approximation) are polygonal and convex, W is also polygonal and con-
vex. Let W be a (Pr + 2)-sided polygon with P, = 1 (omitting the trivial case W = 0). W
can then easily be subdivided into Pj sub-triangles é,, with UZ’;IS (ém) = S(ex) (Figure 1).
The integrals [u;v;dr for B} and [ Vu; - Vvjdr for D}’ are computed over each é, and

summed up.
S(v) -+ sH
5 @ 5 @z
SH 5“;,
3 AUERS,

Figure 1. Basis support intersection computation with Sutherland—Hodgson (SH) and triangulation of inter-
section (a) for regular pixel basis function v; and (b) for polygonal approximation of support area of a blob
basis with circular support.

Figure 2. Splitting of a tetrahedron (top left) by a plane. The possible cases are as follows: (i) splitting plane
cuts off a single vertex (top centre). This results in 143 subtetrahedra. (ii) Splitting plane cuts off two vertices
(top right). This results in 3+3 subtetrahedra. Special cases are also considered, where (iii) a single vertex is
located on the cutting plane (bottom left). This results in 1+2 subtetrahedra, and (iii) two vertices are located

on the cutting plane (bottom centre). This results in 1+1 subtetrahedra. The case where three vertices are on
the cutting plane is trivial and does not require splitting.
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2.5.2. Subdivision in 3D. For 3D problems, we consider tetrahedral elements for the finite element
basis U. For basis V, we use either a regular voxel grid with piecewise constant or trilinear basis
functions, or a blob basis with radially symmetric basis functions.

We employ a 3D extension of the Sutherland—Hodgman algorithm for computing the intersections
of the basis functions. In analogy to the 2D case, the spherical support area S(v;) of blob basis
functions is approximated by a regular polyhedron. For the results presented in this paper, we used
a 20-sided icosahedron as an approximation S (v i) to S(vj).

Algorithm 3 Element splitting and matrix assembly in 3D

1: for j =1..M do
2 approximate S(v;) with polyhedral approximation, if required
3 fori =1..N do
4 B <0, D’ <0
5: for each element e, C S(u;) do
6 define single-element sub-mesh m := é; := ¢,
7 for each face F),, of S(v;) do
8 for cach element é,, of m do
9: if é,, entirely inside F},, then
10: continue
11: else if €,, entirely outside F;,, then
12: remove é,, from m
13: else
14: split €,, along F},, into sub-elements é,,,
15: remove é,, from m
16: for each sub-element €,,, inside F},, do
17: add é,, tom
18: end for
19: end if
20: end for
21: end for
22: for each element ¢,, in m do
23: Bl < B + fS(én) u;(r)v;(r)dr
24: Dy« D + fS(én) Vu,(r) - Vu;(r)dr
25: end for
26: end for
27: end for
28: end for

Algorithm 3 shows the process of element splitting employed for calculation of co-matrices Bl”-‘j"
and D} for 3D problems. The algorithm is similar to the 2D case, but in order to reduce the clipping
process to a sequence of elementary operations of splitting a tetrahedron along a single intersecting
plane, we perform the splitting along each face of S(v;) iteratively and re-form a clipped tetrahedral
volume mesh at each step. The process starts with the single-element mesh m = ej. For each face
of S(v;), the elements of m are split by the plane defined by this face. Elements entirely external are
discarded, elements entirely internal are retained and intersecting elements are split and replaced in
m by their internal fragments.

There are two possible cases for the intersection of a tetrahedron at a single plane (Figure 2):

(i) The vertex nodes are split 1-3. In this case, we can split the tetrahedron into one subtetrahedron
on one side of the cutting plane and three tetrahedra on the other side.

(i) The vertex nodes are split 2-2. In this case, we can split the tetrahedron into three sub-
tetrahedra on each side of the cutting plane.

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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The cases where one or more of the vertices of the tetrahedron coincide with the clipping plane are
considered separately, to avoid the generation of degenerate subtetrahedra with coinciding vertices.
If exactly one vertex is on the cutting plane, the tetrahedron can be split into three subtetrahedra. If
two vertices are on the cutting plane, the tetrahedron can be split into two subtetrahedra. The trivial
case where three vertices are on the cutting plane does not require subdivision.

Figure 3 shows the result of intersecting and subdividing a tetrahedron e with the icosahedral
approximation of the support S(v;) of a blob basis function v;.

Figure 3. Example for the subdivision of a tetrahedron along the surface of an icosahedron, used to
approximate the support surface of a spherically symmetric basis function v ;.

Algorithm 4 3D Element splitting and matrix assembly for regular voxel basis V

1: fori=1..N do

2 for each element e;, C S(u;) do

3 define single-element sub-mesh m := ¢é; := ¢,
4 assign label ;. (é1) = {0,0,0} to &;

5: for d = {z,y,z} do
6:

7

8

9

for each inter-voxel plane py(d) in direction d do
for each element ¢,, of m do
if ¢,, entirely left of py(d) then

: keep label 14(é,,)
10: else if ¢,, entirely right of py(d) then
11: la(€n) < la(€n) +1
12: else
13: split &, at py(d) and replace é,, with the fragments
14: for all fragments right of pi(d), lg < g+ 1
15: end if
16: end for
17: end for
18: end for
19: for j =1..M do
20: find grid coordinate g = {z,y, z} of voxel j
21: for each element ¢,, in m do
22: if g = [(é,,) then
23: B <+ Bl + fS(én) w;(r)v;(r)dr
24: D« D + fS(én) Vu,(r) - Vuj;(r)dr
25: end if
26: end for
27: end for
28: end for
29: end for
© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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original elemant

= 4

after splitling at plane x=const {exploded view)

after splitting at plane y=const

T A

after splitting at plane z=const

i

Figure 4. Result of recursive subdivisions of a tetrahdron at voxel boundaries in the x, y and z planes, using
Algorithm 4. Element colours indicate voxel labels. The images in the right column show an exploded view
of the sub-elements.
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If V is a regular voxel basis with cuboid basis support S(v;), we can re-arrange the splitting pro-
cess to make it more efficient. We exploit the fact that many basis functions v; have coplanar faces
and thus share common cutting planes. We discard the outer loop over basis functions v;, which
would result in re-calculating identical cutting planes for different basis functions, and instead split
the object tetrahedron ey on all parallel cutting planes it intersects, retaining both the subtetrahedra
on the left and right of each cutting operation, and labelling the generated subtetrahedra according
to the cutting slice they are located in. This process is repeated with the cutting planes in the other
two spatial directions. The result is a sub-mesh over the object tetrahedron where each tetrahedral
sub-element is labelled according to the voxel it is located in. The integral contributions for B;.‘jv and
Dl”.;.” are then computed for all participating voxels j (Algorithm 4).

Figure 4 shows the result of such a subdivision of an object tetrahedron (top image) along the
cutting planes of a voxel basis in the x, y and z directions. The colours indicate the voxel labels of
each of the generated sub-tetrahedra.

2.6. Self-mass-matrix calculations

The matrices B¥* in Equation 16 and D** in Equation 22 can be computed with standard tools
of finite element analysis. For example, there exist analytic formulae for products of polynomial
shape functions over simple elements such as triangles and tetrahedra [22]. More complicated
element types, such as isoparametric elements with curved boundaries, may require a numerical
quadrature scheme.

Algorithm 5 Computation of B¥” for general blob basis V
for i =1..M do

1:

2 for j =1..M do

3 B+ 0

4 if HRZ — Rj H < dmax,i + dmax,j then

5: Compute W = S; N Sj for polygonal approximations S of S
6 Subdivide W into n sub-elements é;, with Algorithm 2 or 3
7 for k =1..ndo

8 By « B + fS(ék) v;(r)v;(r)dr

9: end for

10: end if

11: end for

12: end for

Algorithm 6 Computation of B¥" for the special case of a regular blob basis V

1: Initialise lookup table b = 0
2: fori=1..M do
3 for j = 1..M do
4: By« 0
5 d=[R; — Ryl
6 if d < dmax,i + dmax,; then
7 if d present in b then
8 BYY « b(d)
9: else
10: Compute B;” with Algorithm 5
11 Insert b(d) = B}
12: end if
13: end if
14: end for
15: end for
© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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The computation of B’V and D'V is straightforward for polynomial basis V. For blob bases,
the computation of B”Y becomes non-trivial, because it requires the integral of the product of two
radial basis functions v; and v; over their region of overlap W = S(v;) N S(v;). We replace S by
their polygonal approximations .S, compute W with the method described in Algorithm 2 or 3, and
divide the overlap into sub-elements. The integrals [ v;v; are evaluated with a numerical quadrature
scheme over the sub-elements and summed up. The process is shown in Algorithm 5.

If the blob basis is arranged in a regular grid, only a small number of different overlap configu-
rations occur, which makes computation of B”Y computationally inexpensive compared with B*?.
The number of neighbours contributing to each row of B”” depends on the size of dp.x relative to
the grid spacing. Algorithm 6 shows the modified process.

2.7. Co-mass-matrix calculations

In order to compute the integrals in Equation 16 for the elements of B*V, we employ Algorithm 2
for 2D problems and Algorithm 3 for 3D problems to perform the required element splitting, and
sum the integrals over the generated sub-elements.

If both U and V consist of polynomial basis functions, the integrals [ u;v; over the sub-elements
can be computed exactly. For more general choices, such as V representing a blob basis, a numerical
quadrature scheme may be used.

In the simplest case, V() represents a piecewise constant pixel or voxel basis

50 =5 e @)
In this case, the components of B*? simplify to
Ni
uv __ . n
BYY = ;; /S sy O (24)

where the sum runs over all elements e C S(u;). After subdivision of element ez along the edges
of pixel j into m sub-elements €x;, [ = 1..m, excluding sub-elements outside voxel j,

N, m
By =" Z/S u; (r)d"r (25)

ke=11=1"5CkD

The integral of u; over éx; can be computed in closed form when U is a polynomial basis.

If V consists of higher-order polynomial basis functions such as piecewise bilinear or trilinear
functions, then the basis indices j refer to the vertex positions joining the voxels, rather than the
voxels themselves, and each basis function has support over multiple pixels. For the computation
of B"Y, the same element subdivision strategy can be employed, and a numerical quadrature rule is
used for evaluating the integrals.

2.8. Stiffness matrix calculations

The calculation of the self and co-stiffness matrices in Equation 22 for the computation of the H!
norm follows along the same lines as discussed for the mass matrix computation. Again, the com-
putation of self-stiffness matrix D** is performed with standard finite element techniques, which
include direct and exact solutions for polynomial basis functions.

Similarly, evaluation of self-stiffness matrix DY can make use of the same FEM machin-
ery for certain basis function types, such as piecewise bi-polynomial and tri-polynomial basis
functions. The basis functions must, however, be differentiable, which precludes piecewise con-
stant bases. Where direct expressions of the integrals [ Vv; - Vv; over elements are not

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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available, numerical schemes are employed. This includes blob bases, where the calculation of the
intersection W = S(v;) N S (v;) is identical to the process for B'? as laid out in Algorithms 5 and 6.

Equally, for co-stiffness matrix D*? the subdivision process is identical to B*Y, which means
that the computation of the B and D matrices can be performed simultaneously on the subdivided
elements, as indicated by Algorithms 2 and 3. The integrals f Vu; - Vu; over the sub-elements are
computed directly where available, or by numerical quadrature otherwise.

2.9. Direct mapping from pixel images

In addition to the mapping between bases U and V, it may be useful to map from a high-resolution
regular pixel or voxel image directly into V. For example, a parameter distribution may be provided
in the form of an image and must be expressed in V to form an initial condition for a reconstruction
problem.

Let basis W be the piecewise constant pixel or voxel basis of dimension P representing the
image. We require a mapping from W to V. With the mapping tools defined earlier, we could map
from W to a mesh basis U and then back from U to V. However, the intermediate mapping to a
mesh basis expansion would lead to a loss of accuracy. Instead, we provide a direct mapping from
pixel values X" in W to basis coefficients X" in V:

vaf(v — BYWXW (26)

where

B € RM*F with B} = f vi(Ow; (0)d"r = / vi (r)d"r (27)
Q .

Vj

and V; is the support area of pixel j. Similar to the mapping U — V, the mapping W — V
is performed by subdividing the support area of each v; along the intersecting pixel edges and
summing up the integrals over the contributing subregions.

2.10. Adaptive basis formulation

For efficient inverse problem solution, a basis with locally varying resolution is often desirable.
The unstructured mesh basis U may be locally refined in accordance with an a posteriori error
estimate. Likewise, the inverse basis V may be iteratively adapted to features that emerge during the
reconstruction.

Starting from a choice of V with basis functions arranged in a regular grid, a natural choice for
refinement is a quadtree or octree approach, where a pixel or voxel may be subdivided into four
pixels or eight voxels of equal size. This type of adaptive refinement is well suited for the basis
mapping techniques described in this paper, because the required element-splitting procedures are
already in place, and the quad-and octree subdivisions of a voxel v in V affect the mapping matrices
only locally, by replacing a column in B¥? with those of its descendants.

3. RESULTS

3.1. 2D basis mapping examples

Figure 5 shows an overview of the different basis representations and mappings between them in
a chart. The original ‘Lena’ image X" (a) consists of a piecewise constant 512 x 512 pixel image
(basis W). This is mapped into a regular bilinear 32 x 32 basis X" (b) using the W — V map-
ping step and mapped back to the high-resolution pixel basis with mapping V. — W (d). Using
a mesh — in this example, a circular mesh consisting of 413 nodes with inhomogeneous node
density (c) — we perform the mapping V — U (e), and map the result back to basis W with
step U - W (f).

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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Figure 5. A chart of the mapping processes described in this paper.

Figure 6 shows a comparison of different choices for the inverse basis V, mapped from a common
source image. The top row shows, from left to right, the checkerboard source image represented
in piecewise constant 512 x 512 pixel basis W, the unstructured FEM mesh representing basis
U consisting of 2779 nodes and 5396 triangles, and the result of the mapping W — U. Row 2
shows the basis coefficients of inverse basis V after the mapping U — V for 28 x 28 piecewise
constant pixel basis (left), 28 x 28 piecewise linear pixel basis (centre) and 28 x 28 spline blob basis
(right). A resolution of 28 pixels per axis was chosen to avoid alignment of the basis cells with the
8 x 8 checkerboard pattern, which could lead to artificially low mapping errors. Row 3 shows the
result of mapping the basis coefficients for each of the basis expansions back to the source basis
representation (V — W), and the bottom row shows the differences between the mapped images in
row 3 and the source image.

Figure 7 shows the equivalent basis mapping steps for a different source image, using a 512 x 512
piecewise constant pixel representation of the ‘Lena’ test image. The same mesh for representing U
and the same three choices for V were used as for Figure 6.

3.2. 3D basis mapping examples

The results of a 3D mapping problem are shown in Figure 8 for a 3D checkerboard source image,
and Figure 9 for a 3D phantom source image containing spherical and ellipsoidal inclusions in a
homogeneous background. In both cases, the source images (a) were represented in a 128 x 128 x128
piecewise constant voxel basis W, the target domain was a cylinder, and the mesh representation
for basis U consisted of 12,676 nodes and 55,296 elements (c).

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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Figure 6. Comparison between inverse basis types. Top row, from left: 512 x512 Source image, unstructured

mesh, mapped source image W — U. Second row: basis coefficients for 28 x28 basis V. From left: constant

pixel basis, bilinear pixel basis, spline blob basis. Third row: basis representation after mapping back to
high-resolution pixel basis, V — W, for the three basis types. Bottom row: difference to source image.

The source image was first mapped into the mesh basis U (b) and then back into the original
tri-linear voxel grid basis. Cross sections of the results for the SM (d) and LSM basis mapping
algorithms (e) are shown. For both cases, the L? errors of the differences between the original basis
coefficients (b) and the V — U — V mapped basis coefficients are smaller for the new LSM
algorithm (e) than for the SM algorithm (d).

3.3. Comparison of mapping norms

To compare the effect of the choice of norm minimised by the mapping algorithm, we compare
the mapping results using the L2 norm (Equation 15) and the H! norm (Equation 21). Figure 10
shows a 128 x 128 constant pixel representation W of the Lena source image (a) and the mesh for
representing basis U (b). Rows 2 to 4 show the results of basis mapping steps using the L? norm
(left column) and the H! norm (right column), where row 2 contains the coefficients of a 32 x 32
spline blob basis after the mapping W — V, row 3 contains the result of mapping to the mesh basis,
V — U and row 4 shows the result of mapping back to the image basis (U — W).

It can be seen that the use of the H! norm produces a smoother result in the mapped images,
while the L? norm retains more high-frequency features of the original image.

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
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Figure 7. Comparison between inverse basis types. Top row, from left: 512 x 512 Source image, unstructured

mesh, mapped source image W — U. Second row: basis coefficients for 28 x28 basis V. From left: constant

pixel basis, bilinear pixel basis, spline blob basis. Third row: Basis representation after mapping back to high
resolution pixel basis, V — W, for the three basis types. Bottom row: difference to source image.

3.4. Mapping errors

To demonstrate the advantage of the LSM mapping algorithm proposed in this paper compared
with the SM method [4], we perform a mapping of a source image to different basis expansions
and compare the mapping errors in the final mapped image with the source image. In particular, we
compare the errors incurred by the mappings V — U and U — V for a range of choices of V in
2D and 3D examples.

Figure 11 shows the 512 x 512 pixel 2D checkerboard source image X" (a) and an unstructured

circular mesh, consisting of 682 nodes, used to define basis U (b).
W—-U U—->W ~
For the first test, we perform the mapping X% xS X, Figures 11(c) and (d) show

X¥ obtained with the SM and LSM methods, respectively. Figures 11(e) and (f) show the absolute
differences [(X¥ — X™);| for both cases. It can be seen that the new algorithm provides a better
approximation of the internal structure of the source image, at the cost of some loss of homogeneity
in the constant regions. The L? norms of the image difference for the SM and LSM mapping results
are 122.7 and 103.8, respectively.

Figure 12 shows a corresponding comparison between the SM and LSM method, using the ‘Lena’
test image, and a higher-resolution mesh for basis U. Again, it can be seen that the LSM algorithm
provides an improved mapping result and generates smaller errors.

© 2016 The Authors. International Journal for Numerical Int. J. Numer. Meth. Engng (2016)
Methods in Engineering Published by John Wiley & Sons Ltd. DOI: 10.1002/nme



BASIS MAPPING METHODS

d)

Figure 8. 3D mapping example. Cross section through 3D checkerboard source pattern (a). W — V Map-

ping of source image into 32 x 32 x 32 trilinear voxel basis: cross section through basis coefficients (b).

Cylindrical mesh for defining basis U (c). Result of mapping V — U — V using sampling mapping

method (d) and least squares mapping method (e). L2 errors of the difference images (d)—(c) and (e)—(c):
44.6 and 12.7, respectively.

Figure 9. 3D mapping example. Cross section through 3D synthetic phantom source pattern (a). W — V

Mapping of source image into 32 x 32 x 32 trilinear voxel basis: cross section through basis coefficients

(b). Cylindrical mesh for defining basis U (c). Result of mapping V. — U — V using sampling mapping

method (d) and least squares mapping method (e). L2 errors of the difference images (d)—(c) and (e)—(c):
23.1 and 5.3, respectively.

Similar results are obtained for 3D mapping problems. We compare 3D mappings of the checker-
board and phantom source images, using both a trilinear voxel and spline blob basis V, and perform
the mapping by minimising both the L? and H' LSM error functionals. As the mapping from the
image space (W) to the inverse basis will incur a loss, we consider the result X" of the mapping

W->V VW ~
xv 220 xv Z7 T xw (28)

as the reference image and compare this with the result of mapping

W->V V—-U U-»>V ~ VW o
xv 220 xv T X xv 20 xw (29)
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Figure 10. Comparison of the use of L? and H! norms in the least-squares minimisation of the mapping

algorithm. 128 x 128 source image (a), FEM mesh representation of basis U (b). Result of mapping W — V

for 32 x 32 spline blob basis V, using the L2 norm (c) and H ! norm (d). Result of mapping V — U for both
norms (e and f). Result of mapping back to the original image basis (U — W) for both norms (g and h).

for different choices of V and U, by comparing the norms of the image differences || X* — X¥||p,
D = {L? H'}. Figure 13 shows cross sections of the mappings Equation 28 and 29 for a 3D
checkerboard pattern (a,b) and a 3D test phantom (c,d) using a trilinear voxel basis (a,c) and cubic
spline blob bgsis (b,d). In each case, the first column shows the reference image X", while columns
2 to 4 show X¥ for SM, LSM(L?) and LSM(H '), respectively.

The error norms of the image differences between the W — V — Wand W - V - U —
V — W mappings are shown in Table I. Listed are the results for the SM algorithm and the LSM
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Figure 11. Comparison of W — U — W mapping errors between sampling mapping (SM) and least

squares mapping (LSM) algorithm. (a) Source image in 512 x 512 piecewise constant pixel representation

(W). (b) 682-noded unstructured mesh representing basis U. (c) Result of W — U — W mapping with

sampling mapping algorithm, (d) result with LSM algorithm, (e) magnitude of image differences for SM
algorithm and (f) for proposed LSM algorithm.

algorithm applying both L2 and H! error functionals. The table lists both the L2 and H' norms of
the image differences. It can be seen that the LSM approach consistently achieves lower mapping
errors than the SM method.

Finally, we explore the potential of reducing mapping errors by modifying basis U adaptively, in a
2D example. Figure 14 shows a 512x512 ‘Lena’ source image (a) and an initial unstructured circular
mesh with 682 nodes (b). Images (c) and (d) show the result of the W — U — W mapping for the
SM and LSM algorithms, respectively. The L? norms for the image errors are 44.8 and 38.0. The
pixel-wise image errors are then used to define a local node density target for re-meshing the circular
domain with Delauny triangulation. The meshing parameters were set such that the total number of
nodes was kept approximately constant. Images (e) and (f) show the resulting mesh structures, with
node counts of 856 and 819 for the SM and LSM algorithms. The result of the W — U’ — W
mapping of the source image, where U’ denotes the adaptive mesh basis, is shown in images (g) and
(h), and the pointwise image errors in images (i) and (j). It can be seen that the proposed algorithm
provides a superior mapping result, despite using a lower-dimensional mesh basis.

3.5. Adaptive basis results

As an example for an adaptive basis refinement, Figure 15 shows an iterative quadtree subdivision
of an initial 16 x 16 pixel basis, defined over a 512 x 512 source image. A pixel is subdivided if
the contrast range of the area it covers in the source image is larger than a threshold value. The first
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Figure 12. Basis mapping comparison: 256 x 256 ‘Lena’ source image (top left) and circular mesh repre-

senting basis U, consisting of 6840 triangular elements. Row 2: result of mapping source image into U

and back into pixel basis, for sampling mapping algorithm (left) and new least squares mapping (right).

Row 3: magnitude of differences between source and mapped images. Row 4: magnitude of differences
when a higher-resolution mesh consisting of 27360 triangles was used.

column of images shows the structure of the quadtree mesh at each subdivision level. The second
column shows the source image, mapped in the corresponding piecewise constant adaptive basis,
and the last column shows the differences to the original image.

The motivation in adaptive basis definition is its computational efficiency combined with low
error of the represented parameter. Table II shows a comparison of the adaptive meshes at the five
levels shown in Figure 15 with a uniformly high-resolution mesh at the corresponding refinement
level. It can be seen that the adaptive meshes reduce the basis dimension significantly while retaining
a similar level of mapping error as the fully refined meshes.

3.6. Parallel computation
Computation of matrices B¥Y and D*¥ is computationally expensive due to the large number of

element subdivisions and the need for a numerical quadrature over the sub-elements. To make the
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Figure 13. Comparison of basis mapping between SM and LSM L2 and H! algorithms for a 3D target.

The images show a cross section through a cylindrical domain containing a checkerboard pattern (a,b) and

a phantom consisting of piecewise constant ellipsoidal inclusions (c,d). Rows (a) and (c) use a 32 x 32 x 32

trilinear voxel basis V, while rows (b) and (d) use a 32 x 32 x 32 cubic spline blob basis V. Columns from

left to right: mapping W — V — W, and mapping W — V — U — V — W for SM, LSM(L?) and
LSM(H 1), respectively.
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Table I. Comparison of mapping errors between SM and LSM algorithm for 3D mapping examples in
a cylindrical domain. For LSM, optimisations using both the L2 and H ' norms are considered. For all

cases, the listed error values represent the L2 and H ! norms of the differences between the mapping
W->V->WandW >V ->U—->V->W.

SM LSM(L?) LSM(HY)

Target Basis V 1 11 2 SR R 17 T | 15 2 S | B (P I R 1§73

checkerboard 32 x 32 x 32 trilinear 2.93 5.29 3.34 4.52
checkerboard 32 x 32 x 32 spline 20.0 32.74 8.74 1591 9.02 13.38
phantom 32 x 32 x 32 trilinear  12.42 13.28 10.89 13.11
phantom 32 x 32 x 32 spline 6.31 9.16 4.32 6.74 4.37 5.60

SM, sampling mapping; LSM, least squares mapping.

problem tractable for larger meshes, we have devised a parallelised method for computation, using
a threaded approach for shared-memory architectures. The mesh elements are distributed over the
available threads, and element subdivision and integration are performed in parallel. Figure 16 shows
the computation time for the mapping matrices for a mesh with 12,676 tetrahedral elements for basis
U, and a regular voxel grid of dimension 128 x 128 x 8 using trilinear basis functions for basis V,
as a function of the inverse of the number of threads used. The relationship is approximately linear,
demonstrating good scalability.
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Figure 14. Effect of adaptive re-meshing on mapping errors. 512 x 512 source image (a), initial mesh (b),

mapped images with sampling mapping and least squares mapping algorithm (c) and (d), adaptive meshes

from image errors (e) and (f), mapped images using modified meshes (g) and (h), image errors after mapping
into modified meshes (i) and (j).
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Figure 15. Adaptive refinement steps of a piecewise constant pixel basis. Left column: pixel distribution.
Centre column: target image mapped into the basis using piecewise constant basis functions. Right column:
pointwise squared differences between original and mapped images.

Table II. Comparison of adaptively refined with
fully populated basis. M: basis dimension, &: L?
norm of difference of source and mapped image.

Res. level M adapt Mg Eadapt Efull
1 256 256  6.4807 6.4807
2 928 1024 42030 4.2023
3 2887 4096 2.4591 2.4463
4 7813 16384 1.4331 1.3820
5 17080 65536 1.0715 0.9142

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng (2016)

DOI: 10.1002/nme



M. SCHWEIGER AND S. ARRIDGE

0 0.1 0.2 0.3 0.4 0.5
(# threads)™

Figure 16. Runtimes for computation of basis matrices B¥%, B¥V and B¥? against inverse of thread count,
using a multithreaded implementation.

4. CONCLUSIONS

We have presented in this paper a novel method for mapping a field variable x(r), defined in a
bounded domain ©, from one finite-dimensional basis representation xU (r) to a different repre-
sentation x ¥ (r). Such mappings between basis expansions may arise in numerical analysis where
different components of the computational pipeline operate on different representations of the same
spatial variable. In this paper, we considered a problem typical for an inverse problem setting, where
the problem parameters are expressed in different basis expansions for the forward and reconstruc-
tion problems. We assumed the forward model to operate on an unstructured piecewise polynomial
finite element basis representation, while the solution of the inverse problem is represented by a reg-
ular grid of basis functions, be it a piecewise constant or polynomial pixel or voxel representation,
or a blob basis representation with radially symmetric basis functions arranged in a regular grid.

Adaptive approaches to the numerical solution of inverse problems, such as those described
in the introduction, that could potentially benefit from the basis mapping algorithms derived in
this paper include electromagnetic imaging, where the forward model is given by Maxwell’s
equations [23, 24], diffuse optical tomography [4, 25] and fluorescence tomography [26, 27],
electrical impedance tomography [28], as well as in adaptive inverse electrocardiography [29]
and electroencephalography problems [30]. Applications can also be found in geophysics, using
adaptive methods for seismic tomography [31], local earthquake tomography [32] and magnetic
susceptibility mapping [33]. Furthermore, they may have relevance in other areas, besides inverse
problems, such as in the fields of computational fluid dynamics [34] and in adaptive approaches to
non-rigid image registration [35].

Our proposed method of basis mapping is based on an error-functional approach that minimises
a norm of the difference between the two basis representations. We have compared this new LSM
method with a previous approach (SM) that was based on sampling the source basis representa-
tion U at the nodal positions of the target basis V. We have shown the new method presented
here to achieve consistently superior mapping results in terms of the error functional residual than
the SM method.

In addition, the LSM method offers a choice of norms for defining the error functional to be min-
imised, which can be used to emphasise certain image properties. In this paper, we have compared
the L2 and H' norms, and demonstrated that the latter allows to suppress high spatial frequencies
in the mapped images.

The new mapping algorithm requires the computation of integrals of mixed products of basis
functions, f u;v; or their derivatives, which is non-trivial because the support of u; and v; does
not coincide. The calculation of these integrals is implemented by subdividing the elements of the
unstructured mesh representing basis U along the boundaries of support of each v; and performing
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the integrals by summing the integrals over the sub-elements. The subdivision adds a significant
amount of computational cost, which can however be mitigated by parallel computation.

We have presented mapping results in both 2D and 3D problems, using unstructured meshes with
locally varying node density and piecewise linear basis functions for basis U, and regular voxel
grids with piecewise constant, or piecewise bi-and tri-linear basis functions for basis V. We have
also demonstrated the use of a blob basis with radially symmetric basis functions. In this case, the
limit of support of v; is approximated by a polygonal or polyhedral surface to facilitate the element
subdivision.

We have finally introduced the potential to apply more complex basis representations for V, where
a quadtree or octree representation was employed to construct a hierarchical basis expansion with
locally varying resolution. This method could be used to perform adaptive refinement of the basis
representation during reconstruction or to incorporate prior information about interal structure.
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