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We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative
stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly
criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of
resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite
carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the
problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined
by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying
capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the
control parameter. We further test the validity of our analytical results using numerical simulations.
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I. INTRODUCTION

There are many interesting connections between statistical
mechanics, biology [1], and the theory of financial markets
[2,3]. For instance, it has been stressed recently that the lack
of ergodicity in the geometric Brownian motion process [4]
has important implications for the optimal leverage problem,
i.e., the problem of finding how much of a portfolio should be
reinvested over time to maximize the logarithmic growth rate
of capital [5].

For multiplicative processes, such as the geometric Brow-
nian motion, the effective growth rate is not given by the drift
term alone. More precisely, consider the process described by

dK(t) = ρK(t)[μdt + σ dW (t)], (1)

with μ the drift of the stochastic process, σ the noise amplitude,
and ρ a positive constant. Here K(t) represents the capital of
an investor at time t , while ρ is the fraction of capital that is
invested in a risky security, also known as the leverage. Using
Ito’s formula, it can be shown that 〈dK(t)/K(t)〉 = μρ dt ,
while 〈d log[K(t)]〉 = ρ(μ − σ 2

2 )dt , where 〈·〉 represents the
ensemble average over the stochastic process dW (t). The
fact that these two expected values are different has been
interpreted in [5–7] as a characteristic signature of the absence
of ergodicity, since the first expression can be identified as
an ensemble average while the second can be seen as the time
average over an infinitely long single instance of the stochastic
process [8].

In this context, it has been argued that maximizing the
expected log-return of K(t), often called the Kelly criterion [9–
17], is a better objective in the long run than simply maximizing
its average. For the case of the geometric Brownian motion,
in [5] Peters discusses the differences between these two
objectives and provides a new interpretation of the optimal
leverage obtained from the Kelly criterion by Thorp [14], and
shows that it is given by

ρThorp = μ

σ 2
. (2)

In this paper, we extend this analysis by computing optimal
growth trajectories in the case of a multiplicative random
process with finite carrying capacity, when the drift term
μ̂ ≡ μ(ρK) is a decreasing function of ρ(t)K(t). A finite
carrying capacity can be associated with the presence of
market frictions, such as transaction costs, or in biology as
an environment with finite resources. Although we frame it
in terms of investment decisions, our analysis is of interest
beyond finance. For instance, multiplicative stochastic pro-
cesses with finite carrying capacity are commonly used in
biology to describe the growth of a population constrained
by a finite amount of resources and in a random environment.
Stochastic Gompertzian differential equations are well known,
for instance, in population ecology [18] and cell growth, where
one might want to control the amount or resources in order to
optimize the growth of a population. One example of such a
situation is the logistic equation

dP (t)

dt
= aP (t)

(
1 − P (t)

K̃(t)

)
, (3)

where a is a constant and K̃(t) represents the environmental
total resources, and which can be controlled as a function of
time. This problem can be approached using the methodology
developed in this paper in the more general case in which
fluctuations are present. For instance, our methodology applies
when considering the case K̃(t) = K̃

ρ(t) , where we assume

that K̃ is a constant that represent the amount of resources
available. We compute the optimal parameter ρ(t) for loga-
rithmic and power-law functional forms of μ̂ ≡ μ(ρK) for the
slightly more complicated case of a continuous reinvestment
problem. Specifically, we will exactly solve the two models
and evaluate the optimal strategy, i.e., the parameter ρ(t). In
addition, we provide a methodology for evaluating the optimal
control parameter ρ(t) for generic series expansions of the
carrying capacity parameter. Finally, we show that numerical
simulations agree with our analytical results.
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II. THE MODEL

Consider the following process: At time t = 0, an investor
has K(0) = K0, and, at any discrete time step t , she must
decide the fraction ρ(t) of her capital to invest in a risky asset.
At the end of each period, the risky asset pays a return r(t),
which is drawn from a Gaussian distribution with average
μ and standard deviation σ . Here we assume that there is a
transaction cost c(t) per dollar associated with the purchase of
the risky asset, and that the asset purchased at time t cannot
be carried over to the next period, but it needs to be sold at the
end of each period. This is inspired by possible applications
to wholesale electricity markets [19], in which trades have
to be closed at the end of each trading day. Furthermore, we
assume that the remaining fraction, 1 − ρ(t), of the capital is
not invested, and that its value does not change over the day
(i.e., we assume the risk-free interest rate is 0 for simplicity).

Under the specifications above, the capital evolves between
time t and t + 1 as

K(t + 1) = {[r(t) − c(t)]ρ(t) + 1}K(t). (4)

If we are interested in the evolution of wealth over time
horizons that are much longer than a trading period, we can
consider the process in the limit of continuous time:

dK(t) = ρ(t)K(t)[r(t) − c(t)]. (5)

We now assume that the returns evolve according to the
stochastic process

r(t) = μdt + σ dWt, (6)

and we define c(t) = f ( ρ(t)K(t)
K̃

)dt and introduce the carrying
capacity quantity K̃ . We further assume that f (0) = 0, such
that for K̃ → ∞ the transaction cost vanishes. In this case, we
can write

dK(t)

K(t)
= ρ(t)μ̂(ρ(t)K(t)/K̃,t)dt + ρ(t)K(t)σ dWt, (7)

where

μ̂(ρ(t)K(t),t) = μ

[
1 − f

(
ρ(t)K(t)

K̃

)]
. (8)

Here K̃ is the carrying capacity of the system, which in our
context is associated with the cost of purchasing risky assets
(see Fig. 1).

A. Analytical solution for f (x) = xγ

In this section, we solve the stochastic equation (7) in the
case in which f (x) = xγ and ρ(t) = ρ is constant in time. We
also use the simplifying assumption that the parameters μ, σ ,
and γ are constant in time. In this case, we have that

μ̂(ρK,t) = μ

[
1 −

(
ρK

K̃

)γ ]
, (9)

where from now on we suppress the argument t for the capital
K . If we take ρ = K̃ = 1, we can write

dK = μK(1 − Kγ )dt + σK dWt . (10)

Equation (10) can be solved using standard methods [20].
Here we report only the solution for γ = 1, but a full derivation

FIG. 1. Return functional Kμ̂(K) of Eq. (8) for f (x) = xγ , with
γ = 1, . . . ,5, and f (x) = log(x). The other constants are fixed at
μ = ρ = 1, K̃ = 10, and α = 1.

for generic γ can be found in Appendix A 1:

K(t) = K̃

ρ
e(ρμ− (ρσ )2

2 )t+ρσWt

×
(

K̃

ρK0
+ ρμ

∫ t

0
e(ρμ− (ρσ )2

2 )s+ρσWs ds

)−1

. (11)

The asymptotic stochastic equilibrium of the above solution
can be determined by solving

〈d log[K(t)/K0]〉 = 0. (12)

In fact, from Eq. (7) and using Itô’s theorem, we obtain

0 = 〈d log(K/K0)〉 = ρ(t)μ

[
1 − f

(
ρ(t)K(t)

K̃

)]
− σ 2

2
ρ2,

(13)
and for linear functions f (·) we obtain K = K̃( 1

ρ
− σ 2

2μ
) =

K̃( 1
ρ

− 1
2ρThorp

). If the parameter ρ is constant, the above implies
an asymptotic equilibrium state K(∞). This equilibrium point
is compatible with our simulations presented in the following.
This also holds in the case of the geometrical Brownian motion,
where ρopt ≡ ρThorp = μ

σ 2 was computed in [5,14].

B. Analytical solution for f (x) = α log(x)

In this section, we provide a solution for the logarithmic
functional form of carrying capacity, introduced recently in
[21,22] for the case of stock markets and describing cell growth
[1,23,24]. The equation of interest is

dK = μK

[
1 − α log

(
K

K̃

)]
dt + σK dWt (14)

for the case in which ρ is constant (in Fig. 1 we plot the return
functional). The solution is obtained in Appendix A 2, where
we find

K(t) = exp

{
e−αμt

[
C0 +

(
μ[1 + α log(K̃)] − σ 2

2

)

× eαμt − 1

αμ
+ σ

∫ t

0
eαμsdWs

]}
. (15)
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The expectation 〈log[K(t)]〉 can then be evaluated analytically
using 〈∫ t

0 f (s)dWs〉 = 0 for any deterministic and continuous
function f (s), and thus substituting C0 = log(K0),

〈log[K(t)]〉 = e−αμt

{
C0 +

[(
1

α
+ log(K̃)

)
− σ 2

2αμ

]

× (eαμt − 1)

}
. (16)

Looking at the asymptotic stochastic equilibrium point
again, we have

〈log[K(t → ∞)]〉 = log(K̃) + 1

α

(
1 − σ 2

2μ

)
. (17)

We note that while the expected return and the exponential
of the expected log-return are not equal, they converge
asymptotically.

III. OPTIMAL TRAJECTORIES

We now turn to the problem of finding the optimal trajectory
ρ(t) following the Kelly strategy that maximizes the expected
log-return of the investor’s capital, i.e., 〈log[K(t)/K0]〉. In
general, we must solve the equation

d log

(
K

K0

)
=

{
μρ(t)

[
1 − f

(
ρ(t)K(t)

K̃

)]
− ρ2(t)

σ 2

2

}
dt

+ ρ(t)σ dWt, (18)

which implies〈
d log

(
K

K0

)〉
=

〈
μρ(t)

[
1 − f

(
ρ(t)K(t)

K̃

)]
− ρ2(t)

σ 2

2

〉
dt

+〈ρ(t)σdWt 〉. (19)

It is instructive to discuss first the case of a time-dependent ρ
in Eq. (19), and then provide approximations for which we can
obtain an explicit solution for the optimal parameter ρ. Using
(19), the expected logarithmic return over a time horizon T is

log

(
K(T )

K0

)
=

∫ T

0

〈
μρ(t)

[
1 − f

(
ρ(t)K(t)

K̃

)]

− ρ2(t)
σ 2

2

〉
dt. (20)

The main difference with respect to the case of no carrying
capacity is the fact that due to the effective dependence of
the drift term on K , optimizing Eq. (20) requires taking a
functional derivative with respect to ρ(t) and setting it to zero,
i.e.,

δ

δρ(t)
log

(
K(T )

K0

)
= 0. (21)

In the case of a pure geometric Brownian motion, it can be
shown that the optimal ρ(t) is constant in time. In the case
under consideration, one strategy is to first obtain a solution
for arbitrary ρ(t), and then take the functional derivative in
the integral of Eq. (20). Unfortunately, this is difficult, so in
the following we will resort to two different approximations.
First we take the stationary case, in which the solution for
constant ρ is known, as discussed in Sec. III A. For the second

approximation, if we write the function of the carrying capacity
as a series expansion, we can write a dynamical set of equations
for the derivatives of all the moments of the solution 〈K(t)n〉,
which then can be optimized iteratively; this procedure will be
discussed in Sec. III B.

A. Stationary approximation

In this section, we will use the exact solutions obtained
in Secs. II A and II B under the assumption of constant
parameter ρ within a quasistationary approximation scheme.
More precisely, we assume that ρ(t) is a slow variable with
respect to K(t), and that the latter quickly relaxes to what
would be its asymptotic value should ρ remain constant. The
validity of the approximation can then be assessed from the
obtained solution by checking whether |〈K(t)〉 ∂t ρ(t)

∂t 〈K(t)〉 | � 1.
In general, we have that

δ

δρ(t)
log

(
K(T )

K0

)

= δ

δρ(t)

∫ T

0

[
μρ(t)

{
1−

〈
f

(
ρ(t)

K(t)

K̃

)〉]
−ρ2(t)

σ 2

2

}
dt

=
∫ T

0

{
μ

[
1 − f

(
ρ(t)

K(t)

K̃

)]
− 2ρ(t)

σ 2

2

−ρ(t)μ
δ

δρ(t)

〈
f

(
ρ(t)

K(t)

K̃

)〉}
dt. (22)

To find an optimal solution, we now impose the following
condition:

μ

[
1 − f

(
ρ(t)

K(t)

K̃

)]
− 2ρ(t)

σ 2

2

− ρ(t)μ
δ

δρ(t)

〈
f

(
ρ(t)

K(t)

K̃

)〉
= 0, (23)

where the last functional derivative requires knowledge of
K(ρ(t),t) for arbitrary ρ(t). To evaluate this functional
derivative, as a first approximation, we will assume that
ρ(t) ≈ ρ in the interval � = [t,t + δt]. If this is true, then
we can evolve in the interval � the solution with a constant ρ

from t0 = t to tf = t + δt with initial condition K0 = K(t).
Let us call such a solution K(δt,ρ,K(t)), which satisfies
the property limδt→0 K(δt,ρ,K(t)) = K(t). The underlying
assumption of this approach is that ρ(t) changes slowly
with respect to the stochastic dynamics, which implies that
|〈K(t)〉 ∂t ρ(t)

∂t 〈K(t)〉 | � 1. Within this approximation, we can write
the functional derivative as

δ

δρ(t)

〈
f

(
ρ(t)

K(t)

K̃

)〉
≈ ∂ρ

〈
f

(
ρ
K(t + δt,ρ,K(t))

K̃

)〉
.

(24)
Then the optimal instantaneous parameter ρ(t) can be obtained
by solving the following equation:

μ

[
1 − f

(
ρ(t)

K(t)

K̃

)]
− 2ρ(t)

σ 2

2

= lim
δt→0

ρ(t)μ ∂ρ

〈
f

(
ρ(t)

K(δt,ρ,K(t))

K̃

)〉
, (25)

which is the approximation we use in the following.
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FIG. 2. Optimal parameter ρ(t) obtained numerically from
Eq. (26) as a function of K ∈ [0,10] for various values of γ , and
for logarithmic carrying capacity with α = 1. Other constants are
fixed at μ = 1, σ = 0.2, and K̃ = 50.

1. f (x) = xγ : Expansion assuming K
K̃

� 1

In the case of f (x) = xγ , evaluating 〈f 〉 is a nontrivial
task. Even assuming we have the stationary approximation,
expanding Eq. (A9) in K/K̃ , and considering only the
zeroth-order term of this expansion, we obtain the following
expression to be solved for ρ:

μ

[
1 −

(
Kρ

K̃

)γ ]
− ρσ 2 = 0, (26)

which cannot be solved analytically for arbitrary values of γ .
However, for K 
 K̃ , we can obtain the approximate solution

ρ(K 
 K̃) ≈ K̃

K
, (27)

which is independent of γ . A plot with the numerical solutions
of ρ(K) obtained from (26) for different values of γ is shown
in Fig. 2.

In the particular case of γ = 1, the solution is simply

ρ(t) = μ

2μK(t)
K̃

+ σ 2
, (28)

which shows explicitly that the presence of carrying capacity
effectively increases the risk, as the optimal fraction of
resources to be deployed is a decreasing function of K .1

This is important as is it a generalization of the result of
[4], and it has direct applications to the problem of optimal
trajectories in the context of financial time series where one
has an embedded transaction cost. This applies, for instance,
to lotteries and wholesale electricity markets, where one has
independent processes at each time step. In this case, the
transaction cost plays the role of market impact.

Surprisingly, the optimal parameter of Eq. (28) holds up
to second order in ξ = K

K̃
. To obtain precise estimates of the

parameter ρ, the expectation 〈K〉 must be evaluated. This is

1Such a calculation can be repeated in the presence of a risk-free
asset with return, μrf. In this case, μrf would simply be added at the
denominator of Eq. (28).

done up to second order in ξ in Appendix B using techniques
partly developed in [25].

To check the consistency of the stationarity approximation,
we evaluate

∂tρ(t) = ∂t

μ

2K(t)
K̃

+ σ 2
= − μ(

2K(t)
K̃

+ σ 2
)2

(
2
∂tK(t)

K̃

)
,

(29)
which implies ∣∣∣∣∣∂tρ(t)

∂tK(t)
K(t)

∣∣∣∣∣ = 2μ(
2K(t)

K̃
+ σ 2

)2

K(t)

K̃
. (30)

The right-hand side of Eq. (30) is small as long as K(t)
K̃

� 1,
consistent with the expansion we performed.

Next we take the optimal ρ(t) from above, and we study
the implied stochastic differential equation for K(t). For the
case of γ = 1, we have

d log(K/K0) = 1

2

μ2

2μK

K̃
+ σ 2

dt + μσ

2μK

K̃
+ σ 2

dW. (31)

When K 
 σ 2K̃
μ

, this simplifies to

〈d log(K/K0)〉 = 1

4

μK̃

K
dt. (32)

Since we observe that the asymptotic growth is compatible
with a linear function of K , we can obtain the proportionality
constant by using the ansatz K(T ) ≈ aT , and we obtain that
the slope of the linear approximation is μK̃

4 for T 
 σ 2

4μ2 .

Further, when K̃ → ∞, this slope → ∞ as well, because we
are asymptotically approximating an exponential with a linear
function.

2. f (x) = α log(x)

For the case of a logarithmic carrying capacity term, we
have shown how to evaluate explicitly 〈K(t)〉 and 〈log[K(t)]〉
in Eqs. (16). Using this solution, if we assume the stationary
approximation in which ρ changes slowly compared to K , we
obtain the following equation for the optimal parameter ρ in
the limit δt → 0:

αμ

[
log

(
K̃

ρ

)
− log[K(t)/K0]

]
+ μ(1 − α) − ρσ 2 = 0,

(33)
from which we can solve for ρ(t):

ρopt(t) ≈ αW

(
K0e

1
α
−1K̃σ 2

αK(t)μ

)
μ

σ 2
, (34)

where W is the Lambert W function. Note that for α → 0,
we recover again the result of [4]. This allows us to evaluate
the critical ratio ξ = K

K̃
for which ρopt = 1, which is given by

ξ = e
1
α

( σ2

μ
−1)−1.

Similarly to the case of a linear carrying capacity given
in Eq. (31), we can obtain an effective differential equation
by inserting the obtained optimal ρ(t) of Eq. (34). Using the
asymptotic properties of the Lambert W function in the limit
K 
 1, this differential equation is given by

〈d log(K/K0)〉 ≈ K̃μ dt, (35)
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which implies an asymptotic linear growth given by K(T ) ≈
4aT , where a = μK̃

4 is the slope obtained in Eq. (32). We thus
have the result that in the case of logarithmic carrying capacity,
the Kelly strategy implies a growth rate that is asymptotically
twice the rate obtained for a linear function.

B. Analytical result: Short time scales

The approach of the previous section has some drawbacks.
In particular, evaluating cumulants of the exponential of the
Brownian motion is a lengthy task in general. While for the
case of logarithmic carrying capacity it is possible to evaluate
the averages exactly, this is not true in the general case. As
an alternative, we can proceed by directly integrating the
equations for the moments and elaborating an approximation
scheme based on the smallness of the time horizon with respect
to the other scales.

It is reasonable to expect that at least for small variations,
the carrying capacity can be parametrized with a power series,
leading to the following stochastic differential equation:

dK = ρμK

(
1 +

n∑
k=1

λk(ρK)kγ

)
dt + σρK dW. (36)

As before, we focus on the maximization of the expectation
value of the logarithm of K . Using Ito’s lemma,〈

d

dt
log K/K0

〉
= μρ

(
1 +

n∑
k=1

λkρ
kγ

〈
Kkγ

〉) − σ 2ρ2

2
. (37)

To solve this equation for generic values of the parameters λk ,
we need to compute all the moments 〈Kmγ 〉, that is, we need
to solve the equations of motion for these observables:〈

d

dt
Kmγ

〉
=μργm

〈(
1 +

n∑
k=1

λkρ
kγ Kkγ

)
Kmγ

〉

+ γm(γm − 1)
σ 2ρ2

2
〈Kmγ 〉. (38)

These form a tower of coupled equations.2 Using the notation
em := 〈Kmγ 〉, we can write the above as

ėm = μργm

n∑
k=0

λkρ
kγ em+k + γm(γm − 1)

σ 2ρ2

2
em, (39)

where λ0 = 1. The initial conditions are em(t0) = K
γm

0 , as the
PDF for K(t = t0) is a Dirac δ at the initial time.

With these equations, given a time horizon δt , we can
compute the Taylor expansion of the derivative d log K(t)/dt

at any order in an expansion in δt . In general, this is given

2Formally, this tower can be rewritten in the form

�̇e = M�e,
with infinite-dimensional objects. A formal solution for given
(time-independent) M is em(t) = ∑

k Rmk(t)ek(0), with R being the
exponential of the operator M , R(t) = eMt .

by

d

dt
log[K(t0 + δt)] = �(K0,μ,σ,γ,{λk}; δt), (40)

with

�(K0,μ,σ,γ,{λk = δ0
k }; δt) = μρ − σ 2ρ2

2
. (41)

Using this general procedure, the maximization needed
to determine ρ is straightforward once a truncation in the
expansion in δt has been fixed. As an example, consider the
case in which

γ = 1, n = 1, λ1 = − 1

K̃
. (42)

To first order in δt , we then have〈
d

dt
log K

〉
� μρ − ρ2σ 2

2
− K0μρ2

K̃

+
(

K2
0 μ2ρ4

K̃2
− K0μ

2ρ3

K̃

)
δt. (43)

As expected, the corrections to the geometric Brownian motion
case are controlled by the quantity K0

K̃
. With respect to these

quantities, the optimal parameter ρ is

ρopt � μ

2μK0

K̃
+ σ 2

+
( − 3K̃3μ4σ 2K0 − 2K̃2μ5K2

0

)
(2μK0 + K̃σ 2)4

δt.

(44)
In this last expression, we recognize, at zeroth order, the same
term obtained in the approximation in which ρ(t) is constant.
At first order, we obtain a correction proportional to the size of
the time horizon δt . These results can be generalized without
difficulty to higher orders.

What is remarkable in the result of this short time-scale
analysis is that the optimal value for ρ, in the general case, is a
function of the initial condition, the parameters of the process
and of the time horizon.

C. Numerical simulations

In this section, we present numerical tests of our analytical
results, using a Monte Carlo approach and a stochastic Euler
method to solve the differential equations. First, In Fig. 3 we
report the expectation values of log-returns over a fixed time
horizon T = 1 and for different values of the parameter ρ,
assumed to be constant in time, and for different values for
the scale of carrying capacity. Each point is an estimate for
the expectation of the end point of the numerical solution of
the corresponding stochastic differential equation. The curves
that are obtained from these points clarify how the log-returns
reach their maximum for special choices of ρ. The points on
the upper curve are obtained in the case of no dependence on
the amount of resources, i.e., the simple geometric Brownian
motion. They match the results of [4] for the values of the
parameters that we are considering. As expected, the plot
shows that the optimal ρ decreases with the strength of carrying
capacity.

In Fig. 4 we use Eq. (44) at zeroth order and compare this
to the strategy at constant ρ = 1. We can see that the dynamic
strategy outperforms those that are kept constant, and that it

022315-5



F. CARAVELLI, L. SINDONI, F. CACCIOLI, AND C. UDUDEC PHYSICAL REVIEW E 94, 022315 (2016)

FIG. 3. Log return as a function of ρ at T = 1 for parameters
K(0) = 1, μ = 2, σ = 1, γ = 1, and various values of λ = 1/K̃ .

works reasonably well also in the case in which K(t) ≈ K̃ . In
Fig. 5 we compare this result with the first-order approximation
in δt . In the inset we see that the latter outperforms the optimal
solution obtained at zeroth order, although the difference
between the two is overall relatively small. For γ = 1, our
solution also outperforms the constant solution.

For the logarithmic carrying capacity, we can see in Fig. 6
that our optimal parameter ρ(t) solution again outperforms
the constant solution. Also note that the stochastic equilibrium
obtained from Eq. (12) is confirmed in both Figs. 4 and 6.

Finally in Fig. 7 we compare the linear regimes for the
case of linear and logarithmic carrying capacity obtained in
Eqs. (32) and (35) to the curves obtained with Monte Carlo
simulations, showing that the slopes obtained analytically are
a good match with the numerical ones.

FIG. 4. Optimal Kelly path for K with carrying capacity function
xγ plotted against the case of those fixed at ρ = 1, 0.8, 0.6, 0.4, and
0.2 (full lines). The parameters used are K(0) = 1, dt = 0.01, μ =
0.1, σ = 0.1, K̃ = 10, and γ = 1, averaged over 2000 samples. The
horizontal dashed lines represents the stochastic equilibria obtained
from the analytic formula.

FIG. 5. Expected value of K for the case of power-law carrying
capacity, with the optimal parameter ρ evaluated using the zeroth-
order in the time horizon (dashed) and first-order (solid) correction
for K0 = 1, K̃ = 100, dt = 0.01, σ = 0.2, μ = 1, and γ = 1. To
distinguish the two curves, we averaged over 1000 Monte Carlo runs.
We observe that the solution obtained at first order outperforms the
one obtained at zeroth order.

IV. CONCLUSIONS

In this paper, we computed optimal strategies for the
problem of maximal growth using the Kelly criterion in the
case of a drift term that represents the presence of carrying
capacity. Using two different methods, one considering exact
solutions at constant leverage and the second solving for the
optimal solution at a fixed time horizon, we obtained the
same result at the lowest order. Our solutions were also tested
numerically, confirming that these are optimal as compared to
the case in which carrying capacity is ignored.

FIG. 6. Optimal Kelly time path of K for logarithmic carrying
capacity compared to the case of those fixed at ρ = 1, 0.8, 0.6, 0.4, and
0.2 (full lines). The parameters used were K(0) = 1, dt = 0.01, μ =
0.1, σ = 0.1, K̃ = 10, and γ = 1, averaged over 2000 samples. The
horizontal dashed lines represents the stochastic equilibria obtained
from the analytic formula.
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FIG. 7. Average asymptotic (T ≈ 7) linear regime in the case of
linear (green curve) and logarithmic (red curve) carrying capacity
for the case of σ = 0.2, μ = 1, and K̃ = 10 obtained using a Monte
Carlo averaged over 2000 samples, with integration step dt = 0.01.
The dashed lines represent the comparison with the linear coefficients
obtained from theory, Eqs. (32) and (35).

We considered two specific carrying capacity functions for
which empirical evidence has been presented in the literature
[21,22]: a power law and a logarithmic function. In the case of
a power-law carrying capacity function, we have shown that in
order to evaluate the optimal solution, various approximations
have to be used, but we have shown that the zeroth order is
correct up to second order in the parameter controlling the
scale of the carrying capacity, and we provided a solution up
to first order for the case of a finite time horizon. In the case
of a logarithmic carrying capacity function, expectations can
be evaluated exactly.

The main difference between the case of the geometric
Brownian motion and the case with carrying capacity is that
the former requires a constant leverage while in the latter
the leverage has to be dynamically adapted. The operator has
to adapt his strategy continuously depending on his position
with respect to the capacity parameter. Our results support this
intuitive observation and, at the same time, complement it with
concrete procedures for quantitative estimates.

Finally, the analysis presented relies heavily on the Gaus-
sian nature of the noise term and on the powerful results of
Ito’s calculus. Our results can then be seen as an assessment
of the effects of carrying capacity on investment strategies,
which, however, will require further elaboration. In particular,
a natural extension will be the inclusion of more realistic noise
terms, such as general Levy processes. The investigation of
the impact of a more detailed noise structure on the optimal
leverage will be the subject of future work.
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APPENDIX A: SOLUTION OF THE STOCHASTIC
DIFFERENTIAL EQUATIONS FOR CONSTANT ρ

1. Power-law function

In this appendix, we discuss the solution of the equation

dK = μK(1 − Kγ )dt + σK dWt . (A1)

Using the change of variables y = K−γ and Ito’s lemma, we
have

dy =
(

− γμ(y − 1) + σ 2γ (γ + 1)

2
y

)
dt − γ σy dWt .

(A2)
Notice that Eq. (A2) is a stochastic differential equation of the
form

dz = (az + c)dt + (bz + d)dW, (A3)

where

a = σ 2γ (γ + 1)

2
− γμ,

b = −σγ,

c = γμ,

d = 0. (A4)

This is an inhomogeneous linear stochastic differential equa-
tion with multiplicative noise [20], and it has a known solution.
If we define

�t ≡ exp[(a − b2/2)t + bWt ]

= exp[−(μ − σ 2/2)t − σWt ], (A5)

the solution is then given by

z = �t

(
z0 + (c − bd)

∫ t

0
�−1

s ds + d

∫ t

0
�−1

s dWs

)
. (A6)

Writing

ft (a,b,c,z0) = �t

(
z0 + c

∫ t

0
�−1

s ds

)
, (A7)

we obtain

y(t) = ft

(
− γμ + σ 2γ (γ + 1)

2
, − γ σ,γ b,y0

)
. (A8)

Going back to the variable K(t), we have

K(t) =
[
ft

(
− γμ + σ 2γ (γ + 1)

2
, − γ σ,γ b,y0

)]−1/γ

.

(A9)
If we examine the special case of γ = 1, and insert again

the constants ρ and K̃ by rescaling μ → ρμ and σ → ρσ ,
K̃ → K̃/ρ, we obtain the full solution in terms of all the
original parameters:

K(t) = K̃

ρ
e(ρμ− (ρσ )2

2 )t+ρσWt

×
(

K̃

ρK0
+ ρμ

∫ t

0
e(ρμ− (ρσ )2

2 )s+ρσWs ds

)−1

, (A10)

which is the solution used in this paper in the case of a power-
law carrying capacity.
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2. Logarithmic function

In the case of a logarithmic carrying capacity function, and
again if ρ(t) = ρ = 1, we have the following differential:

dK = μK

[
1 − α log

(
K

K̃

)]
dt + σK dWt, (A11)

which is a stochastic Gompertzian-type of equation [23,24].
Such an equation appears, for instance, also in the growth of
reproducing cells, where now K̃/ρ(t) represents the amount
of nutrient accessible to the cells. This implies that there is a
parallel between optimal leverage trajectories and optimal cell
growth.3 If we change variables to y = log(K), then through
Ito’s lemma the above becomes

dy =
[
μ(1 − αy + α log(K̃)) − σ 2

2

]
dt + σ dWt . (A12)

This has the same form as Eq. (A3) in the previous section,
with

a = −αμ,

b = 0,

c = μ[1 + α log(K̃)] − σ 2

2
,

d = σ. (A13)

We then have that

�t = exp (−αμt), (A14)

and thus one obtains

K(t) = exp

{
e−αμt

[
C0 +

(
μ[1 + α log(K̃)] − σ 2

2

)

×
∫ t

0
eαμsds + σ

∫ t

0
eαμsdWs

]}

= exp

{
e−αμt

[
C0 +

(
μ[1 + α log(K̃)] − σ 2

2

)

× eαμt − 1

αμ
+ σ

∫ t

0
eαμsdWs

]}
. (A15)

APPENDIX B: AVERAGE 〈K〉 FOR f (x) = x

In this appendix, we evaluate the average 〈K〉 as an
expansion of ξ = K

K̃
of the denominator of the solution in

Eq. (12), and we show that the optimal leverage obtained
in Eq. (28) holds up to second order in ξ . For simplicity,
we will set ρ = 1 during the calculation of the averages,
and then restore ρ = 1 by rescaling σ → ρσ , μ → ρμ, and
K̃ → K̃/ρ. In this case, expanding (11) to order (K(t)/K̃)

2
,

3It is interesting to note that in general, the logarithmic carrying
capacity function can be thought of as the asymptotic limit of a
power-law function, as one has limα→∞ α(1 − x

1
α ) = − log(x).

we have that

K(δt,ρ = 1,K(t)) = K̃e(μ− σ2

2 )δt+σWδt

×
(

K̃

K(t)
+ μ

∫ δt

0
e(μ− σ2

2 )s+σWs ds

)−1

≈ K(t) e(μ− σ2

2 )δt+σWδt

×
(

1 − μK(t)

K̃

∫ δt

0
e(μ− σ2

2 )s+σWs ds

)
.

(B1)

Taking the expectation of the above, we have

〈K〉 = 〈KK̃=∞(t)〉 − μK(t)

K̃
〈KK̃=∞(t)F [W,δt]〉, (B2)

with F [W,t] = ∫ t

0 e(μ− σ2

2 )s+σWs ds being the integral of an ex-

ponential Gaussian process, and KK̃=∞ = K(t)e(μ− σ2

2 )δt+σWδt .

Using 〈eσWs 〉 = e
σ2

2 s , we then have that

〈KK̃=∞〉 = K(t)eμδt , (B3)

and further using 〈eσ (Ws+Ws′ )〉 = e
σ2[s+s′+2 min(s,s′ )]

2 we get

〈KK̃=∞(t)F [W,δt]〉 = K(t)eμδt

∫ δt

0
e(μ+σ 2)sds

= K0

μ + σ 2
eμt (e(μ+σ 2)t − 1). (B4)

Putting these together,

〈K(δt,ρ = 1,K(t))〉 = K(t)

[(
1 − K(t)

K̃

μ

μ + σ 2

)
eμδt

− K(t)

K̃

μ

μ + σ 2
e(2μ+σ 2)δt

]

+O

(
K0

K̃

)2

, (B5)

which is valid in the approximation K0e
μt � K̃ . Restoring ρ,

the above becomes

〈K(δt,ρ,K(t)) 〉 = K(t)

[(
1 − ρ

K(t)

K̃

μ

μ + ρσ 2

)
eρμδt

− ρ
K(t)

K̃

μ

μ + ρσ 2
e(2ρμ+ρ2σ 2)δt

]

+O

(
K0

K̃

)2

. (B6)

We now impose ∂ρ[ρ(t)μ − ρ(t)2(μ 〈K(δt,ρ,K(t))〉
K̃

+ σ 2

2 )] = 0,
and after expanding at order [K(t)/K̃]2 and imposing δt → 0,
we obtain again the equation for ρ:

μ − ρσ 2 − 2μρK(t)

K̃
= 0. (B7)

This implies that the optimal leverage obtained at zeroth
order is valid up to second order in K(t)/K̃ . In general, it
is possible to use perturbation theory to obtain higher-order
approximations of this result, using, for instance, the exact
formulas obtained in [25].
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