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ABSTRACT24

High throughput sequencing (HTS) (next generation sequencing) of the rearranged immunoglobulin25

and T-cell receptor genes promises to be cheaper and more sensitive than current methods for26

monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However,27

adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources28

of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical29

use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing30

run. Here we examine immunoglobulin heavy chain gene HTS on the Illumina MiSeq platform for31

MRD (HTS-MRD). We identify errors associated with multiplexing that could potentially impact on32

the accuracy of MRD analysis. We optimise a strategy combining high purity, sequence-optimised33

oligonucleotides, dual-indexing and an error-aware demultiplexing approach to minimise errors and34

maximise sensitivity. We present a probability-based demultiplexing pipeline, Error-Aware35

Demultiplexer (EAD) - that is suitable for all MiSeq sequencing strategies and accurately assigns36

samples to the correct identifier without excessive loss of data. Finally using controls quantified by37

digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 106 copies of specific38

leukemic MRD.39
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Introduction40

The accurate determination of minimal residual disease (MRD) during the early months of therapy in41

acute lymphoblastic leukemia (ALL), particularly childhood ALL, is well established as a biomarker42

for guiding therapy1-6. Current methods for MRD measurement – allele-specific real-time quantitative43

(ASO-RQ) PCR of clone-defining immunoglobin (IG)/T-cell receptor (TCR) gene rearrangements in44

the patients’ leukemia7, 8 and flow cytometric (FC) tracking of leukemia associated45

immunophenotypes1, 9 - are both expensive, time consuming and suffer from technical limitations.46

ASO-RQ PCR requires assays tailored to each individual patient and, depending on template47

availability and primer selection has a maximal sensitivity of 1:1x10-5 due to non-specific background48

amplification10. This prevents the identification of even lower risk patients who could benefit from49

safer protocols that further reduce treatment-related mortality. Standardisation of FC is difficult,50

requires experienced operators (especially pediatric samples), and inter-operator variation can lead to51

inconsistent reporting11. Finally, clonal architecture is dynamic. When disease relapse occurs, it can52

involve clones that were not identified, or only viewed as minor clones, at diagnosis and therefore53

were not tracked12.54

Advances in high throughput sequencing (HTS) offer a potential solution to these problems. Highly55

parallel HTS can be employed to sequence the rearranged VDJ (Variable, Diverse and Joining) of the56

immunoglobulin heavy chain (IGH) genes, which encode the hypervariable CDR3 domain. Combined57

with the high capacity of HTS, this allows a single, clone-unbiased, and highly sensitive test to be58

applied to all patients, revealing persisting or evolving clones, potentially even if these were not the59

defining clones at presentation. Importantly, HTS generates exact nucleotide sequences for all clones60

which are unique to each leukemic clone can be traced through subsequent follow-up analysis.61

Several reports have demonstrated the potential advantages of HTS for the molecular characterization62

of haematological malignancies13-21.63

In order to translate these advances, it is necessary to establish a high throughput sequencing MRD64

(HTS-MRD) workflow that is practical to operate in a clinical laboratory, cost effective, and65
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demonstrated to be rapid, accurate and reproducible22. Continuing development of HTS technologies66

has resulted in cheaper platforms, such as the MiSeq (Illumina), that operate at a capacity which more67

appropriately matches the demands of turnaround time and cost required in clinical practice23-25.68

Timely and efficient clinical use of HTS platforms depends on combining multiple samples in each69

sequencing run, or multiplexing. Indexing of samples with unique “index sequences” allows a wide70

degree of multiplexing to be achieved per run, maximising use of sequencing space. However the71

technical limitations of this multiplexing strategy require detailed investigation – in particular, how72

accurately are sequences matched with patient on the basis of the indexing? Small errors in MRD73

assignment could have serious clinical implications. Incorrectly stratifying a patient could result in74

under or over treating with exposure to unnecessary toxicity or increased risk of relapse. HTS-MRD75

experiments generate large datasets. Interpretation and reproducibility of these data are of crucial76

importance in the development of a reliable clinical assay26. Use of these technologies in clinical77

practice has been cautioned until they are fully validated27.78

The potential for primer bias influencing MRD detection has been extensively modelled by other79

groups28, so we do not address this here. The amplification strategy used for the current ASO-RQ80

PCR assay is already clinically approved10 and therefore provides the most practical basis for81

translation into a HTS-MRD assay. After evaluating alternatives, we chose the MiSeq as a suitable82

platform for delivery as it is able to sequence single read (unidirectional) libraries of sufficient length83

(minimum 150 nucleotides) and quality to identify clones in less than 24 hours. MiSeqDx has been84

FDA approved for diagnostic use in cystic fibrosis29.85

Sequencing multiple indexed samples per run reduces costs and increases scalability; however it86

introduces the potential risk of assigning reads to the wrong patient sample (misassignment). We87

therefore systematically investigated potential sources of multiplexing error on the MiSeq that could88

reduce the sensitivity and accuracy of MRD identification. These include index cross-contamination,89

sequencing error, misassignment of indices, run-to-run carry over, and the accuracy of the90

demultiplexing algorithm.91
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We found significant problems with “off-the-shelf” solutions and workflows for multiplexed92

amplicon sequencing, with low but unacceptable levels of sample misassignment, which could93

potentially lead to false-positive calls in clinical use. We overcame these issues by applying a dual-94

indexing strategy similar to that described by Kircher et al.30, using high quality preparations of index95

oligonucleotides31, and by developing an informatics pipeline to filter out low quality sequencing96

reads and reduced quality index reads. Finally, we implement our workflow and demonstrate an97

accurate quantification strategy using a reference “spike-in” method quantified by digital PCR98

(dPCR) that potentially exceeds the accuracy of current approaches by at least ten-fold.99

Materials and Methods100

Samples and cell lines101

Ethical approval was given (Research Ethics Committee reference 13/LO/1262) for use of102

appropriately consented material from patients with B-lineage ALL at Great Ormond Street Hospital103

for Children. Forty one pre-treatment and eight post-induction chemotherapy bone marrow (BM)104

samples were obtained. Pooled “normal” lymphocyte DNA came from the UK National Blood105

Service. The leukemic cell lines SUPB15, REH and TOM-1 were from DSMZ and BEL-1 was kindly106

donated by Dr RW Stam (Rotterdam, NL).107

Sample Preparation108

The mononuclear cell fraction of BM samples was isolated following centrifugation on Ficoll-109

Hypaque (density 1.077g/l). Authentication of cell lines was performed by short tandem repeat110

analysis using the PowerPlex-16 system (Promega). DNA was extracted according to standardised111

protocols32 using QIAamp DNA MiniKit (Qiagen). DNA concentration was estimated using112

spectrophotometry (Nanodrop, Thermo Scientific), then accurately quantitated by RQ-PCR using113

albumin as a control/reference gene.114

115

116
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Oligonucleotide synthesis117

Single-index strategy indices were HPLC purified and synthesised (Sigma-Aldrich) as per Kozarewa118

et al.33 We designed new dual-indices (Table 1) synthesised using the TruGrade process (Integrated119

DNA Technologies)31.120

Digital PCR121

The CDR3-encoding regions of IGH genes of the cell lines described above were amplified and122

sequenced (HTS and Sanger) to ensure clonality and purity of sequence (Supplementary figures 1 and123

2). TaqMan assays were then designed for the unique CDR3 region. Reactions containing TaqMan124

Gene Expression Master Mix (ABI), GE sample loading reagent (Fluidigm), TaqMan assay and125

template DNA, were pipetted into the loading inlets of a 12.765 Digital Array (Fluidigm). The126

BioMark IFC controller MX (Fluidigm) was used to uniformly partition the reactions into the panels.127

Template molecules are partitioned throughout the panels with a high degree of randomness and128

independence34. Absolute copy number quantification of cell line “spike-in” IGH CDR3-encoding129

regions was performed by dPCR, using the BioMark Real-Time PCR System (Fluidigm). For each130

12.765 dPCR array template DNA was analysed in triplicate.131

HTS strategy132

IGH genes were amplified by multiplex PCR using AmpliTaq Gold (ABI) in a 2-stage PCR (Figure 1133

and Supplementary table 1). In the first stage, IGH family primers were modified to contain partial134

MiSeq adaptor sequences. First stage products were purified using solid phase reversible135

immobilisation (SPRI) beads (Agencourt AMPure XP, Beckman Coulter), before fluorometer136

quantification (Qubit, Invitrogen) and DNA Bioanalyser (Agilent) quality assessment. The purified137

product formed the template in a second stage PCR using NEBNext High Fidelity master mix (New138

England Biolabs) in which sample specific indices and full MiSeq adaptor sequences were added. The139

indexed samples were again purified, quantified, and then normalised to create the sequencing library140

pool. Sequencing libraries were re-quantified by RQ-PCR using the KAPA library quantification kit141

for Illumina sequencing (Kapa Biosystems) or TaqMan Gene Expression Assay for Illumina Library142
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Quantification (Life Technologies). Accurate quantification of molecules bearing appropriately143

ligated Illumina adaptors was crucial to ensure optimal cluster density for sequencing. Sequencing144

mix with 5-10% PhiX (to offset low early cycle sequence complexity) was loaded onto the MiSeq145

following the Illumina protocol “Preparing Libraries for Sequencing on the MiSeq” (Illumina Inc.,146

San Diego, CA). We used a single-end read from J to V to ensure optimal quality over the CDR3-147

encoding region. Indexing reads were performed to identify the 8 base pair (bp) index sequences148

(single or dual-indexed). Sequencing runs performed in this study are listed in Table 2. The pre-149

processed (i.e. multiplexed bcl) data files discussed are available in controlled access format in the150

European Genome-phenome archive (EGAS00001001303). Custom bioinformatics pipelines were151

used to identify, cluster and annotate sequencing reads.152

For evaluation of our workflow in clinical practice we used 5 randomly chosen real patient samples153

(MRD quantified for patient stratification by ASO RQ-PCR as gold standard). HTS workflows with154

and without the technical safeguards described in the paper, where then followed. Input sample was155

100 000 cell equivalent DNA. The HTS preparations also included separately indexed diagnostic156

sample of each patient at a one in ten dilution to further test the versatility of the workflow. MRD157

samples were “spiked” with 1, 10 and 100 copies of SUPB15, TOM-1, and REH IGH sequences for158

quantification purposes. To assess the potential limit of detection of HTS-MRD we also spiked the159

same quantity of cell line reference DNA into one million cell equivalents of pooled donor160

lymphocyte DNA.161

Results162

Misassignment of indices163

We first examined the accuracy with which oligonucleotide indexing assigned reads to the correct164

sample using standard laboratory and analytical methods. Initially we tagged each sample with a165

single P7 index composed of 8-mer oligonucleotides chosen at random a panel of 96 described by166

Kozarewa et al.33. Sequencing runs were initially demultiplexed using the on-board MiSeq software167

which bins samples according to the 8-mer index. In addition to indices used for sample tagging in the168
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experiment, we also instructed the demultiplexing program to search for the remaining indices that169

had been synthesised, but were not included in the experiment.170

In a typical experiment (A7BK7, Table 2), with total reads passing filter 18.59 million, 89.1% (16 538171

154) reads were assigned to indices corresponding to samples included in the experiment172

(Supplementary table 2), with 10.9% (2 036 018) undetermined reads not assigned to indices after173

demultiplexing (Supplementary table 3). Of the undetermined reads, 55% aligned to PhiX genome,174

added for quality control purposes and to improve cluster resolution, 41.7% to rearranged IGH reads;175

0.002% to non-rearranged IGH reads and 3.3% to other non-IGH reads, aligned elsewhere on the176

genome (Supplementary table 3, Supplementary figure 3). We found that 0.12% - 23,044 reads were177

misassigned to one of the 68 indices not used to tag samples in the run (Figure 2, Supplementary table178

3). Overall this suggested that > 1 in 1000 reads are misassigned by the standard on-board MiSeq179

demultiplexing pipeline. This could be caused by sequencing error or factory oligonucleotide cross-180

contamination.181

Quality scores of misassigned reads182

To assess the extent of sequencing error we generated quality scores for the misassigned reads and183

their associated index reads using FASTQC - www.bioinformatics.babraham.ac.uk/projects/fastqc/ -184

(representative examples from run A7ELC on Table 2 are shown in Figure 3). We discovered that the185

quality of misassigned sample and index reads (Figure 3D, F) is inferior to that of reads assigned to186

real samples (Figure 3A, C) and deteriorates with sequence length, resulting in poor mean quality187

scores (Figure 3E). For the index reads, average Phred quality score for correctly assigned reads was188

32.5 (range 30.4 – 35.2) (Figure 3C) compared to 19.3 (range 18.4 – 22.1) for misassigned index189

reads (Figure 3F). This gives a mean difference of 13.3 which was highly significant with p < 0.00001190

(95% CI 11.5 – 15.2). These results indicate that misassignment stems at least in part from poor191

quality index reads and read quality filters are required to ensure the most accurate demultiplexing192

strategy.193

194
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Redesigned oligonucleotide indices195

Misassignment may also result from oligonucleotide cross-contamination during synthesis, as196

previously shown by Quail et al31. We designed a new set of 8-mer oligonucleotide indices with high197

Hamming distance to optimise maximal sequence difference, homopolymer length and GC/AT198

balance35, 36. These were then synthesised using the high purity TruGrade process which reduces the199

risk of factory cross-contamination of oligonucleotide stocks31. We adopted a dual-indexing approach200

previously shown to improve accurate demultiplexing30, increasing total index nucleotides to 16 bp201

(an 8 bp index on either end of the amplicon). Twenty-four i7 and sixteen i5 indices were designed202

(Table 1). In order to monitor frameshift errors, some oligonucleotides were designed with sequences203

which maintained a high Hamming distance compared to other sequences, but which were shifted by204

a single base position (Supplementary table 4). Initially we synthesised only indices i7 1-12 and i5 1-205

8.206

A sequencing run was performed using this new indexing strategy (A7ELC, Table 2). Thirty-one207

samples were multiplexed and sequenced. All index combinations of the indices i7 1-12 and i5 1-8208

were entered on the sample sheet, giving a total comprised of 31 double-indexed samples, 65 index209

combinations synthesised but not used in the experiment, and 288 index combinations where210

oligonucleotides were not synthesised at all.211

We found that for the majority of combinations, the new strategy eliminated the assignment of reads212

to indices not present in the sequencing mix (Table 3 and Supplementary table 5). This was the case213

regardless of whether the sequences were synthesised or not, suggesting that factory oligonucleotide214

cross-contamination is effectively eliminated by TruGrade synthesis. However, significant215

misassignment due to amplification or sequencing error remained a problem. As anticipated, we216

detected significant misassignment to indices where a frameshift had been introduced in the index.217

For example, even though the two index sequences have a high Hamming distance, frameshift218

between index i7_05 AACTCCGC and index i7_22 ACTCCGCA (Table 3) results in 0.6% of reads219

being misassigned. For subsequent experiments, we split the indexing oligonucleotides into groups220
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sharing compatible sequence combinations (Supplementary table 6), removing the potential for221

misassignment by frameshift error.222

Our results show that the use of dual indices designed to maximise Hamming difference and minimise223

frameshift error reduces the risk of misassignment of samples in multiplexed MRD. However, it is224

apparent that even without frameshift error, up to 0.5% of reads are still assigned to non-existent225

index combinations for dual index reads (e.g. Table 3; i7_04/i5_06). This suggests similar errors must226

be present but hidden in the undetectable (mis)-assignment of reads to real indices using dual or single227

index strategies. This could clearly pose a concern for accurate MRD assessment.228

MiSeq on-board demultiplexing software229

On-board MiSeq Reporter software automatically demultiplexes MiSeq output from sequencing runs230

and converts binary base call (bcl) files to human readable text (fastq) files for each index on the231

sample sheet entered for the run. Clusters are assigned to a sample when the index sequence matches232

exactly but also permit assignment with a single mismatch per index read. We modified the process to233

assign only sample names to reads bearing a perfectly matched (i.e. 0 bp mismatch) index by234

demultiplexing raw sequencing output data using Illumina Consensus Assessment of Sequence and235

Variance (CASAVA) software version 1.8.2 (Illumina Inc., San Diego, CA) or bcl2fastq conversion236

software version 18.4 (Illumina Inc., San Diego, CA), allowing for no mismatches in the index237

sequence. The reanalysed data from run A7ELC is shown in Table 4 (and Supplementary table 7). As238

expected, there was a reduction in the misassigned reads (compare with Table 3), but also an239

unacceptable reduction in the assigned reads, with a correspondingly large increase in the240

undetermined bin. We noted that the quality statistics from the reads which remained misassigned241

were generally poor with % Q30 lower for misassigned sequence reads. We therefore filtered the242

fastq files to remove any reads with % Q30 < 70 %, < 80 % and < 90 % (Supplementary table 8). As243

expected we lost a greater proportion of reads from the misassigned group than from the correctly244

assigned reads but the misassigned reads were still present and a large number of reads had been245

discarded – potentially impacting on sensitivity. We concluded that current demultiplexing strategies246
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are not stringent enough for very high sensitivity applications, and do not take account of the quality247

of the index read.248

Use of unique index combinations249

To further reduce the potential “hidden” misassignment, in the following run, A7FDO, we used only250

unique combinations of group 1 indices (Supplementary table 6). We sequenced 8 samples, >1.5251

million reads per sample, output data was demultiplexed using MiSeq on-board demultiplexer and252

through CASAVA allowing for no mismatches in index reads, reducing overall misassignment from253

0.2% to 0.05% (Supplementary tables 9 and 10). This shows that for MRD measurement where a254

high degree of accuracy (minimising misassignment) is required only dual unique indices should be255

used.256

Demultiplexing based on quality of index reads – Error Aware Demultiplexer257

In view of the significant misassignment using the MiSeq on-board demultiplexer, the unacceptable258

loss of potentially informative sequences when increasing stringency to allow no mismatches, poor259

quality statistics of misassigned index reads, we developed our own demultiplexing pipeline. “Error-260

Aware Demultiplexer” (EAD) utilises base call quality scores of index reads produced during261

Illumina sequencing (open source available at: https://github.com/edm1/error-aware-demultiplexer).262

The pipeline incorporates Phred scores to probabilistically match read indices to the sample identities263

during demultiplexing. Index similarity is assessed with the same algorithm used in the Illumina pair-264

end assembler PANDAseq 37. The pipeline calculates the probability that the true index and the index265

read represent the same underlying sequence. For example, if two bases match and the quality of266

those bases are high then we have good evidence that they represent the same base. Probabilities are267

calculated for each base and multiplied together to get the probability that the two reads represent the268

same sequence. This results in up to an 80% reduction in misassignment compared to other269

approaches and importantly, with minimal subsequent loss of sequence reads (Table 5).270

271

272
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Reducing run-to-run carryover273

Template molecules may remain in the MiSeq fluidics system, even after a standard wash program,274

and can be washed onto the flow cell in subsequent runs. MiSeq instruments maintained according to275

standard Illumina recommendations typically have sample carryover rates of 0.1%. If the same276

indexing strategy is applied in a subsequent run, a 0.1% carryover rate could potentially cause errors277

in clinical interpretation of MRD. We added two non-human samples to the sequencing pool (A7ELC,278

Table 2) and then performed a sequencing run (A7FDO, Table 2) with the same indices but different279

samples 3 weeks later and after a further 2 different runs on the MiSeq (and therefore three standard280

washes). Carryover was detected at a rate of 0.002%. Performing the wash recipe recommended by281

Illumina for highly sensitive applications “Technical support: Reducing Run-to-Run Carryover on the282

MiSeq Using Dilute Sodium Hypochlorite Solution” (Illumina Inc., San Diego, CA), completely283

eradicated the carryover (data not shown). We observed that this wash recipe can sometimes cause284

lower cluster densities, presumably related to small amounts of sodium hypochlorite washed onto the285

flow cell.286

Accurate quantification using a dPCR calculated reference “spike-in” – evidence for one in a287

million cells detection sensitivity288

HTS-MRD is theoretically limited by the number of cells input. To accurately quantify sensitivity, we289

performed a “spike-in” experiment. While other groups have used plasmids or synthetic templates18,290

28, we used a pre-determined quantity of reference IGH DNA target derived from B-cell leukemia291

lines with unique IGH clonotypes extracted, prepared and accurately quantified using dPCR (data not292

shown). Dilutions ranging from 1x10-4 to 1x10-6 were created by adding known quantities (1, 10 and293

100 copies) of SUPB15, TOM-1, and REH IGH sequences into one million cell equivalents of pooled294

donor lymphocyte DNA. We then amplified the DNA of all one million cells and sequenced the295

products using the HTS strategy described above. The sequencing run (ABG7Y, Table 2) was296

demultiplexed using EAD resulting in over 2.5 million reads per sample. We found using our297

workflow HTS-MRD achieved linear amplification, with R2 > 0.9998, good reproducibility (Figure 4)298
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and the ability to detect the spike-in cell line IGH target down to one copy in a million normal cell299

equivalents.300

Application to clinical MRD samples301

To compare the effectiveness of our workflow with a standard HTS approach, we prepared libraries302

from five clinical samples previously scored for MRD by the gold standard ASO-PCR assay and303

classified into risk categories based on a 0.01% threshold. Each sample was indexed and sequenced304

together with 10-1 dilutions of its own diagnostic sample tagged with a different index.305

Demultiplexing and pre-processing errors in standard HTS workflows results in false positive risk306

classification due to the misassignment of diagnostic sample to patient MRD (Figure 5A). In the clinic307

this would lead to overtreatment of patients. The scenario was then repeated using the improved308

workflow with EAD. The samples were now all correctly classified (Figure 5B). This experiment309

demonstrates the potential clinical consequences of misclassification, and the power of an improved310

workflow to prevent this occurring even with a one in ten dilution of diagnostic sample present in the311

material.312

Discussion313

Several groups have demonstrated that HTS of the rearranged IGH gene is a potentially sensitive314

method for MRD detection in patients with ALL15, 16, 18, 38. However, adoption of new approaches in315

clinical laboratories requires careful evaluation of all potential sources of error and the development316

of strategies to ensure the highest accuracy27.317

Several important sources of potential error impact on workflow choice for HTS-MRD. Differential318

hybridisation kinetics of oligonucleotide primers can introduce significant biases that alter the319

composition of sequence libraries prepared by multiplex PCR28. However, for EuroMRD approved320

centres10, the accepted clinical diagnostic assay for MRD is PCR based using consensus primers and it321

therefore seemed reasonable to adopt the same primer sets as the basis for the proposed HTS-MRD322

test. The Illumina MiSeq is subject to characteristic base-calling errors, but these are significantly323

lower than current competing systems. Kennedy et al.39 describe a ligation and capture based assay324
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which overcome HTS errors, but the method is not suitable for introducing molecular indices into the325

specific locus for IG/TCR genes. Current techniques used for sensitive HTS-MRD are all amplicon-326

based approaches.327

Multiplexing of indexed samples means that HTS-MRD could be an economical clinical assay.328

However, our analysis identified low, but clearly detectable and clinically relevant levels of sample329

misassignment using the standard MiSeq demultiplexing approach. We therefore developed a strategy330

that reduces misassignment to the absolute minimum while maintaining maximal sensitivity.331

We adopted TruGrade-synthesised oligonucleotide primers designed with a high Hamming distance332

and screened to avoid frameshift error. Quail et al. reported contamination rates for purification by333

HPLC or PAGE purification of 0.56% and 0.34%, however with TruGrade this reduced to just334

0.03%31. Also, for high sensitivity applications, unique combination dual-indexing, which identifies335

the sample origin of each sequence twice, independently, during demultiplexing, is superior to single-336

index multiplex sequencing30.337

Although misassigned reads are broadly of low quality, filtering based on read quality alone is an338

inefficient method for improving accuracy. A better method is to filter on index read quality, so we339

developed a custom demultiplexing pipeline (EAD) that uses a probabilistic approach to remove340

unreliable index reads while optimising retention of informative sequences. EAD out-performs341

standard demultiplexing software, including the on-board MiSeq demultiplexer, producing high342

quality data, with up to 80% reduction in read misassignment. Despite reduced tolerance for343

inaccurate index reads, EAD achieves up to 10% more allocated reads (Table 5) than other344

demultiplexing methods. EAD has potential application in any assay requiring highly accurate345

demultiplexing (e.g. pathogen detection and single cell applications). We also confirmed run-to-run346

carryover in the MiSeq fluidic pathway and demonstrated that it is essential to perform high-347

stringency post-run washes of the MiSeq to avoid the risk of contamination. Together, our workflow348

reduces misassignment to less than 0.05% with no loss of potentially usable data, resulting in high349

quality and accurately assigned data from multiplexed sequencing experiments.350
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We have highlighted the importance of eliminating all avoidable risk in MRD analysis, and351

appropriate quality control measures could provide some safeguards. Seitz et al.40, for example,352

describe a novel method to prevent carry-over contaminations during similar two-step PCR protocols.353

It will also be good practice that no diagnostic sample should be sequenced together with its follow-354

up, that separate laboratory areas be used to prepare follow-up sample libraries, and that index355

combinations be alternated. Despite this, errors may still occur, chiefly associated with mis-356

identification of samples during multiplexing.357

Firstly there is a significant risk that false-positive results may occur if two patients share exactly the358

same clonal sequence. Wu et al. evaluated this by HTS in post treatment samples and estimated the359

chance in B cells was 0.1% and 0.72% at 1 cell in 1 00 000 and 1 000 000 resolution respectively16.360

Next, the spike-in (cell lines, synthetic templates or plasmids) used for quantification (as in all current361

IGH HTS-MRD assays) will potentially all have the same clonal IGH sequence in each sample on the362

same run, risking inaccurate quantification with consequent potential for misclassification.363

Furthermore, simple human error in sample processing could result in misdiagnosis, or even where364

detected, the cost of a repeat run. We clearly demonstrate that a 10-1 diluted diagnostic sample can365

result in misclassification with the standard multiplexing approach, with the likelihood presumably366

diminishing with clone concentration. In the clinical setting, cost-effective diagnostic sequencing will367

depend on a high degree of multiplexing with optimal use of sequencing space on cheaper, higher368

capacity sequencers. In this scenario, cross-checking and excluding potentially contaminating highly369

expressed clones before sequencing would be inconvenient and reduce efficiency. It is therefore370

notable that our optimised approach with EAD reduces misassignment errors from all these scenarios371

and allows correct classification even with a 10% diagnostic sample present.372

We have also introduced highly accurate and biologically relevant sequencing reference controls for373

HTS-MRD. Using dPCR, we absolutely quantified the number of molecules of biologically relevant374

IGH controls present in each preparation. This is more accurate than conventional RQ-PCR or375

estimations based on molecular weight and concentration. The entire workflow was then applied to376

demonstrate sensitivity of at least one in a million cell equivalents, improving sensitivity by at least377
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ten fold compared to the current ASO-RQ MRD approach. A major advantage of such sensitivity,378

combined with confident sample assignment in multiplexing would be to allow application to379

peripheral blood rather than BM, with obvious advantages for patients (especially children), as well as380

potentially giving a more representative picture of MRD41-46.381

The improvements described represent a step towards the rigorous validation required to produce a382

robust clinical HTS-MRD assay. Large prospective head-to-head comparison with current methods383

are needed to prove if the increased sensitivity and broader view of IG repertoire that HTS can384

achieve can replace the current burdensome and expensive techniques. We also propose EAD as a385

flexible method applicable beyond MRD detection to any multiplexing approaches where high386

accuracy of assignment is paramount.387
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Tables553

Table 1. Oligonucleotide designs for dual-indexing. These are used in the second stage of a nested554
PCR. First stage primers have adaptors† at each end of amplicon which are complementary to the555
indexing oligonucleotide.556

Index Oligonucleotide Sequence Index in
oligonucleotide

Index read
sequence

i7_01 5’-CAAGCAGAAGACGGCATACGAGATTCTAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TCTAGCTA TAGCTAGA

i7_02 5’-CAAGCAGAAGACGGCATACGAGATCTAGCTATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ CTAGCTAT ATAGCTAG

i7_03 5’-CAAGCAGAAGACGGCATACGAGATAGGTTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ AGGTTGGC GCCAACCT

i7_04 5’-CAAGCAGAAGACGGCATACGAGATGACCAACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GACCAACG CGTTGGTC

i7_05 5’-CAAGCAGAAGACGGCATACGAGATGCGGAGTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GCGGAGTT AACTCCGC

i7_06 5’-CAAGCAGAAGACGGCATACGAGATGTGCCATAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GTGCCATA TATGGCAC

i7_07 5’-CAAGCAGAAGACGGCATACGAGATTAATGTCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TAATGTCC GGACATTA

i7_08 5’-CAAGCAGAAGACGGCATACGAGATCGAAGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ CGAAGGAC GTCCTTCG

i7_09 5’-CAAGCAGAAGACGGCATACGAGATAATGTCCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ AATGTCCT AGGACATT

i7_10 5’-CAAGCAGAAGACGGCATACGAGATAGAACATTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ AGAACATT AATGTTCT

i7_11 5’-CAAGCAGAAGACGGCATACGAGATTGTCAGTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TGTCAGTC GACTGACA

i7_12 5’-CAAGCAGAAGACGGCATACGAGATCACCGCTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ CACCGCTT AAGCGGTG

i7_13 5’-CAAGCAGAAGACGGCATACGAGATCAGACGCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ CAGACGCA TGCGTCTG

i7_14 5’-CAAGCAGAAGACGGCATACGAGATGCTACTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GCTACTAG CTAGTAGC

i7_15 5’-CAAGCAGAAGACGGCATACGAGATGTCAGTCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GTCAGTCT AGACTGAC

i7_16 5’-CAAGCAGAAGACGGCATACGAGATTTCACCGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TTCACCGC GCGGTGAA

i7_17 5’-CAAGCAGAAGACGGCATACGAGATGGTCTAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ GGTCTAAT ATTAGACC

i7_18 5’-CAAGCAGAAGACGGCATACGAGATACCTGGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ ACCTGGAT ATCCAGGT

i7_19 5’-CAAGCAGAAGACGGCATACGAGATAGCGACAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ AGCGACAG CTGTCGCT

i7_20 5’-CAAGCAGAAGACGGCATACGAGATATAGGCTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ ATAGGCTC GAGCCTAT

i7_21 5’-CAAGCAGAAGACGGCATACGAGATTAGAACATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TAGAACAT ATGTTCTA

i7_22 5’-CAAGCAGAAGACGGCATACGAGATTGCGGAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TGCGGAGT ACTCCGCA

i7_23 5’-CAAGCAGAAGACGGCATACGAGATTTGCGGAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TTGCGGAG CTCCGCAA

i7_24 5’-CAAGCAGAAGACGGCATACGAGATTTAGAACAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-3’ TTAGAACA TGTTCTAA

i5_01 5’-AATGATACGGCGACCACCGAGATCTACACCACTTGAGACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ CACTTGAG CACTTGAG

i5_02 5’-AATGATACGGCGACCACCGAGATCTACACGTTACCGAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ GTTACCGA GTTACCGA

i5_03 5’-AATGATACGGCGACCACCGAGATCTACACTGACGACTACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ TGACGACT TGACGACT

i5_04 5’-AATGATACGGCGACCACCGAGATCTACACACGGATTCACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ ACGGATTC ACGGATTC

i5_05 5’-AATGATACGGCGACCACCGAGATCTACACCCATAGGAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ CCATAGGA CCATAGGA

i5_06 5’-AATGATACGGCGACCACCGAGATCTACACTGGAAGGCACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ TGGAAGGC TGGAAGGC

i5_07 5’-AATGATACGGCGACCACCGAGATCTACACGCATCATGACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ GCATCATG GCATCATG

i5_08 5’-AATGATACGGCGACCACCGAGATCTACACAGCGGTGAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ AGCGGTGA AGCGGTGA

i5_09 5’-AATGATACGGCGACCACCGAGATCTACACAGTTACCGACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ AGTTACCG AGTTACCG

i5_10 5’-AATGATACGGCGACCACCGAGATCTACACCATGCATAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ CATGCATA CATGCATA

i5_11 5’-AATGATACGGCGACCACCGAGATCTACACACATGCATACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ ACATGCAT ACATGCAT

i5_12 5’-AATGATACGGCGACCACCGAGATCTACACACCATAGGACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ ACCATAGG ACCATAGG

i5_13 5’-AATGATACGGCGACCACCGAGATCTACACTCCAGGTAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ TCCAGGTA TCCAGGTA

i5_14 5’-AATGATACGGCGACCACCGAGATCTACACCTTAATTGACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ CTTAATTG CTTAATTG

i5_15 5’-AATGATACGGCGACCACCGAGATCTACACCGGATTCAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ CGGATTCA CGGATTCA

i5_16 5’-AATGATACGGCGACCACCGAGATCTACACTTAGACCAACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ TTAGACCA TTAGACCA
†
First stage primers including partial adaptor sequences for - Forward (i7) primers:557

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGGGTGCGACAGGCCCCTGGACAA-3’558
5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGATCCGTCAGCCCCCAGGGAAGG-3’559
5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTCCGCCAGGCTCCAGGGAA-3’560
5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGATCCGCCAGCCCCCAGGGAAGG-3’561
5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGTGCGCCAGATGCCCGGGAAAGG-3’562
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5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGATCAGGCAGTCCCCATCGAGAG-3’563
5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTGGGTGCGACAGGCCCCTGGACAA-3’564
Reverse primer (i5):565
5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTACCTGAGGAGACGGTGACC-3’566
*Indicates addition of phosphorothioated DNA bases567



25

Table 2. Sequencing runs performed on the Illumina MiSeq568

MiSeq
Run

Unique
run
name

Number
of
samples

Indexing
strategy

MiSeq
kit
version

Read
length

Total
reads -
million

Cluster
density
(K/mm2)

Reads
passing
filter-
million

Phred
quality
(%>=Q30)

1 A478Y 36 Single,
Kozarewa

2 300 22.4 1211 17.38 71.0

2 A5U9G 34 Single,
Kozarewa

2 300 22.12 1094 18.69 74.4

3 A6PKD 20 Single,
Kozarewa

2 300 20.91 1006 17.55 78.6

4 A6FMV 23 Single,
Kozarewa

3 167 12.11 465 11.70 95.9

5 A7BK7 28 Single,
Kozarewa

2 208 22.35 1063 18.59 79.2

6 A7ELC 31 Dual,
TruGrade

3 151 32.83 1267 22.81 80.3

7 A7FDO 8 Dual,
TruGrade

3 151 23.98 865 18.77 82.1

8 A72MP 8 Dual,
TruGrade

2 300 23.01 1067 20.17 70.1

9 A7B79 21 Dual,
TruGrade

2 300 24.45 1175 19.66 72.5

10 A8FPT 12 Dual,
TruGrade

2 300 21.66 1020 19.53 78.6

11 ABALR 12 Dual,
TruGrade

2 300 23.44 1120 18.33 72.6

12 ABAJL 37 Dual,
TruGrade

2 300 24.19 1170 21.77 69.3

13 ABG7Y 6 Dual,
TruGrade

3 151 24.29 892 22.48 85

569

570
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Table 3. Assignment of reads from dual-indexed run A7ELC using the MiSeq on-board571

demultiplexer. Index combinations corresponding to actual samples are highlighted in bold.572

Misassigned reads (non-bold print) are shown for all possible dual-index combinations where at least573

one index is assigned (complete information in Supplementary table 5). Index 1 has the prefix i5 and574

index 2 has the prefix i7. An example of frameshift causing misassignment occurs between indices575

i7_05 and i7_22 (underlined text) resulting in misassignment of 0.6% of reads.576

577

i7 indices

i7_01 i7_02 i7_03 i7_04 i7_05 i7_06 i7_07 i7_08 i7_09 i7_14 i7_17 i7_19 i7_20 i7_22 i7_23 i7_24

i5
in

d
ic

e
s

i5_01
532594 553987 606447 2105 715211 586926 3581 500618 0 2 5 2 4 2642 140 0

i5_02
483605 420978 3407 563981 2130 694559 457959 1129 153 4 7 3 0 2 0 3

i5_03
4306 413460 853442 912389 542539 2107 785862 433723 234 0 6 0 16 1851 103 0

i5_04
869143 2301 820461 485673 708010 548037 3374 501739 2 0 0 0 10 2470 162 0

i5_05
5541 398969 4490 794442 608924 3922 631108 1442 170 0 3 3 0 1949 97 2

i5_06
1410284 3156 807859 2536 2938 731447 613956 1927 189 0 0 0 14 5 0 0

i5_09
163 131 0 186 0 223 123 0 0 0 0 0 0 0 0 0

i5_10
0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0

i5_12
1 68 0 145 130 0 127 1 0 0 0 0 0 0 0 0

i5_14
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

i5_15
803 1 835 443 718 556 6 543 0 0 0 0 0 5 0 0

i5_16
4 6 8 2 7 2 9 2 0 0 0 0 0 0 0 0

Undetermined reads 3E+06
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Table 4. Assignment of reads from dual-indexed run A7ELC demultiplexed allowing for no578

mismatches in index sequences. Index combinations for samples included in the run are shown in579

bold print. Misassigned reads (non-bold print) are shown for all possible dual-index combinations580

where at least one index is assigned (complete information in Supplementary table 7). Index 1 has the581

prefix i5 and index 2 has the prefix i7.582

583

i7 indices

i7_01 i7_02 i7_03 i7_04 i7_05 i7_06 i7_07 i7_08 i7_22 i7_23

i5
in

d
ic

e
s

i5_01
484180 505456 549076 402 654781 535588 661 449768 1689 12

i5_02
436266 387331 741 511368 440 629466 415014 241 0 0

i5_03
1138 376242 790058 893669 489608 472 714305 394937 1177 10

i5_04
809651 454 738566 439508 690965 490128 683 450862 1715 2

i5_05
1218 358552 970 722159 555629 637 569741 250 1239 10

i5_06
1291695 535 733096 525 614 660168 552237 360 2 0

i5_09
0 0 0 0 0 1 0 0 0 0

i5_12
0 1 0 1 1 0 1 0 0 0

i5_15
561 0 583 298 522 375 0 365 4 0

i5_16
0 0 0 0 0 0 0 0 0 0

Undetermined reads 5E+06
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Table 5. Reduction of misassignment due to index read sequence error using the Error Aware584

Demultiplexing strategy. Numbers of reads assigned, with percentage change in reads assigned585

compared to standard MiSeq on-board demultiplexing, allowing up to 1 base pair mismatch (in586

brackets); Reads assigned using standard methods allowing for 0 base pair mismatches in index reads587

are on upper rows (0 bp) of each index combination and Error Aware Demultiplexer read assignments588

are on the lower rows (EAD) of each index combination. The bold text indicate sample index589

combinations that were present in sequenced samples, the non-bold are index combinations not590

included in the sequencing run. Data from sequencing run A7FDO. Index 1 has the prefix i5 and591

index 2 has the prefix i7.592

i7 indices

i7_01 i7_03 i7_04 i7_05 i7_06 i7_07 i7_08 i7_10

i5
in

d
ic

es

i5_01

0 bp
1633722
(-8.6)

44
(-76.2)

76
(-43.3)

132
(-68.3)

109
(-72.5)

118
(-66.9)

86
(-74.9)

108
(-73.3)

EAD
1761443
(-1.4)

89
(-51.9)

63
(-53.0)

102
(-75.5)

140
(-64.6)

110
(-69.2)

93
(-72.9)

85
(-79.0)

i5_02

0 bp
154
(-50.2)

1714456
(-8.8)

121
(-46.5)

152
(-72.0)

169
(-50.4)

165
(-76.9)

129
(-81.8)

156
(-54.5)

EAD
124
(-59.9)

1921136
(-2.2)

87
(-61.5)

127
(-76.6)

177
(-48.1)

174
(-75.6)

129
(-81.8)

181
(-47.2)

i5_03

0 bp
50
(-60.0)

79
(-42.8)

1506573
(-8.5)

92
(-85.8)

59
(-67.6)

68
(-89.4)

61
(-69.3)

65
(-85.2)

EAD
37
(-70.4)

73
(-47.1)

1620923
(-1.5)

63
(-90.3)

36
(-80.2)

55
(-91.4)

62
(-68.8)

55
(-87.5)

i5_04

0 bp
86
(-54.0)

84
(-45.5)

60
(-37.5)

1667394
(-9.0)

75
(-58.3)

61
(-72.9)

80
(-80.5)

90
(-88.9)

EAD
71
(-62.0)

76
(-50.6)

52
(-45.8)

1800250
(-1.7)

64
(-64.4)

62
(-72.4)

73
(-82.2)

101
(-87.6)

i5_05

0 bp
185
(-82.8)

171
(-60.7)

150
(-66.7)

254
(-87.3)

1748758
(-9.0)

158
(-82.3)

118
(-78.9)

215
(-88.6)

EAD
194
(-81.9)

189
(-56.6)

115
(-74.4)

168
(-91.6)

1909784
(-0.6)

169
(-81.1)

110
(-80.3)

180
(-90.5)

i5_06

0 bp
185
(-64.4)

193
(-73.9)

154
(-79.8)

185
(-80)

170
(-57.5)

1924357
(-8.2)

160
(-60.7)

161
(-55.6)

EAD
159
(-69.4)

160
(-78.3)

93
(-87.8)

173
(-81.3)

179
(-55.3)

2083579
(-0.6)

127
(-68.8)

164
(-54.8)

i5_07

0 bp
152
(-70.9)

222
(-79.7)

130
(-60.2)

198
(-76.1)

167
(-70.1)

137
(-67.0)

1586001
(-9.1)

172
(-69.4)

EAD
138
(-73.6)

206
(-81.1)

147
(-55.0)

174
(-79.0)

157
(-71.9)

134
(-67.7)

1765359
(-1.1)

152
(-73.0)

i5_08

0 bp
44
(-86.3)

57
(-87.8)

40
(-79.9)

98
(-93.4)

60
(-92.2)

55
(-85.7)

31
(-88.0)

1781666
(-8.8)

EAD
32
(-90.0)

58
(-87.6)

38
(-80.9)

74
(-95.0)

46
(-94.1)

47
(-87.8)

30
(-88.4)

1979346
(-1.3)



29

Figure Legends593

Figure 1. Nested PCR and final library product for IGH VDJ amplicon sequencing on the594

Illumina MiSeq. (A) Family variable heavy chain segment (VH) and joining heavy chain segment595

(JH) primers with complementary partial index sequences are used to amplify the VDJ junction of the596

rearranged IGH gene, containing the hypervariable region (purple). (B) In the second stage, index597

sequences (blue) and Illumina P5 and P7 platform adaptors sequences are added. The final amplicon598

construct with sequencing strategy is shown in (C). One or two index reads were used depending on599

indexing strategy, with single-end sequencing read from the JH (P5) end of the amplicon.600

Figure 2. Misassignment of sequences from sequencing run A7BK7. Indexed reads corresponding601

to samples are shown in red. Reads assigned to indices not included in the sequencing run are shown602

in blue. Eight bp indices used as per Kowenza et al.33603

Figure 3. Comparison of quality statistics between reads assigned to real samples (“true”) and604

reads “misassigned” to indices not included in the run (examples using data from run A7ELC).605

(A-C) Base quality of sequencing reads shown by position (A) mean quality score distribution for all606

sequences (B) and index read quality (C) from a representative “true” indexed sample. (D-F) Base607

quality of sequencing reads shown by position (D) mean quality score distribution for all sequences608

(E) and index read quality (F) from a representative “misassigned” sample. Pooled libraries were609

sequenced (150 bases, single-end) on an Illumina MiSeq.610

Figure 4. Accurate quantification of MRD down to 1 in 1 million cells using a spike in control611

quantified by digital PCR. Three separate serial dilutions of a cell lines; (A) SUPB15, (B) TOM-1612

and (C) REH, spiked into to 1 million cells equivalent of pooled normal lymphocyte DNA. Samples613

sequenced on Illumina MiSeq (> 2 million reads per sample), indexed using HTS strategy described614

above and demultiplexed using Error Aware Demultiplexer.615

Figure 5. MRD analysis performed in 5 patients at the end of induction chemotherapy for616

childhood B-ALL (day 28 MRD). The current gold standard RQ-PCR technique is compared to a617

standard HTS work flow (A) and an optimised workflow using Error Aware Demultiplexer (B). The618
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sequencing run included a diluted (10-1) diagnostic sample for each patient to simulate an increased619

probability of misassignment. MRD samples were also “spiked” with cell line DNA for quantification620

purposes. Errors introduced during standard multiplexed sequencing result in mis-diagnosis in621

patients N001 and N005 due to misassignment (A). These incorrect calls due to misassignment are622

removed (B) using the workflow presented.623
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