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Treating Heteroscedasticity with a Meta-Model

Approach
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Abstract—Arrival time predictions for the next available bus or train are a key component of modern Traveller Information Systems
(TIS). A great deal of research has been conducted within the ITS community developing an assortment of different algorithms that
seek to increase the accuracy of these predictions. However, the inherent stochastic and non-linear nature of these systems,
particularly in the case of bus transport, means that these predictions suffer from variable sources of error, stemming from variations in
weather conditions, bus bunching and numerous other sources. In this paper we tackle the issue of uncertainty in bus arrival time
predictions using an alternative approach. Rather than endeavour to develop a superior method for prediction we take existing
predictions from a TIS and treat the algorithm generating them as a black box. The presence of heteroscedasticity in the predictions is
demonstrated and then a meta-model approach deployed that augments existing predictive systems using quantile regression to place
bounds on the associated error. As a case study this approach is applied to data from a real-world TIS in Boston. This method allows
bounds on the predicted arrival time to be estimated, which give a measure of the uncertainty associated with the individual
predictions. This represents to the best of our knowledge the first application of methods to handle the uncertainty in bus arrival times
that explicitly takes into account the inherent heteroscedasticity. The meta-model approach is agnostic to the process generating the
predictions which ensures the methodology is implementable in any system.

Index Terms—Intelligent Transportation Systems, bus arrival time predictions, quantile regression, heteroscedasticity, Gaussian
process.
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1 INTRODUCTION

E FFORTS to increase the use of public transport in urban
areas, as part of a strategy to reduce traffic congestion

and the associated problems such as pollution and poor
air quality, have led public transport authorities of varying
sizes to invest in advanced Traveller Information Systems
(TIS). These systems aim to go beyond static schedule in-
formation and provide commuters with access to real-time
information on the status of bus or rail services to allow
them to better plan their journeys. Transport authorities see
the benefits realised from deploying real-time bus arrival in-
formation systems as; improved customer service, increased
customer satisfaction and convenience and greater visibility
of transit in the community. One of the perceptions among
customers is that bus services have improved and that
people traveling late at night now have the reassurance that
the next bus is not far away [1]. A number of studies have
been conducted to evaluate these benefits and report both
a significant though small increase in ridership in before
and after studies [2], [3] as well as increased feelings of
passenger safety when traveling at night [4].
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The bus arrival time predictions provided by these sys-
tems are an example of the travel time prediction problem,
where the goal is to accurately estimate the time taken
for a bus to travel from it’s current location to the stop
location. These arrival time predictions are made possible
by the deployment of Global Positioning System (GPS)
based Automatic Vehicle Location (AVL) technology, which
was originally intended to increase operational efficiency
through better monitoring and controlling of vehicle fleets
[1]. As these deployments matured the potential for this
data was recognised and a number of algorithms developed
to make travel time predictions from this data. These algo-
rithms are typically based on a kalman filter to predict the
time to arrive at a location based on the current location and
speed in combination with historical data, however there
are a number of proprietary technologies also in use and
increasingly machine learning techniques such as neural
networks are being used [5]. For a review of the current
state of the art see [6], [7], [8].

In this paper we study the uncertainty in bus arrival time
predictions treating the algorithm making predictions as a
black-box and making use of data from a real world TIS in
Boston. We emphasise that the focus of this work is not on
improving the accuracy of the point predictions. Rather our
objective is to capture the uncertainty associated as the relia-
bility of these predictions is an area that is often not properly
analysed [9]. This is a key issue for travelers as accurate
travel time predictions reduce the uncertainty in decision
making about departure time and route choice which in turn
reduce stress and anxiety [10]. Indeed it has been found
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that the reliability of travel times are valued just as much
or even more than improvements in the average travel time
[10], [11], [12]. The prediction problem is complicated as bus
travel times are the result of nonlinear and complex interac-
tions of many different constituent factors influencing either
demand (e.g. passenger’s demand or traffic flow) or capac-
ity (e.g. accidents, weather conditions, route characteristics)
[13]. The probabilistic nature of some determining factors
such as passenger demand, bus drivers’ behaviour, traffic
accidents and more importantly signal delay experienced by
different buses leads to stochastic behaviours in the system
[14]. In order to gain an understanding of the uncertainty
of travel time predictions in such a system it is necessary to
consider the size and dynamics of the associated variance.
However as discussed in [9] these are generally disregarded
entirely or taken as constant. This constant variance as-
sumption is known as homoscedasticity and implies that
the reliability of all the predictions are identical. Intuitively,
and as we shall demonstrate empirically, this assumption is
inappropriate, the expected value of the error terms may not
be equal and the error terms may reasonably be expected to
be larger for some points or ranges of the data than others.
This behaviour is known as heteroscedasticity. The presence
of heteroscedasticity means the reporting of a single, usually
mean, travel time value misses out key information.
A more meaningful approach is to consider travel time
prediction as an example of probabilistic inference which
naturally leads to predicting the most probable distribution
of travel time, rather than one crisp value. One approach
in this vein has been to use models capable of modelling
this evolving prediction variance and throw away values
that suffer from a value above a threshold and deemed
unreliable as proposed in [9]. Recent work analysing ar-
rival time predictions for a bus route in Dublin advocated
completely disregarding any prediction made from over
6km away [15] due to the associated lack of reliability. An
alternative approach which we follow here is the use of
Prediction Intervals (PIs) which take into account both the
uncertainty in model structure and noise in input data. PIs
have recently attracted some interest in the transportation
field for travel time modelling using neural networks [5],
[14]. In this work we take a different approach to construct-
ing the PIs using quantile regression [16], which makes
no assumptions as to the structure of the error process,
as a post processing ‘meta-model’ approach that can be
applied to an existing predictive system. This approach
was introduced in [17] and applied to a simple, historical
dataset of highway speed/density data to construct PIs. In
this paper we further develop this approach using a more
sophisticated model and applying it to a ubiquitous real-
time service with potential direct impact to the public.
This paper makes two main contributions to the field. Firstly
the presence of heteroscedasticity in arrival time predictions
is demonstrated empirically using data from a real-world
TIS. Secondly, having motivated our work in this manner,
we develop a black box solution that can be applied to any
prediction system using the error between the predicted and
observed arrival times to estimate PIs associated with the
predictions made. This approach is a considerable method-
ological advance to the earlier meta-model presented in [17],
as now we use a Gaussian Process, which demonstrates to

Fig. 1: Nextbus arrival predictions are provided on their
website in the form of a single valued time, [18].

be a more powerful proposal than cubic splines.
The paper is organised as follows, the next section intro-
duces the data which will be used throughout the paper
consisting of arrival time predictions for two bus routes in
Boston. The presence of heteroscedasticity in the predictions
is demonstrated rigorously and the following sections intro-
duce our approach to address the uncertainty that arrives
as a result. Section 3.1 introduces PIs in more detail and
the associated evaluation metrics that will be used to assess
performance. Following this we give some background on
the method of quantile regression with some details on
model estimation in Section 3.2. The results of applying our
meta-model approach to the data are described in Section 4.
The paper concludes with a discussion of some of the key
aspects of this work and directions for future work.

2 DATA

The data sets utilised were obtained from an arrival time
prediction service, Nextbus [18], for two bus routes in the
city of Boston. The main objective of this section is to
describe both routes in detail and demonstrate the presence
of heteroscedasticity in the errors between predicted and
observed arrival times. The bus routes studied are the
route 1 bus operated by the Massachusetts Bay Transport
Agency (MBTA) and the MIT Boston daytime shuttle bus
a privately run service for MIT staff and students. The
routes were chosen for their different characteristics, one
being a popular main line route while the other consists
of a single vehicle on loop and therefore represents the
simplest possible scenario. Despite the simplicity of the
second route the predictions still were found to exhibit
heteroscedasticity as will be demonstrated in this section.
In both cases the predicted arrival times were obtained
from Nextbus. Nextbus is a company that provides real-time
passenger information systems for many major transport
organisations across over 30 states in the United States and
Canada. Their predictions are based on GPS and AVL data
to track the vehicle in transit and estimate predicted arrival
times based on it’s current position. Commuters can access
these predictions via a smartphone application or through
the Nextbus website to see when the next bus will arrive.
The information is provided in the form of a time, e.g. 5
minutes till the next arrival, a typical example for route 1 is
shown in Figure 1.
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While the service does offer predictions for the sec-
ond and third buses to arrive we restrict our attention to
predictions for the next bus to arrive in order to avoid
problems of bus identification. The error between predicted
and observed time of arrival is calculated as

e = ŷ − y

so a positive error indicates that the bus arrived before the
predicted time and a negative error indicates that the bus
arrived later than the predicted time.

2.1 MBTA Route 1
The first service analysed is the Route 1 bus in Boston
operated by the Massachusetts Bay Transport Agency, the
public transport agency for the area. The route was chosen
as it is one of the main and most used routes in the
area. Three months of data from March to May 2014 was
obtained with an observation occurring every thirty seconds
from 9am to 7pm, which equates to approximately 70000
observations. The route is shown in Figure 2a and connects
Harvard square to Dudley station passing through one of
the Cambridge area’s busiest streets Massachusetts Avenue
and traversing Harvard bridge. The typical journey time is
around 40 minutes and bus frequency is approximately one
every 10 mins.

2.2 MIT Shuttlebus
The second route studied is the MIT Boston daytime shuttle-
bus which consists of a single vehicle operating on a contin-
uous loop that is scheduled to arrive every 25 minutes. The
route is made up of eight stops covering close to five miles of
the city, and these are indicated in Figure 2b. Predictions are
made with respect to arrivals at stop 77 mass ave, stop 7. As
before the data is split into training and test set, the training
set consists of a week’s worth of Nextbus predictions which
are generated every 30 seconds and the actual arrival times.
The test set provides the same data for a single day. This
route is operated by a single vehicle which makes it the
simplest possible setting, without issues of bus bunching
etc., however as we will demonstrate in the next section
there is still evidence of heteroscedasticity in the error in
predictions

2.3 Tests for heteroscedasticity
In this section we study the data for evidence that the arrival
predictions are subject to varying variances, heteroscedas-
ticity. In order to test for the presence of heteroscedasticity,
preliminary analysis was carried out using some standard
statistical tests. To begin with the mean, median, skewness
and kurtosis of the distributions of the residuals were
calculated for both datasets, and the values for these are
shown in Table 1. In both datasets different values are
obtained for both the mean and median and there is a
bias towards the negative direction indicating a tendency to
predict an arrival time that is earlier than the true observed
arrival time. The MBTA residuals are negatively skewed
and leptokurtic, (positive kurtosis), meaning acutely peaked
with fat tails. The shuttlebus residuals are positively skewed
and highly leptokurtic with a very high positive value. The

residuals are plotted in Figure 3 and as can be seen in
combination with the values of Table 1 the distributions
are highly non-Gaussian. However this in itself does not
provide sufficient evidence of heteroscedasticity. Tradition-
ally the Breusch-Pagan [19] test and the White’s test [20],
are used to test the hypothesis of non-constant variance.
However both these tests rely on knowledge of the model
used to generate the predictions and access to the covariates
or predictor variables. Our ’black-box’ approach is agnostic
to the process generating the predictions and the features
used so these tests are not applicable, instead we utilise the
Fligner-Killeen test [21]. This is a non-parametric test that
is very robust to departures from normality. The statistic
tests for homogeneity between groups, therefore we must
divide our predictions into groups to compare the variance
in the error between those made from short term and long
term. The data was binned into groups such that an equal
number of samples were in each group with thresholds at
500 seconds, 1000 seconds, 1500 seconds and above. The
results of the tests on both datasets were that the variance
of the error between groups were significantly different
with p-values less than 0.001 returned. This result was
supplemented with evidence from Engle’s Autoregressive
Conditional Heteroscedasticity test [22]. The test procedure
is to regress the squared residuals on a constant and q lags
and test the null hypothesis that the correlation between
lags is equal to zero, the test statistic follows a χ2 distribu-
tion and the associated p-value can be obtained. For both
datasets a p-value less than 0.001 was obtained indicating
that the null hypothesis of constant variance can be rejected
and that the variance of the error is non-constant.

Having demonstrated the presence of heteroscedasticity
in our bus arrival time prediction data appropriate methods
for handling this characteristic uncertainty are required.
Clearly assuming the predictions are Gaussian distributed
and reporting a mean value is inappropriate and rather a
prediction interval with upper and lower bounds is pre-
ferred which will be discussed in the next section.

3 METHODOLOGY

This section describes our approach to handling the demon-
strated heteroscedasticity in the bus arrival time predictions.
Quantile regression is used to construct upper and lower
bounds on the associated prediction creating a prediction
interval. As the behaviour is non-linear, the error does
not increase linearly with the prediction, flexible functional
forms are required to estimate the quantiles and we utilise
a Gaussian Process quantile regression model. This type of
model has not previously been deployed in such a setting
and a splines based approach is used to compare the benefits

Measure MBTA ShuttleBus
Mean -71.41 -48.71

Median -38.00 -33.00
Skewness -0.44 1.78
Kurtosis 4.90 15.28

TABLE 1: Moments of residuals. The measures calculated for
the residuals of the MBTA and MIT ShuttleBus predictions
demonstrate that the distributions are far from Gaussian.
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(a) MBTA bus 1 route. (b) MIT shuttlebus route.

Fig. 2: The bus routes our arrival time predictions are made for, Figure 2a MBTA route 1 and Figure2b the MIT shuttle
bus. Route 1 takes approximately 40 minutes and connects Harvard square and Dudley station. Figure2b shows the looped
route operated by the shuttle bus, predictions are made with respect to stop 7.

(a) MBTA residuals (b) MIT shuttlebus residuals

Fig. 3: Distibution of residuals for MBTA route 1, Figure 3a, and MIT ShuttleBus, Figure 3b. The residual errors from the
predictions are highly non-Gaussian.

of the more complex and computationally intensive GP
model. We now provide some background on prediction
intervals.

3.1 Prediction Intervals
Given the demonstrated uncertainty in arrival time predic-
tions it can be considered more appropriate to provide trav-
ellers with upper and lower bounds on the possible arrival
times rather than a single value. This is an idea that has been
advanced using confidence intervals [10] and also prediction
intervals [5] we will elaborate on the difference between
the two which is subtle while defining PIs. A PI, with a

confidence level of (1−α)%, is defined as a random interval
developed based on past observations x = (x1, x2, . . . , xn)
for future observations:

PI = [L(x), U(x)],

such that:

P (L(x) ≤ xn+1 ≤ U(x)) = 1− α,

where L(x) and U(x) correspond to the lower and upper
bounds of PIs. The confidence level (1 − α)% of a PI refers
to the expected probability that the real value is within
the predicted interval. In the arrival time prediction setting
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a PI can be thought of as a window within which we
expect the vehicle to arrive with some chosen probability.
It is important to note the distinction between a prediction
interval and a confidence interval obtained from using the
mean value and an estimate of the variance. The prediction
interval creates a window within which we expect the next
predicted value to fall with some probability, e.g. 90% of
the time, whereas a confidence interval gives us a range
within we would expect to find the mean value with some
probability.

From the above definition it’s clear that we can create a
PI that contains the bus arrival time with 100% of the time
by making the interval arbitrarily large. However informing
a traveler that their bus will arrive with 100% certainty
within the next 6 hours is not particularly useful. This gives
us some insight as to how to assess the performance of esti-
mated PIs. [14] defined the following metrics which evaluate
both the length and coverage probability of the predicted
interval, Probability Interval Coverage Probability:

PICP =
1

N

N∑
i=1

ci,

where ci = 1 if yi ∈ [yτ−, yτ+] and Mean Predicted Interval
Length:

MPIL =
1

N

N∑
i=1

(
yτ+i − y

τ−
i

)
,

where τ+ indicates the upper bound and τ− the lower
bound. The goal is to get as close as possible to the desired
coverage probability with the smallest MPIL.

We construct our PI using quantile regression which
is introduced in the next section, to estimate independent
upper and lower bounds on the error between the observed
arrival time and that which was predicted. Given the com-
plex non-linear nature of such a signal we deploy a Gaussian
Process (GP) [23] for model estimation.

3.2 Quantile Regression

Traditionally, regression methods, studying the relationship
between a target variable, y, and a set of predictor variables,
x, have been dominated by the least squares approach
which constructs a regression that minimises the sum of
squared residuals [24]. This least squares approach has
a number of convenient properties that have contributed
to it’s prominence, it is computationally and conceptually
straight forward [25], captures the conditional mean of the
target variable given the predictor variables and is optimal
under the condition of constant Gaussian noise.

While the mean of the function may be a good way
to summarise the relationship in general, consideration
of other loss functions can allow us to extract a more
complete picture of the relationships which may be more
appropriate for different applications. Minimising a sum of
asymmetrically weighted absolute residuals, also known as
the tilted or pinball loss function, leads to a regression on
the quantiles [16], [26]. This Quantile Regression (QR) has
found use in many fields [26] from econometrics [27] to
epidemiology [28] and more recently Big Data applications
[29]. QR makes no assumptions about the nature of the error

process, as opposed to the assumption of constant Gaussian
error in ordinary least squares linear regression, making it a
semi-parametric method.
The tilted loss function is defined as:

Lτ (y − y∗) =
{
τ(y − y∗), y ≥ y∗,
(1− τ)(y − y∗), y < y∗

}
, (1)

where τ ∈ [0, 1] defines the asymmetry point, for example
τ = .5 gives a median regression. Linear programming
methods are required to solve the minimisation problem as
it stands and directly obtain the desired quantiles, however
this minimisation is exactly equivalent to the maximisation
of a likelihood function formed by combining indepen-
dently distributed Asymmetric Laplace Distributions (ALD)
[30]. This has opened up QR to a Bayesian treatment which
has been a rich area of research in the last decade with
numerous alternate models and estimation methods de-
veloped. In this paper we take a Bayesian non-parametric
approach using a GP to estimate the desired quantile fuc-
ntions as in [32]. GPs represent one of the most popular
and advanced methods in the current state of the art for
regression. Their popularity stems from the flexibility of the
method which can be thought of as an infinite dimensional
multivariate Gaussian distribution [23] which gives us a
very powerful model to estimate the quantiles. We briefly
outline the GPQR approach as follows but for further detail
see [32]. The training of the model proceeds by maximising
a utility function based on the ALD. The utility function is
defined as:

Uτ (y, q) = Zexp

[
−

N∑
i=1

Lτ (yi, qi)

]
,

where q is the predicted value of the τ quantile, y the
observations, Z the normalisation constant and Lτ is the
ALD for quantile τ given by:

L(t|µ, σ, τ) = τ(1− τ)
σ

exp
[
− t− µ

σ
(τ − I(t ≤ µ)

]
,

where I(t ≤ µ) is the indicator function which is 1 if the
condition is true. A GP prior is placed on the quantile
regression function:

p(q) = GP(q|0,K),

and the model is then trained by maximising the integral:

arg max
∫
q

Uτ (y, q)p(q)dq.

This integral is analytically intractable however it can be
locally approximated using an Expectation Propagation al-
gorithm outlined in [33]. The hyperparameters associated
with the GP are learned in the same fashion as ordinary GP
regression [23]

The numerous contributing sources of uncertainty affect-
ing arrival time predictions, outlined in Section 1, leads to a
stochastic process that is highly complex and motivates the
use of a highly flexible method capable of capturing such
behaviour and this motivates our use of the GPQR. How-
ever we will also compare the results obtained with GPQR
to a commonly used alternative QR model to ascertain
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whether the additional complexity is justified by improved
performance. To demonstrate the method we apply it to the
real world data introduced in Section 2 and evaluate the
results in the next section.

4 EXPERIMENTS

Section 2 introduced two real world datasets of bus arrival
time predictions for MBTA route 1 and the MIT shuttle bus
route. In both data sets the presence of heteroscedasticity
in the residuals between predictions and observed errors
was rigorously demonstrated. In this section we evaluate
the performance of the methods outlined in Section 3, as
applied to this data to handle the inherent heteroscedasticity
and compare with a homoscedastic model to illustrate the
advantages of our approach. In both data sets we will
divide the data into a training set used to learn the model
and a test set to assess performance. The homoscedastic
approach will utilise a linear splines regression to estimate
the median error between predicted and observed arrival
time and build a 90% confidence interval using the variance
of this model. This is compared to a PI constructed with
an upper and lower bound learned using splines quantile
regression. These models were simulated in the R statistical
programming language [34] using the package quantreg [35].
The more advanced Gaussian Process quantile regression
approach will be compared with the splines QR to ascertain
whether the increased complexity of the GP results in im-
proved performance. This was simulated in MATLAB [36]
using the GPStuff [37] which contains an implementation
of the quantile regression algorithm used in [32]. Markov-
Chain Monte Carlo (MCMC) methods are required to es-
timate this model. It is well known that MCMC routines
carry a large computational burden and the size of the
MBTA data set makes this approach infeasible, instead a
smaller sample of training data was sampled uniformly
across the range of the data. For the purposes of illustration
a second experiment was conducted using the MBTA data
where a test set of three random days in May was chosen.
This was done to allow complete journeys of a bus to be
plotted, which is not possible when choosing a random
set of observations as a test set due to the extremely low
probability of selecting all observations related to one bus
journey by chance. Performance will be assessed using the
much larger test set of random samples however this 3 day
test set allows us to plot a set of predictions from the first
prediction to the actual arrival of the bus at the stop and the
associated PI to give an intuitive feel for what our approach
does in practice. This is not required for the MIT shuttle bus
as due to the smaller data set size we divide into a week of
training and a single day of test data and so are able to plot
complete journeys for the test day.

4.1 MBTA Route 1

Figure 4 shows the results of the splines models trained us-
ing the MBTA data to predict the errors associated with the
predicted arrival times test set. The x-axis is the predicted
time to arrival in seconds and the y-axis is the error between
the predicted and observed arrival times. The 97.5% and
7.5% quantiles estimated using a splines model with 20

degrees of freedom are plotted on top of the data in red.
This is contrasted with Figure 4b in which a splines model
with 20 degrees of freedom has been used to estimate the
median or 50% quantile and then the standard deviation of
the residuals used to estimate a confidence interval of 90%
as +/−1.65σ. In both figures and in those shown later the PI
is represented as a light red filled in envelope between the
upper and lower bounds. While the two approaches both
produce intervals that cover 90% of the data the differences
are immediately apparent from visual inspection. In the het-
eroscedastic approach in Figure 4a the greater uncertainty
in higher predictions is captured by the inflated envelope
after the 1000 second mark, in contrast the bounds up to 500
seconds are much tighter reflecting that predictions made in
this region suffer from much less uncertainty. Figure 4b ex-
presses the limitations of the homoscedastic approach, much
greater uncertainty is attributed to short range predictions
than is true while the bounds on long range predictions
exhibit too much confidence.

Figure 5 presents the results for the more computation-
ally intensive GPQR approach. Here a GP is used to learn
the upper and lower bounds of the PI. However due to the
greater computational burden associated with training a GP
a much smaller training data set was sampled uniformly
across the range of the data. This is shown in Figure 5a
and provides a clear illustration of the heteroscedasticity
present in the data. The performance of the GPQR model
on a test set of 10,000 samples is shown in Figure 5b.
The characteristics observed in the Figure 4a are observed
again with the bounds much tighter on predictions less
than 500 seconds and inflating more as the uncertainty
increases with the size of the prediction. The performance
of the GP and splines models are evaluated using PICP and
MPIL measures in Tables 2 and we see that even with a
much smaller training set the GPQR bounds have a smaller
MPIL reflecting on average tighter intervals for the same
coverage probability, justifying the additional complexity.
The values obtained for the homoscedastic splines model
are also provided and they show a much greater MPIL
score, however the main result is the observed inability of
the homoscedastic approach to adapt to regions of higher
and lower uncertainty as illustrated in Figure 4.

Test Random Test Day
Model PICP MPIL PICP MPIL
Splines QR 0.89 547.0 0.88 457.14
GP QR 0.88 513.5 0.88 431.1
Splines 0.90 630.3 0.90 700.9

TABLE 2: MBTA Results. The performance of the two differ-
ent approaches to estimating the quantiles are compared in
terms of coverage, PICP and size of interval MPIL on both
the random test data and days from May test set. In both
cases the GP provides comparable coverage using tighter
intervals although the difference is not large.

The performance of the GP and splines approach was
also compared in the second experiment conducted on the
test set of three complete days in May and is provided in
Table 2. Given the superior performance of the GP only
the results obtained using this approach will be discussed,
these are shown in Figure 6 and are presented in a different



TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS VOL. 17, NO. 5, APRIL 2016 7

(a) Splines - quantile regression (b) Splines - constant variance

Fig. 4: Comparison of bounds predicted by heteroscedastic, Figure 4a, and homoscedastic, Figure 4b splines models for
MBTA test data. The data is plotted with the predicted seconds till arrival on the x-axis and the error between predicted
and observed arrival time on the y-axis. The bounds are plotted in red with the envelope defining the PI or CI. Comparison
of the intervals highlights the effect of heteroscedasticity with much less uncertainty associated with predictions closer to
the arrival time, however the constant variance approach is unable to capture this behaviour.

(a) QR Gaussian Process - training set (b) QR Gaussian Process - test set

Fig. 5: MBTA data using Gaussian Process model. Figure 5a shows the data used to train the GP quantile regression models.
The data was sampled by dividing the range into eighths and taking an equal number of samples from each to minimise
bias. Figure 5b shows the PI estimated on the test data which are tighter for smaller predictions but much higher for longer
predictions for which there is much more uncertainty.
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(a) MBTA GPQR - Example 1 (b) MBTA GPQR - Example 2

(c) MBTA GPQR - Example 3 (d) MBTA GPQR - Example 4

Fig. 6: GP quantile regression results from MBTA full days test data. A number of snapshots are provided showing complete
sets of predictions, from first prediction to arrival, to illustrate how the PIs evolve as the bus transits the route. The true
fixed arrival time of the bus is shown in blue, with the Nextbus predictions, made every 30 seconds, shown in red. The
filled in area represents the interval associated with each prediction, defined by the upper and lower bounds estimated by
quantile regression. The x-axis defines the time the prediction is made, while the y-axis defines the actual times predicted.

manner to the first experiment. In order to provide a more
intuitive feel for what we are trying to achieve four selected
snapshots from this test data are plotted where single com-
plete laps of a bus from earliest prediction to actual arrival
are shown. These Figures best illustrate the working of the
prediction interval with the time the prediction is made
on the x-axis and the predicted time of arrival on the y-
axis, the true observed time is plotted as a constant blue
line and the predictions are shown as red points that occur
every 30 seconds. The PI associated with each prediction is
shown as a green envelope who’s size varies with the time
prediction is made. Closer to the time of arrival we see much
more confidence in our predictions. In the longer range
predictions the difference between predicted and observed
arrival times can be quite significant as much as ten minutes,
in other cases prediction times exceed the observed time and
result in a situation where a traveller following this advice
would miss their bus. It can be observed that in all cases the
PI encapsulates the true arrival time regardless of whether
the predictions over or underestimate the true arrival time.
We now study the much simpler MIT shuttlebus case.

4.2 MIT Shuttlebus

Figure 7 plots the results for the MIT shuttle bus route data
set using a week’s worth of data for training and an inde-
pendent test set consisting of a day’s worth of observations.
Figure 7a shows the test set results obtained using a splines
based quantile regression approach which is compared with
a homoscedastic splines model in Figure 7b which predicts
the median value and estimates a 90% confidence interval
as +/ − 1.65σ. The constant variance approach of Figure

7b greatly overestimates the uncertainty in the predictions
as evidenced by the large distance between the bounds
of the confidence interval and the actual observations. In
contrast the QR model fits a tight bound in regions of less
uncertainty and then inflates these bounds after the 1000
second mark where the uncertainty is much greater. Just as
in the previous data sets the performance of the GPQR was
compared with that obtained for the splines model however
in this case there was no improvement in performance
and the faster splines model was preferred, this result is
discussed in more detail in Section 5.

To conclude this section we provide two selected results
from the test set that best illustrate the advantages of a
prediction interval. These are plotted in Figure 8a and 8b
which are now described in detail. In Figure 8a, which
is taken from the morning period, the initial bus arrival
times predicted are incorrect and 15 minutes earlier than the
observed arrival time. However the uncertainty associated
with these predictions, which can be inferred from the area
of the shaded region, is high which could communicate that
these predictions should not be relied upon. Later predic-
tions exhibit much less uncertainty expressing the confi-
dence in the arrival times predicted. This communication
of reliability can be of great benefit to commuters allowing
them to make informed alternative choices of transport if
the situation dictates that it is of high importance to arrive
at their destination within a certain timeframe.
Figure 8b shows an example of a shuttlebus lap in the
afternoon. It can be seen that the predictions made over-
estimate the arrival time, meaning that at the predicted time
the bus would have already departed. This is a drawback
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(a) Quantile regression splines model (b) Homoscedastic splines model

Fig. 7: Comparison of bounds predicted by heteroscedastic, Figure 7a, and homoscedastic, Figure 7b, splines models for
MIT shuttle bus test data. It can be seen that the homoscedastic model greatly overestimates the uncertainty in predictions
less than 500 seconds while the bounds predicted for the heteroscedastic model are tight in this region and then inflate as
the uncertainty increases as the predicted time till arrival becomes larger.

(a) Morning (b) Afternoon

Fig. 8: Selected results from the test data for MIT Boston daytime shuttlebus. The true fixed arrival time of the bus is shown
in blue, with the Nextbus predictions, made every 30 seconds, shown in red. The filled in area represents the interval
associated with each prediction, defined by the upper and lower bounds estimated by quantile regression. The x-axis
defines the time the prediction is made, while the y-axis defines the actual times predicted. Figure 8a shows a single lap
of the shuttlebus in the morning. Figure 8b shows a lap of the shuttlebus this time in the afternoon. See text for detailed
discussion.
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of using a single valued prediction. By contrast we see that
the true arrival time falls within the prediction interval. The
implications of these results and some possible areas for
further exploration will be discussed in the next section.

5 DISCUSSION

In this paper we have described a ‘meta-model’ approach
that can be applied to existing predictive systems to handle
the uncertainty associated with bus arrival time predictions.
This process treats the algorithm generating the predictions
as a black-box which has the advantage of being agnostic
to the process generating the predictions, meaning it can be
deployed on any system without the need for alteration of
the existing algorithm. However it must be emphasised that
our approach is not intended for or capable of improving the
quality of the predictions made, merely estimating the un-
certainty associated. The approach was demonstrated using
real world data from a TIS in Boston. Two examples were
utilised; one of a busy main route through the city and the
second showing the simplest possible setting of a single bus
on loop. In both cases statistical analysis has revealed that
the uncertainty in the predictions exhibits heteroscedasticity.
This is an important finding that has not previously been
made in the literature, although anecdotal evidence, as in
[15], certainly points to the presence of heteroscedasticity in
other data. As we have stated the meta-model approach is
applicable to any existing predictive system. As well as this
the tools used for analysis are all freely available online and
we have provided links to both the R package required for
quantile regression quantreg [35] and the MATLAB toolbox
GPstuff [37] that allows GPQR to be deployed. The approach
used here is therefore both portable and replicable and we
hope that other researchers will take these tools and build on
the meta-model methodology outlined here applying them
to their own data.
With the presence of heteroscedasticity in the predictions
established an approach to appropriately handle this effect
was developed using quantile regression to learn upper and
lower bounds on the observed error. The PIs learned in this
way were demonstrated to provide the desired coverage on
unseen test data and the resulting visualisations illustrate
the characteristic heteroscedastic behaviour of changing
levels of uncertainty associated with predictions made at
different times. The capability to provide this envelope
within which the bus can be guaranteed to arrive with a
given probability is another contribution made here and the
meta-model approach used means that it can be applied to
existing TIS systems. Another advantage of the PI approach
is that it more easily allows for asymmetry in the bounds
in contrast to the homoscedastic method, this was demon-
strated by our choice of quantiles, the upper bound was
set to 97.5% and the lower to 7.5% to reflect the fact that
the errors observed were generally biased towards under
estimating the arrival time. This can be adapted either way
and it is of course possible to obtain much smaller intervals
using lower PIs or to penalise the possibility of missing the
bus by skewing the PI in the opposite manner. The results
from using a PI composed of the 95% and 5% quantiles
produced a larger interval for the same coverage.
A comparison of two approaches for the learning of these

PIs was performed on the data to ascertain what the su-
perior method was: the standard splines QR or the more
advanced and recently developed GPQR . Interpretation of
these results is aided by some theoretical background on the
methods. A Gaussian Process is a stochastic process that is
fully specified by a mean function and covariance function
and is a highly flexible non-parametric approach. While
cubic splines regression was developed independently in
a different context works such as [23] have shown that
the method is equivalent to a GP with a more restricted
covariance function. Thus the GP can be considered as a
more flexible general model. This is borne out in the results
obtained where the GPQR approach matches or exceeds
results obtained using splines QR. Thus it would seem that
one should always make use of GPQR. However, one impor-
tant point for researchers to consider is that this additional
flexibility carries a heavy computational cost with the GPQR
requiring much greater computational resources to estimate
in comparison to the splines model. Therefore judgement is
required as to whether the situation is complex enough to
call for the more flexible approach. We found there to be no
improvement over the splines model in modelling PIs for
the MIT shuttlebus data, which consits of a single bus on
loop over a much shorter route than the MBTA data.
We endeavoured to demonstrate the practical usefulness of
these methods through a number of illustrative figures that
zoomed in on the set of predictions throughout the complete
journey of a bus from first prediction to arrival in Figures
6 and Figure 8. The variability in the predictions and the
errors illustrated are a clear problem for travellers aiming to
plan their journeys reliably and the use of PIs in this setting
can restore confidence in shorter range predictions whilst
also allowing travellers to take into account the degree of
uncertainty associated with longer range predictions and
adapt their plans accordingly.
In the future we aim to develop this approach to incorporate
features that give more information as to the context at the
time of prediction such as weather etc. This should allow us
to obtain more optimal PIs that are narrower for conditions
of less uncertainty and therefore of greater practical use to
the public.
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