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Abstract. When attempting to persuade an agent to believe (or
disbelieve) an argument, it can be advantageous for the persuader
to have a model of the persuadee. Models have been proposed for
taking account of what arguments the persuadee believes and these
can be used in a strategy for persuasion. However, there can be un-
certainty as to the accuracy of such models. To address this issue,
this paper introduces a two-dimensional model that accounts for the
uncertainty of belief by a persuadee and for the confidence in that
uncertainty evaluation. This gives a better modeling for using lot-
teries so that the outcomes involve statements about what the user
believes/disbelieves, and the confidence value is the degree to which
the user does indeed hold those outcomes (and this is a more refined
and more natural modeling than found in [19]). This framework is
also extended with a modelling of the risk of disengagement by the
persuadee.

1 INTRODUCTION

Computational models of argument can potentially be used for sys-
tems to persuade users to change their behaviour (e.g. to eat less,
to exercise more, to use less electricity, to vote, etc) [17]. However,
most proposals for dialogical argumentation focus on protocols (e.g.
[26, 27, 12, 7]) with strategies being under-developed. See [35] for a
review of strategies in multi-agent argumentation.

There are some proposals for using probability theory in dialogical
argumentation: A probabilistic model of the opponent is used for se-
lection of moves by an agent based on what it believes the other agent
is aware of [31]; The history of previous dialogues is used to predict
the arguments that an opponent might put forward [13]; A probabilis-
tic finite state machine can represent the possible moves that each
agent can make in each state [18], and generalized to POMDPs when
there is uncertainty about what an opponent is aware of [14]. How-
ever, none of these use the beliefs of the persuadee or use asymmetric
dialogues where only the persuader presents arguments (a require-
ment when the persuader is a software agent and it is not possible for
it to understand natural language arguments from the persuadee). In
[4], a probabilistic model of beliefs of the persuadee is used by the
persuader to choose beliefs to present, but there is no consideration
of update of the model resulting from dialogue, of confidence in the
model, of persuasion outcomes involving statements about belief, of
expected utility, or of risk of disengagement (which are issues we
consider here).

There is a recent proposal for asymmetric persuasion dialogues
with a general definition for probabilistic user models, and a general
definition for updating user models in terms of mass redistributions
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[19]. In this paper, that proposal is generalized by introducing a two-
dimensional notion of uncertainty with multiple user models and a
measure of confidence in them. We will use a logical language to
represent and reason with the beliefs in the user models and the con-
fidence in them. This enables a more accurate modelling of expected
utility than in [19] since belief statements in the logical language are
outcomes in the utility analysis. This is extended with a modelling
of risk of disengagement by the persuadee (a key problem when a
dialogue is too long) and use this for selecting optimal dialogues.

2 PRELIMINARIES

This paper is based on abstract argumentation [10]. The dialogues
concern an argument graph G without self-attacks where Args(G)
is the set of arguments in G, and Attacks(G) is the set of attack
relations in G.

A system (the persuader running as an app) has a dialogue with a
user (the persuadee using the app) to persuade him/her to believe (or
disbelieve) some combination of arguments (e.g. about doing more
excercise) as explained in Section 4. The system is aware of all the
arguments in the argument graph G whereas the user is not necessar-
ily aware of all the arguments in G.

A dialogue is a sequence of moves D = [m1, . . . ,mk]. Equiva-
lently, we can use D as a function with an index position i to return
the move at that index (i.e. D(i) = mi). A protocol specifies what
moves should/can follow each move in a dialogue.

In this paper, we consider one protocol as an illustration. The only
moves are posit of an argument A by the system, denoted A!, or ter-
mination by the system, denoted ⊕, or by the user, denoted ⊗. Once
terminated, no further moves are possible. An example of untermi-
nated dialogue is [A!, C!, D!, A!, C!, D!, A!], of a system-terminated di-
alogue is [A!, C!,⊕], and of a user-terminated dialogue is [A!, C!,⊗].

3 PROBABILISTIC USER MODELS

We will use the epistemic approach to probabilistic argumentation
[34, 16, 21, 2].

Definition 1. A mass distribution P over Args(G) is such that∑
X⊆Args(G) P (X) = 1. Let Dist(G) be the set of mass distri-

butions over G. The probability of an argument A is P (A) =∑
X⊆Args(G) s.t. A∈X P (X).

For a mass distribution P , and A ∈ Args(G), P (A) is the belief
that an agent has in A (i.e. the degree to which the agent believes
the premises and the conclusion drawn from those premises). When
P (A) > 0.5, then the agent believes the argument to some degree,
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whereas when P (A) ≤ 0.5, then the agent disbelieves the argument
to some degree.

The following constraint ensures that the mass distribution re-
spects the structure of the graph, without forcing an unattacked ar-
gument to be believed [16].

Definition 2. A mass distribution P is rational for G iff ∀(A,B) ∈
Attacks(G), if P (A) > 0.5, then P (B) ≤ 0.5.

Example 1. Consider the following argument graph. Mass distribu-
tion P1(A) = 0.6, P1(B) = 0.9, and P1(C) = 0.9 is not rational,
whereas P2(A) = 0.6, P2(B) = 0.3, and P2(C) = 0.9 is rational,
and P3(A) = 0, P3(B) = 1, and P3(C) = 0.3 is rational.

A B C

The system (the persuader) uses a mass distribution P as a model
of the user (the persuadee), and it can update the model at each stage
of the dialogue (see Section 7). This is useful for asymmetric dia-
logues where the user is not allowed to posit arguments. So the only
way the user can treat arguments that s/he does not accept is by dis-
believing them (and the system aims to reflect this in the user model).
In contrast, in symmetric dialogues, the user may be allowed to posit
counterarguments to an argument that s/he does not accept.

4 PERSUASION OBJECTIVES

An objective is a Boolean combination of arguments. If A ∈
Arg(G), then A is a positive literal, and ¬A is a negative literal.
Let AFormulae(G) denote all the formulae that can be formed from
the arguments in G using ∧, ∨, and ¬ as connectives in the usual
way.

Informally, an objective is positive or negative from the point of
view of the persuader. If it is positive (respectively negative), then
the persuader wants the objective to be satisfied (respectively not sat-
isfied) by the arguments believed by the persuader. We consider how
to specify whether an objective is positive or negative in Section 9.

In order to formalize the satisfaction of objectives, we treat each
subset of Args(G) as a model (i.e. a possible world).

Definition 3. The satisfaction relation, denoted |=, is defined
as follows where X ⊆ Args(G), A ∈ Args(G), and α, β ∈
AFormulae(G): (1) X |= A when A ∈ X; (2) X |= α ∧ β iff X |=
α and X |= β; (3) X |= α ∨ β iff X |= α or X |= β; and (4)
X |= ¬α iff X 
|= α.

Essentially |= is a classical satisfaction relation. So if α is a clas-
sical tautology, then X |= α for all X ⊆ Args(G), and if α is
a classical contradiction, then X 
|= α for all X ⊆ Args(G). For
α ∈ AFormulae(G), let Models(α) = {X ⊆ Args(G) | X |=
α}. For each graph G, we assume an ordering over the arguments
〈A1, ..., An〉 so that we can encode each model by a binary number:
For a model X , if the ith argument is in X , then the ith digit is 1,
otherwise it is 0. E.g. for 〈A, B, C〉, the model {A, C} is represented
by 101.

According to the user model, the probability of an objective φ is
the sum of the probability of each model satisfying the objective.

Definition 4. For P ∈ Dist(G), the probability of objective φ ∈
AFormulae(G) is P (φ) =

∑
X∈Models(φ) P (X).

Suppose α ∈ AFormulae(G) and P is a mass distribution. If α
is a contradiction of classical logic, then P (α) = 0, and if α is a
tautology of classical logic, then P (α) = 1. Also, if {α}  β, then
P (α) ≤ P (β), and if ¬(α ∧ β) is a classical tautology, then P (α ∨
β) = P (α) + P (β).

5 BELIEF STATEMENTS

We use statements (defined next) involving a mass distribution ap-
plied to an objective as atoms in a language. These represent the be-
lief a persuadee has in an objective.

Definition 5. A belief statement is of the form P (α)#x where α ∈
AFormulae(G) is an objective, # ∈ {=, ≥, ≤, >, <}, and x ∈
[0, 1]. A belief formula is a Boolean combination of belief statements
(i.e. if φ is a belief statement, then it is a belief formula, and if φ and
ψ are belief formulae, then each of φ ∧ ψ, φ ∨ ψ and ¬φ is a belief
formula). Let BFormulae(G) be the set of belief formulae.

Example 2. For A, B ∈ Args(G), (P (A∧B) > 0.9)∨(P (¬A∧¬B) <
0.5) is an example of a belief formula.

We assume equivalences, denoted ≡, between belief formulae: (1)
P (α) ≥ x ≡ (P (α) = x) ∨ (P (α) > x), (2) P (α) ≤ x ≡
(P (α) = x) ∨ (P (α) < x), (3) P (α) 
= x ≡ ¬(P (α) = x), (4)
P (α) 
> x ≡ ¬(P (α) > x), and (5) P (α) 
< x ≡ ¬(P (α) < x).

Definition 6. The satisfying distributions for a belief statement
P (α)#x is Sat(P (α)#x) = {P ′ ∈ Dist(G) | P ′(α)#x}, where
# ∈ {=,≥,≤, >,<}. The set of satisfying distributions for a be-
lief formula is as follows where φ and ψ are belief formulae: (1)
Sat(φ∧ψ) = Sat(φ)∩Sat(ψ); (2) Sat(φ∨ψ) = Sat(φ)∪Sat(ψ);
and (3) Sat(¬φ) = Sat(�) \ Sat(φ).
Example 3. For 〈A, B〉, if P1(11) = 1 and P2(00) = 1, then
P1, P2 ∈ Sat(P (A ∧ B) = 1) ∨ P (¬A ∧ ¬B) = 1). For 〈C〉, if
P3(1) = 0.5 and P4(1) = 0.6, then P3 
∈ Sat(P (C) > 0.5) and
P4 ∈ Sat(P (C) > 0.5).

Proposition 1. (1) For x ∈ (0, 1], Sat(P (⊥) = x) = ∅. (2)
Sat(P (�) = 1) = Dist(G). (3) For any objective α, Sat(P (α) ≤
1) = Dist(G) and Sat(P (α) ≥ 0) = Dist(G). (4) When x 
= y,
Sat(P (α) = x ∧ P (α) = y) = ∅. (5) When  α ↔ β,
Sat(P (α) = x) = Sat(P (β) = x).

Definition 7. φ, ψ ∈ BFormulae(G) are disjoint iff Sat(φ) ∩
Sat(ψ) = ∅.

Example 4. Each pair of statements is disjoint: (1) P (A) =
0.5, P (A) = 0.7; (2) P (A) ≥ 0.6, P (A) < 0.5; (3) P (A) >
0.5, P (¬A) > 0.7; and (4) P (A) = 0.3, P (A ∧ B) = 0.7.

Definition 8. {φ1, . . . , φk} ⊆ BFormulae(G) are exhaustive iff
Sat(φ1) ∪ . . . ∪ Sat(φk) = Dist(G).

Example 5. The set of belief formulae {P (A) > 0.8, P (A) ≤ 0.8 ∧
P (A) > 0.6, P (A) ≤ 0.6} is exhaustive.

Proposition 2. Let S ⊂ BFormulae(G) and let φ, φ′ ∈
BFormulae(G). If S ∪ {φ} is exhaustive and pairwise disjoint, and
Sat(φ) = Sat(φ′), then S∪{φ′} is exhaustive and pairwise disjoint.

As we see in Section 9, belief formulae can represent de-
sired/undesired outcomes of a dialogue. The system may want to
persuade the user to believe α to some degree (i.e. it is a positive
objective). For instance, the system may want the user to believe
α above a threshold of 0.9 (i.e. P (α) > 0.9). Or it may want to
persuade the user to disbelieve α and so α is a negative objective
(e.g. P (α) ≤ 0.5). So the aim of the dialogue is to change the be-
lief/disbelieve in an objective depending on whether it is a positive
or negative objective.
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6 CONFIDENCE IN BELIEF FORMULAE

The confidence distribution is a probability distribution over mass
distributions. It gives the probability that a given user model is the
correct representation of the user’s beliefs.

Definition 9. A confidence distribution is Pr : Dist(G) → [0, 1]
s.t.

∑
P∈Dist(G) Pr(P ) = 1. For a belief formula φ, a formula con-

fidence is Pr(φ) =
∑

P∈Sat(φ) Pr(P ).

For instance, the formula confidence Pr(P (A) = 0.7) > 0.5
means that the persuader has at least 0.5 confidence in the persuadee
belief in A being 0.7.

Example 6. For 〈A, B〉, consider P1, P2, and P3, defined be-
low. Some examples of confidence are: Pr(P (A) = 1) = 1/2,
Pr(P (A) ≥ 1/2) = 1, Pr(P (A) = 1/2) = 1/2, Pr(P (B) =
0) = 1/4, Pr(P (¬B) = 1) = 1/4, Pr(P (¬B) = 1/2) = 1/4, and
Pr(P (A ∧ B) ≥ 1/4) = 3/4.

Pr(P1) = 1/2 Pr(P2) = 1/4 Pr(P3) = 1/4

11 1 0 1/4
10 0 1/2 1/4
01 0 0 1/4
00 0 1/2 1/4

Clearly, for all Pr, Pr(P (⊥) = 0) = 1, Pr(P (⊥) = 1) = 0,
Pr(P (�) = 1) = 1, and Pr(P (�) = 0) = 0.

Proposition 3. For objectives α, and β, and x, y, z ∈ [0, 1], formula
confidence satisfies: (1) Pr(P (α) ≥ x) > z if Pr(P (α) ≥ y) > z
and y ≥ x; (2) Pr(P (α) ≥ x) ≥ Pr(P (α) ≥ y) when y ≥ x; (3)
Pr(P (α) ≥ x) ≥ Pr(P (β) ≥ x) where {β}  α; (4) Pr(P (α) ≥
x) = Pr(P (¬α) ≤ (1 − x)); (5) Pr(P (α) ≥ 0.5 ∨ P (β) ≥
0.5) = 1 where {β}  ¬α; (6) Pr(P (α) ≥ x) = Pr(P (α) =
x) + Pr(P (α) > x); and (7) Pr(P (α) < x) + Pr(P (α) = x) +
Pr(P (α) > x) = 1.

If there is positive confidence that the attacker (respectively attac-
kee) is believed, then there is positive confidence that the attackee
(respectively attacker) is not believed.

Proposition 4. Let Pr be s.t. if Pr(P ′) > 0, then P ′ is rational.
For all (A,B) ∈ Attacks(G),

1. if Pr(P (A) > 0.5) > 0.5, then Pr(P (B) ≤ 0.5) > 0.5.
2. if Pr(P (B) > 0.5) > 0.5, then Pr(P (A) ≤ 0.5) > 0.5.

The following results ensure that we can use belief formulae as
outcomes in a lottery (Section 10).

Proposition 5. If {φ1, . . . , φn} ⊆ BFormulae(G) is exhaustive,
then Pr(φ1 ∨ . . . ∨ φn) = 1.

Proposition 6. If φ, ψ ∈ BFormulae(G) are disjoint, then Pr(φ ∨
ψ) = Pr(φ) + Pr(ψ).

We can treat atoms in BFormulae(G) as atoms in a classical
propositional language, thereby use  as the classical propositional
consequence relation.

Proposition 7. Let φ, ψ ∈ BFormulae(G). If {φ}  ψ, then
Pr(φ) ≤ Pr(ψ).

As the number of different mass distributions with non-zero con-
fidence increases, the confidence in some belief formulae will fall.

Proposition 8. Let Pr1 and Pr2 be confidence distributions, and
let Dom(Pr) = {P | Pr(P ) > 0}. If Dom(Pr1) ⊆ Dom(Pr2),
then there is a φ ∈ BFormulae(G) such that Pr1(φ) ≥ Pr2(φ).

The confidence value is important for two reasons. First, it gives
a better modeling for using lotteries so that the outcomes involve
statements about what the user believes/disbelieves, and the confi-
dence value is the degree to which the user does indeed hold those
outcomes (and this is a more refined and more natural modeling than
found in [19]). Second, it allows for uncertainty about the user to be
better managed. If we are sure we know what the user believes, then
have one probability distribution, whereas for example, if we are not
sure about the user we have, we may have multiple distributions.

So we will treat belief statements as outcomes in a lottery (for
calculating expected utility), and use a confidence distribution to give
the probability that we get that outcome.

7 UPDATING USER MODELS

This section reviews some proposals in [19]. To update a user model
during a dialogue, a mass redistribution function takes a mass distri-
bution and returns a revised mass distribution. Possibilities for this
include probabilistic conditioning. However, in this paper, we use
an alternative defined next for redistributing mass from models (i.e.
possible worlds) not satisfying α to models satisfying α.

Definition 10. [19] Let α ∈ AFormulae(G) be a literal, let P
be a mass distribution, and let k ∈ [0, 1]. A refinement function,
denoted Hk

α(P ), returns the mass distribution P ′ as follows where
X ∈ Models(G)

P ′(X) =

{
P (X) + (k × P (hα(X))) if X |= α
(1− k)× P (X) if X 
|= α

and where hα(X) = X \ {A} when α is of the form A and hα(X)
= X ∪ {A} when α is of the form ¬A.

The above function is called refinement because it refines the mass
distribution using an update. See Table 1 for examples of redistribu-
tion using the refinement function. In the above definition, hα returns
the model closest to X but with α no longer satisfied. If k = 1, then
all the mass is transferred from the models not satisfying α to mod-
els satisfying α. If k < 1, then only a proportion is transferred. This
gives flexibility to model update in different kinds of user. For in-
stance, if we want to model a user that when conceding an argument
is believable, s/he does not fully believe the argument, we can use
k < 1 to update the model so that the argument is not fully believed
in the model.

Table 1. Examples of mass redistribution

AB P H1
A(P ) H1

¬A(P ) H0.75
A (P ) H1

B(P )

11 0.6 0.7 0.0 0.675 0.8
10 0.2 0.3 0.0 0.275 0.0
01 0.1 0.0 0.7 0.025 0.2
00 0.1 0.0 0.3 0.025 0.0

Given a mass distribution P , representing a user’s beliefs at the
current state of the dialogue, we want to update the model depend-
ing on the move made. For this, we consider the notion of an update
method σ(Pi−1, D(i)) = Pi which generates a mass distribution Pi
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from Pi−1 based on the move D(i). Each method σ is defined as a
rule with a condition (based on the move, the current mass distribu-
tion, and the graph), and a consequent that specifies the redistribu-
tion.

To illustrate, the trusting method (below) raises the belief in a
posit, and lowers the belief in attackers and attackees.

Definition 11. [19] For step i in the dialogue, the trusting method

generates Pi from Pi−1 as follows, where Φ = {¬C | (A,C) ∈
Attacks(G) or (C,A) ∈ Attacks(G)}.

If D(i) = A!, then Pi = H1
Φ(H

1
A(Pi−1)).

Example 7. For 〈A, B〉, consider the argument graph in Example 1
with dialogue [A!,⊕] and the trusting method. Let the initial mass be
P0(011) = 0.3, P0(010) = 0.2, P0(001) = 0.3, and P0(000) = 0.2.
After move A!, P1(101) = 0.6, and P1(100) = 0.4.

The strict method (defined next) only allows a posit to update the
belief in the posit when there is no attacker of the posit that is be-
lieved.

Definition 12. [19] For step i in the dialogue, the strict method

generates Pi from Pi−1 as follows, where Φ = {¬C | (A,C) ∈
Attacks(G)}.

If D(i) = A!,
and for all (B,A) ∈ Attacks(G), Pi−1(B) ≤ 0.5,
then Pi = H1

Φ(H
1
A(Pi−1)), else Pi = Pi−1

Example 8. For 〈A, B, C〉, consider the graph in Example 1 with di-
alogue [A!, C!, A!,⊕] and the strict method. Let the initial mass be
P0(111) = 0.2, P0(110) = 0.3, P0(011) = 0.3, and P0(010) = 0.2.
After the first A!, P1(111) = 0.2, P1(110) = 0.3, P1(011) = 0.3, and
P1(010) = 0.2. After C!, P2(101) = 0.5, and P2(001) = 0.5. After
the second A!, P3(101) = 1.

m1 m2 mi mn

P 1
0 P 1

1 P 1
2 P 1

i P 1
n

P x
0 P x

1 P x
2 P x

i P x
n

Figure 1. Schematic of the update of the 2D model where
D = [m1, . . . ,mn] and P0 = 〈P 1

0 , . . . , P
x
0 〉. At the end of the dialogue,

the user models are Pn = 〈P 1
n , . . . , P

x
n 〉.

See [19] for further update methods and for more discussion of
how they are used. These are only illustrative of updates methods.
With a wider range of moves, a wider range of update methods can
be considered. For instance, with moves to get information from the
user, further update methods can be defined.

8 2D MODELS

We combine user models (i.e. a mass distribution representing the
persuadee beliefs) with the confidence distribution.

Definition 13. A 2D model is a tuple (P, P r) where P is a tuple
〈P 1, . . . , P x〉 s.t. each P i in P is a mass distribution and Pr is a
confidence distribution s.t.

∑x
i=1 Pr(P i) = 1.

So each P i in the tuple denotes a mass distribution modelling the
user. We may have different ones because we are unsure which is
correct, though some may be identical.

The most certain 2D model is when the mass distributions are
identical (i.e. for all P i, P j ∈ P , if Pr(P i) > 0 and Pr(P j) > 0,
then P i ≡ P j).

At the other extreme, the least certain 2D model is when there is
a P ∈ P for each X ⊆ Args(G) such that P (X) = 1, and where
Pr(P ) = 1/k s.t. k = 2n and |Arg(G)| = n.

In the following definition for updating the 2D model, we can use a
different update method for each user model to mimic different ways
a user might update his/her beliefs.

Definition 14. Let (Pi−1, P ri−1) is a 2D model where Pi−1 =
〈P 1

i−1, . . . , P
x
i−1〉, let mi be a move, and let σj be the up-

date method for user model P j . The 2D model update Pi+1

is 〈σ1(P 1
i−1,mi), . . . , σ

x(P x
i−1,mi)〉 where for all P j ∈ Pi,

Pri(P
j
i ) = Pri−1(P

j
i−1).

So for each step i of the dialogue, the above definition updates
Pi−1 to give Pi. This is represented schematically in Figure 1. For
a dialogue D with n moves, and initial 2D model (P0, P r0) s.t.
P0 = 〈P 1

0 , . . . , P
x
0 〉, we use the function Update(P0, P r0, D) =

(Pn, P rn) to denote the iterative application of the above definition
starting with m1, then m2, and so on, until mn.

Example 9. For 〈A, B, C〉, consider the argument graph in Example 1
with dialogue D = [C!, A!,⊕]. Let P0 = 〈P 1

0 , P
2
0 〉 where P 1

0 (m) =
1/8 for all models, and P 2

0 (011) = 1/2 and P 2
0 (010) = 1/2. Also

let σ1 be strict update and σ2 be trusting update. For move m1 = C!,
P1 = 〈P 1

1 , P
2
1 〉 where P 1

1 (101) = 1/2 and P 1
1 (001) = 1/2,

and P 2
1 (001) = 1. Then for move m2 = A!, P2 = 〈P 1

2 , P
2
2 〉

where P 1
2 (101) = 1, and P 2

2 (101) = 1. So Update(P0, P r0, D)
= (P2, P r2).

For some update functions, e.g. the trusting method, and some be-
lief formulae, we can always construct a dialogue that will result in
total confidence in the formulae, and so the mass distributions in P0

become more similar. For instance, the following result shows that
for a conflictfree set of arguments, each argument can be posited in
a dialogue, and the trusting update method ensures that they are all
believed.

Proposition 9. For a 2D model (P0, P r0), and belief statement
π of the form P (α) ≥ 0.5, where α is a conjunction of argu-
ments, if σ is the trusting update method for all P ∈ P , and there
are no conjuncts A,B in α such that (A,B) ∈ Attacks(G), then
there is a dialogue D = [m1, . . . ,mn] s.t. Prn(π) = 1, where
Update(P0, P r0, D) = (Pn, P rn).

To recap, the 2D model allows us to use multiple user models and
multiple update methods to represent the persuadee.

9 UTILITY CONSTRAINTS

The objectives introduced in Section 4 represent what the persuader
wants the persuadee to believe or disbelieve.

Definition 15. An objective tuple is a pair (Q+, Q−) where Q+ ⊆
AFormulae(G) and Q− ⊆ AFormulae(G) such that Q+∩Q− = ∅.
We refer to Q+ as the set of positive objectives and Q− as the set of
negative objectives.
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Example 10. An example of an objective tuple is ({A}, {B}) where A
is “You are doing little excercise, and so you should do a brisk 30min
walk everyday” and B is “Sugar-loaded sports drinks are advertised
for sports people, and therefore they are healthy”.

So a positive objective is an objective that the system wants the
user to believe and a negative objective is an objective that the sys-
tem wants the user to disbelieve. Therefore, for an objective tu-
ple (Q+, Q−), outcomes are belief statements as tabulated below.
Hence, for a positive objective α, belief in α is a positive outcome,
and disbelief in α is a negative outcome. For example, for a positive
objective, α, P (α) > 0.9 is a positive outcome and P (α) < 0.4 is
a negative outcome. Similarly, for a negative objective α, belief in α
is a negative outcome, and disbelief in α is a positive outcome.

objective x belief statement as outcome
α is +ve x ∈ (0.5, 1] P (α) > x is +ve outcome.
α is -ve x ∈ (0.5, 1] P (α) > x is -ve outcome.
α is +ve x ∈ [0, 0.5] P (α) ≤ x is -ve outcome.
α is -ve x ∈ [0, 0.5] P (α) ≤ x is +ve outcome.

We can generalize to arbitary formulae in BFormulae(G) as fol-
lows: If φ and ψ are +ve (respectively -ve) outcomes, then φ∧ψ and
φ∨ψ are +ve (respectively -ve) outcomes. And if φ is a +ve (respec-
tively -ve) outcome, then ¬φ is a -ve (respectively +ve) outcome.

Definition 16. A persuasion utility function, denoted U , for an ob-
jective tuple (Q+, Q−) is an assignment from BFormulae(G) to R

such that: (1) If φ is a +ve outcome, then U(φ) > 0; (2) If φ is a -ve
outcome, then U(φ) < 0.

Example 11. Continuing Example 10, we can choose the outcomes
and U such that U(P (A) > 0.9) = 10, U(P (A) > 0.5 ∧ P (A) ≤
0.9) = 8, U(P (A) ≤ 0.5) = −10, U(P (B) > 0.5) = 5, and
U(P (B) ≤ 0.5) = −5.

Note, if a formulae is neither +ve nor -ve, it is not necessarily of
zero utility. For example, let φ be +ve, and ψ be -ve, then U(φ ∧ ψ)
might be greater than 0 if φ is more important than ψ, or less than 0
if ψ is more important than φ.

Definition 17. A persuasion utility function U for (Q+, Q−) is sen-

sible iff U satisfies the following conditions.

1. If x > y, and α is a +ve (resp. -ve) objective, then U(P (α) ≥
x) ≥ U(P (α) ≥ y) (resp. U(P (α) ≥ x) ≤ U(P (α) ≥ y)).

2. If {α}  β, and α, β are +ve (resp. -ve) objectives, then
U(P (α) ≥ x) ≥ U(P (β) ≥ x) (resp. U(P (α) ≥ x) ≤
U(P (β) ≥ x)).

3. If {φ}  ψ, and φ, ψ are +ve (resp. -ve) outcomes, then U(φ) ≥
U(ψ) (resp. U(φ) ≤ U(ψ)).

This definition provides intuitive constraints on the persuasion
utility function. Condition 1 ensures increased (resp. decreased) be-
lief in a +ve (resp. -ve) objective has increased (resp. decreased) util-
ity; Condition 2 ensures belief in an inferentially stronger +ve (resp.
-ve) objective has increased (resp. decreased) utility; and Condition
3 ensures an inferentially stronger +ve (resp. -ve) outcome has in-
creased (resp. decreased) utility.

Proposition 10. If (Q+, Q−) is an objective tuple, then there is a
persuasion utility function U for (Q+, Q−) such that U is sensible.

So if the positive and negative objectives are disjoint, then we are
guaranteed to identify a persuasion utility function that is sensible (in
the sense of Definition 17).

10 EXPECTED UTILITY

A lottery with possible outcomes o1,..,on that are pairwise dis-
joint and exhaustive (i.e. exactly one of them is guaranteed to oc-
cur), that occur with probabilities p1, .., pn respectively, is written as
[p1, o1; ....; pn, on]. For a utility function U , the expected utility of a
lottery L is

∑n
i=1 pi × U(oi). We harness this notion of a lottery as

follows.

Definition 18. Let D be a dialogue, let S = {φ1, . . . , φk} be
a set of disjoint and exhaustive outcomes (i.e. belief formulae),
let (P0, P r0) be the initial 2D model, let Update(P0, P r0, D) =
(Pn, P rn), and let U be a utility function. The lottery for Pr, U , S
is Lot(Pr, U, S) =

[Pr(φ1), φ1; . . . ;Pr(φk), φk]

Then the expected utility for Pr, U , S is EU(Pr, U, S) =

(Pr(φ1)× U(φ1)) + . . .+ (Pr(φk)× U(φk))

Example 12. For 〈A, B〉, let P 1
n(11) = 1, P 2

n(11) = 0.6, P 2
n(01) =

0.4, and P 3
n(01) = 1, with Pr(P 1

n) = 0.5, Pr(P 2
n) = 0.3, and

Pr(P 3
n) = 0.2. Let the objective tuple be ({A}, ∅). Hence, φ1 is a

positive outcome, φ2 is neither a positive nor negative outcome, and
φ3 is a negative outcome. So using the values for Pr and U in the
table, the expected utility is 4.5.

φ Pr(φ) U(φ)

φ1 = P (A) > 0.9 0.5 10
φ2 = (P (A) ≤ 0.9) ∧ (P (A) > 0.5) 0.3 5
φ3 = P (A) ≤ 0.5 0.2 -10

Using the 2D model, we can determine the optimal dialogues for
a lottery as follows.

Definition 19. A dialogue D is optimal w.r.t. the initial 2D
model (P0, P r0), utility function U , and Update(P0, P r0, D) =
(Pn, P rn), when EU(Prn, U, S) is maximized.

In the following example, we show how we can choose between
dialogues using a 2D model.

Example 13. Consider the following argument graph with the ob-
jective tuple ({A ∨ C}, ∅).

AB C D

Let P0 = 〈P 1
0 , P

2
0 〉 be defined as follows, and assume we use the

strict update method. Note, we give the probability for each argument
rather than each model to save space.

A B C D

P 1
0 0 1 0 0

P 2
0 0 0 0 1

The updated mass distributions are given below for dialogue D1 =
[A!,⊕] (left) and for dialogue D2 = [C!,⊕] (right).

A B C D

P 1
0 0 1 0 0

P 2
0 1 0 0 1

A B C D

P 1
0 0 1 1 0

P 2
0 0 0 0 1
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Assume Pr(P 1
n) = 2/3 and Pr(P 2

n) = 1/3. and outcomes φ1 =
P (A ∨ C) > 0.5 and φ2 = P (A ∨ C) ≤ 0.5 s.t. U(φ1) = 5 and
U(φ2) = −5. So for dialogue D1, expected utility is (1/3 × 5) +
(2/3×−5) = −5/3, and for dialogue D2, expected utility is (2/3×
5) + (1/3×−5) = 5/3.

We could select a longer dialogue D3 = [A!, C!,⊕] giving the
following updated mass distributions, and with expected utility (1×
5) + (0×−5) = 5.

A B C D

P1 0 1 1 0
P2 1 0 0 1

For the shorter dialogues, D2 is better than D1. However, D3 is
better than both D2 and D1, but D3 is longer.

At one extreme, if the 2D model only contains one user model,
then the outcome is known with certainty (i.e there is complete con-
fidence in the belief statement).

Proposition 11. If [Pr(φ1), φ1; . . . ;Pr(φk), φk] is a lottery, and
|P| = 1, then there is a φi ∈ {φ1, . . . , φk} s.t. Pr(φi) = 1, and for
all φj ∈ {φ1, . . . , φk} \ {φi}, Pr(φi) = 0.

Example 14. Consider the disjoint and exhaustive outcomes P (A ∨
B) = 1, P (¬A ∧ ¬B) = 1, and P (A ∨ B) < 1 ∧ P (¬A ∧ ¬B) <
1. Let P = {P ′} and so Pr(P ′) = 1. Let P ′(11) = 1. Hence,
Pr(P (A ∨ B) = 1) = 1.

At the other extreme, there are various situations that give rise to
a uniform distribution over the outcomes. We consider the following
which reflects the ignorance when there are multiple mass distribu-
tions with no agreement.

Proposition 12. Let [Pr(φ1), φ1; . . . ;Pr(φn), φn] be a lottery
where Pr is a uniform distribution over P . Also for each P ∈ P ,
there is a X ⊆ Args(G) s.t. P (X) = 1, and for each X ⊆ Args(G),
there is a P ∈ P s.t. P (X) = 1. If there is an x > 0 s.t. for
each φi ∈ {φ1, . . . , φn}, |Sat(φi)| = x, then for each φi, φj ∈
{φ1, . . . , φn}, Pr(φi) = Pr(φj).

Example 15. For 〈A〉, let P = {P1, P2} where P1(1) = 1 and
P2(0) = 1. Let Pr(P1) = 1/2 and Pr(P2) = 1/2. Consider
the outcomes P (A) > 0.5 and P (¬A) > 0.5. Hence, Pr(P (A) >
0.5) = 1/2 and Pr(P (¬A) > 0.5) = 1/2

Between these extremes, the 2D model can be valuable in iden-
tifying the optimal dialogues. Note, that normally we do not envis-
age that the 2D model will contain many mass distributions. Fur-
thermore, we will focus on update methods that are computationally
efficient. Hence, we envisage the approach is computationally viable.

11 MODELLING DISENGAGEMENT

For every user-terminated dialogue D, there is a probability that the
user of the app will disengage before the end of the dialogue (e.g.
through loss of interest). This can rise as the length of the dialogue
increases. We assume a stay-in probability, denoted q, which for
step i in the dialogue is the probability that the user will remain en-
gaged for the next step i+1. We assume no disengagement after the
ultimate posit.

Definition 20. Let D = [m1, . . . ,mn] be a system-terminated dia-
logue with stay-in probability q. If n > 2, the probability of engage-

ment is probengage = qn−2 and the probability of disengagement

is probdisengage =
∑n−2

i=1 q(i−1) × (1− q). If n = 1 or n = 2, then
probengage is 1, and probdisengage is 0.

Example 16. Consider the dialogue in Figure 2 with the stay-in
probability being 0.9. So probengage is 0.9 × 0.9 = 0.81 and
probdisengage is 0.1 + (0.9× 0.1) = 0.19.

A!

B! ⊗
C! ⊗

⊕

0.9 0.1

0.9 0.1

1

Figure 2. For dialogue [A!, B!, C!,⊕], each node is a move. The left branch
is the system-terminated dialogue, and each branch that ends in ⊗ is a

user-terminated dialogue. Each arc in the tree is labelled with the probability
of engagement (leftwards) or disengagement (rightwards).

Proposition 13. For a system-terminated dialogue D, and a stay-in
probability q, probengage + probdisengage = 1.

Since disengagement is often a clear event in a dialogue, obtain-
ing a stay-in probability can be obtained from analyzing previous
dialogues for a class of users.

Given the probability of engagement Probengage and a lottery
[Pr(φ1), φ1; . . . ;Pr(φn), φn], we form a revised lottery as speci-
fied in the following result where ⊗ denotes the outcome of disen-
gagement..

Proposition 14. If [Pr(φ1), φ1; . . . ;Pr(φn), φn] is a lottery, and
Probengage ∈ [0, 1], then the following is a lottery where for each
outcome φi, Pr∗(φi) is Pr(φi)× Probengage.

[Pr∗(φ1), φ1; . . . ;Pr∗(φn), φn; 1− Probengage,⊗]

Example 17. For 〈A, . . . , F〉, consider the graph with P = {P0}
where P0(010010) = 1. So P0(B) = 1 and P0(E) = 1.

A B C D E F

Let A be a +ve objective, and let P (A) ≥ 0.9 and P (A) < 0.9 be
outcomes in the lottery. So D1 = [C!, A!,⊕] and D2 = [F!, D!, A!,⊕]
are dialogues that terminate with Pr(P (A) ≥ 0.9) = 1 accord-
ing to the strict update method. Let the stay-in probability be 3/4.
So Probengage = 3/4 for D1 and Probengage = 9/16 for D2.
Hence, the revised lottery has for D1, Pr∗(P (A) ≥ 0.9) = 3/4,
Pr∗(P (A) < 0.9) = 0, and Pr∗(⊗) = 1/4, and for D2,
Pr∗(P (A) ≥ 0.9) = 9/16, Pr∗(P (A) < 0.9) = 0, and Pr∗(⊗) =
7/16. So for this stay-in probability, the optimal dialogue is D1.

A B C D E F

P0 0 1 0 0 1 0
Pn for D1 1 0 1 0 0 0
Pn for D2 1 0 0 1 0 1

Shorter dialogues can be preferable (as above). In general, we
trade a decrease in expected utility for a decrease in risk of disen-
gagement (e.g. for Example 13 whether D2 or D3 is optimal would
depend on the stay-in probability).
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12 DISCUSSION

This paper provides the following contributions (which are poten-
tially important features for using argumentation in software for
changing behaviour): (1) A 2D model of uncertainty giving predic-
tions of the beliefs of the persuadee, and of the confidence in those
predictions; (2) A framework for updating the 2D model through di-
alogues; and (3) Shown how the 2D model can be used to optimize
choice of moves while taking into account the risk of disengagement.

For this, the epistemic approach to probabilistic argumentation has
been used. This contrasts with the constellations approach (e.g. [11,
23, 15]) which is concerned with the uncertainty about the structure
of the graph rather than belief in arguments.

The proposal in this paper relies on 2D models. This can be gener-
ated by querying the user, or by learning from previous interactions
with the user or similar users. Some recent studies indicate the po-
tential viability of an empirical approach [30, 9, 33].

Utility theory has been considered previously in argumentation
(for example [29, 32, 24, 25]) though none of these represent the
uncertainty of moves made by each agent in argumentation. There
is an approach using expected utility where outcomes are specified
as particular arguments being included or excluded from extensions
[20], but it is based on the constellations approach (as opposed to the
epistemic approach), and there is no consideration of updates to the
model. Outcomes from asymmetric dialogues have also been con-
sidered in [5], but that work focuses on whether it is guaranteed,
possible, or impossible to present a winning coalition of arguments
with respect to grounded semantics, and there is no consideration of
uncertainty.

There is increasing interest in formalizing the notion of the
strength of an argument, with a number of proposals (e.g. [3, 8, 24,
22, 1, 6, 28]). It would be interesting to investigate the pros and cons
of using these conceptualizations of strength of an argument instead
of epistemic probabilities in this framework. Nonetheless, some clear
advantages of the epistemic approach are the clear semantics for the
evaluation of the arguments, the ease with which epistemic approach
can be used in a lottery, and the possibility to obtain the probabilities
by analysing statistical data concerning the behaviour agents.

The work in this paper goes beyond [19]: (1) to better model lot-
teries so that outcomes involve statements about user beliefs, and the
confidence value is the degree to which the user does indeed hold
those outcomes which is a more refined and natural modeling than
[19]; (2) to allow for uncertainty about the user to be handled, and so
if we are sure we know the users beliefs, then we have one distribu-
tion, whereas if we are unsure about kind of user, we have multiple
distributions; and (3) to model the risk of disengagement which is a
practical issue that significantly affects the usability of any argumen-
tation approach for behavior change.

Our current research is directed at generating probability distribu-
tions for user models. We are exploring the use of queries to the user
where the user can express belief in individual arguments (such as
strongly agree, agree, neither agree nor disagree, etc which are then
mapped to the [0,1] interval). If we do this for some arguments, we
can attempt to guess the belief in remaining arguments. We are also
exploring how classes of user might believe/disbelieve certain argu-
ments. So by knowing beliefs in arguments for some members of the
class, and by having criteria for assigning individuals to a class with
some probability, we may construct the 2D model for a user. We en-
visage that by surveying representative samples of individuals, we
can obtain useful 2D models. We aim to develop similar methods to
those used in [30, 9, 33]. We plan to undertake empirical evaluation

of the approach in apps to persuade users to change their behaviour
with respect to some aspect of their lifestyle (e.g. to eat less, to drink
less alcohol, to drive more safely, to recycle more, etc). We see the
theoretical developments in this paper being viable and valuable for
the prototype system that we are implementing.
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