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Towards Multi System Sociotechnical Transitions: Why simulate 

 

Abstract 

A number of research frameworks have been developed for studying sociotechnical transitions. 

These are complex phenomena, particularly those involving multi system interactions. Given 

these characteristics, the paper discusses the challenges in studying transitions solely through 

inductive inference methods. It argues that transition research has reached a point where taking 

the next step should include modelling and simulation as part of the standard methodological 

exploratory toolkit for studying the intensity, nature and timing of system interaction that lead 

to transitions and for producing timely and robust policy recommendations. 
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 1  Introduction 

Research on sociotechnical transitions aims at understanding technological and social change, 

by analysing the causes that enable or inhibit them and by offering policy recommendations on 

how to steer sociotechnical systems. Several frameworks have been developed and applied to 

case studies: the Multi Level Perspective (MLP) (Geels and Schot 2007; Geels 2004), the 

transitions context approach (Smith et al., 2005), the transition management approach 

(Rotmans et al. 2001), and Strategic Niche Management (Kemp et al. 1998). In every case, 

research on sociotechnical systems and transitions, faces two interrelated challenges (Genus 

and Coles 2008; Smith et al. 2010): (i) generating understanding about long-term, historical 

and contemporary transitions in order to inform and/or propose interventions related to 

governance and transitions towards sustainability, and (ii) advancing and refining the 

frameworks and tools used in analysis. The focus of the field on sustainability transitions 

implies that analysing them is not enough; what is required is finding ways to purposefully 

steer sociotechnical systems towards sustainable trajectories with reduced human 

environmental impact (Steward 2012). 

 

System transitions are transient phenomena generated by dynamic interactions and feedback 

between system elements and processes. They are lengthy processes of structural change, 

where cause and effect are complex, non linear, and temporally and spatially separated (Geels 

and Schot 2007). These characteristics present difficulties in understanding, designing and 

anticipating the effects of human intervention. Nevertheless, in the face of these characteristics, 
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transition research has relied exclusively on inductive case studies in order to develop theory or 

transition typologies for example the MLP typology (Geels and Schot 2007). However 

understanding transition processes solely through induction has certain limitations and can thus 

lead to an incomplete understanding. This is a case where process theorizing needs to include 

case description but also to illustrate the logic behind the observed temporal progressions (Van 

de Ven 1992). The need for an approach that embraces transition complexity is apparent, more 

so in cases of sustainability transitions that involve multi-system interactions (Geels 2011).  

 

There are a number of cases in the sociotechnical literature where niche innovations develop 

by linking to different systems, regimes and/or niches (Raven 2007; Papachristos et al. 2013). 

For example biofuels for transport link agrifood, energy and transport systems; electric or plug 

in hybrid vehicles link transport and electricity systems; and functional foods link 

pharmaceutical and food systems. These kinds of multi system interactions exacerbate the 

complexity that the researcher faces compared to single system transitions. Multi-system 

interactions are also a promising research area because it is directly linked to transitions to 

sustainability (Geels 2011) and because currently there is a theoretical gap, as the MLP 

typology concerns only single system transitions (Geels and Schot 2007).  

 

The present paper proposes that modelling and simulation should be used along side case study 

research in order to understand the underlying mechanisms of multi-system transitions, 

develop multi-system typologies, and to overcome some of the challenges and criticism to the 

MLP. There are three reasons for including simulation in transition research. First modelling 

and simulation provides a suitable method for addressing the complex nature of transitions and 

their timing in particular and therefore can offer more than just a way to enhance the reliability 

and validity of research (Jick 1979). Because multi-system transition research is not well 

developed at its current phase, it must go through an exploratory phase. Simulation is ideally 

suited to contribute to this initial exploratory phase (Davis et al., 2007). There have been a 

number of publications already towards this direction on electricity transitions (Yucel and van 

Daalen 2012; Safarzynska and van den Bergh 2011; Barnacle et al., 2013), green economy 

(Musango et al., 2014), consumer lighting (Chappin and Afman, 2013), sustainable mobility 

(Kohler et al. 2009; Leighty et al., 2012) and models of theoretical transition pathways 

(Papachristos 2011; Safarzynska and van den Bergh 2010; Lolopolito et al., 2013; Frenken et 

al., 2013). The integration of modelling and simulation techniques in methodology is a 

threshold that other theoretical fields that initially relied on qualitative research have crossed, 
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for example the resource based view, an established organizational theory (Barney and Clark 

2007).  

 

Second, while transition research focuses on sociotechnical systems, so far little has been done 

towards integrating systems approaches, methods and tools in transition research. The role of 

simulation in this regard is obvious. Given the level of complexity of transition processes, 

understanding them necessitates the sort of system understanding that is difficult to attain 

solely by human cognition (Sterman 1994). Simulation can be used in conjunction with case 

study research in a retroductive mode that looks into past transitions in order to identify the 

underlying operating mechanisms (Sayer 1992). This facilitates understanding and increases 

the confidence in the proposed explanations of system transitions (Johnson, 2001). 

 

Finally the need to research transitions is not just academic but is practical and urgent (Geels 

2010). It is practical because individuals often fail to understand how the dynamic processes 

work in a cumulative, long term way, with huge implications for the policies that they will then 

support in the real world (Sterman 2008). If politicians and citizens alike don’t understand how 

policies can influence these processes and solve the problems they face, they won’t support 

them.  

 

While there is not an urgency for all sociotechnical systems to undergo a transition, in some 

cases concerning transitions to sustainability it is because the rate at which human activity is 

tilting the balance of processes occurring naturally in the biosphere is increasing (IPCC 2013). 

Simulation is needed, and it is already applied in climate research because it is not wise to wait 

for climate change risks to manifest in order to respond and take action. Obviously, a 

‘muddling through’ approach is not suitable either (Lindblom 1959). Hence a pro-active 

approach is required to reorient the trajectories of sociotechnical systems away from 

undesirable states by implementing robust, adaptive policies in the face of the inherent 

uncertainties in sociotechnical systems. This requires that sociotechnical transition research 

generates foresight on how these systems will evolve in the future not just understanding about 

past and present transitions as it has been the case so far.  

 

Simulation is already used in an exploratory mode for foresight analysis of ongoing transitions 

(Verspagen 2009; Kwakkel and Pruyt 2013). In this case it provides a test bed for 

accommodating the multiple interactions and patterns that affect transitions, thus keeping 
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alternative paths in sight rather than concretizing them in a reductive way and enabling the 

assessment of system interventions that aim to change its trajectory. Simulation has been used 

in both roles for addressing a variety of subjects including public health (Homer et al.,  2007; 

Ansah, et al., 2014), social welfare (Zagonel et al., 2004), sustainable development (Saeed, 

1998), socioeconomic behavior (Forrester et al., 1976), innovation processes (Milling, P.M., 

2001; Maier, 1998), domestic energy production (Faber et al., 2010), global warming policies 

(Hu et al., 2012) and alternative transport systems (Struben and Sterman, 2008).  

 

Finally, while it is possible to consider the application of many alternative simulation methods, 

there are two additional motivations for proposing the integration of system dynamics in 

particular: (i) system dynamics throughout its development has dealt with large scale, long-

term issues (Forrester 1961; 1969; 1971; Meadows et al. 1972), therefore it is logical that its 

application to transition research is explored, (ii) it can be used for the development of middle 

range theory (Kopainksy and Luna Reyes 2008) which is the expressed aim of the MLP (Geels 

2011). Middle range theory is empirically grounded, but is  neither as  grand  in  scope  as  

overarching  theories  of  science  and  technology nor as specific as empirical observations. 

 

The remainder of the paper is structured as follows: Section 2 presents an overview of the 

MLP, one of the leading frameworks in sociotechnical transition research. Section 3 discusses 

issues relating to the dynamic nature of transitions and indicates where simulation is relevant. 

Section 4 discusses issues relating to transition research methodology and indicates where 

simulation is relevant. Conclusions, implications for methodology and future research and 

policy are given in section 5. 

 

 2  Overview of The Multi Level Perspective  

Under the MLP framework a sociotechnical system is enacted and reproduced in the activities 

of social groups of actors (technology, policy, industry, science, culture, and market groups). 

Structurally, a sociotechnical system comprises of three interrelated elements (Geels 2004): (i) 

a network of actors and social groups, (ii) formal, cognitive, and normative rules that guide 

their activities and, (iii) material and technical elements as artefacts and infrastructures. The 

social groups influence the trajectory of the sociotechnical system and its stability by adhering 

to specific sets of rules that constitute the sociotechnical regime under which they operate. The 

sociotechnical regime is the level at which technology development and consumer preferences 

coevolve. Normally this is an incremental process which is hard to change or break, due to lock 
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in and path dependence (Unruh 2000; Garud and Karnoe 2001). There are two additional MLP 

levels: (Geels 2004): (i) the landscape at the macro level provides gradients that influence the 

sociotechnical regime trajectory, (ii) the niche at the micro level provides the space where 

radical innovations incubate and proliferate. 

 

The stability of the regime can be perturbed by innovations that develop in niches, pressures 

from the landscape that act on it, or from internal tensions arising from persistent problems. 

Social groups within the system can mount an endogenous response so as to absorb the 

pressures and/or niche innovations. However in some cases this response to persistent 

problems/pressures is not sufficient and a system transition to a new regime takes place. The 

MLP transition typology (Geels and Schot 2007) analyses the possible ways and conditions 

under which a transition can unfold and the trajectories it can follow. This comes as a result of 

interactions between the levels of landscape, regime and niche. The nature of these interactions 

can disrupt or reinforce the transition process. Their timing and intensity is also crucial in 

regime transitions as depending on the level of niche development, the intensity of concurrent 

landscape pressures acting on niches and the regime can create windows of opportunity, and 

eventually contribute to niche success and regime change or failure. A transition ends when 

changes in the social and technical elements of the regime become embedded in the 

institutional, production and user subsystems of the sociotechnical system.  

 

 3  Challenges in Sociotechnical Transition Research 

This section discusses the research challenges steming from the nature, intensity and timing of 

system interactions. It discusses their implications in understanding regime rise, orientation and 

demise. It argues that modelling and simulation can function as a cognitive aid in empirical and 

theoretical research. 

  

 3.1  Transition dynamics: Regime rise, orientation and demise 

Transition research aims to understand how historical and contemporary transitions take place. 

This knowledge can be then applied in steering and supporting sociotechnical system 

innovation and transition towards a more sustainable state. One of the central questions is how 

regime disruptive processes, either in niches or regimes, can be reinforced so that they bring 

about a transition (Smith et al. 2010). In order for this to happen, some endogenous regime and 

niche dynamics must be simultaneously reinforced, they must become dominant over others 
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that disrupt or put pressure on them. For example, the formation and dynamics of niche 

expectations can operate in such a way (Truffer et al. 2008).  

 

However steering regime change is not just a matter of innovating, promoting and reinforcing 

disruptive technologies. Policies need to be reflexive and adaptive, need to be targeted to 

specific problems and opportunities, and need to guide as well as reorient systems. Steering 

innovative activity away from its current path towards a desired trajectory poses an urgent 

theoretical and practical challenge (Smith et al. 2010). A characteristic example is air 

conditioning (Shove and Walker 2007). It is energy intensive, contributes to CO2 emissions, 

appears to be locked-in, and can be controlled/steered towards more benign environmental 

trajectories with passive cooling. 

 

A related issue to ‘misoriented’ regimes, for which there is very little research, is how regimes 

destabilise, unravel and decline (Smith et al. 2010; Turnheim and Geels 2012). The implicit 

assumption in viewing system transitions primarily from the perspective of the disruptive 

technology is that along with the rise of the new regime the old one simultaneously disappears. 

As a consequence there has been no typology for the demise of sociotechnical regimes and the 

importance of this phenomenon is understated. Former antagonistic regimes do not necessarily 

disappear completely for example cars and bicycles coexist (Shove 2012). Nevertheless, 

sociotechnical transition case studies tend to conclude as soon as a new regime is established 

with the result that the dormant dynamics of the previous regime are overlooked. This is 

important for policy making that aims to destabilise existing regimes.  

 

Studying regime rise, reorientation and demise requires that regimes are conceptualised as 

being constantly under pressure from within and from other regimes or niche(s) (Figure 1). 

This pressure is balanced constantly through regime actor actions that engage in regime repair 

and renewal (Jørgensen 2012). What is most important then is the changes in the aggregate 

balance between reinforcing and disrupting forces (plus and minus signs in Figure 1). 

Following the MLP each transition pathway is linked to a particular configuration of 

interactions, their nature, timing and intensity (Geels and Schot 2007).  
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Figure 1 Reinforcing and disrupting interactions influence regime stability 

 

An example of regime disruptive forces is the improvement in boiler and iron shipbuilding 

technology in the steamship transition (Geels 2002). An example of reinforcing forces is the 

concurrent improvements on the design of sailing ships. However, the transition narrative is 

mainly developed from the perspective of the disruptive steamship technology and how it led 

to an increase in sea transport and in the number of ships. The case does not pay equal attention 

on how the regime of sailing ships was destabilised for example by considering the evolution 

of the average lifetime of ships during the transition. This is important because the sum of the 

fleet growth and replenishment rates is directly related to the speed of the transition i.e. the rate 

at which steamships would substitute the fleet of sailing ships. It reflects the decision patterns 

of scrapping ships by ship-owners and thus offers insights into how agency was implicated in 

the transition.  

 

An issue linked to the study of regime rise and demise is the conceptualisation of the relation 

between the social and technical elements of sociotechnical systems. This is portrayed as 

unidirectional where the social shapes the technical (Genus and Coles 2008). Technological 

innovations are thus placed at the core of all MLP studies, foregoing the analysis of how the 

technical influences the evolution of the social (McMeekin and Southerton 2012). Since social 

and technical elements rise and decline entangled to one another, a symmetrical question must 

be posed i.e. how the technical is implicated and influences the social (Shove and Walker 

2010). Recent work includes research on showering practices (Hand et al. 2005), information 
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and communication technologies (Røpke  et al. 2010), centralised water systems in Sweden 

(Söderholm 2013), air conditioning (Strengers 2010), household electricity consumption 

(Gram-Hansen 2009; 2013), household lighting (Crosbie and Guy 2008), transport (Watson 

2012; Iveroth and Bengtsson, 2014). This is a broader challenge in modelling diffusion 

processes (Vespignani 2011). For sustainability transitions this requires some practical, 

systemic understanding of how innovations impact on a range of daily life activities and not 

only those directly related to the specific innovation (McMeekin and Southerton 2012; Steward 

2012). If the challenge of changing consumer criteria during a transition is left unmet, this is 

going to lead to incomplete transitions or the possibility of the system reverting back to a 

previous state (Kemp and Van Lente 2011). A related phenomenon is the rebound effect. 

 

In summary sociotechnical systems comprise both social and technical elements and they are 

not only about system innovation (Shove 2012). The configuration of social elements unravels 

and is reconstituted, just as technical elements may become obsolete and be replaced. 

Addressing the coevolution of social and technical elements requires looking at the aggregate 

balance, timing and intensity of reinforcing and disrupting forces within and between regimes, 

niches and landscapes. It also requires overcoming the tendency of focusing the analysis 

primarily on regime disrupting rather than reinforcing forces. 

 

Modelling and simulation is required in order to augment the systemic inference capability of 

the researchers and thus it can be a cognitive aid towards a coevolutionary approach on 

transition research. It can facilitate the study of reinforcing and disruptive transition processes 

(both internal or external), how they influence the coevolution of social and technical elements 

of a regime, and how they bring about its rise and demise (Figure 1). The use of modelling and 

simulation is also important in overcoming the innovation bias of qualitative transition analysis 

i.e. the tendency to focus primarily on regime disrupting rather than reinforcing forces (Figure 

1). This is important because it compels the researcher to look at their aggregate balance which 

changes at least twice during a transition from reinforcing to disruptive and then back to 

reinforcing when the transition is complete.  

 

Simulation models thus can serve as a mediating instrument between the real world and the 

highly abstract world of theory (Morgan and Morrison 1999). They can be used in this capacity 

to understand historical or contemporary transitions for theory development (Davis et al. 2007) 

or study and refine the stylized transition pathways of the MLP (Papachristos 2011). System 
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dynamics in particular provides the means for maintaining an endogenous perspective, and 

attending to all the processes involved in a transition, even if each one unfolds in a different 

temporal scale or it involves multi system interactions (Richardson 2011). 

 

 3.2  The relevance of historical case studies for sustainability 

This section discusses the implications of the empirical cases that the MLP is based on. The 

MLP draws and thus it empirically originates in explanations inferred about historical socio-

technical system transitions (Smith et al. 2010). Most of these cases are about a single system 

that undergoes a transition towards more growth, production of innovations and consumption 

of resources (Fouquet and Pearson 2012). Furthermore, these historical transitions took place 

when technological development and emergent social needs aligned and overlapped. However, 

at present sociotechnical transitions cover a broad range of issues, including urgent ones like 

sustainability. Addressing these requires concerted, purposive action to influence business and 

consumers (Steward 2012). These two characteristics have two implications.  

 

First, the use of the MLP framework for the purpose of contemporary sustainability transitions 

analysis is more difficult because it relies on a number of ‘if condition then transition pattern’ 

statements. These draw primarily on the observed regularities documented in historical case 

studies. However, the social and technological context has evolved considerably since then and 

continues to do so at an ever increasing pace. For example we live now at a primarily urban 

world (UN, 2010). Hence the nature of transition processes may be completely different. The 

question of whether these inductively derived conditional statements still hold in contemporary 

cases needs to be addressed. Given the urgency for most sociotechnical systems to make the 

transition to sustainability a means other than case studies is required with which to test these 

statements. Finally the legacy of historical cases is revealed in the call for developing relevant 

theory in order to address contemporary multi system transition cases (Geels 2010). However it 

remains to be seen whether this can be done with the same methodology that has been applied 

to single system historical transitions.  

 

Second if future sustainability transitions are to resemble the historical ones (trajectory 1 in 

Figure 2) which resulted in systems of greater scale, consumption and higher carbon intensity, 

then the MLP in its current form would be suitable and sufficient. But, given the current 

predicament that humanity faces, contemporary system transitions must be towards regimes of 

a fundamentally different nature (trajectory 2 in Figure 2): a low carbon state of less growth 
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(Unruh 2002; Steward 2012; van den Bergh 2011), less consumption of resources, cyclical 

flows of goods, and choices driven by natural resource constraints (Ellen MacArthur 

Foundation 2012; Sustainable Development Commission 2009). This pattern is in stark 

contrast to historical transitions, more so because there is an inherent urgency regarding 

trajectory 2 in contrast to trajectory 1. Furthermore, trajectory 2 has never occurred in any 

system so far, hence there is no exemplary transition case with which to recalibrate research 

efforts and refine the theoretical frameworks about how transition processes towards less or no 

growth and environmental impact might unfold. 

 

 

Present

Carbon
Intensity

Time

Type 1

Type 2

Historical

 

Figure 2 Difference between historical and contemporary transitions 

 

Finally sustainability and sustainable operations have various contested interpretations 

(Hopwood et al. 2005). Since they can be defined through multiple perspectives and criteria, 

the scope of what is currently defined as sustainable may differ from that of tomorrow. It is 

political, contingent on current conditions, and temporally provisional (Walker and Shove 

2007; Smith and Stirling 2010). The example of biofuels is illustrative. They were initially 

perceived as a sustainable intermediary alternative to conventional fossil fuels en route to a 

carbon free transport system. Considerable debate ensued on the sustainability of biofuel 

introduction (Tilman et al. 2009; Harvey and Pilgrim 2011; Banse et al. 2011). Some of the 

adopted policy measures were also reevaluated, adapted or withdrawn (European Commission 

2007). The example of biofuels shows that what is required for contemporary transitions is 

knowledge in a specific time window and adaptive robust policies to steer them and avoid less 

desirable trajectories. Time and direction of change enter the picture thus identifying the signs 

and windows of opportunity, becomes essential. The question for transition research is whether 

these issues can be addressed in multi system cases with qualitative research methods alone 

and what policy insights could be offered to steer them towards sustainability.  

 

The use of modelling and simulation to address these issues is worthwhile for two reasons. 

First, in order to test within reasonable time whether the inductively derived statements hold or 

not and recalibrate our mental models away from trajectories of type 1 (Figure 2) and towards 
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type 2. Second, the use of computational tools and power which increase continuously can 

accommodate the ambivalence, complexity and multiple perspectives on sustainability and lead 

to the development of adaptive, robust policies (Kwakkel and Pruyt, 2013). 

 

 3.3  Identifying windows of opportunity for transitions 

Identifying the windows of opportunity and the early signs of an impending transition in 

contemporary cases is required for policy making in order to steer the system towards a desired 

trajectory. This is a challenge, as ways of doing this in historical studies do not necessarily 

apply. However, this is required so that this knowledge is utilised and acted upon, in order to 

steer or reorient the transition process towards the desired trajectory.   

 

More to the point, some processes remain obscured and only brought to the researcher’s focus 

once their effects are observed (Rotmans and Kemp 2008). This is a result of system transitions 

being driven by dynamic interactions of system elements that include feedback, accumulations 

and delays, where cause and effect are separated temporally and spatially. What might appear 

as slow or no change, may be the result of opposing dynamic accumulation processes of equal 

intensity taking place in multiple levels (niche, regime, landscape). As a result it is difficult to 

determine solely through qualitative research whether a transition is about to begin, even when 

conditions seemingly favour it or, when conditions are ripe for policy intervention. 

 

This is because transition research needs to account for a number of phenomena: processes of 

increasing returns (Arthur, 1994), path dependency (Garud and Karnoe 2001), network 

externalities in product diffusion (Katz and Shapiro 1985; 1986) and the fact that the 

contribution of technology to social welfare depends on the level of its acceptance. It is 

difficult to evaluate qualitatively their effect on system trajectory. Unfortunately these are also 

not amenable to analytical treatment, except from static settings (Katz and Shapiro 1985; 1986) 

or simple dynamic technology diffusion settings (Loch and Huberman 1999). For example, in 

the second case, the authors eventually resort to simulation because the effect of 

complementarities and other scale related factors is hard to ascertain otherwise. Since the 

analysis of unidirectional technology diffusion process is not amenable to analytical study 

beyond a certain level of realistic system representation, then by extension this also holds for 

sociotechnical change which is a more involved process because technical and social elements 

coevolve (Steward 2012). This necessitates the use of modelling and simulation. 
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In conclusion conducting a purely qualitative analysis of transition processes is fraught with 

difficulties. Its insights are haphazard for informing policy and there is a threshold in following 

purely analytical approaches as well. This leaves simulation as a promising third way for 

venturing beyond the range of available analytical solutions (Oreskes et al. 1994) and 

overcoming the difficulties in analysing these phenomena in a purely qualitative manner. 

 

 3.4  Generating Foresight for Contemporary Transitions 

Generating foresight in order to steer contemporary systems presents a different challenge to ex 

post case analysis. It involves understanding how positive feedbacks between endogenous 

processes and external contexts operate and finding the inflection points of an impending 

regime shift where the balance of feedbacks changes. It also involves understanding how 

barriers to transition operate separately and in combination so that effective policies may be 

designed (Kemp et al. 1998). The difficulty lies in that crucial developments may remain 

cloaked until their results become manifest in the future (Rotmans and Kemp 2008). Thus what 

might initially appear as no niche development may be the result of obscured accumulation 

processes that lead to radical change later.  

 

A more fundamental issue, relevant for transitions to sustainability, is generating foresight with 

regard to the desired regime state. Historical transitions do not offer the best ground on which 

to draw insights for future low carbon energy transitions (Fouquet and Pearson 2012). 

However, this is the current challenge most sociotechnical systems face i.e. leave their current 

fossil fuel lock-in state and move towards a low carbon state (Unruh 2002).  

 

An obvious way of addressing these issues is generating scenarios (Hofman and Elzen 2010). 

However, the discussion in section 3 indicates that there are three challenges: (i) developing 

detailed not just stylized transition paths, (ii) identifying factors crucial in inducing and 

supporting alternative paths and (iii) quantifying the effects of policy instruments in order to 

evaluate the scenarios against objectives set and develop policy recommendations. All of these 

require exploring the implications of different scenarios through simulation of ‘what if’ 

scenarios where the aim is to steer the system towards a more sustainable state (Burton and 

Obel 2011).  

 

This involves looking at each one of the reinforcing and balancing loops of a regime and 

niche(s) and how they influence their trajectories (Figure 1). It is this systematic analysis of the 
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coevolution of the social and technical elements of a regime through simulation that can lead to 

ways of unlocking systems and taking them out of their current unsustainable trajectory 

(Dolfsma and Leydesdorff 2009; Van der Vooren et al. 2012). The use of simulation is also 

attractive because there is a range of techniques already available for exploring system 

behaviour and constructing adaptive robust policies to steer sociotechnical system trajectories 

(Haasnoot et al., 2013; Kwakkel and Pruyt 2013). They can be used to deduce whether what is 

perceived today as sustainable trajectory will remain so tomorrow and what kinds of system 

interventions could be effective now and in the future. They allow studying system behaviour 

and identifying effective policy ‘levers’ (Sterman 2000; Meadows 2008).  

 

In summary the nature of transitions imposes certain challenges with respect to the nature, 

timing and intensity of interactions. These apply both to historical and contemporary transition 

cases and thus present difficulties in terms of developing theory and policy making. Simulation 

can be used to enhance our understanding of the past and explore the implications of our 

knowledge to the future. 

 

 4  Transition Research Methodology 

Case study research is the primary methodology used in transition research. It has some 

attractive advantages such as attention to detail and the construction of narratives. However, 

there are also some inevitable research trade offs associated with the use of a single 

methodology.  

 

 4.1  Research trade offs  

The expressed aim of the MLP is the development of middle range theory (Geels 2007; 2011) 

which provides a satisficing trade off between the criteria of good theory: accuracy, generality 

and parsimony (Weick 1989; Whetten 1989; Merton 1968). While it is empirically grounded, it 

is not as grand in scope as overarching theories of science and technology, but neither as 

specific as empirical observations. As a result, the theoretical mechanisms and patterns that are 

developed have a clear link to empirical data, but shed some complexity and accuracy in order 

to increase their generality.  

 

The MLP faces the same trade off between these criteria more so in cases involving multi 

system interactions (Smith et al. 2010). This trade off requires that researchers simulate 

mentally a mini evolutionary system that applies these criteria in order to sift through 
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competing transition narratives and arrive at one that exhibits accuracy, parsimony and 

generality. This accentuates their methodological problem because it is not just a matter of 

identifying a single system boundary, the interplay of regimes and the sequences and 

transformation mechanisms (Laurisden and Jørgensen 2010). The multiplicity of systems 

interacting at different temporal or spatial scales (Coenen et al. 2012), compounds the 

difficulty of identifying the start and end points of a transition and attributing pressures and 

transition mechanisms to outcomes and sequences of transformations (Laurisden and Jørgensen 

2010). This increases the need for a method with which to attend to the challenge of 

developing tractable and parsimonious accounts of transitions. 

 

Relying exclusively on developing narratives and mental models in transition research reduces 

the effectiveness of managing research trade offs for three reasons. First, the construction of 

narrative results in high accuracy, while a simulation model requires some simplifying 

assumptions and thus accuracy is lower. Second, humans observe only one mode of behaviour 

hence generality is low whereas with simulation a complete mapping of the behaviour space is 

possible (Johnson 2008). Finally, the number of influencing factors increases with the temporal 

horizon of analysis. The boundary of the system grows with the analysis horizon and it 

becomes harder to determine the factors that have an important influence on system behaviour 

i.e. it is hard to maintain parsimony without testing for the importance of each factor. 

Therefore, the efficacy of mentally carrying out such an analysis diminishes with the temporal 

scale and the boundary of the phenomenon under study and hence it is harder to generate 

learning about transitions that unfold over several decades (Geels and Schot 2007).  

 

Therefore, using transition narratives as the sole research strategy in MLP, does not provide a 

very satisfactory trade off between good theoretical criteria (Table 1). It is not easy to improve 

on this trade off by relying solely on induction i.e. it is hard to successfully accommodate the 

tensions that arise using research strategies only at one end of the spectrum for analysing 

process data, without resorting to means of analysis at the other end, for example quantification 

and computer simulation. The opposite approach has also been attempted. An attempt to build 

a generic model of transitions in order to reproduce specific transitions has met with 

difficulties as adjustments were required for each case to improve accuracy (Bergman et al., 

2008).   
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Narrative
Grounded Theory
Temporal bracketing
Visual mapping
Synthetic strategy
Quantification
Computer 
simulation

Strategy Accuracy Simplicity Generality

High

Low

Low

High High

Low

 

Table 1. Research strategies process theory development (adapted from Langley, 1999) 

 

An alternative approach would be to build middle range models based on narratives developed 

from case study analysis. The combination of narratives and a rigorous modelling and 

simulation methodology with due attention to the richness of data would increase the 

coherency and confidence in the transition narratives. It is possible to do this by linking case 

data collection to model development and boundary definition, by using the latter to sift 

through scores of available data and retain those essential for the transition mechanisms 

involved as done in Schwaninger and Grosser (2008). Good modelling practice compels the 

researcher to specify the relationships between system elements and thus to construct 

transparent, parsimonious transition narratives. Modelling is like constructing haiku poems: 

small, concise and to the point, where ‘the art is in removing what you do not need’ (Miller and 

Page 2007, 42).  

 

In conclusion using approaches at opposite ends of the spectrum (Figure 1) has specific 

benefits with regard to the trade offs between accuracy, generality and parsimony. Generating 

an accurate case study narrative can be part of the input to a transition model that is meant to 

simplify it and provide a parsimonious account of a transition. Furthermore, the knowledge that 

lies in descriptive, qualitative form and is contained in the experience of those that have 

conducted a case study is of value in evaluating the generality of the model, contextualising its 

results (Winsberg, 2006), interpreting and evaluating their implications because the resultant 

type of knowledge is itself complex and is a statement of research choices and their constraints 

(Pidd, 2004). A crucial research choice that needs to be justified when modelling a system is 

boundary definition. This is discussed next. 
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 4.2  Boundary exploration 

This is an important issue as studying a system always involves a judgement about system 

boundaries i.e. the range of important causal factors involved given the temporal scale of the 

phenomenon. Since all boundaries are transient given enough time and complex systems are 

sensitive to small changes, boundary definition is important (Cilliers 1998; Richardson 2005). 

This is relevant in MLP cases as well where the interactions between regimes and niches 

involved in a transition change with time (Papachristos et al. 2013). Hence, boundary 

exploration, both between the macro-meso-micro levels of the MLP, and in terms of exploring 

the role of diverse groups, is something that should be undertaken more systematically (Genus 

and Coles 2008). This task requires adding or removing interactions or feedback loops (Figure 

1) from a transition narrative and evaluating the effect they have.  

 

There is no tool by which to explore the set of system interactions identified in transition case 

studies, evaluate their nature, timing and intensity, and determine whether interactions actually 

drive regime transitions. Researchers accept accounts of the historical significance of certain 

sociotechnical developments in creating narratives of transitions. Inevitably this confounds the 

task of determining the relative influence of reinforcing and disrupting developments (Geels 

2011). More to the point, transition narratives are not tested to see: (i) whether they are 

internally coherent, (ii) whether the transition patterns detailed therein can really be an 

outcome of the described sociotechnical interactions and, (iii) how they measure up against 

other competing explanations about the same transition.  

 

Addressing these points requires an exploration of system boundary and the role that 

interactions among diverse social groups play in sociotechnical trajectories (Genus and Coles, 

2008). By varying the groups and interactions, it is possible to construct different accounts 

about the same transition and distinguishing between them is not straightforward. An example 

is the horse carriage transition to cars, where Geels (2005) argues that this process was not as 

simple or random, as portrayed in Nelson (1995). The exploration of system boundary in MLP 

cases is directly related to the call for equipping the MLP for dealing with multi system 

transitions to sustainability (Geels 2010) and should be undertaken because they concern multi 

system interactions. However, given the challenges at hand, the researcher is left wanting for a 

methodology and tools other than inductive inference. 
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Simulation is an obvious tool with which to perform this kind of test and explore the 

implications of different system boundaries. For example boundary adequacy testing is an 

integral part of system dynamics methodology (Sterman 2000). This process involves both 

searching for data in order to expand and explore the system boundary and the rigorous 

consideration of available data. Those that appear to be superfluous are removed and those that 

have some effect, even in contrast to the researcher’s intuition, are included. Applied to a 

transition study, it should increase confidence to the set of transition drivers and thus allow 

research to venture beyond identifying mere similarities among cases and develop knowledge 

about transitions.  

 

 4.3  Induction and learning 

Transition research aims to understand how established sociotechnical systems lock into a 

particular regime trajectory and how this can be influenced through learning about these 

processes. However there seems to be no assumption about how the understanding generated 

through research can increase in any way the capacity of individuals and organisations to steer 

a regime towards a preferred trajectory (Shove and Walker 2007). Learning about the 

behaviour of complex systems is very much an exercise of construction and reflection on the 

researcher’s mental models in order to change them and make them concordant with aspects of 

the real world (Sterman 1994). However this kind of learning process is not embedded in the 

MLP therefore it does not lead to seeing ‘the world, and not just the literature, in a new way’ 

(Siggelkow 2007, 23). Hence, it has been critiqued as being a heuristic device for organising 

data in structured transition narratives that inevitably reflect the choices and worldview of the 

researcher (Genus and Coles 2008).  

 

The MLP has also been criticised for its ability to utilise the understanding generated through 

case studies, in order to increase the capacity of individuals and organisations to steer a regime 

(Shove and Walker 2007). Even if researchers could learn perfectly with induction, they could 

only learn as fast as transitions unfolded so knowledge would be available only after the fact 

for policy making. What compounds this difficulty is that an important condition for effective 

learning about a transition is that a time horizon greater than the delays embedded in the 

system is required, which in this case be several years. For processes that unfold over decades, 

it is difficult to update mental models in any meaningful way, simply because it is impossible 

to observe how the whole process unfolds.  
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In its simplest form the problem of understanding a transition process amounts to 

understanding how the interaction of landscape pressures, niche innovations and internal 

regime tensions unfold over time (Geels and Schot 2007). Identifying the causal mechanisms 

and how they are temporally related is a challenge as cause and effect are often temporally 

separated due to system feedback, delays and accumulation processes. Hence understanding 

transitions through induction alone is difficult for three reasons.  

 

First, the use of inductive methodology in the MLP, leads to postulating causes that follow the 

logic ‘if Condition then Transition Pattern’. These are based on the transition patterns that have 

been observed in historical transition cases. But correlation of conditions with patterns does not 

necessarily reflect or lead to causal relations between conditions and patterns (Sayer 1992). 

Thus the identification of transition mechanisms remains dubious. It can be an outcome of the 

methodology and not a property of the system under study (Genus and Coles 2008). It is 

possible that regime disrupting interactions may be taking place while others of equal intensity 

are countering them with the aggregate result being a stagnant situation rather than a dynamic 

change. The converse is also possible. Thus what is required is an assessment of the intensity 

and timing of interactions in order to deduce their aggregate effect. This is difficult to do 

qualitatively and has not received attention in MLP studies.  

 

Second, the MLP has primarily been developed drawing on historical rather than contemporary 

cases (Smith et al. 2010). Thus it must be critically applied to modern transition cases since the 

social and technological context continuously changes. The fact that the MLP framework is 

inadequate for application to contemporary transitions is evident in the call to develop it further 

for future oriented multi system studies (Geels 2010; 2011). However refining it further based 

on contemporary transitions that take decades to unfold will take considerable time and it will 

remove the possibility of having any timely policy input.  

 

Third, some human cognitive limitations apply even to researchers. Those directly relevant to 

transition research are the ‘misperception of feedback’ (Sterman 1989a; b) and the ‘stock and 

flow failure’ (Cronin et al. 2009). According to these cognitive limitations people do not 

correctly appreciate system delays, feedback and accumulation processes. These limitations 

imply that in feedback-rich settings, individual mental models and decision making are far 

from perfect whether it is for research or policy making. It is plausible to assume that if a 
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number of individuals are brought into a group, one will not be able to see across another’s 

cognitive limitations. 

 

These limitations are directly relevant to transition research because processes of niche and 

pressure accumulation are integral to transition processes (Raven 2007; Smith et al. 2010). 

They affect the intensity, timing and the nature of interactions. Consequently in developing an 

MLP case they must be understood through appropriate tools that confer confidence to the 

results of research.  

 

The same limitations apply in analysing multi-system interaction cases. Because of these 

interactions, understanding transitions is subject to causal ambiguity and it may be a long and 

ineffective process (Sterman 1994). Relying on empirical learning is slow and a limited 

amount is learned by observing a transition because (Meadows 2008, 5): ‘systems happen all at 

once’. This is particularly relevant as transitions cannot be reproduced in vitro but with current 

advances in ICT it is possible to do so in silico (Johnson 2008). Because researchers observe 

only one transition pattern, the one that actually takes place, a multi-methodological approach 

is required in order to capture more aspects of the transition process (Tashakkori and Teddlie, 

1998). Hence the need for developing a multi system transition framework exists alongside a 

suitable multi-methodology and tools for developing it and coping with complexity. This need 

becomes even more important if researchers are involved as observers and actors, thus 

providing the connecting link between theory and policy (Rotmans and Kemp 2008; Johnson 

2008).  

 

The inevitable questions raised in this section are (i) how can researchers demonstrate that the 

interactions they consider along with their intensity and timing as important, actually in a 

transition process, (ii) how can they check whether lessons learned from historical cases are 

relevant for contemporary transition cases, and (iii) how they can overcome their cognitive 

limitations, rigorously update their mental models about a transition and propose policy 

recommendations within a given window of opportunity, when the relevant outcomes of these 

can take decades to manifest. Developing a broad understanding of the system behaviour is 

crucial particularly for transitions to sustainability (Shove 2012). Nevertheless, relying solely 

on inductive case studies of transitions, as has been the case so far, is inadequate.  
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The alternative is to integrate modelling and simulation in transition research methodology in 

order to explore and understand the trajectory that systems are on at present and those they can 

potentially follow in the future. It is possible to narrow down the range of factors that are 

influencing a transition by rejecting those that when included in the simulation model produce 

markedly different behaviour than the one observed in the real system (Johnson, 2001). In this 

way, modelling and simulation can offer a means of experimentation and reflection other than 

real world experiments which are difficult, slow and costly. It is also a way of providing 

insights into policy implementation by exploring paths towards which the system may evolve, 

and assessing the effect of policies which may take considerable time to manifest (Sterman 

1994; Rahmandad et al. 2009; Kwakkel and Pruyt 2013). This kind of dynamic learning allows 

timely strategic reaction which is hard to achieve relying solely on mental capacity, because it 

can reveal the difference that the timing of policy intervention or interactions between regimes 

and niches can make. It thus provides a sense of the window of opportunity for altering the 

regime trajectory. 

 

In summary the integration of simulation can offer a way of improving on research trade offs 

discussed. It can produce actionable learning relatively quickly to the rate at which actual 

events and processes unfold in reality. Small system dynamics models in particular can be used 

in a supporting capacity for policy making (Ghaffarzadegan et al. 2011). Their small size 

allows comprehensive testing and sensitivity analysis in order to form a complete picture of 

system behaviour. They facilitate then boundary exploration and help overcome the 

weaknesses of induction. Finally, they also allow communicating their assumptions and their 

results to policy makers thus enhancing their impact. 

 

 5  Conclusions  and Future Research 

The paper argues that multi-system interactions and the transition to sustainability present 

certain challenges to research that are difficult to address with the current approaches in use. It 

argues for the use of modelling and simulation for transition research in order to develop causal 

explanations of completed or ongoing system transition processes and develop relevant policy 

insights for steering these systems towards sustainability trajectories. This argument has two 

parts: looking at the nature of transition processes and the methodology used for studying 

them.  
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Regarding the first point, it is argued that transition research needs to equally address the 

questions of how social elements influence the development of technical elements in 

sociotechnical systems, something that is already being done to an extent, but also how 

technical elements influence the social elements. Furthermore it is argued that while case 

studies may have been up to now an appropriate approach for studying completed transitions, 

this is not necessarily the case for contemporary transitions to sustainability. In particular, 

challenges that need to be addressed include taking explicitly into account the nature, intensity 

and timing of intra and inter-system interactions something for which the current theoretical 

frameworks are not equipped for. Most importantly it was argued that modelling and 

simulation can account for the fundamental difference between historical and contemporary 

transition trajectories.  The former evolved towards trajectories of greater growth and 

environmental impact whereas at present what is required is the exact opposite, evolution 

towards trajectories of reduced environmental impact.  

 

Regarding the second point, the use of modelling and simulation has implications both for 

theory development and policy making. For theory it was argued that modelling and simulation 

can provide the means to address the complex nature of transition processes and increase the 

confidence in research results by demonstrating that the factors identified through case study 

analysis are actually necessary and sufficient conditions for the observed transitions. The 

methodological integration of modelling and simulation will transform transition frameworks, 

at the very least, from heuristic devices for organising data to frameworks better equipped to 

meet their aims. These involve generating learning about transitions and increasing the 

capacity of steering or reorienting the trajectory of a sociotechnical regime away from carbon 

intensive states. Integrating modelling and simulation in transition research is a step towards 

enriching the current methodological toolset with the explicit aim to address the theoretical gap 

of multi system interactions and transitions to sustainability.  

 

In terms of the areas of application modelling and simulation for transition studies can 

encompass sectors that are expected to be directly involved in transition as well as those with 

which potential synergies may develop: for example ICT and transport, or ICT, smart grids and 

the built environment. These may harbour the potential of taking existing sstems out of their 

current lock in. In addition new areas of study emerging in the transitions field call for further 

empirical research and refinement of the existing theoretical frameworks. For example the 

emergence of renewable communities where simulation can be applied to explore the mix of 
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government policies and market lead initiatives that can lead to their wider diffusion and shift 

the energy system towards a decentralisation trajectory.   

 

For policy making it is obvious that if the transitions field aspires to make a significant impact 

and to remain at the forefront of sustainability research then it is necessary to demonstrate its 

relevance for policy making and reflexive governance. The integration of modelling and 

simulation enables two things. First making explicit the assumptions underlying each policy 

allows checking them comprehensively and having an informed discourse. Second the use of 

computational tools and power which continuously increase, can accommodate the 

ambivalence, complexity and multiple perspectives on sustainability and lead to the 

development of adaptive, robust policies. Indeed guarding against the unforeseen long term 

implications of well intended policies lies at the core of many of humanity’s current 

predicaments.  
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