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Abstract

Systems security is essential for the efficient operation of all organizations Indeed, most large firms

employ a designated ‘Chief Information Security Officer’ (CISO) to coordinate the operational as-

pects of the organization’s information security. Part of this role is in planning investment responses

to information security threats against the firms corporate network infrastructure. To this end, we

develop and estimate a vector equation system of threats to ten important IP services, using industry

standard SANS data on threats to various components of a firm’s information system over the period

January 2003 to February 2011. Our results reveal strong evidence of contagion between such at-

tacks, with attacks on ssh and Secure Web Server indicating increased attack activity on other ports.

Security managers who ignore such contagious inter-relationships may underestimate the underlying

risk to their systems’ defence of security attributes, such as sensitivity and criticality, and thus delay

appropriate information security investments.

Keywords: Information Security, Security Attacks, Contagion, Hawkes Process, Security

Management

1. Introduction

Information systems and their hosted applications are typically subject to information security

flaws, which, if exploited, may lead to substantial losses to the organization. When such threats
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appear, security managers will deploy mitigating responses to secure their systems.

A convenient classification for information security is determined by the concepts of confiden-

tiality, integrity, and availability, or ‘CIA’. Informally, confidentiality is the the property that just the

right agents have access to specified information or systems, integrity is the property that specified

information or systems are as they should be, and availability is the property that specified informa-

tion or systems can be accessed or used when required. Convenient alternatives to confidentiality,

integrity, and availability are sensitivity and criticality, in which sensitivity amounts to confidential-

ity together with some aspects of integrity and criticality amounts to availability together with some

aspects of integrity. Here we characterize the security status of systems in terms of measures of their

levels of sensitivity and criticality. Of course, it is possible to extend the vector of classifications to a

larger number of attributes, at a cost of complexity, but the CIA-based view is generally understood to

be comprehensive. Indeed, the choices of sensitivity and criticality fall out of the impact calculators

provided by information sharing agencies such as the US National Institute for Standards in Tech-

nology (NIST) National Vulnerability Database (NVD).1 The Common Vulnerability Scoring System

(CVSS) within the NVD provides a calculator that firms can use to assess the impact of information

security threats on their corporate networks. The calculation of a firm-specific impact is a function of

the published vulnerability metrics and firm-specific characteristics. For example, the number of ma-

chines running a particular piece of vulnerable software, or the types of communications ‘ports’ that

a networked computer relies upon, and how often these are scanned and attacked. Most Chief Infor-

mation Security Officers (CISOs) will operate on some type of decision-rule that takes a large number

numerical measurements on the characteristics of the threat and reduces them down to one or two

measures of interest. Subsequently, using well-established definitions (see, for example, University

of Georgia, Office of Information Security (2012) for a simple and elegant discussion), by sensitivity,

we mean the level of security required for protecting data from access by unauthorized agents; by

criticality, we mean the importance of the availability of accurate information for continuing system

operations. Given that the time-variation in these two metrics is a function of both the threat and the

firm specific characteristics, the realization of sensitivity and criticality will be idiosyncratic for each

firm. Our results provide substantial empirical support for the theoretical notion that two combined

metrics provide a comprehensive summary to the CISO in deciding on the reaction of their security

posture to new events.

1See http://nvd.nist.gov
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We assume that threats to the security of systems represent potential losses to the operations of

an organization. Security managers, in assessing the potential risks to an organization, are faced with

a great deal of data concerning the distribution of attacks against the services provided by their sys-

tems. Intuitively, managers understand that there are significant relationships between attacks against

different services: for example, compromising one service may enable an attack against another. The

nature of the inter-relationship between the threats, if revealed, provides additional information to as-

sist managers in making their choices of mitigating responses. For example, if the inter-relationship

between threats is constant, independently of the frequency and intensity of threats, security managers

can adopt smooth mitigation profiles to meet the threats. In the absence of such stable relationships,

the managers’ responses must be adjusted dynamically: for given temporal relationships between the

number of attacks, their change (or ‘jump’) in frequency, and their change in size (extent of impact).

Our contribution to research on security effectiveness is to reveal an otherwise hidden aspect of

the relationship between attacks. Using a model based on the mutually self-exciting Hawkes pro-

cess, Hawkes (1970, 1971b,a); Aı̈t-Sahalia et al. (2010), we demonstrate the presence of contagion

between attacks against the different critical services — such as email, databases, name and direc-

tory servers, website operations, and shared storage — provided by the organization’s systems. Our

model parametrizes contagion, so allowing us to test the hypothesis that attacks are transmitted from

one port to another. (Ports are the service- or process-specific software constructed to serve as com-

munications endpoints in a computer’s operating system.) We aim to assess the existence of conta-

gious behaviour between these threats using threat data obtained by DShield and published by SANS

(http://feeds.dshield.org). To our knowledge, our approach is new to the literature on the statistical

structure of attacks.

Our technical contribution is threefold. First, we substantially extend the theoretical insights we

developed in Ioannidis et al. (2012a) to include point processes with non-deterministic jump intensities

and with an n > 2-variate aggregation of realizations of attacks on a secure system.

The extension is essentially to re-cast the entire static decision process in Ioannidis et al. (2012a)

into a framework where the vector of state variables, representing the risks to the network, evolves via

a random process characterised by jumps with a time varying arrival rate. We then use this data-driven

process to simulate a real firm’s (albeit anonymized) reaction to ‘port-scanning’ threats.2 Second, we

2Port scanning is a technique whereby an attacker probes ports, access points, on a network. Early port scanning looked
for open ports to access a part of the network; however, modern techniques involve actively probing for out-of-date port
protection to exploit vulnerabilities in closed or encrypted ports.
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use the new derivation of the equilibrium decision function to illustrate the different time profiles of

investment, with a variety of stochastic processes driving attacks. We then fit to a sample of attack

data a general vector model that permits both continuous diffusions and contagion via two types of

jumps. Third, we identify the critical components of the system for these attacks using an eigenvalue

analysis of the contagion matrix.

Theoretical aspects of contagion in information security have been addressed using game theory in

Parachuri et al. (2007); Lelarge and Bolot (2008); Lelarge (2009); Grossklags et al. (2008); Bachrach

et al. (2011). These studies refer to the optimality of actions of both attackers and defenders and

diverse system architectures. To our knowledge, there is no published empirical evidence regarding

the statistical behaviour and inter-relationships between reported attacks on specific ports. Other,

indirectly related work includes, for example, Böhme and Kataria (2006b,a); Böhme and Schwartz

(2010), where citations to other background work can also be found. Why might attacking intensity

be clustered or ‘lumpy’ in its intensity? The answer lies in the fixed costs attackers incur when

developing tools, such as port scanners: as new techniques for exploiting vulnerabilities develop, there

is aggregation of techniques to exploit these vulnerabilities over time and this aggregation results, as

new tools with collections of exploits are brought online, in clustering of attacks.

The remainder of this paper is organized as follows: in Section 2, we outline a basic causal

model that relates the existence of threats to the sensitivity and criticality security attributes of a

system. The model focusses on the inter-relationship between the security attributes and the threats.

In Section 3, we provide a characterization of the statistical methodology that is based upon the

Hawkes process, Hawkes (1970, 1971b,a); Aı̈t-Sahalia et al. (2010). The Hawkes process is a model

of contagion, Aı̈t-Sahalia et al. (2010). Section 4 discusses the data. The results and their implications

for information security are presented in Section 5 and Section 6 presents a simulated example of a

security manager’s choices, when investing to protect criticality and sensitivity. Section 7 presents

our conclusions concerning the nature of the relationships between the threats and the differential

informational significance of some threats.

2. The Basic Model

We consider a security manager who must trade off criticality (C), sensitivity (S), and investment

(K). Deviations of criticality Ct and sensitivity St (as functions of time, t) from their long-run targets

C̄ and S̄, respectively, are linear functions of attacks on the various technological components of the
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system represented by the random m-vector Xt. Where,

{
Ct − C̄, St − S̄

}
=
{
w′CXt, w

′
SXt

}
(1)

and wC and wS are m vectors of weights representing the vulnerability of the system to attacks (and

(·)′ denotes transpose). Under, the circumstances described above, the security manager has just one

vector stochastic integral to evaluate,

X (t, T ) =

T∫
t

a (Xω |θ ) dω (2)

where a(·) characterizes a multivariate càdlàg (continue à droite, limite à gauche) process see for

instance Billingsley (1995) or Protter (2004) for the arrivals of attacks on the system, with vector of

parameters θ.

The relative values of these weights (wC and wS) are determined, for a given instance of the

model, by the relative intensities of attacks against the ports that are significant for these attributes.

For the policy planner, the weights are assumed to be constant over a planning horizon t < T . The

security manager, in effect, trades expected loss of criticality and sensitivity against deterministic

investment expenditure.

For the purposes of risk management, the security manager trades off loss from criticality and

sensitivity attacks against a costly additional investment over the planning horizon t, T . This is defined

by the current level of investment Kt exceeding its long run target K̄. Integrating over the time

horizon, the appropriate loss functions from attacks and additional investment are given by, K̄, with

the appropriate loss functions given by

LCS (t, T ) =

T∫
t

e−rtfC
(
Ct − C̄

)
dω +

T∫
t

e−rtfS
(
St − S̄

)
dω (3)

+

T∫
t

e−rtfCS
(
Ct − C̄, St − S̄

)
dω

LK (t, T ) =

T∫
t

e−rtfK
(
Kt − K̄

)
dω (4)

where r is the discount rate and for simulation purposes is set to zero, ω is the sample space of
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outcomes, and fC , fS and fCS are affine functions that scale the measured deviations from target,

Ct−C̄ and St−S̄, to a loss deriving from the deviation,Kt−K̄, from the target profile of investment.

The critical tipping point for additional investment occurs when the loss from additional investment

(LK (t, T )) equals the loss of criticality and sensitivity due to attacks (LCS (t, T )). Similar models

and conditions have been given in Ioannidis et al. (2009, 2012b,a). At this tipping point, the cost

of inaction is equal to the cost of action (i.e. additional investment in information security) and this

constitutes an optimality condition for the information security management.

We assume that K̄, wC , and wS are determined by the policy and technology mix of the firm. For

example, K̄ is allocated to the manager by the board and wC and wS are conditional on the systems

architecture. This configuration is a choice made outside of the operational security planning phase.

For example, a firm has a variety of operational choices for networks and client software. These will

depend on the area of business of the firm, its size, and its exposure to attacks on its confidential

information. Such configuration will determine K̄, wC , and wS for each firm.

Following Ioannidis et al. (2012a), building on Ioannidis et al. (2012b, 2009), Equation 3 can be

characterized uniquely by the stochastic process driving threats:

LCS(t, T ) = fC
(
w′CX (t, T )

)
+ fS

(
w′SX (t, T )

)
+ fCS

(
w′CX (t, T )X ′ (t, T )wS

)
(5)

That is, a second-order Taylor expansion of the loss functions. In Section 3 we introduce a process to

describe the evolution of the vector Xt. This process is assumed to have two components, first a stan-

dard two dimensional Brownian motion and second a jump process, with normally distributed jumps.

For the time horizon t, T the realisation for the statistical model used by the manager will therefore

be a mixture of normals. If the unconditional variance, over (t, T ), of the jump process exceeds the

variance of the continuous diffusion the resulting distribution of realisations (often referred to as the

transition density function over t, T ) will be symmetric and Leptokurtic.

Under the above distributional assumptions for Xt, we can filter for the higher moments by ad-

justing the unconditional second moments in the managers decision function without direct reference

to the higher order moments in the actual data. This approach is taken in Section 3. Terms beyond the

fourth moment are too small to consider for most regular distributions.

Several important aspects emerge from this decomposition. If the threats are independent diffu-

sions with homogenous moments and co-moments, then security investment may be approximated by

a ‘smooth investment profile’. By a smooth investment profile is understood that the security manager
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knows the moments of these diffusions for some finite time horizon and plans their investment profile

relative to their level of risk aversion as he knows the probability of exceedance accurately, therefore

no discrete jumps are anticipated.

However, two further profiles may also exist: first, a set of independent, but self-exciting, point

processes will characterize a set of time homogenous discontinuities in this investment horizon; sec-

ond, mutually self-exciting jumps in the attack process will characterize highly localized discontinu-

ities in the investment profile.

By ‘self-excitement’ we mean that the probability of an additional attack is conditional on the

existence of a previous jump in attacks. By ‘mutual self-excitement’ the concept of self-excitement is

extended by having jumps across other ports influencing the contemporaneous and future probability

of jumps in a specific port. The magnitude of the relationship between ports is described by a time

varying matrix containing all of the pairwise interactions of the individual elements of the vector Xt.

The investment choices made by security managers will be determined by the form of the loss

function (Equation 5). The inter-temporal behaviour of the loss function depends on the behaviour of

the attack process (Equation 2). We will model the attack process using a geometric Brownian motion

(GBM) with finite activity Poisson jumps and stochastic volatility. In general, this type of approach

can capture many aggregate effects in the data generating process, for instance extreme events, high

levels of auto-correlation and hence persistence in both mean and variance of attacking activity and

most importantly temporary, but persistently high levels of covariation.

We can expand Equation 2 to display its contributing stochastic processes over the sample space

s:

X(t, T ) = X0 +

T∫
t

µsds︸ ︷︷ ︸
drift

+

T∫
t

σsdWs︸ ︷︷ ︸
continuous part

+ JUMPS (6)

JUMPS =

T∫
t

∫
{|x|61}

x (µ− v) (ds, dx)

︸ ︷︷ ︸
finite activity jumps

+

T∫
t

∫
{|x|>1}

xµ (ds, dx)

︸ ︷︷ ︸
infinite activity

(7)

where µs is the deterministic drift, σs is a (possibly stochastic) matrix volatility function, and JUMPS

is the discontinuous point process, which is decomposed into finite and infinite activity terms. Here
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Figure 1: Illustration of various investment profiles, with and without jumps. The long run profile is based around attacks
that are in the form of a continous diffusion. Jumps are in two categories: jumps with finite activity, whereby the effect of
the jump on the investment profile returns to the long run profile. Jumps with infinite activity never return to the long run
profile, but form a new profile parallel to the long run.

X0 is the initial endowment of Xt and X(t, T ) is the transition from t to T > t, usually assumed to

be some regular planning horizon, such as a month or a quarter.

Finite activity jumps exhibit mean reversion in their intensities, where µ is a vector of average

jump activity and ν is the rate of reversion to the mean level of jump activity. In contrast, infinite

activity jumps are characterized by a vector of starting rates µ, but don’t mean revert.

When LK (t, T ) = LCS (t, T ), the dynamics of the attack effort determine the temporal profile of

investment. The three contributing stochastic processes influence the investment profile as indicated

in Figure 1. We revisit the issue of investment profiles, based on LK (t, T ) = LCS (t, T ), in Section

6.

There is a variety choices for the attack process Xt. These choices include doubly stochastic

poisson point processes, with mean and non-mean reverting jump intensities, and systems of univariate

self-exciting point processes, among others. Our choice is a multivariate form of a self-exciting point

process, commonly referred to as a Hawkes process, that exhibits stochastic volatility and mutual self-

excitation across the elements of the attack vector. This process was introduced in Aı̈t-Sahalia et al.

(2010).
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3. The Statistical Methodology Based on the Hawkes Process

Vector processes that characterize attacks should allow for the following properties:

• Be represented as a vector stochastic differential equation (or, equivalently, stochastic integral
equation) in order to support dynamic programming for forward-looking simulations and hence
policy planning;

• Exhibit stochastic volatility in the diffusion process in order to capture potential changes in the
variance of attacker behaviour and technological mechanisms of attacks;

• Exhibit discontinuous jumps that cluster in order to capture sudden changes in the vulnerability
profile of systems/ports;

• Admit jumps that cluster across systems/ports, as attacks will most likely be multi-faceted (con-
tagious).

The mathematical development in the remainder of this section establishes the necessary statistical

methodology to support these features of our approach. The reader not wishing to follow the detailed

mathematical development might proceed directly to Section 4.

We propose a statistical model describing the evolution of attacks to different ports over time

based on the geometric Brownian motion with mean reverting stochastic volatility. This process is

supplemented by a Poisson jump process to capture the possible discrete movements characterizing

attacks to ports over some epochs.

We therefore decompose the integral from Equation 2 into mutually self-exciting jump diffusion

processes, to capture potential contagion effects between attacks on different ports. Specifically, we

adopt the Hawkes process Hawkes (1970, 1971b,a); Aı̈t-Sahalia et al. (2010), a very general spec-

ification that captures the probability of jumps and allows for the parametric estimation of mutual

self-exciting processes.

Equation 8 denotes the time evolution attacks (generalized in the integral Equation 6) to the ith

port as a stochastic differential equation.We assume that this process has three major components a

deterministic drift term (uidt), a continuous variance term (Vi,t), and a jump term, dN of size Z.

dXi,t/Xi,t = uidt+
√
Vi,tdWX

i,t + Zi,tdNi,t (8)

where dWX
i,t is a Brownian motion. The variance rate equation (9) is given a stationary stochastic

process:

dVi,t = ki (θi − Vi,t) dt+ ηi
√
Vi,tdW V

i,t
(9)

where dW V
i,t is a Weiner process, θi denotes the long-term variance, ki the speed of adjustment, and

ηi denotes the kurtosis. For the vector of Weiner processes the cross variation is denoted R (t, T ) =
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〈Wi,Wj〉Tt , with infrequent jumps, this will tend to the, scaled, long run unconditional correlation

of the various processes. Alternatively, one can use a jump robust measure of cross variation (for

instance the flat-top Kernel measurement cross variation of Barndorff-Nielsen et al. (2011). Each port

process is a jump augmented geometric brownian with square root variance process similar to those

found in option pricing models, see Hull (2006) for alternative examples.

The jump process dN is assumed to be a Hawkes process, whose evolution can be expressed in

terms of its intensity process λi,t,
P [Ni,t+∆ −Ni,t = 0 |Ft|] = 1− λi,t∆ + o (∆)

P [Ni,t+∆ −Ni,t = 1 |Ft|] = λi,t∆ + o (∆)

P [Ni,t+∆ −Ni,t > 1 |Ft|] = o (∆)

(10)

where Ni,i+∆ is an m point process counting the number of jumps in (0, t+ ∆) for the i = 1, . . . ,m

processes in the system and Fi,t is the conditional mean jump rate per unit of time. The jump intensi-

ties exhibit clustering according to the following dynamics:

λi,t = λi,∞ +
m∑
j=1

t∫
−∞

gi,j (t− s) dNj,s (11)

where i = 1, . . . ,m and s ≤ t, and j = 1, . . . ,m; the distribution of jumps Nj,s is determined by that

of the intensities λi,t, where λi,∞ is the long-term intensity. Alternatively, Equation 11 can expressed

in terms of the integral over the sample space of outcomes ω. Therefore, we have an equivalency

between the deterministic intensity adjustment for a known history of jumps over t−s and the sample

space ω, this is expressed as follows

λi = λi,∞ +

m∑
j=1

λj

∫ t

−∞
gi,j (t− s)ds = λi,∞ +

m∑
j=1

(∫ ∞
0

gi,j (ω) dω
)
λj ; (12)

the vector function g is assumed to follow an exponential decay of the form

gi,j (t− s) = βi,je
−αi(t−s) (13)
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for coefficients βi,j giving expected instantaneous jump values and decay rates αi. In matrix form,

Λt = Λ∞ + Γt (14)

where Λ∞ is an m × m diagonal matrix, whose diagonal elements are given by λi,∞ and Γt is an

m×m matrix, whose elements are

γi,t =

m∑
j=1

λj

∫ t

−∞
gi,j (t− s)ds =

m∑
j=1

(∫ ∞
0

gi,j (ω) dω
)
λj (15)

The overall association between the jumps of the different attacks is then captured by the matrixG(τ),

where τ = t− s (following Aı̈t-Sahalia et al. (2010), we take to be τ one day):

G (τ) =


β11e

−α1τ . . . β1me
−α1τ

...
. . .

...

βm1e
−αmτ · · · β−αmτ

mm

 (16)

The diagonal elements indicate the self-excitation of the process — that is, when a jump occurs,

the likelihood of another jump increases — whereas the off-diagonal elements indicate the influence

of jumps in other attacks on the evolution of its own jumps. The existence of non-zero off-diagonal

elements is indicative of the need, as discussed in the introduction, for managers to adjust their security

responses dynamically according to their observations of the total threat environment.

If G(τ) is of full rank, then all of the elements of the attack process X mutually excite in the

components of JUMP. In this case, all of the eigenvalues of G(τ) will be non-zero, so that every

component of the vector λt contributes mutual self-excitation to every other component, with relative

weights characterized by the eigenvectors.3

In our model, we are concerned with attack vectors against a range of ports. We would, there-

fore, expect that not every component will contribute significantly to the mutual self-excitation of the

whole system: some will simply be of little systemic relevance. Consequently, with some eigenvalues

approaching zero, G(τ) can, in practice, be treated as being of reduced rank.

Dividing each eigenvalue by the sum of the eigenvalues (the trace of the diagonal matrix) gives

3In general, G(τ) need not be positive semi-definitive, because of the existence of possible asymmetric responses in the
intensity process. In the case that G(τ) is positive semi-definite then the resulting eigenvectors are the weights of a set of a
set of orthogonal processes that are interpretable as principal components.
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the proportionate contribution of each component to the total mutual self-excitation of λt. Now the

eigenvectors of the largest eigenvalues will determine the key features of the model.

For the system of vector equations,

dXt = udt+
√
VtdWX

t + ZtdNt

dVt = κ (θ − Vt) dt+ η
√
VtdW V

t

dλt = α (λ∞ − λt) dt+ βdNt

Aı̈t-Sahalia et al. (2010) identify the first two moment conditions as the expectations

E [∆Xt] = (µ+ λM [1]) ∆ + o
(
∆2
)

E
[
(∆Xt − E [∆Xt])

2
]

= (θ + λM [2]) ∆ +
βλ (2α− β)

2 (α− β)
M [1]2 ∆2 + o∆2

(17)

For identification of all the parameters, two additional moment conditions (skewness and kurtosis) are

required. These are given in Equations 18 and 19.

E
[
(∆Xt − E [∆Xt])

3
]

= λM [3] ∆

+
3

2

(
ηθρV +

(2α− β)βλM [1]M [2]

(α− β)

)
∆2 + o

(
∆2
) (18)

where ρV is the first-order autocorrelation coefficient of the intensities λi,t and the M [i] indicate the

centred moments matrices, and the fourth moment (kurtosis) as

E
[
(∆Xt − E [∆Xt])

4
]

= λM [4] ∆



3θη2

2κ
+ 3θ2 + 6θλM [2] +

3λ

(
λ+

(2α− β)β

2 (α− β)

)
M [2]2 +

2 (2α− β)βλM [1]M [3]

(α− β)


∆2 + o

(
∆2
)

(19)

The parameters of the model in Equations 17 and 19 — µ, θ, β, λ, α, η, ρV , capturing the possible

correlations between the Brownian motions and κ — are estimated by finding the roots of the system

given by Equations 17 and 19. For more details of the estimation procedure via Generalized Method

of Moments (GMM), see Aı̈t-Sahalia et al. (2010).

The Matlab code provided by Aı̈t-Sahalia et al. (2010) utilizes the Mathworks optimization tool-

box to minimize the theoretical and empirical moments. The Hessian function at the minima provides
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the standard errors for the parameters for use in statistical inference.

The predicted values from the first two moment conditions in Equation 17 can be substituted into

Equation 5 enabling us to calculate the expected losses due to the flow of attacks. On the basis of

this methodology we compute the moments of the number of attacks on different ports as a proxy for

the possible losses in criticality and sensitivity LCS(t, T ) over a planning horizon t, T . Subsequently

to the statistical analysis we proceed in simulating potential investment paths based on the statistical

predictions obtained above.

4. Data

Getting a reliable picture of the attack environment is very difficult. Most organizations are very

sensitive about the details of a attacks and how they happen. Such information is rarely shared. This

makes it very hard to understand the attack environment and to estimate how it will evolve as, for

example, the use of cloud increases.

Organizations have many sources of information about attacks that may be incident upon their

networks. One source of particular interest is firewall logs. Most, if not all, corporate networks will

run a firewall that limits the traffic in and out of the corporate intranet according to some set of rules.

Firewalls also log the network activity that they see, particularly the network traffic that is being

dropped. Security teams examine firewall logs to get an indication of what attacks are occurring. The

log files may show particular IP addresses that are running scans or particular network ports that are

being attacked.

The dataset upon which this paper draws is taken from the output of the DShield community

project (http://feeds.dshield.org).

• DShield is a community project — sponsored by SANS (http://www.sans.org) — that correlates

firewall log files from many volunteer companies in order to paint a picture of the current treat

environment.

• DShield consists in a client system that converts firewall log files (from many different ven-

dors) into a standard format. These are then sent to a data collection engine where the data is

aggregated and used to analyze attack trends.

• DShield has very wide global coverage and has become the dominant attack correlation engine.

It has been used in the early detection of worms and is used to analyse attack patterns. Much of
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the work using DShield data has been done to analyze particular events rather than to understand

the overall attack space.

• DSheild has been collecting data for close to a decade so in this paper we take a historical view

of the data looking at its statistical properties rather than individual events.

For our statistical analysis, we picked ten particular services, sampled daily for the period 1 Jan-

uary 2003 to 28 February 2011. The data was extracted from the SANS DScale database on 1 March,

2011. Data for each of the ports of interest was collected. For example, for port 53, https://isc.

sans.edu/portascii.html?port=53&start=2003-01-01&end=2011-02-28. The

data was processed to fill in missing dates, with missing values filled using piecewise cubic spline

interpolation. The number of missing points in our sample lies between 1/2 and 1% of the total

observations for each series.

The services considered are given in Table 1 and the descriptive statistics are given in Table 2.

Here we looked for ports that would typically be used to run services that we would expect to see

offered as part of a cloud service (either to manage the service or to help build other services). We

also included DNS as its correct functioning is fundamental to the internet. The ports considered

are significant for different security attributes, such as sensitivity and criticality, to varying relative

extents. For example, the Secure Web Server is highly significant for sensitivity and DNS is highly

significant for criticality.

Services such as ssh and DNS are enablers for most of the operations of the internet and as such

are highly attractive targets for attackers wishing to interrupt other services. As such they will be

subject to relatively constant high levels of attacks (indicated by high mean, low variance and low

kurtosis).

However, applications such as oracle do not enable other services to the same extent. Oracle,

Secure Web Server and IMAP would generally be expected to have high levels of variation in imple-

mentation. For this type of measurement a greater diversity of implementation would result in higher

variation in security vulnerabilities (indicated by a relatively low mean, high variance and very high

Kurtosis).

Since the primary purpose of this paper is to illustrate a model, we have not attempted to filter the

DShield data for false positives.
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Table 1: Services considered in extracts of DShield attack data (http://feeds.dshield.org)

Service Port Number Description
DNS 53 A service used to find the IP address of a particular service

given its name
ssh 22 Secure shell. A program used to connect to computers remotely
Oracle 80, 443 A popular enterprise database used at the core of many business

applications
SQL 118 Microsoft’s database which is again used at the heart of many

business applications
LDAP 389 A directory service that often contains the name and details of

employees within a company and which is used to determine
employees’ rights to access business applications

Web Server 80 Used to run websites. There are many different
applications that could be used here but popular ones are
IIS and Apache

Secure Web Server 443 The secure part of a web server where traffic is encrypted
using SSL. Usually used for highly sensitive transactions

Samba 139, 455 A shared drive used to store and share information within many
organizations

Email (IMAP) 143, 993 The protocol used by many email clients to access an
email server. Many web based email services also support
this protocol

Email (SMTP) 25, 465 SMTP is used by some email clients to send an email to an email
server, but it is also used to forward emails between different
email servers as email is sent from the sender’s email server to
the recipient’s

Table 2: Daily Time Scale Descriptive Statistics of the Attack Series.

DNS ssh Oracle SQL LDAP
Mean 331529 2782020 8334 929074 43042
Standard Deviation 307232 2964248 46118 867475 47517
Skewness 4 2 17 6 2
Kurtosis 33 11 345 67 7

Web Server Secure Web Server Samba IMAP SMTP
Mean 787514 69568 200394 1426 20235
Standard Deviation 998963 83628 207624 4468 45661
Skewness 4 11 6 15 5
Kurtosis 22 250 72 329 36
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5. Results and Analysis

Following the statistical methodology outlined in Section 3, we have estimated the vector equation

system given in Equations 17, 18, and 19 by GMM. Inference was undertaken using the estimated in-

formation matrix of the system. Given the challenging dimensionality of the system, we are reporting

a selection of our statistical results, which shed light on our choice of statistical model. Our model

incorporates stochastic jumps to the geometric Brownian motion describing the evolution of attacks

and also allows for the existence of mutually self-exciting processes. The parameters of interest are,

therefore, represented by the estimates of λ∞ that are indicative of the existence of jumps. Contagion

is captured by the elements of the contagion matrix (16).

All of the statistical results that are presented in the tables below are statistically significant at 5%

and the original GMM information matrices are available on request. 4

Table 3 presents our estimates of λ∞ and the diagonal elements of the contagion matrix (16) using

expressions and , calculated from the estimated parameters derived from the optimization of (19). Our

estimated long-run intensities, λ∞, are modest and have similar values across all time series of attacks.

Their statistical significance indicates that our choice of the inclusion of jumps in the law of motion

of attacks is justified and that jumps constitute a significant, albeit unobserved, component of attacks.

Figures 2 and 3 (below) depict, respectively, the number of attacks and the estimated jumps for

the first five listed services. The graphs for the second five would be similar. Informally, the graphs

suggest that the correlation between the jumps will be stronger than can be inferred from the raw data.

Our estimates of the parameters β and α are used as inputs to calculate the elements of the adjusted

covariance matrixG(τ) and the second row of Table 3 reports our calculation of the diagonal elements

of the contagion matrix based on these estimates which (16) provides strong evidence of the existence

of self-exciting processes as both the diagonal and off-diagonal elements constituted in terms of the

estimated parameters, are functions statistically significant parameter estimates It is remarkable that

Oracle and the Secure Web Server exhibit the highest degree of self-excitation followed by ssh and

IMAP, this tallies with the technical properties of these two ports in providing active data and secure

active web content. SSH is the secure shell that allows network access remotely and IMAP is an email

hosting system. These four ports are the essential components of most business information systems,

it appears that they are also the core features of any contagion in attacking behaviour. Compromises

4The data. routines and all the pivotal statistics for the parameter estimates are available from the authors webpage.
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Figure 2: Daily attacks to five ports. For exposition purposes we plot five of the series in our data sample.
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Figure 3: Extracted jumps for five ports. From the chosen ports in Figure 2 we report the extracted jumps from our
decomposition.
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(or the potential to compromise) in one or several of these systems appear to provide access (or the

potential to access) that spills over to other systems very rapidly.

Table 4 presents our estimates of the normalized elements of the correlation (contagion) matrix.

The unconditional correlation matrix contains the correlations of both the Weiner processes and the

infrequent jumps, whilst the correlation (contagion) matrix only contains the conditional correlations

between the excited jumps. (16). These two tables show large and very large difference between

their elements. Whilst the unconditional correlations tend to be of modest magnitude, occasionally

negative, whilst several are statistically insignificant, the elements occupying the same position in the

normalised G-matrix are all large, positive and individually statistically significant at 1Based on the

comparison of these estimates with the corresponding values in the unconditional correlation matrix

given in Table 5, we provide strong evidence of the existence of uniformly high and positive corre-

lations between attacks, so justifying our choice of the Hawkes process to capture evident of mutual

self-excitement.

Once the jumps have been taken into account, the correlations between the intensity of attacks

and their size are presented in Table 6. The structure of this matrix reveals that jumps cluster in

both intensity and size, and that their association is almost uniform and very strong. This correlation

structure indicates that time evolution of the set of attacks will exhibit periods of intense activity and

large size of attacks, and other periods where such activity is very low.

Table 3: Long-run Intensities; Diagonal Elements of G

DNS ssh Oracle SQL LDAP
λ∞ 0.1143 0.1158 0.1146 0.1114 0.1136
βi,je

−αiτ 0.0714 0.0831 0.17 0.05 0.0632
Web
Server

Secure
Web
Server

Samba IMAP SMTP

λ∞ 0.1118 0.1125 0.1132 0.115 0.1125
βi,je

−αiτ 0.0728 0.1463 0.0443 0.0928 0.0085

The eigenvalues of the estimated G(τ) matrix are 0.008, 0.0219, 0.0347, 0.0582, 0.084, 0.1328,

0.2664, 0.5403, 0.9894, and 7.8643. We have computed the corresponding eigenvectors of the esti-

mated contagion matrix (Table 4). The two highest eigenvalues associated with the filtered (i.e., to

include jumps and mutual self-excitation) time series are 0.9894 and 7.8643. These represent approx-

imately 90% of the excitation. This establishes the differential information content of attacks on each
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Table 7: Eigenvectors for the Two Highest Eigenvalues

DNS ssh Oracle SQL LDAP Web
Server

Secure
Web
Server

Samba IMAP SMTP

-0.0082 -0.0919 -0.4530 0.1689 -0.5110 -0.2563 0.3977 0.2114 -0.3618 0.3118
0.1218 0.7169 -0.0236 0.2244 -0.2364 0.1687 -0.4430 0.1447 0.0546 0.3403

port. From the corresponding eigenvectors, we infer that attacks on ssh and Secure Web Server are

indicative of additional intensity and size of attacks on the remaining ports.

The totality of our statistical results supports our choice of filtering and reveals strong positive

associations between attacks on the chosen ports, in contrast to the information suggested by the raw

data that is indicative of weak associations, some of which have negative values. In the absence of

our filtering, the use of the raw data might lead to erroneous responses by security managers in the

face of attacks on specific ports. More specifically, the unconditional correlation between ssh attacks

and IMAP is positive, but only by 12%, but for the filtered series the corresponding contagion matrix

element G(τ) is positive and seven times larger at 0.87. In principle the ssh ports are important

because of the associated access rights to the totality of the network. This is also important for the

DNS and Secure Web Server ports, to a greater or lesser extent, depending on the specific set-up of

the corporate network. The contagion effects implied within the decomposition appear to map to the

conventional system architecture, we believe this to be the first result of its type.

6. A Simulated Investment Example

Consider a security manager with targets for deviations from criticality and sensitivity, as defined

in (1). We now set up a security investment scenario in which losses to criticality and sensitivity are

proportional to the attacks recorded in the SANS data set given in Section 4. Using the model given

in Section 2, we recursively (one period forward at a time) estimate the investment manager’s choices

from 1 January, 2003 to 28 February, 2011. To do this we use an expanding window and assume

single period myopia (therefore each individual iteration is a once for all independent decision).

For simplicity, we base our weights for the level of criticalitywC and sensitivitywS on the first two

eigenvectors of the long-run covariance matrix. Also for simplicity, we assume separable additivity;

therefore, fCS = 0.
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We set fC and fS using the the approach in Ioannidis et al. (2012a). First, we assume that the

underlying utility function is specified in terms of u(−wCXt,−wSXt). We then follow Ioannidis

et al. (2012a) by setting u(−wCXt,−wSXt) to be from a family of hyperbolic utility functions with

increasing absolute risk aversion (implying constant relative risk aversion). Assuming that γC and

γS are relative risk-aversion coefficients, then the optimization required to attain a maximum util-

ity will be the minimization of a loss function derived from the second order Taylor expansion of

u(−wCXt,−wSXt). Therefore,

fC (wCXt) = E (wCXt) + γCE (wCXt)
2 (20)

fS (wSXt) = E (wSXt) + γSE (wSXt)
2 (21)

For the purposes of this example, we set a discount rate of 3% per annum and assume that investment

targets are set quarterly and last for one quarter. We assume that the policy manager has risk aversion

in line with that of the military security planner discussed in Ioannidis et al. (2012b) and set γC = 2

and γS = 4.

Figure 4 plots the planned (continuous) and abnormal (dashed) investment for a firm facing attacks

proportional to the intensity of port scans in the SANS data. The red investment line presents a planner

setting forward investment from a brownian motion, whilst the black line presents a security planner

using the jump diffusion model with mutually self-exciting jumps estimated previously.

Figure 4 presents a useful summary of the issues associated with not including an appropriate

provision for jumps in the investment profile. The abnormal investment line (dashed) is the level of

investment with perfect foresight. When the dashed line rises above the solid line, extra investment is

required to mitigate a particular set of attacks.

The total loss for a security planner over the sample period is plotted in Figure 5. The log scale

illustrates the substantial improvement in planning brought about by the inclusion of jumps. Mutual

excitement allows the planner to allocate extra resources during periods of activity. In contrast, the

rolling Brownian motion underestimates investment in periods of jump activity and overestimates

investment in periods when jumps are absent.
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Figure 4: The investment profiles of a ‘with jump’ (black) versus ‘without jumps’ (red) security manager. Abnormal
investment occurs when the dashed line is above the unbroken line.
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Figure 5: Cumulative total loss from 1 January, 2003 to 28 February, 2011 for a simulated security manager according
Equation 3.
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7. Conclusion

Our statistical analysis has revealed that attacks on individual ports are inter-related, with the

relationships being exposed by the estimation of jumps and mutually self-exciting behaviour. From

the ten chosen services, attacks on ssh and the Secure Web Server account for almost all of the self-

exciting behaviour. Failure to reveal such relationships may lead to erroneous investment profiles.

For example, the unconditional correlation between ssh (the compromise of which brings high levels

of threat to both criticality and sensitivity) and the Secure Web Server (typically used to support

transactions requiring a high level of sensitivity protection) is approximately zero; but, after filtering,

it is 63% in the excited state. The responses of security managers should be based on this latter degree

of correlation as it represents the impact of contagion on the level of risk that must be anticipated.

The efforts of security managers to protect attributes such as sensitivity and criticality at desired

levels will necessitate additional costly investment at irregular intervals when faced with increased

volume and diversity of attacks on, in particular, ssh and Secure Web Server. Such additional attacks

will be associated with other additional attacks on all of the services considered.

We see from the data that the attack vector is characterized by mutually self-exciting finite and

infinite jumps. Assuming that changes in attack intensity are related to changes in the rewards for

attackers, then the loss function for the security manager will exhibit discontinuities, so that — if

LK (t, T ) = LCS (t, T ) — the corrective investment action will exhibit similar discontinuities. If the

security manager knows this, then anticipatory investment can be made in advance of potential jumps

by estimating times between jumps in the critical attack components.

This behaviour is in contrast to that which would be expected from a naı̈ve security manager who

assumes that the attack process is jump-free. Such a manager may, for example, set his investment

profile to be an affine function of the drift, with an increment for risk-aversion proportional to σs, so

that when jumps arrive he may suddenly be faced with unanticipated investment requirements.

In this case, the naı̈ve manager plans from the unconditional moments of the attack process, thus

adopting a smooth investment profile, based on these calculations. The failure to recognise the exis-

tence of jumps will result in over- investment in information security when no jumps are present and

more importantly a substantial exposure to loss to criticality and sensitivity LCS due to the inability

to recognise the nature of the increase. This results in an underinvestment in security after a jump

occurs, therefore total loss is always higher than the case when jumps are correctly included in the

investment planning model.
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An extension of the model would be to use the methodology in order to predict future levels of

threat, so helping security managers to anticipate appropriate levels of investment. A refinement of

the model would be to consider in more detail the mapping between the threats to services and the

security attributes (such as sensitivity and criticality, or CIA) that may be compromised. Such an

analysis might suggest how system architecture might be designed in order to limit the transmission

of threats between services.

Other further work would be to consider how the behaviour of hackers correlates with our analysis

of attacks. Such consideration is beyond the scope of this short paper.
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