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Abstract

Exciton-polaritons are the quasi-particles that form when cavity photons couple strongly to
quantum well excitons in semiconductor microcavities. When a pump laser is applied near the
point of inflection of the lower polariton dispersion, a phase transition to the polariton optical
parametric oscillator regime where two additional, ‘signal’ and ‘idler’, modes with macroscopic
occupation appear can occur. The steady state of the non-equilibrium polariton system is main-
tained by continuous pumping and the Keldysh functional integral approach is used to study
the phase transition. Despite its highly non-equilibrium nature, an effective chemical potential
is identified and the phase transition occurs when the effective chemical potential crosses the
normal modes. The Keldysh formalism also gives access to the occupations of the modes and
experimentally observable properties such as the incoherent luminescence and absorption spectra
are calculated.

One of the key properties of the signal mode is that it occurs near the minimum of the lower
polariton dispersion with zero momentum. To calculate the mean field occupation of the three
mode optical parametric oscillator regime analytically, the signal momentum has to be chosen
explicitly. A simple method to determine the signal momentum by using linear response analysis
for any system parameters is proposed and the predictions compared with numerical integration
of the complex Gross-Pitaevskii equations describing the system. At weak pump strengths, the
signal momentum is found best by the linear response analysis of the three mode description,
while at higher pumping, a linear response analysis of the single pump mode gives best agreement
with the numerical simulations.
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1 | Introduction

The non-equilibrium phase transition of a system of coherently pumped exciton-polaritons in a
semiconductor microcavity is studied in this thesis. This chapter provides a brief background to
the equilibrium Bose-Einstein condensation (BEC) and Berezhinskii-Kosterlitz-Thouless (BKT)
phase transitions (section 1.1) which have featured in descriptions of the phase transition of
interest. The polariton system is introduced in some detail in section 1.2, and section 1.2.3
reviews existing studies on the polariton optical parametric oscillator (OPO) regime which is
studied. Here, the Keldysh Green’s function approach is used to study the non-equilibrium
phase transition to the OPO regime. The details of the Keldysh approach for the system studied
are left to chapter 3, but in section 1.3 some systems that have been studied using the Keldysh
approach are mentioned briefly. The structure of the thesis is outlined in section 1.4.

1.1 BEC and BKT

The Bose-Einstein distribution function that describes a gas of ideal bosons in equilibrium is [2,3]:

nk =
1

e(εk−µ)/T − 1
(1.1)

where nk is the average occupation of state k with has energy εk and µ is the chemical potential
which must be less than the lowest energy eigenvalue (ε0) [3]. As µ→ ε0, the occupation of the
lowest energy state (with energy ε0) becomes macroscopic; this is the characteristic mechanism
of BEC [3,4].

Before the experimental realisation of BEC, the macroscopic quantum phenomena of su-
perfluidity and superconductivity were taken as evidence of the existence of a Bose-Einstein
condensate [3, 5]. Experimental observation of equilibrium BEC was initially in dilute atomic
gases [6–9] that are close to weakly interacting bosonic gases [6]. Even though light elements
were studied, transition temperatures were low; between a couple of hundred nano-Kelvin [6]
and a few micro-Kelvin [8, 9].

In an uniform Bose gas in two dimensions, BEC cannot occur at finite temperatures since
thermal fluctuations of the phase destroy the condensate [3]. When interactions are included,
a phase transition to a condensate can occur at a finite temperature Tc, however vortices can
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be excited thermally above a particular temperature TBKT [3]. The BKT transition defines the
point at which the addition of vortices no longer reduces the free energy of the system. Above
Tc, all vortices are free, while at temperatures below TBKT , vortices of opposite circulation are
bound in pairs [3]. The BKT transition is particularly important for defining the transition
to superfluidity since vortices lead to friction between the superfluid and normal densities in a
superfluid and therefore destroy the superfluid [3].

1.2 Polaritons

Polaritons are the quasi-particles that form as a result of strong-coupling between a radiation
field and a polarisation field [10]. Although exciton-polaritons (where the polarisation field is
the excitons) were observed in bulk materials [11–13], the creation of polaritons in bulk semi-
conductors was difficult to control [14]. The first experimental observation of polaritons in a
semiconductor microcavity demonstrated the level of control available in these systems [14].
This section introduces these semiconductor microcavity exciton-polaritons (hereafter referred
to simply as polaritons) and some of the main phenomena that have been observed. A detailed
theoretical description is left for subsequent chapters.

1.2.1 Polaritons in semiconductor microcavities

A semiconductor microcavity consists of alternating layers of semiconductors, with different
refractive indices, on either side of a central cavity containing one or more quantum wells [14,15],
as shown schematically in Fig. 1.1. The layers of semiconductor material act as a distributed
Bragg reflector (DBR) or Fabry-Pérot cavity and therefore trap incoming photons [14]. Although
most microcavities used in polariton experiments have about 20 layers forming the front mirror
and 30 forming the back mirror [15], increasing the number of mirrors can lead to polaritons
with a lifetime longer than the thermalisation time [16,17].

Upper DBR:
ntop < nbottom

Lower DBR:
nbottom ∼ 30

Cavity with
quantum well(s)

substrate

Figure 1.1: A semiconductor microcavity consists of alternating layers of semiconductor to form
two distributed Bragg reflectors that trap photons. Excitons are formed in the central region
which contains one or more quantum wells.

The photons are confined in the vertical direction of the microcavity, but not in the plane of
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the quantum wells [15]. These cavity photons have a very small effective mass [15,18,19], and can
create excitons in the quantum wells. If the interconversion rate is large enough, quantum well
excitons and cavity photons can form quasi-particles, polaritons, that inherit properties from
both excitons and photons [15,18,19].

The polariton dispersions are unusual in that the lower polariton branch is approximately
quadratic at low momenta while at higher momenta the dispersion is almost flat and approaches
the exciton energy, while the upper polariton branch is approximately quadratic at all momenta
[15]. Due to the one to one correspondance between the in plane momentum of the polaritons
and escaping photons, the polariton dispersions are determined by reflection or transmission
experiments under weak pumping [15]; their exact forms are introduced in chapter 2. One of
the key properties that the polaritons inherit from the photons is their finite lifetime, typically
10-100 ps, which facilitates their detection via emitted photons [15].

1.2.2 Pumping regimes

There are several ways in which polaritons can be created [18,19] and some of the most common
are outlined below. The pumping regimes discussed focus on the semiconductor microcavity
system described above, and a quick comment is made about the search for polaritons at room
temperature.

In non-resonant excitation, a large exciton bath is created at large energies and momenta.
The excitons then relax via multiple non-radiative scattering events to form polaritons which
end up in a ‘bottleneck’ near the inflection point of the lower polariton curve [15,18,19]. Above a
threshold pump power, spontaneous macroscopic occupation of the low energy modes near k = 0

is observed [15,19–21].
When polaritons are created by pumping resonantly with the lower polariton dispersion, near

the point of inflection [22–31], two interesting behaviours can occur. First, if the pump is applied
at energies above the polariton dispersion, the pump mode occupation may become bistable with
two possible polariton occupations for a given pump strength [25,28–30]. Second, at sufficiently
strong pumping, two additional modes with macroscopic occupation may appear spontaneously,
and the polariton system enter the OPO regime [26,27,32].

The polariton OPO regime is characterised by energy and momentum conservation of pairs
of pump mode polaritons (P ) that are scattered into the new ‘signal’ (S) and ‘idler’ (I) states
[26–31]. This parametric scattering regime is referred to as the polariton optical parametric
oscillation (OPO) regime in analogy to nonlinear optics phenomenon of the same name [33]
where a photon in a χ2 nonlinear medium is converted into a signal and idler photon whose
energies satisfy the energy conservation ωp = ωs + ωi and whose momenta satisfy momentum
conservation kp = ks + ki [34].

In nonlinear optics, an optical parametric oscillator is the device that results from adding
mirrors that are highly reflective at the signal and/or idler frequencies around a χ2 nonlinear
optical material in which optical parametric amplification can occur. The frequency tuneable
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mirrors of an optical parametric oscillator make it useful for creating light at specific frequencies.
Optical parametric amplification, second harmonic generation and sum frequency generation,
can all occur in χ2 nonlinear media and produce an output wave with a different frequency to
the input(s). The optical parametric amplifier uses two input beams, a strong pump beam and
a weak idler at a lower frequency. The nonlinear mixing of these two waves can lead to the
appearance of a signal wave with energy ωp − ωi = ωs; once the signal is established, the same
process also amplifies the idler wave [35]. The work in this thesis considers the transition to
and properties of the polariton OPO regime which is discussed phenomenologically in the next
section; a detailed theoretical description occurs in chapters 3 and 4.

The spontaneous macroscopic occupations of a low energy state that were observed in both
the excitation schemes discussed above were seen as the signature of BEC of polaritons, even
though the system is two dimensional and held in a steady state far from equilibrium [20,26,27,32].
BEC of exciton-polaritons was first observed in the OPO regime of coherently pumped polaritons
[26,27] and later in non-resonantly excited polaritons [20].

Before discussing resonantly pumped polaritons in more detail, it is worth mentioning some
of the other methods that can be used to create polaritons. Resonant pumping at small momenta
create polaritons with finite velocity without the appearance of the additional modes; this can be
used to probe superfluid behaviour, particularly by scattering against a defect [36]. It is possible
to design and create extremely precise microcavity structures [37] in which polaritons can be
created [38–41]. Further, real-space potentials can be created by applying external strain to a
sample [42–45] or via an optical potential from an additional laser [17,46].

Although polaritons are typically thought of in semiconductor microcavity systems, there is
currently much research into creating polaritons in systems where the quantum wells are replaced
by organic dyes, sometimes with modifications to the cavity structure [47–53] which have the
advantage that polaritons can be created at room temperature [49, 52, 54]. Both the strong
coupling [47,51,53] and ultra-strong coupling regimes [49–52] can be accessed, sometimes within
a single sample [51].

The BEC phenomena discussed so far occur in the lower polariton branch of the spectrum,
and the upper polariton branch has been neglected. This is common since the quest for non-
equilibrium Bose-Einstein condensation focussed on the peculiar properties of the lower polariton
branch; the very low polariton mass at low momenta being advantageous for BEC [15]. In a
centro-symmetric system parity considerations forbid transitions between a doublet of dressed
states [55]. This means that transitions between the two polariton branches by radiative decay are
forbidden. By doping the quantum wells to produce an asymmetric system, radiative transitions
between the polariton branches can occur at terahertz frequencies [56]. Further, in a polariton
system where the excitons can occupy the first and second subbands of the quantum well, the
Rabi frequency can be a large fraction of the intersubband transition frequency and the anti-
resonant terms of the light-matter coupling become significant, and the upper polariton branches
can no longer be neglected in theoretical analyses [57].
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1.2.3 Polariton OPO: theory and experiments

Stimulated scattering of polaritons was first observed in pulsed experiments with a weak probe
applied resonantly to the minimum of the lower polariton dispersion and a pulsed pump beam
tuned to the point of inflection of the lower polariton dispersion [22]. The signal and idler
properties were set by the probe beam, and the polariton occupation at the probe showed large
gains when the pump beam was applied [22,23].

Extending this pulsed parametric amplifier [22,23] to continuous wave experiments lead to the
polariton OPO regime [26,27]. In early experiments, the pump was applied close to the inflection
point of the lower polariton dispersion, at the ‘magic angle’, to maximise the efficiency of the
stimulated scattering [26,27,33] due to the energy and momentum conserving final states all lying
on the lower polariton dispersion as seen shown in the left hand panel of Fig. 1.2 [22,31]. Tuning
the applied pump away from the triple resonance condition does not prevent the transition into
the OPO regime [33,58]; the signal remains near k = 0 while the idler varies in order to conserve
energy and momentum [25, 33]. In experiments, the pump energy is usually adjusted once the
OPO regime is reached to maximise the efficiency of the stimulated scattering [26,29,33,59].
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Figure 1.2: Left: example of OPO regime scattering: a pair of pump mode polaritons scatter
while conserving energy and momentum into one signal and one idler polariton. In this example,
the triple resonance condition is exactly satisfied and 2ωlp(kp) = ωlp(0) + ωlp(2kp). Right: the
OPO regime can occur for a pump chosen within a fairly large range of energies and momenta.
The signal mode is always near k = 0 while the idler varies greatly with the pump properties to
ensure that energy and momentum are conserved.

The energy and momentum conservation of the OPO states gives [26,58,59]:

2ωp = ωs + ωi, (1.2)

2kp = ks + ki. (1.3)

This assumes that there are only three states in the OPO regime [29,30,32,41,58]. In experiments
and numerical simulations, additional peaks are observed in the polariton distribution that are
sometimes far from the unperturbed lower polariton dispersion [31,60,61]. These satellite states

19



are equally spaced in energy and momentum and are the result of further parametric scattering
between modes [19, 31, 60–62]. The first satellite states, S2, I2, are summarised in table 1.1
[31,60,61]. To include such satellite states into the theoretical description of the polariton OPO
would require a mean field description for more than three states and is not done here.

State energy momentum scattering channels
S2 ωs − ωp ks − kp S + S → P + S2

S + P → I + S2

P + P → S2 + I2
I2 ωi + ωp ki + kp I + I → P + I2

I + P → S + I2
P + P → S2 + I2

Table 1.1: Energy and momentum of the first satellite states and scattering channels (from the
OPO regime signal S, pump P and idler I states) that can lead to their occupation.

The OPO regime requires a minimum pump strength that depends on the exact properties
of the polariton sample studied and the applied pump [33]. There are two distinct phases of a
resonantly pumped polariton system: below the OPO threshold there is only the pump mode
that is macroscopically occupied while above the threshold, the OPO regime where the signal and
idler modes are also macroscopically occupied, occurs [26, 27]. The signal and idler states have
a large degree of spatial coherence [32, 63, 64] and long coherence times [65, 66]. These factors
together lead to the description of the signal and idler states as Bose-Einstein condensates, even
though the system is two dimensional and far from equilibrium [26,27].

Since the polariton system is two dimensional, a BKT type rather than BEC type transition
should be expected [67], this was seen in numerical simulations of the OPO regime where a
narrow BKT region was observed at pump strengths slightly above the signal switch on [68]. In
equilibrium, the long range order below the BKT transition temperature decays with a power law,
and the maximum value of the exponent is 1/4; above the transition the decay is exponential [3].
The BKT-type transition in coherently pumped polaritons considered the decay of long range
order around the signal mode of the OPO regime. Immediately after the switch on of the signal
mode, the long range order decayed exponentially while at slightly higher pump strengths there
was a narrow band where the long range order had a power law decay, signifying a BKT type
transition. In this far from equilibrium system, the exponent of the power law decay could be
much larger than the equilibrium value, reaching 1.2 near the BKT threshold [68].

1.3 Keldysh approach for non-equilibrium phase transitions

The Keldysh functional integral approach can be used to study non-equilibrium systems and
their phase transitions [69–71]. The technique enables the calculation of all two-time correlation
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functions [69–71] and direct comparison with equilibrium phase transitions [69].
This approach has been used to study the phase transitions of several driven-dissipative

systems including the superradiant and glassy phase transitions of the Dicke model [72,73], BEC
of photons in dye-filled cavities [74], atoms in multimode cavities [75], a 1-D driven dissipative
system near quantum criticality [76] and exciton-polaritons in semiconductor microcavities under
incoherent excitation in which a BEC type phase transition and an upper threshold to a laser
like behaviour were observed [5, 21,77–80].

Further detail on the Keldysh method can be found in section 3.2 where the Keldysh functional
integral is derived for a system of coherently pumped polaritons.

1.4 Scope of thesis

Two main projects form the bulk of this thesis. Before commencing with any analysis, chapter
2 introduces the generic description of the polariton system in terms of coupled excitons and
photons, which is then rotated into the lower polariton basis. The Hopfield coefficients are
derived in detail since they appear in several forms in the literature. In chapter 3, the Keldysh
functional integral approach is applied to coherently pumped polaritons. The results reproduce
existing work on the phase transition to the OPO regime and extends the analysis since the
Keldysh formalism also gives the occupation of the system. The polariton system is studied for
equal exciton and photon decays and for exciton decays much less than the photon decay. The
work in chapter 4, which discusses the problem of choosing the signal momentum in the OPO
regime, was done in collaboration with G. D. Dagvadorj at Warwick University and the results of
the time integration of the complex Gross-Pitaevskii equations are from data that he provided.
The signal momenta from the results of the time integration are compared with those that could
be found through a simple linear response analysis with the aim of improving the choice of the
signal momentum made in mean field analyses of the OPO regime. Finally, chapter 5 contains
the conclusions and discusses possible future work based on work contained in this thesis.
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2 | Descriptions of the system

The basic process of creating microcavity polaritons under any excitation regime is broadly the
same [15, 18, 81]. An external laser introduces cavity photons, some of which are converted into
quantum well excitons at a rate ΩR/2, which can convert back into cavity photons, again at a
rate ΩR/2 [81]. In any real system, the cavity photons and quantum well excitons have finite
lifetimes; the excitons so may decay into phonons while the photons are lost due to the imperfect
reflectance of the microcavity mirrors [15].

In this chapter, the Hamiltonians describing the coherently pumped polariton system, includ-
ing the losses, are written down. The exact description in the exciton-photon basis is introduced
in section 2.1 and the rotation to the polariton basis performed in section 2.2. The lossless
system is then used in section 2.3 to obtain the polariton dispersions and to derive the Hopfield
coefficients.

2.1 Exciton-photon Hamiltonian

The most general description of exciton polaritons is as a system of interacting excitons (b̂, b̂†)
coupled to cavity photons (â, â†) with a strength ΩR/2 [10, 15, 28, 31, 64]. The coherent pump
introduces photons directly into the system, and both excitons and photons are coupled to decay
baths [15,31].

The Hamiltonian for the coherently pumped exciton-photon system coupled to incoherent
decay baths contains several terms:

Ĥx−c = Ĥsyst + Ĥint + Ĥpump + Ĥdecay(+Ĥsat). (2.1)

The last term of the Hamiltonian (Ĥsat) accounts for the effects of the exciton saturation and
this is the only place where it appears. Since excitons are composite bosons formed by the
Coulomb coupling of an electron and a hole, their statistics are not defined [31]. However, if the
exciton (and hence polariton) density is low or moderate, excitons (and also polaritons) can be
treated as bosons [31]. Including the exciton saturation term would add an anharmonic term
to the exciton-photon coupling [31]. This is often neglected for simplicity [15, 28] and is not
used in this analysis; all results are valid only if the exciton density is moderate. In the lower
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polariton basis, the exciton saturation would appear as an addition to the polariton-polariton
interaction [23,82,83].

The first term of the Hamiltonian describes quantum well excitons and cavity photons with
dispersions ωx(k) and ωc(k) and an interconversion rate ΩR/2:

Ĥsyst =
∑
k

(
ωc(k)â†kâk + ωx(k)b̂†kb̂k +

ΩR
2

(â†kb̂k + b̂†kâk)

)

=
∑
k

(
â†k b̂†k

)(ωc(k) ΩR
2

ΩR
2 ωx(k)

)(
âk

b̂k

)
. (2.2)

ΩR/2 defines the coupling between the excitons and photons, or the rate at which photons become
excitons and vice versa. This is due to the dipole interaction between excitons and the coupling
only occurs between excitons and photons with the same momenta [15].

When the rate of exciton-photon interconversion exceeds the decay and decoherence rates,
the excitons and photons are strongly coupled and polaritons, characterised by anti-crossing
dispersions, appear [15, 18, 57, 84]. In the strong coupling regime considered here, ΩR is small
compared to the intersubband transition frequency [57], or the exciton and photon energies [19].
If ΩR is a significant fraction of the intersubband transition frequency [57] or if ΩR is comparable
with the exciton and photon energies [19], then the system is in the ultra-strong coupling regime.
Weak coupling occurs when the decay and decoherence of the excitons and photons dominate
[19,84].

The next term describes the exciton-exciton contact interaction with interaction constant gx:

Ĥint =
1

2
gx

∑
k,k′,q

b̂†kb̂
†
k′ b̂k−qb̂k′+q. (2.3)

The coherent pump has strength Fp,c and introduces photons at a single energy ωp and mo-
mentum kp:

Ĥpump =
∑
k

(â†kFp,cδk,kp + F †p,cδk,kp âk)

= â†kpFp,c + F †p,câkp . (2.4)

The finite lifetimes are included by coupling the photons (excitons) to incoherent decay baths
Âp(B̂p) with dispersions ωΓc

p (ωΓx

p ):

Ĥdecay =
∑
p,k

(
Γcp,k(â†kÂp,k + Â†p,kâk) + Γxp,k(b̂†kB̂p,k + B̂†p,kb̂k)

)
+
∑
p

(
ωΓc

p Â†p,kÂp,k + ωΓx

p B̂†p,kB̂p,k

)
. (2.5)

The coupling strengths are Γck,p(Γxk,p), and each system mode is connected to a full set of
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independent decay baths [21].

2.2 Change of basis: lower polariton Hamiltonian

To transform from one orthonormal basis to another, the new basis ψ′ is defined as the rotation
of the old basis ψ by an unitary operator Ŝ such that ψ′ = Ŝψ [85]. If the matrix elements of a
physical quantity f (in the new basis) are given by:∫

ψ′
∗

mf̂ψ
′
ndq =

∫
Ŝ†ψ∗mf̂ Ŝψndq =

∫
ψ∗mŜ

−1f̂ Ŝψndq,

then in the old basis the matrix f̂ ′ corresponding to the same physical quantity is

f̂ ′ = Ŝ−1f̂ Ŝ∫
ψ′
∗

mf̂ψ
′
ndq =

∫
ψ∗mf̂

′ψndq,

f̂ = Ŝf̂ ′Ŝ−1.

In the polariton system Ŝ is the matrix operation that diagonalises Ĥsyst. Since S is unitary
S−1 = S†; ψ = (âk, b̂k)T and the operators of the upper ûk, and lower p̂k polaritons form the
new basis: ψ′ = (ûk, p̂k)T . To transform from the exciton-photon Hamiltonian to a Hamiltonian
of the polaritons, the following rotation is used [10,15,19,31,64]:(

âk

b̂k

)
=

(
X(k) C(k)

−C(k) X(k)

)(
ûk

p̂k

)
= Ŝ−1

(
ûk

p̂k.

)
(2.6)

The elements of S† are the Hopfield coefficients [10], and are derived in detail in section 2.3. The
polariton operators are: (

ûk

p̂k

)
=

(
X(k) −C(k)

C(k) X(k)

)(
âk

b̂k

)
. (2.7)

To write the entire Hamiltonian in the polariton basis, Eqs. (2.6) and

(
â†k b̂†k

)
=

((
X(k) C(k)

−C(k) X(k)

)(
ûk

p̂k

))†
=

(
Ŝ−1

(
ûk

p̂k

))†

=
(
û†k p̂†k

)(X(k) −C(k)

C(k) X(k)

)
=
(
û†k p̂†k

)
Ŝ (2.8)

are used, which means that the following substitutions are made in Eqs. (2.2)-(2.5):

âk = X(k)ûk + C(k)p̂k,

b̂k = −C(k)ûk +X(k)p̂k,
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â†k = X(k)û†k + C(k)p̂†k,

b̂†k = −C(k)û†k +X(k)p̂†k.

Performing the rotation on the entire exciton-photon Hamiltonian (except the exciton saturation)
gives a system of upper and lower polaritons with dispersions ωup(k) and ωlp(k):

Ĥsyst−pol =
∑
k

(
ωlp(k)p̂†kp̂k + ωup(k)û†kûk

)
. (2.9)

The external laser adds photons to the system and can excite both upper and lower polaritons:

Ĥpump−pol = Fp,c

(
X(kp)û

†
kp

+ C(kp)p̂
†
kp

)
+ F †p,c

(
X(kp)ûkp + C(kp)p̂kp

)
. (2.10)

The existing exciton and photon decay baths are unaffected by the change of basis, but are now
coupled to the polaritons:

Ĥdecay−pol =
∑
p,k

(
Γcp,k

[(
X(k)û†k + C(k)p̂†k

)
Âp + Â†p

(
X(k)ûk + C(k)p̂k

)]

+Γxp,k

[(
− C(k)û†k +X(k)p̂†k

)
B̂p + B̂†p

(
− C(k)ûk +X(k)p̂k

)])
+
∑
p

(
ωΓc

p Â†p,kÂp,k + ωΓx

p B̂†p,kB̂p,k

)
. (2.11)

The polariton interactions are complicated since terms of the type: û†p̂†ûp̂, û†û†ûp̂, û†û†p̂p̂ (and
Hermitian conjugates), that describe interactions between polaritons on the different branches
are present. For simplicity, k′ + q = k1 and k − q = k2 are used in the following expression of
the complete polariton-polariton interaction:

Ĥint−pol =
1

2
gx

∑
k,k′,q

(
C(k)C(k′)C(k2)C(k1)û†kû

†
k′ ûk2

ûk1

− C(k)C(k′)C(k2)X(k1)û†kû
†
k′ ûk2 p̂k1 − C(k)C(k′)X(k2)C(k1)û†kû

†
k′ p̂k2 ûk1

+ C(k)X(k′)X(k2)X(k1)û†kû
†
k′ p̂k2 p̂k1 − C(k)X(k′)C(k2)C(k1)û†kp̂

†
k′ ûk2 ûk1

+ C(k)X(k′)C(k2)X(k1)û†kp̂
†
k′ ûk2

p̂k1
+ C(k)X(k′)X(k2)C(k1)û†kp̂

†
k′ p̂k2

ûk1

− C(k)X(k′)X(k2)X(k1)û†kp̂
†
k′ p̂k2

p̂k1
−X(k)C(k′)C(k2)C(k1)p̂†kû

†
k′ ûk2

ûk1

+X(k)C(k′)C(k2)X(k1)p̂†kû
†
k′ ûk2

p̂k1
+X(k)C(k′)X(k2)C(k1)p̂†kû

†
k′ p̂k2

ûk1

−X(k)C(k′)X(k2)X(k1)p̂†kû
†
k′ p̂k2 p̂k1 +X(k)X(k′)C(k2)C(k1)p̂†kp̂

†
k′ ûk2 ûk1

−X(k)X(k′)C(k2)X(k1)p̂†kp̂
†
k′ ûk2 p̂k1 −X(k)X(k′)C(k2)X(k1)p̂†kp̂

†
k′ ûk2 p̂k1

+X(k)X(k′)X(k2)X(k1)p̂†kp̂
†
k′ p̂k2

p̂k1

)
. (2.12)
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If the upper polariton branch is energetically far from the lower polariton branch, it can be
neglected [28, 41]. This is allowed if ΩR is much greater than the detuning of the applied pump
away from the lower polariton dispersion (ΩR � ∆p ≡ [ωp − ωlp(kp)]) and also if the nonlinear
shift of the lower polariton mode due to finite occupation at the pump mode is small [41]. The
second condition reinforces the existing condition that the descriptions of the polariton system
used are only valid for low (exciton or polariton) density. Only the last term of Eq. (2.12)
remains and the Hamiltonian that describes the lower polaritons only is [28,31]:

Ĥlp =
∑
k

ωlp(k)p̂†kp̂k +
1

2

∑
k,k′,q

Vk,k′,qp̂
†
kp̂
†
k′ p̂k−qp̂k′+q

+
∑
p,k

(
Γcp,k

(
C(k)p̂†kÂp + Â†pC(k)p̂k

)
+ Γxp,k

(
X(k)p̂†kB̂p + B̂†pX(k)p̂k

))

+
∑
p

(
ωΓc

p Â†pÂp + ωΓx

p B̂†pB̂p

)
+ (Flpp̂

†
kp

+ F †lpp̂kp) (2.13)

where Flp = C(kp)Fp,c has been introduced as the polariton pump operator, and Vk,k′,q =

gxX(k)X(k′)X(k − q)X(k′ + q) is the momentum dependent strength of the lower polariton
interactions.

2.3 Derivation of the Hopfield coefficients

In different places in the literature, different expressions are given for the Hopfield coefficients
[15,31,86,87]. In this section, the Hopfield coefficients are derived and the different forms shown
to be equivalent.

In the absence of pump and decay, the exciton-photon system is described by the simple
Hamiltonian of Eq. (2.2) [15]. The eigenvalues of the matrix

S(k) =

(
ωc(k) ΩR

2
ΩR
2 ωx(k)

)
(2.14)

therefore give the dispersions of the upper and lower polaritons [15]:

ωup,lp(k) =
ωc(k) + ωx(k)

2
± 1

2

√(
ωc(k)− ωx(k)

)2
+ Ω2

R. (2.15)

The exciton dispersion is usually assumed flat, ωx(k) = ωx, since the exciton mass is much larger
than the cavity photons’ which have a quadratic dispersion: ωc(k) = ωx + ∆0 + |k|2/2mc, where
∆0 = ωc(0)− ωx is the exciton-photon detuning. The dispersions for ∆0 = 0 are shown in Fig.
2.1.

In Eq. (2.7), both the polariton operators were written using the Hopfield coefficients of the
lower polaritons only, here the Hopfield coefficients for both the upper and lower polaritons are
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Figure 2.1: Dispersions of the quantum well excitons, cavity photons and the upper and lower
polaritons for ∆0 = 0 and a flat exciton dispersion.

derived and the minus sign explained. To do so, the polariton operators are written as linear
superpositions of excitons and photons with the weightings [15,87]:

ûk = Cup(k)âk +Xup(k)b̂k

p̂k = Clp(k)âk +Xlp(k)b̂k. (2.16)

The eigenvectors are the solutions of [10,64,87]:

S(k)

(
Cup,lp(k)

Xup,lp(k)

)
= ωup,lp(k)

(
Cup,lp(k)

Xup,lp(k)

)
(2.17)

with the constraint [15,87]
|Xlp,up(k)|2 + |Clp,up(k)|2 = 1. (2.18)

Since S(k) is a unitary matrix so S†S = SS† = 1, and Eq. (2.18) ensures the correct normalisa-
tion after rotation [85]; the exciton |X(k)|2 and photon |C(k)|2 fractions of the polaritons must
add up to unity.

The lower polaritons are considered first and Clp(k) and Xlp(k) are calculated. Expanding
Eq. (2.17) gives:

ωlp(k)Clp(k) = εc(k)Clp(k) +
ΩR
2
Xlp(k), (2.19)

ωlp(k)Xlp(k) =
ΩR
2
Clp(k) + εx(k)Xlp(k). (2.20)
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Eq. (2.19) is rearranged for Clp(k) which is substituted into Eq. (2.18):

Clp(k) =
ΩR

2(ωlp(k)− εc(k)
Xlp(k),

1 = |Xlp(k)|2
(

1 +
Ω2
R

4(ωlp(k)− ωc(k))2

)
,

|Xlp(k)|2 =
1

1 +
Ω2
R

4(ωlp(k)−ωc(k))2

,

Xlp(k) =
2(ωlp(k)− ωc(k))√

4(ωlp(k)− ωc(k))2 + Ω2
R

, (2.21)

Clp(k) =
ΩR√

4(ωlp(k)− ωc(k))2 + Ω2
R

. (2.22)

The same procedure for the upper polaritons yields:

ωup(k)Cup(k) = ωc(k)Cup(k) +
ΩR
2
Xup(k), (2.23)

ωup(k)Xup(k) =
ΩR
2
Cup(k) + ωx(k)Xup(k). (2.24)

Rearranging Eq. (2.24) for Cup(k) and again substituting into Eq. (2.18) leads to:

Cup(k) =
2(ωup(k)− ωx(k))

ΩR
Xup(k),

1 = |Xup(k)|2
(

1 +
4(ωup(k)− ωx(k))2

Ω2
R

)
,

|Xup(k)|2 =
Ω2
R

4(ωup(k)− ωx(k))2 + Ω2
R

,

Xup(k) =
ΩR√

4(ωup(k)− ωx(k))2 + Ω2
R

, (2.25)

Cup(k) =
2(ωup(k)− ωx(k))√

4(ωup(k)− ωx(k))2 + Ω2
R

. (2.26)

From the definitions of the upper and lower polariton dispersions given in Eq. (2.15), ωup(k)−
ωx(k) = −(ωlp(k)− ωc(k)) so

Xup(k) =
ΩR√

Ω2
R + 4(ωlp(k)− ωc(k))2

, (2.27)

Cup(k) =
−2(ωlp(k)− ωc(k))√

Ω2
R + 4(ωlp(k)− ωc(k))2

. (2.28)

Then Xup(k) = Clp(k) and Cup(k) = −Xlp(k) [87]. If the lower polariton Hopfield coefficients
are calculated by first rearranging Eq. (2.19) for Clp(k), the lower polariton Hopfield coeffients
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are:

Clp(k) =
2(ωlp(k)− ωx(k))√

4(ωlp(k)− ωx(k))2 + Ω2
R

, (2.29)

Xlp(k) =
ΩR√

4(ωlp(k)− ωx(k))2 + Ω2
R

. (2.30)

Meanwhile, calculating the upper polariton Hopfield coefficients by rearranging Eq. (2.23) for
Xup(k) gives:

Cup(k) =
ΩR√

4(ωup(k)− ωc(k))2 + Ω2
R

, (2.31)

Xup(k) =
2(ωup(k)− ωc(k)√

4(ωup(k)− ωc(k))2 + Ω2
R

. (2.32)

Using that ωup(k)− ωc(k) = −(ωlp(k)− ωx(k)) gives

Cup(k) =
ΩR√

4(ωlp(k)− ωx(k))2 + Ω2
R

= Xlp(k), (2.33)

Xup(k) =
−2(ωlp(k)− ωx(k)√

4(ωlp(k)− ωx(k))2 + Ω2
R

= −Clp(k). (2.34)

which is the convention used in the previous section and the remainder of this thesis where
X(k) = Xlp(k) and C(k) = Clp(k) are the lower polariton Hopfield coefficients. The polariton
operators are then defined using the lower polariton Hopfield coefficients only and Eqs. (2.16)
become [15]: (

ûk

p̂k

)
=

(
X(k) −C(k)

C(k) X(k)

)(
âk

b̂k

)
. (2.35)

Inverting the rotation gives [19]:(
âk

b̂k

)
=

(
X(k) C(k)

−C(k) X(k)

)(
ûk

p̂k

)
. (2.36)

To compare these definitions of the Hopfield coefficients with other expressions, the energy dif-
ference between the exciton and photon dispersions at any momentum is introduced: δk =

εc(k) − εx(k). Then ωlp(k) − εc(k) = −
(
δk +

√
δ2
k + Ω2

R

)
/2 is substituted into Eqs. (2.21) and

(2.22) giving:

Xlp(k) = −
δk +

√
δ2
k + Ω2

R√(
δk +

√
δ2
k + Ω2

R

)2

+ Ω2
R

=

(
δk +

√
δ2
k + Ω2

R

2
√
δ2
k + Ω2

R

) 1
2

, (2.37)
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and

Clp(k) =
ΩR(

δk +
√
δ2
k + Ω2

R

)2

+ Ω2
R

=

 Ω2
R

2
(
δk +

√
δ2
k + Ω2

R

)√
δ2
k + Ω2

R

 1
2

. (2.38)

Eqs. (2.37) and (2.38) are identical to the expressions for Xk, and Ck in Ref. [86]. Calculating
|Xlp(k)|2 from Eq. (2.37) gives:

|Xlp(k)|2 =
1

2

(
1 +

δk√
δ2
k + Ω2

R

)
, (2.39)

|Clp(k)|2 =
1

2

(
1− δk√

δ2
k + Ω2

R

)
, (2.40)

as in Ref. [15], where the second line uses the normalisation condition |Xlp(k)|2 + |Clp(k)|2 = 1.
It is not possible to reproduce the expressions for XU , CU in Ref. [87]. For δk=0 = 0, X2

lp(0) =

C2
lp(0) = 1/2, which holds for all the derived expressions. In Ref. [87], the Hopfield coefficients

for the upper polaritons are given in terms of the exciton Ex and upper polariton dispersions
Eup as:

Cup =
2~Ω√

4~2Ω2 + (Eup − Ex)2
,

Xup =
Eup − Ex√

4~2Ω2 + (Eup − Ex)2
.

These are very similar to Eqs. (2.28) and (2.27), but the weight of the exciton-photon intercon-
version term used up to now has been ΩR/2, while here it is ~Ω. Considering the case at k = 0,
where Eup − Ex = ~Ω:

X2
up(0) = Clp(0) =

1

5
; C2

up(0) = Xlp(0) =
4

5

which is not correctly normalised for Ec(0) = Ex(0). This may be due to an inconsistency in the
definition of the exciton-photon coupling energy, which, in different places differs by a factor of
2 [15,19,87].
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3 | Keldysh Green’s functions for co-
herently pumped polaritons

This chapter contains all work on the Keldysh functional integral approach applied to the system
of coherently pumped polaritons, both above and below the OPO threshold. First, a brief sketch
of the Keldysh method is given in section 3.1. Section 3.2 contains a detailed derivation of the
Keldysh functional integral for an arbitrary number of modes coupled to two incoherent decay
baths, while the pumping directly occupies one mode. The Keldysh actions and the inverse
Green’s functions found by taking fluctuations to second order for the pump only and OPO
regimes are presented in sections 3.3 and 3.4 respectively, with numerical results in sections 3.5
and 3.6.

3.1 Sketch of Keldysh method

The basis of the Green’s function approach is that the partition function Z of a system described
by an Hamiltonian Ĥ with operators written in the Heisenberg representation can be written in
the form [69–71]:

Z = N

∫
D(φ, φ)eiS =

∫
D(φ, φ) exp

{
i

∫
C

[φ(t)G−1φ(t)]dt

}
, (3.1)

where N provides the correct normalisation, S is the action: S = S[φ, φ] and G−1 is the inverse
Green’s function. The particular method used here uses a (Keldysh) closed time contour, shown
schematically in Fig. 3.1, whereby the interactions are switched on and then switched off so that
there is no reference to the system’s state at t = +∞ [70]. The system can be considered to
evolve from the distant past (t = −∞) to the distant future (t = +∞) on the forwards branch of
the time contour and then return from t = +∞ to t = −∞ along the backwards branch, closing
the time contour.

To construct the functional integral, the time evolution is initially considered to consist of
2N discrete steps, N of which are on the forwards branch of the time contour (tn+1 after tn)
and N of which are on the backwards branch of the time contour (tn+1 before tn), as included
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−∞ +∞

t

t1 tn

tn+1t2n φB

φF

Figure 3.1: (Keldysh) Closed time contour: start from a ‘known’ state φ0 at t = −∞, switch
interactions on adiabatically to t = ∞, ‘unwind’ back to φ0. The fields on the forwards branch
are φF and those on the backwards branch φB . The points on the contour illustrate how 2n
points are used to construct the functional integral [70].

in Fig. 3.1. The partition function is calculated in the coherent state basis and the properties of
any coherent state φ are given in table 3.1 [69–71].

âi|φ〉 = ψi|φ〉
〈φ|â†i = 〈φ|φi
〈φ′|φ〉 = eφ

′
φ

I =
∫
D(φ, φ)e−φφ|φ〉〈φ|

D(φ, φ) =
∏
i
d(<φi)d(=φi)

π

Table 3.1: Properties of the coherent state for a general coherent state basis φ, operator â. I is
a resolution of identity and can be inserted at any point.

In order to calculate the partition function, it is necessary to use the property that the closed
time contour returns the system to its original state through the time evolution

Tr(ρ̂) = Tr(Utρ̂). (3.2)

The partition function is defined as Z = Tr(ρ̂) = Tr(e−β(Ĥ−µâ†â)), where ρ̂ is the initial density
matrix of the system and can be chosen to be the equilibrium density matrix. This leads to the
second expression where β is the inverse temperature and µ the chemical potential at equilibrium
[70,71].

The trace is defined as the sum

Tr(Utρ̂) =
∑
n

〈n|Utρ̂|n〉,

where ρ̂ is the density matrix, |n〉 is a basis state and Ut is a time evolution operator [69].
To calculate the trace, resolutions of identity of the coherent state basis are inserted. Since
summation and integration commute, groups of 〈|〉 can be moved around and:

Tr(Utρ̂) =
∑
n

〈n|Utρ̂|n〉 (3.3)
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=
∑
n

〈n|
∫
d(φ, φ)e−φφ|φ〉〈φ|Utρ̂|n〉

=

∫
d(φ, φ)e−φφ

∑
n

〈n|φ〉〈φ|Utρ̂|n〉

=

∫
d(φ, φ)e−φφ〈φ|Utρ̂

(∑
n

|n〉〈n|
)
|φ〉.

∑
n |n〉〈n| = I is just another resolution of identity and can therefore be removed to give:

Tr(Utρ̂) =

∫
d(φ, φ)e−φφ〈φ|Utρ̂|φ〉.

For the construction of the Keldysh contour, |φ〉 in the above is the 2N th element (first and last)
of the closed time contour: |φ〉 ≡ |φ2N 〉. The time evolution is therefore split into 2N segments
with U±δt = e∓iHδt with U+δt on the forwards branch and U−δt on the backwards branch. Steps
N and N + 1 are identical so Uδt(N,N + 1) = 1. The forwards branch runs from step 1 at
t = −∞ to step N at t = +∞ and the backwards branch from step N + 1 at t = +∞ to step
2N at t = −∞ as defined in Fig. 3.1.

The action is initially written in terms of the fields on the forwards and backwards branches
of the closed time contour with Green’s functions defined as G(t, t′) ≡ −i〈φ(t)φ(t′)〉 where the
two times are somewhere on the Keldysh contour. The key aspect of the Keldysh approach is to
define a pair of new fields:

φcl(t) =
1√
2

(φF (t) + φB(t)) , (3.4)

φq(t) =
1√
2

(φF (t)− φB(t)) , (3.5)

where the F,B subscripts refer to the forwards and backwards branches of the time contour and
the subscripts ‘cl’ and ‘q’ denote the classical and quantum components of the fields [70]. In
the Keldysh basis, the inverse Green’s function in Eq. (3.1) is defined as a matrix formed of
retarded, advanced and Keldysh components:

G−1 =

(
GK GR

GA 0

)−1

=

(
0 [G−1]A

[G−1]R [G−1]K

)
. (3.6)

The inverse Green’s functions have the following key properties and relations [70]:

[G−1]R,A = [GR,A]−1, (3.7)

[G−1]A =
(
[G−1]R

)†
, (3.8)

GA =
(
GR
)†
, (3.9)

[G−1]K = −[GR]−1GK [GA]−1 = [GR]−1Fs − Fs[GA]−1, (3.10)
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GK = −GR[G−1]KGA = GRFs − FsGA, (3.11)

where Fs is the distribution function that parameterises the Keldysh Green’s function. The
retarded and advanced Green’s functions can be found through simple inversion of their inverses
and are Hermitian conjugates of each other [69–71].

In the basis of classical and quantum fields, the action has the form:

S[φcl, φq] =

∫∫ ∞
−∞

dtdt′(φcl, φq)t

(
0 [G−1]A

[G−1]R [G−1]K

)
t,t′

(
φcl

φq

)
t′

, (3.12)

and the inverse Green’s functions are found by inspecting the action.

3.2 Detailed derivation of Keldysh action

In this section, a non-equilibrium field theory for a system of coherently pumped polaritons is
constructed starting from the Hamiltonian of Eq. (2.13).

3.2.1 Heisenberg operators and gauge transformation

The functional integral can only be constructed when the operators in the Hamiltonian are in the
Heisenberg representation [70,71]. This means that a gauge transformation to move the system
described by Eq. (2.13) to the reference frame of the pump mode while making the Hamiltonian
time-independent has to be performed. New operators p̃ = p̂eiωpte−ikp·x and p̃† = p̂†e−iωpteikp·x

are defined. Without any loss of generality, Flp ∈ < can be chosen so the pump term becomes:

Ĥpump → Flp(p̃0 + p̃†0).

To write the Hamiltonian with the new operators (p̃), it is noted that the existing operators can
be defined in terms of the new operators as p̂ = p̃e−iωpteikp·x. The exponents cancel in all terms
of the Hamiltonian that are quadratic or quartic in the the original operators.

The terms that relate to the decay baths now contain both the new operators and the old
operators. By defining the bath operators as Â = Ãe−iωpteikp·x, B̂ = B̃e−iωpteikp·x, and includ-
ing the ωp shift into the bath energies (from here onwards, ωΓi

p includes an implicit contribution
−ωp), the entire system is written relative to the pump energy ωp, and momentum kp. The time
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independent Hamiltonian Ĥ ′ is:

Ĥ ′lp =
∑
k

(ωlp(k + kp)− ωp)p̃†kp̃k + Flp(p̃
†
0 + p̃0) +

1

2

∑
k,k′,q

Vk,k′,qp̃
†
kp̃
†
k′ p̃k−qp̃k′+q

+
∑
p

(
ωΓc

p Ã†pÃp + ωΓx

p B̃†pB̃p

)
+
∑
p,k

(
Γcp,k

(
C(k + kp)p̃

†
kÃp + Ã†pC(k + kp)p̃k

)

+Γxp,k

(
X(k + kp)p̃

†
kB̃p + B̃†pX(k + kp)p̃k

))
. (3.13)

All momenta are shifted such that k = 0 is at the pump; kp is included explicitly in the polariton
dispersion and the Hopfield coefficients since these are the standard definitions of these functions,
without the gauge transformation, are used. The shift of the momentum in the polariton disper-
sion is due to the kinetic energy shift found through Fourier transforming the term of the original
Hamiltonian into real space, performing the change of operators and then Fourier transforming
back into the momentum space description used throughout.

3.2.2 Coherent state bases

The Hamiltonian (Eq. (3.13)) contains summations over momenta as well as operators for the
polaritons and the exciton and photon decay baths. The properties of the coherent state bases
remain as in table 3.1, but the notation for the three fields needs to be set and the implications
of the three different operators and the different momenta considered.

Each type of boson in the Hamiltonian couples to its own coherent state basis and resolutions
of identity can be written for each basis. There is a summation over momentum states in the
Hamiltonian each of which has its own coherent state basis. Here, the coherent states are written
without any momentum arguments, but instead include an implicit product over momenta:

p̃k|ψ〉 = ψk|ψ〉 (3.14)

where ψ is the coherent state basis of the polaritons, defined as [69]:

|ψ〉 ≡ |
( kn∏
k=k1

ψk

)
〉 = |ψk1ψk2 . . . ψkn〉. (3.15)

with a resolution of identity that now includes a summation over momenta:

I =

∫
D(ψ,ψ)e−

∑
k ψkψk |ψ〉〈ψ|. (3.16)

The measure of integration, D(ψ,ψ), now contains a product over momenta. The coherent state
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bases of the exciton and photon decay baths can be defined in a similar way:

Ãp|χc〉 = χc,p|χc〉, (3.17)

B̃p|χx〉 = χx,p|χx〉. (3.18)

The fact that the decay baths are separate from the polariton system and each other means that
acting on the coherent state basis of one species with an operator of another species yields zero,
that is:

Ãp|χx〉 = Ãp|ψ〉 = 0; B̃p|χc〉 = B̃p|ψ〉 = 0; p̃k|χc〉 = p̃k|χx〉 = 0. (3.19)

3.2.3 Constructing the functional integral

The functional integral is constructed by considering the N = 3 case explicitly and generalising
to any N before taking the continuum limit.

As well as the |ψχcχx〉 shorthand used above, the measure of integration is shortened further:
d(ψ,ψ, χc, χc, χx, χx) → d(ψ, χc, χx) which includes both the fields and their conjugates, the
product over the polariton momenta k and the product over the bath momenta p. Starting from
the definition of the trace, Eq. (3.3), and following the procedure outlined in section 3.1 where
summation and integration are commuted and resolutions of identity are included as appropriate,
the 2N = 6 step time contour becomes:

Tr(Utρ̂) =

∫
d(ψ6, χa,6, χb,6)e−

∑
k |ψk,6|2−

∑
p(|χp,c,6|2+|χp,x,6|2)×

〈(ψχcχx)6|U−δt
∫
d(ψ5, χc,5, χx,5)e−

∑
k |ψk,5|2−

∑
p(|χp,c,5|2|+|χp,x,5|2)|(ψχcχx)5〉×

〈(ψχcχx)5|U−δt
∫
d(ψ4, χc,4, χx,4)e−

∑
k |ψk,4|2−

∑
p(|χp,c,4|2|+|χp,x,4|2)|(ψχcχx)4〉×

〈(ψχcχx)4|
∫
d(ψ3, χc,3, χx,3)e−

∑
k |ψk,3|2−

∑
p(|χp,c,3|2|+|χp,x,3|2)|(ψχcχx)3〉×

〈(ψχcχx)3|Uδt
∫
d(ψ2, χc,2, χx,2)e−

∑
k |ψk,2|2−

∑
p(|χp,c,2|2|+|χp,x,2|2)|(ψχcχx)2〉×

〈(ψχcχx)2|Uδt
∫
d(ψ1, χc,1, χx,1)e−

∑
k |ψk,1|2−

∑
p(|χp,c,1|2|+|χp,x,1|2)|(ψχcχx)1〉×

〈(ψχcχx)1|ρ̂|(ψχcχx)6〉

=

∫
(

6∏
j=1

d(ψj , χc,j , χx,j)e
−

∑
k |ψk,j |2−

∑
p(|χp,c,j |2+|χp,x,j |2))〈(ψχcχx)6|U−δt|(ψχcχx)5〉×

〈(ψχcχx)5|U−δt|(ψχcχx)4〉〈(ψχcχx)4|(ψχcχx)3〉〈(ψχcχx)3|Uδt|(ψχcχx)2〉×

〈(ψχcχx)2|Uδt|(ψχcχx)1〉〈(ψχcχx)1|ρ̂|(ψχcχx)6〉. (3.20)

The elements that need explicit calculation are of the form: 〈(ψχcχx)j+1|U±δt|(ψχcχx)j〉 and
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the last term: 〈(ψχcχx)1|ρ̂|(ψχcχx)6〉.

The simpler of the two terms η = 〈(ψχcχx)1|ρ̂|(ψχcχx)6〉 is considered first. The equilibrium
density matrix

ρ̂ = exp
(
−β(ωlp(k)− µk,ψ)p̃†p̃− β(ωΓc(p)− µχc,p)Ã†pÃp − β(ωΓx(p)− µχx,p)B̃†pB̃p

)
(3.21)

is used since the interactions, between the polaritons and between the polaritons and the baths,
are supposed to be adiabatically switched on and off and therefore only affect the matrix elements
of the evolution operator [70, 71] (the summation over the system and bath momenta has been
dropped for simplicity while the summation over the two baths has been written as a

∑
i).

This element is therefore calculated by using that the coherent state basis has the following
property [70,71]:

〈φ|eκa
†a|φ′〉 = exp{φφ′eκ}.

Since the three operators act on different coherent state bases, there is one copy for each of the
three parts of the system:

〈(ψχcχx)1|ρ̂|(ψχcχx)2N 〉 = exp

ψ1ψ2N
e−β(ωlp(k)−µk,ψ) +

∑
i∈{x,c}

χi,1χi,2N e
−β(ωΓi (p)−µχi,p)

 ,

(3.22)
and the two baths have been written compactly.

In the terms containing the time evolution, the operator is U±δt and all terms have the form
〈(ψχxχb)j+1|U±δt|(ψχxχb)j〉 = νj . The time evolution operator is defined as

U±δt = e∓iĤ
′δt

= exp

{
∓ i
(∑

k

(ωlp(k + kp)− ωp)p̃†kp̃k +
1

2

∑
k,k′,q

Vk,k′,qp̃
†
kp̃
†
k′ p̃k−qp̃k′+q

+
∑
p,k

[
Γcp,k

(
C(k + kp)p̃

†
kÃp + Ã†pC(k + kp)p̃k

)
+ Γxp,k

(
X(k + kp)p̃

†
kB̃p + B̃†pX(k + kp)p̃k

) ]
+
∑
p

[
ωΓc

p Ã†pÃp + ωΓx

p B̃†pB̃p

]
+ Flp(p̃

†
0 + p̃0)

)
δt

}
. (3.23)

Since δt is small, a Taylor expansion of the exponential is made, the action of the operators
calculated and the exponential reformed by using the overlap properties of the coherent state
basis [70,71]. The generic result, between any two consecutive points on the time contour tj and
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tj+1, is:

νj = exp

{∑
k

ψk,j+1ψk,j +
∑
p

i∈{c,x}

χp,i,j+1χp,i,j+1 ∓ iδt
(∑

k

(ωlp(k + kp)− ωp)ψj+1ψj

+Flp(ψ0,j+1 + ψ0,j) +
1

2

∑
k,k′,q

Vk,k′,qψk,j+1ψk′,j+1ψk−q,jψk′+q,j

+
∑
p

i∈{c,x}

[
ωΓi

p χp,i,j+1χp,i,j +
∑
k

hikΓip,k(ψk,j+1χp,i,j + χp,i,j+1ψk,j)
])}

. (3.24)

The decay bath terms have been written compactly by summing over the baths i ∈ {c, x} as well
as the momenta by introducing hik for the Hopfield coefficients (hck = C(k+kp), h

x
k = X(k+kp)).

With N = 3, the terms of the exponent can be written as elements of a matrix and a sum
over the elements performed. The presence of the constant pump term Flp requires that it either
acquires a time label or that the pump term is separated out as a vector, as below. The general
matrix form of the exponent is η +

∑2N
j=1 νj :

−|φ1|2 0 0 0 0 (φ1, φ6)

(φ2, φ1) −|φ2|2 0 0 0 0

0 (φ3, φ2) −|φ3|2 0 0 0

0 0 (φ4, φ3) −|φ4|2 0 0

0 0 0 (φ5, φ4) −|φ5|2 0

0 0 0 0 (φ6, φ5) −|φ6|2


+ Flp



δtψ0,1

δtψ0,2 + δtψ0,2

δtψ0,3

δtψ0,4

δtψ0,5 + δtψ0,5

δtψ0,6


.

All fields, except those related to the external pump, contain an implicit summation over mo-
menta and the form φj include all fields (system plus decay baths). The terms are not written
out explicitly, but show the relevant time arguments on the fields and their conjugates.

The next step is to write the exponent in a convenient form as an integral in which top
right hand element (φ1, φ6) = (ψ1, ψ6, χc,1, χc,6, χx,1, χx,6) appears to be lost, but this is only
an artefact of the continuum notation [70, 71]. The momentum and bath field summations are
restored and the matrix can be written compactly as a summation over the 2N time steps:

−
2N∑
j=2

δtj

(∑
k

ψk,j

ψk,j − ψk,j−1

δtj
+

∑
p

i∈{c,x}

χp,i,j

χp,i,j − χp,i,j−1

δtj

+ i
{∑

k

(ωlp(k + kp)− ωp)ψk,jψk,j−1 +
1

2

∑
k,k′,q

Vk,k′,qψk,j+1ψk′,j+1ψk−q,jψk′+q,j

+ Flp(ψ0,j−1 + ψ0,j) +
∑
p

i∈{c,x}

[
ωΓi

p χp,i,jχp,i,j−1 +
∑
k

hikΓip,k
(
χp,i,jψk,j−1 + ψk,jχp,i,j−1

) ]})
.
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In the limit of N →∞, ψk,j → ψk(t), χp,j → χp(t) and
∑
j becomes an integral over the entire

closed time contour
∫
C
dt with (ψk,j − ψk,j−1)/δt→ ∂tψk(t) and likewise for the bath fields.

−
∫
C

dt

{∑
k

ψk∂tψk +
∑
p

i∈{c,x}

χp,i∂tχp,i + i
(∑

k

(ωlp(k + kp)− ωp)ψkψk + Flp(ψ0 + ψ0)

+
1

2

∑
k,k′,q

Vk,k′,qψkψk′ψk−qψk′+q +
∑
p

i∈{c,x}

[
ωΓi

p χp,iχp,i +
∑
k

hikΓip,k(χp,iψk + ψkχp,i)
])}

.

(3.25)

To proceed further, the desired form of the trace:

Tr(Utρ̂) = N

∫
D(ψ, χc, χx)eiS ,

is considered, where the measure of integration D(ψ, χc, χx) includes products over all fields (and
conjugate fields) and momenta [69]:

D(ψ, χc, χx) = lim
j→∞

2N∏
j=1

∏
k

d(<(ψk,j))d(=(ψk,j))

π

∏
p

i∈{c,x}

d(<(χp,i,j))d(=(χp,i,j))

π

 .

The action S is simply −i times the exponent calculated above:

S[ψ, χc, χx] =

∫
C

dt

{
i
(∑

k

ψk(t)∂tψk(t) +
∑
p

i∈{c,x}

χp,i(t)∂tχp,i(t)
)
− Flp

(
ψ0(t) + ψ0(t)

)
−
(∑

k

(ωlp(k + kp)− ωp)ψk(t)ψk(t) +
1

2

∑
k,k′,q

Vk,k′,qψk(t)ψk′(t)ψk−q(t)ψk′+q(t)

+
∑
p

i∈{c,x}

[
ωΓi

p χp,i(t)χp,i(t) +
∑
k

hikΓip,k
(
χp,i(t)ψk(t) + ψk(t)χp,i(t)

) ])}
,

(3.26)

in which the integral runs over the entire closed time contour.

3.2.4 Quantum and classical fields

In order to calculate quantities of interest, the action is written in terms of quantum and classical
components of the fields as outlined in section 3.1. The time integration in Eq. (3.26) is over
the entire closed time contour, while the quantum and classical parts of the fields are defined
in terms of the fields on the forwards and backwards branches of the contour according to Eqs.
(3.4) and (3.5). The first step is to split the closed time contour into its forwards and backwards
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branches so the action is of the form:

S[ψ, χc, χx] =

∫ ∞
−∞

dtSF [ψF , χc,F , χx,F ]−
∫ ∞
−∞

dtSB [ψB , χc,B , χx,B ]. (3.27)

The minus sign comes from
∫ β
α

= −
∫ α
β
, and F (B) indicates that the fields are on the forwards

(backwards) branch of the time contour.

The fields on the forwards and backwards branches are now written in terms of the quantum
and classical components according to Eqs. (3.4) and (3.5). The action in the Keldysh basis is:

iS[Ψ,χc,x] = i

∫
dt

{∑
k

Ψ†k(i∂t − ωlp(k + kp) + ωp)σ
K
1 Ψk +

∑
p

i∈{c,x}

χ†p,i(i∂t − ω
Γi

p )σK1 χp,i

−
∑
k

∑
p

i∈{c,x}

hikΓip,k(χ†p,iσ
K
1 Ψk + Ψ†kσ

K
1 χp,i)−

√
2Flp(ψ0,q + ψ0,q)

−1

4

∑
k,k′,q

Vk,k′,q

[
Ψ†kσ

K
1 Ψk−qΨ†k′Ψk′+q + Ψ†kΨk−qΨ†k′σ

K
1 Ψk′+q

]}
(3.28)

which has double the number of terms as the original action due to the presence of the classical
and quantum components [70], and σK1 is the Pauli matrix

σK1 =

(
0 1

1 0

)
,

that acts on the vectors Ψk,χp,i that have the form

Φ ≡

(
φcl

φq

)
; Φ† ≡

(
φcl, φq

)
.

The field arguments of the action include the conjugate fields by implication.

All terms in the action, except the pump term, contain both classical and quantum fields.
The pump term contains only quantum fields, but the pump is classical by construction. Terms
relating to the incoherent decay are very similar to the photon decay of the incoherently pumped
polariton system [21] since all decay baths are bosonic. The action is quadratic in the bath
fields (χc,x) which can be integrated out using Gaussian integrals (or a Hubbard-Stratonovich
transformation) [21,69].

3.2.5 Integrating out the decay baths

The process of integrating out the decay baths is analogous to a Hubbard-Stratonovich trans-
formation, and follows the procedure used to integrate out the photon decay bath in the case of
incoherently pumped polaritons [21]. Only one bath is treated explicitly since the second has the
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same properties and the derivation is identical up to the different Hopfield coefficient and decay
constant.

Let T be the integral that is of interest for disposing of the bath fields, it is a part of the
partition function where the terms in the ‘action’ are those containing the decay bath

T =

∫ ∏
p

i∈{c,x}

D(χ†p,i,χp,i) exp

(
i

∫
dt

∑
p

i∈{c,x}

[
χ†p,i(i∂t − ω

Γi

p )σK1 χp,i

−
∑
k

hikΓip,k(χ†p,iσ
K
1 ψk + ψkσ

K
1 χp,i)

])
. (3.29)

A Gaussian integral for a functional integral of complex variables is required. This is the gener-
alisation of the Gaussian integrals of real and complex vectors and a functional integral of real
variables [69]:∫

D(v(x), v(x)) exp

(
−
∫
dxdx′v(x)A(x, x′)v(x′) +

∫
dx(w(x)v(x) + v(x)w′(x))

)
∝ (detA)−1 exp

(∫
dxdx′w(x)A−1(x, x′)w′(x′)

)
. (3.30)

v(x), v(x) are complex functions (the bath fields that want to be removed), w(x), w(x) are com-
plex functions (the system fields that want to be kept), and the inverse of the operator kernal
A(x, x′) can be interpreted as the Green’s function [69].

Returning to the problem at hand and the part of the action that concerns the bath fields, the
exponent that comes from performing the integral T is of interest. Comparing Eq. (3.29) with
Eq. (3.30) leads to the relations summarised in table 3.2. The summations over the polariton
and decay bath fields are extracted from the integrands at the start of the process, and remain
unchanged.

D(v(x), v(x)) D(χ†p(t),χp(t))

dx dt
dx′ dt′

v(x) χ†p,i → χ†p,i(t)

A(x, x′) −(i∂t − ωΓi

p )σK1 → −(i∂t − ωΓi

p )σK1 δ(t− t′)
v(x′) χp,i → χp,i(t

′)

w(x) −hikΓip,kΨ†kσ
K
1 → −hikΓip,kΨ†k(t)σK1

v(x) χp,i → χp,i(t)
w′(x) −hikΓip,kσ

K
1 Ψk → −hikΓip,kσ

K
1 Ψk(t)

Table 3.2: Elements of the generic equation for the Gaussian integral of a functional integral of
complex fields with specific terms in the notation of the incoherent exciton and photon decay
baths (given by superscripts and subscripts i).

The part of the action that contained the decay baths is now written in terms of the system
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fields, the couplings and the bath dispersions:

iSbaths,Ψ = −i
∫
dtdt′

∑
p,k

i∈{c,x}

(hikΓip,k)2Ψ†k(t)σK1 ((i∂t − ωΓi

p )σK1 )−1σK1 Ψk(t′). (3.31)

If it is assumed that the baths are large and therefore unaffected by the behaviour of the polariton
system, ((i∂t−ωΓi

p )σK1 )−1 = Dp,i(t− t′), the Green’s function for a free boson [21,70,71], which
has the matrix form [21].

((i∂t − ωΓi

p )σK1 )−1 =

(
DK

p,i(t− t′) DR
p,i(t− t′)

DA
p,i(t− t′) 0

)
.

The Fourier transform and it inverse are defined as

f(t) =
1

2π

∫ ∞
−∞

f(ω)eiωtdω,

f(ω) =

∫ ∞
−∞

f(t)e−iωtdt,

so that, for any field,∫
dtdt′φ(t)D(t− t′)φ(t′) =

1

2π

∫
dtdt′φ(t)

∫
dωD(ω)e−iωteiωt

′
φ(t′)

=
1

2π

∫
dω

∫
dtφ(t)e−iωtD(ω)

∫
dt′φ(t′)eiωt.

Performing the Fourier transform of Eq. (3.31) gives:∫
dtdt′

∑
p,k

i∈{c,x}

(hikΓik,p)2Ψ†(t)σK1 Dp,i(t−t′)σK1 Ψ(t′) =
1

2π

∫
dω

∑
p,k

i∈{c,x}

(hikΓik,p)2Ψ†(ω)Di,p(ω)Ψ(−ω),

where the momentum arguments (both system and decay baths) have been dropped for brevity.
It has already been assumed that the bath is large enough that it can be considered as containing
free bosons. This means that the bath’s Green’s functions are [21,69–71]:

D
R/A
p,i (ω) =

1

ω − ωΓi
p ± iδ

, (3.32)

DK
p,i(ω) = −2πi(2nb(ω

Γi

p ) + 1)δ(ω − ωΓi

p ).

Following Ref. [21], a standard series of assumptions is made about the baths. First, it is assumed
that the bath frequencies ωΓi

p form a dense spectrum and that the coupling constants Γip,k are
smooth functions of the bath frequencies. Further, the coupling between the photons (excitons)
and the photonic (excitonic) decay bath is assumed constant and that each system momentum k
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couples to its own set of decay bath modes. The only momentum dependence of the couplings is
defined by the exciton or photon fraction of the polaritons. The summation over bath momenta
is replaced by an integral including the bath’s density of states N i(ωΓi):

∑
p,k

(hikΓip,k)2 →
∑
k

(hik)2

∫
dωΓiΓi(ωΓi)2N i(ωΓi).

The integral over the bath energies can be performed for each of the three Green’s functions.
For the Keldysh part:

∑
k

(hik)2

2π

∫
dωψk,q(ω)

∫
dωΓiΓi(ωΓi)2N i(ωΓi)DK

i (ω)ψk,q(−ω)

=
∑
k

(hik)2

2π

∫
dωψk,q(ω)

∫
dωΓiΓi(ωΓi)2N i(ωΓi)(−2πiFχi(ω

Γi)δ(ω − ωΓi))ψk,q(−ω)

=
∑
k

(hik)2

2π

∫
dωψk,q(ω)(−2πi)Γi(ω)

2
N i(ω)Fχi(ω)ψk,q(−ω)

=
∑
k

1

2π

∫
dωψk,q(ω)dKk,i(ω)ψk,q(ω), (3.33)

where Fχi(ω) = 2nib(ω) + 1 has been introduced as the bath’s distribution function.

The retarded and advanced parts are complex conjugates and can be evaluated using [88]

1

ω − ω′ ± iε
= P

1

ω − ω′
∓ iπδ(ω − ω′)

where P is the principal value integral. The retarded part is therefore:

∑
k

(hik)2

2π

∫
dωψk,cl(ω)

∫
dωΓiΓi(ωΓi)2N i(ωΓi)DR(ω)ψk,q(−ω)

=
∑
k

(hik)2

2π

∫
dωψk,cl(ω)

∫
dωΓiΓi(ωΓi)2N i(ωΓi)

1

ω − ωΓi + iδ
ψk,q(−ω)

=
∑
k

(hik)2

2π

∫
dωψk,cl(ω)

∫
dωΓiΓi(ωΓi)2N i(ωΓi)

(
1

ω − ωΓi
− iπδ(ω − ωΓi)

)
ψk,q(−ω)

=
∑
k

(hik)2

2π

∫
dωψk,cl(ω)

(∫
dωΓiΓi(ωΓi)2N i(ωΓi)

1

ω − ωΓi
− iπΓi(ω)2N(ω)

)
ψk,q(−ω)

=
∑
k

1

2π

∫
dωψk,cl(ω)dRk,i(ω)ψk,q(ω). (3.34)

This defines dRk,i(ω) and dKk,i(ω) as the self-energies from the decay baths, the real parts of which
provide a renormalisation of the energies while the imaginary parts are the linewidths [71]:

dKk,i(ω) = −2πi(hik)2Γi(ω)2N i(ω)Fχi(ω)
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dR,Ak,i (ω) = (hik)2

(∫
dωΓiΓi(ωΓi)2N i(ωΓi)

1

ω − ωΓi
∓ iπΓi(ω)2N i(ω)

)
.

The retarded and advanced self-energies are complex with the form Rk,i(ω)∓ i(hik)2κi(ω) where
the real part is:

Rk,i(ω) = (hik)2

∫
dωΓi Γi(ωΓi)2N i(ωΓi)

ω − ωΓi
,

and the imaginary part is:
κi(ω) = πΓi(ω)2N i(ω).

The Keldysh part is dKk,i = −2i(hik)2κi(ω)Fχi(ω).

Any choice of the decay baths’ distributions can be made [21], but if a Markovian bath, in
which the bath’s density of states and coupling to the system are constant, is chosen, Γi(ωΓi)2N i(ωΓi) =

Γi
2
N i, which is a constant. The energy shift due to the presence of the bath, Ri(ω), is zero and

the linewidth is a constant, κi(ω) = κi. The bath’s occupation function is still dependent on
the energy (frequency), so the distribution function retains its dependence on ω. The self-energy
contributions from the decay bath are now:

dKk,i(ω) = −2i(hik)2κiFχi(ω),

dR,Ak,i (ω) = ∓i(hik)2κi.

Inverting the Fourier transform of the retarded and advanced parts (between classical and
quantum components of the fields) is simple. The constant terms appear in the action as

(hik)2κi
2π

∫
dωe−iω(t−t′) = (hik)2κiδ(t− t′)

which follows from the definition of the Dirac δ function [89,90]:

δ(t− t′) =
1

2π

∫
dωeiω(t−t′) = δ(t′ − t).

The Fourier transformation of the Keldysh part leads to a contribution −2i(hik)2κiFχi(t− t′) as
the quantum-quantum component [21]. The Markovian, or white noise, environment used here
is not the only possible choice, it is however justified since the energy interval of interest is small
compared with the system energies so the bath’s density of states will be approximately constant
in this interval. In real units, ωx ∼ 1.5eV and min(ωup(k)− ωlp(k)) ∼ 20meV.
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The action now contains only the polariton fields:

S[Ψ] =

∫
dt

{∑
k

Ψ†k(i∂t − ωlp(k + kp) + ωp)σ
K
1 Ψk −

√
2Flp(ψ0,q + ψ0,q)

−1

4

∑
k,k′,q

Vk,k′,q

[
Ψ†kσ

K
1 Ψk−qΨ†k′Ψk′+q + Ψ†kΨk−qΨ†k′σ

K
1 Ψk′+q

]}

+

∫∫
dtdt′

∑
k

Ψ†k(t)

 0 −iκlp(k)δ(t− t′)
iκlp(k)δ(t− t′) 2i

∑
i∈{c,x}

(hik)2κiFχi(t− t′)

Ψk(t′). (3.35)

In the last line, the σK1 that proceeds and follows ((i∂t − ωΓi

p )σK1 )−1 in Eq. (3.31) has been
applied to the matrix of the self-energies. In principle, all fields have a time argument and both
integrals are double integrals over t and t′. There is no ambiguity in the first integral where the
double measure of integration would lead to a factor δ(t− t′) on all elements, so only the single
time argument is used.

In the action, the summation over i ∈ {c, x} lead to a contribution from each decay bath
with a similar form. This is used to define the momentum dependent lower polariton decay in
Eq. (3.35):

κlp(k) = C2(k + kp)κc +X2(k + kp)κx. (3.36)

If the exciton and photon decays are equal, then κlp(k) is a constant due to the normalisation
condition of the Hopfield coefficients.

3.2.6 Saddle points and the mean field equations

Having constructed an action in terms of the system fields only, the mean field properties can
be investigated through the saddle points taken relative to both the classical and quantum
fields [21,70,71]. This involves finding the solutions to

δS

δψk,cl(t)
= 0 and

δS

δψk,q(t)
= 0.

The action of the derivative is to pick out only those terms that contain one or more copies of
the field ψk,{cl,q}:

δS

δψk,cl(t)
=

∫
dt
[
(i∂t − ωlp(k + kp) + ωp − iκlp(k))ψk,q(t)

−
∑
k′,q

Vk,k′,q
2

(
ψ̄k′,q(t)Ψ

T
k−q(t)Ψk′+q(t) + ψ̄k′,cl(t)Ψ

T
k−q(t)σ̂K1 Ψk′+q(t)

)]
, (3.37)
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and

δS

δψk,q(t)
=

∫
dt
[
(i∂t − ωlp(k) + ωp + iκlp(k + kp))ψk,cl(t)−

√
2Flpδk,0

−
∑
k′,q

Vk,k′,q
2

(
ψ̄k′,q(t)Ψ

T
k−q(t)σ̂K1 Ψk′+q(t) + ψ̄k′,cl(t)Ψ

T
k−q(t)Ψk′+q(t)

)]
+2i

∑
i∈{c,x}

(hik)2κi

∫
dtdt′Fχi(t− t′)ψk,q(t

′). (3.38)

There always exists a solution to the saddle point equations such that the quantum part is
zero [69–71] at which point δS

δψk,cl(t)
= 0 is satisfied automatically. This corresponds to the purely

classical solution and the classical component of the field at the saddle point, ψspcl , satisfies:

(i∂t−ωlp(k+kp)+ωp+iκlp(k))ψspk,cl(t)−
√

2Flpδk,0−
∑
k′,q

Vk,k′,q
2

ψ̄spk′,cl(t)ψ
sp
k−q,cl(t)ψ

sp
k′+q,cl(t) = 0.

(3.39)
Dividing through by the

√
2 factor in front of the external pump, leads to the cGPE from the

mean field analysis [29,30] with ψmf = ψspcl /
√

2 [21]:

(i∂t−ωlp(k+kp)+ωp+iκlp(k))ψmf
k (t)−Flpδk,0−

∑
k′,q

Vk,k′,q
(
ψ̄mf
k′ (t)ψmf

k−q(t)ψmf
k′+q(t)

)
= 0. (3.40)

A steady state solution to the cGPE is proposed (a choice made for ψ) and the mean field
calculated. A physical solution requires that the steady state is stable to small fluctuations
around the mean field [29,41]. Only if this condition is satisfied can other quantities, such as the
luminescence, absorption or spectral weight, be calculated [21,91].

3.2.7 Fluctuations about the mean field

To analyse the stability of the mean field, small fluctuations δψcl and δψq are added to the fields
in the action. The action of coherently pumped polaritons is given by Eq. (3.35) and can be
written slightly more compactly as:

S[Ψ] =

∫
dt

{∑
k

[
Ψ†k
(
A(k)σK1 − κlp(k)σK2

)
Ψk + Flpδ0,k(ψk,q + ψk,q)

]
−1

4

∑
k,k′,q

Vk,k′,q

[
Ψ†kσ

K
1 Ψk−qΨ†k′Ψk′+q + Ψ†kΨk−qΨ†k′σ

K
1 Ψk′+q

]}

+2i

∫∫
dtdt′

∑
k

i∈{c,x}

ψk,q(t)(h
i
k)2κiFχi(t− t′)ψk,q(t

′). (3.41)
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The fields are written as vectors in the Keldysh basis of classical and quantum fields, and the
Pauli matrix

σK2 =

(
0 i

−i 0

)
,

and shorthand
A(k) = [i∂t − ωlp(kp + k) + ωp]

have been introduced. The steady state solution that satisfies the saddle point has the form:

Ψk =

(
ψspk,cl

0

)
=

(√
2ψmf

k

0

)

where the quantum part is zero. Small fluctuations in energy and momentum around the steady
state are added. The momenta of the fluctuations appear in the momentum signature of the
fields and the fluctuations around each state momentum are the same up to the requirement
of momentum conservation of the fluctuations (the steady state solution already satisfies mo-
mentum conservation). If momentum conservation cannot be achieved with a finite value of the
momentum fluctuation (as is the case for terms linear in the fluctuation fields) then the term in
the action is not permitted. Fluctuations in both the classical (around the finite valued steady
state solution) and quantum (zero valued steady state solution) fields occur and a Nambu vector
for the steady state solution and fluctuations is constructed

∆Ψk+ρ =


δψk+ρ,cl

δψk−ρ,cl

δψk+ρ,q

δψk−ρ,q


where ρ is the momentum argument of the fluctuations, and the summation covers all possible
momenta around the steady state. Although the momenta of the fluctuations ρ could be included
in the momenta k,k′,q, this would allow fluctuations from two modes to appear at the same
place. Therefore the distinction between the momenta of the mean field modes k,k′,q and the
momenta of the fluctuations ρ which are then restricted such that the momentum ranges around
the modes do not overlap. To include fluctuations in the action, the forms

ψcl = ψsp + δψcl; ψq = δψq

are substituted into the Eq. (3.41) which gives half the terms in the action with fluctuations.
The other half is found by considering the change of variables,∫ a

−a
dxf(x) = −

∫ −a
a

dxf(−x) =
1

2

[∫ a

−a
dxf(x)−

∫ −a
a

dxf(−x)

]
(3.42)
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and summation
b∑
i=a

fi =
1

2

[
b∑

i=−a
fi +

a∑
i=−b

f−i

]
. (3.43)

In the first two terms of the action and in the last term, all the fields have the same momentum
signature and including the fluctuations is straightforward. When the fluctuations are included,
the first term in Eq. (3.41) becomes:∫

dt
∑
k,ρ

[ψ
sp

k,cl (A(k)− iκ(k)) δψk+ρ,q + δψk+ρ,cl (A(k + ρ)− iκ(k + ρ)) δψk+ρ,q

+δψk+ρ,q (A(k) + iκlp(k))ψspk,cl + δψk+ρ,q (A(k + ρ) + iκlp(k + ρ)) δψk+ρ,cl]

the first and third terms are linear in the fluctuations and so are not allowed. The second (pump)
term in Eq. (3.41) contains only a single quantum component of the field and is also linear in
fluctuations. The pump term is also not affected by the fluctuations due to the δ0,k factor which
links to the physical restriction that the pump couples only to polaritons with momentum k = 0.
The last term of Eq. (3.41) is quadratic in the quantum components of the fields and also in
fluctuations:

2i

∫∫
dtdt′

∑
k,ρ

i∈{c,x}

(
δψk+ρ,q(t)(h

i
k+ρ)

2κiFχi(t− t′)δψk+ρ,q(t
′)
)
.

The interaction term contains four fields at different momenta and the condition of momentum
conservation is imposed at the steady state level and on the fluctuations on top of the steady state.
To understand fully how the fluctuation fields appear in the interaction term, the momentum
of each field is considered to fluctuate independently: each of the four fields has its own set of
fluctuations, the relations between the momenta of these fluctuations will be found and then
momentum conservation used to eliminate terms as necessary and determine the new interaction
strengths.

The momentum signatures of the fluctuations are:

k → k + ρ1

k− q → k− q + ρ2

k′ → k′ + ρ3

k′ + q → k′ + q + ρ4

and the aim is to find the relations between ρ1, ρ2, ρ3 and ρ4 in each of the interaction terms.
The fields are all expanded according to the standard form, with the fluctuations around each
field contributing a summation over the different momenta ρi. The summation over the original
momenta and the interaction coefficient are not of interest at this stage and will be restored in
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due course. The first of the two interaction terms is expanded out in the basis of fields plus
fluctuations:

Ψ†kσ
K
1 Ψk−qΨ†k′Ψk′+q =

(
ψk,cl

∑
ρ2

δψk−q+ρ2,q +
∑
ρ1,ρ2

δψk+ρ1,clδψk−q+ρ2,q

+
∑
ρ1

δψk+ρ1,clψk−q,cl +
∑
ρ1,ρ2

δψk+ρ1,clδψk−q+ρ2,cl

)
×
(
ψk′,clψk′+q,cl + ψk′,cl

∑
ρ4

δψk′+q+ρ4,cl +
∑
ρ3

δψk′+ρ3,clψk′+q,cl

+
∑
ρ3,ρ4

δψk′+ρ3,clδψk′+q+ρ4,cl +
∑
ρ3,ρ4

δψk′+ρ3,qδψk′+q+ρ4,q

)
(3.44)

Expanding the first half leads to 20 terms; the second half is simply the substitution δψρ → δψ−ρ

and δψρ → δψ−ρ . To break this down, the terms in the first bracket are considered in order, and
the restrictions on the ρi that are necessary to satisfy momentum conservation of the polariton
scattering noted.

From the first term:∑
ρ2

ψk,clδψk−q+ρ2,qψk′,clψk′+q,cl Linear in fluctuations

∑
ρ2,ρ4

ψk,clδψk−q+ρ2,qψk′,clδψk′+q+ρ4,cl ⇒ ρ2 = −ρ4∑
ρ2,ρ3

ψk,clδψk−q+ρ2,qδψk′+ρ3,clψk′+q,cl ⇒ ρ2 = ρ3∑
ρ2,ρ3,ρ4

ψk,clδψk−q+ρ2,qδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ3 = ρ2 + ρ4∑
ρ2,ρ3,ρ4

ψk,clδψk−q+ρ2,qδψk′+ρ3,qδψk′+q+ρ4,q ⇒ ρ3 = ρ2 + ρ4

From the second term:∑
ρ1,ρ2

δψk+ρ1,clδψk−q+ρ2,qψk′,clψk′+q,cl ⇒ ρ1 = ρ2∑
ρ1,ρ2,ρ4

δψk+ρ1,clδψk−q+ρ2,qψk′,clδψk′+q+ρ4,cl ⇒ ρ1 = ρ2 + ρ4∑
ρ1,ρ2,ρ3

δψk+ρ1,clδψk−q+ρ2,qδψk′+ρ3,clψk′+q,cl ⇒ ρ1 + ρ3 = ρ2∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,clδψk−q+ρ2,qδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ2 + ρ4∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,clδψk−q+ρ2,qδψk′+ρ3,qδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ2 + ρ4
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From the third term: ∑
ρ1

δψk+ρ1,qψk−q,clψk′,clψk′+q,cl Linear in fluctuations

∑
ρ1,ρ4

δψk+ρ1,qψk−q,clψk′,clδψk′+q+ρ4,cl ⇒ ρ1 = ρ4∑
ρ1,ρ3

δψk+ρ1,qψk−q,clδψk′+ρ3,clψk′+q,cl ⇒ ρ1 = −ρ3∑
ρ1,ρ3,ρ4

δψk+ρ1,qψk−q,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ4∑
ρ1,,ρ3,ρ4

δψk+ρ1,qψk−q,clδψk′+ρ3,qδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ4

From the fourth term:∑
ρ1,ρ2

δψk+ρ1,qδψk−q+ρ2,clψk′,clψk′+q,cl ⇒ ρ1 = ρ2∑
ρ1,ρ2,ρ4

δψk+ρ1,qδψk−q+ρ2,clψk′,clδψk′+q+ρ4,cl ⇒ ρ1 = ρ2 + ρ4∑
ρ1,ρ2,ρ3

δψk+ρ1,qδψk−q+ρ2,clδψk′+ρ3,clψk′+q,cl ⇒ ρ1 + ρ3 = ρ2∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,qδψk−q+ρ2,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ2 + ρ4∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,qδψk−q+ρ2,clδψk′+ρ3,qδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ2 + ρ4

The Nambu vector form requires a single fluctuation field, which means that the |ρi| have to
be equal. Any terms that are cubic in the fluctuations are discarded since enforcing equal amp-
litudes of momenta would now break momentum conservation (the linear terms have already
been discarded as discussed above and the mean field states already satisfy momentum conser-
vation). Several possible combinations of momentum fluctuation arguments are now possible, as
detailed in table 3.3

ρ1 ρ3 ρ2 ρ4

±ρ ±ρ
±ρ ±ρ

±ρ ±ρ
±ρ ±ρ

±ρ ∓ρ
±ρ ∓ρ

±ρ ±ρ ∓ρ ∓ρ
±ρ ∓ρ ±ρ ∓ρ

Table 3.3: Momentum signatures of fluctuations according to momentum conservation in a single
momentum field on top of state that satisfies momentum conservation.
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The implications of the momentum conservation are the same for the second part of the
interaction term. For constructing the complete action of general fluctuations, it is useful to
expand out as before:

Ψ†kΨk−qΨ†kσ
K
1 Ψk−q =

(
ψk,clψk−q,cl + ψk,cl

∑
ρ2

δψk−q+ρ2,cl

+
∑
ρ1

δψk+ρ1,clψk−q,cl +
∑
ρ1,ρ2

δψk+ρ1,clδψk−q+ρ2,cl

+
∑
ρ1,ρ2

δψk+ρ1,qδψk−q+ρ2,q

)
×
(
ψk′,cl

∑
ρ4

δψk′+q+ρ4,q +
∑
ρ3,ρ4

δψk′+ρ3,clδψk′+q+ρ4,q

+
∑
ρ3

δψk′+ρ3,clψk′+q,cl +
∑
ρ3,ρ4

δψk′+ρ3,clδψk′+q+ρ4,cl

)
. (3.45)

Again, considering the terms resulting from the first bracket individually is convenient.

From the first term:∑
ρ4

ψk,clψk−q,clψk′,clδψk′+q+ρ4,q Linear in fluctuations

∑
ρ3,ρ4

ψk,clψk−q,clδψk′+ρ3,clδψk′+q+ρ4,q ⇒ ρ3 = ρ4∑
ρ3

ψk,clψk−q,clδψk′+ρ3,clψk′+q,cl Linear in fluctuations

∑
ρ3,ρ4

ψk,clψk−q,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ3 = ρ4

From the second term:∑
ρ2,ρ4

ψk,clδψk−q+ρ2,clψk′,clδψk′+q+ρ4,q ⇒ ρ2 = −ρ4∑
ρ2,ρ3,ρ4

ψk,clδψk−q+ρ2,clδψk′+ρ3,clδψk′+q+ρ4,q ⇒ ρ3 = ρ2 + ρ4∑
ρ2,ρ3

ψk,clδψk−q+ρ2,clδψk′+ρ3,clψk′+q,cl ⇒ ρ2 = ρ3∑
ρ2,ρ3,ρ4

ψk,clδψk−q+ρ2,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ3 = ρ2 + ρ4

From the third term:∑
ρ1,ρ4

δψk+ρ1,clψk−q,clψk′,clδψk′+q+ρ4,q ⇒ ρ1 = ρ4
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∑
ρ1,ρ3,ρ4

δψk+ρ1,clψk−q,clδψk′+ρ3,clδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ4∑
ρ1,ρ3

δψk+ρ1,clψk−q,clδψk′+ρ3,clψk′+q,cl ⇒ ρ1 = −ρ3∑
ρ1,ρ3,ρ4

δψk+ρ1,clψk−q,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ4

From the fourth term:∑
ρ1,ρ2,ρ4

δψk+ρ1,clδψk−q+ρ2,clψk′,clδψk′+q+ρ4,q ⇒ ρ1 = ρ2 + ρ4∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,clδψk−q+ρ2,clδψk′+ρ3,clδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ2 + ρ4∑
ρ1,ρ2,ρ3

δψk+ρ1,clδψk−q+ρ2,clδψk′+ρ3,clψk′+q,cl ⇒ ρ1 + ρ3 = ρ4∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,clδψk−q+ρ2,clδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ2 + ρ4

From the fifth term:∑
ρ1,ρ2,ρ4

δψk+ρ1,qδψk−q+ρ2,qψk′,clδψk′+q+ρ4,q ⇒ ρ1 = ρ2 + ρ4∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,qδψk−q+ρ2,qδψk′+ρ3,clδψk′+q+ρ4,q ⇒ ρ1 + ρ3 = ρ2 + ρ4∑
ρ1,ρ2,ρ3

δψk+ρ1,qδψk−q+ρ2,qδψk′+ρ3,clψk′+q,cl ⇒ ρ1 + ρ3 = ρ2∑
ρ1,ρ2,ρ3,ρ4

δψk+ρ1,qδψk−q+ρ2,qδψk′+ρ3,clδψk′+q+ρ4,cl ⇒ ρ1 + ρ3 = ρ2 + ρ4

For the calculation of the inverse Green’s functions, only terms that are quadratic in the fluctu-
ations are kept; the terms that are quartic in the fluctuations that satisfy momentum conservation
are considered to be small compared to those that are quadratic in the fluctuations. The action
that is quadratic in fluctuations includes a summation over the momenta of the fluctuations:

iS[∆Ψ] =∫
dt
{∑

k,ρ

[δψk+ρ,cl (A(k + ρ)− iκ(k + ρ)) δψk+ρ,q + δψk+ρ,q (A(k + ρ) + iκ(k + ρ)) δψk+ρ,cl]

− 1

4

∑
k,k′,q
ρ

[
Vk,k′,q−ρ(ψk,clδψk−q+ρ,qψk′,clδψk′+q−ρ,cl + ψk,clδψk−q+ρ,clψk′,clδψk′+q−ρ,q)

+ Vk,k′+ρ,q−ρ(ψk,clδψk−q+ρ,clδψk′+ρ,clψk′+q,cl + ψk,clδψk−q+ρ,qδψk′+ρ,clψk′+q,cl)

+ Vk+ρ,k′,q(δψk+ρ,clδψk−q+ρ,qψk′,clψk′+q,cl + δψk+ρ,qδψk−q+ρ,clψk′,clψk′+q,cl)
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+ Vk+ρ,k′,q+ρ(δψk+ρ,qψk−q,clψk′,clδψk′+q+ρ,cl + δψk+ρ,clψk−q,clψk′,clδψk′+q+ρ,q)

+ Vk,k′+ρ,q(ψk,clψk−q,clδψk′+ρ,clδψk′+q+ρ,q + ψk,clψk−q,clδψk′+ρ,clδψk′+q+ρ,cl)

+ Vk+ρ,k′−ρ,q+ρ(δψk+ρ,qψk−q,clδψk′−ρ,clψk′+q,cl + δψk+ρ,clψk−q,clδψk′−ρ,clψk′+q,cl)
]}

− 2i

∫∫
dtdt′

∑
k,ρ

i∈{c,x}

(
δψk+ρ,q(t)(h

i
k+ρ)

2κiFχi(t− t′)δψk+ρ,q(t
′)
)

(3.46)

All quantities of interest will be calculated in energy-momentum space so the Fourier transform
is performed. In Eq. (3.46), only half the necessary fields are present, the remaining fields are
restored by using Eqs. (3.42) and (3.43), and the action including fluctuations has the form:

iS[∆Ψ] =

∫
dω
∑
ρ

∆Ψ†ρ(ω)

(
0 [D−1]A

[D−1]R [D−1]K

)
∆Ψρ(ω) (3.47)

where [D−1]{R/A/K} = [D−1]{R/A/K}(ω, ρ) and R,A,K indicate the retarded, advanced and
Keldysh components of the inverse Green’s function respectively. The summation over the fluc-
tuation momenta ρ is included explicitly, while the system’s steady state momenta are hidden.
Without making an explicit choice of the system momenta k,k′ and q, nothing more can be said
about the general form of the inverse Green’s functions. The fluctuations are written using a
Nambu vector form [21]:

∆Ψρ(ω) =


δψρ,cl(ω)

δψ̄−ρ,cl(−ω)

δψρ,q(ω)

δψ̄−ρ,q(−ω)

 , (3.48)

where each δψ has the structure (δψ1, δψ2 . . .)
T for system momenta km = 1, 2 . . . and the fluctu-

ations are around these momenta (±ρ(±ω)→km±ρ (ωm ± ω)). Here, ω is the energy fluctuation
away from the system momentum (energy conservation on ω could have been used instead of
momentum conservation to justify discarding terms linear and cubic in the fluctuations).

3.2.8 Inversion of Keldysh rotation: physical quantities

To calculate physical observables such as the luminescence and absorption spectra of the polariton
system, the Keldysh rotation is inverted to find the forwards (<) and backwards (>) Green’s
functions [21,70,71]:

D<,> =
1

2
(DK ∓ (DR −DA)); (3.49)

D< = −i〈ψfψ†b〉,

D> = −i〈ψbψ†f 〉.
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D< describe the average density of particles in a system with energy ω and momentum ρ, while
D> is the density of states available to an additional particle [88]. The incoherent luminescence
and absorption spectra around the mean field can be defined as [21]:

L(ω, ρ) =
i

2π
D<(ω, ρ), (3.50)

A(ω, ρ) =
i

2π
D>(ω, ρ). (3.51)

The finite occupations from the mean field are not included; these are spectra of the fluctuations
only. One important feature is that DR,A,K all contain det([D−1]R) in the denominator; if
this is zero while the numerator remains non-zero, then the luminescence or absorption diverges,
indicating that the mean field solution is unstable and that there is a transition to another phase.

In experiments polaritons are observed through the photon losses from the microcavities. The
photon luminescence is obtained by extracting the photon part through multiplication by the
(momentum dependent) photon fraction C2(ρ+ kp), defined in section 2.3:

Lphot = C2(ρ+ kp)Llp. (3.52)

The spectral weight is defined as the difference between the absorption and luminescence. In
terms of the Green’s functions [91],

SW (ω, ρ) = A(ω, ρ)− L(ω, ρ) =
i

2π
(DR −DA), (3.53)

or 1/(2π) times the spectral response [72] or spectral function [88].

3.3 Pump only case and OPO threshold

As in previous studies of polariton OPO, the first step is to investigate the case of a single
pump mode with a well defined energy and momentum [28,29]. The mean field occupations and
complex amplitudes are calculated and fluctuations are then added to obtain the inverse Green’s
functions according to the scheme outlined in the previous section. At this point, it is useful to
set the convention that the pump strength refers to Flp while the pump power is Ip = |Flp|2.

3.3.1 Pump only mean field and fluctuations

The pump only mean field is found by choosing k = k′ = q = 0, where the polariton scattering
remains within the pump mode. This can be done either in Eq. (3.40) or in the action and the
saddle point then calculated, the latter approach is followed here. The action in the case of a
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single mode at the pump is:

S[Ψ0] =

∫
dt

{
Ψ†0(i∂t − ωlp(kp) + ωp)σ

K
1 Ψ0 −

√
2Flp(ψ0,q + ψ0,q)−

1

2
V0,0,0Ψ†0σ

K
1 Ψ0Ψ†0Ψ0

}

+

∫∫
dtdt′Ψ†0(t)

 0 −iκlp(0)δ(t− t′)
iκlp(0)δ(t− t′) 2i

∑
i∈{c,x}

(hi0)2κiFχi(t− t′)

Ψ0(t′) (3.54)

where the interaction term has a factor 1/2 instead of 1/4 since when all four fields have the
same momentum, Ψ†kσ

K
1 ΨkΨ†kΨk = Ψ†kΨkΨ†kσ

K
1 Ψk. The cGPE for the complex amplitude of

the pump mode ψmf
0 and the applied pump Flp is [19, 28,30]:

[i∂t − ωlp(kp) + ωp − V0,0,0|ψmf
0 (t)|2 + iκlp(0)]ψmf

0 (t)− Flp = 0. (3.55)

This is rearranged for Flp:

Flp = [i∂t − ωlp(kp) + ωp − V0,0,0|ψmf
0 (t)|2 + iκlp(0)]ψmf

0 (t). (3.56)

The simplest possible form of the mean field is a plane wave ψmf
kp

(t) = ψmf
kp
eiωpt in the lab

frame [28–30]. Due to the gauge transformation to the pump frame, a plane wave at the pump
mode is simply ψmf

0 . In the steady state, the partial derivative gives zero and

Flp = −
[
ωlp(kp)− ωp + V0,0,0|ψmf

0 |2 − iκlp(0)
]
ψmf
0 . (3.57)

To proceed further, the pump power Ip = |Flp|2 is calculated:

Ip =
[
(ωlp(kp)− ωp + V0,0,0np)

2 + κ2
lp(0)

]
np (3.58)

where np = |ψmf0 |2 is the polariton occupation at the pump mode. Since all quantities are real,
Ip can be plotted as a function of np; np is the input parameter for the theoretical analysis while
in experiments and numerical simulations Flp or Ip is controlled directly. For many calculations,
the complex amplitude ψmf

0 is required. The pump is applied externally, so can have any form.
In particular, choosing Flp to be real (and positive) gives:

Flp = (+)

√[
(ωlp(kp)− ωp + V0,0,0np)2 + κ2

lp(0)
]
np, (3.59)

and Eq. (3.57) can be solved for complex ψmf
0 .

Including fluctuations (with momenta k) is straightforward as there is only one mode and

ψcl →
√

2ψmf
0 +

∑
k

δψk,cl ; ψq →
∑
k

δψk,q
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are substituted into the mean field action (Eq. (3.54)). The action with the fluctuations included
is similar to Eq. (3.46), but there are no complications due to the presence of many modes.
Keeping only terms that are second order in the fluctuations:

iS[∆Ψ] =

∫
dt
{∑

k

[δψk,cl (A(k)− iκlp(k)) δψk,q + δψk,q (A(k) + iκlp(k)) δψk,cl]

− 1

2

∑
k

∆Ψ†k


0 0 V++|ψ0,cl|2 0

0 0 V+−ψ
2

0,cl V−−|ψ0,cl|2

V++|ψ0,cl|2 V+−ψ
2
0,cl 0 0

0 V−−|ψ0,cl|2 0 0

∆Ψk

]}

+ 2i

∫∫
dtdt′

∑
k

i∈{c,x}

(
δψk,q(t)(h

i
k)2κiFχi(t− t′)δψk,q(t

′)
)
. (3.60)

The interaction term uses the Nambu vector of all fluctuations defined in Eq. (3.48) and the
interaction strengths include the momentum signatures of the fluctuations. In the off-diagonal
terms, V+− = V0,0,k = V0,0,−k = V0,k,−k = gxX

2(kp)X(kp + k)X(kp − k), and the diagonal
terms contain fluctuations with the same signature: V±± = gxX

2(k)X2(kp ± k).

Performing the Fourier transform into the energy basis, the partial derivative becomes ω.
The additional terms are found using Eqs. (3.42) and (3.43) and the result is written in the form
of Eq. (3.47) with the sub-matrices:

[D−1]
R

=
1

2

(
ω − α+ + iκ+

lp −β
−β −ω − α− − iκ−lp

)
, (3.61)

[D−1]
A

=
1

2

(
ω − α+ − iκ+

lp −β
−β −ω − α− + iκ−lp

)
, (3.62)

[D−1]
K

=
1

2


2i
∑

i∈{c,x}

(hik)2κiF
+
χi 0

0 2i
∑

i∈{c,x}

(hi−k)2κiF
−
χi

 . (3.63)

In general, the properties are set by the mean field occupation and φspcl is replaced by
√

2ψmf

and the factor 1/2 is removed from the interaction terms. The ± superscripts indicate the sign
of the energy and momentum arguments: a positive sign indicates momenta and energies above
the pump mode while a negative sign is for values below the pump mode. Since the summation
includes both positive and negative values of momenta, the signs really indicate the relation
between the momentum arguments of the elements. For example, the diagonal elements of the
inverse retarded Green’s function have the symmetry

[D−1]R2,2(ω,k) =
(
[D−1]R1,1(−ω,−k)

)∗
.
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In Eqs. (3.61) and (3.62) the following shorthands have been introduced and will be used
throughout:

α± = ωlp(kp ± k)− ωp + 2V±±|ψmf
0 |2; (3.64)

β = V+−(ψmf
0 )2. (3.65)

The information contained in the inverse retarded Green’s function is the same as that encoded
in the linear response matrix [21]. In the linear response analysis, the equation for the eigenvalues
ω is L(k)− ω12 where [28,30]

L(δk) =

(
ωlp(−)− ωp − iκ−lp + 2Vp−−|P |2 Vp+−P

2

−Vp+−P ∗2 −ωlp(+) + ωp − iκ+
lp − 2Vp++|P |2

)
. (3.66)

Comparing Eqs. (3.61) and (3.66) leads to the conclusion that L(k) = −2σz[D
−1]R(0,−k) where

the −k signature is a result of different sign conventions in defining the fluctuations [28,30].

Solving det([DR]−1) = 0 for complex ω is equivalent to finding the complex eigenvalues
in linear response analysis. The real parts of ω give the spectra of the excitations while the
imaginary parts determine whether the mean field is stable to small amplitude fluctuations. If
an imaginary part is positive, then the proposed state is unstable [92]. The determinant is

det([DR]−1) =
1

4

(
(−ω − α− − iκ−lp)(ω − α

+ + iκ+
lp)− |β|

2
)

(3.67)

=
1

4

(
− ω2 − ω[α− − α+ + i(κ−lp + κ+

lp)]− i(κ
+
lpα
− − κ−lpα

+)

+α−α+ − |β|2 + κ−lpκ
+
lp

)
.

The complex eigenvalues ω ⇒ ω± are:

ω± =
1

2

(
α+ − α− − i(κ+

lp + κ−lp)

±
√

(α+ + α−)2 − 4|β|2 − (κ−lp − κ
+
lp)

2 + 2i(α− + α+)(κ−lp − κ
+
lp)
)
. (3.68)

The pump-only state is unstable if the imaginary part of ω+ or ω− is positive. The transition
occurs when =(ω±) = 0 or

κ+
lp + κ−lp

2
= ±=


√√√√[α+ + α−

2
− i

κ+
lp − κ

−
lp

2

]2

− V 2
p+−|ψmf |

4

 .

For the imaginary part of one of the eigenvalues to become positive, or vary at all from −i(κ−lp +

κ+
lp)/2, the discriminant must be negative. When this occurs, the real parts of the eigenvalues
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become equal:

<(ω±) =
α+ − α−

2
. (3.69)

Meanwhile, when the discriminant of the square root is positive, the eigenvalues have the same
(negative) imaginary part, but their real parts differ [28,30].

The determinant of the inverse retarded Green’s function is a complex function, so the condi-
tion det([D−1]R) = 0 is equivalent to the real and imaginary parts of det([D−1]R) equal to zero
simultaneously [21]. Splitting the determinant into its real and imaginary parts gives:

<[det([D−1]R)] =
1

4
(−ω2 − ω(α− − α+) + α−α+ + κ−lpκ

+
lp − |β|

2), (3.70)

=[det([D−1]R)] =
1

4

(
−ω(κ−lp + κ+

lp) + α+κ−lp − α
−κ+

lp

)
, (3.71)

which are solved for real ω. The real part, <[det([D−1]R)] = 0, gives the poles ω → ξ±(k), and
the imaginary part, =[det([D−1]R)] = 0, gives an effective chemical potential ω → µeff(k):

ξ±(k) =
α+ − α−

2
± 1

2

√
(α− + α+)2 + 4κ−lpκ

+
lp − 4|β|2, (3.72)

µeff(k) =
α+κ−lp − α−κ

+
lp

κ+
lp + κ−lp

. (3.73)

The determinant is zero for a real ω when the effective chemical potential crosses the poles,
ξ±(k) = µeff(k).

3.3.2 Inversion of pump only Green’s functions

From the inverse Green’s functions, the retarded, advanced and Keldysh Green’s functions,
DR, DA and DK are calculated. In the pump only case, the matrix Fs, which describes the
occupations of the system, can also be calculated. Taking the inverse of [D−1]R gives:

DR =
1

2 det([D−1]R)

(
−ω − α− − iκ−lp β

β ω − α+ + iκ+
lp

)
. (3.74)

The advanced Green’s function is the Hermitian conjugate of the retarded Green’s function [70,
71]. Since det([DR]−1) = det([DA]−1)∗, DR and DA can be written with the same denominator:

DR =
det([D−1]A)

det([D−1]A)
DR =

det([D−1]R)∗

2|det([D−1]R)|2

(
−ω − α− − iκ−lp β

β ω − α+ + iκ+
lp

)
, (3.75)

DA =
det([D−1]R)

det([D−1]R)
DA =

det([D−1]R)

2|det([D−1]R)|2

(
−ω − α− + iκ−lp β

β ω − α+ − iκ+
lp

)
. (3.76)
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The Keldysh Green’s function is calculated using Eq. (3.11) as:

DK = − i

4|det([D−1]R)|2


κ+
lpF

+
χ | − ω − α− − iκ−lp|2 κ+

lpF
+
χ (−ω − α− − iκ−lp)β

+κ−lpF
−
χ |β|2 +κ−lpF

−
χ (ω − α+ − iκ+

lp)β

κ+
lpF

+
χ (−ω − α− + iκ−lp)β κ−lpF

−
χ |ω − α+ + iκ+

lp|2

+κ−lpF
−
χ (ω − α+ + iκ+

lp)β +κ+
lpF

+
χ |β|2

 (3.77)

with α±, β and ± as before, and the summation over the two baths in the inverse Green’s function
has been summarised by defining

F±χ =
∑

i∈{c,x}

(hi±k)2κiF
±
χi . (3.78)

In principle the distribution matrix Fs can be calculated directly from the Keldysh Green’s
function, but it is simpler to use the second expression of Eq. (3.10) since the off-diagonal
elements of [D−1]K are zero, then

Fs =
1

fden

(
fa fb

fc fd

)
(3.79)

with the elements

fden = 2
(
|β|2 − κ+

lpκ
−
lp

)(
κ−lp − κ

+
lp

)2 − 2κ+
lpκ
−
lp

(
2ω + α− − α+

)2
, (3.80)

fa = |β|2
(
κ−lp − κ

+
lp

)(
F−χ κ

−
lp + F+

χ κ
+
lp

)
− F+

χ κ
−
lpκ

+
lp

((
κ−lp − κ

+
lp

)2
+
(
2ω + α− − α+

)2)
, (3.81)

fb = βκ+
lpκ
−
lp

(
F−χ + F+

χ

)(
2ω + α− − α+ + i(κ−lp − κ

+
lp)
)
, (3.82)

fc = −βκ+
lpκ
−
lp

(
F−χ + F+

χ

)(
2ω + α− − α+ − i(κ−lp − κ

+
lp)
)

= −f∗b , (3.83)

fd = −|β|2
(
κ−lp − κ

+
lp

)(
F−χ κ

−
lp + F+

χ κ
+
lp

)
+ F−χ κ

−
lpκ

+
lp

((
κ−lp − κ

+
lp

)2
+
(
2ω + α− − α+

)2)
. (3.84)

3.3.3 Inversion of Keldysh rotation: physical quantities

In order to obtain information about the polariton system, physical quantities are of interest. In
particular the incoherent luminescence and absorption around a stable steady state solution and
their difference, the spectral weight, can be calculated if the proposed mean field steady state is
stable.

The luminescence L(ω,k) and absorption A(ω,k) are given by Eqs. (3.50) and (3.51). The
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matrices of the physical Green’s functions, D< and D>, are:

D< =
−i

2|det([D−1]R)|2

(
D<
a D<

b

D<
c D<

d

)
, (3.85)

D<
a =

1

2

(
κ+
lpF

+
χ [(ω + α−)2 + (κ−lp)

2] + κ−lpF
−
χ |β|2

)
− 2

[
(−ω − α−)=(det([D−1]R)) + κ−lp<(det([D−1]R))

]
,

D<
b =

β

2
[κ+
lpF

+
χ (−ω − α− − iκ−lp) + κ−lpF

−
χ (ω − α+ − iκ+

lp)]− 2β=(det([D−1]R)),

D<
c =

β

2
[κ+
lpF

+
χ (−ω − α− + iκ−lp) + κ−lpF

−
χ (ω − α+ + iκ+

lp)]− 2β=(det([D−1]R)),

D<
d =

1

2

(
κ−lpF

−
χ [(ω − α+)2 + (κ+

lp)
2] + κ+

lpF
+
χ |β|2

)
− 2

[
(ω − α+)=(det([D−1]R))− κ+

lp<(det([D−1]R))
]
,

D> =
−i

2|det([D−1]R)|2

(
D>
a D>

b

D>
c D>

d

)
, (3.86)

D>
a =

1

2

(
κ+
lpF

+
χ [(ω + α−)2 + (κ−lp)

2] + κ−lpF
−
χ |β|2

)
+ 2

[
(−ω − α−)=(det([D−1]R)) + κ−lp<(det([D−1]R))

]
,

D>
b =

β

2
[κ+
lpF

+
χ (−ω − α− − iκ−lp) + κ−lpF

−
χ (ω − α+ − iκ+

lp)] + 2β=(det([D−1]R)),

D>
c =

β

2
[κ+
lpF

+
χ (−ω − α− + iκ−lp) + κ−lpF

−
χ (ω − α+ + iκ+

lp)] + 2β=(det([D−1]R)),

D>
d =

1

2

(
κ−lpF

−
χ [(ω − α+)2 + (κ+

lp)
2] + κ+

lpF
+
χ |β|2

)
+ 2

[
(ω − α+)=(det([D−1]R))− κ+

lp<(det([D−1]R))
]
.

For a physical observable the ψ†ψ term is chosen which corresponds to the (1, 1) term in the
matrices. The luminescence is then:

L =
1

4π|det([D−1]R)|2
D<
a (3.87)

and the absorption:

A =
1

4π|det([D−1]R)|2
D>
a . (3.88)

The spectral weight is defined as the difference between the luminescence and absorption in Eq.
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(3.53). It is therefore proportional to

DA −DR =
−i

|det([D−1]R)|2


=(det([D−1]R))(−ω − α−) =(det([D−1]R))β

+κ−lp<(det([D−1]R))

=(det([D−1]R))β =(det([D−1]R))(ω − α+)

−κ+
lp<(det([D−1]R))

 . (3.89)

D<, D> and DR − DA all have a denominator |det([D−1]R)|2. If det([D−1]R) = 0 for a com-
bination of |ψmf |2, ω,k, then the denominator of all elements is zero and the quantities will
diverge unless the numerator is also zero. In Eqs. (3.85) - (3.89), the matrix elements have
been written in terms of the real and imaginary parts of det([D−1]R). When the determinant
is zero the elements of D<,> all contain finite numerators from the Keldysh contribution so the
luminescence and absorption diverge. Although all parts of DR−DA can be written in terms of
=,<(det([D−1]R)), these appear linearly in the numerator but quadratically in the denominator.
The denominator therefore goes to zero faster than the numerator and the spectral weight also
diverges at the phase transition.

3.3.4 Eigenvalues of the distribution matrix

The distribution matrix, Eqs.(3.79)-(3.84), is of interest in its own right as it describes the
difference between this driven-dissipative system and an equilibrium system where [69–71]

FEQ = coth
( ω

2T

)
1,

where 1 is the unit matrix. The eigenvalues of Fs can be calculated (taking general F+
χ 6= F−χ ):

λFs =
1

2fden

(
fa + fd ±

√
(fa − fd)2 + 4fbfc

)
. (3.90)

Fs and hence its eigenvalues diverge if fden = 0. Considering the denominator:

fden =
(
|β|2 − κ−lpκ

+
lp

)(
κ−lp − κ

+
lp

)2 − κ+
lpκ
−
lp

(
2ω + α− − α+

)2
and solving fden = 0 for ω gives

ω(k) =
α+ − α−

2
±

(κ−lp − κ
+
lp)

2

√
|β|2

κ+
lpκ
−
lp

− 1 (3.91)

which is independent of the bath distributions in Fχ. Although the term ‘effective chemical
potential’ was used to describe Eq. (3.73), calculated from =(det([D−1]R)) = 0, Eq. (3.91) is
really the effective chemical potential since it controls the divergence of the distribution. When
fden = 0, the numerators of Eqs. (3.81) - (3.84) remain finite and the distribution matrix diverges
at the phase transition. As will be seen later, these quantities coincide in the limit of constant
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polariton decay and Eq. (3.73) is used in all plots.

3.3.5 Limits of constants

So far, the form of the decay bath’s occupation has not been specified and the lower polariton
decay is momentum dependent as defined in Eq. (3.36). Two assumptions can be made: 1)
that the decay bath energies are large enough compared to the range of energies of interest
for Fχi(±) ≈ 1 to be valid; 2) that the exciton and photon decays are equal which makes the
polariton decay momentum independent. The first assumption is physical since the range of
energies of interest is small compared to the energies of the decay baths [21, 72], the second
simplification is not physical since the polariton decay is strongly momentum dependent [15].
This latter simplification is a useful reference since much of the work on the polariton OPO
regime does not account for momentum dependent decay [28,30,41].

1) Simplification: Fχi = 1 When both decay baths are assumed to be energetically far from
the system, the diagonal terms of the Keldysh part of the inverse Green’s function are still
momentum dependent, but contain only the Hopfield coefficients and the exciton and photon
decay rates. The terms with F±χ factors in Eqs. (3.63) and (3.77)- (3.88) reduce to C2(kp +

k)κc +X2(kp + k)κx = κ±lp. The effect is to introduce additional factors of the polariton decay.
For example, the Keldysh Green’s function is unaffected in form, but now reads:

DK = − i

4|det[D−1]R|2


(κ+
lp)

2| − ω − α− − iκ−lp|2 (κ+
lp)

2(−ω − α− − iκ−lp)β
+(κ−lp)

2|β|2 (+κ−lp)
2(ω − α+ − iκ+

lp)β

(κ+
lp)

2(−ω − α− + iκ−lp)β (κ−lp)
2|ω − α+ + iκ+

lp|2

+(κ−lp)2(ω − α+ + iκ+
lp)β +(κ+

lp)
2|β|2

 .

2) Limit: κlp(k) = κlp When the exciton and photon decays are assumed equal, Eqs. (3.72)
and (3.73) become

ξ±(k) =
α+ − α−

2
± 1

2

√
(α− + α+)2 + 4(κ2

lp − |β|2), (3.92)

µeff(k) =
α+ − α−

2
, (3.93)

and fden = 0 at

ω(k) =
α+ − α−

2
(3.94)

which is the same as Eq. (3.93); the divergences of the distribution matrix coincide with the
effective chemical potential in the limit of constant decay. Eqs. (3.92) and (3.93) define where
det([D−1]R) = 0.
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The complex eigenvalues from det([D−1]R) = 0 are:

ω±(k) =
α+ − α−

2
− iκlp ±

√(
α+ + α−

2

)2

− |β|2, (3.95)

the real part of which is the same as Eqs. (3.93) and (3.94) when the square root is imaginary.
If the limit of constant polariton decay is applied after the distributions of the two decay

baths are set to unity, the distribution matrix simplifies to

Fs =

(
−1 2β

2ω+α−−α+

2β
2ω+α−−α+ 1

)
. (3.96)

3.3.6 Effective temperature

In equilibrium, the distribution matrix is coth(ω/2T ), and diverges as 2T/ω in the limit of small
ω [69–71]. Thus, from a small ω expansion, the temperature T of an equilibrium system can be
inferred. In non-equilibrium systems, an effective temperature defined along similar lines can be
convenient for describing the system. It may also provide constraints on the effective noise term
in a Langevin description of a system, or as an analogy of a thermometer whereby two coupled
systems (or parts of a system) with the same effective temperature are in equilibrium [93].
One area in which the effective temperature occurs frequently is the study of driven amorphous
materials (e.g. shaken sand) [94, 95] in which the effective temperature is identified as being
associated with the degrees of freedom that are affected over long time scales [96,97].

By examining the distribution matrix in the Keldysh description of a system, an effective
temperature, characterised by a 1/ω divergence, may appear in systems that are far from equi-
librium [72, 73, 98–100]. In the polariton system studied, the short time scales are associated
with the decay baths that have been integrated out, so the description contains only the slow
dynamics.

In the limit of constant polariton decay and decay baths that are energetically far from the
system, the eigenvalues of the distribution matrix, Eq. (3.96), are:

λFs = ±

√
1 +

4|β|2

(2ω + α− − α+)2

≈ 2|β|
2ω + α− − α+

. (3.97)

These diverge when ω = (α+ − α−)/2 (the divergence is of the form 1/(ω − ωz) [72]) leading to

Teff = |β| = X2(kp)X(kp + k)X(kp − k)|ψmf
0 |2. (3.98)

There is also a trivial divergence of λFs at the pump; where the fluctuations in energy and
momentum are zero. The effective temperature of the polaritons as a result of the fluctuations
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around the mean field is set by the ‘blue shift’ of the polariton dispersion caused by the finite
occupation of the pump mode np = |ψmf

0 |2. There are local minima at k = 0, 2kp; the signal and
idler states form near these local minima. If the momentum dependence of the polariton decay
is retained (exciton decay less than photon decay), the numerator in the distribution matrix is
not cancelled and there no longer is a simple algebraic definition of an effective temperature.

3.4 OPO regime: three modes

Having determined that a system of coherently pumped polaritons restricted to the pump mode
is unstable towards the appearance of new modes, one near k = 0 and the other near 2kp,
the next step is to make a new ansatz that includes additional modes [19, 29, 30, 41]. This is
done for two additional modes, the signal and idler, within the Keldysh formalism and gives
cGPEs describing the mean field occupation of these modes. In the following, the momentum
dependence of the polariton decay is retained, although it is usually considered constant [1,29,41]
or different decays applied to the individual modes [30].

3.4.1 Mean field and cGPEs

There are several points at which the restriction to three modes can be made, all of which give
the same result. The momenta in the interaction term are also restricted so that only these three
modes are allowed as the result of the scattering. It is possible to make the ansatz as early as
the Hamiltonian by restricting to three momenta and therefore only the operators âks , âkp and
âki appear in the Hamiltonian.

The more common approach is to make the substitution of three plane wave modes into the
cGPE [29, 30, 41]. With the gauge transformation, this means substituting the new ansatz (in
the gauge transformed system)

ψmf = Sδk,−k̃e
iω̃t + Pδk,0 + Iδk,+k̃e

−iω̃t (3.99)

into Eq. (3.40). The signal is at an energy ω̃ and momentum k̃ below the pump (which is at
zero), while the idler is (by energy conservation) above the pump by the same amounts. The
mean field steady state can be calculated by requiring that ∂tS = ∂tP = ∂tI = 0. The pump Flp
is the same as below threshold.

Here, the restriction to the three modes is made at the level of the Keldysh action. The fields
are therefore formally subdivided into spaces around each of the three modes: ψ = ψs +ψp +ψi.
Each mode j has momentum kj , and in principle the three fields could each contain summations
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over momenta. The Keldysh action reads:

SOPO =

∫
dt
(
−
√

2Flp(ψ̄p,q + ψp,q) +
∑

j=s,p,i

[
ψ̄j,cl(i∂t − ωlp(kj) + ωp − iκlp)ψj,q

+ψ̄j,q(i∂t − ωlp(kj) + ωp + iκlp)ψj,cl)
]
−
{ ∑
j=s,p,i

Vjjjj
2

(ψ̄j,clψ̄j,q(ψ
2
j,cl + ψ2

j,q) +

Vsisi
[
(ψ̄s,clψ̄i,cl + ψ̄s,qψ̄i,q)(ψs,clψi,q + ψs,qψi,cl)

]
+
Vppsi

2

[
2(ψ̄s,clψ̄i,cl + ψ̄s,qψ̄i,q)ψp,clψp,q + (ψ̄s,clψ̄i,q + ψ̄s,qψ̄i,cl)(ψ

2
p,cl + ψ2

p,q)
]

+
∑
j=s,i

Vpjpj
[
(ψ̄p,clψ̄j,cl + ψ̄p,qψ̄j,q)(ψp,clψj,q + ψp,qψj,cl)

]
+ h.c.

})
+2i

∫∫
dtdt′

∑
j=s,p,i

ψ̄j,q(t)
∑

i∈{c,x}

(hikj )
2κiFχi(t− t′)ψj,q(t′). (3.100)

The interaction coefficients are now written with indices that indicate exactly which modes are
involved in each scattering process: Vi,j,k,l = gxX(ki)X(kj)X(kk)X(kl) for ki,j,k,l ∈ ks,kp,ki.

The saddle points are taken with respect to the three modes and the quantum fields set to
zero to find the cGPEs describing the three modes:

δS

δψs,q
= 0 ⇒

(
i∂t − ωlp(ks) + ωp + iκlp(ks)−

Vssss
2

ψ
sp

s,clψ
sp
s,cl − Vspspψ

sp

p,clψ
sp
p,cl

−Vsisiψ
sp

i,clψ
sp
i,cl

)
ψsps,cl −

Vppsi
2

ψ
sp

i,cl(ψ
sp
p,cl)

2 = 0; (3.101)

δS

δψp,q
= 0 ⇒

(
i∂t − ωlp(kp) + ωp + iκlp(kp)− Vspspψ

sp

s,clψ
sp
s,cl −

Vpppp
2

ψ
sp

p,clψ
sp
p,cl

−Vpipiψ
sp

i,clψ
sp
i,cl

)
ψspp,cl − Vppsiψ

sp

p,clψ
sp
s,clψ

sp
i,cl −

√
2Flp = 0; (3.102)

δS

δψi,q
= 0 ⇒

(
i∂t − ωlp(ki) + ωp + iκlp(ki)− Vsisiψ

sp

s,clψ
sp
s,cl − Vpipiψ

sp

p,clψ
sp
p,cl

−Viiii
2
ψ
sp

i,clψ
sp
i,cl

)
ψspi,cl −

Vppsi
2

ψ
sp

s,cl(ψ
sp
p,cl)

2 = 0. (3.103)

Making the substitution of the mean field: ψmf
j =

√
2ψspj,cl and dividing through by

√
2 leads to:

0 =
(
i∂t − ωlp(ks) + ωp + iκlp(ks)− Vssssψ

mf

s,clψ
mf
s,cl − 2Vspspψ

mf

p,clψ
mf
p,cl

− 2Vsisiψ
mf

i,clψ
mf
i,cl

)
ψmf
s,cl − Vppsiψ

mf

i,cl(ψ
mf
p,cl)

2;

0 =
(
i∂t − ωlp(kp) + ωp + iκlp(kp)− 2Vspspψ

mf

s,clψ
mf
s,cl − Vppppψ

mf

p,clψ
mf
p,cl

− 2Vpipiψ
mf

i,clψ
mf
i,cl

)
ψmf
p,cl − 2Vppsiψ

mf

p,clψ
mf
s,clψ

mf
i,cl − Flp;
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0 =
(
i∂t − ωlp(ki) + ωp + iκlp(ki)− 2Vsisiψ

mf

s,clψ
mf
s,cl − 2Vpipiψ

mf

p,clψ
mf
p,cl

− Viiiiψ
mf

i,clψ
mf
i,cl

)
ψmf
i,cl − Vppsiψ

mf

s,cl(ψ
mf
p,cl)

2.

Assuming that the steady states can be described as plane waves with complex amplitudes S, P, I,
the signal and idler momenta are defined relative to the pump as ks = kp − k̃ and ki = kp + k̃.
The energies are: ωs = ωp − ω̃ and ωi = ωp + ω̃, and the mean fields are as in Eq. (3.99):

ψmf
s = Sδk,−k̃e

iω̃t, (3.104)

ψmf
p = P, (3.105)

ψmf
i = Iδk,k̃e

−iω̃t. (3.106)

This gives the three coupled cGPEs of the OPO regime [30]

0 =
(
i∂t − ωlp(kp − k̃) + ωp + iκlp(kp − k̃)− Vssss|S|2 − 2Vspsp|P |2 − 2Vsisi|I|2

)
Seiω̃t

− VppsiI∗P 2eiω̃t;

0 =
(
i∂t − ωlp(kp) + ωp + iκlp(kp)− 2Vspsp|S|2 − Vpppp|P |2 − 2Vpipi|I|2

)
P

− 2VppsiP
∗SI − Flp;

0 =
(
i∂t − ωlp(kp + k̃) + ωp + iκlp(kp + k̃)− 2Vsisi|S|2 − 2Vpipi|P |2 − Viiii|I|2

)
Ie−iω̃t

− VppsiS∗P 2.

In the steady state, the amplitudes of the modes are constant so all i∂t(M) are zero, and the
exponentials give factors i(±iω̃) = ∓ω̃ in the equations for the signal and idler states. The
exponential itself cancels after the time derivative is taken.

It is convenient to simplify the notation:

κ(ks,p,i)→ κs,p,i, ωlp(ks,p,i)→ εs,p,i, X(ks,p,i)→ Xs,p,i, ns,p,i = |S|2, |P |2, |I|2

and write the interactions using the Hopfield coefficients for the time being. The three coupled
equations that describe the mean field occupation of the OPO state are [29]:

[εs − ω̃ − ωp − iκs + gxX
2
s (X2

sns + 2X2
pnp + 2X2

i ni)]S + gxXsX
2
pXiP

2I∗ = 0, (3.107)

[εp − ωp − iκp + gxX
2
p(2X2

sns +X2
pnp + 2X2

i ni)]P + 2gxXsX
2
pXiSP

∗I + Flp = 0, (3.108)

[εi + ω̃ − ωp − iκi + gxX
2
i (2X2

sns + 2X2
pnp +X2

i ni)]I + gxXsX
2
pXiS

∗P 2 = 0. (3.109)

These contain the external pump Flp which can be chosen to be real since the phase is set
externally, and four complex quantities: S, P, I and ω̃.

The complex mode amplitudes have the form M = |M |eiθm ; the phase of the pump mode
is locked to the external pump and is determined from Eq. (3.108), but there is freedom in the
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choice of the signal and idler phases. The relation between them is well defined [87], but their
values are spontaneously chosen at each realisation of an experiment [41, 87]. In the calculation
of the mean field, the phase of one of these modes can be chosen freely. The signal is chosen
to be real and the idler phase is then determined by the steady state equations (Eqs. (3.107) -
(3.109)). This phase freedom means that a shift of the signal phase e.g. θs → θs + ∆θ, would be
accompanied by a simultaneous change in the idler phase in the opposite direction, θi → θi−∆θ,
while the equations of motion remain unchanged [41], therefore one of S and I can be chosen to
be real.

The energy ω̃ is real for a physical solution. The remaining complex quantities are therefore
P and I. The signal momentum is also an unknown, but to solve the mean field equations, it has
to be set (arbitrarily); here ks = 0 is used. The choice of the signal momentum is investigated
in chapter 4.

In the first instance, the mean field occupations of the three modes are of interest. This re-
quires some fairly substantial rearrangement which is detailed below. For simplicity, the following
shorthand is introduced into the mean field equations:

ξs = εs − ωp + gxX
2
s (X2

sns + 2X2
pnp + 2X2

i ni),

ξp = εp − ωp + gxX
2
p(2X2

sns +X2
pnp + 2X2

i ni),

ξi = εi − ωp + gxX
2
i (2X2

sns + 2X2
pnp +X2

i ni),

η = gxXsX
2
pXi.

First, Eq. (3.107) is rearranged for P 2:

P 2 = − (ξs − ω̃ − iκs)S
ηI∗

. (3.110)

This is then substituted into Eq. (3.109) the result multiplied by I∗:

(ξi + ω̃ − iκi)ni − (ξs − ω̃ − iκs)ns = 0.

The real and imaginary parts must be zero independently and are therefore considered separately.
From the imaginary part,

−κini + κsns = 0,

so

ni =
κs
κi
ns = Γsins, (3.111)

X2
i ni =

κsX
2
i

κiX2
s

X2
sns = γsiX

2
sns, (3.112)

where the abbreviations Γsi and γsi have been introduced as ratios of the decay rates at the
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different momenta, the second of which is scaled by the exciton fraction of the polaritons. This
is an expression of the Manley-Rowe condition and states that the occupation of the idler mode
is proportional to the signal mode [29, 31, 58]. If the polariton decay is constant (κx = κc) then
the signal and idler occupations are the same.

Meanwhile, the real part:
(ξi + ω̃)ni − (ξs − ω̃)ns = 0,

is rearranged for ω̃:

ω̃ =
ξsns − ξini
ni + ns

=
ξs − ξiΓsi

1 + Γsi
. (3.113)

This is a function of ns and np. Restoring the definitions of ξs and ξi and writing ni in terms of
ns leads to

ω̃ = R+ Tns, (3.114)

where

R =
εs − Γsiεi − ωp + Γsiωp + 2gxX

2
p(X2

s −X2
i )np

1 + Γsi
,

T =
gxX

2
s [X2

s (1 + γsi)−X2
i (2 + γsi)]

1 + Γsi
.

The next step is to find the relation between np and ns. Eq. (3.110) is used to calculate

|P |4 = n2
p =

(ξs − ω̃)2 + κ2
p

Γsiη2
. (3.115)

ξs is written in a similar spirit to ω̃
ξs = W +Qns, (3.116)

and Q and W are defined as:

W = εs − ωp + 2gxX
2
sX

2
pnp,

Q = gxX
2
s (X2

s + 2γsi).

ω̃ from Eq. (3.114), and ξs from Eq. (3.116) are now substituted into Eq. (3.115):

n2
p =

[(W +Qns)− (R+ Tns)]
2 + κ2

p

Γsiη2
, (3.117)

which is rearranged to form a quadratic equation for ns:

an2
s + bns + c = 0
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with

a = (Q+ T )2

=
[
2gxX

4
s (1 + 2γsi)− gxX

2
sX

2
i (2 + γsi)

]2
,

b = 2W (Q+R+ T ) + 2RT

= 2
(
εs − ωp + 2gxX

2
sX

2
pnp

)(εs − Γsiεi − ωp + Γsiωp + 2gxX
2
p(X2

s −X2
i )np

1 + Γsi

+ gxX
2
s (X2

s + 2γsi) +
gxX

2
s [X2

s (1 + γsi)−X2
i (2 + γsi)]

1 + Γsi

)

+ 2

(
εs − Γsiεi − ωp + Γsiωp + 2gxX

2
p(X2

s −X2
i )np

1 + Γsi

)(
gxX

2
s (X2

s (1 + γsi)−X2
i (2 + γsi))

1 + Γsi

)
,

c = (W +R)2 + κ2
s − η2Γsin

2
p

=

(
εs − ωp + 2gxX

2
sX

2
pnp +

εs − Γsiεi − ωp + Γsiωp + 2gxX
2
p(X2

s −X2
i )np

1 + Γsi

)2

+ κ2
s − η2Γsin

2
p.

In the quadratic equation for ns, a depends only on the choice of the signal and pump momenta;
while c and b are quadratic in the pump mode occupation. The signal occupation is then simply
the result of solving the standard quadratic equation and has the solutions

ns =
−b±

√
b2 − 4ac

2a
.

For there to be OPO, ns must be real and positive; for a given np, both possible ns values are
calculated; if neither is real and positive, the mean field signal occupation is zero and the pump
strength Flp is as calculated in the pump only case (note that with ns = ni = 0, Eq. (3.108)
is exactly the pump only result of Eq. (3.57)). The occupations of the three modes ns,p,i can
now be calculated if one is known; the rearrangement followed here assumes that np is the input
quantity from which ns, ni and Flp are calculated.

To relate the values here to the pump strength Flp, Eq. (3.108) is rearranged:

Flp = −(ξp − iκp)P − 2ηSP ∗I

In calculating |Flp|2, the SP ∗I term is not straightforward, but from Eq. (3.107), can write:

S =
−ηP 2I∗

ξs − ω̃ − iκs
(3.118)

so
Flp =

(
−(ξp − iκp) +

2η2ninp(ξs − ω̃ + iκs)

ξs − ω̃)2 + κ2
s

)
P.
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Taking the modulus squared gives the pump power:

Ip = |Flp|2 = np

[(
ξp −

2η2ninp(ξs − ω̃)

(ξs − ω̃)2 + κ2
s

)2

+

(
κp +

2κsη
2ninp

(ξs − ω̃)2 + κ2
s

)2
]
. (3.119)

In all cases, the optical limiter regime of the pump mode is considered and in the absence of
OPO, |P |2 is monotonic in |Flp|2. The relations between X2

pnp and X2
sns hold whatever the

detuning of the laser from the lower polariton curve (i.e. optical limiter or bistable regime)
but the mean field behaviours in the bistable regime would be much more complex and are not
considered further.

In order to calculate more than the mode occupations, it is necessary to use the complex
modes P, S, I. Since the values of ns,p,i are known, Eqs. (3.107)-(3.109) become:

(Ξs − ω̃)S + ηP 2I∗ = 0, (3.120)

ΞpP + 2ηSP ∗I + Flp = 0, (3.121)

(Ξi + ω̃)I + ηS∗P 2 = 0, (3.122)

with
Ξm = εm − ωp + 2gxX

2
m(X2

sns +X2
pnp +X2

i ni)− gxX
4
mnm − iκm. (3.123)

S from Eq. (3.118) is substituted into Eq. (3.121),

Flp =

(
2η2npni
Ξs − ω̃

− Ξp

)
P,

and
P =

Flp
2η2npni
Ξs−ω̃ − Ξp

with Flp =
√
|Flp|2 ∈ R. Since S can be chosen to be real, rearranging Eq. (3.122) for I gives

the last of the mean field values of the system:

I =
−ηS∗P 2

Ξi + ω̃
. (3.124)

3.4.2 Fluctuations and inverse Green’s functions

To include fluctuations around the mean field of the OPO, the standard procedure is followed.
Fluctuations exist around each of the three modes, but are restricted to share a single energy
and momentum space. Therefore, the momenta of the fluctuations are restricted as described in
section 3.2.7, while there are three copies of the fluctuations due to the three modes. The part
of the action that is second order in the fluctuation fields is therefore between the vectors ∆Ψ†k
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and ∆Ψk with:

∆Ψk =

(
δΨk,cl

δΨk,q

)
; δΨk,{cl,q} =



δψk,{cl,q},s

δψ−k,{cl,q},s

δψk,{cl,q},p

δψ−k,{cl,q},p

δψk,{cl,q},i

δψ−k,{cl,q},i


; (3.125)

and the mode signature s, p, i defines the mode around which the fluctuations exist.

The inverse Green’s functions can be written compactly [1,41,101], but here the elements are
written out explicitly (since it is not especially easy to see the result of the summations). Since
the inverse advanced Green’s function is simply the Hermitian conjugate of the inverse retarded
Green’s function, [D−1]R and [D−1]K give all relevant terms. The symmetries under complex
conjugation are noted, but not the symmetries that result from k↔ −k (and ω ↔ −ω).

The matrix elements of the inverse retarded Green’s function are:

[D−1]R(1,1) = ω + ωp − ω̃ − ωlp(ks + k) + iκlp(ks + k)− 2gxX
2(ks + k)(X2

sns +X2
pnp +X2

i ni),

[D−1]R(1,2) = −2gxX(ks + k)X(kp + k)(XpXsSP
∗ +XpXiPI

∗),

[D−1]R(1,3) = −2gxX(ks + k)X(ki + k)XsXiSI
∗,

[D−1]R(1,4) = −gxX(ks + k)X(ks − k)X2
sS

2,

[D−1]R(1,5) = −2gxX(ks + k)X(kp − k)XsXpSP

[D−1]R(1,6) = −gxX(ks + k)X(ki − k)(X2
pP

2 + 2XsXiSI),

[D−1]R(2,1) = ([D−1]R(1,2))
∗ = −2gxX(ks + k)X(kp + k)(XsXpS

∗P +XpXiP
∗I),

[D−1]R(2,2) = ω + ωp − ωlp(kp + k) + iκlp(kp + k)− 2gxX
2(k+k)(X2

sns +X2
pnp +X2

i ni),

[D−1]R(2,3) = ([D−1]R(1,2)) = −2gxX(kp + k)X(ki + k)(XsXpSP
∗ +XpXiPI

∗),

[D−1]R(2,4) = −2gxX(ks − k)X(kp + k)XsXpSP,

[D−1]R(2,5) = −gxX(kp + k)X(kp − k)(X2
pP

2 + 2XsXiSI),

[D−1]R(2,6) = −2gxX(kp + k)X(ki − k)XpXiPI,

[D−1]R(3,1) = ([D−1]R(1,3))
∗ = −2gxX(ks + k)X(ki + k)XsXiS

∗I,

[D−1]R(3,2) = ([D−1]R(1,2))
∗ = −2gxX(kp + k)X(ki + k)(XsXpS

∗P +XpXiP
∗I),

[D−1]R(3,3) = ω + ωp + ω̃ − ωlp(ki + k) + iκlp(ki + k)− 2gxX
2(ki + k)(X2

sns +X2
pnp +X2

i ni),

[D−1]R(3,4) = −gxX(ks − k)X(ki + k)(X2
pP

2 + 2XsXiSI),

[D−1]R(3,5) = −2gxX(kp − k)X(ki + k)XpXiPI,

[D−1]R(3,6) = −gxX(ki + k)X(ki − k)X2
i I

2,

[D−1]R(4,1) = ([D−1]R(1,4))
∗ = −gxX(ks + k)X(ks − k)X2

s (S∗)2,

[D−1]R(4,2) = ([D−1]R(2,4))
∗ = −2gxX(ks − k)X(kp + k)XsXpS

∗P ∗,

71



[D−1]R(4,3) = ([D−1]R(3,4))
∗ = −gxX(ks − k)X(ki + k)(X2

p(P ∗)2 + 2XsXiS
∗I∗),

[D−1]R(4,4) = ω + ωp − ω̃ − ωlp(ks − k)− iκlp(ks − k)− 2gxX
2(ks − k)(X2

sns +X2
pnp +X2

i ni),

[D−1]R(4,5) = −2gxX(ks − k)X(kp − k)(XsXpS
∗P +XpXiP

∗I),

[D−1]R(4,6) = −2gxX(ks − k)X(ki − k)XsXiS
∗I,

[D−1]R(5,1) = ([D−1]R(1,5))
∗ = −2gxX(ks + k)X(kp − k)XsXpS

∗P ∗,

[D−1]R(5,2) = ([D−1]R(2,5))
∗ = −gxX(kp + k)X(kp − k)(X2

p(P ∗)2 + 2XsXiS
∗I∗),

[D−1]R(5,3) = ([D−1]R(3,5))
∗ = −2gxX(kp − k)X(ki + k)XpXiP

∗I∗,

[D−1]R(5,4) = ([D−1]R(4,5))
∗ = −2gxX(ks − k)X(kp − k)(XsXpSP

∗ +XpXiPI
∗),

[D−1]R(5,5) = ω + ωp − ωlp(kp − k)− iκlp(kp − k)− 2gxX
2(kp − k)(X2

sns +X2
pnp +X2

i ni),

[D−1]R(5,6) = ([D−1]R(4,5)) = −2gxX(kp − k)X(ki − k)(XsXpS
∗P +XpXiP

∗I),

[D−1]R(6,1) = ([D−1]R(1,6))
∗ = −gxX(ks + k)X(ki − k)(X2

p(P ∗)2 + 2XsXiS
∗I∗),

[D−1]R(6,2) = ([D−1]R(2,6))
∗ = −2gxX(kp + k)X(ki − k)XpXiP

∗I∗,

[D−1]R(6,3) = ([D−1]R(3,6))
∗ = −gxX(ki + k)X(ki − k)X2

i (I∗)2,

[D−1]R(6,4) = ([D−1]R(4,6))
∗ = −2gxX(ks − k)X(ki − k)XsXiSI

∗,

[D−1]R(6,5) = ([D−1]R(4,5))
∗ = −2gxX(kp − k)X(ki − k)(XsXpSP

∗ +XpXiPI
∗),

[D−1]R(6,6) = ω + ωp + ω̃ − ωlp(ki − k)− iκlp(ki − k)− 2gxX
2(ki − k)(X2

sns +X2
pnp +X2

i ni).

As in the pump only case, the inverse retarded Green’s function is related to the matrix from
the linear response analysis. The rotation is slightly different: L = −σz,6[D−1]R(0,k) due to
differences in the fluctuation signatures used in obtaining the linear response matrix [41]. Where
σz,6 is

σz,6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


.

The use of σz comes from writing [D−1]R and L in terms of four sub-matrices [1, 41]. Since
calculating the determinant of [D−1]R in the OPO leads to an equation for ω6, the rotation
to the linear response matrix is performed to analyse the stability of the OPO state since the
eigenvalues can still be calculated.

The inverse Keldysh Green’s function, [D−1]K(ω,k), is similar to the pump only case (Eq.
(3.61)), with diagonal elements:

[D−1]K(1,1) = i
∑

i∈{c,x}

(hiks+k)2κiFχi(ωp − ω̃ + ω),
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[D−1]K(2,2) = i
∑

i∈{c,x}

(hikp+k)2κiFχi(ωp + ω),

[D−1]K(3,3) = i
∑

i∈{c,x}

(hiki+k)2κiFχi(ωp + ω̃ + ω),

[D−1]K(4,4) = i
∑

i∈{c,x}

(hiks−k)2κiFχi(ωp − ω̃ − ω),

[D−1]K(5,5) = i
∑

i∈{c,x}

(hiks−k)2κiFχi(ωp − ω),

[D−1]K(6,6) = i
∑

i∈{c,x}

(hiks−k)2κiFχi(ωp + ω̃ − ω).

In all calculations, the simplification Fχi(ω) = 1 is considered, so the inverse Keldysh Green’s
function is much more compact:

[D−1]K = i



κlp(ks + k) 0 0 0 0 0

0 κlp(kp + k) 0 0 0 0

0 0 κlp(ki + k) 0 0 0

0 0 0 κlp(ks − k) 0 0

0 0 0 0 κlp(kp − k) 0

0 0 0 0 0 κlp(ki − k)


.

(3.126)
Inverting the Keldysh rotation is always done numerically in the OPO regime.

3.5 Results in the pump only case (numerical)

In this section, the pump only state and OPO threshold is analysed according to the calculations
outlined in section 3.3 for three ratios of the exciton to photon decay: κc = κx, 10κx and 100κx,
in which the photon decay is held constant and the exciton decay reduced. The first ratio gives
constant polariton decay and the results have been published in Ref. [1]. When the exciton
decay is much less than the photon decay, the polariton decay κlp(k) is strongly momentum
dependent, as shown in Fig. 3.2, where the photon decay is kept constant (κc = 0.05) and
the exciton decay is reduced. Restoring the momentum dependence of the polariton decay is
useful for closer comparison with experiments where polaritons with low momenta are much
more visible than those with higher momenta [15]. The effects of changing the pump properties
or choosing a different value for the signal momentum could also be explored, but this is not
done in the present Keldysh analysis.

In all calculations, a system of non-dimensional units, where the exciton-photon interconver-
sion rate ΩR/2 is rescaled to unity, as detailed in appendix A, is used. The pump is applied
resonantly to the lower polariton dispersion at kp = (kp, 0) = (1.5, 0) and the minimum of the
photon dispersion coincides with the exciton energy. In all cases, the pump mode occupation
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Figure 3.2: Momentum dependence of the polariton decay for two ratios of exciton and photon
decays. The photon decay is kept constant at κc = 0.05 while the exciton decay is reduced. The
polariton losses are greater at higher momenta than at k = 0.

is monotonic in pump strength since the parameters are chosen such that the system is in the
optical limiter regime.

3.5.1 κc = κx

First, the simple case of constant polariton decay is investigated [1]. Fig. 3.3 shows that there
are two regions around kx = 0 and kx = 2|kp| (in the lab frame) where the pump mode becomes
unstable to small fluctuations. These appear as the pump mode occupation increases above
some lower threshold value and then becomes stable again at higher mode occupations, which
defines an ‘upper threshold’. Since the system is in the optical limiter regime of the pump mode,
increasing pumping can be used to mean increasing np.

In Fig. 3.4, ξ±(k), µeff(k), <(ω±(k)) and =(ω±(k)) from Eqs. (3.92), (3.93) and (3.95), are
plotted for a range of stable pump mode occupations. When pumping is increased, the instability
threshold is approached from below and the imaginary parts of the complex eigenvalues =(ω±(k))

start to split while the real parts combine in four places. This leads to the double tails seen at
low np in Fig. 3.3. When the four maxima in the imaginary parts of the complex eigenvalues
first appear, two are located near the pump momentum, one at a much higher and one at a much
lower momentum. As the transition is approached, the peaks in the imaginary parts grow and
those that were below the pump momentum move towards each other and kx = 0, while those
that were above the pump momentum move towards kx = 2|kp|.

For a strong pump (high np), the pump mode becomes stable to small fluctuations again.
Just above this upper threshold, there are only two places where =(ω+(k)) 6= =(ω−(k)): one
near kx = 0 and one near kx = 2|kp|. As the pump strength is further increased these peaks
eventually disappear while the real parts of the eigenvalues (<(ω±(k))) separate and become
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Figure 3.3: Regions of unstable single-mode pump-only state, =(ω±) > 0, symmetric around the
pump momentum kp. The letters and dotted lines correspond to the pump mode occupations
used in Fig. 3.4 (a is np = 1× 10−4 and cannot be resolved from the horizontal axis). Since the
pump mode is in the optical limiter regime, the pump strength Fp is monotonic in np so either
could be used to label the y-axis.

Figure 3.4: Solutions to det([D−1]R) = 0 for the stable pump mode occupations indicated in
Fig. 3.3. Red dotted: µeff from =(det([D−1]R(µeff ,k))) = 0 where µeff ∈ R; solid blue: ξ±
from <(det([D−1]R(ξ±,k))) = 0 where ξ± ∈ R; dark grey dashed: <(ω±) and grey dashed:
=(ω±) from det([D−1]R(ω±,k)) = 0 where ω± ∈ C. Top row: approaching lower threshold from
below: a) np = 1× 10−4; b) np = 0.02; c) np = 0.073. Bottom row: increasing np above ‘upper
threshold’: d) np = 0.245; e) np = 0.255; f) np = 0.275.

increasingly close to the poles (ξ±(k)).

In general, the poles, ξ±(k) (solid blue lines in Fig. 3.4) pinch together at the momenta where
=(ω±(k)) is closest to 0. The values of ξ±(k) are very close to the spectra, <(ω±(k)), apart from
where =(ω±(k)) split (or differ from =(ω±(k)) = −κlp). At these points, the effective chemical
potential is equal to the real parts of the eigenvalues. The phase transition occurs where the
real and imaginary parts of the determinant of the inverse retarded Green’s function become
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zero simultaneously, which indicates diverging luminescence in the normal state and is where
µeff(k) = ξ±(k).

Figure 3.5: As Fig. 3.4 but at selected momenta. The unstable region is indicated in grey. Top:
kx = 0 i.e. at the expected signal, the chemical potential µeff decreases with increasing np to
cross ξ± when =(ω+) = 0; middle: kx = |kp|, µeff never crosses ξ± and =(ω±) < 0 for any np
i.e. there is no instability directly at the pump; bottom: kx = |2kp| i.e. at the expected idler,
the chemical potential µeff increases with increasing np to cross ξ± when =(ω+) = 0.

To show clearly what happens across the instability threshold, the behaviour of <(ω±(k)),
=(ω±(k)), ξ±(k) and µeff(k) are examined over a range of pump mode occupations three mo-
menta in the lab frame: kx = kp, 0 and |2kp|. As can be seen in Fig. 3.5, at the pump, =(ω±) < 0

and µeff 6= ξ± at any np which indicates that there is no instability at the pump mode as ex-
pected for the choice of parameters that ensures that the system is in the optical limiter regime.
Meanwhile, for kx = 0 the effective chemical potential µeff decreases as the density is increased
and crosses ξ± in two places indicating the lower and upper thresholds. Around kx = 2|kp|, the
effective chemical potential is increasing with increasing density.

In Fig. 3.5, the mode crossing is seen to occur exactly at the transition from a stable to an
unstable region, where =(ω±) = 0. This behaviour of pinching and crossing is expected from Eqs.
(3.92) and (3.93), and is analogous to other bosonic condensations, where the phase transition is
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associated with the chemical potential crossing one of the energy modes [3, 21]. The increasing
chemical potential, and therefore the closest analogy to equilibrium BEC, is around the expected
idler, not the signal.

The effective temperature that can be defined in this case is plotted in Fig. 3.6. The shape of
Teff(k) is set by the X4 contribution in Vp+− and has minima at momenta kx = 0 and kx = |2kp|
in the lab frame. In the OPO transition, the ‘condensation’ happens into signal and idler modes
with momenta close to the lowest effective temperature.

0-kp kp 2kp 3kp

3

4

Momentum, kx

T
ef

f

Figure 3.6: The effective temperature, Teff(k) as defined by Eq. (3.98), with a local maximum
at the applied pump and global minima at kx = 0, |2kp|. The pump mode occupation provides
a purely multiplicative factor.

When the single mode ansatz is stable, the incoherent luminescence, absorption and spectral
weight around the pump mode can be calculated. The pump mode occupations of Figs. 3.4 c
and 3.4 d, close to the border of the unstable region, are considered. Further away from the
thresholds, the det([D−1]R) is larger so the luminescence will be weaker; the two samples chosen
are representative of the general behaviour of the poles.

Below the lower threshold, Fig. 3.7 a, four peaks appear in around the pump mode, above the
‘upper threshold’, Fig. 3.7 b, there are only two peaks centred near kx = 0 and kx = |2kp|. These
peaks in the incoherent luminescence correspond to where the imaginary parts of the eigenvalues
split and the smallest value of det([D−1]R).

One effect of assuming a constant polariton decay is that the peaks in the polariton lumin-
escence appear symmetric about the pump mode, reflecting the pairwise scattering process. In
experiments, only the photonic component of polaritons can be measured and the signal, which
has a higher photon fraction, appears stronger than the idler [27, 82]. Thus, in the lower panels
of Fig. 3.7, the luminescence is rescaled according to the photon fraction (Eq. (3.52)) and the
photon luminescence is stronger at low momenta, as expected.

The absorption (top row of Fig. 3.8) follows the same general pattern as the luminescence,
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Figure 3.7: Incoherent polariton (top) and photon (bottom) luminescence near the instability
thresholds. Left: below lower threshold np = 0.073; right: above upper threshold np = 0.245.

Figure 3.8: Polariton absorption (upper) and spectral weight (lower) near the instability
thresholds. Left: below lower threshold np = 0.073; right: above upper threshold np = 0.245.
The scales for positive spectral weight are the same, at weak pumping, there is only weak negat-
ive spectral weight and the range is curtailed for visibility. The dashed line in the lower panels
is the effective chemical potential µeff(k) of Fig. 3.4.

but is generally stronger on the upper branch of the spectrum. As seen in Figs. 3.8 c and
3.8 d, there are regions of negative spectral weight where the luminescence is greater than the
absorption. At weak pumping, the spectral weight is only very weakly negative (the negative
part of the spectral weight range in Fig. 3.8 c has been greatly reduced to show this), this occurs
for energies below the chemical potential and away from the peaks in the luminescence. Above
the upper threshold, the regions of negative spectral weight occur above the effective chemical
potential for momenta less than kp and below the chemical potential for momenta above kp.

In Fig. 3.9, the incoherent luminescence has been plotted for all momenta k = (kx, 0) and
energies below the pump energy (around the signal only). For weak pumping, the two peaks are
broad and the one at the lower energy is weaker than the one at higher energy. Comparing this
to Fig. 3.7 a, this shows that the peak at higher momentum dominates, which is consistent with
the weaker luminescence on the side of the ring away from the pump in Fig. 3.10. Above the
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Figure 3.9: Incoherent luminescence at energies below ωp for a large rang of momenta. Left:
np = 0.073, below the lower threshold, the peak at higher energy dominates; right: np = 0.245
above the upper threshold, the single peak is at a lower energy and is much narrower than the
two peaks present for a weaker pump.

upper threshold, the peak in the luminescence is narrower in energy.

Lastly, the luminescence is integrated over energy and plotted in two-dimensional momentum
space where k = (kx, ky). The four peaks in the (ω, kx) plots (Fig. 3.7 and 3.8) are a signature
of a ring structure in the luminescence near the lower threshold; with a higher occupation on the
side closest to the pump. Just above the upper threshold, the instability develops at a unique
momentum ks = (ks, 0) and only two distinct peaks associated with developing signal and idler
states are observed. The OPO transition can therefore be described using a distinct pair of new
modes if the pump is decreased through the upper threshold of the instability.

Figure 3.10: Incoherent polariton luminescence in 2-D momentum space after integrating over
energy. Top: below lower threshold, np = 0.073; bottom: above upper threshold, np = 0.245.
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3.5.2 κc = 10κx

When the photon decay rate is ten times the exciton decay rate, the pump mode becomes
unstable at a weaker pump strength than when the polariton decay is constant and the return
to stability is slow as shown by the large blue region in the left hand side of Fig. 3.11. There is
also a double peak in the imaginary parts even when the pump mode is stable. The imaginary
parts of the eigenvalues are determined by Eq. (3.68) which always has a contribution:

−κ
+ + κ−

2

which has a double dip (peak) structure as shown in the right hand side of Fig. 3.11.

Figure 3.11: Left: imaginary part of the eigenvalue that becomes positive (blue, green, black
region) for κc = 10κx. The return to stability is at a higher pump strength than for equal decays.
Right: background variation in imaginary part of eigenvalues for κc = 10κx, the two dips are at
real momenta 0 and 2kp, here they are plotted in terms of the momentum fluctuations around
the pump mode.

According to Eq. (3.68) the two possible eigenvalues always have different imaginary parts,
but, unlike when the polariton decay is constant, the real parts do not stick together at all points
where the imaginary parts split [28]. Further, the real parts of the complex eigenvalues are the
same as the poles ξ±, as seen in Fig. 3.12. The effective chemical potential, given by Eq. (3.73),
does not lie exactly half way between the poles. At low pump strengths it is closer to the upper
branch of the spectrum at low momenta and closer to the lower branch at high momenta, while
at high pump strengths, it approaches the upper branch near k = 2kp and the lower branch near
k = 0.

Physical quantities are again calculated for a stable pump mode below the lower and above the
upper thresholds. The luminescence is slightly weaker around the expected signal than around
the idler, reflecting that polaritons are collect in the higher momentum states from which their
decay is slower. At low pump strengths, Fig. 3.12 a and b, the poles are pinched significantly
and the incoherent polariton (Fig. 3.13 a) and photon (Fig. 3.13 c) luminescence plots display
corresponding peaks (for the pump strength of Fig. 3.12 b). Near the upper threshold, the poles
are barely pinched, reflecting the slow return to stability in Fig. 3.11. Around kx = 0, the lower
of the two branches has a higher occupation (and hence luminescence) while around kx = 2kp,
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Figure 3.12: Poles and eigenvalues for κc = 10κx a) np = 0.010, b) np = 0.014 below the
instability threshold; c) np = 0.366, d) np = 0.400 on return to stable pump. µeff is given by Eq.
(3.73).

the upper branch dominates. The peaks in the luminescence are narrow in energy, but appear
broad in momentum. The lower photon fraction of the polaritons at high momenta again means
that the visible (photon) luminescence is greatest at low momenta despite the larger polariton
occupation at higher momenta.

Figure 3.13: Polariton (top) and photon (bottom) luminescence in energy-momentum space for
κc = 10κx. a, c) np = 0.014 below the lower instability threshold, b,d) np = 0.366 above the
upper threshold.

The absorption and spectral weight plotted in Fig. 3.14 are similar to the luminescence and
to the case of constant decay. The main difference is that the spectral weight is negative over
much larger regions; at low pump strengths, positive spectral weight occurs both above and
below µeff . Above the upper threshold, most of the region where the spectral weight is negative
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is found at energies below the effective chemical potential.

Figure 3.14: Polariton absorption (top) and spectral weight (bottom) in energy-momentum space
for κc = 10κx. a, c) np = 0.014 below the lower instability threshold, b,d) np = 0.366 above the
upper threshold.

Integrating the luminescence over energy, and plotting in 2-D momentum space, makes the
features seen in Fig. 3.13 clearer. In Fig. 3.15 a, the fairly even rings seen in the case of constant
polariton decay, Fig. 3.10, are distorted on the sides closest to the pump, and the luminescence
is stronger at higher momenta. The ring with kx > kp is strongest due to the lower polariton
decay in this region. Above the upper threshold, Fig. 3.15, the only significant difference to
the case of constant polariton decay is that the peak around kx = 0 is weaker than that near
kx = 2kp.

Figure 3.15: Polariton luminescence integrated over energy and plotted in 2-D momentum space
for κc = 10κx. a) np = 0.014 below the lower instability threshold 0 < L < 50, b) np = 0.366
above the upper threshold 0 < L < 520.

3.5.3 κc = 100κx

Taking the photon decay to 100 times the exciton decay, leads to a pump mode that is unstable
for all but the lowest pump mode occupations (the stable example is for np = 0.0049). For pump
strengths that are relevant to the lower polariton model, the unstable region covers a much larger
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range of momenta. The region where the instabilities are large is, however, small and at low
pump strengths. The weakly unstable tail persists to all pump strengths considered, as seen in
the left hand side of Fig. 3.16.
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Figure 3.16: Left: imaginary part of the eigenvalue that becomes positive (blue, green, black
region) for κc = 100κx for the moderate pump strengths (and pump mode densities) considered,
there is no upper threshold of the unstable region. Right: poles and eigenvalues for κc = 100κx
near instability threshold, np = 0.0049. The eigenvalues are plotted over the poles to show that
the real parts of the eigenvalues lie on top of the poles ξ±, µeff is given by Eq. (3.73).

In the right hand side of Fig. 3.16, the poles and the eigenvalues are plotted for the stable
example at very low pump strength. The imaginary parts of the eigenvalues are seen to vary
and the effective chemical potential is very close to crossing the poles so the system is very
close to threshold. The polariton luminescence, absorption and spectral weight and the photon
luminescence are calculated for this stable pump strength. Apart from further weakening around
kx = 0, the behaviours are exactly as below threshold when κc = 10κx, and the plots in Fig.
3.17 is very similar to the left hand sides of Figs. 3.13 and 3.14.

Figure 3.17: κc = 100κx and np = 0.0049 below instability threshold. a) polariton luminescence,
b) photon luminescence, c) polariton absorption, d) polariton spectral weight.

When the luminescence is integrated over energy, the features noted in Fig. 3.15 are even
more pronounced. In Fig. 3.18, the distortion of the rings is tending towards a clear figure of
eight shape, consistent with a study of polaritons under pulsed resonant excitation [82]. These
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calculations are of the incoherent polariton luminescence around the pump mode, while the exper-
iments also included the pump mode. There is no reason for energy and momentum (particularly
momentum) conservation to give results that depend on whether the excitation is continuous or
pulsed, so long as the polariton lifetimes are long enough for the scattering to occur.

Figure 3.18: Polariton luminescence integrated over energy and plotted in 2-D momentum space
for κc = 100κx.

The lack of an upper threshold is examined by looking at the behaviours at set momenta
across a range of pump strengths. In Fig. ??, the two sets of solutions to det([D−1]R) = 0

are plotted at kx = 0, kp and 2kp which correspond to the expected signal, the pump and the
expected idler respectively. As in Fig. 3.5, these momenta are broadly representative of the
entire region around the pump mode. As mentioned in section 3.3, det([D−1]R) = 0, which
controls the transition, can be satisfied by µeff = ξ±; alternatively the transition can be said to
occur when the imaginary part of a complex eigenvalue is positive. The condition for the pump
mode to be stable (=(ω) < 0 ∀ k) only gives the lower threshold; since the effective chemical
potential only crosses the poles once, there is no upper threshold.

When the proposed steady state is unstable, the real parts of the complex eigenvalues (Eq.
(3.68)) are not equal to the effective chemical potential, µeff (Eq. (3.73)). At kx = 0, 2kp, there
is a small region where µeff = <(ω±), but otherwise the two complex eigenvalues have different
real parts. At the lower threshold, the real parts of the eigenvalues first differ significantly from
the poles at the point where det([D−1]R) = 0. As in the case of constant polariton decay, the
chemical potential is increasing through the threshold around kx = 2kp and decreasing around
kx = 0.

The case where κc = 10κx differs only by a return to stability for the pump mode. As noted in
section 3.5.2, the imaginary parts of the eigenvalues decrease slowly towards the upper threshold.
It was noted that in Figs. 3.13 and 3.14, the quantities calculated above the upper threshold
were broadened in energy-momentum space, and that in Fig. 3.12 there was little pinching of
the poles towards the effective chemical potential around the return to stability. These features
all reflect that the return to a stable pump mode is slowed when the exciton decay is reduced
compared with the photon decay.
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3.6 Above OPO threshold, constant polariton decay

The three mode description of the OPO regime is analysed for the case of constant polariton
decay. The steady state requires that the signal and idler momenta are specified [30]; the simplest
choice of ks = 0 is used so ki = 2kp, although in experiments ks is usually small but finite
[33,102].

The mean field occupations of the pump, kp = (1.5, 0) and signal, ks = 0 are plotted in Fig.
3.20. The pump mode occupation in the absence of the signal and idler states is also included. In
the OPO regime, the occupation of the pump mode is depleted due to scattering into the signal
and idler modes which have equal occupation due to the constant polariton decay, as shown in
Eq. (3.111).

Taking the determinant of the inverse retarded Green’s function, and solving det([D−1]R(ω,k)) =

0 for ωj ∈ C gives the modes of the system ωj . With the three mean field modes there are now
six poles. A sample pump power near the upper threshold of the OPO region (Ip = 9.016Ith

in Fig. 3.20) is considered, and the real and imaginary parts of the complex eigenvalues are
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Figure 3.20: Signal, ns (red), and pump, np (purple, the dashed part is the pump only ansatz
within the OPO region) mode occupations within the OPO regime for kp = (1.5, 0) and ks =
(0, 0). The dashed vertical line is the pump power considered for Figs. 3.21-3.23. The idler
occupation ni is the same as the signal occupation for constant polariton decay [29,31,58].

plotted in Fig. 3.21. (In reference to the contents of the following chapter, up to the difference
in value of the polariton decay, this sample would lie in the blue region near the upper threshold
of Fig. 4.23) These show that the steady state is stable (=(ω) < 0), and that a Goldstone mode,
characterised by =(ω)→ 0 and <(ω)→ 0 for k→ 0, is present [41]. (The example here is along
ky = 0 so kx → 0 is of interest for the limiting behaviour.) The Goldstone mode is associated
with the spontaneous symmetry breaking of the phase freedom of the signal and idler phases in
the OPO regime. To remain within the three mode ansatz, it is assumed that the fluctuations in
each mode are close in momenta and energy to that mode and the momentum range for plotting
the results is therefore restricted to |kx − |q|m| ≤ (|k|p − |k|s)/2.

Figure 3.21: Real <(ωj) (left) and imaginary parts =(ωj) (centre) of the eigenvalues for the OPO
state at pump power: Ip = 9.016Ith. The dark blue curve corresponds to the Goldstone mode.
Since all the imaginary parts of the poles are negative, the OPO ansatz is stable. In the right
hand panel, the real parts of the spectra in a very small region around δk = 0 showing that,
although ks = (0, 0), there is still a finite slope of the Goldstone mode.

In the right hand side of Fig. 3.21, the very central region of the spectra is plotted. Although
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in Fig. 3.21 the real parts of the spectra appear flat in the limit ω → 0,k → 0, in Fig. 3.21, it
is clear that although ks = (0, 0), the spectra are still sloped. In particular this slope is linear
in the momentum fluctuation and is due to the finite flow induced by the pump. The imaginary
part of the Goldstone mode is proportional to −|k|2 [41].

For the stable three mode description of the OPO regime, the incoherent luminescence is
calculated. In Fig. 3.22, the contributions from around the signal, pump and idler modes are
considered separately and the spectra (<(ω) from linear response) overlaid. There are clear
variations in the occupations of the different branches according to the mode considered. For ex-
ample, the outermost branches with increasing energy as the momentum of fluctuations increase
are only noticeably occupied around the pump mode, while the parts of these branches character-
ised by decreasing energy with increasing momentum contribute to the luminescence around the
signal mode for negative momentum of fluctuations and around the idler for positive momentum.
The divergence caused by the Goldstone mode at ωs,i, kx = 0 leads to significant peaks close to
the signal and idler states. There is only a weak peak in the incoherent luminescence around the
pump mode (ωp, kx = 0), which is due to the secondary splitting in the imaginary parts of the
eigenvalues (central (blue/green) lines in the right hand side of Fig. 3.21): in this case since the
imaginary part pertinent to the pump mode is not zero, the luminescence does not diverge.

Figure 3.22: Incoherent polariton luminescence about the three OPO states with the spectra
(<(ω)) overlaid. The Goldstone mode leads to dominant luminescence around the signal and
idler states, while the incoherent luminescence around the pump is much weaker.

In Fig. 3.23 the momenta and energies of Fig. 3.22 are shifted to the relevant mode (kx = 0→
|q|m and ωm = 0 → ωp = 0) to create a full picture of the incoherent luminescence around the
OPO. The photon parts are included for completeness and to highlight the difference in visibility
around the three modes due to the rate at which photons escape [82]. In particular, the weak
peak at the pump mode becomes insignificant, and the incoherent luminescence is concentrated
around the signal with a very small region around the idler mode, which are both due to the
Goldstone mode. As for the luminescence calculated around the pump only mean field, the mean
field occupations of the modes do not feature in the luminescence plots here. The signatures of
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the Goldstone mode lie very close to the signal and idler modes and so are likely to be obscured
by the luminescence from these modes in experiments.

Figure 3.23: The incoherent luminescence around the three OPO states combined. Top: polari-
ton, Bottom: photon.

3.7 OPO mean field with κc = 100κx

In Fig. 3.24, the pump and signal modes of the OPO regime are plotted for kp(1.5, 0),ks = (0, 0)

and κc = 100κx. The idler mode occupation is related to the signal occupation plotted by Eq.
(3.111); for the values considered here, this gives ni = 0.51ns; only ns is plotted in Fig. 3.24.

Two features become noticeable: firstly there is OPO to extremely large pump powers, which
is consistent with the lack of an upper threshold of the unstable region in the pump only case of
Figs. 3.16 and ??. This confirms that the OPO thresholds are determined by the imaginary part
of the complex eigenvalues becoming zero and not by the condition det([D−1]R) = 0. Secondly,
as highlighted in the inset, there is bistability within the signal mode at low pumping: just above
the OPO threshold, there are two possible signal mode occupations for a single pump power, the
one chosen depends on whether the pump power is being increased or decreased.

Bistable behaviour of the signal mode has been observed experimentally [103], and in the
three mode description of the OPO regime employed here, but under different conditions. In
particular, the interplay of bistability and the OPO regime was studied for constant polariton
decay in Ref. [30] where it was demonstrated that changing the detuning of the pump to the
bistable regime did not forbid a finite signal occupation which could also be bistable. The
bistability of the signal mode and the relation to the onset of the pump bistabilty were discussed
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Figure 3.24: Mean field occupations of the OPO signal and pump modes for κc = 100κx and
kp = (1.5, 0),∆p = 0,ks = (0, 0), κc = 0.05. There is a small but finite signal occupation to
very high pump powers and the pump mode occupation is depleted relative to the pump only
mean field. Close to the switch on of the OPO, there is bistability in the signal mode (and pump
mode).

in terms of the pump detuning away from the lower polariton dispersion and of the energy
mismatch of the OPO modes from the triple resonance condition ωlp(ks) + ωlp(ki) = 2ωlp(kp).
A bistable pump mode was also considered in Ref. [29], and again was accompanied by bistability
in the signal mode occupation.

3.8 Keldysh conclusions

In this chapter, a Keldysh Green’s function approach has been developed in detail for a system
of exciton-polaritons that are introduced at a single pump energy and momentum. The Keldysh
action of the system was derived first without restricting the number of modes allowed and
the bath fields integrated out. To investigate the transition to the polariton OPO regime, the
polaritons were restricted to remain within the pump mode. Small fluctuations around the
pump mode were added to obtain the inverse Green’s functions. The transition was defined as
the point where the determinant of the inverse retarded Green’s function is zero, and similarities
between the phase transition in this far from equilibrium system and an equilibrium Bose-Einstein
condensation transition were observed. In particular, the real poles of the system cross an effective
chemical potential at the transition.

The physical properties of incoherent luminescence, absorption and spectral weight around
the pump mode were calculated for pump strengths near the instability thresholds, but where the
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pump mode was stable. The effects of changing the polariton decay from constant to strongly
momentum dependent did not significantly affect the spectra, but did affect the occupations:
when the polariton decay is constant, the luminescence is symmetric about the pump mode;
as the exciton decay is weakened, the luminescence at high momenta becomes weaker. All
examples studied have regions of negative spectral weight where the luminescence is stronger than
the absorption. When the polariton decay is constant, these regions occur below the chemical
potential for constant polariton decay and above the upper threshold; in all other cases, the
regions of negative spectral weight appear both above and below the effective chemical potential
which no longer lies exactly between the poles.

The effects of the momentum dependent polariton decay are seen very clearly when the
incoherent luminescence is integrated over energy and plotted in 2-D momentum space. This is
particularly dramatic below the lower threshold of the unstable region where the maximum of
the polariton luminescence moves to the sides of the rings away from the pump while the sides
closest to the pump become distorted, tending towards a figure of eight shape, rather than the
almost circular rings with strongest luminescence on the sides closest to the pump seen in the
case of constant polariton decay.

Finally, the simplest description of the OPO regime as a system of three modes was used to
examine the above threshold case for constant polariton decay. In the example studied, the signal
momentum was chosen to be zero, although this choice does not correspond to the maximum of
the luminescence near either threshold. The OPO regime was found to be stable near the upper
threshold and the incoherent luminescence plotted around the OPO states. The usefulness of the
Keldysh approach which gives the occupations of the modes here becomes clear as the differences
in the occupations around the three modes are significant. In particular, different branches of the
spectra are occupied by the fluctuations around each mode; when the three modes are plotted
together, the resulting incoherent luminescence spectrum is dominated by the signal and idler
modes. This occurs due to the Goldstone mode which has <(ω(k)),=(ω(k)) = 0 at k = 0, and it
is clear that the Goldstone mode is associated with the signal and idler modes only. Meanwhile,
if the polariton decay is taken to be strongly momentum dependent, there is no upper threshold
of the OPO regime over a large range of pump powers, and at lower pump powers, there is also
bistable behaviour within the OPO modes even though, at the single mode mean field level, the
pump mode is in the optical limiter regime.
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4 | The signal momentum

As seen in the previous chapter, the choice of the signal momentum in the OPO mean field
equations has to be made by hand. Further, at any given pump strength within the optical
limiter regime, the pump mode can be unstable for a range of momenta around kx = 0, 2|kp|,
or even at multiple locations. In this chapter, linear response analysis instead of the Keldysh
formalism is used to see whether it is possible to use the simple linear response analysis to obtain
a good estimate for the value of ks, and investigate the effects the chosen ks may have on the
OPO regime. Some experiments have considered the effects of the pump properties [27, 33],
but the problem of choosing ks and the effects of the pump properties have not been studied
theoretically. The predictions obtained from linear response are checked via simulations of the
mean field of the polaritons; all simulations, except those in Fig. 4.22 which were run by Dr. A.
Zamora, were run by G. D. Dagvadorj and this work was done in discussion with Dr. A. Zamora.

4.1 Exciton-photon basis

The linear response analysis and the numerical integration both start from the complex Gross-
Pitaevskii equations (cGPEs) describing polaritons either as coupled excitons and photons (the
exciton-photon model) or as a system of the lower polaritons only. In general, the exciton-photon
model is the more exact description of the polariton system [28], while the lower polariton model
can be used to study a three mode description of the OPO regime.

Although the cGPEs can be found from the saddle points of the Keldysh action, they can also
be obtained directly from the Hamiltonian. The cGPEs and linear response matrices are derived
in section 4.1 for the exciton-photon model and in section 4.2 for the lower polariton model. As
in the Keldysh analysis, in the lower polariton the pump only case and the three mode OPO are
considered, while in the exciton-photon model the analysis is restricted to the pump only case
only.

The cGPEs are derived in the exciton-photon basis in detail, and the decay baths are integ-
rated out without resorting to the Keldysh formalism. The starting point is the exciton-photon
Hamiltonian, Eqs. (2.2)- (2.5), a pair of coupled cGPEs can be derived for the photons (âk) and
excitons (b̂k) which will include removing the decay baths (Âp, B̂p respectively).
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4.1.1 Treatment of the decay baths

The derivation followed here is standard for a system coupled to a heat bath composed of an
infinite set of harmonic oscillators [104] and is equivalent to the quasi-mode approximation used
in Refs. [23, 31]. The starting point is the Heisenberg equation of motion for an operator Ô:

i∂tÔ = [Ô, Ĥ]

(here Ô is one of âk, b̂k, Âp, B̂p). There are four types of operator in the exciton-photon Hamilto-
nian (Eqs. (2.2) - (2.5)) so there are four Heisenberg equations of motion:

i∂tâk = ωc(k)âk +
ΩR
2
b̂k + Fp,cδk,kp +

∑
p

Γap,kÂp, (4.1)

i∂tÂp = ωΓa

p Âp + Γap,kak, (4.2)

i∂tb̂k = ωx(k)b̂k +
ΩR
2
âk +

∑
p

Γbp,kB̂p + gx

∑
k′,q

b̂†k′ b̂k−qb̂k′ , (4.3)

i∂tB̂p = ωΓb

p B̂p + Γbp,kb̂k. (4.4)

The calculation for removing the photon decay bath is done in detail, the excitons follow the
same method and require the same assumptions so the result is quoted. The photon decay bath,
Eq. (4.2), allows for the solution:

Âp,k(t) = Âp,k(0)e−iω
Γa

p t − iΓap,k
∫ t

0

âk(τ)e−iω
Γa

p (t−τ)dτ,

and Eq. (4.1) becomes:

i∂tâk = ωc(k)âk+
ΩR
2
b̂k+Fp,cδk,kp +

∑
p

Γap,kÂp(0)e−iω
Γa

p t−i
∑
p

(Γap,k)2

∫ t

0

âk(τ)e−iω
Γa

p (t−τ)dτ.

(4.5)
The first three terms in Eq. (4.5) describe a system of two interacting bosonic species with
coherent pumping. The fourth term is a random fluctuating force:

F ak (t) =
∑
p

Γap,kÂp(0)e−iω
Γa

p t, (4.6)

and the final term, which describes the influence of the losses on the photons, is handled by
making a series of assumptions about the nature of the decay bath.

First, a weak interaction between the system and the bath is assumed so â(t) = e−iωc(k)ã(t)

where the time variation of ã(t) is slow compared with the exponential factor. Since heat baths
have effectively infinitely many degrees of freedom, all couplings between the system and the
bath are comparable in size and Γap,k ≈ Γa which is a constant. The

∑
p is replaced by an
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integral over ωΓa with a density of states D(ωΓa) so

−i
∑
p

(Γap,k)2

∫ t

0

ãk(τ)eiωc(k)(t−τ)−iωΓa

p (t−τ)dτ

= −i(Γa)2

∫ ∞
0

D(ωΓa)

∫ t

0

ãk(τ)eiωc(k)(t−τ)−iωΓa (t−τ)dτdωΓa .

It is now assumed that the decay bath spectrum is both dense and smooth as a function of ωΓa ,
then D(ωΓa) ≈ D(0) and∫ ∞

0

D(ωΓa)

∫ t

0

ãk(τ)eiωc(k)(t−τ)−iωΓa (t−τ)dτdωΓa

= D(0)

∫ t

0

âk(τ)

(∫ ∞
0

e−ωc(k)(t−τ)−iωΓa (t−τ)dωΓa
)
dτ.

A change of variables from ωΓa → ω′ can be made with ωΓa − ωc(k) = ω′. Since the system
energy ωc(k) is large (due to physically large exciton energy) the lower limit of the integral which
now lies at ω′ = −ωc(k) can be taken to −∞ [104]. The resulting integral lis proportional to the
Dirac delta-function δ(t− τ) [89, 90],∫ ∞

−∞
e−iω

Γa (t−τ)dωΓa = 2πδ(t− τ).

Since the delta-function has the property [104],∫ t

0

δ(t− τ)dτ =
1

2
,

the last term in Eq. (4.5) is now simply:

−iπ(Γa)2D(0)

∫ t

0

âk(τ)δ(t− τ)dτ = −iπ(Γa)2D(0)âk(t) = −iκcâk

where κc = π(Γa)2D(0) quantifies the decay of the photons. The Heisenberg equation of motion
for the photons, Eq. (4.1), now reads:

i∂tâk = ωc(k)âk +
ΩR
2
b̂k + Fp,cδk,kp + F ak (t)− iκcâk. (4.7)

An identical treatment of the excitons simplifies Eq. (4.3) to:

i∂tb̂k = ωx(k)b̂k +
ΩR
2
âk + F bk(t)− iκxb̂k +

∑
k′,q

gxb̂
†
k′ b̂k−qb̂k′+q. (4.8)

The fluctuating forces do not affect the steady state and are set to zero throughout.
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4.1.2 Complex Gross-Pitaevskii equations

In general, the field operator of a system can be written in terms of the creation and annihilation
operators as [3]:

φ̂ =
∑
i

ϕiâi (4.9)

where the summation is over all the states i of the system (the momenta). The Heisenberg
equations of motion for these fields are:

i∂tφ̂c = (ωc(k)− iκc)φ̂c + Fp,cδk,kp +
ΩR
2
φ̂x, (4.10)

i∂tφ̂x = (ωx(k) + gxφ̂
†
xφ̂x − iκx)φ̂x +

ΩR
2
φ̂c. (4.11)

In the Bogoliubov approximation, the operator φ̂ is replaced by a (complex) classical field or
order parameter, φ [3]. This leads to a pair of coupled cGPEs describing the exciton-photon
system [28,59,102]:

i∂tφc = (ωc(k)− iκc)φc + Fp,cδk,kp +
ΩR
2
φx; (4.12)

i∂tφx = (ωx − iκx + gx|φx|2)φx +
ΩR
2
φc. (4.13)

4.1.3 Pump only mean field

The below threshold case of a single pump mode is examined first. The simplest choice is for the
fields φ{c,x} to have the plane wave form P{c,x}e

−iωpt with complex amplitudes P{c,x}. The pump
energy, ωp, is set by the properties of the laser pumping Fp,c = fe−iωpt. As in the Keldysh case,
the amplitude f is chosen to be real. Making the substitution of the mean field gives [28,64], for
the photons:

i∂t(Pce
−iωpt) = (ωc(kp)− iκc)Pce−iωpt + fe−iωpt +

ΩR
2
Pxe

−iωpt, (4.14)

(i∂tPc + ωpPc)e
−iωpt = (ωc(kp)− iκc)Pce−iωpt + fe−iωpt +

ΩR
2
Pxe

−iωpt,

i∂tPc + ωpPc = (ωc(kp)− iκc)Pc + f +
ΩR
2
Px ,

i∂tPc = (ωc(kp)− ωp − iκc)Pc + f +
ΩR
2
Px, (4.15)

and excitons:

i∂t(Pxe
−iωpt) = (ωx(kp) + gx|Px|2 − iκx)Pxe

−iωpt +
ΩR
2
Pce
−iωpt, (4.16)

(i∂tPx + ωp)e
−iωpt = (ωx(kp) + gx|Px|2 − iκx)Pxe

−iωpt +
ΩR
2
Pce
−iωpt,
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i∂tPx + ωp = (ωx(kp) + gx|Px|2 − iκx)Px +
ΩR
2
Pc,

i∂tPx = (ωx(kp)− ωp + gx|Px|2 − iκx)Px +
ΩR
2
Pc. (4.17)

In the steady state, i∂tP{c,x} = 0 [28]. Eq. (4.17) is rearranged for the photon field:

Pc =
2

ΩR
(ωp − ωx(kp)− gx|Px|2 + iκx)Px (4.18)

which is substituted into Eq. (4.15) to give:

0 =
2

ΩR
(ωc(kp)− ωp − iκc)(ωp − ωx(kp)− gx|Px|2 + iκx)Px + f +

ΩR
2
Px.

A little bit of rearrangement gives an equation for the external pump in terms of Px:

f =
[ 2

ΩR

(
(ωx(kp)− ωp + gx|Px|2)(ωc(kp)− ωp)− κcκx

)
− ΩR

2

−i 2

ΩR

(
κx(ωc(kp)− ωp) + κc(ωx(kp)− ωp + gx|Px|2)

) ]
Px. (4.19)

The absolute value squared gives a real equation for the pump power |Fp,c|2 in terms of the
exciton occupation |Px|2:

|f |2 =
[( 2

ΩR

(
(ωx(kp)− ωp + gx|Px|2)(ωc(kp)− ωp)− κcκx

)
− ΩR

2

)2

+
4

Ω2
R

(
κx(ωc(kp)− ωp) + κc(ωx(kp)− ωp + gx|Px|2)

)2 ]|Px|2. (4.20)

It is thus possible to plot |f |2, |P{c,x}|2. Eqs. (4.19) and (4.18) can be used to find the complex
amplitudes Px, Pc if f , the (positive) square root of Eq. (4.20), is known.

Before examining the stability of the pump mode, the properties and behaviours of the mean
field can be considered. There are two distinct behaviour of the pump mode: in the optical
limiter regime, the exciton and photon populations increase monotonically with the pump power;
if ωp − ωlp(kp) ≥

√
3κ, bistable behaviour can occur in which there are two possible exciton

occupations for a given pump power and is characterised by a typical S-shaped curve [28,29]. As
in the Keldysh analysis, the optical limiter regime is considered for all analyses.

4.1.4 Fluctuations around the pump steady state

Having found the mean field occupation, a linear response analysis (linear Bogoliubov-like the-
ory [19, 28]) expanding in fluctuations around the pump mode is performed. To include small
fluctuations around the mean field, the substitution φ → φ0 + ∆φ is made into the cGPEs and
only terms that are linear in the fluctuations ∆φ are kept. This is then formed into a matrix
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equation [28]:
i∂tδ~φ = L · δ~φ

where δ~φ is a vector formed of all the relevant ∆φ’s and their complex conjugates. In the
exciton-photon basis,

δ~φ =


∆φx

∆φc

∆φ∗x

∆φ∗c

 . (4.21)

The fluctuations can have any form, but it is useful to choose a plane wave. To include fluctu-
ations, the substitution

φ{c,x} = P{c,x}e
−iωptδk,kp + ∆φ{c,x}e

−i(ωp+δω)tδk,kp+δk (4.22)

is made into the cGPEs (Eqs. (4.12) and (4.13)). The external laser pump f is not affected by
fluctuations.

The photons are considered first:

i∂t(φc) = ωpPce
−iωpt + (i∂t∆φc + (ωp + δω)∆φc)e

−i(ωp+δω)t

= (ωc(kp)− iκc)Pce−iωpt + fe−iωpt +
ΩR
2
Pxe

−iωpt

+(ωc(kp + δk)− iκc)∆φce−i(ωp+δω)t +
ΩR
2

∆φxe
−i(ωp+δω)t. (4.23)

Only terms linear in the fluctuations are kept, and the exponential factor common to all terms
cancels to leave an equation for ∆φc:

(i∂t + δω)∆φc = (ωc(kp + δk)− ωp − iκc)∆φc +
ΩR
2

∆φx. (4.24)

The excitons are slightly more complicated due to the interaction term (the exponents on Px

and ∆φx have been dropped for brevity):

gx|φx|2φx = gx(|Px|2 + Px∆φ∗x + P ∗x∆φx + |∆φx|2)(Px + ∆φx)

= gx

(
|Px|2Px + P 2

x∆φ∗x + |Px|2∆φx + Px|∆φx|2 + |Px|2∆φx

+Px|∆φx|2 + P ∗x∆φ2
x + |∆φx|2∆φx

)
.

The mean field and terms that are quadratic in the fluctuations are discarded to leave:

gx|φx|2φx → gx(P 2
x∆φ∗x + 2|Px|2∆φx).

The rest of the exciton part is almost identical for the photon part, so, after dividing through
by the exponential factor e−i(ωp+δω)t, the equation of motion for fluctuations around the exciton
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mean field is:

(i∂t + δω)∆φx = (ωx(kp + δk)− ωp + gx2|Px|2∆φx − iκx)∆φx +
ΩR
2

∆φc + gxP
2
x∆φ∗x.

The remainder of the terms, i∂t∆φ∗{c,x}, are obtained immediately through [89]

i∂tO
† = −(i∂tO)†

and the convention that the energy and momentum signatures of the conjugate fields are opposite.
The linear response matrix in the exciton-photon model is the part without the δω contribution
since the spectra calculate δω [28, 64] has the form:

Lx−c =

(
A(δk) B

−B∗ −A(−δk)

)
(4.25)

with

A(δk) =

(
ωx(kp + δk) + 2gx|Px|2 − ωp − iκx ΩR

2
ΩR
2 ωc(kp + δk) + ωp − iκc

)
(4.26)

and

B =

(
gxPx

2 0

0 0

)
. (4.27)

The spectra are found by calculating the (complex) eigenvalues of Eq. (4.25). The real parts give
the dispersions (the upper and lower polaritons and their ‘images’) while the imaginary parts
determine whether the pump state is stable or not [28, 64]. If the imaginary part of one of the
eigenvalues is positive for some combination of pump strength f and momentum fluctuation δk,
then the pump mode is unstable towards a new state at δk. By defining k = kp−δk the problem
can be written in terms of the actual momenta k and kp + δk → 2kp − k. The exciton-photon
model is only valid at exciton densities that are low enough to allow excitons to be treated as
weakly interacting bosons [15, 28], so behaviours at large values of f that lead to high exciton
occupations (or densities) may not be realistic.

4.2 Lower Polariton basis

Although the results can be written down directly after the detailed derivation presented for
the exciton-photon basis, the derivation is included here in brief to highlight the differences that
appear with the Hopfield coefficients.
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4.2.1 Treatment of the decay baths

The exciton and photon decay baths in the lower polariton Hamiltonian (Eq. (2.13)) are treated
following the scheme outlined above for the exciton-photon model. As above, the two decay
baths follow the same procedure, so the photon bath only is calculated in detail. First:

i∂tp̂k = ωlp(k)p̂†k + gx

∑
k′,q

Vk,k′,qp̂
†
k′ p̂k−qp̂k′+q

+
∑
p

(
Γap,kC(k)Âp + Γbp,kX(k)B̂p

)
+ Flpδk,kp , (4.28)

i∂tÂp = Γap,kC(k)p̂k + ωΓa

p Âp. (4.29)

Eq. (4.29) is exactly Eq. (4.2) with the substitution ak → C(k)pk so the solution is

Âp = Âp(0)e−iω
Γa

p t − iC(k)Γap,k

∫ t

0

p̂k(τ)e−iω
Γa

p (t−τ)dτ

which means that∑
p

Γap,kC(k)Âp → F alp,k(t)− iπΓaD(0)C2(k)p̂k = F alp,k(t)− iC2(k)κcp̂k

where F alp,k(t) = C(k)F ak (t). Doing the same for the exciton decay bath B̂k, leads to:

i∂tp̂k = ωlp(k)p̂†k + gx

∑
k′,q

Vk,k′,qp̂
†
k′ p̂k−qp̂k′+q

−i
(
C2(k)κc +X2(k)κx

)
+ F alp,k(t) + F blp,k(t) + Flpδk,kp . (4.30)

The pump Flp = flpe
iωpt is proportional to the photon pump (flp ∝ f) [30]. The polariton decay

can be written in terms of the exciton and photon decays and the Hopfield coefficients with:

κlp(k) = X2(k)κx + C2(k)κc. (4.31)

The cGPE is obtained by taking the final form of the Heisenberg equation of motion for a field
that includes all states (by Eq. (4.9)) and considering only the mean field in which the field
operator is replaced by a complex number and the fluctuating forces are zero. This leads to the
lower polariton cGPE [19,30,41]:

i∂tφlp = (ωlp(k)− iκlp + Vlp|φlp|2)φlp + Flpδk,kp . (4.32)

The interaction strength Vlp and the lower polariton dispersion ωlp are defined in momentum
space. Since the field ψlp can contain any number of momenta, the momentum arguments on
Vlp depend on the momenta included in the approximation; once the momenta are known, then
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Vlp → Vk,k′,q according to the expansion of |φlp|2φlp.

4.2.2 Pump only mean field and linear response

The mean field of the lower polaritons when there is a single mode is:

φlp = Plpe
−iωtδk,kp . (4.33)

Substituting into Eq. (4.32) leads to the mean field steady state equation for the polariton
occupation np = |P |2 at the pump mode [29,30]:

flp = [ωlp(kp)− ωp + Vlpnp − iκlp]P (4.34)

|flp|2 = [(ωlp(kp)− ωp + np)
2 + κ2

lp]np. (4.35)

Since the pump strength is real, flp depends on np = |P |2 only.

The fluctuations around the mean field have the same form as in the exciton-photon model
and the terms in the lower polariton model are calculated exactly as the terms in the equation
for the exciton fluctuations (since both contain interactions). The additional difference is the
momentum dependence of the polariton interaction. The linear response matrix, formed by
keeping only terms linear in fluctuations is [19,30,31,59]:

Llp =

(
α+ − iκlp P 2

lp

−P ∗lp
2 −α− − iκlp

)
(4.36)

where
α± = ωlp(kp ± δk)− ωp + 2|Plp|2 (4.37)

as in the Keldysh analysis. The eigenvalues of Llp, can be calculated exactly [30]:

ω± =
α+ − α−

2
− iκlp ±

1

2

√
(α+ + α−)2 − 4n2

p. (4.38)

4.2.3 OPO mean field and linear response

In the lower polariton model, the OPO regime with three modes can also be investigated. A
new ansatz consisting of three plane waves is made and substituted into the lower polariton
cGPE [29,30,41]. The new polariton field has the form:

φlp = φs + φp + φi,

with each mode a plane wave:
φm = Me−iωmteikm·x,
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the effect of the second exponential is equivalent to δk,km [30, 41].

The requirements of energy and momentum conservation within the OPO modes restrict the
terms and the OPO regime is described by three coupled cGPEs, one for each of the signal, pump
and idler modes [29,30,41]. The new ansatz is substituted into the polariton cGPE, Eq. (4.32),
and the steady-state with ∂tP = ∂tS = ∂tI = 0 taken. This gives three complex equations that
can be solved to give the signal energy εs, the mode occupations ns, np, ni and the complex mode
amplitudes S, P, I [29]. Some of the interaction terms introduce modes outside of the three mode
ansatz; these are discarded. The steady-state equations of the OPO modes are [29,30]

ΞsS + VsppiP
2I∗ = 0, (4.39)

ΞpP + 2VsppiSP
∗I + flp = 0, (4.40)

ΞiI + VsppiS
∗P 2 = 0, (4.41)

where, as in section 3.4, the shorthand

Ξm = ωlp(km) + 2(Vmmssns + Vmmppnp + Vmmiini)

−εm − ωp − Vmmmmnm − iκm (4.42)

is used. The mean field occupations and mode amplitudes are calculated as described in section
3.4.1.

The stability of the OPO regime at a given pump strength and ks is determined from a linear
response analysis of the three mode description. The linear response of the OPO regime is [41]

LOPO =

(
−M(δk) −Q(δk)

Q∗(−δk) M∗(−δk)

)
(4.43)

with the submatrices

Mm,n(δk) = δm,n (ωm − ωlp(km + δk) + iκlp(km + δk))− 2

3∑
r,t=1

δm+r,n+tVm±,n±,r,tψ
∗
rψt,

(4.44)

Qm,n(δk) = −
3∑

r,t=1

δm+n,r+tVm±,n∓,r,tψrψt. (4.45)

The OPO regime is unstable if the imaginary part of one of the six eigenvalues is positive. If the
OPO is stable, the maximum imaginary part is the Goldstone mode with ωG → 0 at δk→ 0 [41];
if the OPO is unstable, then eigenvalues with positive imaginary part at a finite momentum
fluctuation exist. As a result of the restriction to linear fluctuations around each mode, the
momentum fluctuation is restricted to forbid overlap between the modes.
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4.3 Numerical integration of the cGPEs

The cGPEs (Eqs. (4.12), (4.13) and (4.32)) are integrated numerically in real space using an
adaptive step size Runga-Kutta algorithm on a 256 × 256 lattice for a Gaussian pump to give
the mean field polariton, exciton and photon densities |ψlp,x,c|2. The non-dimensional time is
related to the real time according to the Rabi frequency: Treal = Tnon−dim(2/~ΩR). In all the
numerical results reported here, the integration runs to Ttot = 2.4× 105 which corresponds to a
real time of 72ns. The signal is identified as the largest distinct peak in the polariton or photon
density with ks < kp [26, 27,33,61].

In the numerical integration, the momentum dependent polariton interaction cannot be in-
cluded since the real space form of the Hopfield coefficients is not used. Therefore a simplified
version of the lower polariton model is used in which the polariton-polariton interaction strength
is set to unity (the fields are rescaled by rescaling the exciton-exciton interaction constant).

Choice of parameters All calculations are performed in a non-dimensional system of units
in which the exciton-photon interconversion rate ΩR/2, is unity as described in appendix A. In
the simplified lower polariton model Vlp = 1, and in the exciton-photon model gx = 0.00121.
The controllable parameters are the pump energy and momentum for which the choices ωp =

ωlp(kp) = −0.38 and kp = (1.4, 0) are usually made. In all sections except section 4.4.7, the
momenta are restricted to the ky = 0 plane so the vector form of all momentum arguments is
dropped. Except in Fig. 4.24 where the exciton losses are reduced, the polariton, photon and
exciton losses are all equal (and independent of momentum and energy) with κlp = κc = κx =

0.045.

4.4 Determining the signal momentum

The two models derived above are used to investigate whether the signal momentum can be
estimated from a simple linear response analysis of the pump mode or from a three mode ansatz
describing the OPO regime. In sections 4.4.1 - 4.4.3, the momentum of the most unstable
eigenvalue (largest =(ω)) is found and compared to the location of the signal found through
numerical integration of the cGPEs. The signal, in the polariton or photon distributions, is
identified as having the maximum polariton or photon occupation at a momentum below the
pump momentum (and distinct from the pump). The effects of changing the pump parameters
are considered in section 4.4.4.

The OPO regime in lower polariton model is considered in section 4.4.6 and the ks value(s)
for which the three mode description of the OPO regime is stable at a given pump strength are
found. By appropriate rotation, a coordinate system where the pump is applied in the kx plane
can always be defined and, as long as there is only one signal, the coordinate system can be
rotated such that the pump, signal and idler all lie along ky = 0. When ky is included in the
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analysis in section 4.4.7, the fluctuations are considered in the 2-D momentum plane. Lastly, the
momentum dependent interactions are included in the lower polariton model in section 4.4.8.

4.4.1 ks in the simplified lower polariton model

In this section, the simplest model of the polariton system with constant polariton-polariton
interaction is used. First, ks is obtained directly from the numerical integration of the cGPE
(Eq. (4.32)). Then the maximum of the imaginary parts of the eigenvalues (of Eq. (4.36)) is
used to predict ks. Finally, the signal momenta from the two methods are compared.

Numerical integration of the polariton cGPE

The lower polariton cGPE, Eq. (4.32), is integrated numerically for range of pump strengths
covering the entire OPO region. In Fig. 4.1, the polariton density at the end of the simulation
is plotted for two pump strengths. In both cases, there is OPO with a significant polariton
occupation away from the applied pump and the signal is identified as the largest (distinct) peak
with ks < kp.

Figure 4.1: The polariton density distribution at the end of the integration period. The distinct
modes (signal, s, pump, p and idler, i) are identified. a) weak pump, Flp = 0.015; b) strong
pump Flp = 0.051 with satellite states.

For weak pumping, Fig. 4.1 a, the signal appears with negative momentum, and other peaks
in the logarithmic plot are weak. When the applied pump is stronger, Fig. 4.1 b, the signal mode
has ks ∼ 0, and distinct satellite states with momenta k ∼ −kp,∼ −2kp [19, 29, 31, 60–62] are
visible. In the OPO regime, the macroscopic occupation of the distinct signal and idler modes
is due to stimulated scattering into these modes [22, 26, 27, 33, 58]. The satellite modes are the
result of multiple scattering events involving the three modes of the OPO regime [29,31,60,61];
the OPO regime itself - the signal and idler modes - is the result of scattering involving pairs
of pump polaritons only [18,19,26,27,30,31,41,59]. The properties of these significantly weaker
satellite states are not considered further. The background polariton density is |ψlp|2 ∼ 10−8

throughout.
The signal occupation is plotted in Fig. 4.2 in both linear and logarithmic scales. There is no

macroscopic occupation away from the pump, and therefore no OPO, for very weak pumping. As
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the pumping is increased, the signal occupation increases sharply at Flp = Fon: there is a range
of pump strengths where the signal occupation is large, and above Flp = Foff there is again no
largely occupied state away from the pump. When there is no OPO, any peak in the polariton
density away from the pump which yields a definite ks is weak and the result of spontaneous
parametric scattering [82], rather than the stimulated scattering that leads to the macroscopic
occupation of the OPO modes. The OPO regime is identified as having |ψs|2 > 104 in the
non-dimensional system of units used, and exists for a range of pump powers Fon ≤ Flp ≤ Foff .

Figure 4.2: Value (left, linear scale, centre, logarithmic scale) and location (right) of the max-
imum signal at the end of the integration period. The OPO exists where there is a large signal
occupation; the signal momentum is initially large and decreases to become small and positive
over a range of pump strengths. (Fp ⇒ Flp)

The signal momentum is extracted from the polariton density and plotted the right hand
panel of Fig. 4.2. In the OPO region, ks is initially negative, which corresponds to the polariton
distribution at weak pumping in Fig. 4.1 a. On increasing the pumping, ks becomes positive for
a large range of pump strengths, with some variation. When ks is first positive, its value is quite
large, but it decreases to ks ∼ 0.1 for much of the OPO region. The polariton density distribution
plotted in Fig. 4.1 b is at the last pump strength considered before the OPO switches off.

Linear response analysis

Even without the linear response analysis, the mean field gives some information about the
expected behaviour. |flp|2 is cubic in np which can lead to bistable behaviour under certain
pumping parameters. The critical quantity is the detuning of the pump away from the lower
polariton curve: if ωp−ωlp(kp) ≡ ∆p >

√
3κlp, the pump mode is bistable [28–30,86,105]. Since

ωp = ωlp(kp) is used here, the system is in the ‘optical limiter’ regime with a monotonic relation
between the pump strength and the polariton occupation at the pump mode, as shown in the
upper part of Fig. 4.3.

If the discriminant of Eq. (4.38) is positive, then the two eigenvalues have a common ima-
ginary part, =(ω±) = −κlp, and the pump mode is stable. When the discriminant is negative,
the imaginary parts of the eigenvalues are not equal, and it is possible to find the location of the
maximum, =(ω+) which may become positive. The imaginary part of ω+ is plotted in the right
hand panel of Fig. 4.3 for a range of pump strengths covering the full OPO regime and over a
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Figure 4.3: Mean field, steady state pump mode polariton occupation (left, with the pump power,
centre, with the pump strength) and the imaginary parts of eigenvalues =(ω) > −κlp (right).
The blue line (region, −0.0011 < =(ω+) < 0.0011) shows the border of the unstable region with
=(ω+) > 0. (Fp ⇒ Flp)

broad range of momenta above and below the pump mode. The imaginary parts first split in
two places, while at higher pump strengths there is a single maximum. There are no satellite
states seen in the linear response since the fluctuations are restricted to pairs of polaritons with
energy and momentum conservation.

Figure 4.4: Left: maxima of imaginary parts; right: the signal momentum from linear response.
The two possible values of ks approach each other smoothly. (Fp ⇒ Flp)

At very weak pumping, the peaks in the imaginary parts of the eigenvalues predict two
ks values, one positive, one negative, both of which are far from zero. As the pump becomes
unstable at Fun, ks is already smaller than at the weakest pump strengths. As the pump strength
is increased, the maximum value of =(ω) reaches a maximum and then decreases to again become
negative at Fst. There is an intermediate pump strength at which the two possible ks values
become indistinguishable; the two possible values of ks approach this point evenly. Once there
is a single ks value, this value is constant until the discriminant of Eq. 4.38 becomes positive.
By the argument that the signal appears with the maximum of the imaginary part, which would
indicate there are initially two possible ks values or two signal modes.
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In Fig. 4.5, the ks from linear response is plotted over the signal part of the imaginary parts
to highlight where the peaks in the imaginary parts lie in relation to the borders of the unstable
region. The pump mode first becomes unstable at a momentum slightly closer to zero than
the maximum value for which there is a positive imaginary part. A single value of ks occurs
for comparatively weak pumping, for a ks in the centre of the unstable region, but before the
imaginary part reaches its maximum value. The idler momentum is not considered here but can
be calculated easily using the momentum conservation imposed by the OPO scattering.

Figure 4.5: Detail of Fig. 4.3 (the imaginary part of the eigenvalues that becomes positive)
around kx = 0 with the locations of the maxima (yellow dotted lines) overlaid, showing where
the ks values lie against the background instabilities. (Fp ⇒ Flp)

Discussion

There is qualitatively similar behaviour of ks from the two approaches for a range of pump
powers: as pumping is increased, there is a threshold pump strength; the value for ks is initially
moderate, tends towards a small positive value and then remains more or less constant until the
second threshold after which no ks can be identified. For the simple linear response approach to
be a useful tool as part of the cGPE analysis of the OPO regime, there should also be quantitative
agreement in ks

In Fig. 4.6, the signal momenta and transitions from both methods are plotted together
(Figs. 4.2 b and 4.4 b combined). There are two key aspects to consider: the thresholds of the
OPO and unstable regions and the actual ks value. The single mode becomes unstable to small
fluctuations for pump strengths close to the switch on of the OPO. The OPO switches off for a
slightly weaker pump than the return stability of the single mode: Foff < Fst. The single mode
ansatz is unstable to small fluctuations for the definite OPO region.

The most significant variation in the signal position from the two approaches occurs for
intermediate pump strengths where the ks from the linear response analysis decreases much
more rapidly than the ks found from the numerical integration. For the higher pump strengths,
the signal momentum from both approaches is ks ≈ 0.1, with variations in the numerical result
of ±0.1. The actual wave-vector is given by: qs = ks

√
ΩRmc. For an example Rabi splitting
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Figure 4.6: Comparison of (transitions and) ks from the two methods. The two approaches give
similar values for ks over a range of pump strengths. Magenta (dotted and crosses), as Fig. 4.2;
red (dash-dotted), black (dashed) as Fig. 4.4. (Fp ⇒ Flp)

ΩR = 5meV and a cavity photon mass mc = 2.5× 10−4me [18], this gives qs = 0.11µm−1.

4.4.2 ks in the exciton-photon model

To confirm the behaviour observed in the simplified lower polariton model of the previous section,
this section performs the same analysis in the exciton-photon model.

Numerical integration of coupled cGPEs

Once again a range of pump strengths is considered which covers the entire OPO regime. In
finding the signal from the numerical data, the maximum in the photon occupation is considered.
Examples of photon densities for weak and strong pumping are shown in Fig. 4.7.

Figure 4.7: The photon density at the end of the integration period and the distinct modes
(signal, s, pump, p and idler, i) identified. a): weak pump, Fp,c = 1.8; b) Fp,c = 2.3 for which ks
is negative; c) strong pump, Fp,c = 5.0 with satellite states near −kp and −2kp.

Many features observed in the lower polariton model (Fig. 4.1), including the distinct satellite
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states at strong pumping, are also present here. At low pump strengths (Fig. 4.7 a) there is a
double peak around k = 0 with the peak nearest the pump dominant. The distribution of the
peaks is similar to that seen in the polariton case under weak pumping, but there the dominant
peak gave a negative ks and the other peaks were much weaker. The photon density is lower at
momenta above the pump, leading to an idler that is weaker than the signal. This reflects the
fact that polaritons couple less strongly to the photons at higher momenta [31, 59, 82, 106]. In
the centre panel of Fig. 4.7, an example of the photon distribution that gives a negative ks at
an intermediate f is plotted.

A well defined signal exists for a range of pumping strengths between Fon and Foff . The
photon density at the signal and the resulting ks are plotted in Fig. 4.8.

Figure 4.8: Left and centre: signal intensity showing clear region of macroscopic occupation
(|ψ|2 > 106) which is the OPO region. Right: location of the signal, ks < kp, at the end of the
integration period.

The location of the signal when the OPO switches on gives again a moderate, positive value
of ks. Instead of decreasing reasonably smoothly from its initial value towards its constant value,
ks switches suddenly to a negative value. As pumping is increased further, ks increases smoothly
towards a small positive value which it maintains until the OPO switches off at Foff .

Linear response analysis

The mean field is calculated by substituting the single mode Eq. (4.33), into the coupled cGPEs,
Eqs. (4.12) and (4.13) and taking the steady state, i∂tψ = 0. The exciton, nx = |ψx|2 and
photon nc = |ψx|2 occupations in the mean field, are calculated and plotted in the left and cental
panels of Fig. 4.9. Since the pumping is such that the system is in the ‘optical limiter’ regime,
both nx and nc are monotonic in the pump strength. The imaginary parts of the eigenvalues,
plotted in the right hand panel of Fig. 4.9, behave exactly as in the lower polariton model,
showing two regions of variation at lower pump strengths which combine to a single region for a
stronger pump.

When the maximum values of the imaginary parts of the eigenvalues (=(ω±) of Eq. (4.25))
are considered, a small difference between the value of =(ω) is the two tails is seen and continues
to pump strengths where the pump mode is unstable. This is plotted in Fig. 4.10 a, where
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Figure 4.9: Left: Pump mode exciton nx, centre: photon nc occupations in the mean field steady
state, right: imaginary parts of the eigenvalues with =(ω) > −κ.

=(ω±) is larger for the potential ks that lies closer to the pump. The pump strength at which
the instability first appears is Fun(XC); increasing the pump strength further leads to a single
peak in the imaginary parts. Although both potential ks values are included in Fig. 4.10 b, the
upper (positive) value is the more unstable point.

Figure 4.10: a) maxima of the imaginary parts and b) resulting ks. The peak closer to the
pump (red, dash-dotted, giving the upper value of ks) becomes unstable at a slightly lower pump
strength than the lower (negative, black, dashed) momentum peak.

Another difference to the polariton model exists in how the two potential ks values become
one. Instead of a smooth join between the two branches, there is a sharp jump to a single value of
ks. Once there is a single possible ks, it decreases slightly to a constant value which is maintained
until after the pump mode has become stable again at Fst.

In Fig. 4.11 a, the (positive) imaginary part of the eigenvalue is plotted for a range of pump
strengths near the transition to a single possible ks. There is initially a double peak; the one at
lower momentum being the weaker. As the pump strength is increased, both peaks grow, but
the two peaks do not move together particularly fast. Instead, the dip between the two peaks is
filled in and there is a single broad peak that slopes between what were the two distinct peaks.
This gives the sudden switch to a single signal location which is not the two peaks occurring at
a single place, but the lower momentum peak becoming one edge of a plateau, while the higher
momentum peak is the highest point.
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Figure 4.11: a) imaginary part near k = 0 for a range of pump strengths near the sharp jump
in ks that occurs when the two peaks combine. b) detail of Fig. 4.9 (the imaginary part of
the eigenvalues that becomes positive) with the locations of the maxima (yellow dotted lines)
overlaid, showing where the ks values lie against the background instabilities.

The signal momentum from linear response is plotted over the signal part of the imaginary
parts of the eigenvalues in Fig. 4.11 b. The details of how the two peaks become one are not
clearly visible in the density plot.

Discussion

Considering the differences between the OPO region and the signal momentum from the two
approaches is again necessary. The OPO region with a macroscopic occupation of a signal
mode appears for the pump strength at which the pump mode becomes unstable, and the signal
switches off for a pump strength near that for which the pump mode becomes again stable to
small fluctuations. In both cases, the difference in pump strength is less that the single step in
pump strength used for the numerical samples.
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Figure 4.12: Comparison of the OPO transitions and signal momentum in the exciton-photon
model. Magenta (dotted): from Fig. 4.8; red (dash-dotted), black (dashed): as in Fig. 4.10.

As shown in Fig. 4.12, the two approaches give a similar value of ks over much of the region
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considered. At higher pump strengths, there is a single momentum from the two approaches
over a significant range of pump strengths. There is more variation for a weaker pump, but the
negative ks seen in the numerics, is close to the lower branch from the linear response, which has
the smaller imaginary part.

The numerical integration gives a ks that, once it becomes negative, increases gradually to
reach a small positive value that is maintained for much of the remainder of the OPO region. If the
two peaks remained distinct throughout until the coalescence (as in the simplified lower polariton
model, Fig. 4.4), rather than exhibiting the sharp disappearance of the lower momentum peak,
then it is expected that the signal momentum from the numerics would follow this curve closely.
For the range of pump strengths where ks is (approximately) constant, it has a value ks ≈ 0.1,
which is the same as in the simplified lower polariton model.

4.4.3 Comparison of models

The previous two sections have shown that the simple linear response analysis gives a reasonable
estimate of the signal momentum within the polariton OPO for at least a range of pump strengths
for the parameters considered. That the signal momentum is constant over a large range of
pumping strengths suggests that using the linear response analysis to determine a single ks for a
given set of pump (system) parameters will improve the accuracy of the description of the OPO
regime to some extent. The two models used give, for the same pump parameters, ks ≈ 0.1 for
much of the OPO region.

The only major discrepancies between the results of the linear response analysis and the
numerical integration, are at moderate pump strengths in the simplified lower polariton model.
The behaviours of the imaginary parts of the eigenvalues are very similar in both models; with
the differences appearing in the numerical results.

It is important to remember that when the single mode ansatz is unstable the question
remains as to what the new state is and whether it is stable. The double peak nature of the
eigenvalues at weak pumping suggest that at this point the new ansatz should contain two signal
and idler modes, while at higher pump strengths there are only two additional modes. In section
4.4.6, the OPO is assumed to consist of three distinct modes: the mean field can be calculated
and the stability of the proposed steady state again evaluated using linear response.

Having determined that there is at least qualitative agreement between the ks values obtained
by identifying the most unstable eigenvalue of the linear response analysis of the steady state
and the actual ks value from numerical integration of the cGPE(s), the linear response approach
can be used to further investigate the choice of ks. The exciton-photon model should be used
unless the nature of the three mode description of the OPO regime is of interest for which the
lower polariton model has to be used.
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4.4.4 Changing the pump properties.

Experimental work has investigated the variation of the signal properties with changing pump
energy and momentum [33]. Using the exciton-photon model (for which there is extremely good
agreement between the linear response prediction of ks and the exact value) and choosing pump
parameters that remain within the optical limiter regime (ωp − ωlp(kp) = ∆p <

√
3κx,c), the

effects of changing kp and ∆p are investigated. Three values of ∆p: −0.05, 0,+0.05, and pump
momenta over a large range: 0.5 ≤ kp ≤ 3.5 are considered; in most of the results only the
pump momenta that lead to an unstable single mode are present. The mean field occupations
are calculated for np < 250.

Although the three values of ∆p used keep the system within the optical limiter regime, the
pump mode is still affected by these variations, as shown in Fig. 4.13 where the mean field
exciton occupation is plotted against pump strength (f) and kp. For all values of the detuning of
the pump away from the lower polariton dispersion, the occupation increases fastest with pump
strength at lower kp. At positive detuning, the system is still in the optical limiter regime, but
is starting to show the s-shape that characterises the bistable regime [28, 29]. In Fig. 4.13 d,
the three values of the pump detuning are plotted for a single kp showing that for a given pump
momentum, increasing the detuning leads to higher np for a given f , apart from at very weak
pumping where the positive detuning of the pump leads to slower increase in the pump mode
occupation.
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Figure 4.13: Exciton occupation in the pump mode with pump strength Fp,c for different three
values of the detuning of the pump from the lower polariton dispersion and several kp values. a)
∆p = −0.05; b) ∆p = 0; c) ∆p = 0.05 for a range of kp; d) kp = 1.5, all three values of ∆p.

In Fig. 4.14, the locations of the peaks in the imaginary parts of the eigenvalues are plotted
for a range of pump momenta with ∆p = 0 over a large range of exciton occupations, including
where the pump mode is stable, but there is at least one maximum of the imaginary parts of
the eigenvalues. This shows that the ks behaviour observed for a single kp is general, and also
that way in which a single ks appears depends on the pump momentum with a smooth join for
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sufficiently low pump momenta while at higher momenta there is a sharp join. For very low
kp, the pump mode is always stable to small fluctuations and the system never enters the OPO
regime. As kp is increased the OPO instabilities remain, but the single ks and the disappearance
of any possible ks occur at much higher exciton occupations (and pump strengths).

Figure 4.14: Signal momentum for a range of kp for ∆p = 0. As kp is increased, the pump
strengths at which there is a single ks and at which there is no longer any identifiable ks increase.
This considers the exciton occupation which is linked to the pump strengths according to Fig.
4.13 b.

From Fig. 4.14 three particular points of interest for any pump properties can be identified:
where the pump mode first becomes unstable, ‘switch on’ or lower threshold; the lowest f (or flp)
for which there is a single peak in the instability ‘coalescence’; where the pump mode becomes
stable again, ‘switch off’ (the upper threshold which may not exist for moderate np values).

To investigate any effects that changing the pump properties may have on the signal mo-
mentum, ks is calculated for a range of pump momenta and energies. The mean field pump
mode occupations plotted in Fig. 4.13 are representative. The signal momenta at switch off and
coalescence are plotted in Fig. 4.15 a and b for a range of pump momenta and different values
of the detuning, in which it is seen that, in agreement with experiments [105,107], changing the
pump energy at a given kp does not affect ks. However, there is some variation of ks with kp both
at switch off and coalescence which is somewhat at variance with experimental results where no
variation of the signal angle (or momentum) with pump angle is reported [33,107].

Considering now the case of the pump applied resonantly to the lower polariton dispersion,
∆p = 0, a small variation in ks between coalescence and switch off is observed, with the final
value of ks being slightly lower than the initial single value. In Fig. 4.15 c, it is also seen that
there is an upper limit on kp above which there is no return to stability for the pump strengths
considered.

The pump strengths at the two stability thresholds and at the point where a single ks appears
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Figure 4.15: ks at a) switch off and b) single value with changing kp for different values of the
pump detuning ∆p. Where the three values of ∆p give a ks value for the same kp, the values
are indistinguishable. c) ∆p = 0, ks values at two points: single ks and return to stability for a
range of kp. d) ∆p = 0, pump strengths the two stability thresholds and the coalescence point;
there can be a single ks value even when the pump mode remains stable.

are plotted with kp in Fig. 4.15 d in which it is seen that the region for which two ks values
are possible increases rapidly with kp as the difference between the pump strengths of the lower
threshold and coalescence point grows. The pump strength at which the pump mode becomes
unstable increases slowly with kp; returning to Fig. 4.13, it can be seen that this actually
corresponds to a decrease in the exciton occupation at which instability occurs. Although a
single signal momentum and hence a clear OPO could exist at large momenta, this is clearly
limited by the pump strengths that can be used. There is no upper threshold within the range
of exciton occupations considered for pump momenta greater than about 1.8.

In other studies of the OPO regime and the signal properties, the signal energy has been
considered [30,33]. Since the linear response approach is being used, the signal energy is defined
as the real part of the eigenvalue at the ks identified via the maximum of the imaginary part
(<(ω, ks)) . (The location of the peak in the imaginary part gives ks, so the real part, which is
the associated spectrum gives the energy.) The signal at coalescence is plotted in Fig. 4.16 for
a positive detuning of the pump away from the lower polariton curve and for a range of pump
momenta. The single ks point is chosen since it covers a larger range of pump momenta. In
all cases, the behaviours at large kp are limited by the consideration of the effects within the
microcavity at high exciton density. In particular, the underlying assumption of the exciton-
photon model is that the excitons can be treated as effective bosons is only valid at low and
moderate exciton occupations [31].

From Figs. 4.15 and 4.16, it can be seen that as the pump momentum is increased and
the signal momentum decreases, the signal energy increases. This is broadly consistent with
experiments studying the effect of changing the pump properties on the resulting signal where
the signal energy increased, but the momentum was not observed to vary with kp [33]. However,
the variation in the energy is much greater than the variation in the momentum. There are
two distinct points: for the pump mode to become unstable, kp must be sufficiently large;
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Figure 4.16: Pump energy and real part of eigenvalue at various kp for ∆p = +0.05 for when
there is a single ks (clean OPO). The solid line is the lower polariton dispersion.

increasing the pump momentum (and hence energy if the pump’s relation to the unperturbed
lower polariton dispersion remains unchanged) leads to a signal momentum that is closer to zero
and with increasing energy.

4.4.5 Note on experimental observation

The precision of the experimental results is finite and linked to the size of the pump spot. Also,
the theoretical analysis considers a single kp and picks out the single ks value to the precision
of the calculation. In experiments, the excitation is provided by a finite sized spot and thus has
a limited resolution and the exciting laser will not be exactly monochromatic. An experimental
momentum resolution of 0.2µm−1 which using a Rabi splitting of 6.5meV [107] and a photon
mass 2.5 × 10−4m0, gives a resolution of 0.16 in the non-dimensional system of units, which is
about the same as the total variance of ks at switch off seen in Fig. 4.15. The much larger
variance observed in Fig. 4.15 includes pump momenta for which the pump only ansatz is stable
at all pump strengths.

Comparing the value of ks predicted by the simple linear response analysis with experimental
data can be done. Although experiments often describe the signal as having an emission angle
that is normal to the sample θ = 0◦, the actual peak in the signal emission is at a finite angle,
typically about 1◦ [33, 107]. With a Rabi frequency of 6meV, ωlp(0) ≈ 1.4587 [33] and using
mc = 2.5 × 10−4m0 gives ks ≈ 0.105 in the non-dimensional units. Where transforming from
experimental angles to momenta in µm−1 uses [23,26,59]:

k =
ωlp(k)

~c sin(θ)
. (4.46)

Another experiment gives the signal centred at 2◦ or ks ≈ 0.25µm−1 [61]. The Rabi splitting of
6meV gives a non-dimensional value of ≈ 0.204.

The outstanding question may relate to the definition of the OPO signal as occurring near
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k = 0 so any large momentum signals are considered as precursors to the transition to the
OPO regime in experiments, although some experimental results do show double peaks in the
energy spectrum at a given angle at low and moderate pump strengths that have not been
discussed [61,107]. Secondly, although the pump mode is unstable at these large potential signal
momenta and the signal occupation at these momenta is large in the numerical simulations,
the peak in the signal occupation as seen in e.g. Fig 4.8, does not occur until well after the
signal momentum has reached its near-constant value. Lastly, the finite energy distribution of
the pump spot does not affect the signal properties, but the finite momentum distribution does
so any experimental pump includes a (small) range of kp and hence a range of ks. Taking a
pump spot size of ∼ 100µm [26,27] to give a kp variation of 0.01µm−1 the variation of kp in the
non-dimensional system of units is 0.012 for ΩR = 6.5 and mc = 2.5× 10−4m0.

Although the linear response analysis presented here implies that there is no upper limit on
kp for OPO to occur, this is not the case in experiments where no OPO is observed for excitation
at large angles (kp) [27]. One physical limitation is that the OPO threshold density must be
below the exciton saturation density [27], as seen in Fig. 4.14, increasing kp increases the exciton
density at the pump mode for which there is a single ks. If the OPO is defined as having a single
signal (single ks value) then at large kp this may not occur before the exciton saturation density
is reached (as discussed in section 2.1, the model used does not include the effects of exciton
saturation).

4.4.6 Effect on the OPO regime

To investigate the effect on the OPO regime, a full range of ks = (ks, 0) values are considered for
kp = (1.4, 0) and ∆p = 0. The mean field occupations of the simplified lower polariton model are
calculated using Eqs. (4.39)-(4.42) and the eigenvalues of the linear response matrix calculated
for |kx| < |kp − ks|/2. For each ks and pump strength flp, two questions are asked: whether
the OPO regime exists (non-zero ns) and whether it is stable (all imaginary parts of eigenvalues
≤ 0 to the level of numerical accuracy at ky = 0). In Fig. 4.17 a, the signal mode occupation
is plotted and in Fig. 4.17 b, a phase diagram showing the three possible behaviours: no OPO,
unstable OPO and stable OPO, is constructed. The signal momenta determined in section 4.4.1
is overlaid.

At low pump strengths, the three mode description of the OPO regime is stable for a range
of ks on the side towards the pump. As the pumping is increased, this region narrows slightly
and moves towards ks = 0. Further increase of the pumping leads to a region where the OPO
regime is unstable for all ks for which it exists. At the highest pump strengths, there is again a
region where the OPO regime is stable, this time for most of the ks values for there is a finite
signal mode occupation, which is near ks = 0 and centred on a small positive ks. Only at the
highest pump strengths does the ks from the single mode linear response analysis lie consistently
within the region of stable three mode description of the OPO regime.

The stable regions at lower pump strength are for ks values that agree with the exact numerics,
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Figure 4.17: a) signal mode occupation with Fp ⇒ flp and ks; b) regions of stable (blue-green,
dark) and unstable OPO (golden, light) with ks from section 4.4.1 (dark blue dotted lines: linear
response; green crosses: numerical data); the horizontal gridlines are the pump strengths of the
polariton distributions examined in Fig. 4.18.

but not with the single mode linear response; the numerical prediction lies at the lower ks edge
of the stable region. The five polariton density profiles in Fig. 4.18 correspond to the five pump
strengths in Fig. 4.17. Finding ks as the largest peak in the polariton density below the pump
gives ks values that give stable OPO for the pump strength considered. For flp = 0.43, the three
mode description of the OPO regime is unstable at all ks values; the corresponding polariton
density in Fig. 4.18 d is ‘noisy’ with large occupations at many momenta compared with the
other samples where the pump, signal and idler modes are clear in the logarithmic plot. In Fig.
4.18, the polariton density profile at flp = 0.043 is plotted in linear scale. Although the signal
is clear, there are additional modes that have large occupation that are not consistent with a
scheme involving satellite states equally spaced at lower and higher momenta.

4.4.7 ks with non-zero ky

So far, with the pump applied at ky = 0, it has been assumed that the signal will therefore
appear at ky = 0 too, and the analysis has been restricted to the plane with ky = 0. In chapter
3, the incoherent luminescence was calculated in 2-D momentum space and had a ring shaped
structure for weak pumping. This suggests that at low pump strengths, there are not just two
possible values of the signal momentum, but an infinite number. Studies considering fluctuations
within the OPO regime consider ks = (ks, 0), which is always possible by a suitable choice of the
ky axis, and that the fluctuations are restricted to exist in the ky = 0 plane too [41].

Here, the possibility for the signal to appear with finite ky is investigated within the simplified
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Figure 4.18: Polariton density profiles at various pumpings across OPO regime. a)-e) Log scale
profiles: a) flp = 0.016, b) flp = 0.025, c) flp = 0.034, d) flp = 0.043, e) flp = 0.050, f)
flp = 0.043, linear scale.

lower polariton model. First linear response analysis is performed for a pump applied with
kp = (kp, 0), but without restricting the fluctuations to lie in the plane of the pump. The
analysis is then extended to the OPO regime where the signal is chosen with ks = (ks, 0) and
the appearance of instabilities with non-zero ky considered. Finally, numerical results of the
exciton-photon model with additional noise are presented for comparison.

Two examples of the imaginary parts of the eigenvalues around the pump mode (for mo-
menta around the expected signal at k = 0) within the simplified lower polariton model used in
sections 4.4.1 and 4.4.6 are plotted in Fig. 4.19: the two behaviours observed in the incoherent
luminescence are reproduced and the double peak structure extends into a ring. The instabil-
ities around a mean field steady state are consistent with pulsed pumped experiments [82]; but
with the distinct difference that there is a gap between the pump and the instability and hence
occupation. Although the pump strengths considered here give and unstable pump mode, the
behaviours are general.

If fluctuations in the ky direction (−(kp − ks)/2 < δky < (kp − ks)/2) are included in the
OPO linear response analysis, the range of stable OPO is reduced, as seen by comparing Figs.
4.17 b and 4.20. The small stable region with negative ks is now unstable and the broad band
of stable OPO characterised by decreasing ks values with increasing flp is much narrower. This
indicates regions where the OPO is stable at ky = 0, in the plane of the pump and signal, but
unstable towards small fluctuations at finite ky.

In Fig. 4.21, the largest imaginary part of the eigenvalues is plotted for the signal momenta
ks = (ks, 0) and several pump strengths, as identified in Fig. 4.20, showing the different types of
unstable behaviour seen across the phase diagram. It is interesting to examine both where the
OPO is unstable to fluctuations in δkx as well as where the instability occurs at finite ky.
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Figure 4.19: Unstable eigenvalues (positive imaginary part) for weak and strong pumping, flp
within unstable region, showing the two distinct behaviours: a ring shape at low pump strengths
giving an ill-defined signal; at higher pump strengths, there is a single region of instability and
a well defined ks.

Figure 4.20: Regions of stable and unstable OPO when fluctuations in ky are included. The
stable regions are reduced compared with Fig. 4.17b. The letters refer to the samples shown in
Fig. 4.21.

The samples for ks = 0 are considered first. Very close to threshold, Fig. 4.21 a, the OPO
is unstable symmetrically around ky = 0 and around δkx = 0; this symmetry around the axes
is present in all samples considered. The most unstable regions are lobes at moderate δkx, but
there are also unstable regions far from ky = 0, and a weakly unstable ring in the centre. As
the pump strength is increased, the instabilities at large ky vanish while the central ring joins to
the lobes to form a distorted oval around the modes, as show in Fig. 4.21 b. The most unstable
points are still at ky = 0 and finite δkx. On increasing the pump strength further, the lobes
at ky = 0 become progressively weaker while the instabilities at finite ky decrease more slowly.
Eventually, there are small unstable regions around kx = 0 but with finite ky as shown in Fig.
4.21 c; this reduces the unstable region compared to the ky = 0 case. There is then a small range
of pump strengths, near the maximum signal occupation where a signal mode with ks = 0 is
stable.
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Figure 4.21: Unstable eigenvalues (positive imaginary part) around the OPO for fluctuations in
kx and ky. a) - g), ks = (0, 0) a) flp = 0.0184, np = 0.054; b) flp = 0.0281, np = 0.046; c) flp =
0.0316, np = 0.048, ×10 for visibility; d) flp = 0.0325, np = 0.052; e) flp = 0.0332, np = 0.056; f)
flp = 0.0357, np = 0.070; g) flp = 0.0502, np = 0.128, ×10 for visibility; h) ks = (0.08, 0), flp =
0.0378, np = 0.075.

The OPO is next unstable in two regions centred on ky = 0 as shown in Fig. 4.21 d. As the
pumping becomes stronger, unstable regions far from ky = 0 appear, Fig. 4.21 e, that grow to
eventually form semicircular unstable regions, Fig. 4.21 f. It is noted that the positive imaginary
part is largest for large ky, and the peak at ky = 0 becomes less pronounced as the pumping is
increased. Eventually, the OPO becomes stable near the upper threshold. For ks = 0, there is
another region of unstable OPO immediately before the upper threshold is reached. This region
is common to the stability with and without the inclusion of fluctuations at finite ky and Fig.
4.21 g where the small unstable regions are centred on ky = 0 is consistent with this.

To understand how the broad stable region near the maximum signal occupation becomes
so narrow, a sample with finite ks is examined. In Fig. 4.21 h, it is seen that at finite signal
momentum, the large ky behaviour observed in Fig. 4.21 f is general, but the two peaks at ky = 0

that appear earlier (Fig. 4.21 e) are not present for finite ks.
The discussion of the nature of the instabilities can be related back to the polariton profiles

discussed in the preceding section. Considering that the mean field profiles plotted in Fig. 4.18
are in the ky = 0 plane, the instabilities along this axis in the plots of Fig. 4.21 can be discussed.
Roughly speaking, Fig. 4.18 a corresponds to Fig. 4.19 a; Fig. 4.18 b to Fig. 4.21 a and b;
Fig. 4.18 c to Fig. 4.21 h; Fig. 4.18 d and f to Fig. 4.21 f (the samples shown remain similar
to higher pump strengths); Fig. 4.18 e to Fig. 4.21 g and Fig. 4.19 b. From this, it becomes
clear that the instabilities around the OPO regime do not give much indication of the polariton
profile if the choice of ks is not correct.

However, one crucial feature must be highlighted: except for Fig. 4.21 e, f and h, the OPO
is stable, but for a different value of ks to that used in the calculation of the instabilities around
the OPO. This highlights that if the OPO regime is investigated with a ks that is far from the
stable ks, the instabilities are strong (compare Fig. 4.21 a, b with Fig. 4.21 d, g).
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To better understand the linear response behaviour in 2-D momentum, and highlight any
features that may be visible in experiments, the photon density at pump strengths in similar
regions of the OPO phase diagram can be analysed. Noise is added to the cGPEs describing the
exciton-photon model, Eqs. (4.12) and (4.13) (when the mean field occupations are calculated
numerically, all occupation is at ky = 0). The numerical simulation now uses truncated Wigner
methods, and the cGPEs have the form [64,108]:

i∂tψc = (ωc(k)− iκc)ψc +
ΩR
2
ψx + f + i

√
κcηc (4.47)

i∂tψx = (ωx(k) + gx(|ψx|2 − Vrc)− iκx)ψx +
ΩR
2
ψc + i

√
κxηx (4.48)

where ηc,x = dWx,c/dt is Wiener differential noise with [64,108]:

〈dW ∗x,c(r, t)dWx,c(r
′, t′)〉 = δ(r− r′)δ(t− t′);

〈dWx,c(r, t)dWx,c(r
′, t′)〉 = 0.

The additional term gxVrcψx accounts for the artificially induced density at zero pumping [64,
108].

The photon density at four pump strengths is plotted in Fig. 4.22. Near the lower threshold,
the ring shape of the signal is very similar to the ring seen in the linear response analysis of the
pump only case, Fig. 4.19 a. When the pump strength is increased, the ring shrinks, compare
Fig. 4.22 b with Fig. 4.22 a. There are two possible explanations for this: it could correspond
the coalescence of the two possible ks values seen in the pump only linear response analysis, or
it could reflect a ring shape in instabilities of the OPO states as plotted in Fig. 4.21 b. The ring
shape is also present in the satellite states. The first explanation is more likely since the pump
strength in Fig. 4.22 b is f = 2.2 which is just below the coalescence of the linear response peaks
(see Fig. 4.10). The disappearance of a ring shaped structure as pump strength is increased
leads identifying the OPO transition as occurring at the ‘coalescence’ point - or single peak -
rather than when the pump mode becomes unstable - ring shaped signal [109].

As the upper threshold is approached, Fig. 4.22 c, the photon density becomes distributed
in broad bands and the signal is not easily identified. As discussed in section 4.4.6, noisy beha-
viour in the mean field polariton distribution corresponds to an OPO that is unstable according
to linear response analysis. Interestingly, when noise is added into the exciton-photon model,
satellite bands evenly spaced in ky appear. Just before the OPO switches off, Fig. 4.22 d, the
OPO modes are along ky = 0 with finite widths in ky. This is consistent with the region of OPO
that is stable to fluctuations in kx and ky that occurs just before the OPO switch off.
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Figure 4.22: Plots of log(|Ψc|2) in kx − ky space at pump strengths across the OPO region.
a) f = 1.6 near the lower threshold, the signal appears on a ring with low density at k = 0
(|ψ|2 < 109), b) f = 2.2 part way into the OPO region, the signal is a large spot, but with a
ring structure discernible (|ψ|2 < 109), c) f = 3.6 the signal is difficult to identify since there is
a band of moderate photon density and additional bands equally spaced in ky are also present
(|ψ|2 < 500), d) f = 5.0 near the upper threshold, the peaks in the photon occupation are very
sharp with ky ≈ 0 (|ψ|2 < 109).

4.4.8 ks with momentum dependent polariton interactions

So far, the discussion has considered the exciton-photon model which gives a very good descrip-
tion of the polariton system or a simplified lower polariton model in which the polariton-polariton
interaction strength is momentum independent. Using the linear response analysis of the pump
only ansatz in the exciton-photon model to predict ks gives good agreement with numerical
simulations. In the simplified lower polariton model, the best way to predict ks at low pump
strengths is to find where the three mode ansatz of the OPO regime is stable while at higher
pump strengths the linear response analysis of the pump mode is sufficient. Here, the linear
response analysis of the pump only and three mode descriptions is performed in the full lower
polariton model in which the momentum dependence of the polariton interactions is restored;
the pump is applied at kp = (1.5, 0) with ∆p = 0, and fluctuations are restricted to the ky = 0

plane.
In Fig. 4.23, the peaks in the imaginary parts of the eigenvalues of the pump only linear

response are plotted over the regions of stable and unstable OPO. The discrepancy seen in Fig.
4.17 b is still present, but is less pronounced and the stable band at moderate pumping exists
for a large range of both positive and negative ks. The sharp jump in the ks value predicted by
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the pump only linear response, seen in the exciton-photon model but not in the simplified lower
polariton model, is again present, and the two subsequent ks values are marked. The stable band
at low pump strengths has a complicated structure, which is not discussed further.

Figure 4.23: In the full lower polariton model, there is better agreement between ks predicted by
pump only linear response and the region where the OPO is stable to fluctuations with ky = 0.
Pink dashed lines: ks from pump linear response; golden regions: unstable OPO; blue regions:
stable OPO; dark blue crosses: subsequent ks values at coalescence, the jump is as seen in the
exciton-photon model. (kp = (1.5, 0); Fp ⇒ flp)

To determine whether it is worth applying a predicted ks in the OPO regime when the po-
lariton decay is momentum dependent (κx < κc), the OPO regime with κc = 10κx is considered.
Fig. 4.24 shows that the OPO regime exists but that the three mode description is never stable
for −0.5|kp| < ks < 0.6|kp| (kp = (1.5, 0)).

Figure 4.24: Full Lower Polariton model: OPO is always unstable for κc = 10κx. (kp = (1.5, 0);
Fp ⇒ flp and fluctuations are restricted to ky = 0.)
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4.5 Signal momentum conclusions

In this chapter, the cGPEs of the exciton-photon and lower polariton descriptions of the co-
herently pumped polariton system were derived from the Heisenberg equations of motion. The
exciton-photon and a simplified version of the lower polariton model with Vlp = 1 were used to
investigate the potential of using linear response analysis to predict the signal momentum of the
OPO regime. The ks predicted in the exciton-photon model matches very closely to the exact
solution, while in the simplified lower polariton model, the ks from the simulations coincided with
where the three mode ansatz is stable to fluctuations with zero momentum in the ky direction
at low pump strengths and with the most unstable point found through the linear response of
the pump only case at higher pumping.

When the OPO regime is stable, the polariton distribution is not very noisy around the dis-
tinct peaks marking the signal, pump and idler states, perhaps with additional satellite states
which do not necessarily lead to the three mode description of the OPO regime becoming un-
stable. It is interesting to note that stable OPO is possible for a continuous range of pump
strengths until near where the signal reaches its maximum occupation. There is then an un-
stable region that occurs as the signal occupation decreases from its maximum value and a
further stable region for very weak signal (low ns) just before the signal switches off. It is not
just the signal momentum that determines whether the OPO is stable or not, but the pump
strength is a major factor, more so than the signal occupation since the band of stable OPO at
low pump strengths covers most of the signal occupations in the OPO regime.

Including the 2-D momentum in the analysis leads to two main features. Firstly, at low pump
strengths the instability occurs on a ring and therefore there is no single ks, while at higher pump
strengths there is a single region of instability centred at ky = 0. Secondly, the pump strengths
and ks values for which the OPO is stable are reduced. Momentum dependent polariton decay
where κc = 10κx, expands the ks range over which there is a finite signal occupation at the mean
field level, but. in the example considered, there were no ks, Fp combinations for which the three
mode description of the OPO regime was stable.

When the momentum dependence of the polariton interactions and decay are included, the
OPO regime becomes unstable for all pump strengths. It was noted in section 3.7, that the signal
mode can become bistable while the pump is in the optical limiter regime, and the interplay
between instability to small amplitude fluctuations and bistability could be interesting.
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5 | Conclusions

This thesis has explored the transition of a system of coherently pumped polaritons into the
OPO regime, and the properties of the OPO signal and idler states. Here, the main results are
summarised and some areas for further investigation mentioned. First, the detailed Hamiltonians
for the polariton system were written down and the Hopfield coefficients derived in chapter 2.

In chapter 3, Keldysh Green’s functions techniques were employed to find the spectra resulting
from a linear response analysis and gain access to the occupations of the spectra. It was found that
the phase transition to the polariton OPO regime can be described in analogy with equilibrium
Bose-Einstein condensation as an effective chemical potential can be identified which crosses
the normal modes (poles) at the transitions (lower and upper thresholds). Interestingly, when
the exciton decay is taken to be much less than the photon decay this still defines an upper
threshold although the pump only state remains unstable at all pump strengths above the lower
threshold. In the OPO regime, which is modelled using three modes (one for each of signal,
pump and idler), the occupations of the spectra depend on the mode considered. Of particular
relevance is the observation that the Goldstone mode, due to the spontaneous breaking of the
U(1) phase symmetry of the OPO signal and idler [41], which is tied to the signal and idler modes
as the pump mode does not have a large incoherent occupation at the zero of the fluctuation.
Combining the three states creates an incoherent luminescence spectrum around the OPO states
that is very similar that seen around the pump mode just above the return to stability.

Chapter 4 considered whether an informed choice can be made for the signal momentum
in models of the OPO regime. In the mean field steady state description of the OPO regime
which includes the signal and idler modes as well as the pump mode, it is necessary to choose
the signal (and hence idler) momentum by hand. A detailed comparison showed that the value
of ks predicted by the linear response analysis of the pump only (below OPO threshold) case
agrees well with the actual value from the numerical integration. In particular, there is very
good quantitative agreement in the exciton-photon model, while the simplified lower polariton
model only has qualitative agreement between the two methods. There is, however, qualitative
agreement between both models near the upper threshold, and the ks values near the switch off
of the OPO (high pump strengths) agree between both methods and models. In the simplified
lower polariton model, the ks values for which the three mode description of the OPO is stable
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give quantitative agreement with the numerical integration at low pump strengths, while in the
broad stable region near the switch off of the signal and idler, it is the below threshold value of
ks that agrees with the numerical simulation. Changing the pump properties, both momentum
and detuning away from the lower polariton dispersion, affects the thresholds of the instabilities
and the pump strengths for which there is a single ks value, but the variation of the ks value
itself is small.

Fluctuations having non-zero ky were considered in the Keldysh formalism, where the in-
coherent polariton luminescence, integrated over energy, showed a clear ring-shaped structure
below the lower threshold. For constant polariton decay, the rings are almost circular and the
luminescence is strongest on the side closest to the pump. When the exciton decay was made
much weaker than the photon decay and the polariton decay was therefore strongly momentum
dependent, the peak in the luminescence moved to the side away from the pump and the rings
became deformed towards a clear 8 shape centred on the pump. At high pump strengths (above
the upper threshold) the signal and idler had a single peak centred on ky = 0.

Including fluctuations in the ky direction in the linear response analysis of the pump only
case of the simplified lower polariton model showed the same features: the pump mode becomes
unstable at low pump strengths at all points on a ring that contracts to a single peak at higher
pump strengths. In the OPO regime the ks, Fp combinations for which the OPO is stable are
reduced by instabilities that occur only at finite ky. Significant photon populations in ky were
only observed in the numerical integration when additional noise terms were included: the ring
shape of the signal at low pump strengths (and its contraction to a single point) was observed,
and at higher pump strengths bands of moderated photon occupation, equally spaced in ky,
appeared.

Lastly, the momentum dependent polariton interactions were restored and the stable OPO
regime (for fluctuations with momentum in the kx direction only) found to be larger than in
the simplified lower polariton model. When the exciton decay was reduced, the OPO regime
becomes unstable at all pump strengths and ks values considered.

Starting from the work presented in this thesis, there are various areas in which further
investigation could be done; some of these are mentioned below.

Continuing with the Keldysh analysis, a rotation into the amplitude-phase basis of the fluc-
tuations would enable the calculation of the first order correlation functions in both space and
time [21, 77]. These have already been calculated numerically [68], so the calculation, starting
from the matrices for D<(ω,k) in the pump only and OPO regimes would determine where the
second order approximation is accurate.

In the pump only case, the Keldysh analysis could be performed in the exciton-photon basis.
As seen in the discussion of ks, this would not give much new information, but could be a useful
confirmation of the below threshold behaviours, especially when the exciton decay is less than the
photon decay, as the incoherent luminescence of the photons is directly accessible. This could be
particularly useful for understanding ring of incoherent luminescence below the lower threshold
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and the shift of the maximum occupation from the pump side of the rings to the side away from
the pump when the decays are made uneven. The build up of excitons at high momenta should
also be observable in this description.

The work on determining the signal momentum has several areas that could be developed with
some interest for experiments. Given the effects of κx < κc on the incoherent luminescence around
the pump mode, it could be interesting to investigate how these more realistic decays would affect
ks. Bistability of the pump and signal modes has been recognised [25, 28–30, 110–112], but this
study has focused on a pump in the optical limiter regime. The nature of the signal mode and
whether there is bistability between possible ks values either on the ring or in the ky = 0 plane
could be interesting. It might also be interesting to investigate what parameters lead to a bistable
signal mode and clarify whether the bistability condition of the pump mode changes when the
exciton decay is less than the photon decay.

The real part of the Goldstone mode of the OPO regime is linear, and the imaginary part
quadratic in δk at low momenta [41], but the parameter dependence has not been investigated
in detail. Given that the Goldstone mode may often be obscured in experiments due to the
emission from the signal, finding parameters for which its range may extend beyond the signal
beam might lead to its observation. If <(ωG) = a δk and =(ωG) = b δk2, finding a and b in terms
of controllable parameters (e.g. ωc(0) − ωx,kp) would be interesting. The first check might be
to confirm that the Goldstone mode is not destroyed by restoring the momentum dependence of
the polariton decay.

Lastly, it may be possible to describe the OPO regime more precisely by including satellite
states as observed in all numerical simulations. The many state solution to the cGPEs could
be formulated using a Floquet spectrum [113, 114] with the states equally spaced in energy and
momentum.
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A | Non-dimensional units

All results were calculated in a non-dimensional system of units where energies are rescaled
according to the Rabi frequency ΩR. The rescaling applies in both the exciton-photon and lower
polariton models, and is done at the level of the coupled exciton and photon cGPEs.

The cGPEs for excitons and photons restricted to a single momentum k, where ak ⇒ φc; bk ⇒
φx, is:

i∂t

(
ak

bk

)
=

(
ωc(k)− iκc ΩR

2
ΩR
2 ωx(k) + gx|bk|2 − iκx

)(
ak

bk

)
+

(
Fp,c

0

)
.

Because the exciton mass is several (many) orders of magnitude greater than the photon mass
mc, the exciton dispersion is assumed flat ωx(k) = ωx while the dispersion of the (cavity) photons
is [15] (~ = 1 throughout):

ωc(k) = ωc(0) +
|k|2

2mc
.

The minimum of the photon energy can be described in terms of the detuning ∆0 away from the
exciton energy which can be controlled experimentally: ωc(0) = ωx + ∆0 [15, 22,24,60].

The exciton energy can be found directly in the literature, but it is convenient to shift the
energy scale of the entire system such that the zero of energy is ωx. The strength of the exciton-
exciton contact interaction can be calculated theoretically [115] gx = 6e2ax/ε ≈ 3µeV(µm)2 (e is
electric charge, ax is exciton Bohr radius, ε is dielectric constant) and has also been inferred from
experiments 2µeV(µm)2 < gx < 10µeV(µm)2 [36,116] and depends on the microcavity structure
studied [116].

Typical experimental values of ΩR = min(ωup(k) − ωlp(k)) are 5meV < ΩR < 10meV [15,
22, 27, 86, 111, 117] although some samples may have much larger values [19]. The detuning of
the minimum of the photon dispersion away from the exciton energy has a significant effect on
the excitonic and photonic fractions of the polaritons, more importantly, if |∆0| = |ωc(0) − ωx|
is large (� ΩR/2) the polaritons become indistinguishable from exctions (lower polaritons) and
photons (upper polaritons) [15]. In all results, ∆0 = 0 has been used.

There are a couple of other tuneable parameters that do not appear in the above cGPEs:
the detuning ∆p of the monochromatic pump laser from resonance with the lower polariton
dispersion, and the pump momentum kp. If ∆p is too positive there are two main effects: the
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pump only state may become bistable with two pump mode occupations allowed for a single
pump strength [28, 29]; the mixing between the upper and lower polaritons becomes significant
and the simpler lower polariton model would become invalid [28, 41]. The implication of the
latter concern is that ∆p < ΩR/2 for the lower-polariton model to be valid [28,41]. The value of
kp for OPO in experiments is typically in the range 1 < |kp| < 2µm−1 [33, 61,82].

In table A.1, some experimental values of the system parameters are listed. The range
and complexity of the parameters motivates using a non-dimensional system of units where a
few parameters can be varied in calculations and the results applied to different experimental
systems by appropriate rescaling.

Parameter value units
ωx 1400 - 1600 meV
∆0 -2 - 6 meV
ΩR 2.5 - 10 meV
gx 0.002 - 0.01 meV(µm)2

τx 100 - 2500 ps
τc 1 - 100 ps
mc 2× 10−5m0 - 3× 10−5m0 meV−1µm−2

∆p -2.5 - 2.5 (ΩR = 5) meV
|kp| 1 - 2 µm−1

Table A.1: Summary of some values of exciton-photon system parameters [15] (m0 is the free
electron mass and mc is the cavity photon mass). The exciton lifetimes, τx = 150ps for a CdTe
based quantum well [118] and τx = 2500ps for a GaAs based quantum well [119].

To create a non-dimensional system of units for the polariton system, ΩR/2 = 1 is chosen as
the energy scale (the entire cGPE is multiplied by 2/ΩR):

2

ΩR
i∂t

(
ak

bk

)
=

(
2

ΩR
(ωx + ∆0 + |k|2

2mc
− iκc) 1

1 2
ΩR

(ωx + gx|bk|2 − iκx)

)(
ak

bk

)
+

(
2

ΩR
Fp,c

0

)
.

As mentioned previously, ωx (2ωx/ΩR)is a real shift in the energy scale of the problem so the
zero of energy can be set as ωx = 0. Let: ∆′ = 2∆0/ΩR, κ

′
{x,c} = 2κ{x,c}/ΩR, t

′ = tΩR/2 then

i∂t′

(
ak

bk

)
=

(
∆′ + 2

ΩR

|k|2
2mc
− iκ′c 1

1 2
ΩR
gx|bk|2 − iκ′x

)(
ak

bk

)
+

(
2

ΩR
Fp,c

0

)

=

(
∆′ + |q|2 − iκ′c 1

1 g′x|bk|2 − iκ′x

)(
ak

bk

)
+

(
F

0

)
, (A.1)

where q = k/
√
mcΩR, F = 2Fp,c/ΩR and g′x = 2gx/ΩR. In the exciton-photon model analysis,

this is the end of the rescaling procedure. By rescaling ak, bk → a′k, b
′
k =

√
2gx/ΩR(ak, bk), the
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exciton-exciton interaction can be normalised too, with the effect of rescaling the fields, and

i∂t′

(
a′k
b′k

)
=

(
∆′ + |q|2 − iκ′c 1

1 |b′k|2 − iκ′x

)(
a′k
b′k

)
+

(
F ′

0

)
(A.2)

with F ′ = 2
ΩR

√
2gx

ΩR
Fp,c. All results for the lower polariton model are presented in the non-

dimensional system of units of Eq. (A.2), while results in the exciton-photon model are in the
units of Eq. (A.1). This has reduced the number of parameters in the cGPEs from 7 to 3 (4 in
the exciton-photon model where the fields are not rescaled according to gx ), as summarised in
table A.2. The two pump quantities ∆p and kp scale according to their type: ∆p is an energy
so δ′ = 2∆p/ΩR while kp is a momentum and k′p = qp = kp/

√
ΩRmc.

Parameter minimum value maximum value
∆′ -0.8 0.8
κ′x 0.00016 0.004
κ′c 0.004 0.08
δ′ -1 1

k′p = qp 0.9 1.8

Table A.2: Summary of scaled values of exciton-photon system parameters for the choice: ΩR =
5,mc = 0.25 (2.5× 10−5m0), relevant to the non-dimensional model described above.

The normal (dimensional) expressions for the polariton dispersions and the Hopfield Coeffi-
cients are given by Eqs. (2.15), (2.21) and (2.22). In the rescaled units they read:

ωup,lp(q) =
∆′ + |q|2

2
± 1

2

√
(∆′ + |q|2)2 + 4,

Xlp(q) =
ωlp(q)−∆′ − |q|2√

(ωlp(q)−∆′ − |q|2)2 + 1
,

Clp(q) =
1√

(ωlp(q)−∆′ − |q|2)2 + 1
.

In the lower polariton model, the non-dimensionalised cGPE is:

i∂t′φ = [ωlp(q)− iκ′lp(q) +X4
lp|φ|2]φ+ F ′p,lp (A.3)

in which the fields φ, and the pump F ′p,lp are rescaled such that gx → 1 in the interaction term.
In all results, the values used are non-dimensional although the notation is typically that of the
dimensional case.
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