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ABSTRACT: MEMS accelerometers and gyroscope triads now cost less than $10, potentially opening up many
new applications. However, these sensors require calibration prior to navigation use.

This paper determines the maximum tolerable sensor errors for in-run calibration techniques using a basic
Kalman filter by developing criteria for filter failure and performing Monte Carlo simulations for a range of differ-
ent sensor specifications, and both car and UAV motion-profiles. Gyroscope bias is found to be the most significant
with the maximum tolerable value of its SD varying between 0.75 and 2.6 deg/s depending on the value of the
specification of the other sensor sources. The paper shows that pre-calibration and smart array techniques could
potentially enable in-run calibration to be applied to lower-quality sensors. However, the estimation of scale-factor
cross-coupling and gyroscope g-dependent errors could potentially be critical.

Armed with this knowledge, designers can avoid both unnecessary design complexity and computational load of
over-engineering and the poor navigation performance of inadequate filters. Copyright © 2016 The Authors Journal
of the Institute of Navigation published by Wiley Periodicals, Inc. on behalf of Institute of Navigation.

INTRODUCTION

Inertial sensors can significantly increase the
robustness of an integrated navigation system by
bridging gaps in the coverage of other position-
ing technologies, such as GNSS, Wi-Fi, and vari-
ous environmental feature-matching techniques [1].
A full set of chip-scale micro-electro-mechanical sen-
sors (MEMS) accelerometers and gyroscopes can
now be bought for less than $10 (e.g., Invensense
MPU-9150 ‘9-axis’ IMU (+magnetometer) available
from www.digikey.co.uk from £4.40, MPU-6050 ‘6-
axis’ IMU from £3.87), potentially bringing iner-
tial and integrated navigation to a wide range of
new applications. However, these sensors are uncal-
ibrated, exhibiting large temperature-dependent
biases and scale factor errors. Before they can be
used for navigation, some form of calibration is
required [2].

An inertial measurement unit (IMU) with rel-
atively small biases and other systematic errors
can be calibrated during normal use using a sec-
ond navigation system, such as GNSS and a basic
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Kalman filter (KF) integration algorithm [1, 3–5].
This enables the IMU’s calibration to be frequently
updated without any effort by the user, whenever
another navigation technology is available. How-
ever, when attempting to calibrate larger errors the
KF-integration starts to break because linearity and
small angle approximations made within its system
model are not valid.

One solution is to replace the Kalman filter
with a nonlinear estimation algorithm, such as an
unscented Kalman filter [6] or a particle filter [7].
Other techniques suggested to improve filter sta-
bility include adaptive filtering [8–11] and auto-
matic tuning [12]. However, all of these increase the
processing load. Other possible solutions include a
pre-calibration procedure and a smart array. Pre-
calibration requires the user to perform a known
series of maneuvers, which enable a determinis-
tic algorithm to perform a coarse calibration of the
sensor errors prior to the initialization of the inte-
gration Kalman filter. A smart array is an IMU
comprising an array of inertial sensors that have
been arranged to exploit the design characteris-
tics of the sensors such that the errors exhib-
ited are smaller than those obtained by simple
averaging [13].
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In order to establish when these alternatives are
necessary, we must first determine the limits of
the normal Kalman filter. Armed with this knowl-
edge, the community can avoid both the unnecessary
design complexity and computational power con-
sumption caused by over-engineering the filter and
the poor navigation performance that arises from an
inadequate filter. After establishing realistic limits,
one can determine whether real sensors are suitable
for in-run calibration with simple characterization
tests, rather than having to perform time-consuming
empirical testing.

In this paper, we will establish where these limits
are. First, we present some background on iner-
tial measurement units, user-conducted calibration
procedures and Kalman filter-based INS/GNSS inte-
gration (Background section). Then we establish
well-defined filter failure criteria (Kalman Filter
Failure section). These are crucial for determining
when the current filter is inadequate and a more
complex filter is needed.

Having established suitable failure and success
criteria, Monte Carlo simulations are performed
with a range of different sensor specifications in
order to determine the maximum tolerable sen-
sor errors. The approach to computing these sim-
ulations is presented in the Simulation Approach
section, and the results of these simulations with
a car and quadcopter motion profiles are shown in
the Results section. The implications of the research
are discussed in the Practical applications of the
results section, and the conclusions are drawn in the
Conclusions section.

A preliminary version of this study was presented
at the 2014 ION GNSS+ conference [14]. Here, a
new approach to tuning the filter is presented (Filter
Tuning section), so all results are new. A quad-
copter motion scenario has also been added to the
car motion scenario from [14].

BACKGROUND

Inertial Measurement Units and their Errors

An IMU is a set of (at least) three accelerome-
ters and three gyroscopes, arranged so that specific
force and angular rate can be measured in all three
dimensions. Typically, the sensitive axes are mutu-
ally orthogonal. An INS uses the output of an IMU
to calculate a dead-reckoning navigation solution [1,
15]. The attitude (3D orientation) is computed by
integrating the angular rate measurements. Then,
an estimate of Earth’s gravity is added to the specific
force measurements to provide acceleration, which
is integrated twice to calculate the change in posi-
tion. Thus, large position errors can arise from small
errors in the specific force measurements. Addition-
ally, as the attitude solution is used to determine

the correct direction of Earth’s gravity, small errors
in the attitude solution can also produce large posi-
tion errors. Thus, accurate measurement of both
specific force and angular rate is very important in
maintaining a good navigation solution.

Inertial sensor errors can be split into two cate-
gories: stochastic and systematic. Stochastic errors
are random in nature; the most significant is usually
the random noise added to the signal. If the noise
is predominantly white, then improvement can only
be made by sacrificing bandwidth, as white noise
cannot be removed by calibration. If the stochastic
errors are too high, the only solution is to use more
or better quality sensors.

Systematic errors are fixed and/or a function of
the sensors input and the environmental conditions.
If these errors can be measured, their effect can be
compensated for in the IMU’s output. Systematic
errors include bias, scale factor error, cross-axis sen-
sitivity, and gyroscope g-dependent error. Bias is a
fixed error. Scale factor error is when the sensitiv-
ity of the sensor is incorrect, such as measuring 98%
or 101% of the true quantity. Cross-coupling is sen-
sitivity to specific force or angular rate in directions
perpendicular to the nominal sensitive axis. One
case of this is mounting misalignment. Gyroscope
g-dependent error is when a gyroscope is sensitive
to specific force. There are other higher-order errors
such as sensor nonlinearity, about which there is
more information in [1, 15, 16].

The magnitude of all of these errors will vary con-
siderably between individual sensors of a particular
model, as well as slightly from day-to-day and slowly
during use. In addition, many of these errors also
vary as a function of environmental conditions, par-
ticularly temperature. As such, the accuracy of an
IMU calibration may reduce over time.

User Conducted Calibration

There are two main ways in which end-user cal-
ibration can be achieved. These are instruction
based, where the user is given a specific set of
maneuvers to carry out, and “in-run”, where the
inertial sensors are calibrated during the normal
use of the navigation system.

The most important feature of instruction-based
calibration is that it requires the user to stop using
the system and to perform a series of maneuvers
when, and precisely as, instructed, which may not
be practical for all applications. The more complex
this set of maneuvers is, the more of the system-
atic error sources can be determined, potentially
allowing higher accuracy. However, as the maneu-
vers become more complex, the chance that the user
performs them incorrectly increases. The simplest
instruction-based calibration asks the user to ‘place
the IMU still on a table,’ which allows the gyroscope
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bias to be measured. More complex sets of instruc-
tions could be used if the IMU is in a precisely
cuboid box where static measurements on each
of the six sides can be used to determine gyro-
scope and accelerometer bias, accelerometer scale
factor, and gyroscope g-dependent error ([13] for
details). If the user can perform more complex
maneuvers (e.g., rotating slowly about particular
axes in a specific order) or calibration equipment is
available (e.g., rate-tables or temperature controlled
chambers) even more, systematic errors could be
determined [15].

In contrast, calibrating an inertial sensor’s sys-
tematic errors ‘in-run’ relies on a second naviga-
tion system (e.g., GNSS) to provide measurements,
which can be compared with those derived from the
IMU, provided that a sufficient variety of maneu-
vers is conducted to make all the errors observable
[1]. This means that while the second system is pro-
viding reliable measurements, the calibration can
be performed continuously, so a much more recent
calibration is available when the inertial-only navi-
gation needs to be used. Moreover, no specific effort
from the user is needed. However, there is one
significant limitation. A reasonably good initial esti-
mate of the systematic errors in addition to its
uncertainty is required for the in-run estimation
process to remain stable and converge towards the
correct value.

INS/GNSS Integration Based on a
Kalman-Filter-Derivative

Many different navigation technologies could be
used to aid/calibrate an INS. Maximum robustness
is acheived by combining many different sensors
[17], but complex multisensor navigation brings
many challenges [18]. In this paper, we assume that
the INS is aided/calibrated using global satellite
navigation systems (GNSS). This is the method most
commonly used in practice due to the low cost of
GNSS user equipment, free to use infrastructure,
and fairly high accuracy and availability. INS/GNSS
integration is a well-established technique [1, 4].

The Kalman filter (KF) [3] is an estimation algo-
rithm that is linear; if the system is not, it must be
linearized. A KF works in state space, that is, each
quantity estimated is a state. For example, three
states are needed for each of position, velocity, and
attitude (for 3D navigation). When measurements
are added to the filter, these measurements are com-
pared with the measurements predicted by the cur-
rent state estimates, projected to the current epoch,
and used to correct the state estimates weighted
according to the relative uncertainty of the mea-
surements and the predicted state estimates. The
filter is recursive, and in that, it does not store
the old measurements; rather the state estimates

aggregate this information in combination with the
state error covariance matrix (the ‘P’-matrix), which
represents the estimation accuracy of the filter’s
state estimates. More information about Kalman
filtering can be found in standard texts such as
[19, 20].

In order for the filter to behave correctly, the best
possible initial estimates of the states should be
used, and the state error covariance matrix should
be correctly initialized with the ‘initial uncertainty’
of each state. The filter also needs to know how much
the states are expected to change through time, and
how accurate the measurements are. Choosing the
correct level for all these settings is known as tun-
ing, and often requires an element of trial-and-error.

The Kalman filter is based on the following
assumptions [19]:

� the state estimation errors have a Gaussian
(normal) distribution;
� the noise terms are ‘white’-noise (not correlated

with time); and,
� most importantly, the system propagation and

measurements are linear combinations of states.

However, real systems, such as INS and GNSS,
do not obey these rules. Linearizing approxima-
tions typically may include the ‘small angle approx-
imation’ and the assumption that the products of
state estimate errors are negligible. The white noise
assumption inherent in Kalman filtering can be par-
tially circumvented by telling the filter that the
noise variance is greater than it really is (over-
bounding) in order to model noise that is time
correlated over a few successive epochs [1].

If the these assumptions are not met or circum-
vented and/or the tuning is wrong, the Kalman filter
will not behave as expected, e.g., estimates will not
converge; there may even be numerical failure. In
short, the Kalman filter will ‘break’ if the errors
are ‘too large.’

KALMAN FILTER FAILURE

To examine the limits of Kalman filter per-
formance, we must establish criteria for when a
Kalman filter is performing unacceptably, inade-
quately, or unstably, henceforth “failing”.

In order to decide when a particular Kalman filter
fails, we first need to examine how it should behave;
we can then detect when failure has occurred.

A ‘well-behaved’ KF should start with state uncer-
tainties, which slightly exceed the real standard
deviation (SD) of the error distribution, to aid filter
stability when the true stochastic behavior of the
states diverges from the KF’s assumptions. Then, as
more aiding (e.g., GNSS) measurements are added,
both the filter’s state uncertainty and the real SD
of the error in the state estimates should reduce
together, particularly when maneuvers (such as
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turns) take place. This is illustrated in Figure 1.
Note that the accuracy of the estimates eventually
plateaus at a level that depends on the accuracy of
the aiding measurements, the IMU noise, and the
time variation of the systematic errors.

When the sensor errors are very large, the lin-
earizing assumptions described in the INS/GNSS
integration based on a Kalman-filter-derivative
section break very quickly. For example, GNSS
integration can normally only correct attitude
errors indirectly based on their effect on the posi-
tion/velocity solution. The KF uses the off-diagonal
elements of the P-matrix to infer the attitude and
instrument errors from the position and velocity
errors. When the gyro biases are large, the attitude

Fig. 1–This shows five runs of a Monte Carlo simulation to illus-
trate how a typical state estimate behaves when a KF integration
is working as intended. In this example, the estimation errors
of this state (X gyroscope bias) converge towards zero and their
distribution is well described by the KF’s state uncertainty.

error can grow more quickly than it can be cor-
rected, breaching the small-angle approximation.
When the ‘small angle’ approximation ceases to be
valid, the P-matrix no longer models the correlations
between the states correctly, so the corrections to
the state estimates from the measurements can be
applied incorrectly.

When the errors are ‘large,’ further KF assump-
tions, such as product of two state-errors being
negligible, can also break down. This kind of behav-
ior can be seen in Figure 2. This produces similarly
erratic estimates for the IMU error states, as shown
in Figure 3. Clearly, if we run a simulation and the
results are as erratic as in that example, detecting
that this is a ‘failure’ is straightforward.

Fig. 3–This shows five runs of a Monte Carlo simulation to illus-
trate how a typical state estimate behaves when a KF integration
is not working as intended. In this example the estimation errors
of this state (X gyroscope bias) do not converge to zero and vary
erratically, additionally their distribution is much greater than
the KF’s state uncertainty.

Fig. 2–An example of a typical badly behaved filter’s estimation errors in its position attitude and velocity solution. Note how the filter
starts well behaved but as soon as the attitude errors about North and East exceed a few tens of degrees (around 30 s) then the variation of
all the states becomes extremely erratic.
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Fig. 4–This shows five runs of a Monte Carlo simulation to illus-
trate a typical state estimate when a KF integration is behaving
inconsistently. In this example some of the estimation errors of
this state (Y accelerometer bias) converge to zero but others do not.
This spread of estimate errors is not well described by the KF’s
state uncertainty.

However, when the IMU errors are smaller, the
position, attitude, and velocity errors can remain
apparently small, within a few degrees and tens
of centimeters (per second), even though the IMU
error estimates produced are inconsistent with the
corresponding state uncertainties (Figure 4). This
situation illustrates a problem when determining
if a simulation has failed. For a given error distri-
bution, sometimes the IMU errors are within the
uncertainty bounds and sometimes they are not,
depending on the individual IMU samples. We need
the uncertainty to represent the whole distribution
not just individual samples. Thus while a particu-
lar sensor may happen to have a fortuitously small
starting error, with the result that the GNSS inte-
gration works well, that is not sufficient. We need
to run a large number of different values of the
starting errors, sampled from the same distribu-
tion, as part of a Monte Carlo simulation, and thus
demonstrate that the uncertainty represents the
whole distribution.

The intended use of an INS/GNSS integration KF
is important when determining failure criteria. Here
we wish to calibrate the inertial sensors in the IMU
so that the INS can bridge a future GNSS signal out-
age. This means that we require the errors in KF
state estimates corresponding to the IMU’s errors,
e.g., the accelerometer and gyroscope biases, to end
with a smaller distribution than they started. We
could make this the test: the simulation must end
with a smaller distribution of errors than it started
with. However, in the real context some short time
later the filter could became unstable and the error
estimates go wildly wrong.

Another possible approach could be ‘empirical.’
We could add a simulated signal outage and con-
sider how well it is bridged by the calibrated
solution. However, we can only simulate a short
amount of time before the computational cost of
running the Monte Carlo simulation becomes too
high. For instance, in this paper we only simulate

three minutes of motion. If the simulations were
continued, the estimates of the states might con-
tinue to improve. In some application scenarios,
there may be tens of minutes or even hours between
outages, so choosing an arbitrary amount of time
after which to test whether the resulting calibration
is ‘adequate’ is unsatisfactory. Additionally, deter-
mining what is ‘adequate’ performance for bridging
a GNSS outage is not straightforward. For exam-
ple, two INSs with different amounts of sensor noise
would perform differently even if both had their
systematic errors perfectly calibrated. Perhaps the
GNSS-calibrated INS could be compared to an INS
with identical noise parameters but zero system-
atic errors, although it is not clear how much worse
one should expect an imperfectly calibrated INS to
behave than a perfectly calibrated one, and still
be judged ‘adequate.’ Therefore, a success criteria
based on this approach would be specific to the
requirements of a particular application, and thus
unsuited to drawing more general conclusions.

In this paper we take a different approach to
deciding whether an INS/GNSS integration Kalman
filter is ‘successful,’ we look at filter stability.

In general, a Kalman filter will be stable if all of
the assumptions stated in the INS/GNSS integra-
tion based on a Kalman-filter-derivative section are
valid and if the variances and covariances stored
in its state error covariance matrix (P-matrix) are
an accurate reflection of the real errors of the esti-
mates. Fortunately, if the former condition breaks,
that latter tends to also. In a physical system the
‘real’ errors in these state estimates are not known.
However, in simulations, the ‘truth’ from which the
estimates differ is known. This means that sta-
bility criteria based on the real estimation errors
are possible.

A necessary but not sufficient condition for the
state error covariance matrix being correct is that
the filter is tuned correctly, as otherwise it is either
wrong from the start or will quickly become so.

The stability condition that we test here is the
relationship between that filter’s state uncertainty
for every state at each epoch (averaged across the
100 runs in the Monte Carlo simulation) and the
root-mean-squared-error (RMSE) across the set of
100 simulations of the filter’s state estimate error.
The threshold for failure is that the worst state’s
RMSE does not exceed 2� for more than 5% of the
simulation time, where �2 is the corresponding state
variance from the state error covariance matrix. It
should be noted that this threshold is very generous,
if the state uncertainty, � , is correct then the RMSE
over the 100 Monte Carlo runs should be very close
in value to it, as the unbiased estimator of the dis-
tribution variance, �2, is �2 = n

n–1s2 where s2 is the
sample variance and n is the number of samples.
This means that the probability that this condition
would fail by chance is very small, because for a
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normal Gaussian distribution P(s > 2�|n = 100) �
3.8� 10–37. Thus, we can be confident that the state
variance is not accurately describing the real errors
if this condition fails.

SIMULATION APPROACH

In this section, the approach taken to run sim-
ulations to determine whether a particular IMU
model is suitable for ‘in-run’ calibration is outlined.
First, the general approach is outlined (Simulation
Philosophy section), then the particular Kalman
filter variant used is discussed (Basic Kalman Fil-
ter section). This is followed by details of the
simulation algorithm’s design (Algorithm Process
section), the filter tuning (Filter Tuning section), the
motion scenario used (Simulation Motion Scenario
section), and the GNSS parameters (GNSS param-
eters section). Finally, the way in which the set of
inputs were searched is outlined in the Determining
the Search Space section.

Simulation Philosophy

IMUs are modeled by adding errors to the output
of a fictional ‘perfect IMU’ of differing magnitudes
to simulate IMUs of different grades. The values
for each of the systematic errors are selected ran-
domly for each run of a Monte Carlo simulation
and kept constant within that run. Thus the only
input needed to generate the set of systematic errors
for all the runs of a Monte Carlo simulation is
the standard deviations of each systematic error.
Noise sources are specified by their power-spectral-
densities (PSDs) and assumed to be white.

IMU sensor noise is generated independently for
each run of every test. Similarly, the GNSS measure-
ment errors for each run of each Monte Carlo sim-
ulation are selected independently from a common
distribution.

Basic Kalman Filter

For the simulations discussed here, the idea was
to use the most basic Kalman filter that might real-
istically be possible. The idea of being to assess the
limits of this basic filter and then determine when
more complex filters is required. This means that

it is both the most simple to program and has the
lowest processing load.

The INS/GNSS integration Kalman filter is
loosely coupled, which means that the GNSS infor-
mation is given to the filter in the form of GNSS
position and velocity measurements, rather than
as, for example, GNSS-pseudoranges. This has the
advantage that the results are applicable to other
sources of aiding. It is also a standard Kalman fil-
ter rather than an extended Kalman filter (EKF)
[19, 21] or unscented Kalman filter (UKF) [6]. This
means that it has linear system and measurement
models. However, it has closed-loop correction of the
inertial sensor error states, which improves the sta-
bility of the filter if the magnitude of these states
was to become large. This is equivalent to an EKF
system propagation [1].

The states modeled by this ‘basic Kalman fil-
ter’ are the minimum commonly used configura-
tion, that is, position, attitude, and velocity (3 �
3), accelerometer bias (3) and gyroscope bias (3),
a total of 15 states. Potentially better performance
could be achieved by estimating the first-order IMU
errors as well. However, an additional 27 states
would be required to estimate all components of
the accelerometer and gyroscope scale factor and
cross-coupling errors and the gyroscope g-dependent
errors. Modeling additional states makes the filter
significantly slower as the majority of the simula-
tion’s time is spent performing matrix multiplica-
tions, many of which require computational power
proportional to n3, where n is the number of states.

The KF is adapted from the example software
provided as open-source on the CD accompanying
[1]. The transition, system noise, and measurement
matrices used can be found in Equations (14.50),
(14.82), and (14.115) of [1], respectively. The calcu-
lation is performed in an ECEF reference frame; the
inertial sensors have an output rate of 100 Hz, and
GNSS (measurement) updates occur at 2 Hz.

Algorithm Process

The process through which the program runs to
make a Monte Carlo simulation of a single error
distribution is shown in Figure 5. First, the inputs
listed in Table 1 are specified, noting that the reason
these particular ranges were chosen is discussed in

IMU Error
SDs

Input 
Motion 
Profile

Generate 100
sets of fixed 
Systematic 

Errors

Generate True 
Specific Force 

& Angular Rate 

Generate GNSS 
Measurements

Select One Set 
of IMU errors

Generate IMU 
Measurements

Run Kalman
Filter GNSS-INS

 integration 

Save 
Output

Run
Pass/Fail
Criteria 

Repeat 100 Times

Success

Failure

Fig. 5–Flow Diagram of the Monte Carlo simulation algorithm.
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Table 1 — The inputs to the Monte Carlo simulation and
their values

Parameter Value or range used

Number of runs in MC simulation 100
Attitude initialization error SD 0.5 deg (all axes)

Accel. bias SD 1000 to 100,000 � g
Accel. noise root-PSD 100 to 500 �g/

p
Hz

Accel. scale factor error SD 0.06% to 3%
Accel. cross-axis sensitivity SD 0.025% to 1%
Accel. quantization level 0.01m/s2

Gyro. bias SD 10 deg/h to 20 deg/s
Gyro. noise root-PSD 0.01 to 1.8 deg/

p
hour

Gyro. scale factor error SD 0.03% to 3%
Gyro. cross-axis sensitivity SD 0.02% to 2%
Gyro. g-dependent error SD 1 to 100 deg/hour/g
Gyro. quantization level 0.0002 rad/s

the Determining the Search Space section. The true
motion profile is also an input, as discussed in the
Simulation Motion Scenario section.

Next, values for the systematic IMU errors for
each of the 100 simulation runs are chosen ran-
domly from a zero-mean Gaussian distribution with
standard deviations set to the parameter input val-
ues. For example, 100 sets of accelerometer biases
are chosen as well as 100 3 � 3 gyroscope g-
dependent error matrices. Then the Kalman filter
tuning parameters are set using the input distri-
bution SDs, in the manner described in the Filter
Tuning section.

The next step is to calculate the true specific
force and angular rate measurements from the true
motion profile, then use all the systematic and
stochastic errors to create simulated IMU outputs,
and also create simulated GNSS positions and veloc-
ities from the true motion profile (GNSS parame-
ters section). Then inertial navigation equations and
the basic Kalman filter INS/GNSS integration (dis-
cussed in the Basic Kalman Filter section) are run

for each of the 100 sets of simulated IMU and GNSS
measurements. The results of all of the simulations
are saved.

Finally, summary statistics are calculated for all
100 simulation runs of that distribution, and com-
parisons between the KF’s estimation errors and
the uncertainty that it calculates for each state, as
discussed in the Kalman Filter Failure section, are
made. This gives the result of ‘pass’ or ‘fail’ for the
particular error distribution.

Simulation Motion Scenario

In the research presented in this paper, we chose
to use two truth motion profiles for the Monte Carlo
simulations.

The first consists of a typical car motion last-
ing 3 min and containing three turns. It is shown
in Figure 6a. This motion profile is fairly repre-
sentative of the navigation scenario in which a
typical consumer-grade IMU might be used. How-
ever, as we do not wish to make the results spe-
cific to cars or land vehicles we do not implement
land-vehicle motion constraints [22], though these
would reduce the INS drift and could make the cal-
ibration of the IMU systematic errors easier. Addi-
tionally, the relatively limited number of different
maneuvers makes it relatively difficult to separately
observe the different IMU errors in this scenario.

The second motion scenario tested simulates a
quadcopter. This was chosen to provide a contrasting
example with much higher dynamics. We could also
have used motion representative of a fighter aircraft
or a missile; however, neither of these are realistic
applications for low-cost IMUs. As such, motion was
generated representing a small quadcopter of the
type available to hobbyists for a few hundred dollars,
to carry small payloads such as video cameras.

The quadcopter simulated has a maximum speed
of 10 m/s, an elevation angle dependent on its
speed, and achieves high bank angles when turning.

Fig. 6–3D projection of the two truth motion profiles used for the Monte Carlo simulations.
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Fig. 7–Components of the two simulated truth motion profiles used to for the Monte Carlo simulations.

These are the advertised performance characteris-
tics of a market-leading model, the DJI Phantom
[23]. The 2 min of 3D motion and resulting position,
velocity, and attitude are illustrated in Figures 6b
and 7b, respectively. Note the frequent sharp turns
and that the elevation angle depends on the speed,
because the rotors do not pivot with respect to the
quadcopter body.

A pedestrian motion scenario has not been tested
because IMUs are typically used for pedestrian
dead reckoning (PDR) using step detection, which
does not require sensor calibration [24, 25]. Inertial
navigation using consumer-grade sensors is gen-
erally only viable using a foot-mounted IMU, for
which zero-velocity updates (ZVUs) are used to cal-
ibrate the IMU, requiring a different KF design.
Representative pedestrian motion is also difficult to
generate [26].

Filter Tuning

As we know the true distribution of the sen-
sor errors, we could tune the KF with precisely
these values. However, as is standard practice, the
error distributions and noise power spectral den-
sities are over-bounded in the KF integration [1].
This helps maintain filter stability, as those error
sources that are not estimated and the effects of any
nonlinearities can appear as noise to the filter. The
noise root-PSD assumed within the KFs is set to
double the noise root-PSD used in the inertial sen-
sor simulations, plus an additional factor detailed
below. Additionally, the initial position, velocity, and
attitude states uncertainties are overmodeled by a
factor of two.

The sensor bias states could be tuned using only
the stochastic parameters of the biases themselves
(as we initially assumed in [14]). However, we
observed that particular state estimates were fre-
quently becoming unstable due to systematic errors

that a basic 15-state Kalman filter does not directly
model, such as scale factor and cross-coupling errors.
Thus, we decided to take these unestimated higher-
order errors into account when tuning the filter.

The basic Kalman filter (Basic Kalman Filter
section) assumes that all the sensor errors are a
combination of bias and noise, so any other error
types will manifest either in the estimates of bias
or as additional ‘noise.’ The bias-like effects of the
higher-order errors are the average effect that these
have on the measurements of specific force and
angular rate. This is equivalent to the effect of the
higher-order errors on the average specific force and
angular rate applied in the simulation.

The angular rates and horizontal specific forces
(accelerations) roughly average to zero across the
whole simulation, while the vertical (z) specific force
averages to about 9.8 ms–2 due to reaction to Earth’s
gravity. Consider the scale factor and cross-coupling
error matrix, Ma, where sa,i is the scale factor error
of the i-axis sensor and ma,ij is the cross-coupling
error on the i-axis sensor of the j-axis specific
force, so

Ma =

0
@ sa,x ma,xy ma,xz

ma,yx sa,y ma,yz
ma,zx ma,zy sa,z

1
A . (1)

The entries in the third column are those depending
on the vertical-axis specific force. As a result, these
errors appear (on average) to the simplified IMU
model used in the basic Kalman filter (Basic Kalman
Filter section) as an additional bias and noise on the
accelerometer signals, whereas the other six errors
only appear as noise. In the equivalent M-matrix
for the gyroscope, all nine errors must be absorbed
by the system noise. However, for the gyroscope g-
dependent error matrix, which is a 3 � 3 matrix
describing the effect of the specific force on the
angular rate measurements, the three components
corresponding to the z-axis specific force appear
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to produce an additional bias, and all components
appear to produce additional gyroscope noise.

In order to account for the bias in the tuning, the
state uncertainties associated with the accelerome-
ter biases are set equal to the root sum of squares
(RSS) of the accelerometer bias SD and g times the
greater of the scale factor and cross-coupling error
SDs. We chose to use this form because it allows
arbitrary orientation of the IMU. Similarly, the gyro-
scope bias uncertainties were set to the RSS of the
gyroscope bias SD and the SD of the g-dependent
bias associated with a specific force of g.

In order to maintain filter stability, it is necessary
to include additional system noise (represented by
the ‘Q’-matrix) to account for the noise-like effect of
the higher-order systematic errors. The best way to
tune the KF noise parameters to account for these
errors depends both on the dynamics of the motion
and the magnitude of the unestimated errors. These
error sources add a large amount of ‘noise’ to the
sensor outputs during a maneuver and have lit-
tle impact the rest of the time. In a real system
it is likely that the designer would determine the
amount of ‘extra noise’ empirically, using trial-and-
error until the system remains stable. Some authors
also suggest using a system model that depends on
the dynamics (see [1]). Our intention is to test the
most basic KF integration possible so we have added
a constant amount of additional system noise noise
covariance that is proportional to the variance of the
unestimated systematic errors.

The system noise used in the KF to represent the
behavior of the accelerometers is given by,

SKF
a = 22SIMU

a +
�
max

�
�ma , �sa

�
kf

�2
ta, (2)

where SKF
a is the accelerometer noise PSD modeled

within the KF, SIMU
a is the accelerometer noise PSD

used to generate the IMU model, kf is a constant
of proportionality to account for the level of varia-
tion in the specific force during the motion and, �ma
and �sa are SDs of the accelerometer cross-axis sen-
sitivity and scale factor error used to generate the
IMU model, respectively. ta is the smoothing time
described below.

Similarly, the system noise used in the KF to
represent the behavior of the gyroscopes is given by,

SKF
g = 22SIMU

g +
�
max

�
�mg , �sg

�
k!
�2

ta+
�
�Ggkf

�2
ta,

(3)

where SKF
g is the gyroscope noise PSD modeled

within the KF, SIMU
g is the gyroscope noise PSD used

to generate the IMU model, k! is a constant of pro-
portionality to account for the level of variation in

the angular rate during the motion and, �mg , �sg ,
and �Gg are SDs of the gyroscope cross-axis sensitiv-
ity, scale factor error, and g-dependent error used to
generate the IMU model, respectively.

The constants of proportionality, kf and k! are
calculated based on statistical properties of the true
motion. These two constants have the same units
as specific force and angular rate, respectively. They
are the average absolute difference in specific force
or angular rate smoothed over 10 GNSS epochs and
over 1 epoch for each motion profile. That is,

kf = mean
�ˇ̌̌

M
�
f b
ib, tu

�
– M

�
f b
ib, 10tu

�ˇ̌̌�

=
�

0.1058 ms–2, for car motion
0.2302 ms–2, for quadcopter motion

(4)

where f b
ib is the specific force and tu is the KF mea-

surement update time (0.5 s). The function “M(a, t)”
takes a moving average of the time series a over t
seconds. “| |” is the absolute value operator.

k! = mean
�ˇ̌̌

M
�
!b

ib, tu
�

– M
�
!b

ib, 10tu
�ˇ̌̌�

=
�

0.008228 rad/s, for car motion
0.042038 rad/s, for quadcopter motion

(5)

where !b
ib is the angular rate. The time constant for

Equations (2) and (3) is 10 times the GNSS (mea-
surement) update rate (ta = 10tu), as this is the
period of the moving average.

GNSS Parameters

The GNSS simulation settings are chosen to sim-
ulate the operation of consumer-grade GNSS user
equipment in a relatively benign signal environ-
ment. This is reasonable as one would only try to
use GNSS to calibrate the INS when good reception
is available.

As the focus of this paper is on the IMU calibra-
tion, we have used a relatively crude GNSS model.
Bias-like GNSS errors were neglected as they only
affect position determination while we are aiming to
assess the INS calibration. Additionally, as the sim-
ulation is relatively short (3-minutes) the time vari-
ation in GNSS systematic errors has been neglected.
A constellation of 30 satellites was simulated. The
effect of code tracking error is simulated by white
noise with a SD of 1 m and 0.02 m/s on the pseudo-
range and pseudo-range-rate, respectively. Note that
the KF update-interval exceeds the correlation time
of typical GNSS tracking errors.

The measurements used for the Kalman filter are
GNSS-like generic position and velocity measure-
ments, i.e., loosely-coupled integration. The associ-
ated measurement noise SD KF tuning parameters
are 2.5 m and 0.1 m/s on each axis for the position
and velocity, respectively.
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Determining the Search Space

There are a large number of possible variables
that could be changed to run different Monte Carlo
simulations, which were listed in Table 1. In order
to be able to run enough simulations using limited
computational resources the Monte-Carlo simula-
tions contain 100 runs each.

Given there are a vast number of possible com-
binations of the 12 possible input parameters, we
made some assumptions to reduce the number of
potential combinations.

First, only levels of error that exist for real sen-
sors from tactical to consumer MEMS grade were
tested. Thus, there were no ‘zero-bias’ or ‘zero-noise’
tests, nor were any sensors simulated with unreal-
istically large errors. The ranges for each parame-
ter chosen are given in Table 1. Some real sensor
specifications are provided in Table 2 to demon-
strate that the ranges tested encompass currently
available sensors.

Second, we have chosen to vary some but not all of
the possible inputs. For instance, we are fixing the
sensor quantization and the attitude initialization
error. Also, it seems very unlikely that certain com-
binations of errors exist, such as high cross-coupling
with extremely accurate scale factor. For this rea-
son, we vary some of the errors together, with
one parameter for the higher-order accelerometer
‘unestimated’ errors encompassing accelerometer
scale factor error and accelerometer cross-coupling,
and a second parameter for the higher-order gyro-
scope ‘unestimated’ errors, which combines gyro-
scope scale factor error, gyroscope cross-coupling,
and gyroscope g-dependent error. These two error
parameter sets are split into five levels for test-
ing: tactical, low, medium, high and very high (See
Table 3).

This leaves six different distribution parame-
ters to test: accelerometer bias; gyroscope bias;
accelerometer noise; gyroscope noise; and the two
unestimated error parameters. As we are trying
to find the border between ‘success’ and “failure,”
we are looking for a five-dimensional subspace
in six-dimensional space, analogous with how a
surface is a two-dimensional subspace of three-
dimensional space.

First, we determine which are the most inter-
esting areas of the search space by testing points
over a coarse grid (7 (accel bias) �9 (gyro bias) �5
(accel noise) �5 (gyro noise) �5 (higher-order accel)
�5 (higher-order gyro)). Then having identified the
general structure of the space, border regions were
re-searched on a much finer grid to find the ‘edge,’
using a strategy that tests along one parameter until
adjacent points are found where one is a pass and
the other a fail, then incrementing a second parame-
ter and returning to varying the first. This finer grid
has a geometrical spacing where a point is 110% of

Table 3 — The five levels of higher-order unestimated IMU
errors tested

Parameter std. dev. ‘tactical’ ‘low’ ‘medium’ ‘high’ ‘very high’

Accelerometer
Scale factor error 0.06% 0.5% 1% 2% 3%
Cross-axis 0.025% 0.25% 0.5% 0.75% 1%
sensitivity

Gyroscope
Scale factor error 0.03% 0.3% 1% 2% 3%
Cross-axis 0.02% 0.2% 1% 1.5% 2%
sensitivity
g-dependent error 1 5 10 50 100
(deg/hour/g)

Table 2 — A selection of sensor error distributions derived from their datasheets, in the units given. The Bosch,
ST, and Invensense are consumer-grade MEMS. The Xsens is a factory-calibrated MEMS IMU, which costs around

$2,500. Where a range is given this parameter depends on the full-scale measurement range selected

Sensor manufacturer Bosch STMicroelectronics Invensense Xsens
Model BMA180 [27] L3G4200D [28] MPU-9150 [29] MTi-G [30]
Type accelerometer gyroscope single-chip IMU factory-calibrated IMU

Accelerometer Errors
Bias ˙ 0.588 m/s2 n/a ˙ 0.784(x&y) to 1.47(z) m/s2 0.02 m/s2

Noise 0.00147 m/s2/
p

Hz n/a 0.0039 m/s2/
p

Hz 0.002 to 0.004 m/s2/
p

Hz
Scale factor error ˙1.5% to 3% n/a ˙ 3% ˙ 0.03%
Cross-axis sensitivity 1.75% n/a not specified aligned to ˙0.1 degree
Nonlinearity 0.15 to 0.75 % FS n/a 0.5 % FS not specified

Gyroscope errors
Bias n/a ˙ 10 to 75 deg/s ˙20 deg/s ˙1 deg/s
Noise n/a 0.03 deg/s/

p
Hz 0.005 deg/s/

p
Hz 0.05 to 0.1 deg/s/

p
Hz

Scale factor error n/a ˙4% [31] ˙ 3% not calibrated
Cross-axis sensitivity n/a not specified ˙ 2% aligned to ˙0.1 degree
Nonlinearity n/a 0.2% of FS 0.2 % FS not specified
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the value of the previous point, and thus, it appears
equally spaced on a log scale. Thus, each graph in
the Results section has more data points along the
pass-fail boundary than elsewhere.

RESULTS

Discussion of the results of the simulations is split
into three parts. The first two parts concern the
road vehicle simulation: Road vehicle results when
the higher-order IMU error parameters are ‘small’
section presents results with very small higher-
order error parameters (scale factor, cross-coupling,
and gyro g-dependent error); The effect of the higher-
order IMU error parameters section presents results
with higher-order errors large enough to impact per-
formance. Quadcopter Results section examines the
results of the quadcopter simulations. Discussion
section discusses these results.

Road Vehicle Results when the Higher-Order IMU
Error Parameters are ‘Small’

When the higher-order IMU error parameters are
very small, the assumptions we made by using a
Kalman filter (KF) with only 15 states are rea-
sonable. That is, in relation to these errors, the
filter should be fit for purpose and, if the filter
‘breaks,’ it must be for a different reason. How-
ever, there are error distributions for which the KF
fails even with ‘tactical’ unestimated errors. These
are illustrated in Figures 8 and 9. As it is imprac-
tical to the present six-dimensional diagrams, we
present three-dimensional diagrams that show the
variations in three parameters with the other three
parameters fixed.

Observing the border between ‘success’ and ‘fail-
ure’ in these figures, it is clear that the most impor-
tant error parameter is gyroscope bias. All of the

Fig. 8–Three-dimensional subspace of the search space showing
where the KF fails with road vehicle motion for different val-
ues of accelerometer and gyroscope bias and accelerometer noise
with gyroscope noise fixed at 0.01 deg per root hour and both
accelerometer and gyroscope unestimated errors fixed to ‘tactical’
(see Table 3).

Fig. 9–Three-dimensional subspace of the search space showing
where the KF fails with road vehicle motion for different val-
ues of accelerometer and gyroscope bias and gyroscope noise with
accelerometer noise fixed at 100 �g/

p
Hz and both accelerometer

and gyroscope unestimated errors fixed to ‘tactical’ (see Table 3).

distributions tested with a gyroscope bias standard
deviation (SD) below 0.75 degrees per second (deg/s),
equivalent to 2705 degrees per hour (deg/h), were
successful, and all those tested above 2.6 deg/s (9400
deg/h) were failures. Note that this failure point
is between the specified performance of factory-
calibrated IMUs and consumer-grade MEMS gyro-
scopes (Table 2). This makes it clear that the
accuracy of the attitude solution is key to INS/GNSS
KF stability. This is primarily due to the use of the
small angle approximation (INS/GNSS integration
based on a Kalman-filter-derivative section).

Variation of the ‘border’ between success and fail-
ure according to the other IMU error parameters
can also be observed. The accelerometer bias is most
significant with the maximum tolerable gyroscope
bias SD ranging from 2705 deg/h for a 1 milli-
g accelerometer bias SD to 9337 deg/h for a 100
milli-g accelerometer bias SD. It is perhaps sur-
prising that worse accelerometer bias performance
allows the filter to cope with more gyroscope bias. A
possible explanation is that the larger accelerome-
ter bias uncertainty in the Kalman filter indirectly
results in larger attitude uncertainties, enabling it
to tolerate greater divergence from the small angle
approximation.

The effect of the IMU’s two noise parameters on
the position of the boundary is even smaller. The
accelerometer noise affects the maximum tolera-
ble gyroscope bias SD by a factor of about 1.25
(Figure 8), while the effect of the gyroscope noise is
less than a factor of 1.1 over the range simulated
(Figure 9).

The Effect of the Higher-Order IMU Error
Parameters

When we vary the parameters which are not mod-
eled as states in the Kalman filter, we know that
the KF is only suitable if these parameters are
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insignificant. Thus, the question we are asking is:
What size of error is insignificant?

As described in the Determining the Search Space
section, we tested five levels of higher-order errors
of the gyroscopes and accelerometers, as shown
in Table 3. The unestimated errors gyroscope and
accelerometer were varied separately. Both of these
parameters were set to ‘tactical’ for the results dis-
cussed in Road vehicle results when the higher-order
IMU error pa- rameters are ‘small’ section. Here,
we present the results when one or both of the
gyroscopes and accelerometers higher-order error
parameters were set to low, medium, high, or very
high. Note that the results presented here show
a considerable improvement from the preliminary
results presented in [14] because of the improved
filter tuning, presented in the Filter Tuning section.

First, we examine the effect of increasing the
gyroscope and accelerometer higher-order error

Fig. 10–Three-dimensional subspace of the search space showing
where the KF fails with road vehicle motion for different values of
accelerometer and gyroscope bias and accelerometer unestimated
errors with the other errors fixed to ‘tactical’ level (see Table 3).

Fig. 11–Three-dimensional subspace of the search space showing
where the KF fails with road vehicle motion for different values
of accelerometer and gyroscope bias and gyroscope unestimated
errors with the other errors fixed to ‘tactical’ level (see Table 3).

parameters individually. Figure 10 shows the effect
of increasing the higher-order accelerometer error
parameters through each of the five levels while
holding the two noise parameters and the gyroscope
higher-order errors at ‘tactical’ level. As the level of
unestimated error increases (vertical axis), a new
unstable area forms and grows in the low-bias cor-
ner of the graph, which combines with the pass/fail
boundary discussed in the Road vehicle results when
the higher-order IMU error parameters are ‘small’
section, to only leave a small stable area when
the higher-order errors are very high. Figure 11
is the analogue showing the effect of the gyro-
scope unestimated error parameter. A similar effect
can be observed. However, the unstable area grows
more for each level of unestimated error, leaving
only an extremely small pass area in the high-bias
corner when the unestimated error parameter
reaches high and no passes at all for very high
higher-order errors.

Quadcopter Results

When the higher-order errors are at a low enough
level to be insignificant, e.g., at ‘Tactical’ level, the
filter stability is similar to that for the car motion.
In Figure 12, which represents filter behavior for
insignificant levels of unestimated error, the behav-
ior is qualitatively almost exactly the same as the
equivalent figure for car motion, Figure 8. It exhibits
a maximum gyroscope bias SD beyond which the
filter becomes unstable with some dependence on
the accelerometer bias SD, but minimal variation
with the accelerometer and gyroscope noise levels.
Numerically, maximum possible gyroscope bias SD
has increased slightly, ranging from 3684 deg/h for
a 1 milli-g accelerometer bias SD to 12430 deg/h

Fig. 12–Three-dimensional subspace of the search space showing
where the KF fails with quadcopter motion for different val-
ues of accelerometer and gyroscope bias and accelerometer noise
with gyroscope noise fixed at 0.01 deg per root hour and both
accelerometer and gyroscope unestimated errors fixed to ‘tactical’
(see Table 3).
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Fig. 13–Three-dimensional subspace of the search space showing
where the KF fails with quadcopter motion for different values of
accelerometer and gyroscope bias and accelerometer unestimated
errors with other errors fixed at ‘tactical’ level (see Table 3).

for a 100 milli-g accelerometer bias SD. This slight
movement could be due to the biases becoming more
observable with the different maneuvers.

As the level of higher-order errors increase,
the differences in filter performance between the
car and quadcopter motion profiles become larger.
Figure 13 illustrates the changes in the stable area
with different levels of accelerometer higher-order
errors; it is the quadcopter analog of Figure 10.
Therefore, the maximum gyroscope bias uncertainty
boundary is the same as in Figure 12, just as the
boundary in Figure 8 was repeated in Figure 10.
However, the range of accelerometer biases that
are stable with lower gyroscope biases are con-
siderably smaller with the quadcopter than the
equivalent with car motion. When we compare non-
negligible levels of accelerometer higher-order error,
between Figures 10 and 13, the minimum accept-
able accelerometer bias has reduced significantly,
particularly around 100 deg/hr gyroscope bias.

Figure 14 shows the effect of different levels of
gyroscope higher-order errors. The analogous behav-
ior for car motion is shown in Figure 11. With very
high levels of unestimated errors, neither motion
profiles enable a stable KF. At high and medium
levels of the higher-order gyroscope errors, the sta-
bility regions are very small for the car motion and
smaller still for the quadcopter motion. Thus, it is
very difficult to achieve stability by exaggerating the
bias SDs assumed within the KF. When the unesti-
mated errors are low, the high-gyro-bias side of the
stability area is very similar; however, on the low-
gyroscope-bias side, the quadcopter motion is only
stable for higher levels of bias. Thus, the assumed
gyroscope bias would need to be exaggerated to
achieve stability.

These results indicate that higher dynamics have
a marked additional de-stabilizing effect on the filter
and this manifests as the stable area shrinking sig-
nificantly, pushing it further towards the high-bias

Fig. 14–Three-dimensional subspace of the search space showing
where the KF fails with quadcopter motion for different values
of accelerometer and gyroscope bias and gyroscope unestimated
errors with other errors fixed at ‘tactical’ level (see Table 3).

corner. The impact of these errors on filter sta-
bility with quadcopter motion is approximately
equivalent to the impact of unestimated errors half
a level higher than on car motion.

Discussion

Road vehicle results when the higher-order IMU
error parameters are ‘small’ section showed that
when the levels of the unestimated higher-order
errors were very low, the noise level for both gyro-
scope and accelerometer noise made only a small
difference to the maximum tolerable bias SDs. How-
ever, when the higher-order errors are larger, higher
sensor noise aids filter stability. This can be seen by
comparing Figures 13 and 15, noting the significant
differences in the ‘low-accelerometer bias SD’ bound-
ary that comes about when the accelerometer and
gyroscope noise parameters are at the high rather
than the low end of the range tested.

We aim to explain this and the other behavior
observed in the previous sections by considering two
things. First, consider how the unestimated error
sources appear to the filter. As discussed in the Filter
Tuning section, their average effect appears as bias
and the remainder must be treated as noise, which
is not white, but correlated over each maneuver. The
tuning of the initial state uncertainties was adjusted
to account for the bias-like components. However,
this compensation cannot be totally perfect, and the
higher the unestimated errors, the more significant
this is. Second, while the KF tuning adds additional
system noise to account for the noise-like behavior,
it adds it constantly throughout the simulation, as
we are not using an adaptive KF. This means that
most of the time, we are adding more system noise
than necessary, while during maneuvers, when the
higher-order errors are excited, we are not always
adding enough.
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Fig. 15–Three-dimensional subspace of the search space showing
where the KF fails with quadcopter motion for different values of
accelerometer and gyroscope bias. The gyroscope noise is fixed at
1.8 deg per root hour, the accelerometer noise fixed at 500 �g/

p
Hz

and accelerometer unestimated errors with gyroscope unestimated
errors fixed at ‘tactical’ level (see Table 3). It is the equivalent of
Figure 13 with more noise.

In order to absorb the unestimated IMU error
parameters without modeling them as states, there
needs to be both enough overmodeling of the bias
states to cover the extra bias from the higher-order
errors and enough overmodeling of the noise to
cover the extra noise. The filter tuning used here to
account for biases and noise takes a constant mul-
tiple of the actual noise and bias to configure the
KF for the system noise and bias state uncertainty
(respectively). Therefore, when the noise or bias is
higher, the overmodeling is also higher in absolute
terms, as it is fixed in proportion to the noise and
bias. This would explain why the filter can cope with
higher unestimated errors when the biases or noise
are higher.

This and the slightly counter-intuitive results dis-
cussed in the Road vehicle results when the higher-
order IMU error parameters are ‘small’ section lead
to the observation that, in cases where a filter
is close to the stability limits, it may be possible
to aid KF stability by exaggerating the assumed
accelerometer bias uncertainty when the unesti-
mated error parameters are larger.

The differences between the motion profiles have
already been discussed in the Quadcopter Results
section.

PRACTICAL APPLICATIONS OF THE RESULTS

Basic Application

One of the aims of this research is to enable navi-
gation system designers to look up the specifications
of the IMU they are planning to use and determine
whether a basic Kalman filter INS/GNSS integra-
tion will be sufficient to calibrate the sensors in-run.

Fig. 16–Three-dimensional subspace of the search space showing
where the KF fails for different values of accelerometer and gyro-
scope bias and gyroscope noise with accelerometer noise fixed at
100 �g/

p
Hz and both accelerometer and gyroscope unestimated

errors fixed to very low (see Table 3). Also shown are the specifica-
tions of selected MEMS sensors: a tactical grade IMU (dark blue),
Xsens Mti-G (yellow), Invensense MPU-9150 (light blue), and an
IMU comprising a STMicrotronics L3G4200D gyroscope and a
Bosch BMA-180 accelerometer (magenta), see legend. The circles
denote the performance of a single sensor, the squares denote the
theoretical performance of a small array of four sensors, and the
diamonds a large array of 64 sensors (not plotted for Xsens).

This would save them the time and effort of design-
ing and building the whole system only to find that
the sensors’ errors are too large for a standard KF
to remain stable. In practice, there will be some
sensors for which the KF can be stabilized by exag-
gerating some of the errors specified within the KF’s
tuning parameters.

As an example of how this could be applied, the
real sensor models, whose specifications were given
in Table 2, are plotted in Figure 16 as different col-
ored circles. It is clear that the two uncalibrated
automotive MEMS sensors are well outside the
KF stability limit; and the Xsens IMU, which is
factory-calibrated, is right on the boundary. It is also
noteworthy that the specification of the Xsens as
“aligned to 0.1 degree” [30] is very close to the ‘tac-
tical’ higher-order errors tested here. As such, these
results suggest that basic KF integration using the
Xsens should be stable, provided that the tuning is
handled carefully.

Array Techniques

A sensor array is where the outputs of multiple
inertial sensor triads (accelerometers, gyroscopes, or
both) are combined by ensemble averaging to a sin-
gle angular rate and specific force output. This can
dramatically increase the performance of the com-
bined system by reducing both the noise and the
distribution of the systematic errors.

The effects of using a sensor array can be seen in
Figure 16. The circles represent single sensors, but
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an array of four of these would have halve the sys-
tematic errors and the noise PSD as illustrated by
the squares. And an array of 16 would have a quar-
ter the level of noise and systematic errors assuming
zero-mean distributions. There is an upper limit
on the number of sensors that can reasonably be
combined into an array. The performance of 64 sen-
sors are shown as diamonds as an example of a
large, but still practical array (for instance [32] has
an array of 100 sensors). It can be seen that the
effect of even a small array moves the Xsens sensor
well inside the stability boundary but even with the
large array of combined Bosch accelerometers and
ST gyroscopes has only just made it to the bound-
ary, and the Invensense MPU-9150 array is still far
away. This implies that even when using a large
array, some pre-calibration of the raw sensors may
be required.

If the assumptions above such as zero-mean
distributions, Gaussian distributions, and indepen-
dence between sensor triads are not met, then in a
normal sensor array, performance will be reduced.
However, a smart array can be used instead.
This arranges the constituent inertial sensor tri-
ads which have been arranged to exploit the design
characteristics of the sensors such that the errors
exhibited are smaller than those obtained by sim-
ple averaging [13]. For example, if the bias does
not have a zero-mean distribution across the con-
stituent sensors of the array, then an anti-parallel
arrangement of the sensor triads (with their outputs
differenced) will make the combined smart array’s
bias zero mean [13] as well as removing most of the
temperature dependent bias variation [33].

Smart array techniques are important because
real sensors’ errors are not distributed with perfect
zero-mean normal distributions, for examples, see
[13] and [31]. There could be a number of reasons
why sensors’ errors are not distributed indepen-
dently with zero-mean normal distributions. These
could range from ‘cherry picking’ the sensors with
the smallest errors to be sold as higher grade sen-
sors, effectively removing the middle of the distri-
bution, to manufacturing or design limitations. It is
also likely that sensors from the same production
batch will have errors that are more correlated than
others of the same design.

Other Implications

When considering the widest implications of the
research presented in this paper, first, we have
to consider how it is limited. First, while the two
motion scenarios tested represent two likely appli-
cations of MEMS IMUs with markedly different
levels of dynamics, they do not cover every possible
use case.

Second, we have considered the simplest possible
INS/GNSS integration Kalman filter possible, as it
is currently configured and it is not appropriate for

even medium higher-order gyroscope errors, which
are relatively small in MEMS terms, although it is
possible that further relaxing the filter tuning may
regain stability at the cost of convergence speed and
accuracy. Estimating the higher-order errors as KF
states would help mitigate their effects. Even where
these errors are difficult to observe, their inclusion
as states provides the KF with a much more realis-
tic system error model. However, it is very unlikely
that this would enable toleration of gyroscope biases
larger than can be tolerated with ‘tactical’ level
higher-order errors.

Bearing these limits in mind, we can make a
couple of important points. The first is that basic
KF integration can be sufficient to calibrate both
accelerometer and gyroscope biases if the gyroscope
bias SD is below the level of around 1–2 deg/s.
This means that any pre-calibration should concen-
trate on the gyroscope bias and estimating the other
parameters can be left to the INS/GNSS integration,
if the unestimated errors are sufficiently small. For-
tunately, gyroscope bias is also among the easiest of
the IMU errors to pre-calibrate, as it can be observed
in a simple static test.

A major issue for calibration of all MEMS sensors
is that the systematic errors vary with temperature.
For example, the L3G4200D gyroscope bias varia-
tion with temperature is specified at 0.03 deg/s/°C
[28]. However, even with a 30°C operating range,
this is less than 1 deg/s. Thus, if the sensor were
already calibrated before a change in temperature,
then simply increasing the state uncertainty in the
KF when the temperature changes should allow the
INS/GNSS integration to compute the new bias.

CONCLUSIONS

In this paper, a new simulation approach to deter-
mine the limit of in-run sensor calibration using
a basic Kalman filter integration has been pre-
sented. Stability criteria are defined based on the
consistency of the state estimation errors and their
uncertainties.

Monte Carlo simulations using a basic INS/GNSS
Kalman filter to calibrate the sensor biases have
been used to determine which IMUs are good
enough for in-run calibration. It is important to note
that this technique is not specific to GNSS inte-
gration, another aiding technology or zero-velocity
updates could be used instead.

Both car and UAV motion have been simulated.
These tests have shown that within the ranges of
errors encountered by real MEMS inertial sensors,
the most important error is the gyroscope bias. The
maximum gyroscope bias standard deviation that
is acceptable varies between 0.75 and 2.6 deg/s
depending on the accelerometer noise level, gyro-
scope noise level, and accelerometer bias SD, the
latter being the most important.
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A major limitation is the size of the higher-order
errors, such as scale factor and cross-coupling errors
and the gyroscope g-dependent errors, that are
present in typical IMUs. To maintain KF stability,
these must be estimated as Kalman filter states,
pre-calibrated and/or averaged out using an array
technique.

The results of this study enable navigation system
designers to determine for which IMU specification
levels they need to use a more complex and/or non-
linear Kalman filter variant, and/or pre-calibrate
the sensors.

The outputs of this study can also support the
prioritization of research into ultra-low-cost iner-
tial navigation between nonlinear estimation, pre-
calibration techniques, smart arrays, and hardware
development. This will open up many new applica-
tions for inertial navigation, including smartphone
apps, intelligent transport systems, dismounted
soldiers, and autonomous vehicles.

Further research could examine the stability lim-
its of higher-order estimation algorithms such as the
unscented Kalman filter.
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