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Abstract 
 

Healthcare informatics still lacks wide-scale adoption of intelligent decision 

support methods, despite continuous increases in computing power and 

methodological advances in scalable computation and machine learning, over 

recent decades. The potential has long been recognised, as evidenced in the 

literature of the domain, which is extensively reviewed. 

The thesis identifies and explores key barriers to adoption of clinical decision 

support, through computational experiments encompassing a number of technical 

platforms. Building on previous research, it implements and tests a novel platform 

architecture capable of processing and reasoning with clinical data. The key 

components of this platform are the now widely implemented openEHR electronic 

health record specifications and Bayesian Belief Networks.  

Substantial software implementations are used to explore the integration of 

these components, guided and supplemented by input from clinician experts and 

using clinical data models derived in hospital settings at Moorfields Eye Hospital. 

Data quality and quantity issues are highlighted. Insights thus gained are used to 

design and build a novel graph-based representation and processing model for the 

clinical data, based on the openEHR specifications. The approach can be 

implemented using diverse modern database and platform technologies. 

Computational experiments with the platform, using data from two clinical 

domains – a preliminary study with published thyroid metabolism data and a 

substantial study of cataract surgery – explore fundamental barriers that must be 

overcome in intelligent healthcare systems developments for clinical settings. These 

have often been neglected, or misunderstood as implementation procedures of 

secondary importance. The results confirm that the methods developed have the 

potential to overcome a number of these barriers. 

The findings lead to proposals for improvements to the openEHR 

specifications, in the context of machine learning applications, and in particular for 

integrating them with Bayesian Networks. The thesis concludes with a roadmap for 

future research, building on progress and findings to date. 
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Chapter 1: Introduction 
 

This introductory chapter presents the problem that the thesis attempts to 

solve, the objectives set for providing solutions, the methods employed and the 

research contributions made, followed by a description of the structure of the thesis. 

 

1.1 Research Context and Motivation 
 

The use of computers to help clinicians in their decision-making, referred to 

as Clinical Decision Support (CDS) in this thesis, is a long-standing and active field 

of research. Integrating the decision-making capabilities of computers with the 

practice of medicine presents numerous challenges (Clancey and Shortliffe 1984), 

(Robert A. Greenes 2014) and these challenges have been a significant area of 

focus for artificial intelligence (AI) research, long before the use of computers 

became prevalent in other fields of daily life (Ledley and Lusted 1959b), (De Dombal 

et al. 1972), (Leaper et al. 1972)  (Edward H. Shortliffe et al. 1975). 

The complex and multi-dimensional nature of clinical decision-making 

requires a multi-disciplinary view of the processes involved, in order to improve the 

outcomes. The existence of a large body of research on understanding how 

clinicians’ reasoning works (Ledley and Lusted 1959a), how expert knowledge and 

clinical data can be transformed into a computable form (Markwell, Sato, and 

Cheetham 2008), (Aikins 1980), (David Ingram 2002) , how they can be shared (M. 

A Musen 1992), (Beeler 1998), mathematically processed (Spiegelhalter and Knill-

Jones 1984) and represented (Luciani and Stefanini 2012), shows that 

improvements in CDS depend on a combination of contributions from many different 

fields of research.  Knowledge engineering, statistical modelling, artificial 

intelligence, information systems design and implementation and large scale data 

processing are all relevant in the development of better CDS, encompassing a vast 

intersection of domains of scientific research. 

Even where successful outcomes have been achieved in the integration 

between components of this multi-disciplinary field of research, and these have 

been adopted within experimental innovations in the practice of medicine (Robert A. 

Greenes 2014), the widescale use of CDS is still elusive, despite the increase in 

processing power and the emergence of large scale data processing architectures 

and frameworks. Individual implementations can benefit from developments in 

science and engineering but the CDS demonstrated thereby is, typically, still 
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localised, case-specific and isolated, in general. The difficulty of integrating clinical 

data that originates from multiple information systems contributes significantly to this 

situation.  

The reasons for this less than expected level of adoption of CDS are not 

purely based on problems with technology.  A significant part of the problem lies in 

the difficulty of making the increases in computing capability available to clinicians in 

ways that enable them to integrate that capability with care processes. The difficulty 

of expressing clinical knowledge in the form of mathematical concepts such as 

probability, makes it hard for clinicians to use CDS approaches that require 

communication based on this language (Leaper et al. 1972) (R. A Greenes 2007). 

Such difficulties have led to an increasing divide between what is computationally 

possible, such as the use of graphical probabilistic models, and what is actually 

usable in the CDS implementations, since statistical methods for CDS depend on or 

benefit from availability of more data and greater computing power. 

The emergence of new electronic healthcare record standards that are 

based on information models, primarily in response to requirements for data 

integration between different clinical information systems, presents an opportunity to 

overcome some of the most significant problems of CDS adoption. The openEHR 

electronic health record (EHR) specifications (Beale et al. 2006) provide  a capable, 

flexible and mature representative of these standardisation efforts. openEHR’s 

scope goes beyond the integration of health data across systems. It provides a 

comprehensive domain model and domain specific languages and tools that allow 

clinicians to express clinical concepts using this model. This strongly clinician-driven 

approach to defining clinical data allows complete information system 

implementations based on the domain model, in a technology agnostic way. 

openEHR also provides a query language called the Archetype Query Language 

(AQL) (Ma, Frankel, and Beale 2014) that allows querying of clinical data based on 

the domain model of openEHR. 

The combination of openEHR’s clinician-driven approach to defining clinical 

data, its support for a high level domain specific query language and its technology 

agnostic nature, makes possible a health computing platform that can support both 

clinical information systems development and CDS functionality. The use of such a 

platform provides an inherent solution to data integration issues, but its real, 

currently underutilised potential lies in the use of clinician input to build CDS 

systems, allowing clinicians to take control of functionality that is normally isolated 

from them by non-clinical, hard to grasp concepts, such as probability calculus. 
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A particular CDS approach based on the use of Bayesian Networks (BNs) 

(Koller and Friedman 2009)  offers advantages similar to those offered by 

openEHR, in terms of letting domain experts define domain concepts without having 

to tackle complex implementation details. Bayesian Networks provide clinicians with 

a user interface that lets them quickly see an overall picture of clinical variables 

relevant to a patient’s condition. This user interface hides the complexity of 

processing of probability concepts, while still providing the advantages of 

probabilistic reasoning in decision-making, thus offering a solution to the problem of 

integrating powerful statistical methods with clinical care for better CDS.  

Despite its advantages and the increasing worldwide adoption of the 

openEHR methodology for EHR implementation, there is currently no 

systematic integration of openEHR  methodology with probabilistic inference 

methods that are used highly effectively in other domains. This presents an 

opportunity to build a comprehensive health computing platform that includes 

decision support as a first class functionality. Therefore, based on the 

conceptual similarity between openEHR and BNs in their support for efficient 

representation of domain concepts, the fundamental research question this 

thesis seeks to answer is: 

 

Can openEHR support clinical decision methods based on Bayesian 

Networks, by providing a model driven health computing platform that supports 

clinical data interoperability, clinical information systems development and machine 

learning functionality, and what, if any changes are required to the openEHR 

specifications to achieve this?  

 

In its attempt to answer this question, the thesis uses the openEHR 

specifications as a basis for implementing several large-scale and innovative 

software frameworks, to make possible a hands-on and experimental approach to 

the testing of the openEHR specifications and methodology, in the context of CDS. 

Previously released open source libraries for openEHR, freely available clinical 

modelling tools and clinical models, and a number of open source libraries for 

software development and machine learning are used throughout the development 

of these experimental frameworks. The thesis uses research on XML data 

representation and XML persistence in relational databases, along with research on 

representation of clinical data using both relational and non-relational persistence 

systems, to deliver its research outcomes.  
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A logical breakdown of the fundamental research question provided above 

leads to the following specific research motivations: 

• Evaluation of the clinical modelling capabilities provided by openEHR in a 

CDS setting in which clinical models are used to define CDS related 

concepts. 

It is frequently conjectured that EHR driven approaches can deliver better 

health IT and can be used to implement CDS. A fundamental assumption 

that must be proven true, for this conjecture to be true in the context of 

openEHR based CDS, is that the openEHR methodology and its 

implementations can support a Bayesian Network (BN) based decision-

making mechanism. This assumption implies that openEHR’s clinical 

modelling capabilities, the scope of concepts covered by these 

capabilities and the expressiveness of openEHR-based clinical models, 

can support definition of CDS concepts. Since CDS concepts are related 

to but not necessarily the same as the clinical concepts, the extent to 

which openEHR methodology can support representation and 

computation of both EHR and CDS concepts must be explored. 

 

• Analysis of the feasibility and characteristics of a software architecture for 

CDS based on openEHR and BNs. 

openEHR’s technology agnostic nature means that it has no dependence 

on any particular programming language or platform. Even though this 

independence is an advantage that allows openEHR to be implemented 

with any platform of choice, it usually establishes the implementation as a 

technology specific task with very little if any focus on robust, reusable 

generic software architectures for support of the implementation process, 

per se. The introduction of CDS functionality increases the complexity of 

an openEHR implementation even further, since establishing the links 

between clinical data and CDS mechanisms is also a platform specific 

requirement and task.  

The openEHR specifications cannot themselves include suggestions for 

software architecture or CDS implementation, due to the vast range of 

available options, but this does not mean that a high level, yet highly 

adoptable, generic architectural approach to implementation cannot be 

identified. To our UCL team’s knowledge, there has currently been no 

research effort in this direction. 
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• Analysis of the suitability of BNs as a decision-making engine for 

openEHR based CDS. 

BNs are already used in many clinical decision making scenarios, but 

their use in a context in which data is defined, persisted and queried 

using openEHR constitutes a highly specific setting. Various factors 

come into play in this setting, such as: the use of openEHR data types 

instead of arbitrary methods for representing data; the use of AQL as the 

means of data access, which may or may not introduce issues of 

expressiveness based on AQL’s features and the structure of the 

openEHR clinical models that are used in AQL queries.  

Existing uses of BNs in non-openEHR based clinical settings support 

their usefulness for CDS, but offer no helpful information for the specific 

setting this thesis sets out to evaluate. Therefore, the efficacy of BNs in 

an openEHR-based approach to CDS is an open research question. 

 

• Identification of any revealed shortcomings of openEHR in delivery of a 

generic CDS platform, along with potential approaches to overcoming 

these shortcomings. 

The motivations of this thesis are not limited solely to analysis of key 

aspects of openEHR and BN integration, or to the identification of 

shortcomings revealed in such an integration. The work aims also to lead 

to proposed changes in the specifications, based on research outcomes 

achieved in the thesis, to contribute to improvement of the openEHR 

methodology in the context of CDS implementation. This objective has 

hitherto received rather little attention, compared with that devoted to 

clinical information systems implementation.  

1.2 Research Scope and Objectives 
  

The scope and research motivations of the thesis embody the conjunction of 

a number of individually vast research topics. This places feasibility limits on an 

implementation experiment driven approach.  Therefore, the thesis scope and 

experiments undertaken are defined and constrained by the most fundamental and 

relevant elements of openEHR, BNs and software architecture, as follows: 

• The openEHR clinical models and the use of openEHR methodology in 

general, throughout the thesis, focus on an information model approach 

to clinical data representation. openEHR supports the use of clinical 
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terminologies and they are included in the discussion at various points, 

where relevant. But these terminologies were not used in building the 

underlying clinical models for the experiments described, primarily due to 

time constraints. They offer significant benefits and would certainly be 

included in future work. 

• The use of BNs is limited to discrete networks - that is, networks with 

discrete random variables only. BNs belong to the family of graphical 

models, as explained in Chapter 4, and other types of graphical models 

are excluded from the experiments. The number of available tools and 

frameworks that support discrete networks has been a key factor in this 

decision: significant implementation effort would be required to make use 

of other types of BNs, for which there is far less tooling available.  

• The persistence abstraction for openEHR developed in the thesis is 

applicable to a number of persistence systems. The thesis provides an 

implementation on top of a relational database and other suggested 

implementations are left for future research. 

•  Access to clinical data to be used in the experiments is a major limiting 

factor in the scope of the thesis. The thesis uses both real patient data 

and synthetic data. Anonymised real patient data, publicly available from 

the UCI machine learning repository (Bache and Lichman 2013), is used 

for the experiment on detection of thyroid diseases in Chapter 5, as an 

example of BN based CDS. Attempts to use real patient data for the 

more substantial experiment described in Chapter 9 has led to multiple 

problems which reveal a major barrier to be overcome in future research 

studies similar to the experiments presented in this thesis. Access to 

existing, high-quality research data is subject to rigorous ethical approval 

and related rules and regulations. However, these approval processes 

require information that cannot be provided in advance for some machine 

learning approaches, such as the list of variables from the data set that 

will be used in the research. Even though existing regulations and 

associated processes are in place for good reasons and have been 

introduced with great care, machine learning use cases, such as 

identifying BN variables automatically, do not fit well within these existing 

processes. Moreover, extensive effort to produce a data set from an 

existing operational clinical legacy system, which had been in routine use 

at a world leading research centre, has failed due to data quality issues, 

as discussed in Chapter 9 in Section 9.2. Therefore, synthetic data is 
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created and used for the experiment discussed in Chapter 9. Availability 

of large scale clinical data for research could have allowed this thesis to 

explore a wider set of CDS scenarios. The extensive effort required to 

build a data set suitable for this final experiment have taken considerable 

time, which could have been used to expand the thesis scope instead. 

  

The objectives of the thesis are determined with respect to their foundational 

nature for development of a robust health-computing platform that can support CDS 

research in as many future directions as possible, within the scope defined above.  

These objectives are set out as follows, along with the expected contributions that 

will follow from their achievement: 

 

1) To test the suitability of both openEHR and BNs for expressing clinical 

concepts, and computations on these concepts, in a CDS setting. 

Such an analysis will help in identifying the overlapping and disjoint concepts 

used in an openEHR based CDS setting. Identification and classification of 

these concepts will then enable testing of the adequacy of the current scope 

and expressiveness of openEHR for CDS implementation. The results of 

this test will contribute to establishing a baseline for openEHR’s 

support for CDS modelling, thereby providing evidence for openEHR to 

use in systematically improving its capabilities.  

 

2) To define a novel architecture for openEHR implementation which can 

support both clinical application development and CDS implementation 

scenarios, across a number of implementation technology options. 

Clinical modelling itself provides no information about the software 

implementation required to process the models. An implementation 

architecture that can be used with multiple software platforms would enable 

the advantages of different platforms to be exploited in providing information 

system and CDS functionality. Such an architecture is the key to establishing 

a robust, experimental platform for future openEHR CDS research. The 

definition of this novel architecture will help openEHR overcome the 

challenge of staying technology agnostic while encouraging and 

enabling systematic implementation utilising different implementation 

technologies. 
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3) To inspect the relationship between clinical information system and CDS 

system implementations based on openEHR 

The most common approach to software architecture when designing CDS 

systems is to assume that CDS will be developed as a standalone system. 

Defining a unified architecture for both clinical information system and CDS 

implementation eliminates many integration problems, but different use 

cases for clinical data access lead to orthogonal requirements at the 

software design and implementation level. Understanding how 

requirements imposed by clinical information systems functionality 

and CDS functionality interact with one another in an openEHR 

implementation context, will offer the opportunity to develop a generic 

implementation architecture that can be customised and optimised for 

specific scenarios without losing its unified platform advantages. 

 

4) To test the query capabilities and decision making performance of the 

openEHR and BN components of the new architecture with high volume 

clinical data. 

The query capabilities and performance of openEHR AQL has to date only 

been evaluated in the context of clinical information systems implementation. 

Consequently, the features provided by AQL have hitherto only aimed to 

address this functionality. Using AQL in a CDS context, in which a large 

amount of data for many patients must be accessed, quite probably 

alongside non-clinical care data and controlled by an algorithmic inference 

mechanism, presents a very different use case than that seen in the clinical 

information system context. In the clinical information system context, data 

access is focussed on a single patient, and is therefore rather small in terms 

of data volume and the reasoning process always has a human actor, 

namely the clinician. The viability of openEHR as a generic health-computing 

platform, in the face of requirements to process hugely increasing data 

volumes, will depend on its capability to enable performant AQL queries at a 

large scale, with support also for operations on data that are specific to 

machine learning methods and scenarios. The achievement of this 

objective will provide observations and feedback from an actual CDS 

implementation, which is rarely provided in detail by openEHR 

implementers. This type of feedback will present an opportunity to 

develop, for example, a version of AQL supporting probabilistic search 
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criteria, in order to support clinical data processing for machine 

learning implementations.  

1.3 Research Methodology 
 

Extensive software implementation, based on real life requirements 

gathering and literature review, is used as the primary research methodology to 

achieve the research objectives of the thesis, based on the completion of the 

following tasks: 

 

1) An extensive preliminary literature review of CDS history and approaches is 

performed.  This literature review shows how CDS approaches have evolved 

in the last five decades and what the current problems are. The openEHR 

standard and methodology is classified as an extension and evolution of the 

data bank approach to CDS identified in the literature review. A discussion of 

the openEHR specifications and methodology is provided in Chapter 3, 

which shows how openEHR can connect information models to CDS. 

2) A software development framework which uses openEHR models to support 

automatic, web based user interface generation along with automatic 

persistence and retrieval of clinical data is developed to serve as a test bed 

for the clinical information system development aspects of openEHR 

implementation. The requirements for this framework are gathered via 

collaboration with a clinician. 

3) A literature review is performed for the use of BNs in medicine, in order to 

determine their fitness for the purposes of providing a generic reasoning 

mechanism for CDS. This literature review is supplemented by an 

implementation experiment that uses a BN to diagnose thyroid diseases in a 

non-openEHR setting, using published, anonymised real patient data. 

4) A tree based representation of openEHR data along with a Tree Pattern 

Query (TPQ) representation of AQL, is developed for persistence 

abstraction. This builds on a literature review of XML data representation 

and persistence methods, common approaches to handling clinical data in 

relational databases, and the findings of the preceding openEHR-based 

clinical information system implementation experiment. 

5) The tree based persistence and query abstraction is implemented on top of 

a relational database server. This implementation is then populated with 
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simulated data for half a million patients and integrated with a BN 

implementation. 

6) A real life CDS scenario from the domain of ophthalmology is identified and 

openEHR clinical models representing the relevant clinical concepts are   

developed, mainly by clinicians and an expert clinical modeller. These 

models are extended to address the CDS scenario specific data 

requirements. An existing implementation of the identified CDS scenario, 

based on an alternative statistical approach, is used to compare and 

contrast with the combined openEHR and BN based approach developed in 

the thesis. 

7) Finally, the clinical models, tree based persistence implementation and 

synthetically generated data are used to estimate the risk for a clinical 

operation using a BN. Following an extensive real patient data analysis on a 

legacy system in Moorfields Eye Hospital, synthetic data generation is 

adopted, due to data quality issues. Risk estimation performance of the BN 

is measured via use of the Receiver Operator Characteristics (ROC) curve 

(Bradley 1997). 

1.4 Contribution 
 

The experimental results and contributions made to the field are as follows: 

1) A detailed analysis of openEHR in a CDS implementation scenario is 

provided. The analysis builds on openEHR models developed for clinical 

care records, which are later extended to support CDS implementation. This 

pushes openEHR methodology beyond its role in supporting interoperability 

and clinical information system implementations. By targeting such a large 

scope, the thesis reveals issues which might have been neglected or missed 

in studies that focus on limited scenarios, in an isolated manner. To our 

knowledge, this thesis is the first study that has targeted such a 

comprehensive analysis of openEHR implementation challenges. 

2) The orthogonality of the implementation challenges posed by two openEHR-

based scenarios - clinical information systems implementation and CDS 

implementation -  is demonstrated in the implementation of the Opereffa 

framework. This experiment clearly shows that design choices related to 

persistence implementation can significantly limit the use of openEHR for 

machine learning and population scale data analysis. This is a key finding for 

implementers and could not have been straightforwardly deduced from the 
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openEHR specifications alone. This finding also shows that openEHR 

adoption is potentially vulnerable to implementation challenges that are not 

currently addressed by the openEHR specifications. 

3) The development of the new persistence abstraction for openEHR, 

presented in the thesis, based on tree data structure and TPQs , provides a 

solution to the challenge of keeping openEHR platform technology 

independent, without introducing a steep learning and implementation curve 

for the implementation of fundamental required functionality, such as data 

persistence, for each and every implementation platform. The 

implementation of the persistence abstraction, on top of a relational 

database, shows that this original approach, as described in Chapter 8, can 

be used with a mainstream persistence option. The use of published 

research on XML data representation and persistence, along with published 

research on managing clinical data, establishes a new link between 

openEHR implementation and research outcomes from both computer 

science and information retrieval. This is an original contribution to a key 

challenge influencing the wider adoption of openEHR adoption, which has 

hitherto been treated as case-specific software development activity. It 

paves the way for future research on EHR persistence, in collaboration with 

rich and alive research activity on graph processing, especially at large-

scale. 

4) The use of openEHR clinical models for CDS identifies shortcomings of 

current openEHR methodology, as revealed in the case of a specific 

machine learning scenario. The clear focus of openEHR models on clinical 

data leaves administrative and demographic data out of the models, which 

are focused solely on particular clinical concepts. Even though this approach 

is soundly justified in the openEHR specifications, it nonetheless leaves 

significant CDS variables, such as the professional experience of the 

clinician performing an operation or the age of the patient, outside the scope 

of the clinical models, although these variables are required for a CDS 

implementation. The thesis suggests extensions to the openEHR 

specifications to allow inclusion of relevant but non-clinical data in openEHR 

models as metadata. Requirements to manage this metadata are also 

recognized, in scenarios such data exchange between systems or updates 

to existing clinical data. The use of openEHR models in the experimental 

CDS of Chapter 9 also shows that the use of standardised clinical 

terminologies within the information models is critical for ensuring reliable 
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automated processing of the described clinical data. The examples reported 

show that, even though a human end-user of an information system can 

understand and process textual information, failure to use standardised 

terminologies to represent the associated clinical semantics can introduce 

potential ambiguity in the implementation of machine learning use-cases, 

and that the openEHR clinical models are not automatically immune to this 

kind of problem. 

5) The use of AQL for large-scale queries shows that AQL can successfully 

express a subset of clinical data that spans multiple clinical models, to 

provide data input to a BN implementation. This finding strengthens the 

suggestion that AQL can be used for querying requirements beyond those of 

patient-centred clinical information systems. The thesis proposes extensions 

to the AQL specification, based on the data processing requirements 

exemplified by the experimental BN integration with openEHR. These 

extensions can be implemented in the form of function call support within 

AQL queries, allowing AQL support to be integrated with BNs and other 

machine learning methods for CDS, with markedly less effort than would 

otherwise be required. 

6) The thesis implements BN based decision making for two different settings. 

By providing both non-openEHR and fully openEHR based scenarios, the 

thesis identifies issues with BNs that are independent of the use of 

openEHR, such as problems associated with lack of observations for 

combinations of values of clinical variables. The openEHR based BN 

implementation also shows that integrating machine learning frameworks 

with openEHR implementation requires consideration of scalability, and 

consequently parallelisation, of associated data processing. This finding 

provides a strong incentive to focus in the future on large scale, parallel 

processing frameworks for openEHR implementation. 

7) Overall, the combination of the contributions described delivers the definition 

and experimental validation of a flexible software architecture that can 

potentially support orthogonal software architecture requirements for clinical 

data processing in CIS and CDS systems, across multiple levels of data 

scale, which are currently served via separate, dedicated solutions. 
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1.5 Thesis structure 
 

The thesis consists of a further 9 chapters, followed by an appendix. The 

contents of these are structured as follows: 

 

Chapter 2 Clinical Decision Support and Clinical Information Systems.  

Begins with the history of CDS and its key concepts, followed by a definition 

of a key problem in CDS, identified by the thesis and named “The Detachment 

Problem”. This view of barriers to wide-scale adoption of CDS makes EHR concepts 

a promising candidate basis for a computable health platform. The recent literature 

reviewed in this chapter shows that, despite advances in computing power and CDS 

capabilities, the fundamental problems identified almost five decades ago still exist. 

The review also shows that there is a convergence towards the use of information 

models for CDS implementations in the health informatics domain. 

 

Chapter 3 The openEHR Specifications and Their Relationship to Clinical Decision 

Support.  

Provides background relevant to this thesis about the openEHR standard 

and the methodology implied by its specifications and tools. A discussion of 

openEHR’s features is provided, which shows how openEHR can be used for an 

information model based approach to CDS. These arguments underlie the 

suggested use of openEHR methodology as a common platform for interoperability, 

clinical information system and CDS development. However, this platform is only 

half of the solution for a generic CDS solution that can be reused across different 

clinical domains. The second half: BNs, is introduced in the following chapter. 

 

Chapter 4 Bayesian Networks for Clinical Decision Support and Their Integration 

with openEHR 

BNs are introduced as a generic decision making mechanism which is a 

member of a family of probabilistic reasoning methods called graphical models. The 

use of BNs in medicine is analysed via literature review, performed to answer 

specific questions regarding the feasibility of using BNs as a generic, robust CDS 

mechanism. The review shows that there is sufficient evidence to support the 

suggested use of BNs for the purposes of this thesis. Therefore, an integration 

architecture combining openEHR methodology and BN concepts is developed. This 

integration architecture completes the high level description of the openEHR based 

CDS platform idea introduced in the summary section of Chapter 3.  Experiments 
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based on software implementation of both components of this unified architecture 

are described in chapters 5 and 6. 

 

Chapter 5 A Pilot Bayesian Network Implementation Experiment Using Thyroid 

Disease Data 

An existing BN framework is used to diagnose thyroid diseases, based on 

publicly available real patient data. This experiment aims to explore the use of BNs 

as a CDS mechanism and is intentionally performed in a non-openEHR setting. This 

approach makes it possible to observe if and how the use of BNs in an openEHR 

context is different than the well-established approach of exporting clinical data to a 

simple format, such as comma separated values, for non-clinical uses. The 

experimental results show that access to larger volume of data improves the 

outcomes for key steps in BN development, such as defining the network structure. 

However, in integrating data from different sources, the existence of outliers in the 

data and missing observations for combinations of clinical variables, are challenges 

that must be dealt with. The experiment also shows that using existing tools and 

frameworks for implementing data processing and BN functionality is not an option, 

but a necessity, due to the infeasibility, due to time and resource constraints, of 

developing this functionality from scratch. Therefore, the capability of a health 

computing platform to be accessible to existing tools is found to be a critical factor 

for its success.  

 

Chapter 6 A Pilot openEHR Based Clinical Information System Implementation 

Experiment – The Opereffa Open Source Framework 

Discusses the development of a clinical information system implementation 

framework based on openEHR. This substantial implementation, which is available 

as open source software, shows that openEHR is capable of supporting a generic 

platform approach for clinical application development, but that this capability does 

not fluently extend to supporting CDS functionality, especially if AQL is not 

considered as a first class design requirement. The findings of this chapter, along 

with the non-openEHR BN experiment in Chapter 5 underlie the importance 

attached to the development of the persistence abstraction in Chapter 7. 

 

 

Chapter 7 Persistence Abstraction for openEHR 

An abstract representation of openEHR data and query semantics of AQL is 

developed and implemented. This representation, named XINO, solves the problem 
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of having to develop data representation and query processing mechanisms for 

each implementation platform. The representations for data and query semantics is 

built on the large amount of research on XML processing and persistence, with a 

focus on the requirements of openEHR data and AQL. An extension of the Tree 

Pattern Query (Lakshmanan, Wang, and Zhao 2006) representation of AQL is 

developed. An essential goal of this approach is to allow openEHR to be efficiently 

implemented on top of different persistence systems and thereby to use their 

specific features and advantages. In order to prove the achievability of this goal with 

the abstract representation at hand, a proof of concept implementation is developed 

on top of the open source relational database Postgresql (Momjian 2001). This 

implementation, details of which are discussed in Chapter 8, is then used as the 

data source for a comprehensive CDS implementation in the domain of 

ophthalmology in Chapter 9. 

 

Chapter 8 XINO Architecture for Persistence 

The persistence abstraction developed in Chapter 7 is implemented using 

the open source relational database Postgresql (Momjian 2001). This 

implementation, named XINO-P, proves that the platform agnostic XINO 

architecture can be mapped to widely used relational databases, via generation of 

SQL based on the TPQs. Recognising the well-known challenges of representing 

hierarchical structures in relational form (Celko 2012), the mappings developed in 

this chapter and their use in Chapter 9 to serve clinical data to a BN implementation, 

provide crucial proof of the feasibility of  XINO. Moreover, this chapter shows how 

XINO’s tree based approach can be mapped to the native capabilities of a 

persistence system, which opens the door to many persistence implementations of 

openEHR on different persistence systems. Chapter 7 and 8 therefore present the 

definition and implementation of a generic persistence framework for openEHR, 

filling a critical current gap in feasible technical pathways to wider openEHR 

adoption. 

 

Chapter 9 An Experimental openEHR Based Clinical Decision Support 

Implementation for Ophthalmology: Risk Estimation for Cataract Operations 

An end to end implementation of a CDS based on XINO and BNs is 

developed, for estimating the risk in cataract operations. The CDS scenario is based 

on an existing published clinical research study, in order to benefit from its 

published design as well as provide a rationale for comparison of an openEHR/BN 
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CDS approach with an established alternative statistical method that relies on data 

extraction and logistic regression analysis(Narendran et al. 2008) .  

The XINO implementation is driven by openEHR models, which were initially 

developed in the Moorfields Eye Hospital and later extended for the purposes of the 

CDS implementation described here. The results of the analysis of clinical 

ophthalmology data kept by Moorfields Eye Hospital in its existing clinical system, 

show that the quality and amount of existing data is insufficient to implement the full 

scope of the experiment. Synthetic data generation is therefore used to simulate 

realistic  datasets for half a million patient operations, which are then persisted to 

the XINO framework. This data is then consumed by an existing open source BN 

implementation and the decision making performance of this combined architecture 

is evaluated through multiple, computationally intensive iterations to produce ROC 

curves (Bradley 1997). The elements used in the BN consist of data items from the 

openEHR models with data access defined by AQL queries.  

This extensive implementation uses openEHR models to drive every aspect 

of a CDS scenario and provides valuable insight into the issues and opportunities 

arising therefrom, such as extending AQL to establish a generic probabilistic query 

capability, named in the thesis as Probabilistic AQL. Other findings include, but are 

not limited to, the confirmation of issues relating to missing observations, as 

identified in Chapter 5, the effects of modelling clinical data with openEHR data 

types, and the limitations of BN inference achievable, exacerbated by the lack of 

parallelisation of computations. 

 

Chapter 10 Conclusions and Future Research 

Findings from Chapters 7, 8, and 9  are discussed and extended to an 

overview of future research potential. The chapter concludes that currently 

emerging big-data ecosystems provide an exciting opportunity for openEHR 

methodology for CDS implementation. The most significant advantage of these eco-

systems is their ability to integrate machine learning and data persistence in a 

scalable manner. This unified approach to processing large scale data allows 

parallelization of data processing, which has been found to be a bottleneck in the 

XINO and BN integration scenario discussed in Chapter 9. The thesis concludes 

with the view that, despite shortcomings identified, that must be addressed mostly 

through extensions to the current specifications, the openEHR standard provides a 

capable platform for health computing and CDS implementation, with the possibility 

of exciting future research. 
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Appendix I Synthetic Data Generation  

The method used to generate synthetic patient data for cataract operations is 

explained.  

 

1.6 Summary 
 

The thesis provides an analysis of the published openEHR standard for the 

EHR, as the basis of a health computing platform that support data interoperability, 

clinical information systems development and CDS implementation. The motivation 

for the research described stems from the current lack of published research on the 

use of openEHR as the basis for a generic clinical data platform, despite its mature 

and flexible design and widespread adoption, internationally. 

The research objectives are achieved by means of experiments based on large 

scale software implementations and by literature review. The results provide 

insights about the openEHR standard and its key use cases, which will be of wide 

interest to implementers and researchers. The results also pave the way for a 

number of new research directions for openEHR, most notably for extending AQL 

and using big-data frameworks.   
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Chapter 2: Clinical Decision Support and Clinical 
Information Systems 
 

This chapter provides an overview and discussion of relevant research, 

covering a time span from the origins of the field in the 1960s to the present day. At 

the outset of the PhD project in 2008, a literature review was conducted, which 

clarified both motivation and rationale for the research to be conducted. The scope 

of this review is the intersection of artificial intelligence (AI), information systems and 

CDS. CDS is here positioned as a bridge between the two other domains. This 

historical review was subsequently supplemented, and described in a separate 

section devoted to literature published during the period of the PhD work, from 

2008-2015. This shows that, despite new approaches, based in the main on the use 

of information models to tackle recognized historic challenges of CDS, some long-

identified fundamental problems remain unchanged. The chapter makes extensive 

reference to other related research domains, and their evolution to the present day.  

2.1: History and Key Concepts 

 

The use of computers to help clinicians in decision-making is a long-standing 

and active field of research. (Clancey and Shortliffe 1984) provides some of the key 

aspects of using artificial intelligence for decision-making in medicine (p. 1-17).  

 This work is significant, since it was produced at a time where a paradigm 

shift in AI was happening. It reports at a convenient point in time where some of the 

key paradigms have matured enough to be thoroughly evaluated, and successor 

paradigms are emerging to provide potential solutions to problem issues introduced 

by their predecessors. Therefore, (Clancey and Shortliffe 1984) is a convenient 

anchor for observing the evolution of the field, and it will be referred to often in this 

chapter.  

 An important term from (Clancey and Shortliffe 1984) is knowledge base, 

which identifies a key component of software-based approaches to clinical problem 

solving in medicine. Currently this term does not have a strict meaning. It may apply 

to an electronic repository of patient information taken as a stored form of 

knowledge or to a set of rules for determining the appropriate action in an 

information system. It may even apply to a set of mathematical definitions.  

This thesis considers knowledge base as any coherent form of computable 

knowledge representation that encapsulates statements about the domain 

concepts. The existence of a knowledge base in an information system implies that 
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domain concepts or rules have been identified and separated from the rest of the 

software. This component usually has a key role in the way a system behaves in 

response to some input. Because of its theoretical and engineering advantages, a 

knowledge base has been adopted as a central component in many systems, 

across the clinical domains that are within the scope of this thesis. The idea of 

defining knowledge in a formal, processable and flexible form has strong similarities 

to some of the current mainstream software development methodologies such as 

model driven architectures. The knowledge base can also act as a unifying concept 

across research domains within the scope of this thesis. Therefore, the following 

discussion adopts a knowledge base centric view of the CDS domain that will be 

extended to other relevant domains as required. 

 (Clancey and Shortliffe 1984) provides a set of different dimensions on which 

to compare knowledge based systems (p 11). Upon classifying CDS 

implementations as knowledge based systems, a subset of these dimensions 

provides convenient criteria for discussion of the different paradigms that have 

hitherto been adopted in decision support systems. This subset consists of: 

(1)content, (2)hypothesis formation and evaluation, (3)management of uncertainty, 

(4)data collection and explanation and (5)knowledge acquisition. These high-level 

concepts are still relevant today in the context of CDS design and implementation. 

 Similarly, the methods for CDS identified in (E. H Shortliffe, Buchanan, and 

Feigenbaum 1979) are mostly still relevant, although they have evolved. Especially 

methods based on accumulating data in a computer processable form has become 

comprehensive enough to encompass others by providing a platform, on top of 

which other functionality can be built. The five paradigms given below are mainly 

based on the classification of (E. H Shortliffe, Buchanan, and Feigenbaum 1979).  

 

Symbolic reasoning  

 

Symbolic reasoning has been a widely studied field of artificial intelligence 

since at least the 1970s. This paradigm attempted to mimic the reasoning process 

of human beings, by employing methods such as rules representing expert 

knowledge. The knowledge base (Clancey and Shortliffe 1984) corresponds to a 

combination of these rules and related domain concepts within this symbolic 

reasoning paradigm. 

The advantage of this approach is that the content of the knowledge base is 

expressed in a form that is meaningful to human beings. (E. H Shortliffe, Buchanan, 
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and Feigenbaum 1979) focuses on MYCIN (Shortliffe, 1976), which is a 

representative of the symbolic reasoning approach. 

MYCIN chose to use formal rules to represent and evaluate expert 

knowledge. Since rules are easy for experts to understand and communicate, this 

approach contributes to achieving better intelligibility. By using such rules for its 

knowledge base, MYCIN is able to provide data collection and explanation of 

decisions in a form that is relatively easily understood by clinicians.  

A decision support system is capable of performing reasoning on its 

knowledge base, but the reasoning capability on its own does not guarantee 

successful outcomes. The rules are used to process the content stored in the 

knowledge base, so the quality of that content is critical. More efficient 

communication with physicians during construction of the rules within the knowledge 

base improves the overall success of the system. Reasoning is performed by way of 

execution of rules, and when these rules are in a format that is understandable by 

humans, following the process is also easier. This helps the clinicians make better 

use of the outputs from the system, since they can see the reasoning behind the 

decisions made. (Edward H. Shortliffe et al. 1975) explains how this explanation 

mechanism works in MYCIN. Even though rules based representation provides 

advantages in CDS, rules are not sufficient as the sole basis for symbolic reasoning. 

What is inherent in the clinical decision-making process is the uncertainty. The 

clinician deals with uncertainty using evidence and his observations, and his actions 

follow accordingly. Rules may encode these actions, but the decision mechanics for 

activation of rules has to handle uncertainty. MYCIN employs certainty factors for 

this purpose. (E. H Shortliffe and Buchanan 1975) says that the adoption of the 

certainty factors in MYCIN was introduced as an approximation to conditional 

probabilities, referring to issues associated with the use of statistical methods such 

as Bayesian methods.  

This approach is not free of problems. (Duda and Shortliffe 1983) recognizes 

the problem with the semantics of the values of this approximation in the clinical 

context; the certainty factors are not probabilities, hence their meaning is not as 

clear as the rules which they guide. The relationship between probabilities and 

certainty factors has been explored by (Barclay Adams 1976), which points to 

potential issues that may arise with wider use of the certainty factors approach, 

even though the approach performs well in MYCIN. In summary, symbolic 

reasoning provides convenient methods for knowledge engineering and explanation 

of decisions based on rules, but handling uncertainty is not easy compared to 

statistical methods such as the Bayesian approach. 
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Bayesian Methods 

 

(E. H Shortliffe, Buchanan, and Feigenbaum 1979) considers Bayesian 

statistical approaches as one of the major paradigms of Clinical Decision Support. 

Impressive diagnostic accuracy is not uncommon in systems where Bayesian 

methods of inference are used, and this is a point in favour of the approach (De 

Dombal et al. 1972).  

However, diagnostic accuracy is not the only criterion for successful CDS. 

The Bayesian method requires inputs in the form of probabilities. This requirement 

introduces significant challenges for knowledge engineering as providing domain 

knowledge in the form of probabilities has not proved a familiar and convenient 

method for clinicians. Compared to expressing knowledge in the form of rules or 

using explanations based on their execution, conditional probabilities are 

significantly less convenient as a domain language for clinical decision support. 

With a statistical approach, the quantitative expression of probabilities turns into a 

language embracing data collection, knowledge acquisition, and even explanation of 

the reasoning, as well.  

According to (Leaper et al. 1972) which discusses the problems associated 

with the use of probabilities for knowledge engineering, two applications of the 

Bayesian approach on the same set of data, using different sources for probabilities, 

result in significantly different levels of performance. When the conditional 

probabilities are obtained with the help of software, from patient data, the 

performance of the system can end up being significantly better compared to the 

case where the conditional probabilities are obtained from direct input of experts.  

Potential problems with the Bayesian approach extend deep into probability 

theory and assumptions made about conditional probabilities. Due to the 

computational challenge of handling dependencies between input variables and 

outcomes of interest, most of the uses of the Bayesian approach end up with a form 

known as naive Bayes. In a simple clinical decision-making setting, this form uses 

random variables to represent diagnoses and symptoms. In this mathematical form, 

the candidate diagnoses are presumed to be mutually exclusive and their set is 

exhaustive. The symptoms are assumed to arise independently of one another. This 

set of assumptions does not realistically or adequately reflect the expert opinion in 

many cases. 

Given that the naïve Bayesian paradigm can perform quite well even with 

these constraints, it is still an alternative to the symbolic reasoning paradigm. 
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(Spiegelhalter and Knill-Jones 1984) provides a useful discussion of the statistical 

methods in CDS. According to this study, the principal barrier to wider use of 

statistical methods (including Bayesian methods) is related to difficulties in building 

the knowledge bases (probabilities). Even though recent advances in Bayesian 

modelling and computation may help deal with incorrect or inadequate assumptions 

about probabilities, the problems associated with using probabilities as a descriptive 

language for a knowledge base still remain. 

Efficient representation of domain knowledge is a significant factor for 

successful decision support, as demonstrated in both the symbolic and probabilistic 

paradigms. The modern extensions of the next paradigm focus heavily on this goal.  

 

Data bank analysis 

 

A term coined in (E. H Shortliffe, Buchanan, and Feigenbaum 1979) is “Data 

Bank Analysis for Prognosis and Therapy Selection”, and this term identifies a 

further CDS paradigm which has seen exponential growth in popularity compared to 

the others. What was described as a “Data Bank” in the 1970s has evolved into 

today’s electronic healthcare records, if one refers to the key features and goals of 

such systems, as described in (E. H Shortliffe, Buchanan, and Feigenbaum 1979), 

which positions the medical record repository as a tool to provide access to large 

amounts of data for better care management. The principal suggested use is 

clinician access to a library of past cases that are relevant to a current patient’s 

case, and consuming that information to make decisions, an approach that is widely 

adopted by modern clinical information systems. 

Since the umbrella term used for this approach in modern systems is EHR, 

this thesis considers the EHR as the modern representation of data bank paradigm. 

(Kalra and Ingram 2006) provides an in depth, up to date exploration of the concept, 

showing how EHR became a unifying platform for many purposes. The diversity of 

the studies referenced by (Kalra and Ingram 2006) is proof for this unifying, platform 

centric view of the EHR. In the following excerpt from this work, the authors refer to 

CDS functionality that can be provided through the use of the EHR: 

 

“The widescale use of decision support and alerting systems that interact with 

patient records is considered an essential informatics solution to the prevention of 

errors”  
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The growth in adoption of the EHR alone cannot deliver the potential benefits 

for decision support. The focus on EHR in the medical informatics domain is 

obvious, supported by the discussion in (Kalra and Ingram 2006), but the extent to 

which EHR implementations have managed to support better care via decision 

support is another matter. (Linder et al. 2007) finds no significant improvement in 14 

of the 17 indicators they examine in the context of EHR use.  

This thesis acknowledges the potential benefits of decision support in EHR 

systems, but it also observes that these benefits are not necessarily reflected into 

clinical information systems due to a number of reasons. Also, the focus of this 

thesis on EHR does not imply that a crucial method for representing and processing 

clinical data, that is, use of coding systems in medicine is ignored in the context of 

CDS. The practice of coding health data significantly predates the emergence of 

computers, given that the International Classification of Diseases (ICD) was first 

published in 1893 (WHO 2015), (James J. Cimino 1996). The use of codes for 

representing clinical concepts is a cross cutting component of both symbolic 

reasoning (J. J. Cimino 2011) and EHR based approaches to clinical decision-

making (James J. Cimino 1996) and is used at the national level (de Lusignan et al. 

2001).  

The use of healthcare terminologies as components of healthcare 

information models, which are the building blocks of modern EHR implementations, 

is a well established approach (R. A Greenes 2007), (Al Rector et al. 2006),(Mori 

1995), which has led to recognition of the use of these terminologies by information 

model standards development groups (Zanstra et al. 1998). Therefore, this thesis 

assumes that the EHR is an encapsulating concept which makes use of 

terminologies such as ICD-10 (World Health Organization 1992) or SNOMED-CT 

(IHTSDO 2015) to fulfil requirements that depend on existence of semantic 

identifiers for information model elements.  

2.2: The Detachment Problem in Clinical Decision Support 
 

The performance of decision support systems is dependent on a number of 

variables, such as the amount of clinical data available to the decision-making 

mechanism, the ease of building and maintaining the knowledge base that allows 

processing of the data and the execution methods and performance of the software 

that implements the decision support mechanism. The components of decision 

support systems, which these variables are associated with, are usually research 

topics in their own right, connecting the CDS domain to other research domains 
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from other disciplines, and sometimes they have further dependencies on other 

variables, such as the choice for the underlying computing platform. 

The efficiency of the collective functionality of the components of CDS 

determines the performance of the implementation, and failure to establish a 

sufficient level of integration between these components leads to a detachment 

problem. 

The detachment problem describes the state in which CDS cannot deliver 

the desired and expected outcomes due to integration inefficiencies, the scope of 

which includes both CDS components and data. The nature of the problem can be 

broadly described in terms of: 

• Conceptual detachment 

CDS implementations cannot fully benefit from a promising method such as 

probabilistic reasoning, because it cannot incorporate and utilise the relevant 

concepts in an efficient, acceptable way. 

• Data detachment 

A CDS implementation cannot access clinical data to function as expected, or it 

can only access the data in limited and specific ways, which limit the benefits 

achievable, even if the CDS method is broadly applicable. In the first case, the 

CDS is detached from data, and in the second case, the CDS is detached from 

other settings and systems where it could have been useful. 

 

An example of conceptual detachment would be handling uncertainty in a 

rule based system, exemplified by MYCIN’s certainty factors which represent 

probabilities. The conceptual detachment that necessitates the use of certainty 

factors is the inconvenience faced by the domain experts when they need to provide 

probabilities to express uncertainty. 

Data detachment can be exemplified in most clinical systems integration 

scenarios for a CDS implementation. In probabilistic models, access to a higher 

number of instances of a set of domain variables allows more precise discovery of 

the nature of relations among these variables. Accessing to more domain variables 

that may have significance in the model is also of key importance. In cases where 

data is divided among different systems, such as patient demographics data and 

laboratory data residing in different systems, or past clinical data scattered among 

various institutions, only a subset of these detached data subsets is available to 

probabilistic model implementation, diminishing its performance.  

 These problems have been recognized by the research community. Various 

studies, implicitly and explicitly discuss either the connection between information 
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systems and decision support, or the lack of it. (E. H Shortliffe 1987) provides an 

early discussion of the issues, referring to them as “logistical issues”. He discusses 

the requirement to provide the same data separately to different systems, where 

there is no connection between systems.  

The following quotation from (Shiffman 1994) expresses the importance of 

access to data. Referring to (Shortliffe EH, Perreault LE, Wiederhold G, and Fagan 

LM. eds. 1990) he says: 

 

“Successful use of decision support tools is dependent on their integration into 
routine data management tasks”  
 

(Sim et al. 2001) recognizes the difficulty of building the links between routine data 

and decision support systems as follows: 

 

“Significant financial and organizational resources are often needed to implement 
CDSSs, especially if the CDSS requires integration with the electronic medical 
record or other practice systems” 
 

(E. H Shortliffe 1993) also underlies the problem where the CDS cannot become 

available to users:  

 

“I believe that the greatest barrier to routine use of decision support 
by clinicians has simply been inertia; systems have been designed for single 
problems that arise infrequently and have generally not been integrated into the 
routine data-management environment of the user” 
 

(Müller et al. 2001) provides a case study in which an existing, standalone 

CDS is integrated with a Hospital Information System (HIS). The study outlines the 

requirements necessary to unify decision support functionality with software based 

medical information management to integrate an abdominal pain scoring system 

and a hospital information system. (M. A Musen, Shahar, and Shortliffe 2006) 

expresses the importance of this kind of integration in the following statement: 

 

“We need more innovative research on how best to tie knowledge-based computer 
tools to programs designed to store, manipulate, and retrieve patient-specific 
information” 
 

This quotation implicitly assumes that software that is designed to store and 

process patient specific information is different from knowledge based software, i.e. 

the decision support software in our context.  
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This differentiation between information storing, and information processing 

software is worth noting. The difference has its roots in the history of these two 

types of systems. As discussed before, the initial expectation from EHR systems 

has been to store as much information as possible and to retrieve information when 

the clinician needs it. The decision support systems must process the data, and 

consequently, the related domain knowledge must be represented in a consistently 

and efficiently computable form.  

The problem of detachment of key components of CDS such as clinical data, 

decision-making mechanism and knowledge representation is actually an 

undesirable side effect of the evolution and specialization of these components. 

This specialization has been recognized by early works such as (E. H Shortliffe 

1987). Understanding the current state of these components and the relations 

between them is crucial to improving their connectivity. 

Despite the increase in use of computers in healthcare, potential 

improvements to clinical practice that can be provided by clinical decision support 

systems, and quite clear recognition of the problems with CDS approaches, the 

implementations of CDS systems have not become widely available in the health 

informatics domain. This rather small amount of adoption is worth recognizing as 

the first point regarding the current state of such systems, even though the 

capability of existing clinical decision support systems may far exceed the early 

systems of the past. This point is helpful as a motivation for questioning the 

successful and less than satisfactory aspects of current clinical decision support 

systems. 

(R. A Greenes 2007) is a recent study that provides a detailed treatment of 

the CDS domain, which identifies key problems and issues in CDS  and suggests 

possible solutions. The following list of observations and references to relevant 

works are taken from this work, with additional comments where necessary.  

• CDS systems are hard to develop due to the difficulties encountered in 

constructing the knowledge base component required to drive them. The 

construction of a knowledge base is followed by maintenance and 

improvements, effectively extending the knowledge representation task into a 

knowledge management lifecycle.  

• In order to make use of wider clinical input in the construction of CDS systems, 

knowledge representation must employ standard methods that allow sharing of 

results across systems and between clinicians. 

• Even though CDS based diagnosis has been a strong focus of interest, it has 

been rarely implemented and used in actual everyday clinical practice, beyond 
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its place of origin. Prognosis related CDS implementations seem to be more 

widely used(R. A Greenes 2007). 

• The relationship between the Clinical Information System and the CDS system 

is critical in terms of the capabilities of the CDS. The following quotation from (R. 

A Greenes 2007) refers to this relationship in the context of interactions required 

for the CDS system to perform successfully:  

 

“For these kind of interactions to work, the specification of the data elements 
needed by CDS must be compatible with those in the IT system, and the actions 
that CDS determines should be performed must be capable of being carried out by 
the IT system.” 

 

• Regardless of the capabilities of the CDS system, the implementation should 

consider the workflow of clinicians during the clinical processes. (R. A Greenes 

2007) gives an example which, for lack of this consideration, led to complaints 

from clinicians about the performance of a computerized physician order entry 

system, as described in (Shabot 2004) 

• There has been a continuous effort to formalize and improve various aspects of 

CDS systems. This formalization is required to enable easier creation and 

management of knowledge bases and facilitate integration with Clinical 

Information Systems. Various specifications have been created as a result of 

this requirement, and they have been in continuous evolution to respond to 

increasing complexity of information systems. 

For example the Medical Logic Module (MLM) devised by (George Hripcsak 

1994) and implemented in Arden Syntax (George Hripcsak 1994) is a good 

example of formalization of multiple CDS components within a single 

specification. Arden Syntax, as explained in (G. Hripcsak et al. 1994) and 

(George Hripcsak 1994), includes components to define the trigger event for 

invoking decision support, the logic that will be executed as a result, the action 

that will be performed in response to execution of that logic, and finally a data 

mapping from the underlying clinical data source to the MLM components. (R. A 

Greenes 2007) provides several independent contributions in the field which 

have formalized clinical actions as computable guidelines: Guidelines Element 

Model (GEM) (Shiffman et al. 2000), Guideline Interchange Format 3 (GLIF3) 

(Boxwala et al. 2004) and GELLO (HL7 2005). These formalisms focus on 

defining the logic and actions in a computable way. (R. A Greenes 2007) also 

cites (Peleg et al. 2003) for a comparison of computer interpretable guideline 

methods. 
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Other published components of Arden Syntax, such as its data mappings, have 

also been influential in the development of modern CDS approaches. EHR 

standards now provide a much richer, and formal method for representing and 

mapping clinical data between systems. Thus, modern decision support 

implementations can now make use of the clinical information models developed 

using these standards, rather than creating CDS system specific methods for 

data representation and mapping. In fact, modern EHR specifications have 

scope that goes beyond data representation: they can now be used to model 

actions that need to be carried out during the care process, such as prescription 

and administration of medications.  

Despite continuing efforts to formalize the representation of key components 

of CDS systems, some key mechanisms that underlie their decision-making 

capabilities, and problems associated with them, have not greatly changed. 

Probabilistic approaches, such as BNs , for assessing and processing clinical data 

are still not widely used, beyond the research exemplars and according to (R. A 

Greenes 2007), simpler mathematical approaches have been dominant, as 

expressed in the following quote:  

 
“Just as in the foregoing discussion relating rule-based systems and more 
sophisticated knowledge representation paradigms, simple understandable models 
(e.g., linear and logistic regression, score systems) have far outweighed in number 
and utilization the more sophisticated machine learning models (e.g., support vector 
machines, neural networks, and recursive partitioning algorithms), many of which 
remain limited to research applications.”  

 

However, even the most common and well understood statistical methods 

may require extra steps during statistical model building, such as performing a 

transformation on some of the covariates in a logistic regression. These types of 

tasks, as outlined before, tend to block the use of efficient probabilistic methods, 

due to clinicians having difficulty in handling probabilistic concepts and operations. 

These observations lead to two main conclusions in the context of this thesis: 

First, there has been great effort devoted to developing formal methods for 

providing CDS. Second, powerful and promising methods for handling intrinsic 

uncertainty are still not widely available in CDS system implementations. Therefore, 

potential improvements to CDS need to explore the formal methods of defining and 

processing clinical data as the underlying approach.  

In the larger context of medical informatics, another field of research 

characterized by a recent strong focus on the formalization of clinical data is 

electronic health records. This parallel attempt to improve the state of the art via 
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formal representation and information processing methods in both EHR and CDS 

research is a significant unifying characteristic for both domains.   

2.3: EHR, Computable Health and Clinical Decision Support 
 

The EHR paradigm provides all the functionality that the data bank approach 

to Clinical Information Systems aims to provide. However, during its evolution the 

EHR became more than a data storage formalism. Many factors have contributed to 

the evolution of the EHR concept, such as increased capacity and lower cost of 

computer hardware and software, evolving ethico-legal requirements, greater 

prominence of requirements for shared care and cost effectiveness considerations. 

The following factors have been highly influential in changing the concept of an EHR 

from a data store to an infrastructure for computation:  

• The requirement for data sharing across various clinical information systems 

and, as a consequence, the requirement for EHRs to be accessible using the 

different technologies that are the basis of those information system 

implementations.  

• The requirement for the EHR to provide functionality to support as many 

scenarios from different clinical domains as possible, leading to the 

requirements for conceptual coherence, data integrity and interoperability.  

 

Standardization efforts for the EHR can be considered as the most 

successful method for handling these requirements. Modern EHR standards have 

usually avoided focusing on selected clinical domains or technologies. They 

introduce methods that allow definition of clinical data in a consistent way 

regardless of the clinical domain that the data comes from. EHR standards also 

address the issue of being available for implementation in multiple technologies, 

through the publication of a range of implementation technology specifications.  

Through this approach, modern EHR standards have defined computable 

health information platforms, which can both exchange data and allow development 

of information systems using standards based data representation (Wollersheim, 

Sari, and Rahayu 2009), (Lopez and Blobel 2009), (P. H. Cheng et al. 2004, 7), 

(Kuhn 2007).Due to these infrastructural considerations, additional key components 

of health informatics software, such as demographics can now be positioned on top 

of the EHR, using it as a platform. This trend can be clearly seen in studies such as 

(Kalra and Ingram 2006) where many requirements of medical care are discussed in 

the context of EHRs, with references to other works that also support this view.  
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In the context of CDS, this approach makes the EHR is an obvious candidate 

for the underlying source of clinical data. The data mapping component of Arden 

Syntax (George Hripcsak 1994) is built on this approach, with the aim of connecting 

the large variety of clinical information systems that contain relevant data to a CDS 

formalism. The CDS implementation can delegate the responsibility for accessing 

clinical data to the EHR implementation, by using a formally defined information 

model as a source of data.  

Recent developments in CDS related formalization attempts show that this 

division of responsibility for clinical data access is becoming a common approach. 

GELLO’s (HL7 2005) close relationship to object models and Health Level 7 (HL7) 

is one such example. 

2.4: Current State of EHR and CDS integration 
 

A review of most recent studies on CDS reveals two key findings: the most 

fundamental problems related to CDS adoption still remain, but recent research is 

offering solutions to these problems, with notable emphasis on the conceptual 

integration between EHR and CDS, which is the focus of this thesis. 

As may be expected, the problems reported by these studies have different 

architectural and technological contexts from their predecessors reported two 

decades ago, but their nature stays remarkably similar, albeit that a more standards 

focussed approach is recognisable.  

From an architectural point of view, the standalone CDS implementations 

that require duplicate data entry are rarely adopted (Khalifa 2014). The lack of 

integration of clinical systems is a potential disruption to clinical workflow when 

accessing data that is required for CDS (Berner 2009) and much of health data is 

still not in machine-understandable form (Mark A. Musen, Middleton, and Greenes 

2014). The maintenance of formally expressed knowledge for CDS is a challenge, 

both in central, service oriented and embedded architectures, in which, the CDS 

functionality is directly included in a clinical software with local specialisations 

(Berner 2009). 

Even though the availability of specialised devices for clinical tasks helps 

clinicians, the data produced by these devices can only be used for CDS if they are 

part of an integrated architecture (Mark A. Musen, Middleton, and Greenes 2014). 

The use of terminologies such as SNOMED-CT (IHTSDO 2015) is an improvement, 

but data semantics problems still exist  (Wright et al. 2015)  and improvements in 
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standards that target CDS are defined as a priority (Wright et al. 2015; Kawamoto 

2010) 

These solutions focus on standards built on information models, in line with 

the approach developed in this thesis, and the  collaborative use of multiple e-health 

standards for CDS, such as using openEHR's clinical data modelling approach and 

data types with the Virtual Medical Record (vMR) defined by HL7 (González-Ferrer 

et al. 2013). The standards harmonization work of the Clinical Information Modelling 

Initiative (CIMI 2015), which uses concepts parallel to those of openEHR’s to 

represent CIMI models, attempts to provide well defined methods for this type of 

collaborative use of different standards. (Tao et al. 2013).  

Currently, both openEHR and HL7  methodologies are used for the 

integration of CDS and EHR concepts and the use of EHRs is seen  as an 

improvement for tasks that require large scale data, such as analysis of  

multimorbidity (Fraccaro et al. 2015). This line of thought is extended by the 

prediction of the future of the EHR as a vehicle for delivery of CDS (Mark A. Musen, 

Middleton, and Greenes 2014). These emerging solutions are also benefitting from 

the increasing availability of distributed computing frameworks and cloud 

architectures, such as the use of Hadoop in a cloud setting for building different 

types of applications based on EHR standards. Examples of these new kinds of 

applications are web and mobile applications (Bahga and Madisetti 2013; Bahga 

and Madisetti 2015) and data mining (Batra et al. 2014; Robert A. Greenes 2014).  

The availability of open source and model driven EHR platforms such as openMRS 

(Mamlin et al. 2006) enable easier development of these types of applications 

(MacLeod et al. 2012; Fraser et al. 2012) even in low-resource settings 

(Mohammed-Rajput et al. 2010). 

The adoption of EHR as a platform is found  also in new initiatives that aim to 

extend the practice of clinical care with new types of data, such as the CSER 

Electronic Medical Record Working Group, which was created to explore informatics 

issues related to integration of genomics data with EHRs and CDS (Tarczy-Hornoch 

et al. 2013). This integration, which, as of 2013, is implemented solely by 

embedding PDF files into patient EHRs, marks the addition of a new type of data to 

the EHR scope. Consequently, standards for processing genomic data in the 

context of EHRs are  a requirement for enabling their use in CDS implementations 

(Overby et al. 2013; Tarczy-Hornoch et al. 2013).The HL7 Clinical Genomics Work 

Group is actively working on the development of standards for communication of 

genomic data (HL7 2015a). 
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From an openEHR perspective, the most significant recent development is 

the integration of CDS and EHR concepts in the openEHR Guideline Definition 

Language (R. Chen and Corbal 2015), which is currently in the process of being 

incorporated in  the openEHR specifications. GDL enables the expression of rules 

that process clinical data based on openEHR data types and is used for real life 

CDS implementations (Chen 2012). Prior studies on openEHR based CDS show 

that use of external rule languages such as CLIPS (Riley 2015) with openEHR 

concepts for CDS, is also possible (Chen 2009).  

The recent literature shows that a platform based approach to EHR and CDS 

integration, based on different architectures and technologies, is becoming the 

predominant approach, in both research and implementation efforts, and that 

openEHR is widely and actively in use. The research motivations of this thesis are 

thus confirmed as relevant and of interest in CDS implementations and in other 

studies. 

2.5: Summary 
 

Despite the improvements in the implementation of the various 

computational methods for providing clinical decision making capability, almost five 

decades of multidisciplinary effort is still unable to deliver widely usable CDS. A 

strong focus on the use of information models, and standards based on these 

models, is the current dominant approach for tackling these well-recognized 

limitations of CDS, and this approach implies the emergence of health computing 

platforms based on standards, in line with the architecture that this thesis work set 

out to define, using openEHR. 
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Chapter 3: The openEHR Specifications and Their 
Relationship to Clinical Decision Support  
 

This chapter provides an overview of the openEHR specifications (David 

Ingram 2002), (Beale et al. 2006). The focus is on the concept of computable 

healthcare and how it helps in sharing information and behaviour with an aim to 

build the links between capabilities of openEHR, CDS and AI research.  

 The openEHR specifications, which are freely accessible in the form of 

multiple documents from the web site of openEHR foundation 

(http://www.openehr.org), provides a modern design for an EHR solution, which can 

potentially fulfil the requirements described in (Kalra and Ingram 2006). A more 

detailed exploration of the requirements of a modern EHR design can be found in 

the Good European Health Record GEHR project (D. Ingram 1995), (Lloyd et al.) 

deliverables. The openEHR specifications have their roots in the GEHR project.  

 Both GEHR and openEHR specifications tackle a key issue in healthcare IT: 

providing a standard method for computing healthcare related information, based on 

unified support for information models and terminologies. These specifications 

represent the evolution of software engineering and information systems design in 

clinical informatics. There are other initiatives such as Health Level Seven (HL7) 

and (ISO/EN 13606 2012), which are related to openEHR in terms of their goals and 

content (Schloeffel et al. 2006). The ISO/EN 13606 standard is based on a subset 

of the openEHR specifications.  

 The scope of these specifications covers both clinical and technical domains. 

An in-depth comparison of these specifications is out of the scope of this thesis. 

openEHR is the specification and the standard this thesis will build on. The following 

section provides an overview of the aspects of openEHR that enable computable 

health, followed by a discussion of the relationship between these aspects and 

probabilistic methods.  

3.1: The openEHR Standard and Methodology 
 

The fundamental characteristic of openEHR is its use of archetypes (Beale 

and Heard 2007a), (Beale and Heard 2008a) expressed via Archetype Definition 

Language (ADL) (Beale and Heard 2008b). The archetypes define clinical models 

via specifying constraints on structure and values of a reference model (RM). This 

approach is defined as two-level modelling (Beale and Heard 2008a). 
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The two-level modelling approach of openEHR is built on the accumulated 

results of a series of large scale research projects that took place over more than 

twenty years (David Ingram 2002), refining the results of research projects such as 

Synapses, which is based on the idea of an object model supported by a data 

dictionary (Grimson et al. 1997), (Grimson et al. 1998), (Bisbal, Stephens, and 

Grimson), and GEHR (Lloyd et al.).  

The fundamental components of openEHR are brought together in a process 

that produces outputs which can be used to implement clinical information systems 

that support a wide variety of functionality. Even though this process it not explicitly 

named in the openEHR specifications, the design of the fundamental components 

and the ways they are meant to be used, which is clearly explained in the 

specifications, implicitly describes a methodology.  

This thesis refers to this methodology as the openEHR methodology, 

referring to a clinical model driven software implementation lifecycle with an iterative 

nature. Therefore, the term openEHR methodology refers to a superset of openEHR 

specifications, extending them with the processes that make use of them. A high 

level representation of both the primary components of openEHR standard and the 

openEHR methodology that encapsulates them is provided in Figure 1. 

 

openEHR RM Archetype A

Archetype B

Archetype C

Template X

Archetype A

Archetype B Archetype C

package

package

package

EHR

COMPOSITION

DV_CODED_TEXT

Operational Template X

 
Figure 1: openEHR RM, Archetypes and Templates  

 

The first level of the two-level modelling approach of the openEHR 

methodology is the RM, which consists of a limited number of types defined in 

detail. The term “type”, when used in the context of openEHR RM in this thesis, 

refers to the widely adopted mechanism of data abstraction as implemented by 

most object oriented languages without implying an approach taken by a particular 
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programming language. The openEHR specifications use the term “class” as well, 

without explicitly defining the relationship between the terms type and class. This 

thesis assumes that these terms are used interchangeably, and adopts the same 

approach. RM types will be written in uppercase, such as COMPOSITION, 

ELEMENT, or LIST_ITEM to distinguish them from programming language types or 

data item names. 

These types, which collectively define the contents of the RM, address the 

requirements of representing values and structures with a focus on clinical 

concepts, including, but not limited to EHR (Beale et al. 2008e), Demographic 

(Beale et al. 2008a), Data Structures (Beale et al. 2008d), and Data Types (Beale et 

al. 2008b).  

The RM is the basis of clinical models, called openEHR archetypes (Beale 

and Heard 2007a). The types in RM, organised under packages as shown in Figure 

1, are brought together to define archetypes, using the ADL (Beale and Heard 

2008b). The archetypes use RM types to compose clinical models to represent 

concepts such as blood pressure measurement or a list of allergies.  

An archetype can use RM types such as COMPOSITION and their fields to 

define the structure of a clinical concept as well as allowed values of data such as a 

limited number of codes for a field that has the type DV_CODED_TEXT. This 

practice of composing clinical models represented by archetypes based on RM 

types is the second level of two-level modelling approach. The development of 

archetypes is most frequently described as clinical modelling. The practice of 

creating downstream artefacts of archetypes in Figure 1 also falls under this 

description. Figure 1 shows how a number of archetypes can be modelled using RM 

types. Archetypes also support the use of terminologies via the use of both 

capabilities of RM types and term and terminology binding capabilities of 

archetypes. Term binding allows an archetype-local identifier of a data item to be 

associated with a term from a specific terminology. Terminology binding allows a set 

of terms from a terminology to be defined as the valid values of a data item. 

A key trait of archetypes is that they are meant to represent maximal data 

sets. That is, all data items that could be considered under a clinical concept should 

be included in the archetype for that concept. The term “data item” as used in this 

thesis refers to a clinical concept included in an openEHR archetype or another 

modelling artefact derived from an archetype. All the nodes in the diagram in Figure 

1 that are in the containers that lie to the right of the openEHR RM represent data 

items, regardless of what their RM type or the complexity of that RM type is. 
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The archetypes are meant to be the basis of interoperability in the openEHR 

methodology and the maximal dataset approach ensures that if a particular 

archetype is used by different systems, there is ideally no need to add extra data 

items, leading to a modification to the archetype, which consequently may break 

compatibility with other systems. However, following this approach to avoid 

modifications to archetypes for adding content has the downside of archetypes 

representing many data items, not all of which may be required in every scenario.  

There is also the possibility of the definition of a clinical concept optionally 

containing other clinical concepts with sufficient complexity that requires their own 

archetypes, in which case archetypes need to be included in other archetypes in 

various combinations, based on the clinical modelling requirements at hand. 

These requirements are fulfilled via openEHR templates (Beale and Heard 

2007b). As shown in Figure 1, an openEHR template can be used to bring together 

a number of openEHR archetypes. Archetypes can be included in other archetypes 

using their slot mechanism, their fields can be further specialised, such as limiting 

the set of codes allowed for a DV_CODED_TEXT field to an even smaller subset or 

some fields which are not needed can be removed. The modifications in a template 

can never conflict with the definitions of archetypes, they can only introduce further 

constraints on data items. If a data item is defined as mandatory in an archetype, it 

cannot be removed in a template, but the set of values defined as valid for that data 

item can be limited to a smaller subset.  

The benefit of templates is that they allow specialisation of archetypes for a 

specific scenario without the need to introduce new archetypes. This approach 

keeps the number of shared archetypes to a minimum and encourages their re-use. 

The use of templates for further customisation of archetypes introduces 

another modelling artefact to the openEHR methodology. Even though templates 

are implementation specific, their role and capabilities overlap with the second level 

of two-level modelling. At the time of the writing of this thesis, the openEHR 

specifications are being updated to remove the difference between templates and 

archetypes to eliminate the need for another downstream modelling artefact. This 

thesis focuses on the currently established method of openEHR implementation 

based on templates.  

The clinical model defined by a template goes through a final transformation 

as shown in Figure 1 to create an operational template. An operational template is 

still a clinical model, which is based on RM types, but it is meant for deployment to a 

software implementation based on openEHR, and it cannot be modified further as a 

modelling artefact. The software implementation of openEHR is responsible for the 
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representation and management of actual clinical data generated during clinical 

care. The data represented by the openEHR implementations is referred to as a 

“data instance” or “RM based data” in this thesis. The term instance refers to the 

distinction between the clinical models which are blueprints of values that are 

generated during clinical care and the actual values stored and processed by 

openEHR implementations. 

The process of going from a set of RM types to artefacts that are used by 

software implementations depicted in Figure 1 shows how openEHR methodology 

supports building clinical information systems based on domain models. The 

iterative nature of the methodology, not depicted in Figure 1, comes from the 

versioning support of archetypes defined in openEHR specifications. If a new use 

case for a system identifies a data item that should belong to an archetype, a new 

version of the archetype is develop based on the previous version, and then made 

available so that the process in Figure 1 can be repeated with the new version of 

archetype. The term “use case” refers to a scenario, in which a party, which may be 

an end user, or an information system, makes use of a particular functionality 

provided by an information system, which may be referred to as “system” for brevity.  

The division of responsibilities between modelling artefacts depicted in 

Figure 1 imply that templates and their downstream artefacts are more 

implementation oriented than archetypes. The clinical models used in this thesis for 

experiments based on implementation are therefore discussed at the template level, 

but they are always produced following the approach in Figure 1. 

Even though templates are more related to clinical information systems 

implementation than archetypes, they are still independent of any particular 

programming language or framework. The architecture of openEHR explained in 

Beale et al. (2007) does not assume or demand a specific technology for its 

implementation. Instead, the Implementation Technology Specification (ITS) 

approach of openEHR (Beale and Heard 2008a) provides mappings from openEHR 

concepts to technology stacks such as XML (Bray et al. 1997) or Java (Gosling et 

al. 2005). Actual implementations of these mappings can be used as the core of 

many different information systems in various medical domains.  

Archetype based clinical models can represent concepts from many different 

clinical domains by bringing together a small set of data types in different 

combinations. The openEHR methodology provides a comprehensive solution to 

communication problems of medical informatics which are discussed in (M. A 

Musen 1992) in depth via use of these clinical models as a domain specific 
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language that acts as a means of liaison between clinicians and software 

developers, and is used globally (openEHR Foundation 2015).   

Through shared models, different systems can share both data and 

behaviour. When a particular software implementation is built on the data types and 

structures provided by openEHR, it becomes capable of functioning in all systems 

that process data using openEHR. Therefore, the interoperability of health 

information between multiple systems delivers a key benefit by design: the 

decoupling of implementation technologies of clinical information systems from the 

clinical information processed by those systems.  

In the context of decision support, this decoupling can improve the outcomes 

of two fundamental scenarios: 

• When the required clinical information resides in multiple systems 

• When a particular capability is required in multiple systems.  

 

These scenarios provide a generalization of the interaction of multiple clinical 

information systems, which can be improved by openEHR in the following ways:  

• The openEHR methodology provides a robust way to represent clinical data via 

two-level modelling, based on its ability to express many clinical concepts in 

addition to its technology agnostic specifications.  

The effective outcome of this design is the ability to exchange clinical data 

between clinical information systems in many clinical domains, independent of 

software platforms used for clinical information systems implementation.  

• Information models are not the only formal way to represent and process 

knowledge and data. Use of standardized terminologies for the same purpose is 

a common method in many information systems. Terminologies such as 

SNOMED-CT (IHTSDO 2015) can also address key knowledge management 

requirements of healthcare-informatics, and their relationship to EHR 

specifications is an active topic of research and discussion. (Markwell, Sato, and 

Cheetham 2008) discusses the integration of SNOMED-CT to both HL7 and 

openEHR. (Al Rector et al. 2006) evaluates the use of ontologies to perform 

terminology to EHR bindings. (A. L. Rector 2001) defines a framework for 

allocating information in a setup where terminologies and information models 

are used together.  

openEHR’s support for binding information models to terminologies extends its 

capability for clinical data exchange beyond information models, which 

addresses a larger set of use cases.  
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• openEHR specifications contain a query language for data access (in draft form 

at the time of writing of this thesis), specified in the same technology 

independent way as with the other parts of the specifications. This query 

language named Archetype Query Language (AQL) allows access to clinical 

data based on openEHR RM types, taking the platform independent clinical data 

representation concept even further by defining how this data representation 

should be queried. When a particular behaviour that relies on RM based data is 

implemented in a clinical information system, its portability to other systems can 

be improved if its data access mechanism is based on AQL. 

 

As a health computing platform openEHR aims to support a substantial set of 

functionality building on the core capabilities described above. The diagram in 

Figure 2, taken from (Beale et al. 2006) shows how key concepts are distributed to 

layers which build on each other. This diagram shows the multi-layer vision of the 

health computing platform along with the relationship between abstract 

specifications and how abstract specifications are related to layers of the platform. 

The abstract specifications for RM, archetype model (AM), and service model (SM) 

allow definition of artefacts and functionality for the layers of the health computing 

platform. 

 

 
Figure 2: The openEHR Health Computing Platform 
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The key research question for this thesis is, whether the health computing 

platform depicted in Figure 2 can successfully support probabilistic methods for 

CDS to improve their availability to clinical information systems.  

3.2: Information Models and Clinical Decision Support 
 

As discussed in Chapter 2, historically there has been a significant overlap 

between AI and CDS. Most of the methods that process clinical data to arrive at 

conclusions have their origins in AI research, which in turn builds on the results of 

other fields of research with varying levels of abstractness. Therefore, various 

branches of mathematics, set theory, statistics, information theory, computer 

science are connected to clinical practice through CDS to an extent that depends on 

the nature of the AI approach used. 

The adoption of results of research from the large domain of AI for CDS is a 

complex procedure due to the vast scope of medicine and consequently the variety 

of data generated during medical care. The MLM concept used in Arden Syntax 

(George Hripcsak 1994), which is discussed in Chapter 2 shows that making use of 

even a rather simple decision-making mechanism, such as the rule based 

approach, for CDS can be a challenge due to complexity of underlying data. The 

rule based functionality of the CDS implementation based on Arden syntax can be 

disrupted due to changes in the format of the clinical data (Jenders et al. 1995). 

Integration of the decision-making logic to actual clinical systems may suffer from 

various problems such as the lack of support from Arden syntax for complex data 

types required to represent clinical data (Peleg et al. 2001) or efforts required to 

implement integration for each clinical information system (Samwald et al. 2012).   

The problems encountered during integration of Arden syntax 

implementation to clinical information systems are independent of the capabilities of 

the decision-making mechanism, and underlying AI research. Therefore, integration 

of CDS functionality to EHR requires an in depth analysis to discover if successful 

adoption of the reasoning method for CDS is feasible in the context of the 

integration of interest. 

When a particular reasoning approach is employed in the EHR standards 

based CDS context, the extent to which it can be supported is dependent on both 

the design of the underlying standard and the nature of the CDS approach. The 

successful integration of a reasoning approach is dependent on aspects of these 

two components. This chapter concludes with a brief discussion of some of the key 

traits of openEHR, which represents the first component of EHR and probabilistic AI 
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methods integration for CDS. The other component, BNs  will be discussed in the 

next chapter 

Some of the key computational features of openEHR that are immediately 

relevant in a CDS implementation are as follows:  

• Domain specific data types 

The openEHR data types model a wide range of concepts from the clinical 

domain, and they also allow the use of standardised clinical terminologies to 

encode values. This allows the representation of both numeric data and nominal 

variables in a computable way. openEHR data types encapsulate all the clinical 

data that will be created and used within an openEHR-based system. 

Representation and access to clinical data are provided by a small number of 

types that are basic to computation about a large variety of clinical values. 

•  Constraint based model definition 

The constraints defined by the openEHR ADL on RM types are not only 

structural constraints. They can cover any attribute of the RM types, including 

data types and their values. Having the capability to define valid data through 

constrained attributes allows openEHR-based systems to reject clinical data 

immediately at its creation if it does not comply with the constraints of the model. 

This means that outliers, missing values or inconsistent values in clinical data 

will either not exist, or they’ll be at a minimum. 

• Coherent and consistent abstraction 

openEHR’s features allow using same formal definitions of clinical data for all 

operations related to data processing. Clinical models, clinical data that 

complies with those models, and finally access to clinical data through a custom 

query language all use same components of the specification. This allows all 

implementations of openEHR to compute solely on the specification, without 

falling back to an implementation specific aspect. An important point worth 

noting is that the robustness of the openEHR type system and modelling 

methodology does not mean full coverage for all computations that may be 

required. There is inevitably a limit to robustness, and exploring that limit in the 

context of probabilistic CDS is one of the primary goals of this work.  

3.3: Relevant standards 
 

The focus of this thesis is on the integration of two high-level concepts, EHR 

and CDS, explored through experimental implementations of two representative 

methodologies – openEHR and Bayesian Networks. This choice reflects the 
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significant overlap between the features of openEHR and Bayesian Networks and 

the integration requirements identified by CDS research. Other prominent electronic 

health standards also have features that overlap with these requirements but they 

were considered less suitable for the research goals of this thesis, as confirmed in 

an evaluation performed at the outset of the research. Nonetheless, these 

standards, namely HL7, ISO/EN 13606 and SNOMED-CT, are still actively 

developed and used. Therefore, their relevance and important traits are discussed 

in the following sections. 

 

3.3.1 HL7 

 

The HL7 standard has a strong focus on the concept of messaging between 

healthcare systems. Even though the standard itself has gone through major 

changes between its second version, that was released in 1998, and its third 

version released in 2005, the emphasis on messaging has not changed. This 

emphasis is significant in the context of this thesis, since formalising messages that 

are exchanged between systems does not necessarily imply or necessitate 

implementation of these systems on the basis of the same clinical data models that 

are used for messaging. The focus on messaging does not imply that a clinical 

information system cannot be completely based on HL7 standards. At least one 

software framework, Tolven (Tolven Institute 2015b) has shown  that this is 

possible. However, the information model used in HL7 V3 does not have 

fundamental EHR concepts at its core, in the way that openEHR does. This does 

not mean that HL7's modelling capabilities are strictly limited to messages. A subset 

of the standard that consists of a Clinical Document Architecture (CDA) (Benson 

2012) for exchanging clinical documents, and a Continuity of Care Record (CCR) 

(Benson 2012) for expressing the critical care history of patients, extends HL7's 

scope to the exchange of clinical documents and transfer of patients' existing 

records to new systems. In particular, the CCR overlaps with EHR concepts, due to 

its potentially longitudinal record nature. 

 

The Reference Information Model (RIM) introduced by HL7 V3 supports an 

approach similar to that provided by openEHR, reusing a small number of data 

types to represent a large number of clinical concepts. However, HL7's approach to 

developing domain models does not align with the object oriented approach to 

domain modelling as much as that of openEHR. For example, the specialisations of 
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a core set of high level classes are expressed via codes in HL7, whereas openEHR 

uses only strict inheritance rules to express type information. HL7 introduces 

methods such as omission of member attributes of classes along with cloning of 

classes, which do not easily map to object oriented modelling concepts. openEHR's 

approach, on the other hand, introduces the Archetype mechanism to provide a 

single method for reusing its core reference information model components, and this 

mechanism is fully specified and implemented as reusable open source software 

libraries using object oriented languages. HL7's support for the use of terminologies 

is extensive, allowing similar capabilities to openEHR.  

The complexity encountered by implementers in making use of the HL7 

information model introduced in V3, is currently being addressed by a new addition 

to the HL7 standard, named Fast Health Interoperability Resources (FHIR) (HL7 

2015d) (Bender and Sartipi 2013). At the time of the writing of this thesis, FHIR is in 

Draft Standard for Trial Use (DSFT) state, but it is likely to replace the complicated 

modelling practices of HL7 V3 with a simpler framework based on the concepts of 

resources and, in addition, a much stronger focus on implementation (HL7 2015d).  

FHIR represents a step change in the way HL7 information models are 

created and extended, but it is not the only recent development of this kind. Another 

relevant standards initiative, established in 2011 in its early form, is the Clinical 

Information Modelling Initiative (CIMI) (CIMI 2015), which aims to deliver logical 

models which can be used to produce multiple downstream physical data 

representations. The importance of CIMI, especially in the context of HL7, lies in its 

approach based on a reference model and archetypes, strongly influenced by early 

contributions from the openEHR community At the time of the completion of the 

writing of this thesis, CIMI is actively engaged on establishing CIMI models as the 

basis of FHIR profiles (HL7 2015b), based on a harmonisation of  models from 

different standards and terminologies, using the logical models to be developed by 

CIMI. Therefore, this approach implies introduction of two level modelling in the HL7 

domain, via logical model harmonisation provided by CIMI.  

These developments lead to the following observation: HL7 is an electronic 

health standard with a large community and its adoption is definitely capable of 

providing support for machine processable health data. However, this support is not 

focused on the concept of the EHR and clinical system implementation. Even 

though recent initiatives, as described here, are paving the way to easier 

implementation of these EHR concepts within an HL7 based system architecture, 

these same initiatives are also continuously changing the information modelling 

methods of HL7. In contrast, the information modelling paradigm of openEHR  has 
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not changed or needed to change since its inception, making it a more  

straightforward and less volatile option on which to base an experimental approach 

to EHR and CDS integration.  

 

3.3.2 ISO/EN 13606 

 

The ISO/EN 13606 standard aims to achieve semantic interoperability in 

electronic health record communication (CEN/ISO 13606 Association 2015). It aims 

to enable communication of all, or a part of, an EHR between EHR systems. 

ISO/EN 13606 has the EHR concept at its core, and is also built on the dual 

modelling approach of openEHR, based on a reference model and constraints 

defined by archetypes. This conceptual similarity between ISO/EN 13606 and 

openEHR is not a coincidence: ISO/EN 13606 is a subset of the openEHR 

specification and was developed under the leadership of founding members of the 

openEHR Foundation, based at UCL.  

Even though its scope emphasises exchange of information rather  than 

implementation of EHR systems, ISO/EN 13606's reference model and use of 

archetypes allows it to be used for implementation of clinical information systems, 

sometimes making use of existing openEHR archetypes, enabled by  the very close 

relationship between the two standards (Cornet 2015). There is at least one 

operational implementation of the standard as an EHR system (Austin et al. 2011). 

The standard has been used for automated generation of user interfaces (Kohler et 

al. 2011) and web applications (Menárguez-Tortosa, Martínez-Costa, and 

Fernández-Breis 2011). These use-cases have focused on application 

development. Thus,  ISO/EN 13606 is used both for data exchange (Nogueira Reis 

et al. 2015), (C. Rinner, Wrba, and Duftschmid 2007) and application development.  

The close relationship with openEHR and the existence of research and 

implementations that address data exchange and persistence, are positive aspects 

of ISO/EN 13606 in the context of the research goals of this thesis. However, 

ISO/EN 13606 presents a number of problems in the same context, that make it a 

less than ideal option for implementation work. Firstly, as with HL7 at the outset  of 

this thesis project, the use of the ISO standards is governed by rules that are less 

liberal than those for openEHR adopters: (Austin et al. 2013) points out that 

programmers are forbidden to add details of the standard to an implementation 

artefact, due to IP restrictions.  
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The second and more limiting problem is that ISO/EN 13606 lacks a publicly 

accessible and usable, shared implementation technology specification. Such a 

specification, for example, is frequently provided in the form of an XML schema, 

which enables exchange of well-formed documents between implementations, 

providing a lowest common denominator for implementation. Not only does ISO/EN 

13606  not provide an XML schema, but, according to (Austin et al. 2013), it cannot 

be directly represented in this form, forcing implementers to find workarounds for 

developing a suitable XML schema for data exchange.  

As a result, implementers that make use of ISO/EN 13606 either develop 

their own XSDs or they try to re-use the ones provided by other research groups or 

implementers. Even though the problems introduced by differences between such 

schemas can be eliminated technically during the integration of systems, this 

practice is no better than the inevitable manual process that was required in most 

applications based on the still very widely used HL7 V2 messaging standard, which 

suffered from a similar lack of rigour and coherence, though for  different reasons.  

The lack of easily accessible clinical models or a modelling community for 

ISO/EN 13606, is also a disadvantage as a candidate for use in this thesis, although 

the use of openEHR models, made possible by the significant overlap of the 

methodologies, can to some extent alleviate this problem. 

Therefore, even though, in principle, it offers many of the advantages of 

openEHR , in all aspects the use of ISO/EN 13606 would be less efficient and 

straightforward than the use of openEHR, and the end result would be a platform 

that could not offer a  standard method of integration with other systems, based on 

XML.  

 

3.3.3 SNOMED CT 

 

The systematised nomenclature of medicine clinical terms (SNOMED CT) is 

a clinical terminology that is maintained by The International Health Terminology 

Standards Development Organisation (IHTSDO 2015). The use of a clinical 

terminology, in conjunction with an EHR standard, is necessary to express, 

independently of human language, the semantics used to record clinical information 

and the structure of that information within an EHR implementation.  

SNOMED CT provides a framework for expressing concepts and 

relationships to define semantics and is used by HL7, ISO/EN 13606 and openEHR 

to clarify semantics and improve semantic interoperability. The evolving capability of 
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SNOMED CT to express complex meanings (Benson 2012) has led to an increasing 

overlap between SNOMED CT and EHR standards that make use of it (Martínez-

Costa et al. 2015) (Markwell, Sato, and Cheetham 2008). This thesis does not 

address this overlap nor approaches to manage it. SNOMED-CT provides 

capabilities to express complex concepts, but these require careful and consistent 

use, as do the information modelling capabilities provided by EHR standards, in 

order correctly to express meaning (Alan Rector and Iannone 2012). 

SNOMED -CT is increasingly in use, internationally (Lee et al. 2014), and 

can be used for reasoning about records. Its size and complexity (with more than 

300,000 concepts and 1.4 million relationships (Benson 2012)) posed a significant 

implementation challenge for its use in this thesis, although an open source 

terminology server was used in one of the early experiments. Its importance is 

acknowledged and problems that could be alleviated with the use of terminology 

support in the experiments reported, are recognized and discussed in the body of 

the thesis. A complete integration of SNOMED CT with the models created and 

experiments conducted, had to be left out of scope, due to time and resource 

constraints. 

 

3.4: Relevant frameworks 
 

Given the breadth of the EHR and CDS integration that this thesis tackles, an 

evaluation of all relevant health IT frameworks and standards based on the 

implementation driven approach of the thesis, is not possible. However, two 

potentially relevant software frameworks were briefly evaluated at the beginning of 

the project in late 2008, for an assessment of advantages they might offer in 

collaboration with openEHR, or as an alternative to it, especially for ease of 

software implementation. Even though these frameworks were not used in the 

thesis, their on-going progress has been continuously monitored during the 

progress of the project and the writing of the thesis, since they are both based on 

information models and helped in identifying trends in EHR implementation. 

The two frameworks that were considered are Tolven and openMRS. The 

key characteristics of these frameworks in the context of the research goals of this 

thesis are summarised below. 
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• Tolven 

The Tolven platform (Tolven Institute 2015b) is built on the HL7 V3 (Beeler 

1998, 3) Reference Information Model (RIM) (HL7 2015c) . However, Tolven 

extends the standard HL7 RIM with the aim of providing an application 

framework. These extensions, the most significant one being Templated RIM 

(TRIM) (Tolven Institute 2015a), provide capabilities similar to that of openEHR's 

two level modelling approach. Tolven documentation also emphasizes its  

attempt to break out of the HL7 message focused approach.  

Tolven provides a generic mechanism that processes clinical data in the form 

of documents, where documents can contain standards based content as well 

as non-standard data. Rules governing these documents are then used to 

process content, which is normalised according to the HL7 RIM data types. This 

document processing mechanism can be extended via the use of software 

plugins, which is the mechanism offered by Tolven for implementing new 

functionality. Tolven offers a pre-defined set of clinical content models along with 

a web based user interface and other functionality that provides a web based 

application for use by health care providers and patients.  

 Even though the scope and functionality of Tolven enables its use as a 

platform for clinical information systems and CDS (Aziz, Rodriguez, and Chatwin 

2014), (Kondylakis et al. 2012), (Welch et al. 2014), a number of issues arise  in 

the context of the research goals of this thesis.  

First of all, Tolven's functionality is an extension of HL7, which, at the time of 

starting this PhD project (2008) did not have an intellectual property policy as 

liberal as that of openEHR. The HL7 standard only became freely usable in 

2012. In comparison, the openEHR Foundation has been offering excellently 

documented standards, completely free of charge, since its establishment in 

2003.  

The other issue associated with Tolven, as far as this thesis is concerned, is 

the extension of the HL7 RIM standard with Tolven specific modelling 

mechanisms, such as the TRIM. This Tolven specific modelling approach does 

not align with the goal of using a platform that is completely based on a global 

EHR standard , that was adopted for this project and thesis. Compared with the 

very rigorously defined and continuously, internationally, reviewed clinical 

models of openEHR, along with freely its available software tooling, the TRIM is 

a niche approach with much less widespread adoption and support.  

Finally, Tolven's software architecture, based on open source and flexible 

components, is designed to be extended via its plugin mechanism and includes 
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functionality such as user authentication, which is not included in the scope of 

this thesis. Its architecture and existing implementation allows fast development 

of web based clinical applications, but only a subset of its components and 

functionality are relevant for the work of this thesis. Isolating that subset, without 

having to deal with ripple effects in terms of code refactoring elsewhere, would 

be potentially a very large task, with no guarantee of being able to use Tolven's 

existing extension mechanism under these circumstances.  

  

These findings, in addition to there being significantly less published 

documentation in comparison with openEHR, led to the early elimination of Tolven 

as an experimental implementation platform. However, these finding are specific to 

the aims of this thesis and do not imply inferiority of Tolven itself, which is 

successfully used for both application development and research. 

 

• OpenMRS 

OpenMRS (OpenMRS Inc 2015) is an EHR implementation that is used 

extensively in low-resource settings in developing countries (Mohammed-Rajput 

et al. 2011). Its goal of enabling EHR functionality in highly demanding 

environments where both basic infrastructure and human resource are scarce, 

requires that its functionality can be reused and extended with a minimum 

amount of effort (Allen et al. 2007).  

Therefore, OpenMRS provides a data model and functionality that is 

comprehensive and extensible. The data model supports both clinical and 

demographic concepts. OpenMRS also offers capability to define and create 

user interfaces. Therefore, it can be defined as a self-contained, extensible EHR 

implementation and a platform.  

The single, most significant disadvantage of OpenMRS as a candidate 

platform for the experiments required in this thesis is that its information model is 

not directly built on a particular EHR standard. Instead, a flexible information 

model is used with consideration of standards such as ICD10 (World Health 

Organization 1992) for terminology and HL7 (Fraser et al. 2013) for messaging.  

Despite the attention given to use of these standards, some studies have 

found the integration of openMRS's data model with capable ontologies such as 

SNOMED-CT (IHTSDO 2015) to be problematic (Halland, Britz, and Gerber 

2011). Recent research is focusing on adopting standards based APIs for 

connecting OpenMRS to other applications, using the relatively new Fast 

Healthcare Interoperability Resources (FHIR) (Bender and Sartipi 2013) 
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standard from HL7 (Kasthurirathne et al. 2015). This design is presented as a 

better alternative than OpenMRS's current approach to interoperability with 

other systems, which has been  described as neither sustainable nor 

generalizable (Kasthurirathne et al. 2015) and non-trivial (Waters et al. 2010). 

These findings position OpenMRS as a platform that offers benefits for 

implementations where there is a need to develop new functionality as quickly 

as possible, using a non-standards based internal data model. Even though 

these benefits have allowed OpenMRS to be used successfully in clinical care 

and research projects such as workflow integration (Yu and Wijesekera 2013), 

the lack of a standards based information model limits the usability of the 

potential research outcomes as compared to an openEHR based approach.  

 

Despite its shortcomings in the context of the research aims set out in this 

thesis, OpenMRS provides significantly better documentation than does Tolven, and 

its data model and extension mechanisms allow efficient development of clinical 

applications, as proven by its many deployments around the world (Mohammed-

Rajput et al. 2011). Therefore, had it been available in suitably complete form at the 

time, and were it to have adopted a  less application centric design and focused on 

fully standards based information models for EHRs, OpenMRS would have been a 

preferable framework, compared with Tolven, for adoption in the project described 

in this thesis. 

 

3.5: Summary 
 

The openEHR specifications provide a method for expressing domain 

information in a computable way. They go beyond the data bank definition of early 

systems, by providing a computable health platform. They also support other 

relevant formalisms, such as clinical terminologies.  

Artificial Intelligence research in clinical decision support developed formal 

representations of clinical domain knowledge earlier than researchers in the EHR 

domain. More recently, principally due to greater recognition of the requirements for 

semantic interoperability, EHR research has begun to focus on the formal 

representation of domain knowledge. This common convergence towards formal 

methods of information representation, is the unifying characteristic of both CDS 

and EHR, on which new approaches towards better CDS may be formulated.  
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The features of openEHR make it a modern example of an EHR formalism, 

and even though some of the advanced functionality defined in the openEHR 

specifications is still not universally implemented, this thesis classifies openEHR as 

a mature EHR specification and a good candidate for hosting complex CDS 

approaches, due to its strong support for formally defining data. This naturally leads 

next to a discussion of the CDS approach adopted, namely Bayesian Networks, in 

an openEHR context. The next chapter provides a discussion of the integration of 

BNs with openEHR, and the potential benefits of an openEHR based CDS 

implementation.  
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Chapter 4: Bayesian Networks for Clinical Decision 
Support and Their Integration with openEHR 
 

A BN is a probabilistic model which belongs to a larger family of models 

called Probabilistic Graphical Models (PGM). PGM research in AI has been gaining 

traction in the last two decades and outcomes of this research is used for tasks 

such as clustering, reasoning, classification and decision-making (Larrañaga and 

Moral 2011), (Koller and Friedman 2009). Increasing interest in PGMs in general 

and BNs in particular is mainly a result of the availability of significantly more 

computing power, removing the necessity for restrictive assumptions imposed by 

the more simplistic Bayesian methods deployed in the 60s and 70s.  

BNs have some traits that make them convenient and capable decision-

making tools for CDS. Some of these traits bear similarities to model driven 

approach of openEHR at a high level, which makes BNs a good candidate for a 

CDS mechanisms based on an openEHR implementation. This chapter explains 

what BNs are, their promise and their potential relationship to the openEHR 

specifications, in the context of computable health and decision support based on it. 

The discussion begins with fundamentals of Bayesian methods of handling 

uncertainty and extends to more complex settings. 

4.1: Bayesian Approach to Uncertainty 
 

Bayes’ theorem, which is at the root of Bayesian statistics, was published 

after Thomas Bayes’s death. Richard Price, a friend of Thomas Bayes found an 

essay after Bayes had passed away, and he sent it to the Philosophical 

Transactions of the Royal Society of London. (Bayes and Richard, 1763) 

The mathematical form of Bayes’ theorem is a very simple formula, as follows: 
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Equation 1: Bayes’ theorem 

 

Despite this simple form, the effect of the Bayesian approach to probability 

has been profound. Bayes’ theorem is actually a restatement of conditional 

probability. Equation 1 describes the relationship between two random variables. It 

shows that the probability of variable X taking a particular value, given that the value 

of random variable Y is known, is proportional to likelihood of Y taking its known 
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value times prior probability of X’s particular value. Both X and Y can be vectors of 

random variables, which lets this form to represent the relationship between multiple 

random variables. The interpretation of this simple function has been a major topic 

of discussion between statisticians who follow different interpretations of probability. 

The dominant school of statistics uses the concept of frequency of a particular event 

taking place (the frequentist approach), and Bayesian approach uses one’s belief, 

or judgement about the value of a random variable to interpret Bayes’ theorem. 

Despite the fundamental difference in interpretation of probability, the literature on 

Bayesian approach to statistics usually provides clear explanations of how Bayesian 

concepts are related to their frequentist counterparts (Bolstad 2004). 

A key advantage of the Bayesian approach to statistics is the ability to map 

the inference process to three key components: prior probability, evidence (or 

observation), and posterior probability. The posterior probability is a modification of 

the prior probability based on the observation. The power of the Bayesian approach 

lies in the applicability of this basic idea to a large range of statistical inference 

tasks, employing various probability distributions (Gelman et al. 2004). The 

applicability of updating the prior probability to posterior through observation can be 

extended to more complex settings, without abandoning the fundamental principles. 

The complexity of settings in this context refers to both the complexity of domain 

concepts and their relationships, and the mathematical methods required to 

represent and perform inference on those domain concepts.  

Both in the single random variable and vector of random variables (joint 

distribution) cases, Bayes’ theorem requires either nested summations (in case of 

discrete distributions) or multiple integrals (in case of continuous distributions) for 

both normalization constant and posterior distribution. As the number of variables 

included in the model increases, the complexity of summations and integrations 

lead to analytically intractable calculations. 

Numerical approximation methods can be used for handling these 

calculations, but their use in high dimensional integrals can be problematic when the 

inference task at hand introduces hundreds of variables (Sloan 2000). Sampling 

techniques such as Markov Chain Monte Carlo (MCMC) are used as a means of 

approximation for these high dimensional integrals (Kloek and Van Dijk 1978). 

These techniques make increasing computing power more accessible to Bayesian 

methods through various software implementations, such as WinBugs (Lunn et al. 

2000) and JAGS (Plummer 2003). The availability of these tools makes sampling 

based inference on Bayesian models a common practice today.  
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As discussed in Chapter 2, Bayesian approach to decision-making has been 

a widely used approach in clinical decision support even before the availability of 

sampling based inference, despite the lack of capability to handle complex relations 

among variables. Therefore, with sampling methods enabling inference on more 

complex models, one of the major barriers to adoption of Bayesian inference in CDS 

has become less of a challenge. 

The following set of examples introduces some simplified clinical decision-

making contexts, demonstrating the use of Bayesian approach before going into 

details and discussing improvements achieved with the increasing availability of 

computing power. The examples aim to demonstrate the wide applicability of the 

Bayesian approach by mapping the fundamental components of Bayesian thinking 

to clinical decision-making . In keeping with this goal, the examples are intentionally 

kept simple in terms of the underlying probabilistic concepts. 

4.2: Bayesian Reasoning in the Clinical Domain 
 

The clinical scenario that is going to be modelled with the Bayesian approach 

is a very simple one. In this scenario, there exists a particular disease, with a known 

prevalence, and there is a test for the disease. The disease either exists or not, and 

the test produces either a positive outcome (meaning that the disease exists) or a 

negative one. The test is not a perfect one; it has a certain success rate, so it will 

generate either false positives or false negatives sometimes. A rewrite of Equation 1 

produces the following equation:  
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Equation 2: Conditional probability of a disease 

 

In this equation, D represents the disease which may exist, in which case D 

has the value true. T is the test, which may produce a positive outcome (for the 

existence of the disease), which is expressed with the value true. A representation 

of the causal relationship between these clinical concepts is provided in Figure 3. 

 What Equation 2 does is to express a clinical scenario using Bayesian 

concepts of probability. The prevalence of the disease is the prior probability of the 

disease. The test is an observation related to the disease. The probability of the 

disease given the test outcome is the posterior probability. 
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Figure 3: Causal relationship: Disease and Test 

 

As simple as it may be, this example demonstrates some fundamental 

aspects of Bayesian approach to clinical decision support: 

• It specialises a purely mathematical definition and places it into a clinical 

context. The context free variables in Bayes’ theorem in Equation 1 become 

variables from the clinical domain.  

• It expresses the relation between the disease and the test mathematically 

through the assumption of probabilistic dependence between the test and 

disease probabilities.  

• The fundamental concepts of Bayesian model, prior probability, observation and 

posterior probability successfully expresses the clinical scenario 

Another example of modelling a clinical scenario with a Bayesian approach 

would be linking a set of diseases to possible symptoms, following the naïve Bayes 

approach mentioned in Chapter 2, as depicted in Figure 4. 

 In Figure 4, the disease variable can take a value from a set of limited 

amount of values, such as tuberculosis, cancer, asthma or pneumonia. Each 

symptom such as cough, fever, weight loss is given its own random variable in the 

model.  

This probabilistic model demonstrates the limitations of the naïve Bayesian 

approach. The disease variable assigns probabilities to various diseases, so the 

diseases are mutually exclusive. Therefore the model cannot support queries such 

as “what is the probability of a patient having both asthma and pneumonia?” The 

symptoms are also independent of each other, so this is a rather simple view of the 
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clinical scenario; a clinical condition such as diabetes could cause problems which 

themselves could be subject to diagnosis, in which case the existence of these 

conditions is not independent of each other. 

 

Disease

Symptom2Symptom1 Symptom3

 
Figure 4: Causal relationship: multiple variables 

 

 The reasons for the use of this oversimplified approach to modelling 

relationships between variables are the computational advantages of this approach 

and its classification performance. The good classification performance which has 

led to widespread use of this approach is related to the nature of classification 

tasks, that is, a correct ranking of the probabilities of outcomes, rather than the 

precise probabilities is what matters (Hand and Yu 2001) 

Even though it performs well (Hand and Yu 2001), one cannot guarantee 

that the assumption of independence can deliver the best performance in all 

decision-making tasks. In addition to this, given the large amount of decision-

making settings, both in a diagnosis and prognosis context, classification is not the 

only function that a CDS system must support. Therefore, there has been 

continuous interest in the research domain for delivering alternatives and extensions 

to this simple probabilistic method.  

 One such example, a well-established probabilistic method in decision-

making , used for both classification and for estimation of actual values of interest, is 

regression. Use of various regression methods is a common approach to decision-

making in medicine (R. A Greenes 2007). Despite the common frequentist 

approach, Bayesian methods for regression exist and they allow the use of 

Bayesian approach beyond the naïve setting (Gelman et al. 2004). 
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Bayesian regression methods can help deal with the issues introduced by 

the oversimplification of the naïve approach, and they can also extend the 

capabilities for decision-making beyond classification. However, their use, especially 

the building of the probabilistic model from domain concepts is not as 

straightforward as the naïve model. Therefore, they provide a solution to the 

representational inaccuracy of the naïve model at the price of less efficient 

communication with domain experts. 

BNs  provide another alternative to the simple model in Figure 4 that can 

deal with the issues introduced by independence assumptions, while keeping the 

advantage of easily expressing domain concepts and relationships between them. 

Therefore, they present a powerful alternative to well established probabilistic 

methods for clinical decision-making . 

4.3: Bayesian Networks 
 

The building blocks of BN concept has been introduced by the seminal work 

of Judea Pearl titled Probabilistic Reasoning in Intelligent Systems (Pearl 1988).  

A BN encodes a joint probability distribution using a directed acyclic graph 

(DAG). It consists of nodes, representing random variables, and arcs representing 

dependency relationships between variables. The expression of dependency 

relations via graph representation allows factoring of the joint probability distribution, 

which in turn allows efficient inference methods.   

This factoring is built on a specific interpretation of the directed arcs that 

connect nodes. The directed arcs in a BN represent the dependency relationships of 

variables they connect and they are used to derive a key property that follows 

dependency relationships: conditional independence (Koller and Friedman 2009). 

Conditional independence is a relationship between random variables in which a 

random variable is independent of another variable, given that the value of a third 

variable is known. It can be generalized to vectors of variables; hence, it is 

applicable to the whole of a BN. The precise definition of conditional independence 

is as follows:  

 Given three random variables X, Y and Z, X and Y are independent, if value 

of Z is known, that is: 
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When the value of Z is not known, X and Y are not independent variables.  
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A BN allows identification of conditional independence relations among 

variables by using methods that exploit information from its graph based 

representation. A fundamental concept that helps identify conditional independence 

relationships of nodes in a BN is D-Separation (Geiger, Verma, and Pearl 1990). D-

Separation defines a set of rules that allow identification of the independence 

relationship of any two nodes of a BN. Algorithms such as Bayes-Ball (Shachter 

1998) allow checking the nature of the relationship between nodes using the 

definition of D-Separation.  

The advantage of a BN is that this key mathematical property, which allows 

efficient probabilistic inference by avoiding unnecessary calculations, is encoded in 

the graph structure by the domain expert in the form of arcs that connect variables. 

Domain information is represented in the form of relations among variables by the 

domain expert, but the resulting graph structure encodes key probabilistic properties 

without any specific effort for doing so, consequently extending the expressiveness 

of the naïve Bayesian approach without giving up on the benefits of easily 

expressing domain concepts.  

Despite their capability to overcome some of the issues introduced by the 

naïve models, BNs have their own limitations. For example, the definition of a BN is 

built on a DAG, meaning that the interactions among random variables (nodes) in 

the model cannot create directed loops. This topological constraint of BNs 

introduces limitations in terms of modelling of clinical concepts such as the inability 

to model feedback loops among variables since interactions between variables may 

lead to infinite loops of probability updates in response to observation of values of 

variables in the model. No calculus has been developed to deal with these loops (F. 

V. Jensen 2002) . 

Some limitations of BNs can be overcome by relaxing topological constraints 

such as the directed, non-cyclic nature of arcs in a DAG or by using continuous 

probability distributions as nodes of the BN. These changes introduce new graph 

topologies and node types, which are studied in depth in the larger context of PGMs 

(Koller and Friedman 2009). These extended representations can reason on more 

complex relationships than the ones expressed by DAGs of BNs. 

 Due to significant size and scope of the research on PGMs, this thesis limits 

its focus to BNs as the inference mechanism for CDS. Other members of the family 

of PGMs, are not considered within the scope of this work, but they will be 

discussed briefly when the context requires to do so, to draw the boundaries of the 

capabilities of BNs and to identify potential future extensions to CDS mechanism 

developed in this thesis. 
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 The existence of extensions to BNs should not be interpreted as a sign of 

their failure to handle decision-making in non-trivial scenarios. The underlying joint 

probability distribution nature of BNs  links them to various significant research 

domains such as AI, statistics, computer science and machine learning (Korb and 

Nicholson 2003), (Russell and Norvig 2002), (Bishop 2007). Outcomes of research 

from these domains have enabled successful use of BNs in many scenarios, CDS 

being one of them (Pourret, Naïm, and Marcot 2008).  

Therefore, BNs have been chosen as the preferred method of probabilistic CDS 

from the family of PGMs for this thesis, based on the fine balance they offer 

between inference capability and modelling simplicity.  

 The key concepts of BNs that provide this fine balance are discussed next, 

along with relevant extensions. 

4.4: Key Concepts of Bayesian Networks 
 

The components of a BN can be classified into two groups: qualitative and 

quantitative components. The qualitative components are nodes and arcs, 

describing the structure of the network. The quantitative components are the 

parameters of the probability distributions, which are represented by the nodes. The 

qualitative components are frequently referred to as the structure of the network, 

while the quantitative components are called as the parameters of the network.  

 Figure 5 provides an example network with a sample probability distribution 

for random variable RV1. The probability distribution that RV1 belongs to defines 

two outcomes: True of False, represented by T and F in the table. 

 

 
Figure 5: A simple Bayesian Network 
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In this network, domain concepts are transferred into random variables, and 

arcs that connect the variables encode dependency relationships. 

The use of nodes and arcs make it easy for a domain expert to build 

probabilistic models in a particular domain without substantial knowledge of 

probabilistic concepts. However, development of a BN is not a trivial operation that 

consists of merely representing expert knowledge as a DAG. It is a complex 

knowledge engineering process that requires various tasks to be performed 

(Pradhan et al. 1994), (Julia Flores et al. 2011). These tasks can be classified into 

two broad groups:  

• Tasks related to structure of the network, such as learning the structure from 

collected data, which is referred to as structure learning (Buntine 1996), eliciting 

structure from domain experts and testing claimed relations among variables 

using collected data.  

• Tasks related to parameters of the network, such as learning parameters of 

probability distributions from data (Neapolitan 2004), which is referred to as 

parameter learning, eliciting priors from data or experts or both (Julia Flores et 

al. 2011), performing inference based on observation and performing 

simulations.  

 

The knowledge engineering process based on these tasks can be a 

combination of both human input and algorithmic discovery of network components. 

A human expert such as a clinician could easily define the structure of a BN based 

on concepts from the medical domain without requiring any clinical data but defining 

the parameters of the BN requires assigning values to conditional probabilities: a 

task computers perform significantly better than humans via discovering the 

parameters from data (Leaper et al. 1972). In case of BNs with a large number of 

variables, automatic learning of structure of BNs (Neapolitan 2004), (Koller and 

Friedman 2009) can help human experts by providing an initial BN for further 

improvement.  

 Defining both the structure and parameters of a BN produces a probabilistic 

model, which supports inference based on observations of the values of the 

probabilistic variables represented by the nodes of the BN. The actual use of BNs 

for decision-making is based on this operation. 

Inference on a BN is the calculation of updated probabilities of the random 

variables of a joint probability distribution in response to an observation. The 

observation, also called the evidence, is the observed value of one or more nodes 
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of the BN and it is used to calculate updated probabilities of the remaining nodes in 

the network.  

Figure 6 contains an example network, which can be used for clinical 

decision-making via performing inference. This network is provided as an example 

with the software GENIE (Druzdzel 1999), a freely available tool for developing and 

performing inference on BNs. The BN is originally from (Lauritzen and Spiegelhalter 

1988).  

 

 

 

Figure 6: BN for clinical diagnosis  

 

The arcs in the BN in Figure 6 represent the interactions between variables. 

A visit to Asia has an effect on the probability of someone having Tuberculosis, 

smoking has an effect on both Lung Cancer and Bronchitis, and so on. Figure 7 

shows both the structure and the parameters of the network using GENIE’s support 

for displaying BNs in different formats. 

Figure 7 shows that the BN is describing a joint probability distribution where 

no observation has been performed. In this state, the nodes represent the prior 

probabilities of outcomes. When an observation is performed, that is, the value of 

one of the variables is observed and therefore known for certain, the other variables 

are assigned updated probabilities.  
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Figure 8 shows new values of random variables updated in response to a 

change in the “Smoking” variable. Inference based on this observation updates 

probabilities of some variables. This new piece of information, that a person is a 

smoker increases the probability of “Lung Cancer”. 

 
Figure 7: BN with node probabilities 

 

 
Figure 8: BN with an observation 
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An important point to note in Figure 8 is that the probability of Tuberculosis 

has not changed, and neither has Visit To Asia’s. Intuitively, this makes sense. 

Finding out that a person smokes should not have any relation to that person’s 

recent travel history. The underlying inference method that performs this update is 

based on conditional independence. The conditional independence relations 

between variables stop the effect of observation of “Smoking” variable’s value from 

propagating to Tuberculosis and Visit To Asia.  

The Tuberculosis or Lung Cancer is a deterministic node. This node allows 

definition of two states, “Nothing” and “CancerOrTuberculosis”. The reason this 

node is called deterministic is that its outputs are defined based on rules, which map 

values of its parent nodes to its outputs. This node can be thought of a 

transformation node on the network, which will generate the value “Nothing” when 

both Tuberculosis and Lung Cancer nodes have the value Absent. This rule based 

generation of values based on outputs of other nodes allows the BN to express new 

semantics which may not have been considered and recorded as a clinical variable 

during clinical care. This deterministic node is an example of extending the BN 

formalism, which helps the network represent a larger set of domain concepts.  

The updating of probabilities (inference) is an important topic in PGM 

research in general and BN research in particular. Inference methods for updating 

the probabilities of a BN can be classified into two categories as exact inference and 

approximate inference. Choosing an inference method for a BN is a case specific 

task that requires an awareness of the relative benefits and complications of the 

method chosen.  

Exact inference in Bayesian networks calculates probabilities without any 

loss of precision. Some of the most common exact inference algorithms have their 

roots in the method introduced by (Pearl 1986). Pearl’s approach establishes a 

method to propagate information within the graph structure of BN, where information 

represents the observation of the value of a random variable. The propagation of 

this information corresponds to updating other random variables in the network 

based on the modelled dependence relationships among the variables. Various 

approaches have been developed on this idea of “message propagation” which 

updates local probabilities of nodes based on observations (Lepar 1998). 

Exact inference methods have constraints related to topology of the graph 

and probability distributions of nodes. The network must be a DAG. Some exact 

inference algorithms can be used with BNs but they can not be used for some 

extensions of BNs that can include continuous probability distributions in their 
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nodes. This problem can be dealt with approximating continuous distributions via 

discrete ones, but in this case the number of intervals chosen for discretization has 

an effect on the inference performance of the BN, and the inference is no longer 

exact due to discrete approximation.  

In exact inference on discrete variables, each variable has a conditional 

probability table, including all possible combinations of all parent variables. The BN 

in Figure 8 provides an example of this setting. The number of entries in conditional 

probability tables is determined by the number of parents of a node as well as the 

number of intervals of discrete distributions represented by these nodes. When a 

large number of parents and a large number of intervals for discrete distributions 

exists simultaneously, the size of the conditional probability tables can grow large. 

Inference can become intractable in this setting.  

Using an extension of the BN such as conditional Gaussian BNs  (Shenoy 

2006) may solve this problem. This extension to BNs uses Gaussian distribution to 

represent continuous variables and allows discrete and continuous variables to co-

exist subject to some structural limitations such as continuous nodes not being 

allowed to have discrete children. This extension allows representing domain 

concepts that include continuous variables (such as age, temperature, weight etc.) 

without a discretisation based approximation and without losing the capability for 

exact inference (Lauritzen and Jensen 2001).  

 Even though some extensions of BNs allow use of continuous variables and 

support exact inference, these extensions still have their limitations such as using a 

Gaussian distribution to represent a continuous variable which may not be realistic 

representation for all the variables. Further extensions to BNs may include other 

distributions (Moral, Rumí, and Salmerón 2001), (Krauthausen and Hanebeck 2010) 

fewer topological constraints (Koller, Lerner, and Angelov 1999), (Schrempf and 

Hanebeck 2004) and more compact representations such as decision trees (Su and 

Zhang 2005). These extensions increase the expressive power of BNs, but the 

resulting joint probability distributions may not allow exact inference anymore. In this 

case, approximate inference methods may be used.  

Approximate inference methods allow keeping the benefits of more 

expressive extensions to BNs without completely losing the capability to perform 

inference. Most widely used approximate inference methods in BNs is based on 

sampling algorithms such as Gibbs sampling (Pearl 1988), (Neal 1993). Less 

frequently used approximation methods also exist, such as variational 

approximation (Murphy 1999; Jaakkola and Jordan 1997), but they are not 
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discussed in depth in this thesis, mostly due to significantly larger amount of 

literature and tooling available to sampling methods. 

 Sampling methods are built on the idea of drawing samples from the 

posterior distribution of the joint probability distribution encoded by the BN and 

analysing the characteristics of the posterior distribution based on these samples. 

This approach has wide applicability to a large set of calculations (Gilks, 

Richardson, and Spiegelhalter 1996), inference in a BN is only one of them. 

Approximate inference via sampling can be used for both BNs and their 

extensions (Langseth et al. 2009), (Koller and Friedman 2009), (Brewer, Aitken, and 

Talbot 1996). Generic sampling tools such as WinBUGS (Lunn et al. 2000) and 

JAGS (Plummer 2003) provide the capability to define graphical models using a 

number of probability distributions for the nodes. These tools support a domain 

specific language to build a probabilistic model along with features for analysis of 

the sampled data and visualisation of graphical models.  

The generic approach of these sampling frameworks for graphical models 

bears a resemblance to openEHR’s approach for building clinical models. A number 

of probability distributions can be brought together in a graphical model in an infinite 

number of combinations to model domain concepts and relationships between 

them. 

It should be noted that despite its flexibility, these sampling frameworks still 

have their limitations. They allow the use of a pre-defined set of distributions, which 

can be used to build graphical models, including BNs, within the capabilities of the 

domain specific languages they support. These constraints attempt to guarantee 

that the sampling operation can be performed, though sampling methods may not 

always converge to stable results. The limitations of these sampling frameworks is 

not mathematical; they can be extended with the outcomes of research (Wabersich 

and Vandekerckhove 2013). The current approach of these tools is to set a good 

balance between rather stable results from sampling based on a set of probability 

distributions and the ways they can be used together in a graphical model to 

express a decision-making context, i.e. their expressiveness.  

 Therefore, even though the currently available, well known tools do not 

support all extensions of BNs, this limitation can be overcome via custom 

implementations of more advanced approaches or extensions to existing tools for 

both modelling and inference. These improvements constitute an important line of 

future research for better CDS beyond the current scope of this thesis. Such future 

research can be built on outcomes of numerous studies that improve on the existing 

methods adopted by the current tools.  
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Studies that focus on a large variety of topics such as improving the 

performance of sampling when unlikely evidence is encountered (J. Cheng and 

Druzdzel 2000), (Yuan and Druzdzel 2003), improving performance of discretisation 

(Kozlov and Koller 1997), (Di Tomaso and Baldwin 2008), improving sampling 

performance for very large BNs (C. S. Jensen and Kong) and parallel inference 

(Vasanth Krishna Namasivayam, Pathak, and Prasanna) are all examples of 

research that can be used to improve a BN based CDS approach. 

The family of PGMs and computation tools stemming from BNs and leading 

to these potential future extensions spans a vast domain for research. This thesis 

identifies the basic, yet powerful definition of BNs as introduced by (Pearl 1988) as 

the central point of this domain as well as a knowledge engineering methodology (E. 

H Shortliffe, Buchanan, and Feigenbaum 1979) that can be extended to more 

complex and capable representations and inference methods depending on the 

decision-making or prediction tasks at hand. BNs allow the same principles of 

knowledge engineering to be used in many scenarios with multiple options for 

adjusting the balance between the expressiveness of the domain model and the 

performance and accuracy of inference. However, BNs have not been identified as 

the CDS mechanism for this thesis based on these advantages alone. The findings 

related to overall advantages of BNs is complemented by a rather specific appraisal 

based on a review of the uses of BNs in medicine, as provided in the next section 

4.5: Bayesian Networks in Medicine 
 

The integration of BNs into the domain of medicine through medical 

informatics creates a context in which many variables from different disciplines 

interact. Different types of clinical data and processes from medicine, as well as 

many components of information technology and concepts of BNs and their 

extensions are all connected in such a context. 

This large and complex set of relations makes it impossible to suggest that 

BNs can improve outcomes in every single CDS scenario over alternative methods.  

However, a review of existing studies that explore the use of BNs in various settings 

in medicine would help evaluate their performance and potential as a generic, 

widely applicable knowledge engineering and inference framework for CDS. To this 

end, a literature review was performed using the facilities provided by 

www.sciencedirect.com. The search facility of this research repository returned 

6423 articles in response to the search phrase “Bayesian networks clinical” (in “all 

fields” field in the search form). 
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A set of studies relevant to decision-making based on BNs in medicine has 

been identified through a detailed evaluation of the first 250 members of this result 

set, along with 308 results returned from the same search performed for the 

publication “Artificial Intelligence In Medicine”. These studies cover BNs as well as 

their various extensions from the family of PGMs. The review has been performed 

with the goal of answering the following questions: 

• Do BNs provide a clinical modelling formalism that allows clinicians to define 

domain concepts in a large number of clinical domains?  

• Do BNs help domain experts define clinical scenarios without having to deal with 

the underlying mathematical models? How expressive BNs are for describing 

the various components of clinical decision-making ?  

• Can BNs provide feedback about the reasoning process so that clinicians can 

interpret the outcomes? 

• Can BNs perform inference at least as well as the more established methods of 

probabilistic modelling in CDS domain? 

 

These questions address the critical requirements for using probabilistic 

methods in CDS, and positive answers to them, provided by the findings of existing 

studies, provide evidence for the feasibility of using BNs for CDS. The following 

sections provide the findings of the review, performed mainly with a focus on 

answering the questions above, treating mathematical and computational aspects of 

the studies to be of secondary concerns.  

4.5.1: Bayesian Networks as CDS Models 

 

openEHR’s capability to model concepts from a multitude of clinical domains 

requires that, for a CDS framework to be consistently integrated to openEHR, it 

must also be able to represent these concepts. Therefore, a BN based CDS 

approach must be applicable across different clinical domains to support openEHR 

integration.  

An evaluation of the boundaries of the expressiveness of BNs for all CDS 

scenarios would not be feasible for this thesis. However, successful use of BNs in a 

variety of clinical decision-making scenarios from different clinical domains indicate 

sufficient expressiveness. The review shows that BNs are used in a variety of 

clinical domains, in scenarios such as choosing antibiotics for treating severe 

infections (Andreassen et al. 1999), modelling clinical performance of pancreatic 

cancer patients (Hayward et al. 2010), diabetes monitoring (Riva and Bellazzi 
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1996), insulin therapy management (Andreassen 1992), diagnosing the stage of 

oesophageal cancer (van der Gaag et al. 2002) and diagnosis of pneumonia cases 

in ICU (Lucas et al. 2000). 

 Further uses of BNs include diagnosing heart problems (Long, Fraser, and 

Naimi 1997) and nasopharyngeal cancer (Galán et al. 2002), analysis of adverse 

drug reactions (Cowell et al. 1991), estimating survival in malignant skin melanoma 

(Sierra and Larrañaga 1998), neuromuscular diagnosis (Xiang et al. 1993), ovarian 

tumour classification (Antal et al. 2003), (Antal et al. 2004), analysis of tuberculosis 

epidemiology (Getoor et al. 2004), diagnosing pyloric stenosis (Alvarez, Poelstra, 

and Burd 2006), classifying SPECT images (Sacha, Goodenday, and Cios 2002), 

predicting blood glucose concentration (Ramoni et al. 1995), diagnosis of breast 

cancer (Kahn Jr et al. 1997), analysis of dynamics of organ failure in intensive care 

unit (Peelen et al. 2010) and monitoring laboratory errors (Doctor and Strylewicz 

2010). 

Even this small scale literature review shows that BN approach to CDS can 

address clinical scenarios with considerable variety of concepts from domains such 

as cardiology (Díez et al. 1997), (Verduijn et al. 2007), psychiatry (Chevrolat et al. 

1998), neurology (R. Chen et al. 2012), ophthalmology (Tucker et al. 2005), urology 

(Montironi et al. 1996), (Montironi et al. 2002) and oncology (X.-H. Wang et al. 

1999), (Smith et al. 2009).  

Based on the substantial variety of both the clinical cases and the clinical 

domains these cases belong to, the expressiveness of BNs as a CDS modelling 

formalism, using their extensions when necessary, is deemed sufficient for 

expressing CDS concepts for the diverse set of clinical applications that can be 

developed based on openEHR. 

However, this sufficiency does not necessarily imply that BNs provide an 

easy to use knowledge elicitation tool. The degree of convenience with which this 

expressiveness can be put to use for building CDS models must be assessed. 

4.5.2: Communication with Domain Experts  

 

A significant difficulty of the probabilistic approach to CDS is that the 

underlying mechanism for inference has a highly abstract nature. The use of 

statistical terms for expressing relationships between clinical concepts is not a 

convenient language for extracting knowledge from domain experts. The graph 

based representation of BNs can improve the efficiency of this process.  
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The studies that discuss the use of input from domain experts for defining 

the structure of BNs partially support this claim while pointing at potential challenges 

of the process.  

Clinicians can use the graph based representation of BNs to encode domain 

concepts and their relationships with the help of a knowledge engineer, who 

explains the options available to them in terms of relationships between BN nodes 

and defining clinical concepts (Onisko 2003)  

The advantages of this approach for building an expert system is described 

as follows by (Gappa, Puppe, and Schewe 1993): 

 
“The most important precondition for knowledge acquisition systems by experts is 
that the underlying model is sufficiently tailored to the domain and/or its problem 
solving strategy, so that the expert can easily get acquainted to it. For this, well-
chosen graphical knowledge representations can greatly support the 
understandability of the knowledge model and thus the model building of the 
expert.”  
 

The emphasis of (Gappa, Puppe, and Schewe 1993) on the importance of 

predefined concepts for a knowledge model bears resemblance to the approach 

adopted by openEHR:  

 

“The usefulness and efficiency of a knowledge acquisition tool crucially depends on 
the adequacy of the predefined concepts of its underlying knowledge model and 
therefore it is important to ask which of the concepts may not be that easy to 
understand and thus are hardly or not at all instantiated.”  
 
 Attempts to improve the process for defining the structure of graphical 

models include automated interviews (Luciani and Stefanini 2012) and joining 

human input with automated learning of structure from data in a knowledge 

engineering workflow (Julia Flores et al. 2011). 

 The availability of software tools such as HUGIN (Andersen et al. 1989), 

WinBUGS (Lunn et al. 2000) and SMILE (Druzdzel 1999),which help follow these 

knowledge engineering practices, support the claim that BNs present a valid 

knowledge representation option for automated reasoning (Long 2001). 

 The similarities and relationships between BNs along with their extensions 

and some well-established knowledge engineering methods such as OWL, Web 

Ontology Language (McGuinness and Van Harmelen 2004), is both an opportunity 

to improve current BN implementations and a probable topic for future research. For 

example, using existing ontologies for network construction (Fenz 2012) allows 

previously encoded knowledge to be used, which is a method suggested more than 

20 years ago (Gappa, Puppe, and Schewe 1993). 
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Expert input from clinicians or the use of domain ontologies can lead to 

requirements that cannot be expressed with a BN that is based on the fundamental 

definition of (Pearl 1988) which has limitations in terms of both network topology 

and probability distributions that can be expressed as network nodes.  

Therefore, some concepts such as temporal aspects of a clinical case or 

making decisions based on the results of inference require capabilities beyond the 

fundamental definition of BNs used by this thesis.  

 Temporal aspects of a clinical case are implicitly included in prognostic 

decision-making scenarios. These aspects may be evident, such as in the case of 

estimating the value of a clinical variable given a fixed length of time, for example in 

estimating reoccurrence of cancer in a five year period (Gevaert et al. 2006). These 

inference tasks can be performed without any explicit representation of temporal 

aspects. Inference requirements with more complex temporal aspects are 

represented by Dynamic Bayesian Networks (Murphy 2002).  

The review has identified uses of BNs that address temporal aspects of 

diagnosis or prognosis for tasks such as blood glucose time series analysis (Riva 

and Bellazzi 1996), pneumonia treatment at the intensive care unit (Lucas et al. 

2000), reasoning about cardiovascular disorders with temporal relations (Long, 

Fraser, and Naimi 1997), modelling the spread of cancer (Galán et al. 2002), and 

analysis of organ failures (Peelen et al. 2010) and ventilator-associated pneumonia 

(Charitos et al. 2009) in the intensive care unit.  

 The availability of studies that use BNs for knowledge engineering, 

complemented by the possibility of using existing knowledge encoded in other forms 

makes BNs a viable option for user friendly development of CDS models. The 

studies show that BNs can model many key components of the decision-making 

context using the same consistent representation. 

4.5.3: Explaining the Reasoning Process 

 

Understanding the reasoning used by the CDS mechanism is a crucial 

advantage for a clinician. No matter how successful a particular CDS approach is, a 

black box implementation makes it impossible for a clinician to follow the reasoning 

process. Including feedback from such a system in the care process becomes 

particularly problematic if the feedback conflicts with the clinician’s opinion. 

Rule based approaches to CDS make it easy to deal with this potential 

problem by providing access to rules that were used in inference. For probabilistic 

approaches, the mechanics of providing this functionality is more complicated due 
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to underlying probabilistic reasoning mechanism. Despite this relative difficulty, 

explanation of reasoning in BNs has been an active field of research. 

 Capabilities such as explaining the reasoning of a BN (Haddawy, Jacobson, 

and Kahn Jr. 1997),(Elvira 2002),(C. Lacave and Díez 2002),(C. Lacave, Luque, 

and Díez 2007),(Carmen Lacave, Oniśko, and Díez 2006) , generating verbal 

explanations from BNs (Druzdzel 1996), and graphical explanation of reasoning 

(Madigan, Mosurski, and Almond 1997) allows clinicians to follow reasoning 

process.  

Despite the availability of explanation methods for BNs, bridging the gap 

between the mathematical reasoning and clinical explanations is not as easy as rule 

based systems, especially when approximate inference methods are used.  

4.5.4: Inference Performance of Bayesian Networks  

 

 Even though this thesis places a strong emphasis on high-level, graphical 

representation capabilities of BNs and the advantages they provide over other 

probabilistic methods, these traits of BNs alone are not sufficient to suggest that 

they perform better than the alternatives for classification or prediction tasks. 

Therefore, BNs should provide performance at least on par with well established 

probabilistic methods for these tasks. Evidence of such performance complements 

other advantages of BNs, making them a good overall option for CDS.  

Studies that compare well established probabilistic methods such as logistic 

regression with BNs usually report similar performance for classification and 

prediction tasks. One such example is the prediction of clinical performance of 

pancreatic cancer patients (Hayward et al. 2010) in which BNs perform better in 

various predictive tasks compared to logistic and linear regression, with the 

exception of predicting tumour size. BNs are considered as a successful 

replacement for certainty factors (Heckerman and Shortliffe 1992) as well as an 

improvement over naïve Bayesian model (Sakellaropoulos and Nikiforidis 2000) 

based on more precise definition of dependencies between variables.  

4.5.5: Summary of Findings  

 

 The findings of the literature review show a level of use of BNs that 

sufficiently support their capability to address various requirements of a widely 

applicable CDS framework. However, the integration between the underlying 

sources of clinical data and BNs is not the focus of these studies. Consequently, the 

formal representation of domain concepts in information systems is not included in 
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the scope of BN based CDS research, arguably with the exception of using OWL 

(McGuinness and Van Harmelen 2004), which provides a formal representation of 

domain concepts.  

BN based CDS in an openEHR context introduces a new approach, which 

formalises the data access aspect of BN implementation that is of secondary 

importance to these studies. In this new approach, openEHR specifications provide 

a well defined set of capabilities and services for computable health across multiple 

systems by generalising underlying data sources to an openEHR representation as 

discussed in the following section. 

4.6: Integrating openEHR Methodology with Bayesian 
Networks  
  

The expected benefit of introducing openEHR as the underlying clinical data 

representation for BN modelling and implementation is a significant contribution to 

the solution of the isolation problem outlined in Section 2.2. The benefits of high 

level representation of domain concepts provided by both openEHR and BN are 

similar. Both approaches allow complex operations to be performed on domain 

concepts based on this representation. The particulars of this similarity are the basis 

of a logical architecture for their integration.  

 A major barrier to developing better clinical information systems is the 

incomplete or incorrect representation of requirements. Clinicians mostly provide 

software requirements in their own terms through analysts and developers. 

Requirements are transformed into software by developers, and individual 

developers may understand the same requirements in different ways. As a result, 

the quality of the representation of domain concepts in software is dependent on the 

level of understanding of the domain the developers possess. As the domain gets 

more complicated, precisely expressing domain concepts in software becomes 

harder, leading to less accurate representations. Clinicians can only indirectly 

influence the content and behaviour of information systems through developers, 

since only developers are capable of creating computable concepts. 

openEHR allows domain experts to create computable models based on 

clinical concepts as explained in Section 3.1. Therefore, clinicians drive the clinical 

information system development process through domain models without going into 

details of the software development domain. This approach eliminates the 

inaccuracy that stems from the rather traditional software requirement analysis 

practices. 
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BNs provide a similar improvement for building probabilistic models, allowing 

domain experts to define the statistical representation of domain concepts without 

tackling complex probabilistic terms such as joint probability distributions or 

conditional independence. Furthermore, it is possible to use a combination of a 

small number of probability distributions to represent an arbitrary number of domain 

concepts, similar to openEHR’s reference model. Therefore, both approaches allow 

clinicians to extend their control to non-clinical domains based on similar principles.  

 An important research question that originates from this observation is 

therefore to what extent these similarities could support an integration between 

openEHR specifications and BN based CDS. Two primary software 

implementations are required in order to answer this question via the experimental 

approach adopted by this thesis: an implementation of the openEHR specifications 

sufficient for the chosen scope, and an implementation of a BN based inference 

engine. The relationships between these two software components are first 

identified and discussed based on a logical architecture, partial implementation of 

which is used as the basis of hands on experiments. 

 

4.7 Logical Architecture for openEHR and Bayesian Networks 
Integration 
 

The purpose of the logical architecture for openEHR and BN integration is to 

identify the nature of the relationships between the components of the integration. 

These relationships define how key features of both openEHR methodology for 

clinical application development and BN based CDS can be connected. 

Consequently, they provide the architectural guidelines for actual software 

development to achieve this integration. However, these guidelines still require an 

appraisal for feasibility of implementation. A relationship defined in the logical 

architecture may suffer from performance problems or laborious efforts such as 

large scale data mapping tasks. Therefore, testing the assumptions of the logical 

architecture through software implementation is the method of appraisal adopted in 

this thesis as discussed in Chapters 5, 6 and 9.  

 Studies that discuss the use of CDS to improve clinical care frequently refer 

to EHR implementations as the platform that hosts CDS functionality. (Kuperman et 

al. 2007), (Bates and Gawande 2003), (Kalra and Ingram 2006). EHR specifications 

and information systems based on them provide an answer to a well-known problem 

in the decision support domain: access to data.  
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 The integration of computer interpretable guidelines to HL7 Reference 

Information Model (Beeler 1998, 7) in (Peleg et al. 2001) provides a healthcare 

specific example of standards based data access based on GLIF (Boxwala et al. 

2004), similar to use of Arden Syntax for development of a data and query model 

(Jenders, Corman, and Dasgupta 2003). These studies show that the integration 

between CDS and EHR concepts has problems such as incompatibilities between 

the HL7 RIM and Arden syntax (Peleg et al. 2001). Developing solutions for 

impedance mismatch of EHR systems and computerised guidelines have been 

suggested as a method of overcoming these integration problems (Schadow, 

Russler, and McDonald 2001). The problems identified by these HL7 focused 

studies show that computability of EHR and CDS concepts do not guarantee a 

problem free integration. 

 The logical architecture is the starting point of an analysis similar to these 

studies, with three goals:  

• To introduce probabilistic AI based decision support into openEHR  

• To identify problems in the process 

• To develop and offer solutions to identified problems 

 

Figure 9 provides the main components of the logical architecture. 
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Figure 9: Logical architecture for openEHR – Bayesian Network integration 
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The elements of the diagram in Figure 9 provide components of openEHR 

and BN implementations. The components are classified into two groups as abstract 

and concrete.  

 openEHR specifications and BN definitions are the abstract components 

which are independent of implementation aspects such as programming languages 

or algorithms for exact or approximate inference. These components support a 

knowledge engineering approach by allowing domain experts define domain 

concepts.  

Concrete components represent the various software implementations of 

both openEHR specifications and BN definitions. Numbered connections in the 

logical architecture in Figure 9 represent possible relationships in the context of 

integration. The following is a discussion of these relationships, describing the 

scope of research and implementation implied by them, referring to connection 

numbers in the logical architecture. 

 

1) Integrating openEHR’s modelling approach with Bayesian Network 

Definitions 

openEHR’s domain models and their underlying formalism can support 

the implementation of multiple aspects of an information system. Various 

openEHR implementations already use the openEHR archetypes (Beale and 

Heard 2007a) for a number of implementation tasks such as data validation 

and persistence or user interface generation. Reusing openEHR archetypes 

as a repository of clinical domain concepts extends the use of openEHR 

models to CDS development and has the potential to improve the 

construction of BNs , allowing clinicians to identify domain concepts easily.  

 

2) Implementation of the openEHR specifications 

An actual implementation of openEHR specifications is required to 

observe both the benefits of openEHR methodology and its problems in the 

context of clinical information systems implementation and CDS integration. 

Aspects of implementation such as data access performance and scalability, 

which are affected by the underlying architecture and technology platform, 

must be observed as well since they are at least partial determinants of 

performance in every operation on openEHR data. Therefore, a testbed is 

crucial for an in depth analysis of both the openEHR methodology and 

aspects of its implementation in a CDS context.  
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3) Bayesian Network implementation 

The efficacy of the integration between openEHR specifications and BN 

based CDS cannot be observed without a BN implementation. Similar to 

openEHR methodology, a domain concept can be represented in multiple 

ways using BNs. Inference on a BN can be performed via different 

algorithms, as discussed in Section 4.3, and these algorithms can be 

implemented using a number of platforms. Even though the availability of 

various options for BN implementations is acknowledged in the logical 

architecture, time limit for this thesis allows only a subset of these options to 

be used through freely available and open source tools. However, both 

comparing the performance of different inference algorithms as well as 

exploring the scalability of these algorithms, especially through parallelisation 

(Vasanth Krishna Namasivayam, Pathak, and Prasanna), (X.-L. Wu et al. 

2012), (Neiswanger, Wang, and Xing 2013) are key future research topics 

identified by the logical architecture.  

 

4) Integrating Bayesian Network implementations with openEHR 

implementations 

The integration described by the logical architecture defines openEHR 

implementations as the source of clinical data. Since BN implementations 

need to access clinical data for inference, methods of data access for this 

specific goal must be developed. Accessing clinical data for purposes such 

as learning the parameters of a network is a significantly different scenario 

from an openEHR implementation point of view than patient centric data 

access, which is the case for clinical information systems built on openEHR. 

The difference is due to increase in the volume of data that is used in the 

former case. Technology independent, widely applicable methods for large 

volume data access for openEHR implementations need to be developed 

considering the fact that both ends of the relationship in the logical 

architecture can be built on different technologies. The transformations from 

the object oriented (Meyer 1988) openEHR data types to rather primitive 

data types required by BN inference algorithms are also a key part of this 

relationship. The findings of research focusing on this relationship have the 

potential to introduce changes and additions to openEHR specifications for 

large scale clinical data processing. 
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5) Integrating openEHR implementations with Bayesian network definitions 

openEHR implementations, which provide access to clinical data, 

complement openEHR clinical models for defining BNs by contributing to 

both structure and parameter learning. 

 Automated structure learning algorithms, which make use of clinical data 

that is provided by openEHR implementations, can create BNs with an initial 

set of variables and relationships, which can be improved upon by the 

domain experts. Especially when the number of clinical variables is large, 

this initial network can shorten structure definition process.  

If the BN structure is specified with full or partial domain expert input, the 

clinical data can be used to validate the dependency relationships asserted 

by the structure, or to discover additional, unspecified ones.  

The parameters of a BN can be learned from previously collected data, 

based on the BN structure. This approach enables domain experts to define 

outcomes for clinical variables of interest, without having to specify 

probabilities of these outcomes, i.e. the parameters of the network.   

 

4.8: Summary 
 

Bayesian approach to handling uncertainty has improved significantly from 

the days of naïve Bayesian classifiers. Due to increased processing power, more 

advanced methods, such as BNs have matured to the point of being a reliable 

option for many clinical decision-making tasks. The research about probabilistic 

graphical models, with BNs being the dominant type of model, has delivered 

satisfactory and promising outcomes in many clinical domains.  

Based on the suggestion that openEHR is a mature, modern representative 

of the EHR concept, the integration of openEHR and BNs for CDS is chosen as the 

focus of this thesis, with the goal of exploring the sufficiency of EHR concepts in 

supporting better CDS via this integration.  

The suggested method of research is a set of experiments performed on a 

testbed, which is an implementation of a logical architecture for integration of 

openEHR and BN concepts both at the specification and implementation levels. The 

results of the experiments form the basis of a software architecture for openEHR 

implementation as well as suggestions for changes and additions to openEHR 

specifications to support BN based CDS. 
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To identify how the use of the openEHR approach to modelling and 

processing clinical data affects BN based CDS implementation process, an isolated, 

rather basic BN has been developed and used for classification initially. The 

discussion of this scenario provided in the next chapter aims to identify 

characteristics of the BN approach without an underlying openEHR platform. How 

these characteristics change in the context of openEHR integration is analysed in 

depth in the chapters that follow after. 
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Chapter 5: A Pilot Bayesian Network Implementation 
Experiment Using Thyroid Disease Data 
 

The BN approach to managing uncertainty provides multiple options for 

building domain models and inference on them. This chapter examines the process 

of developing and using a BN. There is no assumption of clinical information system 

integration and clinical data is provided in the form of a flat text file.  

  The BN is designed as a classifier which uses clinical data of patients with 

thyroid problems. Well known software tools for BNs are used, to achieve reliable 

results and to complete experiments in an acceptable time frame. The primary focus 

of the experiment is on issues such as data quality and problems and barriers 

related to it, what modelling and inference options are available given the domain 

concepts, and what are the advantages and disadvantages of these options. The 

actual classification performance of the BNs is of secondary importance. 

5.1 The Setting of the Experiment  
 

The BN approach is used for diagnosis of thyroid disorders. This clinical 

domain was selected based on the availability of clinical data from the UCI machine 

learning repository (Blake and Merz 1998) which provides access to various data 

sets. The experiment develops a BN with discrete conditional probability tables. 

Steps for building the network such as pre-processing of data, learning their 

structures and parameters were performed. The BN was then used for classification 

to diagnose thyroid disorders.  

5.2 Processing the Raw Data 
 

The thyroid data that was used in the experiment had data quality problems 

such as outliers and missing observations. These problems were identified via an 

analysis of data using the open source WEKA machine learning workbench (Hall et 

al. 2009). WEKA was used to remove the data instances with one or more missing 

values for clinical variables used in the BN, resulting in a data set of 5635 rows. 

After missing values were removed, the data set was processed with open source 

statistical language and framework: R (R Development Core Team 2008) to remove 

outliers. The final step in processing raw data was transforming the diagnosis 

outcomes to consistent values using features of freely available text editors. 
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The pre-processing phase of thyroid data consisted of typical examples of 

the trivial, yet time consuming tasks that are frequently performed when data 

exported from multiple sources needs to be analysed. Even though there were 

many freely available tools such as WEKA or R, the process was time consuming, 

and sometimes required dealing with the data interoperability problems introduced 

by the tools themselves, such as different interpretations of structure of data in 

comma separated files. 

 The efforts required to pre-process data even in this small scale experiment 

demonstrated the advantages of standards driven clinical information systems 

approaches, which can significantly decrease the pre-processing time required for 

data analysis by allowing automatic data integration from multiple sources in 

addition to performing data validation during data entry. 

5.3 Learning the Network Structure 
 

 The relationships between thyroid disorder related concepts for the BN were 

first learned via automatic structure learning, followed by manual modifications. The 

structure of the BN was learned via GENIE (Druzdzel 1999), a freely available BN 

development and inference environment. GENIE’s built in discretisation algorithm 

was used on continuous variables prior to learning the network structure. The 

following variables from the data set, identified via a limited literature review for 

thyroid disorders, were used as the nodes of the BN: 

• Age: The age of the patient 

• T4(thyroxine): The measurement of the major thyroid hormone secreted by the 

thyroid gland 

• T3(triiodothyronine): The measurement of the T3 hormone, which is the result of 

the conversion of T4. 

• FTI(free T4 index): The form of T4 in the blood, which can exert effects on target 

tissues.  

• T4U: Thyroxine resine uptake test results 

• Diagnosis: The diagnosis in the data set.   

 

Learning the structure of the BN using the PC algorithm (Spirtes, Glymour, 

and Scheines 2000) implementation in GENIE with gradually increasing amounts of 

data shows how the performance of structure learning benefits from more data.  

The automatically learned BN structure in Figure 10, based on a data set of 

1000 elements, connects all predictor variables to the response variable 
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(DIAGNOSIS). The connections from predictor variables to response variable are 

directional, and the direction of the connections is correct. However, the structure in 

Figure 10 has bidirectional connections between predictor variables in addition to 

the non directional connection between T3 and FTI nodes. 

 

 
Figure 10: BN structure, learned from 1000 observations 

 

The BN structure in Figure 11 was produced by increasing data set size to 

5000 elements. This BN has no bidirectional arrows, showing that the nature of the 

relationships between domain concepts was learned more precisely. The undirected 

connections between predictor variables and response variable still exist, and the 

network is still not a directed acyclic graph.  

 GENIE’s support for providing background information during structure 

learning allows expert input to be used alongside the relationships discovered from 

data. This feature was used to provide the background information in Figure 12 to 

the structure learning algorithm, along with the previously used data set with 5000 

elements. 

The background information in Figure 12 was used to express the 

relationship between the predictor variables and the outcome variable at a basic 

level, and led to the BN structure in Figure 13. 
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Figure 11: BN structure, learned from 5000 observations 

 

 
Figure 12: Background information for BN structure 
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Figure 13: BN structure, learned with background information and 5000 observations 

 

Other than the three undirected connections, the BN in Figure 13 has no 

problems in terms of required directed acyclic graph structure for inference. By 

deleting these undirected connections, the structure of the BN in Figure 14 was 

obtained. 

 

 
Figure 14: BN structure used in the experiment 
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The structure of the BN in Figure 14 does not necessarily reflect the precise 

relationships between domain concepts, especially for the connections between 

predictor variables. However, the process which results in this structure shows how 

both human input and clinical data can be used together to model a clinical 

decision-making context.  

5.4 Learning the Network Parameters 
  

The parameters of the BN were learned completely from data using the 

Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) 

implementation in GENIE. Only 1000 of the 5635 records in the dataset were used 

for parameter learning to avoid overfitting the data. The operation took less than 2 

seconds on an Intel Core2 Duo based system (3.33 GHZ), running Windows XP 

resulting with the BN in Figure 15. 

 

 
Figure 15: The distributions of nodes, learned via EM 

 

The probability distributions defined by the nodes of the BN in Figure 15 (i.e. 

parameters of the network) assign zero to conditional probabilities of some 

combinations of outcomes of events that are represented by the nodes, which is a 

problem that stems from insufficient number of observations for these outcomes 
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(the 0% frequencies in Figure 15 do not represent these conditional probabilities, 

they are actually values close to 0, rounded down for compact display of nodes 

only). Even though the EM algorithm can deal with missing observations to an 

extent, some of the conditional probabilities end up with zero assigned to them, 

effectively describing these outcomes as impossible. This problem can be dealt with 

in various ways, such as changing the discretisation parameters so that extremely 

rare events do not end up as individual outcomes but instead they are categorised 

under outcomes with higher probabilities. However, this approach leads to less 

precise approximations to continuous distributions and in some cases in which the 

rare outcome must be specifically included in the model, it may not be an option at 

all.  

Availability of more data can solve this problem by allowing the EM algorithm 

to assign non-zero probabilities to rare outcomes using more observations that 

include these outcomes.  

 Despite these problems, due to there being insufficient observations for 

some outcomes, the advantages of learning parameters from the data are evident. 

A large number of conditional probabilities would have to be specified by a domain 

expert even for the rather small BN in Figure 15. Not only would the expert have 

had to provide these conditional probabilities, but the resulting distributions would 

have had to comply with the basic rules of probability, such as requiring conditional 

probabilities of outcomes of events to sum to correct values.   

5.5: Performing Inference on  Bayesian Network  
 

 The following experiment used the clustering algorithm of (Lauritzen and 

Spiegelhalter 1988), which is an exact inference algorithm, to perform classification 

on the 4635 instances of the data set that were not used for parameter learning. 

Each instance was used to set the values of predictor variables of the BN, which 

were then used to predict the diagnosis node probabilities. These updated 

probabilities for the diagnosis node were used to select the classification outcome, 

which corresponds to the diagnosis outcome with the highest probability, after the 

update. This outcome was compared with the actual diagnosis as recorded in the 

data instance, to determine if the predicted diagnosis as correct. These operations 

were performed using a Java wrapper around the SMILE (Druzdzel 1999) library, 

which is the underlying library used by GENIE.  

 The inference process used with the test set failed for 41 of the 4636 data 

instances, due to the SMILE library attempting to process impossible observations. 
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These observations were deemed impossible due to their probabilities having the 

value 0 in the BN. These problematic data instances were subsequently excluded 

from the analysis of the inference results. However, they show that problematic 

parameters in a BN may lead to an inability to process real patient data. This 

behaviour may cause problems when patient data for patients with rarely 

encountered conditions is being processed. 

The overall classification performance of the BN is provided in Table 1. The 

BN predicted the correct diagnosis in 77% of cases. Table 2 provides further details 

of the test results. 

 

Correctly classified 

instances: 

Incorrectly classified 

instances: 

Total 

3541 1054 4595 

Table 1: Classifier performance 

 

 

Number of healthy instances 3424 

Number of unhealthy instances 1171 

Correct prediction for unhealthy 

instances 

147 

Incorrect prediction for unhealthy 

instances 

1024 

Breakdown of incorrect prediction for 

unhealthy instances: found healthy when 

not 

984 

Breakdown for incorrect prediction for 

unhealthy instances: found the wrong 

disease 

40 

Incorrect prediction for healthy 

instances 

30 

Correct prediction for healthy 

instances 

3394 

Table 2: Detailed breakdown of classification results 

 

 A potential approach for improving the classifier performance, given that 

3.9% (40/1024) of the classification errors is due to misclassification of a thyroid 

disorder, is to produce a binary output from the classifier as healthy or not healthy, 

leaving further evaluation of the findings to the clinician who uses the CDS system. 
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 The classification performance of the BN can also be defined in terms of 

Sensitivity and Specificity (Loong 2003), which are used to assess accuracy of 

clinical tests (Parikh et al. 2008), (Lalkhen and McCluskey 2008).   

The definitions of Sensitivity and Specificity in a clinical decision-making context, 

along with the terms these definitions are based on, are as follows: 

• True positive: A test outcome that correctly diagnoses a condition  

• False positive: A test outcome that incorrectly diagnoses a condition when the 

condition does not exist. 

• True negative: A test outcome that correctly finds that a condition does not exist. 

• False negative: A test outcome that incorrectly finds that a condition does not 

exist when the condition exists. 

• Specificity: number of true negatives / (number of true negatives + number of 

false positives) 

• Sensitivity: number of true positives / (number of true positives + number of false 

negatives)  

 

 Healthy (real) Unhealthy(real) 

Healthy(predicted) Tn: 3394 Fn: 984 

Unhealthy(predicted) Fp: 30 Tp:187 

Total: 3424 1171 

Table 3: Classifier performance 

 

The sensitivity and specificity values for the BN classifier, based on the 

classification of test outcomes in Table 3 is as follows: 

 

Specificity: 3394 / (3394 + 30) = 0.99 

Sensitivity: 187 / (187 + 984) = 0.15 

 

The high specificity of a test means that it performs well in identifying lack of 

a condition. Therefore, a positive outcome from such test would rule in a condition. 

The high sensitivity of a test means that it performs well in identifying the presence 

of a condition. Therefore, a negative outcome from such a test would rule out a 

condition. Based on these definitions, the outcome of the experiment is a BN that 

could be used by a clinician to rule in a condition.  

Evaluating the performance of the BN based on sensitivity and specificity 

characteristics, is a more informative definition of its properties than simply 

providing the overall classification performance with the test data set.  
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5.6 Summary 
 

Despite its limited scope and depth, the experimental development of a BN 

for thyroid disorder diagnosis has helped to identify key characteristics of the BN 

based approach to CDS.  

The effort required to clean and transform data so that it can be used for 

structure and parameter learning was found to be significant. This data preparation 

phase required modifications to data, such as discretisation of continuous values, 

which can directly affect the performance of the resulting BN.  

 The size of the dataset available for structure and parameter learning was a 

key determinant of the quality of the results for both processes. Using human input 

as background information allowed better use of existing data for structure learning. 

Using existing data for parameter learning makes it possible for clinicians to avoid 

complex and error-prone aspects of defining BN probabilities.  

 However, the dataset size available for parameter learning is crucial for 

developing BNs that can accurately reflect the relationships between clinical 

concepts. Not having access to sufficiently descriptive data leads to a BN that may 

be unable to process some patient data, if the values of observations do not fall 

within the learned parameter boundaries. Defining the structure of a BN is less 

susceptible to lack of clinical data, especially if the number of domain concepts is 

small, and domain experts can easily identify them and define their relationships. 

 Detailed evaluation of the performance of a BN, with an emphasis on 

decision-making strategies specific to a particular clinical domain, can help 

clinicians make better use of its capabilities.  

 The experiment showed that, especially with the use of existing data, it is 

possible to develop and use a BN for CDS with minimum exposure to the underlying 

probabilistic concepts. The limited scope of the experiment leaves out many 

extensions and features of BNs that was discussed in Section 4.4. Yet, even such a 

basic implementation allows relevant clinical concepts to be used for purposes of 

probabilistic inference.  

 The inefficiencies and problems identified during different phases of the 

experiment overlap with well known issues encountered in clinical systems 

integration, for which solutions are provided by the openEHR specifications. The 

identification of key domain concepts as the components of the BN is another stage 
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of the experiment that can benefit from the openEHR methodology, as discussed in 

Section 4.7 in the discussion of the logical architecture for systems integration.  

The pilot experiment identified aspects of a BN based approach to CDS that 

can be improved by exploiting the capabilities of openEHR. The experimental use of 

openEHR methodology to this end, is discussed in detail in the chapters that follow. 
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Chapter 6: A Pilot openEHR Based Clinical 
Information System Implementation Experiment – The 
Opereffa Open Source Framework 

 

 

The openEHR specifications place significant emphasis on the term 

computable health, a concept that underlies all the functionality that openEHR is 

expected to provide, including better clinical decision support.  

The scope, depth and quality of the openEHR specifications now provides a 

solid basis for computable health. However, the technology independent nature of 

the specification makes it hard to envision the extent to which the concept can be 

realised in practice, in the face of many implementation challenges. These 

challenges include limitations of the technologies used for the implementation and 

achieving the breadth and variety of functionality that a full openEHR 

implementation should support. 

Therefore, the only reliable method to assess the sufficiency of the 

openEHR specifications for building clinical information systems and supporting 

CDS integration within these systems, is experiment and observation based on 

technical and clinical implementation. The Opereffa framework was undertaken as a 

proof of concept implementation of the openEHR specifications to serve this 

purpose.  

6.1: Design and Implementation 
 

Opereffa was developed in the Java programming language using open 

source technologies. It implements primary components of an openEHR based 

information system and provides EHR functionality to support clinical care. Its goal 

is to provide a workbench for experimenting with openEHR implementation and for 

observing the effects of design decisions made, on system characteristics such as 

performance and ease of integration with other software.  

Opereffa’s design positions it as a framework that can support core 

functionality for building an openEHR based system. Figure 16 provides a 

conceptual overview of the approach adopted.  
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Figure 16: Opereffa framework and relevant concepts 

 

Some of the components in Figure 16 represent pre-existing open source 

software projects, such as the Java based implementation of various openEHR 

tools and the Eclipse platform (desRivieres and Wiegand 2004) from the Eclipse 

Foundation. A clinical application development framework that supports the 

construction of a modern clinical information system based on openEHR was 

assembled using these components. Opereffa’s implementation scope was limited 

to a necessary subset of these components, due to time limitations and relevance to 

the goals of this thesis.  

 Opereffa has been an open source effort from its outset, to enable wider 

feedback about the validity of its design and its approach to openEHR 

implementation. During its development, it was downloaded in over 70 countries 

and was used in a number of projects as well as academic studies. The software 

architecture of Opereffa is depicted in Figure 17. 

The Opereffa software architecture comprises openEHR tooling and runtime 

components. The tooling, which is integrated into the Eclipse development 

environment, used pre-existing open source openEHR libraries to generate user 

interface code for Java Server Faces (Mann 2005), which is a Java based software 

framework for web applications development.  

 The automatically generated user interfaces contain data entry and display 

fields that correspond to data items defined in the openEHR clinical models. These 

user interfaces can be customised, in terms of visual styles, within the Eclipse 

development environment, which provides the user interface generation capability 

via a plugin developed for Opereffa. When the user interface code is deployed to 

the Java Server Faces environment, it automatically becomes available for data 

entry and display to users as an experimental clinical information system, which is 

accessible with a standard web browser. Figure 18 is a screenshot of an 
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automatically generated user interface, which includes data entry fields generated 

from an openEHR archetype, in addition to integration with an open source 

terminology server, LexBIG (Pathak et al. 2009), for performing searches and 

selection of applicable SNOMED-CT (IHTSDO 2015) terms. 

 

openEHR 

Models

User 

Interface

Opereffa 

Persistence

Eclipse IDE 

Integration

Postgresql 

Relational 

Database

Java Server Faces

User

 

Figure 17: Software architecture of the Opereffa framework  

 

 

Figure 18: Screenshot from Opereffa User Interface 

 

 Filling in the fields of an automatically generated user interface, and then 

saving the contents, invokes the persistence implementation of Opereffa, which 

stores the data collected into the open source Postgresql (Momjian 2001) database. 
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Requests from the user interface to display previously saved documents also invoke 

this software component to fetch the data from the database and display it using the 

automatically generated user interface code, thereby also allowing users to update 

existing data. 

The Opereffa design focuses on the concept of a clinical application driven 

directly by openEHR clinical models. A small number of such archetypes, developed 

with input from Dr. Tony Shannon, an active member of openEHR community, were 

used to assess the feasibility of the model driven clinical application development 

approach and to generate test data. 

 Opereffa demonstrated the capability to add new user interfaces based on 

openEHR clinical models, without any modification required to other parts of the 

system. This showed that a small number of components driven by openEHR 

models can support clinical records for a large variety of clinical domains - a key 

design goal of the openEHR specifications (Beale and Heard 2008a). 

 The Opereffa architecture represents clinical data by using information in 

openEHR archetypes to associate actual data values with their relevant openEHR 

RM types. Figure 19 shows how this association is implemented. 

 Opereffa maps these types from the openEHR specifications to 

corresponding Java classes. These Java classes, named as wrapper classes in 

general, associate the definitions of data items in openEHR archetypes with actual 

clinical data, entered by users through user interfaces, which are also generated 

from the same data items. 

The elements on the right-hand side of Figure 19 represent implementations 

of these wrapper classes in the Java programming language. Their structure 

matches the structure of the openEHR model on the left of Figure 19, which is 

represented in a simplified form, for clarity.  

The “Event” shown on the left-hand side of Figure 19 is a type defined by the 

openEHR specifications, and it has a time and a state, in addition to other 

properties, which allow instances of this type to model an actual clinical event. The 

instance of the Event type contains fields, such as “data”, which is specified as an 

instance of ITEM_LIST openEHR type. The “data” field, with type ITEM_LIST, 

contains items, which are of type ELEMENT. Instances of ELEMENT type have 

values, which may be either a quantity, a terminology rubric, or some plain text. 

 The Opereffa persistence model is based on the capability of wrapper types 

to save their contents to a database and later read it back, using the Hibernate 

object relational mapping library (Bauer and King 2005). 



 113

 The association between the RM types and their corresponding Java 

wrapper types allows Opereffa to create data, persist it in a suitable database and 

read it back, effectively performing all operations on data using the clinical model on 

which the data is based. The open source openEHR libraries allow access to all 

aspects of these clinical models, such as the definition of valid values for a data 

item. This allows Opereffa to perform data validation at entry, a feature implemented 

only to a limited extent. The database representation for the contents of the wrapper 

types uses the paths of corresponding data items from the openEHR archetype to 

save their position in a tree comprising all wrappers that together represent the 

archetype. 

 

 
 

Figure 19: Opereffa’s use of wrappers 

 

 None of the methods used in the Opereffa implementation is technology 

specific. The Java platform was chosen based on the availability of open source 

libraries for openEHR and other functionality that was required to implement the 

architecture in Figure 17, as quickly and reliably as possible. 

6.2: Findings  
 
 The Opereffa experiment showed that a flexible, web based clinical 

information system can be developed with a model driven approach using open 
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source clinical modelling tools, along with open source libraries for processing 

openEHR models.  

 Automatic generation of user interfaces, complemented by a generic 

persistence layer that connects these user interfaces to a relational database, 

provides a flexible solution that can process clinical data from various domains. 

However, a purely web based application approach to building a clinical information 

system places limitations on the functionality achievable, and decreases its 

flexibility, especially in the persistence layer. 

 The initial and strong focus of the experiment was on providing access to 

patient data with a web based clinical information system. This does not require a 

generic openEHR data access method. There was no requirement in this 

experiment for sharing data with other systems. All the components of the Opereffa 

implementation, save for the pre-existing openEHR libraries, were developed from 

scratch, and customised to work with together to provide the envisioned 

functionality.  

It has been observed that this approach leads to a strong specialisation of 

the openEHR implementation in all its layers, making it hard to expose data and 

functionality to other information systems. This problem reveals itself when new 

functionality that was not included in the initial requirements, becomes necessary. In 

the case of Opereffa, this new functionality corresponds to implementation of the 

openEHR AQL (Ma, Frankel, and Beale 2014), a domain specific query language 

for performing queries on openEHR data which was still in draft status, at the time of 

writing of this thesis.  

The logical architecture for the openEHR and BN integration defined in 

Section 4.7 assumes multiple implementations for the openEHR specifications and 

learning BN network structures and parameters. The platform independent and 

openEHR specific nature of AQL makes it an appropriate method for connecting 

these implementations.  

 However, implementing AQL to integrate third party BN tools such as 

GENIE (Druzdzel 1999) and BNLearn (Marco Scutari 2009) on top of Opereffa 

requires the semantics of AQL queries to be supported by the persistence layer. It 

was observed that the Opereffa design, which assumes data access only from the 

web application, made it infeasible to support the requirements of AQL.  

Two primary causes of this infeasibility are the data access assumptions of 

Opereffa and its focus on openEHR archetypes as a unit of user interface and 

persistence.  
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Opereffa’s software architecture is designed to support flexibility for a clinical 

web portal, with a specific data access pattern. A list of previously committed 

documents is provided for a patient, and only one of them is displayed on the 

screen at a time. All of the data items that belong to a clinical document, based on 

an archetype as depicted in Figure 19, are fetched together from the relational 

database. Therefore, the unit of both writes and reads is single documents. AQL 

semantics allows for the description of parts of documents that satisfy specified 

conditions, and these parts can also be defined as query results. It defines 

hierarchical relationships between query components and it can set the scope of the 

search in an openEHR persistence implementation. Clinical data persisted by 

Opereffa does not include the relationships among data items that would be 

required to support these aspects of AQL queries. Therefore, the flexibility of the 

Opereffa persistence layer lies in its schemaless nature, but it does not extend to 

queries that make use of the structure of the data it contains. 

The use of openEHR archetypes as the unit of persistence means that 

Opereffa replaces a significant component of the openEHR specifications in an ad-

hoc way. The openEHR specifications define the openEHR RM (Beale et al. 2008e) 

as the means for representing actual clinical data, conforming to structural and 

value constraints defined by the openEHR archetypes. Opereffa uses the wrapper 

approach depicted in Figure 19 to represent actual data values, effectively replacing 

the RM representation with wrappers. The consequence of this approach to the 

persistence layer is that the data values are associated with custom paths based on 

wrapper types instead of archetype paths. AQL queries are based on archetype 

paths, assuming that the AQL implementation is capable of retrieving results using 

this information. This mismatch between the Opereffa persistence design and AQL’s 

assumptions makes it unable to support AQL’s way of describing data items.  

The adoption of openEHR archetypes as the unit of the clinical model that 

Opereffa uses to drive user interface generation, in addition to persistence, means 

that all clinical domain input should be provided in the form of archetypes. This 

approach was not fully aligned with the openEHR methodology, which assumes that 

archetypes should be re-usable models with maximal data set properties rather than 

clinical system specific models. Therefore, Opereffa’s interpretation of clinical 

models in the context of openEHR is not compatible with the widely adopted 

approach, which would diminish its capability to re-use globally available openEHR 

clinical models as well as its capability to share its models with other systems. This 

interpretation was sufficient to support the envisioned functionality for Opereffa, 

which was limited to a proof of concept EHR access portal that supports easy and 
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automatic generation of user interfaces in addition to data persistence support to 

serve these user interfaces. This definition of functionality did not include any 

clinical model or data sharing scenarios. 

6.3: Summary 
 

The primary finding from the Opereffa experiment described here is that the 

consideration of data access patterns, along with query result volumes, is a 

fundamental design requirement for openEHR implementations. Classifying some 

data access scenarios as of secondary importance for design leads to an 

architecture that makes their subsequent implementation infeasible, due to conflicts 

with the previous design choices.  

The problems identified with AQL implementation do not mean, however, 

that Opereffa was a failed experiment. Despite its shortcomings in responding to the 

requirements of the logical architecture in Section 4.7, Opereffa has provided 

valuable insight into the capabilities of openEHR for model driven health data 

processing. In fact, the strong and worldwide interest in Opereffa, despite its 

extremely limited exposure, is evidenced by references made to it in many already 

published studies. These cover a range of topics, such as: generation of user 

interfaces, use of big data frameworks, mobile applications and clinical decision 

support (Kopanitsa et al. 2013), (H.J. Parashar et al. 2013), (Cd, S, and P 2009), 

(Velte et al. 2012), (Hem Jyotsana Parashar, Sachdeva, and Batra 2013), (Kohler et 

al. 2011), (Saxena, Sachdeva, and Batra 2015), (Kashfi and Jairo Jr 2011), (Batra 

et al. 2014), (Christoph Rinner et al. 2011), (Madaan et al. 2013), (Menárguez-

Tortosa, Martínez-Costa, and Fernández-Breis 2011), (Sachdeva et al. 2011), 

(Madaan and Bhalla 2014), (Duftschmid, Chaloupka, and Rinner 2013), (Kohl 

2012), (Sundvall et al. 2013), (Menarguez 2013).  

 The most significant conclusion from the Opereffa experiment was the crucial 

responsibility of the persistence layer to support fundamentally different kinds of 

data access patterns, within an openEHR driven approach. A more flexible 

persistence design is thus required to fulfil the requirements of the logical 

architecture for CDS integration, to ensure a unified software framework that is 

more robust in the face of highly variable patterns and volume of data access. A 

novel design exhibiting these properties is the focus of the next chapter, leading, in 

the following chapter to its implementation and evaluation in a comprehensive CDS 

setting.  
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Chapter 7: Persistence Abstraction for openEHR 
 

Both clinical models based on openEHR and CDS built on BNs have the 

capability to support a wide range of functionality in their respective domains, and 

their integration leads to interactions between EHR and BN concepts, most of which 

require a BN based CDS implementation accessing clinical data via an openEHR 

implementation. Significant challenges exist in fulfilling this requirement. 

The data access characteristics of particular interactions between openEHR 

and BN implementations can vary significantly. For example, survival prediction 

based on a BN and the value of a prognostic variable requires access to clinical 

data for a single patient, but learning the structure and parameters of the BN would 

benefit from access to clinical data of a large population of patients. Therefore, the 

capabilities of openEHR persistence implementation are crucial in robust CDS 

integration. 

The openEHR specifications do not include the implementation of 

persistence of openEHR data or access to it via AQL in its scope. This keeps the 

openEHR specifications adequately concise, which lets implementers use a 

technology that is appropriate for their use cases without the risk of losing the 

benefits of openEHR compliance.  

However, the high number of options for implementing openEHR persistence 

introduces the inevitable cost of developing the openEHR data representation and 

AQL support for each implementation technology. Given that implementation can 

follow a different design approach for each technology, a significant amount of 

repeated effort is likely to be required. This repeated effort is a limiting factor for 

implementing openEHR across a number of persistence technologies, especially to 

better support CDS integration. Each of these persistence technologies potentially 

offers a unique advantage such as large scale in memory data processing 

(Stonebraker and Weisberg 2013), batch data processing (Borthakur 2007), 

streaming data processing (Ranjan 2014) and more. Given that these advantages 

can help improve performance of different CDS scenarios, eliminating this limiting 

factor could potentially improve openEHR based CDS by making use of the results 

of ongoing research. 

Another aspect of integration that needs to be considered is the effect of 

previous design decisions for persistence that are implemented prior to CDS 

integration. As discussed in Section 6.3, an openEHR implementation can fulfil 

functional requirements for a clinical information system and still fail to support data 

access for CDS integration. 
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Overcoming these challenges is necessary to benefit from the technology 

independent nature of both openEHR methodology and BNs in the context of their 

integration. Otherwise, integration of openEHR methodology and BNs cannot go 

beyond a series of case specific systems integration tasks, falling short of the 

unified architecture this thesis aims to develop. 

This thesis develops abstract, robust and consistent representations of both 

openEHR data and the Archetype Query Language to overcome these challenges. 

These representations allow openEHR data persistence and AQL to be 

implemented on a number of persistence systems. Persistence system is used as 

an umbrella term in this thesis that refers to software that provides the capability to 

save data to a durable medium and read it back, such as relational databases, big 

data frameworks, graph and document databases. 

An abstract definition of openEHR data and AQL processing with a focus on 

implementation across different persistence systems complements openEHR 

methodology without compromising its technology independent nature. This 

persistence abstraction establishes a balance between technology independence 

and implementations fully specialised to particular technologies. Consequently, it 

enables AQL based data access to a number of underlying persistence systems, 

providing a unified platform to support CDS based on BNs  

An ideal abstraction should sufficiently support the following requirements to 

achieve this goal: 

• Expressiveness 

The abstraction should be able to express openEHR RM based data and 

AQL semantics. 

• Extensibility 

The abstraction should support extensibility to accommodate changes to the 

openEHR specifications and support extensions which may not be part of the 

specification, but deemed useful. 

• Feasibility of implementation 

The abstraction should be implementable across a number of persistence 

systems.  

• Consistent representation 

The abstraction should ideally have a consistent representation that can 

define data and operations on data across implementations on different 

platforms.  

• Scientific relevance 
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The abstraction should have research associated with it that identifies its 

benefits and shortcomings in relation to its use in openEHR persistence, 

especially for supporting CDS.  

 

The scope of the persistence abstraction consists of openEHR RM (Beale et 

al. 2008e) and AQL (Ma, Frankel, and Beale 2014). 

7.1: openEHR Models and RM Data 
 

Persistence abstraction for RM provides a representation of data that is 

based on RM types. The RM types, as discussed in Section 3.1, are defined 

independent of any particular technology. Therefore, openEHR data can be 

represented in many data formats, as long as the representation conforms to 

definitions of RM types. Textual formats such as XML, custom binary formats, or 

custom data structures based on built in type systems of programming languages 

can all represent RM data. The XML format is frequently used for openEHR data 

representation due to its strong adoption by many platforms as well as being human 

readable, and it allows openEHR data to be transformed to other formats when 

necessary.  

The screenshot in Figure 20 shows the relationship between an openEHR 

model and RM data. The term openEHR model refers to an openEHR template. As 

discussed in Section 3.1, openEHR templates are modelling artefacts that are 

strongly associated with openEHR implementation and openEHR methodology 

encourages actual clinical data to be created based on them. Therefore, they will be 

referred to as openEHR models or clinical models in the context of persistence 

abstraction. 

 The screenshot from the freely available template designer tool in the left 

hand of the diagram in Figure 20 illustrates the clinical model, which is an openEHR 

template, and the visual representation of RM data to the right of the same diagram 

illustrates an RM instance that is valid according to this model.  

 The clinical data on the right is in XML format and a few data items such as 

the Systolic and Diastolic from the model are associated with actual data in the XML 

file.  

 The archetype path of the Systolic data item of the clinical model in Figure 20 

provides a mechanism for referring to data items as defined in the openEHR 

specifications (Beale et al. 2008c). The archetype path consists of a root and a 

sequence of elements listed under the root in a parent/child format in which each 
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element except the root has a parent. Predicates that constraint archetype node 

identifiers to particular values can be placed on elements. The elements can be 

uniquely identified among their siblings using their archetype node identifier values 

in predicates, as exemplified by the [at0006] predicate on the events element of the 

path. 

The archetype path of a data element is independent of the format that is 

used for representing actual clinical data, providing a semantically meaningful 

pointer to data without the need to know the underlying data format used by the 

openEHR implementation. It is the implementer's responsibility to provide access to 

actual clinical data pointed at by the archetype path.  

The clinical model on the left in Figure 20 defines a set of data instances that 

fits the structure defined by the model along with the criteria for data values. The 

RM instance on the right is just one instantiation of data that is valid according to 

this model, based on the implementation of RM types using the XML type system, 

such as COMPOSITION and OBSERVATION types.  

 The XML data in Figure 20 is an example of RM instance data that could be 

created in many openEHR implementations. Regardless of its persisted form or the 

persistence system it is saved in, RM data such as this should be queryable in a 

platform independent way. This requirement is fulfilled by the Archetype Query 

Language, which is therefore within the scope of persistence abstraction along with 

RM data. 
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/content[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]/

data[at0001]/events[at0006]/data[at0003]/items[at0004]

Figure 20: openEHR clinical model and RM based data instance 

 

 

7.2: Archetype Query Language  
 

Querying openEHR data using AQL is a platform independent method of 

data access, which is widely adopted by openEHR implementers, despite AQL not 

being part of the openEHR specifications at the time of the writing of this thesis. 

Similar to openEHR templates, it is likely to become part of openEHR specifications 

in a bottom up manner, following its adoption by implementers. Therefore, it is 

chosen as the means of data access in this thesis.  
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AQL queries consist of three major sections identified by three clauses in an 

AQL query: SELECT, FROM and WHERE. Their brief explanation is as follows: 

• FROM 

The FROM clause defines the data points in an RM instance that will be 

used as reference points in other AQL clauses. They can be used directly or 

become reference points for accessing other data points through relative paths. 

This clause supports describing the hierarchical relationships of data points 

along with the use of predicates on their attributes such as their archetype node 

identifiers. 

• SELECT 

The SELECT clause identifies the data points in an RM instance that the 

AQL query should return in its results. These points can either be the ones 

identified in the FROM clause or other data points that lie on a path relative to 

them.  

• WHERE 

The WHERE clause allows expressing various constraints either directly on 

the data points identified by the FROM clause or on data points at a relative 

path to them, for the purposes of filtering results.  

 

Figure 21 contains an example AQL query that should return the Systolic 

data point from the RM instances that match the criteria defined in the query. The 

right hand side of Figure 21 contains a template, which shows how AQL queries are 

defined by criteria based on clinical models. 

This AQL query can be deconstructed as follows, based on the key clauses: 

• FROM 

The FROM clause identifies three data points based on the RM types. The 

EHR is the highest level container in the openEHR specifications that contains 

all clinical data for a patient and it is not represented in the clinical model in 

Figure 21. Nonetheless, the AQL implementation is responsible for identifying 

the EHR instance that has the ehr_id value of ‘1234’. The EHR instance is given 

the alias ‘e’.  

FROM clause in this query uses the CONTAINS keyword to define a 

hierarchical containment constraint to identify the patient encounter element (of 

RM type COMPOSITION) that should reside within an EHR. The encounter 

element is given the alias ‘c’ and its archetype node id is constrained to 

‘openEHR-EHR-COMPOSITION.encounter.v1’ via a predicate.  
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A second use of CONTAINS keyword introduces another containment 

constraint that requires a blood pressure observation (o) (of RM type 

OBSERVATION) to exist at some relative path to patient encounter (c). 

Connections in Figure 21 from c and o elements to clinical model on the right 

illustrate the hierarchical relationship the FROM clause is describing.  

Therefore, the FROM clause, identifies three data points with aliases e,c and o. 

These points are then used directly or indirectly in other clauses. 

• SELECT 

The SELECT clause uses only one data point identified by the FROM clause 

which has an RM type of OBSERVATION and alias ‘o’. SELECT clause uses 

this data point as the root of a path that identifies the actual data point of 

interest.  

The data point defined as “Systolic” in the clinical model in Figure 21 is an 

RM object that represents a quantity. Its path relative to the root of the 

OBSERVATION typed RM object is 

“/data[at0001]/events[at0006]/data[at0003]/items[at0004]” based on the clinical 

model. By using the ‘o’ alias the SELECT clause identifies the Systolic data as 

the result to be returned from the query. 

 

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id = '1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

 

Figure 21: AQL query and openEHR clinical model 
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7.3: Structural Characteristics of openEHR RM 
 

The structural characteristics of openEHR RM carry significance both in 

clinical modelling and implementation.  

The RM, which is the starting point of clinical modelling in openEHR 

methodology, enforces a hierarchical structure for representation of clinical data. As 

depicted in the high level overview of openEHR RM type hierarchy diagram in 

Figure 22, which is taken from the openEHR EHR Information Model specification 

(Beale et al. 2008e), instances of EHR type (representing the concept of Electronic 

Health Record) create a single container for all clinical data that belongs to a 

particular EHR. Therefore, the EHR is the top-level concept.  

The EHR instance is the container of actual clinical data that is represented 

by instances of the COMPOSITION type. Even though there are many other types 

in the RM, EHR and COMPOSITIONs under EHR instances are key determinants of 

structure of actual clinical data, as the diagram from openEHR EHR Information 

Model specification in Figure 23 shows. 

 

 

 
Figure 22: openEHR RM: EHR package 
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Figure 23: openEHR EHR: organisation of data 

 

Regardless of the method and persistence system chosen for 

implementation, access to RM based data based on the structural characteristics of 

clinical models requires the implementation to make use of structural aspects of it. 

The functionality that is defined in the openEHR specifications, which uses 

archetype paths, as well as AQL query processing, which uses both relative paths 

and containment of data items, are examples of data access based on structural 

characteristics. Therefore, a persistence abstraction for openEHR and an 

implementation based on it must support the representation of these characteristics 

of RM based data.  

Based on these requirements, persistence abstraction can be defined as 

platform independent representation and querying of structured clinical content 

where querying supports content model based access methods. Aside from its 

specific focus on clinical content, this definition bears noticeable similarity to 

capabilities of XML and query mechanisms it supports. This similarity is important 

since a large amount of research has been conducted on XML for content 

representation in addition to query processing, results and findings of which can 

contribute to the design of an openEHR specific persistence abstraction. 

 The inclusion of XML in openEHR specifications as an implementation 

technology specification, as discussed in Section 3.1, confirms XML’s capability to 

represent openEHR data, strengthening the argument that its underlying content 

model may provide valuable insights for building a persistence abstraction for 

openEHR. 
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  To this end, an appraisal of XML representation of openEHR along with 

XML’s underlying data abstraction methods is performed. The findings of this 

appraisal are then used as the basis of the persistence abstraction for openEHR, 

without any dependencies on XML.  

7.4: Appraisal of XML Representation of openEHR Data  
 

7.4.1: Design and Goals of XML 

 

The Introduction section of the XML specification (Bray et al. 1997) provides 

insight into XML’s fundamental characteristics that has made it a ubiquitous data 

representation and thus exchange method: 

 
“Extensible Markup Language, abbreviated XML, describes a class of data objects 
called XML documents and partially describes the behavior of computer programs 
which process them. XML is an application profile or restricted form of SGML, the 
Standard Generalized Markup Language [ISO 8879]. By construction, XML 
documents are conforming SGML documents. 
XML documents are made up of storage units called entities, which contain either 
parsed or unparsed data. Parsed data is made up of characters, some of which 
form character data, and some of which form markup. Markup encodes a 
description of the document's storage layout and logical structure. XML provides a 
mechanism to impose constraints on the storage layout and logical structure. 
[Definition: A software module called an XML processor is used to read XML 
documents and provide access to their content and structure.] [Definition: It is 
assumed that an XML processor is doing its work on behalf of another module, 
called the application.] This specification describes the required behavior of an XML 
processor in terms of how it must read XML data and the information it must provide 
to the application.” 
 

XML documents have a well-defined structure and the specification clearly 

outlines the functionality that must be supported by software that will process XML 

data. Processing XML data has become a common capability for a large number of 

platforms through the implementation of XML processors in many different 

programming languages.  

One of XML’s goals is supporting a wide variety of applications. This goal is 

established by not only describing how XML documents are supposed to be 

processed but also by keeping XML independent of the concepts of a particular 

domain. XML refers to some fundamental concepts such as documents, elements, 

tags etc. but these concepts are domain neutral and the specification focuses on 

syntax and structure of these concepts when represented in textual form.  
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Through the use of these generic concepts, XML has been able to represent 

many types of data from various domains in the form of XML documents, including 

openEHR RM data. The openEHR foundation has published XML Schema 

Documents (XSD) that define the openEHR RM based on XML’s type system and 

XML documents that comply with published XSDs represent RM based data.  

The initial conclusion from this observation would be that XML is a 

convenient intermediate form for openEHR RM data. This intermediate form can be 

used to move openEHR data across systems by leveraging ubiquitous support for 

XML processing, delivering a successful solution to the requirement of representing 

clinical data consistently across different platforms. The data abstraction methods 

used by XML, which are discussed next, play a key role in its success since they 

enable consistent implementation of XML across platforms.  

 

7.4.2: Data Abstraction Methods Used by XML 

 

A set of XML related specifications define the data abstraction methods used 

by XML along with query languages that target XML data, such as XML Information 

Set Specification(Infoset) (Cowan and Tobin 2004), Document Object Model 

Specification (DOM) (Wood et al. 1998) and XQuery 1.0 (Boag et al. 2002) and 

XPath 2.0 Data Model (XDM) Specification (Fernández et al. 2002).  

An in-depth discussion of these specifications is out of the scope of this 

thesis, but a high level overview of their relationship is provided in Figure 24. The 

diagram in Figure 24 outlines the relationship between the XML specification and 

three other specifications from World Wide Web Consortium (W3C) that provide 

abstractions of XML data at various levels.  

The diagram also provides the goals of XML Infoset, DOM and XDM along 

with the increasing level of abstractions they build on each other to achieve these 

goals.  

XML Infoset defines concepts such as Element Information Item or Attribute 

Information Item. These concepts are more abstract than the ones used in XML 

specification, for the purpose explained in the introduction of XML Infoset 

specification: 

 

“This specification defines an abstract data set called the XML Information Set 
(Infoset). Its purpose is to provide a consistent set of definitions for use in other 
specifications that need to refer to the information in a well-formed XML document”  
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DOM and XDM in turn, are both built on the abstractions provided by Infoset. 

DOM’s goal is to allow access to documents along with the capability to modify 

them. To achieve this goal, DOM provides a set of interface definitions, which define 

the functionality that must be implemented by software. The Node interface defined 

by DOM is a fundamental interface that allows access to documents. The concept of 

a node is a component of the larger concept of a tree that consists of nodes. 

Although the DOM specification does not contain a formal definition of the tree, 

“What is the Document Object Model” section of DOM Level 3 Core Specification 

(Nicol et al. 2001) establishes the the relationship between tree and node concepts 

as follows: 

 

“In the DOM, documents have a logical structure which is very much like a tree; to 
be more precise, which is like a "forest" or "grove", which can contain more than 
one tree. Each document contains zero or one doctype nodes, one document 
element node, and zero or more comments or processing instructions; the 
document element serves as the root of the element tree for the document. 
However, the DOM does not specify that documents must be implemented as a tree 
or a grove, nor does it specify how the relationships among objects be implemented. 
The DOM is a logical model that may be implemented in any convenient manner. In 
this specification, we use the term structure model to describe the tree-like 
representation of a document. We also use the term "tree" when referring to the 
arrangement of those information items which can be reached by using "tree-
walking" methods; (this does not include attributes).” 
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The Node interface and its related interfaces do not directly mention XML. In 

fact, DOM is capable of providing access to both XML and HTML (Berners-Lee and 

Connolly 1995). The concepts used by DOM to represent documents, such as 
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nodes and trees are more abstract then the underlying XML Infoset concepts, which 

are more specific to a document, such as Element Information Item. This increased 

abstraction is what allows DOM to provide a unified access model to different 

document types. 

 This approach is adopted by XDM as well, by introducing a data model 

based on XML Infoset, but with a focus on XML query languages, as described in 

“Introduction” section of XQuery 1.0 and XPath 2.0 Data Model specification: 

 

“The XQuery 1.0 and XPath 2.0 Data Model (henceforth "data model") serves two 
purposes. First, it defines the information contained in the input to an XSLT or 
XQuery processor. Second, it defines all permissible values of expressions in the 
XSLT, XQuery, and XPath languages. A language is closed with respect to a data 
model if the value of every expression in the language is guaranteed to be in the 
data model. XSLT 2.0, XQuery 1.0, and XPath 2.0 are all closed with respect to the 
data model. 
The data model is based on the [Infoset] (henceforth "Infoset"), but it requires the 
following new features to meet the [XPath 2.0 Requirements] and [XML Query 
Requirements]: …”  
 

XDM focuses on read-only access for querying, but it uses abstractions 

similar to DOM, such as Document Node, Element Node and other Node types as 

shown in Figure 24. The “Terminology” section of XQuery 1.0 and XDM 

specification describes how these concepts are brought together: 

 

“Nodes form a tree that consists of a root node plus all the nodes that are reachable 
directly or indirectly from the root node via the dm:children, dm:attributes, and 
dm:namespace-nodes accessors. Every node belongs to exactly one tree, and 
every tree has exactly one root node. 
… 
[Definition: A tree whose root node is a Document Node is referred to as a 
document.] 
…” 
 

Despite being more specific compared to DOM, XDM’s definition of a tree 

structure that consists of nodes and it use for representing documents overlaps with 

DOM’s approach based on the same concepts. The XPath module of DOM depicted 

in Figure 24 is proof for this overlap.  

 The key finding from the brief analysis of the relationships between the 

specifications included in Figure 24 is that these abstractions are the basis on top of 

which XML representation of openEHR is built, indicating the feasibility of 

representing openEHR data and queries that target this data with a small number of 

platform independent concepts. 



 131

7.4.3: Key Findings 

 

 The implementations of the interfaces defined by the specifications in Figure 

24 enables XML form of RM based data to be processed in many platforms. Both 

the representation of content via DOM interfaces and the capability to query this 

content using specialised XML query languages such as XQuery (Boag et al. 2002) 

or XPath (Clark and DeRose 1999) make heavy use of the tree based abstraction. 

Therefore, the XML representation of openEHR indirectly shows the feasibility of 

using a tree abstraction for openEHR data 

The diagram in Figure 25 shows how openEHR specifications and tree 

based abstractions provided by XML specifications are related to actual software 

implementations. The research that focuses on XML processing is also depicted in 

Figure 25. 
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Figure 25: openEHR as XML: abstract and concrete components 

 

The relationships presented in Figure 25 hints at the possibility of using XML 

representation of openEHR to accomplish the goals identified at the beginning of 

this chapter. This approach would build on the ubiquity of both XML documents and 

implementations of XML query languages using an XML document representation of 

openEHR RM data along with a mapping of openEHR AQL to XML specific query 

languages, as depicted in Figure 26. 
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Figure 26: XML based openEHR persistence 

 

The diagram in Figure 26 includes AQL alongside openEHR specifications to 

delegate both data representation and querying to XML and its query languages. 

Although this approach has the potential to fulfil the requirements of the persistence 

abstraction for openEHR, its complete reliance on XML is likely to introduce various 

problems. These problems stem from XML’s fundamental traits that improve its 

versatility, which comes with the price of lower storage and computation efficiency 

compared to specialised data formats.  

 Human readability is one such trait that leads to XML documents using a 

textual representation and content layout that is not as space efficient as other 

alternatives. Implementations of powerful XML query languages, which are 

dependencies of the approach depicted in Figure 24, would need to be available in 

every context in which openEHR data is queried. Not all the features of these 

generic query languages are necessarily required to support the functionality of 

AQL, but there features are nonetheless implemented, potentially introducing 

computational overhead. This overhead may introduce performance issues in use 

cases where a high number of XML documents must be processed, such as 

epidemiological queries (Freire et al. 2012), even when optimised XML databases 

are used.  

Another potential problem associated with delegating persistence abstraction 

to XML processing lies in the difference between availability of XML processors and 

feasibility of embedding them into other software. Given the large number of 

persistence systems that can be used for openEHR persistence, embedding an 
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XML processor to these systems may lead to a complex implementation step for 

openEHR persistence. 

Due to these potential problems, despite the versatility and success of its 

underlying data models, direct use of XML does not sufficiently fulfil the 

requirements of persistence abstraction for openEHR as defined in this thesis. 

However, problems associated with XML’s implementation do not necessarily rule 

out the use of its internal abstraction methods. The tree based abstraction of data is 

therefore used as the basis of a persistence framework for openEHR. 

7.5: Tree Based Persistence Abstraction for openEHR 
 

 The experimental persistence abstraction for openEHR developed in this 

thesis uses the tree representation of RM data, based on the findings of appraisal of 

XML and related query language specifications. This approach has the benefit of 

excluding representation and processing requirements for data that are not relevant 

to RM or AQL query processing, achieving significant simplification for both 

persistence abstraction and its implementation. Figure 27 depicts the fundamental 

components of this architecture. 
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Figure 27: Tree based persistence of openEHR data 

 

Both the RM based data representation and the AQL processing model use 

tree based abstractions in this architecture. A particular implementation of 
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persistence abstraction on a persistence system is based on two components: a 

serialisation format and a query method. 

The serialisation format can be any data format supported by the persistence 

system to store data, and query method is any mechanism that allows access to 

data stored in the persistence system. Both the serialisation format and the query 

method are mapped to platform independent components of the persistence 

abstraction as depicted in Figure 27. These mappings enable different persistence 

systems such as relational databases, graph databases, or large scale data 

processing frameworks such as Hadoop (Borthakur 2007) to support AQL based on 

their native features, providing a unified data access method to RM based data. 

Therefore, the architecture in Figure 27 provides a generalisation of the openEHR 

persistence implementation based on the use of tree based persistence abstraction 

for openEHR. 

This generalisation is built on the tree representation of openEHR data, with 

a strong specialisation on RM types instead of a generic content representation 

approach. The same specialisation is adopted for AQL processing as well. Tree 

representation and AQL processing based on this representation are defined in a 

technology independent way, similar to openEHR. Therefore, this generalisation is 

technology independent.  

The specialisation in openEHR RM types and AQL processing reduces 

complexity in both representation and implementation by excluding all data 

representation and querying requirements that are not related to openEHR, in 

addition to eliminating the need for any intermediate representation and processing 

layers such as XML documents and processors. The difference between the two 

approaches is depicted in Figure 28. 

When XML is used as the means of representing and querying openEHR 

data, the tree based representation and query mechanisms for openEHR are 

encapsulated within the relevant XML specifications and implementations. This 

approach corresponds to an implicit and limited abstraction of openEHR persistence 

via the use of XML. 

Explicitly defined RM data and AQL abstractions remove the dependencies 

for XML storage and processing capability for a persistence system to be used for 

openEHR implementation. This approach also allows particular implementations 

based on persistence system specific serialisation formats and query methods to be 

optimised for openEHR persistence, which would not be possible in case of 

embedding an XML processor into persistence systems. 
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The first step in achieving these suggested benefits is the development of 

tree representation for RM data. 
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Figure 28: Implicit vs explicit tree based persistence 

 

7.5.1: Tree-based Representation of RM data 

 

In the context of this thesis, the term tree refers to tree data structure (Knuth 

1968) and its computer science interpretation. The trees that represent RM data are 

singly rooted, and each node has at most one parent. All nodes of a tree are 

instances of the same data type. The data type used for nodes is a collection of key-

value pairs, frequently implemented as a hash table (Cormen 2009). Using this data 

type enables nodes to represent named attributes with values. Therefore, when this 

thesis references an attribute of a node, the reference implies an entry in the 

collection of key-value pairs.  

The connections between nodes represent the parent-child relationship in 

which a parent node may have zero or more child nodes. The connections (edges) 

between nodes are represented via consistently named attributes of nodes such as 

children or parent. The root node of a tree is the only node with a null value for the 

parent attribute. There are no constraints on the names of attributes that can be 

used. Therefore, any aspect of openEHR RM data can be represented with an 

attribute added to a node instance. 
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The mapping from openEHR RM data instance to a tree is therefore 

representing instances of the RM types as nodes of a tree. 

 

...

{
id = 1

name = ‘composition’

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR…

children = [2,3,4,...]

parent = <null>

value = <null>

...

{
id = 4

name = ‘content’

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR…

children = [8,9...]

parent = 1

value = <null>

...

 
Figure 29: openEHR RM based data as tree 

 

Figure 29 provides a high-level overview of this approach based on a visual 

representation of RM based data. The data in this figure is based on the blood 

pressure clinical model in Figure 20. The RM type instances are represented as 

nodes of the tree on the right. The tree nodes with ellipsis represent a group of 

nodes that are not included in full detail in the tree for the sake of clarity.  

The root node of the tree represents the top-level object of the RM data with 

the RM type COMPOSITION. The root node of the tree represents the 

“composition” element of RM data. The attributes of the root node are partially 

included in Figure 29 to demonstrate how node attributes are used. The id attribute 

is the unique identifier of the node. The value of this attribute is used by parent and 

children attributes of nodes to express parent-child relationships. The children 

attribute of the root node is a collection of ids of its children, of which only the one 

with id 4 is individually presented in Figure 29. The rm_type attribute contains RM 

type of a data item, archetype_node_id contains the semantic identifier of a data 

item as defined by the openEHR specifications and name attribute contains the 

name of the field defined by the RM type. If an RM type has a field that contains an 

actual numeric or literal value, this value can be represented by a node attribute 

named “value”. The value of “value” attribute is null for nodes which do not have a 

single, primitive value, as depicted in Figure 29. 

The attributes of nodes of the tree in Figure 29 are only illustrative of the key-

value nature of the nodes and not the precise list of attributes that every node has in 

the experimental implementation discussed in Chapter 9. These details are provided 

in Chapter 8. The flexible nature of key-value pairs based nodes allows both RM 
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data and other data that can be used by AQL processing implementations, such as 

parent-child relationships, to be expressed in a simple way. The creation and 

content of node level data is a key part of both this thesis and future research.  

The tree based representation of RM based data provides the target for AQL 

processing, which is built on a small number of operations on trees. 

7.5.2: Tree-based Abstraction of AQL Processing  

 
 The term AQL processing as used in this thesis refers to producing a result 

set of RM based data instances in response to applying the conditions defined in an 

AQL query on data. A tree based abstraction of AQL processing therefore implies 

expressing the semantics of these conditions based on constraints on nodes of tree 

based representation of RM. The conditions defined by an AQL query are 

distributed across the fundamental clauses of AQL, with potential dependencies on 

each other. The tree based abstraction is therefore developed based on the 

“FROM”, “SELECT” and “WHERE” AQL clauses which are written in upper case in 

the rest of this chapter. 

7.5.2.1: The ‘FROM’ AQL Clause as Source of Constraints on Trees 

 
Identifying tree nodes defined by the conditions of the FROM clause requires 

two types of constraints to be applied: constraints on node attributes and constraints 

on node hierarchy. Figure 30 shows how FROM clause of an AQL query is 

associated with a tree that represents RM based data. 

 

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e

...

{ id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

 

Figure 30: AQL FROM clause as constraints on a tree 

 

A predicate such as [ehr_id=’1234’] for a data item corresponds to a 

constraint on the tree node attribute ehr_id with value ‘1234’. The “EHR” type of the 
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same data item in the FROM clause is also expressed as a constraint on “rm_type” 

attribute.  

The optional alias for the data item which is ‘e’ in this case is included in 

Figure 30 for convenience but it is not a constraint and is not part of the mapping 

from AQL to tree constraints. Since AQL assumes that an unquoted string in a 

predicate is a constraint on archetype node identifier, the data items with aliases ‘c’ 

and ‘o’ can be written as c[archetype_node_id=’ openEHR-EHR-

COMPOSITION.encounter.v1’] which is consequently expressed as a constraint on 

a node attribute as depicted in Figure 30. 

The constraints on node hierarchy are introduced by the CONTAINS 

keyword used in the FROM clause which expresses a “descendant of” relationship 

between data items. That is, given a containment constraint such as A CONTAINS 

B, there should exist a data item B that is accessible by recursively following child 

nodes where A is the root node. In other words, B should be a descendant of A. 

This definition includes direct parent-child relationships since they are also 

ascendant-descendant relationships. Figure 30 shows the descendant status of 

nodes via the use of dashed arrows which means there may be zero or more nodes 

between a parent and its descendant.  

7.5.2.2: The ‘SELECT ‘ AQL Clause as Source of Constraints on Trees 

 

The SELECT clause introduces constraints on both node hierarchy and node 

attributes as depicted Figure 31. 

The SELECT clause uses the ‘o’ alias for the node identified in the FROM 

clause as the root of a path that ends with a data item of interest that should be 

returned as the result of the AQL query. In case of query in Figure 31, this item is 

given the alias ‘Systolic’. 

The ‘Systolic’ data item defined by SELECT clause can be expressed as a 

series of hierarchical constraints on tree nodes similar to ones introduced by the 

CONTAINS keyword. However, these constraints are parent-child relationships 

between nodes as expressed by straight connectors in Figure 31. The nodes on the 

path from ‘o’ to ‘Systolic’, including ‘Systolic’ node itself are subject to node attribute 

constraints for the archetype_node_id attribute. ‘Systolic’ alias is included in the 

diagram in Figure 31 for convenience, similar to ‘o’ alias, but it is not related to any 

constraints. 
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SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e

...

{
id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

{
id = 36

name = ‘data’

...

archetype_node_id = ‘at0001’

{
id = 42

name = ‘events’

...

archetype_node_id = ‘at0006’

{
id = 49

name = ‘data’

...

archetype_node_id = ‘at0003’

{
id = 52

name = ‘items’

...

archetype_node_id = ‘at0004’

Systolic

...

...

...

...

...

 

Figure 31: AQL SELECT clause as constraints on a tree 

 

7.5.2.3: The ‘WHERE’ AQL Clause as Source of Constraints on Trees  

 

The WHERE clause allows AQL queries to introduce further constraints 

either directly on data items defined in the FROM clause or data items accessible 

through relative paths. These constraints can be constraints on hierarchy or 

constraints on archetype attributes as shown in Figure 32. 

Even though the sample query in Figure 32 points at a data element that is 

defined in the SELECT clause (‘Systolic’), this is not necessarily the case all the 

time. The AQL syntax and semantics allow the WHERE clause to point at any node 

using a relative path based on the data items defined in the FROM clause. 

Therefore, the WHERE clause may introduce constraints on data items that are not 

included in the SELECT clause.  

The example AQL query in Figure 32 actually uses this feature of the 

WHERE clause to refer to a node named ‘value’, which is a child node of the 

‘Systolic’ node. The ‘value’ node has an attribute named ‘value’, and a constraint is 

placed on this attribute. 
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SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/value >= 90

o

c

e

...

{ id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-

COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-

OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

{
id = 36

name = ‘data’

...

archetype_node_id = ‘at0001’

{
id = 42

name = ‘events’

...

archetype_node_id = ‘at0006’

{
id = 49

name = ‘data’

...

archetype_node_id = ‘at0003’

{
id = 52

name = ‘items’

...

archetype_node_id = ‘at0004’

Systolic

...

...

...

...

...

{
id = 58

name = ‘value’

...

value >= 90

...

 

Figure 32: AQL WHERE clause as constraints on a tree 

  

7.5.3: Mapping Tree-based AQL Processing to Tree Pattern 
Queries  

 

The mapping of AQL query clauses to constraints on hierarchy and attributes 

of tree nodes establishes the AQL query semantics based on trees. However, the 

discussion in 7.5.2 is a textual definition of these mappings, even though it is 

supported by visual representation. This textual definition does not provide a means 

of expressing constraints on trees that can be processed by software 

implementation. Using the Tree Pattern Query (TPQ) representation, AQL queries 

can be expressed in a compact and platform independent way. 

7.5.3.1: Tree Pattern Query Representation  

 
A TPQ (Lakshmanan, Wang, and Zhao 2006) is a specialised representation 

that depicts the parent-child and ancestor-descendant relationships of nodes on a 

tree. TPQ processing, also called TPO matching, applies a TPQ on a tree and 

returns tree nodes that match the pattern defined by the TPQ.  

The base TPQ representation for queries developed in this thesis expresses 

the ascendant-descendant relationship between nodes using double edges, and the 
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parent-child relationship with single edges following the definition from (Amer-Yahia 

et al. 2001). This base representation is extended with constraints on node 

attributes.  

The use of TPQs to represent query semantics follows the same approach 

as in Section 7.5.2, based on AQL query clauses.  

7.5.3.2: Mapping Tree Constraints of FROM AQL Clause to TPQ 

 

FROM clause of AQL introduces only ascendant-descendant constraints on 

nodes in a tree, based on the CONTAINS keyword as depicted in Figure 30. Figure 

33 provides an extension of this scenario: the TPQ representation of the FROM 

clause with constraints on attributes in addition to constraints on hierarchy. 

 

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1234

{
rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-

COMPOSITION.encounter.v1’

{
rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-

OBSERVATION.blood_pressure.v1’

TPQ

 

Figure 33: AQL FROM clause as a TPQ 

 

Figure 33 shows that the constraints introduced by FROM clause can be 

expressed with the TPQ semantics. For the purposes of clarity, the diagrams that 

include TPQs do not show all the constraints on node attributes.  

7.5.3.3: Mapping Tree Constraints of SELECT AQL Clause to TPQ 

 

The SELECT clause may use relative paths to point at nodes based on the 

nodes defined by the FROM clause. These relative paths may include predicates 

which express constraints on node attributes. 

In order to express relative paths with TPQ, the relative paths are 

transformed to an ascendant-descendant relationship. This transformation relies on 

the fact that every parent-child relationship introduced by the components of a path 

is also an ascendant-descendant relationship. This transformation is complemented 

by a constraint on an attribute, which uses the concept of a derived attribute. The 
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value of the derived attribute is based on the relationship between the root of the 

relative path and the last node on it: the absolute path of the last node on the 

relative path can be obtained by following the relative path on top of the absolute 

path of the root node. Figure 34 shows how relative path extension to TPQ is 

represented. 

 

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o{
id = 18

...

path=’absolute_path_from_tree_root’

{
id = 36

...

archetype_node_id = ‘at0001’

{
id = 42

...

archetype_node_id = ‘at0006’

{
id = 49

...

archetype_node_id = ‘at0003’

{

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]’

Systolic

...

...

...

...

o

Systolic

id = 52

...

archetype_node_id = ‘at0004’

path=’…/data[at0001]/events[at0006]/data[at0003]/items[at0004]’

{

openEHR RM Data Tree
TPQ

 

Figure 34: AQL SELECT clause as a TPQ 

 

Figure 34 shows the RM based data tree and TPQ side by side. Each node 

on the tree has its absolute path from the root of the tree assigned to its path 

attribute. The value ‘absolute_path_from_tree_root’ of the path attribute of node o is 

a placeholder value used in the diagram for the purposes of clarity.  

The node with the alias Systolic is reachable from o by following a series of 

nodes. Therefore, its absolute path from the tree root can be obtained by taking the 

absolute path of o and appending the relative path of each node on the path 

recursively. The reachability of Systolic node from o also implies that it is a 

descendant of o.  

The TPQ in Figure 34 expresses this relationship through connecting 

Systolic to its ascendant o with a double edge and introducing a derived attribute 

constraint on a path by referring to the path value of o. Since TPQ represents a 

pattern and not any specific RM based data tree instance, the value of o’s path 
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attribute is referred to as path(o) which means that this value must be resolved by 

the actual implementation of TPQ.  

The only actual value used in the derived attribute is the relative path of 

Systolic, which is available from the SELECT clause. This relative path is 

independent of the actual absolute path of o and Systolic so it can be used in the 

TPQ as it is. The underlying requirement for the derived attribute value approach is 

that the absolute path of every node from the root is assigned to its path attribute. 

The implementation details of this approach are discussed in Chapter 8. 

7.5.3.4: Mapping Tree Constraints of WHERE AQL Clause to TPQ  

 
 The WHERE clause of AQL can represent complex conditions for filtering via 

the use of Boolean operators. Figure 35 depicts a rather simple example of the use 

of WHERE clause, in which filtering criteria for a numeric value is defined using a 

data item at a relative path to OBSERVATION o. In this simple case, the data item 

pointed at by the WHERE clause is represented as an anonymous node in the TPQ. 

The anonymous node uses the relative path representation approach in addition to 

another constraint on an attribute named value. 

 

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/value >= 140

o{
id = 18

...

path=’absolute_path_from_tree_root’

{
id = 36

...

archetype_node_id = ‘at0001’

{ id = 42

...

archetype_node_id = ‘at0006’

{ id = 49

...

archetype_node_id = ‘at0003’

{

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]’

Systolic

...

...

...

...

o

Systolic

id = 52

...

archetype_node_id = ‘at0004’

path=’…/data[at0001]/events[at0006]/data[at0003]/items[at0004]’

{

openEHR RM Data Tree
TPQ

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]/value’

value >= 140
{

Anonymous ‘where’ 

constraint node

 

Figure 35: AQL WHERE clause as a TPQ 
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The TQP representation is sufficient to express the fundamental semantics 

of AQL clauses. However, the use logical operators for more complex queries as 

well as various unspecified aspects of AQL processing requires further extensions 

to basic TPQ representation. 

7.5.4: Logical Operator Support in Tree Pattern Queries 

 
The support for logical operators enables AQL queries to express complex 

logic for accessing RM based data. The Boolean logical operators are supported in 

the following ways in the AQL grammar: 

• Combining CONTAINS expressions in the FROM clause 

AQL provides support for expressing ascendant-descendant relationships 

grouped together through AND, OR and NOT operators within the hierarchy 

defined by the FROM clause. The AQL specification (Ma, Frankel, and Beale 

2014) describes support for these operators as: 

“Boolean operators (AND, OR, NOT) and parentheses are used when multiple 

containment constraints are required.” 

• Combining WHERE clause conditions 

Multiple constraints can be introduced in the WHERE clause by connecting 

these constraints using Boolean operators (AND,OR,NOT). The Boolean 

operators can be used to connect path-constraint pairs, or they can be used to 

express multiple constraints in a predicate.  

• The unspecified behaviour of SELECT clause  

AQL can define multiple data points as results. Even though the AQL syntax 

does not explicitly define any Boolean operator support in this context, AQL 

implementation needs to establish an implicit Boolean operator connecting 

multiple data items. 

 

Previously developed mappings from AQL to TPQ representation cannot 

express queries which use these Boolean operators without extensions. The scope 

of extensions to TPQ representation to support Boolean operators is limited to AND 

and OR Boolean operators due to time constraints and rather frequent use of these 

operators. The draft AQL specifications include NOT and XOR operators as well. 

The extensions to TPQ representation are discussed based on an extended 

version of the previously used AQL query, along with an openEHR template that is a 

modified version of the one depicted in Figure 20. The modified template defines a 

clinical encounter as before, but body mass index (BMI) concept has been added 
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alongside the blood pressure measurement. Figure 36 contains a screenshot of this 

clinical template, which is used as the target of the AQL query with Boolean 

operators. 

 

COMPOSITION

OBSERVATION

OBSERVATION

[openEHR-EHR-COMPOSITION.sample_encounter.v1]

[openEHR-EHR-OBSERVATION.body_mass_index.v1]

[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

 
 Figure 36: Extended openEHR template 

7.5.4.1: Expressing Boolean Operators for FROM Clause in TPQs  

 
The use of AND or OR Boolean operators within the FROM clause requires 

that the relationship between sibling data items are explicitly defined. The template 

in Figure 36 has a COMPOSITION with two OBSERVATIONS. An AQL query that 

selects both OBSERVATION data items is provided in Figure 37. 

The query in Figure 37 selects two different data items, both having the 

same RM type: OBSERVATION. It is targeted at the clinical model represented by 

the template on the right and it needs to define the bmi and bpressure data items in 

the FROM clause so that they can be expressed as query results in the SELECT 

clause. The structure of the template makes body mass index and blood pressure 

data items siblings under the content field of the parent archetype (Encounter). 

The query uses parenthesis and AND Boolean operator to explicitly describe 

the structure of the data the query is targeting. The Boolean operator is required to 

clarify the relationship between bmi and bpressure. Without this operator, AQL 

implementation could process data instances where there is only bmi data item 

(assuming OR) and another implementation could exclude the same data instances 
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(assuming AND). Therefore, when the TPQ contains multiple data items with a 

shared parent the interpretation for their existence must be explicitly expressed 

using Boolean operators. 

 

SELECT bmi,bpressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

AND 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

 

Figure 37: AQL with Boolean operators 

 

This thesis uses a node representation of logical operators similar to (Izadi, 

Härder, and Haghjoo 2009) for containment constraints defined by the FROM 

clause. Figure 38 provides this representation based on the query from Figure 37. 

 

SELECT bmi,bpressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

AND 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

AND

bmi bpressure

enc

TPQ

 

Figure 38: AQL with AND operator and its TPQ representation 

 

Figure 38 depicts the AQL query, the template and the resulting TPQ for the 

FROM clause. The rectangular AND node is used to define the structural constraint 
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with a Boolean operator. The AND node is connected to ‘enc’ node with double 

edges to maintain the ascendant-descendant relationship, but it is connected to its 

operands with single edges to emphasize that they are operands of the AND node. 

The AQL query could have used OR operator in the CONTAINS statement which 

could then be expressed with the TPQ representation in Figure 39. 

 

SELECT bmi,bpressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

OR 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

OR

 

Figure 39: AQL with OR operator and its TPQ representation 

 

The semantics of the connections of the OR node with other nodes in this 

diagram is the same as the AND node in Figure 38: the ascendant-descendant 

relationship is preserved by the OR node. Recursive uses of logical operators in the 

FROM clause can be expressed in the TPQ representation following the same 

pattern. 

7.5.4.2: Expressing Boolean for SELECT Clause in TPQs 

 
AQL specification does not include support for logical operators for the data 

items defined in the SELECT clause. However, consistent interpretation is required 

for these items in the context of TPQ representation. The data items defined by the 

SELECT clause are based on the ones defined by the FROM clause. They can be 

the same, or they can be descendants, which are accessible via relative paths. The 

TPQ representations of constraints on hierarchy and attributes that are introduced 

by SELECT clause have been discussed in Section 7.5.3.3. However, these 

constraints actually require special treatment because of the unspecified semantics 

of AQL query processing behaviour.  
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When there are multiple data items defined in the SELECT clause, AQL 

processing implementation may or may not allow returning empty values for the 

items that cannot be found in data. Figure 40 depicts various RM based data 

instances in tree form along with a TPQ that has data items introduced by the AQL 

SELECT clause. 

 

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

AND 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value

pulse_pressure

RM BASED DATA 

INSTANCES

AND

 

Figure 40: AQL SELECT clause with multiple data items 

 

Figure 40 includes an AQL query that selects the bmi value and pulse 

pressure value based on the encounter template that has been used in Figure 36. 

The TPQ representation of the query includes ‘bmi_value’ and ‘pulse_pressure’ 

nodes in the TPQ using the descendant representation. The data instances on the 

right of the diagram in Figure 40 represent two different encounters during which 

RM based data instances have been created. However, the pulse pressure was not 

recorded in Encounter 2. Since the openEHR template defines pulse pressure as an 

optional value, these two data instances are both valid.  

The TPQ here interprets the relationship between “bmi_value” and 

“pulse_pressure” nodes and their parents based on the same semantics expressed 

by the CONTAINS statement in the FROM clause. That is, the existence of a 
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“bmi_value” node somewhere below the “bmi” node is a condition that has to be 

satisfied by a data tree for that tree to provide a match for this TPQ. The same 

requirement exists for “pulse_pressure” and “bpressure” nodes. Therefore, 

Encounter 2 would not be considered a match for this TPQ. 

This TPQ implies an AND operation on the nodes based on the AQL 

SELECT clause. The AND semantics is not explicitly defined by the AQL query but 

arises due to the way these nodes are included in the TPQ structure.  

If the expected behaviour of the AQL processing implementation is to return 

pulse_pressure as an empty value for Encounter 2, the TPQ would be expressing a 

structural condition that would not correctly represent the expected implementation 

behaviour. This conflict reveals the requirement to distinguish TPQ nodes 

introduced by the SELECT clause from the ones introduced by the FROM clause.  

Data trees that cannot satisfy the constraints on the hierarchy of the nodes 

introduced by the FROM clause should not be included in further processing. 

However, data trees that fully satisfy these constraints but only partially satisfy the 

constraints introduced by SELECT clause may be included in the results based on 

configuration of query processing or AQL implementation’s preference of one 

interpretation of SELECT clause over the other. 

The interpretation that allows empty values to be returned for data items 

defined in the SELECT clause requires the TPQ to distinguish between nodes 

introduced by FROM and SELECT clauses. In this case, SELECT clause based 

nodes have an optional structural constraint, termed “optional containment” in this 

thesis. There is also a requirement to discard data instances in which none of the 

optionally contained TPQ nodes introduced by the SELECT clause exists. 

Therefore, this interpretation can be expressed by adding optional constraints on 

the hierarchy of nodes introduced by the SELECT clause nodes along with a 

Boolean operator that eliminates data instances that contain none of these nodes. 

Figure 41 depicts this approach. 

Figure 41 depicts the optional constraint on hierarchy using dashed edges to 

‘bmi_value’ and ‘pulse_pressure’ nodes from their respective parents. The OR 

Boolean operator ensures that data trees that contain none of the nodes from the 

SELECT clause are not returned since the existence of none of these nodes would 

result in a false Boolean value. This OR operator checks the existence of its 

operands and not their containment under their parents. 

Introducing this OR operator node to the TPQ changes its structure from one 

in which each node in the TPQ has a single parent to one in which some nodes 
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having multiple parents, such as ‘bmi_value’ having ‘bmi’ and the OR operator node 

as parents. 

 

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

AND 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value

pulse_pressure

OR

RM BASED DATA 

INSTANCES

AND

 

Figure 41: AQL SELECT clause: logical OR interpretation 

 

7.5.4.3: Expressing Boolean Operators for WHERE Clause in TPQs 

 
The WHERE clause supports the use of Boolean operators for connecting 

constraints on the data items it defines in addition to the capability to use nested 

Boolean operators. The optional containment representation is used for nodes 

introduced by the WHERE clause. The details of this requirement are discussed in 

depth in Chapter 8.  

Figure 42 extends the query in Figure 42 with a WHERE clause that 

introduces multiple constraints. Figure 42 depicts an AQL query with three 

conditions in the WHERE clause which makes use of grouped Boolean operators. 

The diagram in this figure shows how Boolean operator nodes for WHERE clause 

constraints are represented in the TPQ, extending the previously introduced implicit 

OR operator based on the SELECT clause. For the purposes of clarity, attribute 

constraints are not explicitly depicted in the diagram in Figure 42. 

 



 151

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure 

FROM EHR e[ehr_id=’1234’] 

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS 

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1] 

OR 

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

WHERE  (

bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value/value > 20

OR

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007]/value/value > 30

)

AND

enc/name/value matches {‘gp_bp_bmi_encounter’}

bmi bpressure

enc

TPQ

OR

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc 

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value pulse_pressure

RM BASED DATA 

INSTANCES

OR

AND

OR

name

name

value value

value

 

Figure 42: AQL WHERE clause with Boolean operators 

 

 The optional containment extension to TPQs is required for the TPQ to 

return values from the Encounter 2 data tree, as intended. Since the Encounter 2 

data tree does not have the pulse pressure node, it also does not have the value 

node which would be a child of it. If the TPQ expresses the relevant constraint’s 

node with a mandatory descendant connection to ‘bpressure’, the Encounter 2 data 

tree would be incorrectly excluded from query processing.  

 

7.6: Relevant Research 
 

The tree based abstraction developed in 7.5 aims to deliver the benefits of a 

flexible representation for RM based data. This approach leads to an openEHR 

specific model for persistence, but this specialisation does not necessarily mean 
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that outcomes of wider research on the underlying tree representation cannot be 

used.  

Where available, findings from research on trees and operations on trees 

can offer the possibility of improving various aspects of the approach developed in 

7.5 A review of tree processing methods has been performed to this end, with an 

initial focus on literature on XML processing. XML’s successful use for representing 

openEHR data hints at the possibility of adopting research related to processing its 

underlying abstractions to improve the TPQ based AQL processing approach. 

 Improving the performance and capabilities of XML processing is an active 

topic of research. The use and processing of XML are relevant in a number of other 

fields of research, including but not limited to information retrieval, large-scale data 

processing and database systems, mostly due to XML’s ubiquitous nature.  

A relatively recent review of tree matching in the context of XML retrieval, 

(Tahraoui et al. 2013) provides a list of widely used methods for both exact and 

approximate matching. The exact matching methods covered in (Tahraoui et al. 

2013), described as structural and holistic join methods, along with sequential 

matching methods, provide a number of options for implementing the TPQ matching 

developed in Section 7.5. 

The structural join approach to twig pattern matching is defined as follows in 

(Tahraoui et al. 2013):  

 

“… (1) decomposition, (2) matching and (3) merging. Firstly, a twig pattern is 
decomposed into a set of basic parent–child and ancestor–descendant relationships 
between pairs of nodes. In the second phase, each binary relationship is separately 
executed using structural join techniques and its intermediate results are stored for 
further processing. The final result is formed by merging these intermediate results. 
…” 

 

The definition of twig patterns from the same study is: 

 

“twig patterns, i.e., small trees” 
 

The structural join approach is considered as an improvement over the 

traversal methods, which adopt the approach of walking the nodes for the target of 

the query one by one. As (Al-Khalifa et al. 2002) shows, as the size of the target for 

search operation grows the performance of traversal methods decreases.  

The relational database implementation approach to structural joins (Al-

Khalifa et al. 2002) is usually considered less efficient than specialized XML 

databases such as TIMBER (Jagadish et al. 2002). However, discussion of 



 153

‘containment queries’ (Zhang et al. 2001) using relational databases provide insight 

into implementation of applying constraints on hierarchies, which is relevant to TPQ 

based implementation of AQL. In depth analysis of the reasons behind performance 

problems with use of relational databases for queries on XML (Zhang et al. 2001) 

shows that various extensions to relational database features can improve 

performance: 

 

“While it is premature to make concrete predictions, we are optimistic that by 
combining better join algorithms with better cache utilization, an RDBMS will be able 
to natively support containment queries efficiently” 

 

The use of relational databases for processing XML, such as using mappings 

from XPATH to SQL, is not always considered inefficient (Tatarinov et al. 2002) and 

there are many studies that present methods for representing XML data in a 

relational setting (Harding, Li, and Moon 2003).  

 Despite their performance advantages over traversal methods, the structural 

join methods introduce the problem of generating a high number of intermediate 

nodes as a result of repeated join operations between the components of the query 

patterns. A family of tree matching methods classified as holistic twig matching deal 

with this problem using special data structures to decrease the number of 

intermediate results (Tahraoui et al. 2013).  

A significant amount of research for XML processing focuses on introducing 

either variations of families of algorithms outlined in (Tahraoui et al. 2013) or 

developing various indexing or processing methods to improve the performance of 

existing approaches. Examples of such studies include using a look-ahead 

approach to improve holistic join performance (Lu, Chen, and Ling 2004), using 

structural indexes to decrease number of intermediate results (T. Chen, Lu, and 

Ling 2005), encoding tree structures in a relational database (Weigel, Schulz, and 

Meuss 2005), using indexing methods for high performance XML retrieval in 

relational databases (Weigel et al. 2003) as well as developing indexing methods 

and labelling schemes for tree pattern matching (H. Wang and Meng 2005), (Rao 

and Moon 2004), (H. Wang et al. 2003), (Lu et al. 2005), (Lu, Meng, and Ling 2011), 

(Barbay 2005), (Arion et al. 2007). 

Research on efficient implementation of query languages for XML content 

provides methods that are applicable to tree structured data such as using indexes 

based on the trie data structure (Bodon and Rónyai 2003) for XPath query 

processing (Brenes et al. 2008) or extracting tree patterns from XQuery queries for 

faster query processing (Arion et al. 2006).  
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 The query languages for XML content are implemented via different 

methods. The introduction of formal methods for implementing these languages 

involves dealing with language features that are significantly more complex than the 

features offered by AQL at the time of the writing of this thesis. Results of research 

on implementing these languages partially or fully, based on formal representation 

and methods, is potentially useful for implementing AQL processing based on the 

tree based approach. Partial Tree Pattern Queries (PTPQ)(X. Wu et al. 2011), 

(Theodoratos et al. 2006), Generalized Tree Pattern Queries (GTPQ) (Zeng, Jiang, 

and Zhuge 2011) and development of a special pattern matching language 

(Benzaken, Castagna, and Miachon 2005) are examples of research that focuses 

on features of these XML query languages.  

The above studies show that the benefits realised through querying XML 

data with specialised languages have prompted a significant amount of research on 

methods for improving performance and integrating these languages into other well-

established frameworks such as relational databases. Developing indexing methods 

and algorithms that improve performance of a particular aspect of a query is a 

common research topic.  

Much existing research can be used to improve various aspects of the 

implementation of the openEHR persistence abstraction. In particular, methods for 

integrating XML content and query languages into relational databases can help in 

development of a relational database implementation that solves the design 

problems encountered with the pilot Opereffa framework, as discussed in Section 

6.3. Wider research focused on specific aspects of queries on tree content, such as 

ascendant-descendant or parent-child relationships, will inform adoption of 

specialised algorithms for AQL processing, based on operations on trees. 

In summary, tree based persistence abstraction is considered a valid 

approach to meeting the requirements identified in Section 7.1, while also bringing 

significant benefits from wider existing research findings.  

 

7.7: Summary 
 

The motivation for building a persistence abstraction for openEHR stems 

from the requirement to implement this key functionality for openEHR based on 

different options. Recent research has been delivering high-performance, 

specialised persistence systems for handling large data sets, based on distributed 
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computation to facilitate machine learning and data analysis, and complementing 

the capabilities of existing persistence systems such as relational databases.  

Being able to implement openEHR persistence across a variety of 

persistence systems has been identified as a promising approach to support 

openEHR and CDS integration in a large number of settings, with the goal of 

making use of the comparative advantages of the underlying frameworks. This 

approach provides the bridge between electronic health records and research on 

scalable machine learning which in turn allows further research on the intersection 

of two major topics of research. 

The feasibility of related implementations must be improved to enable the 

use of openEHR on multiple persistence systems. To this end, a new tree 

representation of RM based data was developed and TPQ representation chosen 

as the method for expressing AQL semantics using trees. This approach satisfies 

the requirements for expressiveness, extensibility, feasibility of implementation, 

consistent representation and scientific relevance identified in Chapter 7. 

This chapter described a novel tree-based abstraction method, designed to support 

a multi-persistence system architecture for consistent openEHR and CDS 

integration. This is further explored experimentally in Chapter 9, with an 

implementation of this method for persistence of openEHR RM data, for a CDS 

based on a BN created for analysis of clinical data in the domain of ophthalmology.  



 156

Chapter 8: XINO Architecture for Persistence 
 

This thesis explores the feasibility of an openEHR based CDS architecture 

via an experimental approach. The term “openEHR based architecture” means 

using all the support openEHR specifications provide for computable health for the 

components of the architecture whenever possible. 

 A unifying aspect of both clinical care and CDS use cases is data access. 

Even though openEHR methodology can be followed for design and implementation 

of both clinical information systems and CDS functionality, orthogonal data access 

patterns may require switching from an openEHR based approach to a more 

implementation and platform specific one based on the requirements. 

 Even though this specialisation may be required to benefit from the strengths 

of a particular technology such as document database or a distributed file system, it 

is a step back from the conceptual integrity of openEHR. An interesting research 

question is therefore, would it be possible to preserve the use of openEHR concepts 

for data access across different use cases and data volumes.  

 The tree-based persistence abstraction developed in Chapter 7 is the first 

component an openEHR persistence framework called XINO that has been 

developed to answer this question. The second component of XINO is the mappings 

from the tree structures and operations on them to functionalities of various 

persistence systems. The design goal behind XINO is to introduce a small number 

of operations that can be implemented across a variety of persistence systems, 

which leads to an openEHR persistence implementation. 

 Two key requirements must be fulfilled in order to achieve this design goal: 

RM based data needs to be persisted based on a representation that can be 

supported by different persistence systems and a number of previously defined 

operations on data must be implemented using the features of the target 

persistence system. The implementation used in this thesis is based on Postgresql 

relational database server (Momjian 2001).  

 The choice of a relational database as the target persistence system for 

implementation is intentional. Relational databases are used extensively in 

information systems implementation across a wide range of domains and due to 

their maturity, stability and emphasis on data consistency they are regularly used in 

healthcare information systems.  

 However, despite their capabilities relational databases present a 

challenging option for healthcare data modelling. The underlying relational model 
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(Codd 1970) can become too verbose and complicated when it comes to 

representing clinical data and performing operations on it, potentially introducing 

performance problems as well. It is worth mentioning that specialised software 

frameworks that can deal with characteristics of clinical data have been under 

development since as early as 1966. The development of MUMPS system (Bowie 

and Barnett 1976) at Massachusetts General Hospital, pre-dates Codd’s hugely 

influential paper by 4 years and its derivatives are still used in successful, large-

scale health information systems such as VistA (Brown et al. 2003).  

Data creation and manipulation in relational database implementations are 

subject to more strict constraints in a relational database compared to persistence 

systems that handle large amounts of data such as Hadoop (Borthakur 2007). 

Relational databases provide strong support for data consistency, but this support 

leads to limits on performance as data size grows. Most of the recent large scale 

persistence systems are able to overcome performance and scalability limitations of 

relational databases by waiving guarantees provided by relational database 

implementations. Concepts such as eventual consistency (Vogels 2009) enable 

large scale distributed persistence systems, often characterised with the term 

‘NOSQL’, to handle large volumes of data (Cattell 2011)  

Therefore, due to both relational data modelling challenges and potential 

performance problems of relational databases encountered during processing of 

hierarchical data (Celko 2012), relational database implementation is probably the 

most exigent configuration for XINO.  

 The primary reason for choosing Postgresql for the particular XINO 

implementation used in this thesis, despite these challenges, is the size of the 

industry and research community that works on relational databases. A relational 

database implementation of XINO that can adequately support data access 

scenarios for both clinical care and machine learning provides a versatile openEHR 

based platform using a single persistence system. Therefore, this thesis has 

explored the feasibility of such a configuration by implementing XINO on a 

Postgresql database server. 

8.1: Design Principles for Persisting openEHR Data in a 
Relational Database 
  

The flexibility of relational algebra (Codd 1970) presents a number of options 

for persisting openEHR data in a relational database. Implementation specific 

extensions provided by different relational database servers increase the number of 
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these options if implementers decide to trade portability in exchange for benefits of 

specialisation.  

It is not possible for this thesis to cover all options for persisting openEHR 

data in a relational database when an experimental approach based on 

implementation is adopted. Both the time frame and the skill set that would be 

required would be unattainable. However, a few guiding principles are used to arrive 

at a XINO based persistence design in a relational database. Different approaches 

to a relational implementation of XINO can be used, as long as they comply with 

these principles. 

 The first design principle, probably the one with the highest priority, is 

handling changes in the structure of data. openEHR is designed to represent a 

potentially infinite number of clinical concepts using a small number of data types, 

so not including this characteristic in persistence design is bound to produce an 

unmanageable implementation. Since data in a relational database must reside 

within tables defined by a schema, arrival of clinical data with continuously changing 

structure should not require changes to the database schema. Even though these 

changes could potentially be accommodated programmatically, i.e. new schemas 

and tables could be generated based on openEHR models that create the data, 

there is still the problem of not having an upper bound on the number of schemas 

that may be required. Therefore, a database schema that is resilient to changes in 

the structure of data is a crucial requirement from a design point of view.  

 The second design principle, which is introduced by this thesis’ attempt to 

explore limits of openEHR in supporting both clinical care and CDS scenarios, is 

applicability to most, if not all persistence systems that can be considered as 

alternatives to relational databases, especially for machine learning tasks. This 

applicability is required to ensure that data volume does not introduce limits on 

functionality and use of a relational database is built on an approach that can be 

used with alternative persistence systems.  

 The third design principle, which could be considered implicit in any 

information system implementation, is performance. The persistence design should 

consider users’ performance expectations from the openEHR implementation for 

both clinical care and CDS functionality. Precisely defining performance in settings 

as behaviourally complex and diverse as clinical information systems and CDS 

implementations, made even more complex by factors such as data volume, 

security, etc. is hard, if not impossible. However, this does not mean that 

performance can be dismissed as a design principle.  
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Conforming to these design principles for a large number of use cases 

defined by clinical information systems and CDS implementations is a challenge. 

Furthermore, these principles may conflict at times. Therefore, this is a 

multidimensional optimisation task; a particular implementation may choose to put 

more emphasis on a single principle.  

8.2: Relevant Research 
 

The Postgresql based implementation of XINO consists of mappings from 

the tree representation of data and TPQs (as described in Chapter 7) to relational 

data and SQL. This approach has been developed and improved through extensive 

experimental implementations, guided by the design principles set by this thesis, 

and relevant published research. Two pertinent lines of research provide valuable 

insight into how XINO’s design goals can be accomplished: representing clinical 

data using the Entity-Attribute-Value (EAV) model and querying XML documents, 

especially in relational databases. As with the development of the abstract data 

representation for openEHR, the findings from these lines of research may not be 

directly applicable to a relational database based implementation, but they can be 

adopted and used for implementations based on other persistence systems. 

8.2.1: EAV Approach to Relational Persistence 

 
Persisting and processing data that has highly variable structure without 

having to make changes to the underlying relational database schema is a 

frequently arising requirement in software development. The diversity of both the 

type and structure of clinical data implies that clinical information systems design 

and implementation must often fulfil this requirement except in cases of systems 

targeting very limited clinical scope.  

A particular relational data model that has been used extensively in clinical 

data representation, with the aim of addressing this requirement, is EAV. This model 

provides a high level of flexibility via representing Entities (such as a patient, an 

operation or any clinical concept), Attributes (such as age and gender of the patient) 

and Values (such as 33, the actual numeric value of a patient’s age attribute) at the 

database level with three tables in its most common form. Derivatives of this most 

common form may use slightly different table structures.  

This approach allows any concept to be defined at the database level by 

creating an entity, assigning attributes to it and creating data instances with actual 

data values that reference these entities and attributes. Change to domain 
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concepts, such as adding a new attribute, consists of inserting a new row to the 

attributes table. Following this step, new data instances with this attribute can be 

created by inserting a value for the attribute with a reference to its definition in the 

attributes table.  

Discussions about this modelling approach regularly emphasise its 

shortcomings, especially in long-term management of data and performance 

problems associated with a large number of join operations, which are required to 

retrieve concepts that are represented as highly granular data items in the 

database. It is remarkable that despite heavy criticism and discouragement (Celko 

2012) EAV modelling and its derivatives have found significant use in clinical data 

processing with relational databases.  

The use of EAV and related approaches focusing on generic relational 

database schemas for clinical systems implementation has been evaluated in depth 

by various studies, taking into account the characteristics of clinical data, with a 

more detailed approach compared to the rather generic treatment of (Celko 2012).  

These studies provide both positive and negative aspects of generic 

relational modelling for clinical data. (Helms and McCanless 1990) questions the 

suitability of relational databases for hierarchical clinical trial data, while (Johnson 

1996) presents generic data modelling as a promising approach. As more 

implementations that use generic and EAV influenced designs emerge during the 

90s, in parallel to the larger adoption of relational databases, methods for dealing 

with its shortcomings and problems are developed, for example for querying EAV 

data in biomedical databases (Nadkarni 1997).  

Making use of automatically generated SQL is one such method, which can 

be implemented in a number of ways, such as developing a query kernel that 

generates SQL queries on an EAV database by making use of metadata (Nadkarni 

1998). The use of metadata can be seen as a precursor of capabilities provided by 

AQL, in the sense that it allows query operations to be defined without the details of 

the actual relational design.  

The extension of pure EAV to EAV/CR (Classes and Relationships) 

(Nadkarni et al. 1999) is another attempt to improve the EAV approach by making 

use of object-oriented data modelling. Despite having query performance 

disadvantages (R. S. Chen et al. 2000), this unified approach introduces a 

consistent domain modelling practice for EAV design and implementation.  

However, the integration of object oriented concepts with an EAV design is 

not without challenges, as expressed in the following quote from (Dinu and Nadkarni 

2007):  
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“Typically, not all classes in the data will meet the requirements for EAV modeling. 
Therefore, production schemas tend to be mixed, with a given class represented in 
either conventional, EAV or hybrid form as appropriate. The introduction of an EAV 
component to the schema, however, mandates the creation of a metadata 
component to capture the logical data model for the EAV data: in the absence of 
this, the EAV component is essentially unusable. The necessity (and difficulty) of 
creating a complex meta-schema, as well as a code framework that is driven by it, is 
one of the major factors that has inhibited the more widespread use of EAV data 
models: the availability of open-source schemas and frameworks may gradually 
change this.” 
 

The challenges of making use of well-defined domain concepts for EAV 

representation leads to hybrid approaches that use both EAV and rather traditional 

relational design (Dinu, Zhao, and Miller 2007). The requirement to establish a 

method for mapping the domain models to EAV representation of data is discussed 

in healthcare specific cases as well, such as extracting data from an EAV based 

EHR system to a format based on ISO/EN 13606 (ISO/EN 13606 2012) archetypes 

(Duftschmid, Wrba, and Rinner 2010). These studies show that using object 

oriented concepts to overcome data representation problems of the EAV model is a 

valid approach supported by research. 

 EAV’s widely acknowledged performance issues have also been targeted by 

research. An adaptation based on the characteristics of data access can help in 

improving the performance of the EAV approach. Approaches such as extending 

the EAV model for read-only data warehouse implementations (Paul and Hoque 

2011) assume particular access patterns, which enable design extensions to EAV 

that perform better.  

Even though clinical information systems are normally used to perform 

patient-centric queries during clinical care, i.e. not fetching records of multiple 

patients, the nature of the clinical care process itself favours a similar “read-

optimized” data access scenario. Patient care frequently includes access to a 

patient’s medical history, which requires most, if not all the patient data to be 

accessed. As medical data accumulates in the patient’s EHR, large volume reads 

are bound to happen, with relatively far fewer writes; each care episode may write 

some data, but it is likely to read all data that has been created before. This 

assumption makes read optimized EAV design a strong option for clinical 

information systems and CDS implementation.  

 Due to its flexibility, EAV model can also represent hierarchical 

characteristics of data by expressing parent-child relationships between data items 

by defining attributes such as ‘parent’ or ‘children’. However, in a relational 
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database setting, this approach may lead to an arbitrary number of join operations, 

dependent on the complexity of the hierarchical relationships defined in the queries, 

and lead to significantly decreased performance as either the query complexity or 

data volume increases (Löper et al. 2012). 

 A high level decomposition of the topics covered in these studies revealed a 

number of key findings. First, despite being subject to criticism and suffering from 

well-known performance and data management issues for almost 25 years, the EAV 

design is still not obsolete. It is still considered as a design option for clinical data 

persistence with various extensions and modifications to help deal with the chronic 

problems it introduces. This is most probably due to the highly volatile structure of 

clinical data. Apparently, dealing with this volatility is so important that implementers 

are willing to forgo the performance gains that could be provided by less generic 

database schemas.  

  Second, building better defined representations of the clinical concepts is 

accepted as an improvement over the simplest EAV model. These improved 

representations provide mechanisms for data transformation, data extraction or 

improved query capabilities. 

 Finally, even though high level tools can isolate users from the complex SQL 

queries that would be required to access EAV data, the fundamental mechanism of 

table joins that must be used to build query results cannot be avoided. This 

introduces an inevitable performance problem, which would be further aggravated 

by the handling of hierarchical aspects of the data in an EAV model.  

 Ignoring for the moment the performance issues, re-evaluating these 

research findings in the light of the new assumption that all clinical data will be 

based on openEHR models, presents multiple new opportunities for improving an 

EAV based implementation.  

The primary reason for opting for an EAV model for persistence - dealing 

with the structural volatility of data - is handled by openEHR by design. The 

openEHR RM guarantees that no clinical data instance will introduce a new entity 

type or attribute since all data is built of combinations of highly reusable types, 

brought together via archetypes. Therefore, the entity and attribute definitions are 

known in advance for every possible clinical data instance.  

The type system introduced by the RM can be used to codify an EAV 

representation in advance, before any data is committed, and this encoding can be 

used to generate SQL queries automatically. The results from these queries will 

then populate instances of RM types without any need for semantic mapping, as 

would be required by some of the approaches mentioned previously. Therefore, the 
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openEHR RM and its type system can significantly eliminate one of the well-known 

problems of an EAV design. The openEHR RM can also improve the applicability of 

an EAV model to other persistence systems since the Entity and Attribute 

components of EAV can be encoded and kept out of the persistence layer, leaving 

only Value as a list made of most basic types representing actual data. This is a 

representation that can be supported by many persistence technologies including 

non-relational ones. 

 Not all aspects of an openEHR based approach to EAV are an improvement 

on the more traditional implementation. openEHR already offers a query language, 

AQL, which would be the natural choice to isolate users from writing SQL queries 

against the EAV. This is another improvement over various, case-specific 

approaches developed in other studies, but AQL queries have a strong focus on the 

hierarchy of data. Therefore, arbitrary join operations for enforcing the hierarchy 

constraints expressed in high level AQL would inevitably introduce performance 

issues.   

 Therefore, an openEHR based approach to an EAV design offers significant 

improvements, but in the context of relational databases some critical problems still 

remain, mostly around the difficulty of managing hierarchical aspects of structural 

data in a relational database. This difficulty is not specific to an EAV context - 

representing clinical data in a relational database is a frequently encountered 

requirement that can be interpreted as a particular instance of a more generic 

requirement, which is representing hierarchical data in a relational database.  

This requirement has been studied in depth in its more general form due to 

the natural occurrence of hierarchical data in many domains. There are both 

relational data modelling approaches as discussed in depth in (Tropashko and 

Burleson 2007) and (Celko 2012) as well as custom extensions to the SQL 

language provided by relational database vendors. The methods discussed in both 

(Tropashko and Burleson 2007) and (Celko 2012) have wide applicability in a large 

number of scenarios. However, another field of research also provides a large 

number of results that are closely related to processing TPQs (which is how we 

represent AQL) as defined in Chapter 7: processing XML queries.  

 

8.2.3: XML Query Processing 

 

Processing of XML queries via query languages such as XPath (Clark and 

DeRose 1999) and XQuery (Boag et al. 2002) has extensive research associated 
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with it. Matching patterns in XML content has been studied in depth, due to XML’s 

ubiquitous use in data exchange and storage. Research in this field focuses on 

processors for XML query languages, and storing XML in relational databases and 

native XML databases as well as in big data frameworks.  

The results of these studies are relevant to the requirement of handling 

hierarchical aspects of AQL queries because the abstract design for AQL 

processing developed in Chapter 7 is similar to XML content processing. Moreover, 

these studies provide insight into both the specific scenario of storing XML content 

in a relational database and rather abstract algorithms that can be used in many 

implementation contexts beyond relational databases. Therefore, these findings can 

be used in multiple implementations of XINO, based on both relational databases 

and other persistence systems.  

Current capabilities of AQL, especially in terms of expressing hierarchical 

relationships between query elements is functionally a subset of the capabilities 

supported by XPath and XQuery for the same purpose. Therefore, various methods 

and algorithms developed for XML processing, both in relational databases and 

other environments, may be considered insufficient to formalise or support complete 

scope of specialised XML processing languages but they may offer more utility in 

case of rather limited tree pattern matching cases for AQL processing.  

Research publications on XML processing that are relevant to handling 

hierarchical aspects of AQL queries can be classified into two groups, in the context 

of a relational database based XINO implementation: relational and non-relational. 

The studies in the former group assume that XML is processed through use of a 

relational database, which implies use of SQL and widely supported database 

features such as indexes, while those in the latter group adopt a rather relaxed 

assumption regarding the means available for operations on XML content. This 

does not imply that studies in the second group are irrelevant though; modern 

relational databases support extension mechanisms to SQL that allow access to 

mainstream programming languages. Therefore findings from both these groups 

can be used in a relational database implementation. 

(Zhang et al. 2001) discusses supporting “containment queries” in relational 

databases, defining the core concept of this study as follows: 

 
“By “containment query” we mean queries that are based on the containment 
and proximity relationships among elements, attributes, and their contents.” 

 

This definition refers to components of XML content and (Zhang et al. 2001) 

discusses both performance issues and benefits of implementing queries that fall 
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within this definition. The approach to XML content representation adopted in this 

study of SQL based implementation of containment queries has some noticeable 

features in the context of XINO.  

First, the representation uses an encoding of XML content that is aimed at 

efficiently performing containment queries. Use of an inverted index that encodes 

positions of elements in a document provides a more efficient means of answering 

hierarchical queries compared to simply expressing parent-child relationships in an 

EAV setting. Second, aside from this difference in handling hierarchy information, 

the representation of XML content in (Zhang et al. 2001) bears resemblance to an 

EAV approach, in the sense that the same relational schema can be used to persist 

any XML document without changes to it. Despite the performance problems it 

uncovers, this study concludes with an optimistic view of the use of relational 

databases for containment queries.  

 The data representation in (Zhang et al. 2001) is strongly influenced by the 

nature of the queries their study focuses on. Therefore, the representation of XML in 

this study is not a strong candidate for a generic representation method.  

Representation of XML content in relational databases is a well explored 

research topic, which has produced many methods for this purpose. 

(Shanmugasundaram et al. 1999) discusses document specific representation of 

XML content in relational databases, based on the XML schema. Similarly, 

(Florescu and Kossmann 1999a) and (Florescu and Kossmann 1999b) discuss the 

relationship between various XML storage options in a relational database along 

with query performance using SQL. (Bohannon et al. 2002) establishes a cost-

based optimisation method for finding the optimum relational representation of XML 

schemas where cost is defined by SQL query costs. (Du, Amer-Yahia, and Freire 

2004) uses annotations of XML schemas to create the relational representation. 

Using XML schemas for constructing relational representation and querying is not 

always a straightforward method; it can lead to issues in query translation to XML 

form when XML schemas are recursive in nature (Fan et al. 2005) .  

 The different approaches to persisting XML employed by these studies show 

that whether to consider XML schema information or not for relational 

representation is very much a design choice. (Yoshikawa et al. 2001) defines these 

design options as “Structure-mapping approach” and “Model-mapping approach”; 

the former referring to XML schema driven relational schema construction and the 

latter referring to a fixed relational schema for all XML content. (Yoshikawa et al. 

2001) uses the latter approach based on two key pieces of data: the full path of 

every XML node from the XML content root is used, along with a region encoding of 



 166

nodes to represent XML content. Another important aspect of XML storage in 

relational databases, re-building either partial or complete XML documents from 

their relational representation, is also discussed in (Yoshikawa et al. 2001). The 

method used for handling this requirement is to keep the entire text of XML content 

along with its encoded form.  

The approach based on keeping both XML content and its relational 

representation in the database is reported to be implemented by a well known 

commercial relational database server product which also uses specialised 

numerical encoding of XML nodes (Pal et al. 2004). The path based representation 

of nodes approach is used as the basis of a fast indexing method for XML content in 

(Cooper et al. 2001) which is reported to outperform indexing mechanisms of a 

commercial relational database server.  

 (Haifeng Jiang et al. 2002) introduces a relational design that is based on a 

generic schema similar to (Yoshikawa et al. 2001) but its representation can support 

both parent-child and ancestor-descendant information explicitly. This strategy can 

improve query performance for ancestor-descendant queries in a trade-off with 

increased storage costs. In the context of AQL query implementation via TPQ 

matching, this specialised representation, used by (Haifeng Jiang et al. 2002), offers 

a significant advantage since AQL uses ancestor-descendant constraints heavily. 

(Harding, Li, and Moon 2003) provides another node encoding scheme that can 

support parent-child and ascendant-descendant queries.  

Indexing mechanisms that rely on path information, along with numeric 

region encodings, are not solely of interest to XML persistence based on relational 

databases. They have also been studied extensively in other contexts such as 

implementation of query processors for XML. The findings of such studies are 

relevant and important in the context of a relational database implementation of 

XINO. This is because of the extension mechanisms to SQL, which are supported 

by all major relational database servers.  

Therefore, assuming that these extension mechanisms are available to 

implementers, many potential improvements to TPQ matching based AQL 

implementation can be accomplished through the use of such research findings, 

which are usually classified as native XML processing and indexing approaches. 

For example, (Han, Xi, and Le 2005) develops a hybrid index that uses both 

structure and value information of nodes. (Barbay 2005) introduces a specialized 

index structure for descendant elements queries. (Haifeng Jiang et al. 2003) 

develops another specialized index structure which offers optimized I/O 

performance for the same type of queries.  



 167

Aside from the relational database focused and native XML processing 

approaches, a third category of research for XML processing links native XML 

processing methods with relational ones, presenting a family of hybrid approaches 

(H. Wu et al. 2012), (Weigel, Schulz, and Meuss 2005), (Weigel et al. 2003).  

 Some of the results of this large body of research that focuses on XML query 

processing are relevant to the design principles of XINO. These are mainly the 

results of studies that focus on persisting XML content in relational databases, 

which exhibits features similar to the EAV model of relational persistence. Highly 

granular representation of XML content in a relational database is prone to 

performance issues, yet there has been significant effort to use relational databases 

for XML querying, similar to widespread adoption of EAV model despite its well-

known performance issues. This is attributable to the maturity of relational 

databases and amount of research that has gone into improving their performance. 

The benefits of a generic database schema approach are recognised, with the 

alternative being XML schema driven relational representations. Aside from content 

representation, transformations from XML query languages to SQL and the 

relationship between database schema design and query performance achieved 

from these transformations, have been extensively explored.  

Query processing and indexing approaches for a native XML processing 

context - i.e. XML query processors and native XML databases - provide highly 

specialised algorithms for particular aspects of queries such as finding all 

descendants of a node. These approaches do not assume the use of SQL, and are 

therefore free to assume more flexible execution environments. Hybrid approaches 

have been followed, aiming to leverage outcomes of research from this group of 

studies in the context of relational databases.  

The findings of these studies have been used in the development of XINO, 

considering both relational and non-relational approaches to implementation of 

openEHR persistence. The details of this process are discussed next. 

The relational implementation of XINO architecture is based on Postgresql 

and will be referred to as XINO-P. The primary goal of this implementation is to 

provide data access for the BN based CDS scenario discussed in Chapter 9. This 

does not mean that clinical information systems development has been disregarded. 

Even though this clinical care scenario has not been comprehensively tested, it has 

been included in the design, and key aspects have been implemented at the proof 

of concept level. XINO-P aims to comply with the previously stated design 

principles, while making use of the results of relevant research.  
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There exists a significant number of studies in the XML processing domain 

that are relevant to methods used for the implementation of XINO-P (which is based 

on AQL processing via TPQ matching, as described in Chapter 7). Comprehensive 

reviews of these studies are provided in (Hachicha and Darmont 2013), (Gou and 

Chirkova 2007) and (Tahraoui et al. 2013). 

The timescale for completion of this thesis has made it impractical to adopt 

and experiment with all the algorithms and architectures from the literature. Instead, 

these findings are employed in two ways. First, to implement a persistence layer for 

openEHR, using a relational database that is capable of supporting the holistic 

approach to clinical information systems and CDS based on openEHR, at least at a 

proof of concept (POC) level. Second, to build a research roadmap based on the 

use of these findings from the literature for the construction of a large scale data 

processing platform based on openEHR. 

8.3: Implementing the XINO Architecture with a Relational 
Database 

 

XINO-P is an openEHR persistence implementation that is based on DAGs 

encoded as rows in a single table and TPQ matching implemented via SQL. The 

interactions of main components of persistence and the overall process are 

depicted in Figure 64. 

The central component for persisting openEHR data in XINO-P is the 

Eclipse Modelling Framework (EMF) based analysis. This step takes an openEHR 

Composition instance in XML form as input and loads its content as an instance of 

an EMF ECore model. This ECore model is created via EMF’s support for 

transforming XML schemas to ECore models, which has also been used to process 

XML schemas published as part of the published openEHR specifications. Once 

XML content is loaded as an instance of the ECore model, capabilities of EMF are 

used to analyse this data in order to create a DAG representation of it. This DAG 

representation is then persisted to a single table in a Postgresql database. 

Access to data, after it is persisted to Postgresql, is performed via AQL. 

Following the approach developed in Chapter 7, an AQL query is represented as a 

TPQ, which is then expressed as an SQL query. Therefore, the process of building 

the SQL query can be defined as compiling AQL to SQL based on an intermediate 

representation, which is TPQ. 
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<?xml version="1.0"?>

<composition archetype_node_id="openEHR-

EHR-COMPOSITION.encounter.v1" ...>

<name xsi:type="DV_CODED_TEXT">

<value>Cataract Pre-op Booking</value>

...

Eclipse

Modelling

Framework:

openEHR Ecore 

Model

openEHR XSD AQL

SQL

XML EMF

DAG

TPQ

Postgresql

 

Figure 64: XINO-P: main components 

 

 

During initial experiments on this architecture, an AQL parser and an SQL 

generator that takes a TPQ as input has been developed and tested to a limited 

extent. Despite the components working as expected, a short cut had to be 

adopted, due to the time it was taking to reflect changes in AQL to TPQ, or TPQ to 

SQL transformation, into code. Instead, mappings between different representations 

across subsequent steps were used for manual implementation of the AQL query 

used for data access in Chapter 9.  

A key aspect of the architecture in Figure 64 is that all the components aside 

from Postgresql and the SQL query are platform independent. Therefore, both the 

relational database representation and SQL based data access can be replaced 

with other persistence systems.  

The EMF based analysis treats every element of XML content as a node, 

and the output of this process is a DAG, which consists of a list of nodes. All nodes 

are then persisted into a single database table. Every node of the resulting DAG has 

the following six attributes: 

• Pathstring: a string value that contains the archetype path of a node starting 

from the root of the COMPOSITION instance. 

• Valstring: a string value that contains the actual value that a node may point 

at. These values are actual numeric or literal values which would normally 

map to primitive types such as strings or numbers. Therefore, not all nodes 

necessarily have this attribute set.  

• ArchetypeNodeId: the archetype node id of the data item, if there is one 

defined in the openEHR archetype. 
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• ActualRmTypeName: the openEHR RM type name of the data item. 

• Left: Left value of node based on DAG’s region encoding. 

• Right: Right value of node based on DAG’s region encoding. 

 

Figure 65 depicts the high level transformation from a Composition XML file 

to a DAG. 

Composition

name

value

defining code

terminology 

id

value

code string

<composition archetype_node_id="openEHR-EHR-COMPOSITION.encounter.v1" 

xsi:type="COMPOSITION">

<name xsi:type="DV_CODED_TEXT">

<value>Cataract Pre-op Booking</value>

<defining_code>

<terminology_id>

<value>...</value>

</terminology_id>

<code_string>...</code_string>

</defining_code>

</name>

</composition>

E
M

F

(1:11)

(2:10)

(3:3)
(4:9)

(5:7)

(6:6)

(8:8)

archetypenodeid:openEHR-EHR-COMPOSITION.encounter.v1

actualrmtypename:COMPOSITION

...

{

 

Figure 65: XML to DAG transformation with region encoding 

 

Figure 65 shows how XML elements are transformed into an in memory 

DAG, using EMF’s capabilities. The “actualrmtypename” attribute of all nodes that 

represent an element with an RM type is set to the corresponding type. The 

“archetypenodeid” attribute is assigned the corresponding value from the XML 

element.  

The pair of numbers next to each node of the DAG provide position 

information based on the location of the elements in the XML file. These values are 

the “left” and “right” attributes of nodes, displayed separately in the diagram for 

clarity. The position information is based on a depth-first traversal of the DAG 

starting from the root node. The left attribute of each node is found by incrementing 

the left position of its parent. The right attribute is found by incrementing the last 

child of a node during depth-first traversal. Leaf nodes have equal left and right 

attributes. 
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This is a simplified version of the positional representation used by (Bruno, 

Koudas, and Srivastava 2002). The advantage of this representation, as discussed 

in (Bruno, Koudas, and Srivastava 2002) and (Al-Khalifa et al. 2002) is that it allows 

easy identification of structural relationships between DAG nodes.  

The (Left:Right) encoding is sufficient for checking the descendant status of 

a node given another one. A DAG node �� with ( �:!�) is an ancestor of a node �" 

if  � <  " and !� > !" . A more comprehensive encoding that includes node level 

alongside left and right enumerations can be used to test parent child relationship 

as described in (Bruno, Koudas, and Srivastava 2002) but this type of structural 

relationship is not explicitly expressed and therefore not needed in AQL, and 

therefore only left and right values are encoded.  

If the processed XML element contains a value represented with a primitive 

type, as shown in the value of the name element in the XML snippet in Figure 65, 

which is “Cataract Pre-Op Booking”, this value is assigned to the valstring attribute 

of the DAG node. The end result of the process in Figure 65 is a set of nodes, each 

containing six attributes, with values assigned to them whenever necessary. This 

set is then persisted into a table in Postgresql, which has a column for each node 

attribute along with some extra columns. The screenshot below shows how DAG 

nodes are represented at the database level: 

 

 

Figure 66: Database representation of DAGs 

 

As seen in Figure 66, the table that contains DAG nodes has three columns 

added to the six columns that are based on DAG node attributes. These are id, 

ehr_id and instance_id columns. The id column is an automatically generated 

primary key value for each row, which also serves as the unique identifier of a DAG 

node. The ehr_id is the id of the openEHR EHR which contains the Composition the 
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DAG is created from, and finally the instance_id is an identifier shared by all rows 

generated by processing a DAG. The instance_id , therefore, corresponds to the 

document id used as part of the XML element encoding in (Bruno, Koudas, and 

Srivastava 2002). The remaining columns represent values of DAG node attributes 

generated during EMF based processing, and they can have null values when a 

DAG attribute has no value assigned to it, as seen in Figure 66. 

The ehr_id column represents a critical aspect of the XINO architecture: the 

requirement for a persistence system to process openEHR data as DAG does not 

mean that all data will be represented or treated in the same way. Various nodes 

and aspects of a DAG may be represented and processed in different ways to 

benefit from specific advantages of a persistence system or to avoid specific 

disadvantages of it. 

Even though the EHR is the top-level concept in openEHR RM, it is not 

represented as a node in XINO-P. This is due to performance reasons. As 

discussed below, the number of joins required to implement TPQ matching is a 

critical determinant of the query performance. Directly associating every node with 

its highest level ascendant, which is the EHR node instance, saves XINO-P from 

having to perform join operations whenever the TPQ contains an EHR node. Since 

most data access during clinical care is driven by the identity of the patient, which 

consequently implies use of an EHR that belongs to the patient, encoding EHR id at 

the relational table level for all rows (DAG nodes) improves performance 

significantly for clinical care use cases. It should be noted that this and further 

specialisations for DAG representation and TPQ matching are all driven by the tree-

based approach to the openEHR persistence of Chapter 7. Therefore, these 

specialisations do not modify this fundamental approach. They are just performance 

driven optimisations specific to a persistence system. The DAG representation of 

openEHR stays intact and consistent. 

 The nine columns used for the relational persistence of DAG nodes are all 

that are needed to implement the key operations of TPQ matching defined in 

Chapter 7. The result of these operations is a transformation from DAG instances to 

rows of a result set, as depicted in the following Figure 67. 
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Figure 67: DAG to tuple transformation via TPQ matching 

 

The TPQ in Figure 67 is simplified in the interests of clarity. It represents a 

structural constraint where an instance of node type A has two descendants of type 

C and B. When this TPQ is matched against the three DAGs in the diagram, the 

result set transforms all matches into rows. Each DAG that satisfies the TPQ is 

returned as a row. The identifiers of TPQ nodes (which, in this simplified form 

correspond to their types) become the columns of the result set.  

Even though the TPQ representation of AQL and constraints expressed by it can 

become significantly more complicated, this fundamental transform does not 

change.  

 The following sections discuss the implementations of various TPQ matching 

operations implemented via SQL, results of which are then joined together to create 

the result set structure in Figure 66.  

8.3.1: TPQ Matching for the FROM Section of AQL Queries 

 

The FROM section of an AQL query defines a list of nodes which are later 

referenced from either SELECT or WHERE sections, along with hierarchical 

constraints on the members of this list. Therefore, matches for the TPQ defined by 

the FROM section of an AQL query can be considered as a precondition for 

matches based on other sections; both SELECT and WHERE sections define their 

constraints based on nodes from the FROM section.  
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A simplified AQL query with an emphasis on the FROM section is mapped to 

a TPQ as depicted in Figure 68. 

 

o

c

e{ actualrmtypename = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT ...

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

 

Figure 68: TPQ for FROM section of AQL 

 

This TPQ has three nodes arranged in a structure that defines the 

Observation instance o as a descendant of Composition instance c, which in turn is 

a descendant of EHR node e. There are also value constraints on attributes of 

nodes. This TPQ can be translated into an SQL query that assumes the nine 

column table schema described above, as follows: 

 

1) Define SQL subqueries that match individual nodes based on node 

attribute constraints 

A convenient feature of SQL is common table expressions (CTE) that 

define a temporary result set which can be used easily as a subquery. 

Using this feature, the c and o nodes of the TPQ can be selected as 

shown in Figure 69. 

 

 
Figure 69: CTEs for matching TPQ nodes 

WITH 

ehr AS  

  ( SELECT distinct(node.ehr_id) as id FROM DAG node  

    WHERE node.ehr_id = '3'), 

c AS 
  ( SELECT node.* FROM eav node 

    WHERE node.archetypenodeid = 'openEHR-EHR-

COMPOSITION.encounter.v1' 

    AND node.actualrmtypename = 'COMPOSITION' 

    AND node.ehr_id = '1' ) 

,o AS 

  ( SELECT node.* FROM eav node 

    WHERE node.archetypenodeid = 'openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1' 

    AND node.actualrmtypename = 'OBSERVATION' 

    AND node.ehr_id = '1'  ) 

.... 
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The c and o subqueries match all nodes (rows) of DAGs with the 

archetype node ids, and RM types expressed in the TPQ, which in turn is 

based on the AQL. The semantics of EHR with id ‘3’ is expressed in SQL 

via a constraint on the ‘ehr_id’ column of the DAG nodes table. Once 

these CTEs are in place, the rest of the SQL query can use them.  

 

2) Enforce structural constraints of nodes using positional encoding 

The structural constraints are enforced through the use of positional 

encoding of nodes. The constraint on the “ehr_id “ column value 

automatically establishes the structural constraint that all nodes that are 

selected are descendants of the EHR node that the TPQ targets. This is 

due to the EHR root position, by RM design. The other structural 

constraint, o being a descendant of c, can be enforced within another 

CTE as in Figure 70. 

 

 
Figure 70: CTE that enforces ‘descendant of’ constraint 

 

The CTE named as “from_nodes” in the query in Figure 70 selects c and 

o node instances which satisfy the following properties: every o is a 

descendant of c (using positional encoding), both o and c are from the 

same DAG (using “instanceId” equality) and finally both o and c are 

under the same EHR whose id is known. The “from_nodes” CTE uses 

previously defined CTEs, and it returns values of columns of the table 

row that contains o node.  

.... 

,from_nodes AS 

  ( SELECT --FROM NODES SUB-QUERY 
     '3' ehr_id, 

 

     obs_fund_exam.id obs_fund_exam_id, 

     obs_fund_exam.instance_id obs_fund_exam_ins_id, 

     obs_fund_exam."left" obs_fund_exam_left, 

     obs_fund_exam."right" obs_fund_exam_right, 

     obs_fund_exam.pathstring obs_fund_exam_pstring 

 

    FROM comp_encounter c_root_cl_exam 

    INNER JOIN obs_fundoscopic_exam obs_fund_exam 

          ON c_root_cl_exam.instance_id = 

obs_fund_exam.instance_id 

          AND c_root_cl_exam."left" < obs_fund_exam."left" AND 

c_root_cl_exam."right" > obs_fund_exam."right" 

          AND obs_fund_exam.ehr_id = '3' 

    WHERE  c_root_cl_exam.ehr_id = '3' 

  ) 

.... 
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The “from_nodes” CTE in the example in Figure 70 returns information 

related to the Observation node o, for clarity of the example. Using a 

reference to o node, the SELECT section of AQL query may define the value 

that the AQL query is supposed to return, as discussed next. 

8.3.2: TPQ Matching for the SELECT Section of AQL Queries 

 

The SELECT section of an AQL query defines the result set using data items 

defined in the FROM section, either directly or as the root of a relative path that 

points at the data item that should be returned. In order to demonstrate how TPQ 

matching is implemented via SQL for this purpose, the AQL query in Figure 68 is 

expanded to include a fully defined SELECT section that returns diagnosis of 

diabetic retinopathy in Figure 71. 

 

o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

dret

 

Figure 71: TPQ matching for SELECT clause of AQL 

 

The SELECT section of the AQL query in Figure 71 points at the ‘dret’ node 

via a relative path that starts from the o node. This relationship between o and dret 

is represented in the extended TPQ. This hierarchical relationship requires selecting 

all DAG nodes that are reachable via the relative path from o. This operation is 

performed as follows through use of another CTE: 
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Figure 72: Enforcing relative path in a CTE 

 

The CTE defined as ‘dret’ uses the nodes returned by the ‘from_nodes’ CTE 

and it leverages both instance id and positional encoding columns along with ehr_id 

column since any node reachable through a path relative to a DAG node o is 

guaranteed to be a descendant of it.  

The relative path that is defined in the AQL query is used to identify the ‘dret’ 

node through the use of the pathstring column of the DAG nodes table. Since all 

nodes have their absolute paths from the COMPOSITION root encoded in the 

‘pathstring’ column any node A and its descendant B have the following relationship: 

 

Path of A + relative path of B from Path of A = Path of B 

 

Therefore, ‘dret’ CTE allows selection of the ‘dret’ node in the TPQ in Figure 

71, using SQL. However, for a result set of a TPQ matching operation to be 

returned, the CTEs created for the SELECT and FROM sections must be joined 

with consideration for nodes that may not exist.  

8.3.3: Linking Matches for Different TPQ Hierarchical 
Relationships 

 

TPQ matching based on SQL Subqueries handle different semantics that 

can be represented in the TPQ approach developed in Chapter 7 and for the whole 

TPQ matching to provide a result set, the results from subqueries must be brought 

together.  

In doing so, other TPQ semantics become relevant when queries with more 

data items and constraints must be processed. An extension of the TPQ used so far 

with another data item in the SELECT section is provided in Figure 73 as an 

example: 

 

.... 

,dret AS 

  (SELECT fn.obs_fund_exam_id, T.valstring as valstring 

   FROM DAG T INNER JOIN from_nodes fn 

              ON T.instance_id = fn.obs_fund_exam_ins_id 

              AND  T."left" > fn.obs_fund_exam_left AND T."right" < 

fn.obs_fund_exam_right 

              AND  T.pathstring = fn.obs_fund_exam_pstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/val

ue/value' 

              AND T.ehr_id = '3' 

  ) 

.... 
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o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/value/value

dret

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0009]/

items[at0027]/value/value

fundal_view

OR

 

Figure 73: Optional containment for data items in SELECT clause 

 

Figure 73 extends the previous TPQ with another node: ‘fundal_view’. With 

this node under o, the relationship between dret and fundal_view requires 

clarification. As discussed in Chapter 7, an intuitive expectation for matching this 

TPQ would be that if diabetic retinopathy does not exist, but fundal view has been 

recorded, the results should represent this. This implies optional containment for 

both nodes under o and when CTEs that perform the TPQs are joined, this behavior 

must be preserved. 

This is established via using the relevant SQL join operations as shown in 

Figure 74. First, the CTE for fundal_view, following the same approach with dret: 

 

 
Figure 74: CTE for fundal view node of TPQ 

 
Then the SQL query that uses previous CTEs to build the result set: 

 
 

.... 

,fundal_view as 

  (SELECT  fn.obs_fund_exam_id,T.valstring as valstring 

       FROM DAG T INNER JOIN from_nodes fn 

       ON T.instance_id = fn.obs_fund_exam_ins_id 
       AND T.pathstring = fun.obs_fund_exam_pstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0009]/ite

ms[at0027]/value/value' 

       AND t."left" > fn.obs_fund_exam_left AND t."right" < 

fn.obs_fund_exam_right 

       AND t.ehr_id = '3' 

  ) 

.... 
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Figure 75: SQL for the complete TPQ matching 

 
The main WITH…SELECT…FROM SQL query matches the TPQ on DAG 

nodes table using previously defined CTEs. The optional containment is 

implemented via use of FULL OUTER JOINs, which ensures that if dret or 

fundal_view nodes are missing, the TPQ matching results include existing nodes. 

When run on an EHR which has no diabetic retinopathy, this query returns the 

results in Figure 76. 

 

 

Figure 76: Query results when no diabetic retinopathy exists 

 

Whereas, when run on an EHR with diabetic retinopathy diagnosis, both 

nodes are returned in the results as depicted in Figure 77. 

 

 

Figure 77: Query results when diabetic retinopathy exists 

 

WITH 

  comp_encounter AS 

  (SELECT ....) 

 

  ,obs_fundoscopic_exam AS 

  (SELECT ....) 

 

  ,from_nodes AS 

  (SELECT  .... ) 

 

  ,dret   AS 
  (SELECT ....) 

   

  ,fundal_view   AS 

  (SELECT ....) 

 

SELECT 

  '3' as ehr_id, 

  fn.obs_fund_exam_ins_id, 

  ,dret.valstring as dret, 

  ,fundal_view.valstring as fview 

 

FROM from_nodes fn 

  FULL OUTER JOIN dret ON dret.obs_fund_exam_id = fn.obs_fund_exam_id, 

  FULL OUTER JOIN fundal_view ON fundal_view.obs_fund_exam_id = 

fn.obs_fund_exam_id 
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If an INNER JOIN were used in the main query for joining nodes returned by 

the CTEs, the results for the EHR which does not have diabetic retinopathy would 

incorrectly exclude the fundal_view node as depicted in Figure 78. 

 

 

Figure 78: Query results: unintended exclusion of fundal view node 

 

The FROM statement of the main SQL query for TPQ matching uses nodes 

defined in the FROM section of AQL for connecting relevant CTEs together. The 

inclusion of more variables in the AQL SELECT section is therefore simply a matter 

of adding CTEs for nodes and including them in the FROM section of main SQL 

query using FULL OUTER JOINs. 

 The use of different types of SQL JOIN operations for expressing TPQ 

semantics is not limited to optional containment. Another fundamental aspect of 

TPQ matching, applying Boolean operators, is also implemented via use of different 

SQL join operations. 

8.3.4: Representing Boolean Operator Semantics for TPQ Node 
Relationships 

 
 Explicit use of Boolean operators is required by AQL grammar when multiple 

data items share a parent data item. Figure 79 shows an extension of the previous 

example to include another node in the TPQ: an Observation which can be used to 

select extra information. 

o

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0032]value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

 )

dret
fundal_view

AND

o_cl_exam

OR

 

Figure 79: TPQ for AQL with an AND operator in the FROM clause 
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The AND operator in Figure 79 requires selection of c nodes only if the DAG 

contains both o and o_cl_exam nodes as c’s descendants. AQL also supports 

nesting of Boolean operators in the FROM section so these complex scenarios must 

be handled as well. To deal with this requirement the AND Boolean operator is 

implemented with INNER JOINs and the OR Boolean operator is implemented with 

LEFT OUTER JOINs along with the use of nested SQL subqueries. An INNER JOIN 

between a parent node and a number of its descendants requires that all the 

descendant nodes from TPQ have at least one instance in the DAG, or the CTE for 

the parent node would return zero rows. In case of a LEFT OUTER JOIN expressed 

as: 

 

‘parent_node_CTE’ LEFT OUTER JOIN ‘child_node_CTE’ ON… 

 

As long as the parent exists in the DAG and instance, the parent and any 

existing children would be returned. Handling nested Boolean operators then 

becomes repeated INNER JOINs or LEFT OUTER JOINs through subqueries. Use 

of Boolean operators for the WHERE section of AQL is handled differently as 

discussed next 

8.3.5: TPQ Matching for the WHERE Section of AQL Queries 

 

The WHERE section of AQL can refer to any node from the FROM section in 

order to introduce constraints, either on them or on their descendants accessible via 

relative paths. The AQL WHERE section can also employ Boolean operators. The 

constraints defined in the WHERE section are implemented via WHERE keyword of 

SQL. The TPQ representation of the AQL WHERE section can take two forms. The 

first form introduces a single constraint which can be expressed with a value node 

and a value check on the value node’s attribute, as depicted in Figure 80. 
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o_fund_exam

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

 )

WHERE

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/

name/value = 'Interpretation D-Ret'

dret

fundal_view

AND

o_cl_exam

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/name/value

{valstring = “Interpretation D-Ret”

OR

 

Figure 80: TPQ for AQL with a WHERE clause 

 
The TPQ in Figure 80 has a node that is a descendant of o and valstring 

attribute of this node should be equal to ‘Interpretation D-Ret’. This node is 

introduced to TPQ by the WHERE section of AQL, and its existence and value can 

be enforced by introducing an INNER JOIN into CTE for o as shown in Figure 81. 

 

 
Figure 81: Enforcing AND operator with INNER JOIN 

 

This inner join forces all obs_fundoscopic nodes that are returned to have a 

descendant that corresponds to a node that satisfies the WHERE constraint of AQL. 

 When more than one constraint is specified in the AQL WHERE clause, their 

relationship must be predicated with a Boolean operator, whether or not the 

constraints are placed on the same data item. If all the constraints are placed on the 

.... 

,obs_fundoscopic_exam AS 

(SELECT node.* FROM DAG node  

    INNER JOIN DAG T ON    T.instance_id = node.instance_id 

    AND  T."left" > node."left" AND T."right" < node."right" 

    AND  T.pathstring = node.pathstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/nam

e/value' 

    and T.valstring = 'Interpretation D-Ret' 
    AND T.ehr_id = '3' 

    WHERE node.archetypenodeid = 'openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1' 

    AND node.ehr_id = '3'  ) 

.... 
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same node, then they can be included in the CTE for the node using the previously 

defined mappings to INNER JOIN and LEFT OUTER JOIN operations along with 

nesting of subqueries.  

 If all constraints in the WHERE section of AQL are not placed on the same 

data item, then Boolean operators across these constraints can only be applied at 

the main SQL query level since a CTE for a node can only refer to its ascendant 

and its descendants. This makes it impossible for a single CTE to enforce 

constraints on other CTEs if they are not on the same ascendant-descendant axis of 

the DAG.  

Therefore, constraints on multiple nodes are implemented through the use of 

CTEs for these constraints that are included in the main SQL query. An example of 

this scenario is depicted in Figure 82. 

 

o

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

 )

WHERE

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/

name/value = 'Interpretation D-Ret'

AND

o_cl_exam/data[at0001]/events[at0002]/

data[at0003]/items[openEHR-EHR-

CLUSTER.exam_anterior_chamber.v1]/

items[at0002]/value/value = ‘Corneal Pathology’
dret

fundal_view

AND

o_cl_exam

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/name/value

{valstring = “Interpretation D-Ret”

{valstring = “Corneal Pathology”

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0009]/

items[at0027]/value/value

AND

OR

 

Figure 82: TPQ for AQL: multiple AND operators in WHERE clause 

 

The AQL query and corresponding TPQ in the diagram enforce the existence 

of diabetic retinopathy along with corneal pathology. The AND operator in the 

diagram can be implemented as in Figure 83. 
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Figure 83: Enforcing multiple Boolean Operators in TPQ 

 
The ‘dret_where’ and ‘corneal_pathology_where’ CTEs select the nodes 

from the TPQ attributes of which (valstring in this case) must have the values 

specified in the AQL WHERE criteria. The outermost WHERE clause of TPQ 

matching SQL uses SQL AND operator to implement the TPQ AND operator.  

The individual CTEs for ‘dret_where’ and ‘corneal_pathology’ that enforce the 

constraints for filtering out TPQ matches are provided in Figure 84. 

These CTEs individually ensure that the constraint nodes that are operands 

of the AND operator in the TPQ exist. Their results are appended to other CTE 

results that join nodes created by the FROM and SELECT sections of AQL with a 

FULL OUTER JOIN. This approach treats results returned from the CTEs of AQL 

WHERE clause as if they’re subject to optional containment, in the same way the 

nodes introduced by the SELECT clause of AQL: their existence is optional and 

would not affect query results due to the FULL OUTER JOIN. The logical AND 

operator is then applied at the main SQL query level, turning these nodes into a 

filter mechanism for all the results. 

This approach provides support for other Boolean operators such as OR or 

NOT with nesting, if necessary, since the SQL WHERE clause enables nesting of 

logical operators. 

WITH 
  comp_encounter AS 

  (....) 
  ,obs_fundoscopic_exam AS 

  (....) 
  ,o_cl_exam AS 

  (....) 
  --  THIS IS WHERE FROM NODES HIERARCHY IS ENFORCED 

  ,from_nodes AS 

  (....) 
  ,dret   AS 

  (....) 
  ,dret_where   AS 

  (....) 
  ,fundal_view as 

  (....) 
  ,corneal_pathology_where as 

  (....) 
 

SELECT 

  .... 
FROM from_nodes fn 
  FULL OUTER JOIN dret ON dret.obs_fund_exam_id = fn.obs_fund_exam_id 

  FULL OUTER JOIN fundal_view ON fundal_view.obs_fund_exam_id = 

fn.obs_fund_exam_id 

  FULL OUTER JOIN dret_where ON dret_where.obs_fund_exam_id = fn.obs_fund_exam_id 
  FULL OUTER JOIN corneal_pathology_where ON corneal_pathology_where.o_cl_exam_id 

= fn.o_cl_exam_id 

WHERE dret_where.valstring = 'Interpretation D-Ret' AND 

corneal_pathology_where.valstring = 'Corneal pathology' 



 185

 
Figure 84: Individual CTEs for AQL WHERE clause constraints 

 

8.3.6: Discussion of the Relational Modelling Approach 

 

XINO-P consists of a small number of fundamental operations and the use 

of a single database table that provides a TPQ matching based implementation of 

AQL, using SQL. The most significant and gratifying aspect of this design is its 

simplicity, which is the key to its applicability to architectures that may not 

necessarily use a relational database. XINO-P leverages SQL features for querying, 

but its data representation makes little use of the relational approach to data 

modelling. Instead of relying on a relational representation of the openEHR RM, a 

single table is used that is repeatedly joined on itself (self-join). This design can be 

classified as a highly specialized form of EAV where only the value table exists, and 

entity and attribute definitions are ignored. RM types and archetype node ids are 

included as columns without formally defining these attributes with an attribute table. 

This simplified representation, accompanied by structural attributes such as 

positional encoding of DAG nodes and their absolute paths from the DAG root 

(similar to (Yoshikawa et al. 2001)) is built on a few key properties of openEHR.  

The most important aspect of openEHR in the context of implementing 

XINO-P is that openEHR RM and archetypes provide both structural and value 

constraints ahead of the creation of actual data. When this information is accessed 

.... 

,corneal_pathology_where as 

  (SELECT  fn.o_cl_exam_id,T.valstring as valstring 

    FROM EAV T INNER JOIN from_nodes fn 

       ON T.instance_id_int = fn.o_cl_exam_ins_id 

          AND T.pathstring = fn.o_cl_exam_pstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[openEHR-EHR-

CLUSTER.exam_anterior_chamber.v1]/items[at0002]/value/value' 

          AND t."left" > fn.o_cl_exam_left AND t."right" < 

fn.o_cl_exam_right 

          AND t.ehr_id = '3' 
          AND t.valstring = 'Corneal pathology' 

  ) 

.... 

,dret_where   AS 

  ( SELECT fn.obs_fund_exam_id, T.valstring as valstring 

    FROM eav T INNER JOIN from_nodes fn 

      ON    T.instance_id_int = fn.obs_fund_exam_ins_id 

      AND  T."left" > fn.obs_fund_exam_left AND T."right" < 

fn.obs_fund_exam_right 

      AND  T.pathstring = fn.obs_fund_exam_pstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/name

/value' 

      AND T.valstring = 'Interpretation D-Ret' 

      AND T.ehr_id = '3' 

  ) 

.... 
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through a framework such as EMF, it becomes possible to process and encode all 

clinical data based on openEHR RM type information. Even though an essentially 

infinite number of clinical models for an infinite number of clinical concepts can be 

created with openEHR, instances of all these models conform to the structures of a 

small number of types brought together in a flexible way.  

AQL queries on the clinical data have the same characteristic: a large 

number of clinical models can be queried based on the same RM. These iteratively 

evolved and hard-won features of openEHR allow all information about the clinical 

data to be available outside of the actual persistence implementation. XINO-P 

leverages this approach by not representing any openEHR related information at 

the database level unless that information is necessary to get the data back. 

Furthermore, the only assumed method for retrieving data from the persistence 

implementation is AQL; no data access characteristics other than those used by 

AQL are considered. 

As a result of this specialization, both the data representation and TPQ 

matching operations used in XINO-P can easily be used in non-relational settings, 

thereby delivering the persistence system portability goal of the XINO architecture. 

For example, removing the EHR id condition from the SQL queries that were used 

as examples in the XINO-P implementation of TPQ turns these queries into 

population queries instead of queries specific to a single EHR. This approach, used 

to build the data set that was used in Chapter 9, conveniently lends itself to 

parallelization when the underlying persistence system supports it. Using a big data 

framework such as Apache Hive (Thusoo et al. 2009) that supports parallel 

processing of table structures with a query language that is highly compatible with 

SQL, the approach used by XINO-P can be reused with minimum change with the 

benefit of running the join operations across hundreds or even thousands of servers 

with very large data sets. 

It should be noted that neither the availability of SQL nor table based 

representation is a requirement for leveraging other platforms for TPQ processing, 

even though various big data platforms already support SQL. The operations on 

nodes that are implemented via SQL, such as finding descendant nodes, finding 

nodes at a relative path or applying logical operators, can be implemented by other 

means. In fact, XINO-P uses extensions of the fundamental model described thus 

far in order to improve performance as discussed next. 
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8.4: Extensions of the Purely Relational Model and Other 
Improvements   
 

The TPQ matching implementation of XINO-P allows the fundamental 

semantics of AQL to be expressed using SQL. The use of SQL can be improved by 

use of extension mechanisms provided by the relational database servers, for better 

query performance. These extension mechanisms can also support the addition of 

new features to AQL and the enablement of a richer set of types in query results.  

 From a performance point of view, the use of repeated self joins to select 

DAG nodes based on TPQs presents a challenge for XINO-P. Repeated self-joins 

on a table, size of which is bound to grow as new data arrives, leads to a large 

number of index scans being performed by Postgresql. As the data size grows, 

index scans need to cover a larger number of rows to identify the ones defined by 

the CTEs. The analysis of the CTE performed on a test database, using 

Postgresql’s EXPLAIN ANALYZE feature, demonstrates this problem as shown in 

Figure 85. 

 

 
Figure 85: Postgresql query plan and execution for simple CTE 

 

Since the constraints expressed in the WHERE clause of SQL query require 

the Postgresql engine to perform separate index scans, the number of rows the 

index scans must process becomes the primary determinant of the query 

performance. As Figure 85 shows, 32.7 milliseconds of the 33.348 millisecond total 

query runtime is spent on the archetype node id index scan that must process 100K 

EXPLAIN ANALYZE SELECT node.* FROM temp_eav_table_global node 

WHERE node.archetypenodeid = 'openEHR-EHR-COMPOSITION.encounter.v1' 

      AND node.ehr_id = '3' 

 

Bitmap Heap Scan on temp_eav_table_global node  (cost=2353.66..2377.73 

rows=6 width=399) (actual time=33.307..33.309 rows=2 loops=1) 

  Recheck Cond: (((ehr_id)::text = '3'::text) AND ((archetypenodeid)::text 

= 'openEHR-EHR-COMPOSITION.encounter.v1'::text)) 

 

  ->  BitmapAnd  (cost=2353.66..2353.66 rows=6 width=0) (actual 

time=33.299..33.299 rows=0 loops=1) 

 

        ->  Bitmap Index Scan on temp_eav_table_global_ehrid  

(cost=0.00..45.07 rows=2201 width=0) (actual time=0.176..0.176 rows=931 

loops=1) 

              Index Cond: ((ehr_id)::text = '3'::text) 

 

        ->  Bitmap Index Scan on temp_eav_table_global_archndId  

(cost=0.00..2308.34 rows=122636 width=0) (actual time=32.718..32.718 

rows=100000 loops=1) 

              Index Cond: ((archetypenodeid)::text = 'openEHR-EHR-

COMPOSITION.encounter.v1'::text) 

Total runtime: 33.348 ms 
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rows. As more data is added, based on an archetype that has this archetype id, this 

index scan would have to process the growing number of rows that satisfy the same 

criteria. This behaviour is there by design and cannot be avoided.  

As a result, the more joins a TPQ structure leads to, the more query 

performance for the same TPQ drops, as the total data size stored by XINO-P 

grows. This drop in performance is bound to happen even though the increase in 

data volume is due to the arrival of new data that would not be matched by this 

TPQ. Therefore, processing as few rows as possible during querying, or even 

keeping the number of rows in the DAG table as few as possible, can improve 

performance and provide resilience against this performance drop. 

Two of Postgresql’s features have been used to this end: JSON (Crockford 

2006) type support and custom functions that process JSON content. JSON stands 

for JavaScript Object Notation, a text based data representation format that has 

been replacing XML for many use cases in recent years. Postgresql allows the 

storage of JSON content alongside other data types it supports, and it provides a 

number of functions and operators that operate on JSON data.  

XINO-P uses JSON to represent some nodes of the DAG during pre-

persistence processing, and these nodes are inserted into a column with JSON type 

in the row that represents their parent, as depicted in Figure 86. 

 

JSON representable rows }

JSON

Column

 

Figure 86: Node transformation from tuples to column via JSON 

 

 As shown in Figure 86, this representation decreases the number of rows by 

moving multiple rows into the row of their parent as a column. The JSON content is 

exactly the same as row content, but it is a textual representation that can 

compactly represent child nodes of a DAG node as an attribute of its parent. The 

CTEs for matching nodes can access this compact representation using functions 
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that process the JSON content. Figure 87 contains an example of a CTE before and 

after use of JSON representation for some rows. 

The use of JSON processing functions replaces two joins that are required to 

select two child nodes. Instead, JSON content is dynamically extracted to an array 

of values and queried. Since JSON content is created from child nodes, some of the 

checks such as node coordinates or instance id checking is no longer necessary. 

Moreover, JSON processing functions are provided directly with the contents of the 

row that has been selected by the previous table reference in the same FROM 

clause, saving more index scans.  

 This approach both decreases the number of rows in the table that holds all 

nodes and avoids costly joins and scans. The criteria for selecting child nodes to be 

represented as JSON is an interesting topic, arising here, for future research. In the 

XINO-P implementation that has been used to provide data to the BN 

implementation, as described in Chapter 9, all child nodes that do not have an 

archetype node id have been collapsed into JSON content, but this is a criterion that 

has been used for the data set at hand without any claim or expectation of its 

general applicability.  

In the context of the applicability of the TPQ matching approach to 

persistence systems other than relational databases, use of JSON and custom 

functions may not necessarily achieve the same performance benefits as were 

found for Postgresql. The text based nature of JSON allows its storage in both 

relational and non-relational persistence systems. The capability to introduce user-

defined functions into SQL queries is implemented by most major databases and 

even in big data frameworks such as Apache Hive (Thusoo et al. 2009). Therefore, 

this approach allows the extension of TPQ matching based on SQL, with a 

significant level of applicability to other platforms.  

The use of JSON or alternative serialisation formats allow the persistence 

layer to perform AQL path access on small amounts of content, without having to 

return this content as interim query results, which must be further processed for 

path extraction. This approach avoids the need to return and process the whole 

content of an openEHR COMPOSITION instance to access only a few fields, and 

can provide significant performance improvements for a class of queries that require 

a small number of simple values, especially if the number of the COMPOSITION 

instances that must be processed is large. 

The use of user-defined functions can allow implementation of many 

advanced features on top of AQL. This is another topic suggested for future 

research. One such feature that can be built on user- defined functions is the use of 
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BN inference directly from within AQL for CDS. This extension, provisionally named 

Probabilistic AQL, is based on the idea of extending AQL syntax to use an existing 

BN definition as a filter for AQL results. Figure 88 depicts the extended AQL query 

along with the relationship with the corresponding TPQ. 

  

Figure 87: Using JSON and functions in a CTE 

  

 

.... 

,dret AS 

(SELECT fn.obs_fund_exam_id, Z.instance_id_int AS  instanceid, Z.valstring as 

valstring 

 FROM temp_eav_table_global T INNER JOIN ehr ON T.ehr_id = ehr.id 
   INNER JOIN from_nodes fn ON T.instance_id_int = fn.obs_fund_exam_ins_id 

   AND  T."left" > fn.obs_fund_exam_left AND T."right" < fn.obs_fund_exam_right 

   AND  T.pathstring = fn.obs_fund_exam_pstring || '/' || 
'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]' 

 
   INNER JOIN temp_eav_table_global Y ON Y.instance_id_int = T.instance_id_int 

   AND Y."left" > T."left" AND Y."right" < T."right" 
   AND Y.pathstring = T.pathstring || '/' || 'name/value' 

   AND Y.valstring = 'Interpretation D-Ret' 
   AND  Y.ehr_id = ehr.id 

 

   INNER JOIN temp_eav_table_global Z ON Z.instance_id_int = T.instance_id_int 

   AND Z."left" > T."left" AND Z."right" < T."right" 
   AND Z.pathstring = T.pathstring || '/' || 'value/value' 

   AND  Z.ehr_id = ehr.id 

) 

.... 

,dret   AS 
(SELECT  fn.obs_fund_exam_id, Z->>'instance_id_int' AS instanceid,Z->>'valstring' 

AS valstring 
 FROM ehr, temp_eav_table_global  t,from_nodes fn,json_array_elements(t.jsndata) AS 

Y,json_array_elements(t.jsndata) AS Z 

 

 WHERE t.instance_id_int = fn.obs_fund_exam_ins_id 
       AND t.pathstring = fn.obs_fund_exam_pstring || '/' || 

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]' 
       AND t."left" > fn.obs_fund_exam_left AND t."right" < fn.obs_fund_exam_right 

       AND Y->>'pathstring' = t.pathstring || '/' || 'name/value' 
       AND Y->>'valstring' = 'Interpretation D-Ret' 

       AND Z ->>'pathstring' = t.pathstring || '/' || 'value/value' 

       AND t.ehr_id = ehr.id 

) 

.... 
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Figure 88: TPQ matching and BN inference integration for probabilistic AQL 

 
The AQL query in Figure 88 defines three data items for selection, which 

have the aliases T, Z and G. These are represented in the corresponding TPQ and 

grouped together as Select Nodes for clarification. A subset of these nodes, T and 

Z, are used as observations in a BN, through a function call from AQL named 

P_BN. This syntax means that the AQL query should return results that produce a 

probability larger than 0.75 when the T and Z nodes are used as observations. This 

approach can be extended with a more expressive syntax for referring to 

probabilities of multiple nodes from the BN. The implementation of such an 

extension to AQL syntax can readily be implemented using the mechanisms used in 

XINO-P. Figure 89 contains the pseudo code of a possible implementation. 

This pseudo code uses a user-defined function called INFER_BN which 

takes a string representation of the observations for a particular BN structure, the 

semantics of which is assumed known. Since user-defined functions in Postgresql 

can be implemented in a number of programming languages, including Python and 

even R, this function call would effectively call a BN implementation, infer the 

probabilities of the network for each row of the result set and produce a column 

named BN_RESULT, which can be used as a filter to select only rows that satisfy 

the probabilistic constraint.  

It is of note that, even though this thesis has focused on BNs as the CDS 

mechanism, this approach could be used to add probabilistic querying capabilities to 

AQL through use of other CDS methodologies, using the user-defined function 

method for filtering TPQ results. 
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The use of user-defined functions along with JSON representation presents 

another opportunity for future research around integrating various TPQ processing 

algorithms into XINO-P and other implementations. The current implementation of 

XINO-P uses the same logic for processing both nodes represented as rows and 

rows represented as JSON.  

Since the strategy for collapsing some nodes of the DAG into JSON is 

implemented in the pre-persistence analysis phase of the methodology, multiple 

representations for groups of nodes can be used in the form of sub-trees which can 

be processed via different TPQ matching algorithms that would address these sub-

trees. This approach would allow the use of algorithms that offer clear advantages 

for specific tree structures under a set of conditions which would not necessarily 

apply to all of the DAG. Examples of research relevant to this approach is covered 

in stack based twig matching algorithms (L. Chen, Gupta, and Kurul 2005) and 

improvements over them such as TwigList (Qin, Yu, and Ding 2007) as well as 

extensions of basic TPQs (Xiaoying Wu et al. Dec.). Handling pattern matching with 

logical operators (H. Jiang, Lu, and Wang 2004), (Izadi, Haghjoo, and Härder 2012), 

(Zeng, Jiang, and Zhuge 2011), improving performance of descendant only TPQs 

(Götz, Koch, and Martens 2009), leveraging parallel processing for TPQ matching 

(Machdi, Amagasa, and Kitagawa 2009) are examples of research outcomes that 

can be adopted in the context of this future research. 

 

 
Figure 89: Implementation of probabilistic AQL in SQL via user-defined function call 

WITH 

  ... 

 

  ,from_nodes AS 

  (....) 
 

  ,T  AS 

  (....) 

 

  ,Z  AS 

  (....) 
 

 

  ,G AS 

  (....) 
 

SELECT 
.... AS Z_value, 

.... AS T_value, 

.... AS G_value, 

INFER_BN('BayesianNetwork1', '{T:'|| T_Value || ',Z:' || Z_Value ||' }', 
        '{V}') AS BN_RESULT 

FROM from_nodes fn 
  LEFT OUTER JOIN T ON ... 

  LEFT OUTER JOIN Z ON ... 

  LEFT OUTER JOIN G ON ... 
WHERE  BN_RESULT.V > 0.75 

.... 
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An important design requirement of XINO-P, the ability to support both 

building of clinical information systems and CDS systems with the same 

architecture, is another important future direction for research which has been partly 

explored and experimented with. The SQL based TPQ matching that has been used 

for learning the parameters of the BN that is described Chapter 9 returns a result set 

that consists of values only. This is the most likely result set content for machine 

learning scenarios: the input to machine learning frameworks consists of values 

instead of data that represents complex objects.  

Using the same query mechanism for clinical information systems 

implementation usually requires a higher level data representation in the query 

results that is closer in nature to the concepts of mainstream, object oriented 

programming languages, as modelled by the openEHR RM. The DAG based 

representation of the RM in XINO-P presents a higher level granularity: instances of 

RM types are modelled as a number of nodes. Therefore, if the SELECT section of 

AQL defines a node that corresponds to a complex object such as an Observation 

or an Entry, selecting the row that represents the root of this object is not enough to 

return the requested content. Inserting all rows that represent a complex object 

provides one option but this approach breaks the consistency of the semantics of 

the result set, due to the inclusion of a complex object in the SELECT section of the 

AQL query. Also, the process to construct a complex object from its DAG 

representation must still be dealt with. 

 In order to overcome this problem, EMF based pre-processing has been 

extended with the capability to link each node to its corresponding location in the 

XML content that is transformed to DAG. EMF supports navigation to a particular 

object in an EMF model instance, using a unique path that identifies that object. The 

EMF pre-processing builds this unique path for all nodes along with its openEHR 

path, and this path is assigned to an attribute of DAG nodes. The XML content that 

is processed via EMF is then persisted in a separate table along with the instance id 

that associates it to all the DAG nodes created from it. Figure 90 depicts the 

relationship between nodes and the original XML content. 

The extended table schema for nodes allows TPQ matches to return EMF 

URIs (Uniform Resource Locator) for nodes. Therefore, if a node introduced by the 

SELECT section of AQL is required to be an RM object, this URI can be used to 

access the EMF representation of the object by loading the XML content as an EMF 

resource. 
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Figure 90: Representing references to XML nodes as a DAG node attribute 

 

This approach requires an iteration over query results returned by SQL to 

identify XML payload(s) that should be loaded, therefore it implies a multi-step 

process for constructing the result set for TPQ matching, with potential performance 

problems that may arise in cases where large result sets are returned.  

 It is envisaged that access to an object form of AQL results is a requirement 

that is associated with use cases for clinical information systems , which usually 

require much smaller size data that will be used for human interpretation, compared 

to the model building and model training use cases for machine learning. Therefore, 

the dual content representation is considered a viable approach, allowing SQL 

based TPQ matching to address significantly different use cases with the same 

architecture. 

8.5: Summary 
 

The architecture and implementation discussed in this chapter  has been the 

result of many iterative experiments, addressing persistence requirements with both 

clinical information systems and CDS natures. It is a specific implementation of a 

generic approach that uses the Postgresql relational database and SQL as the 

underlying persistence system. 

Despite being at the proof of concept level, the Postgresql based 

implementation has allowed an openEHR driven CDS implementation to be tested. 

Although less time has been allocated for testing the clinical information system 
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implementation scenarios and requirements, limited experiments have confirmed 

feasibility of using this implementation for this purpose. 

 The TPQ matching approach has been implemented with SQL, and this 

implementation is used to support the fundamental semantics of AQL functionality in 

a CDS setting. At the time of writing, the AQL specification has a proposal status 

and is not part of the officially released openEHR specification. Therefore, some of 

its features are selectively implemented by software vendors, and there is not yet a 

clear definition of the functionality that an implementation must support to claim 

having a complete implementation of AQL. Two extensions to SQL based TPQ 

matching – user-defined functions and JSON representation of sub-trees – have 

significantly improved the capabilities and performance of XINO-P. These 

extensions provide a robust mechanism to deal with both fundamental and less 

frequently implemented features of AQL as well as being the basis of new features 

such as Probabilistic AQL.  

Despite SQL providing the required expressiveness for TPQ matching, albeit 

with some extensions, the Postgresql based implementation is not immune to 

various problems. Some aspects of the current design, such as using a single 

database table for all clinical data, would benefit from further optimizations. The 

effect of growing data size on performance of queries on existing EHRs, difficulty of 

returning representations of complex objects instead of atomic values, and storage 

requirements of holding full paths for all nodes as well as complete XML documents 

for easy construction of complex objects, are all topics that require attention for the 

current proof of concept implementation to address real life requirements. These 

problems have been identified as key next steps for research, and early solutions 

are being identified at the time of writing of this thesis.  

The existence of these various issues does not diminish the promising aspects of 

XINO. The extension of current work, both in terms of design and implementations 

based on new persistence technologies and data access scenarios presents a large 

set of options for future research.  

The implementation discussed in this chapter is used for the experiments 

performed in the next one, to explore an end to end CDS setting based on 

openEHR 
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Chapter 9: An Experimental openEHR Based Clinical 
Decision Support Implementation for Ophthalmology: 
Risk Estimation for Cataract Operations 
 

This chapter presents the development of CDS functionality based on an 

implementation of the persistence abstraction method developed in Chapter 7 on a 

relational database, as discussed in Chapter 8. This implementation, named XINO-

P, is integrated to a BN that provides the decision-making capability for risk analysis 

prior to a cataract operation. 

 The persistence abstraction for openEHR described in Chapter 7 links 

openEHR methodology coherently with the different characteristics of 

implementations required for both clinical information systems and CDS.  

Even though the use of different persistence systems can address issues of 

data size and parallel processing, a more detailed look at an actual openEHR-based 

CDS is required to identify other issues, independent of the underlying persistence 

implementation, in the use of BNs and other machine learning approaches for CDS 

in combination with an openEHR-based clinical record.  

  

A number of issues arise:  

First, ability to process larger amounts of openEHR standardised data does 

not in itself guarantee solutions to the barriers discussed in Section 2.2, such as the 

difficulty of integrating clinical information system implementations to CDS 

implementations. The extent to which openEHR’s approach to modelling clinical 

information can support CDS requirements must be determined. The logical 

architecture for integrating openEHR and BNs set out in Section 4.7 assumes that 

the openEHR specifications can be used during the design of BNs , and this 

assumption must be tested.  

Second, the clinical care process is the dominant approach in building 

openEHR models, and the implications of this approach in CDS integration need to 

be examined. As observed in the Opereffa experiment described in Chapter 6, a 

strong focus on a particular subset of use cases may fail to support others.  

Third, there will be an inevitable interaction between the above two factors in 

any actual software implementation context, which is likely to introduce new 

complexities due to the specific underlying technology platform.  

Therefore, testing the assumptions around openEHR’s potential 

improvement of CDS requires a setting that includes the factors identified above, 

which is provided by the CDS implementation discussed in this chapter. This CDS 
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implementation calculates the probability of a complication that can be encountered 

during cataract surgery, based on the values of relevant clinical variables. 

The clinical scenario for decision support was identified with help from Mr. 

Bill Aylward from the Moorfields Eye Hospital, who was actively involved in 

openEHR based clinical model development for ophthalmology in addition to 

leading a software development team tasked with development of an open source 

EHR implementation for Moorfields Eye Hospital. Mr. Aylward has also suggested 

the use of an existing study (Narendran et al. 2008) as the gold standard for the 

decision-making model. This study uses data from 55,567 cataract operations to 

build a logistic regression model (Agresti 2007), which, in turn is used to develop a 

risk assessment tool. 

The clinical decision-making scenario from the ophthalmology domain, as 

defined by (Narendran et al. 2008), was used to define and implement a BN, which 

is then integrated to openEHR data hosted in the XINO-P. A data extraction pipeline 

was developed to load already existing patient data for cataract care from a legacy 

information system at Moorfields Eye Hospital into the XINO-P. However, the 

complexity of the relational database design used by this legacy software and its 

retired status at the time of the writing of this thesis produced an unreliable data set 

despite vigorous efforts. As a result, a synthetic data generation method was used 

to create clinical data, which was then persisted in XINO-P, using some 

components of the data extraction pipeline. 

The openEHR based CDS setup was tested via use of ROC Curves (Metz 

1978), however, comparison of the performance of the BN based CDS with 

(Narendran et al. 2008), was not possible due to lack of similar performance 

evaluation for (Narendran et al. 2008), accompanied by lack of access to data used 

by this study. 

9.1: Relevant Research 
 

The openEHR based CDS experiment (referred to as ‘experiment’ from now 

on) is built on the approach developed in (Narendran et al. 2008) which presents a 

predictive model for posterior capsular rupture (PCR) (Howard Vance Gimbel 1990), 

(Howard V Gimbel et al. 2001) and vitreous loss (VL) (Astbury et al. 2008). Both 

conditions are complications that can be encountered in a cataract operation. 

(Narendran et al. 2008) uses a data set that was collected from a single 

ophthalmology software to identify variables that are relevant to PCR and VL. The 

variables that are found to be statistically significant is then used to build a logistic 
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regression model for predicting the probability of PCR, VL or both for a patient. 

Clinicians are provided with the predicted probability of a complication during 

cataract surgery based on this logistic regression model, which allows taking 

precautionary actions such as assigning a more experienced surgeon to the 

operation.  

Identifying a clinical problem that could benefit from CDS, building the CDS 

approach and identifying the initial set of relevant clinical variables require 

significant clinician input. Moreover, accessing clinical data that would allow 

development and testing of CDS is notoriously complicated due to the obvious 

sensitivity of clinical data. (Narendran et al. 2008) is a study that has fulfilled all of 

these critical tasks. Taking it as a template for an openEHR based CDS 

implementation allows this thesis to focus on openEHR and BN related aspects of 

CDS for a well-defined CDS setting.  

For the purposes of distinguishing between variables that are included in the 

CDS model and data items in clinical models such as openEHR archetypes, the 

variables of the CDS model will be referred to as CDS variables below.  

9.2: Setup of the Experiment 
 

The experiment aims to develop a CDS implementation that serves as a 

workbench for openEHR and BN integration experiments, which, at the same time, 

makes it possible to observe the relative advantages and disadvantages of such an 

approach compared to logistic regression based method adopted in(Narendran et 

al. 2008). A comparison between the implementation discussed in this chapter and 

(Narendran et al. 2008) requires some extensions to logistic regression based 

approach.  

First of all, (Narendran et al. 2008) uses logistic regression to develop a 

probability chart. This probability chart is meant to be used by a clinician to find out 

the probability of a complication for a particular patient based on two factors. The 

first factor is the baseline probability of a complication discovered from data, which 

belongs to a group of patients whose clinical and demographic variables have a 

certain set of values. This baseline probability of risk is multiplied by a ratio, which is 

the second factor for finding the probability of a complication. This ratio is obtained 

via a calculation based on the combinations of the values of clinical variables for a 

particular patient. The probability chart maps values of the ratio to the probability of 

a complication and the chart is the decision-making mechanism that is meant to be 

used by the clinician. 
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This approach requires the clinician to take action based on his or her 

subjective threshold for risk level, which is the estimated probability found by 

consulting the probability chart. (Narendran et al. 2008) does not include a 

performance evaluation of this decision-making method that shows the relationship 

between a threshold value for probability that classifies a patient as likely to have a 

complication or not and the overall successful prediction rate based on that 

threshold.  

A meaningful comparison between BN based risk assessment and the 

logistic regression method developed in (Narendran et al. 2008) requires that they 

perform the same task for CDS, so that their performance can be compared. This 

task is defined as the prediction of a complication during surgery in the context of 

the experiment. This prediction is used to implement a classifier, which classifies 

patients into complications or no complications category prior to surgery, using a 

threshold value. When both logistic regression and BN classifiers are used for this 

task, their performance can be compared by visualising their classification 

performances via ROC curves, which shows their correct classification rates in 

response to changing the classification threshold.  

Therefore, drawing ROC curves for both the logistic regression would be the 

first extension to (Narendran et al. 2008) that would be required for a healthy 

comparison. ROC curves would also allow the results of modifications to both 

approaches, such as changing the number of intervals for categorical variables as 

well as changes to openEHR models to be observed as well. 

Another useful extension to (Narendran et al. 2008) would be the analysis of 

correlations between covariates, which corresponds to conditional dependencies 

expressed as parent-child relationships in a BN. (Narendran et al. 2008) does not 

include any interaction terms between covariates used in the logistic regression, 

which, translates to a rather simple topology for a BN with no conditional 

dependencies between clinical variable nodes. 

These extensions to (Narendran et al. 2008), required to perform a 

meaningful and informative comparison with the BN based approach implemented 

in this chapter depend on access to the clinical data set used in (Narendran et al. 

2008). In order to observe the results of adopting an openEHR and BN based 

approach, the same data set should be transformed into RM based data and 

persisted to XINO-P.  

The most significant issue that has made extensions to (Narendran et al. 

2008) ,and consequently the ideal comparison with the implementation discussed in 



 200

this chapter, infeasible is that the dataset that has been used in (Narendran et al. 

2008) has not been available for access during the writing of this thesis. 

 Failing access to the original data set that was used, a second best option is 

to use a data set from another source, which must at least contain same data 

elements. In order to adopt this option, a data analysis and extraction project was 

initiated at the Moorfields Eye Hospital in London with the aim of building a data set 

that could provide the same clinical data as with the unavailable data set. This data 

set would then be used to repeat the development of logistic regression of 

(Narendran et al. 2008) from scratch.  

The analysis step of the project aimed mapping the relational database 

design of a legacy information system, which contained cataract data, to openEHR 

clinical models that define cataract care. The extraction step aimed building a data 

transformation pipeline, which would allow exporting data from relational database 

to flat files and to XML files compatible with published XML schemas from the 

openEHR foundation, accomplishing a transform from the information model of the 

existing information system for cataract care to openEHR RM.  

At the time of the data analysis, Moorfields Eye Hospital was in a state of 

transition from a retired information system, which contained almost all the historic 

cataract care data, to the OpenEyes system. This situation complicated the 

analysis. The retired status of the clinical software containing the cataract care data 

meant that enquiring about the design of the relational database tables and how 

data was laid out across them was not possible since the software vendor no longer 

provided support. Despite significant efforts from Moorfields IT staff, attempts to 

discover the location and semantics of the cataract care data led to a rather fuzzy 

data source for the data extraction and transformation pipeline.  

The transformation pipeline was implemented in the Python programming 

language and it was used to apply transformations to results of SQL queries which 

were persisted into an HDF5 file, a scientific data persistence format developed by 

the HDF group (Folk et al. 2011, 5). This flat file was used as input to further 

transformations that generated XML files compatible with the published openEHR 

XML schemas. Therefore, the transformation pipeline had the capability to generate 

both flat files and openEHR XML files from the relational database. 

Despite the flexibility of the pipeline, the lack of insight into how the data is 

kept in the relational database by the original clinical information system has led to 

unsatisfactory results. It was also confirmed by Mr. Bill Aylward that some of the 

clinical data included in the analysis of (Narendran et al. 2008) was not collected by 

this system. However, this issue was of secondary importance compared to the 
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difficulty of being sure that the data extraction mechanism was pulling the data it 

was thought to be pulling from the relational database. The following findings from 

the data analysis are therefore provided here with that underlying uncertainty: 

The total number of cataract operations found in the relational database 

tables is 79656. These data were analysed with the view that each operation marks 

the end of a care episode that consists of one or more clinical examinations, a 

booking for the operation and the operation itself. This view was adopted as the 

data related to risk estimation for surgery is distributed across these care steps and 

for an operation to be included in the data set for a CDS, it must be complemented 

by other relevant steps in the care episode.  

When records that either could not be linked to an episode or that did not 

include key data were excluded, only 16070 care episodes remained from the 

79656 operations. Of these 16070 cataract care episodes, only 163 were found to 

have the clinical complication that was to be predicted. The ratio of complication 

(0.010) in the data set with complete episodic data is similar to the overall ratio for 

the whole data set (0.012), for which episodic relationships are discarded and only 

frequency of complications is considered.  

The existence of only 163 incidents from 16070 observations shows the 

rather rare nature of the event, which compounds the data quality and uncertainty 

issues already mentioned.  

Even though Moorfields Eye Hospital staff have been successfully providing 

reports from this data source for other purposes, the uncertainty of the data 

representation for this particular data set, and the amount of time that would be 

required to eliminate this uncertainty, meant that the analysis possible was 

insufficient for the purposes of this thesis. This was especially the case given that 

no guidance was available from the software vendor.  

 Given this situation, synthetic data generation was chosen as the means of 

generating a dataset with the properties required for the controlled implementation 

experiment being sought. The details of the synthetic data generation method 

developed are discussed in Appendix I, in full detail.  

The primary benefit of using synthetic data is full control over data set size 

and clinical characteristics. As discussed in Appendix I, synthetic data generation 

can produce any number of observations with adjustable characteristics for 

subsequent analysis with the experimental CDS. The low prevalence of 

complications that the CDS implementation aims to predict means that a large 

number of observations are required in order for a sufficient number of occurrences 

of the event that needs to be predicted, to be observed. A study based on the data 
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set used in (Narendran et al. 2008) finds the overall prevalence of complications 

(either posterior capsular rupture, vitreous loss or both) to be %1.92 (Jaycock et al. 

2007), which shows the low prevalence of the condition. 

Another advantage of synthetic data set generation is the capability to 

generate patient data with target characteristics, for example in terms of numbers of 

high-risk patients. This capability allows detailed profiling of various CDS 

components such as the BN, not only at different data scales but also across 

changing prevalence characteristics of the outcome being predicted. 

 Although the synthetic data generation method makes it impossible to 

perform a detailed comparison between the predictions of (Narendran et al. 2008) 

and the experimental openEHR based CDS implementation, it nonetheless allows 

the CDS design to be based on clinical variables that were found to be significant 

for decision-making in a study based on real patient data.  

 The collaboration at Moorfields Eye Hospital on cataract data analysis and 

modelling has led to significant secondary benefits. Even though the initial focus of 

the analysis has been on cataract surgery data, significant interest in openEHR from 

the Moorfields Eye Hospital contributed to its use in another project.  

The primary health IT project that had been under active development at the 

Moorfields Eye Hospital when cataract data analysis began is called OpenEyes. 

OpenEyes is a project that is closely associated with some of the key concepts 

discussed in this study.  

First, its origins lie in the senior clinicians’ awareness of data quality issues 

that stem from shortcomings of healthcare IT. Second, Mr. Bill Aylward who initiated 

the OpenEyes project to deal with these shortcomings has been aware of and 

interested in openEHR approach since before the initiation of OpenEyes.  

This alignment in principles and methods has enabled an openEHR centric 

collaboration with the Moorfields Eye Hospital team. The use of openEHR 

archetypes in cataract data analysis contributed to discussions about using 

openEHR methodology in OpenEyes. A small scale project has been implemented 

with support from NHS to connect practices in Wales to OpenEyes for better 

glaucoma care to this end. This interoperability focused project used openEHR 

models for data exchange between clinical information systems and concluded with 

a successful pilot implementation. 

The use of openEHR archetypes has also led to development of openEHR 

templates that were created by Dr. Ian McNicoll, a senior clinical modeller, in 

response to requirements derived through detailed study of the Moorfields cataract 

care records and the clinical decision support approach followed in (Narendran et al 
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2008). These templates were used as the basis of a data transformation pipeline 

that was required for analysis of cataract care data. They were also used as the 

basis of the experimental CDS implementation based on BNs discussed in this 

chapter.  

9.3: Components of the openEHR Based CDS Experiment 
 

The openEHR based experiment for CDS consist of the following primary 

components: 

• Clinical models 

• openEHR persistence implementation 

• Predictive model 

• Predictive model implementation 

 

As discussed in 9.2, the openEHR based CDS was built on the approach 

developed in (Narendran et al. 2008) and therefore some of these components have 

counterparts in that study and some are specific to the openEHR based approach. 

Figure 43 depicts the relationship between the components of the openEHR based 

CDS experiment: 
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Figure 43: Components of the openEHR based CDS experiment 

 

The starting point of the experiment is the synthetic data generation. The 

data generated through the mechanisms discussed in Appendix I was transformed 

into openEHR compliant XML files, which are represented in Figure 43 as 

‘openEHR formatted data’. This transformation to XML represents a step that would 

be necessary if clinical data were to be provided by any of the large number of 
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legacy EHR systems currently in use. Even though the data used in the experiment 

was synthetic, the process for moving the data into the openEHR persistence 

implementation followed a valid, reusable approach.  

The structure of the openEHR formatted data complies with the openEHR 

clinical models in the form of openEHR templates. This data was persisted into the 

openEHR Persistence Implementation as discussed in detail in Chapter 8. This 

persistence implementation is based on the novel persistence abstraction of RM 

based data, which is discussed in Chapter 7.  

The persistence implementation is used by the Predictive Model 

Implementation for its required data access, as Figure 43 shows. The Predictive 

Model Implementation in Figure 43 corresponds to a BN inference algorithm that 

calculates the probability of a complication during the cataract operation. The 

Predictive Model is a BN, which provides a decision-making model for probabilistic 

reasoning on the clinical data via defining clinical variables and relationships 

between them. These clinical variables are based on the data items defined in the 

openEHR clinical models, as depicted in Figure 43. 

The nodes of the BN that represent the clinical variables, which are used to 

calculate the probability of a complication during cataract surgery, are based on 

data items defined in the openEHR templates. Therefore, a mapping from these RM 

based data items to a BN structure creates an implementation independent 

mapping from clinical concepts to probabilistic reasoning.  

The horizontal dashed line in Figure 43 emphasises the technology agnostic 

nature of this mapping by separating clinical model definitions and predictive model 

(BN definitions) from components that are actual software implementations. 

Particular implementations of the technology agnostic CDS components that are 

above this line are discussed in detail through the rest of this chapter, but each 

component can potentially be implemented on many different platforms with 

different technology options. The openEHR XML format that was used as an 

intermediate data representation for clinical data could be replaced with other 

representations such as custom, binary encoded data, to achieve faster 

performance. The openEHR Persistence Implementation, which used a relational 

database for this experiment, can be replaced by alternative persistence systems, 

based on the approach developed in Chapter 7 and discussed in detail in Chapter 8. 

Likewise, the Predictive Model Implementation can be built with many different 

languages and algorithms.  

Therefore, this experiment explores both the feasibility of generalising an 

openEHR based CDS architecture and the efficacy of a particular configuration of its 
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components. As discussed in Chapter 7, a principal assumption that such feasibility 

rests on, here, is the successful abstraction of RM based data persistence and 

access. This assumption was tested through a relational database based 

implementation. 

Finally, the rightmost component of Figure 43 represents any client system 

that might use the predictive model implementation to calculate actual probabilities 

of a complication before a cataract operation. 

The components in Figure 43 were built and integrated via a number of 

steps, which consist of:  

• The development of openEHR archetypes and templates that provide formal 

models for the relevant ophthalmology data.  

• The creation of the clinical data set based on the openEHR models and 

openEHR persistence implementation 

• The development of an AQL query that provides access to the clinical data 

for the CDS.  

• The definition of the structure of a BN.  

• Building the connection between AQL query execution and BN 

implementation, for parameter learning and inference.  

 

The following sections provide the details of these steps, followed by a 

discussion of the findings and a comparison of the experiment with the pilot BN 

implementation experiment discussed in Chapter 5. 

9.4: Development of the Clinical Models 
 

All clinical data used in the CDS represented via openEHR templates. 

Therefore, the first step for a CDS implementation based on openEHR is to build the 

clinical models. The models need to cover all the clinical data that has been 

classified as significant by (Narendran et al. 2008). 

 The openEHR archetypes that were used for the experiment were previously 

developed by an openEHR modelling expert Dr. Ian McNicoll who worked with Mr. 

Bill Aylward from Moorfields Eye Hospital. These archetypes are publicly available 

from an instance of Clinical Knowledge Manager (CKM) (Ocean Informatics 2015) 

software run under openEHR foundation’s website. An initial review of archetypes 

with input from Dr McNicoll revealed that their scope covered most of the clinical 

scenario that the CDS experiment focused on. A number of additions and changes 

were implemented by Dr McNicoll based on the input provided by Mr Aylward and 
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the author. A number of new openEHR templates were produced as a result of 

these changes. 

 It was observed that previously developed openEHR archetypes, which were 

used as the basis of these templates, provided a significant amount of coverage for 

the clinical concepts that define the cataract care scenario, including the cataract 

operation. However, despite their relevant content, these archetypes did not include 

data items which would be required to represent some of the variables used in the 

logistic regression in (Narendran et al. 2008).  

The missing data items in these archetypes consisted of both clinical and 

non-clinical variables. Clinical variables such as “patient can lie flat”, 

“Pseudoexfoliation” or “doxazosin” had not been included in the original archetype 

design because they were not part of the data that is collected at the Moorfields Eye 

Hospital. The remaining missing data items were non-clinical variables such as the 

age of the patient and the category of the surgeon performing the operation. 

Therefore, it was normal that they would not be included in the clinical model design 

process.  

Despite the justification for their exclusion, these variables were still required 

for the predictive model. Therefore, a final set of changes to the openEHR models 

was implemented by the author. The inclusion of non-clinical variables in archetypes 

is not considered as a generic and widely acceptable solution, but this approach 

was considered as an acceptable workaround for the proof of concept 

implementation in the current experiment. 

 The resulting openEHR templates, therefore, represented a large superset of 

clinical information that was gathered across the three key stages of cataract 

treatment at Moorfields Eye Hospital.  

 The care process that leads to a cataract operation begins with an 

examination of the patient by the clinician. In case there is a need and also consent 

for a cataract operation, the operation is booked, and the cataract operation is 

performed, during which the complications PCR and VL may arise.  

 The three templates that were developed to model these steps in the care 

process are discussed next, with their structure depicted in figures.  

9.4.1: Clinical Examination 

 

The clinical examination of the patient was modelled by the template 

depicted in Figure 44. Figure 44 presents the openEHR template that consists of a 

top level COMPOSITION archetype (Cataract Clinic Note) that contains three 
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archetypes which in turn represent clinical concepts. The archetypes are marked in 

the figure. Data items within the archetypes are associated with CDS variables that 

are relevant to PCR and VL, as identified by (Narendran et al. 2008). 
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Figure 44: Clinical examination template 
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 The fundoscopic examination archetype used in the cataract clinic node 

template contains a particular modelling approach that is likely to arise in clinical 

systems development: Interpretation data item corresponds to two different CDS 

variables: Age Related Macular Degeneration (AMD) and Diabetic Retinopathy. The 

Interpretation data item is capable of representing different content based on its 

value. The chosen modelling approach allows multiple interpretations of a clinical 

condition to be recorded at the same point in the RM instance. This is possible 

because the archetype is a model, and actual data instances may have a number of 

Interpretation data item instances as long as the archetype allows for a cardinality 

that is greater than one.  

 From a clinical modelling point of view, the advantage of using Interpretation 

to represent multiple data items is that a potentially very large number of clinical 

interpretations can be recorded against this field. If the modeller specifies AMD and 

Diabetic Retinopathy as separate fields instead of using Interpretation alone then 

this modelling approach leads to adding a new field for every problem that the 

modeller thinks the clinicians may record for a single eye. This is likely to be a 

problematic modelling approach since it requires the definition of a potentially large 

number of data items.  

The side effect of using Interpretation field for representing multiple clinical 

problems is that the archetype path to multiple problems would be the same. That is 

both the AMD and Diabetic Retinopathy variables in Figure 44 would have the 

following path: 

 

/composition[openEHR-EHR-COMPOSITION.encounter.v1]/content[openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1]/data[at0001]/events[at0002]/data[at0003]/ite

ms[at0007]/items[at0032]/value/value 

 

This path would also point at any other clinical problems that could be 

recorded by the clinician. The actual semantics of the clinical data for this path is 

established through the name property of the Identification data item, which is also 

accessible via the path: 

 

/composition[openEHR-EHR-COMPOSITION.encounter.v1]/content[openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1]/data[at0001]/events[at0002]/data[at0003]/ite

ms[at0007]/items[at0032]/name/value 
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Therefore, the semantics of particular data becomes dependent on a textual 

description, which is a significantly weaker form of computable healthcare data 

representation than openEHR’s features can support. The weakness stems from the 

modelling approach used. Considering the fact that the …/name/value path may 

change based on the actual human language the implementation can use (English, 

Spanish, etc.) the problem may be elevated further when data sets from different 

sources that use different languages need to be merged for CDS. 

 It is important to underline that the modelling approach taken in this particular 

archetype by Dr. Ian McNicoll does not point at a weakness of the openEHR 

formalism. The clinical modeller who created the archetypes, suggested using 

openEHR’s support for clinical terminologies to strengthen the semantics of the 

Interpretation field when notified about this potential problem, but this thesis kept the 

initial modelling approach in order to highlight and discuss the potential implications 

of modelling choices made.  

 The template in Figure 44 shows that clinical modellers can stay within the 

bounds of openEHR formalism to express clinical concepts and still face 

problematic issues of semantic interoperability. This is an important finding: 

openEHR formalism cannot guarantee the realisation of all of its potential benefits 

without consideration of how the models are going to be used. 

 For this particular modelling issue, using openEHR’s support for 

terminologies would solve the problem. Through the use of a code from a widely 

used terminology such as SNOMED-CT (IHTSDO 2015), via the 

DV_CODED_TEXT openEHR type, the archetype and resulting RM data would 

become resilient to these semantic interoperability issues. 

The remaining CDS variables that are based on data points in the template 

are similar to AMD and Diabetic Retinopathy: they are represented with text fields 

and the discussion about the use of the Interpretation field is valid for them as well. 

9.4.2 Pre-Operation Booking 

 

During the clinical care process, a clinical examination may lead to a 

decision to perform a cataract operation. In this case, the operation needs to be 

booked and clinical data expressed in some of the CDS variables from (Narendran 

et al. 2008) is created at this step.  

Figure 45 depicts the association of data items from the openEHR template 

for pre-operation booking to CDS variables in the same way as in Figure 44.  
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Figure 45: Pre-Operation booking template 
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This figure includes only sections of the template that contain CDS variables 

for the sake of clarity. 

The associations in Figure 45 are similar to ones in Figure 44. The 

numerator and denominator in the diagram are different fields of the Metric Snellen 

data item and not two different variables with the same archetype path as discussed 

before.  

The Cataract Pre-Op Booking template used a key clinical modelling practice 

supported by openEHR: an exclusion archetype. Even though it is not associated 

with a CDS variable, and not used in the implementation, the Exclusion of a 

Problem/Diagnosis archetype included in the template is related to the semantics of 

the CDS variable Glaucoma. It explicitly expresses the semantics of a patient 

having no glaucoma. This is a modelling approach that the clinical modeller can use 

to clarify the meaning of lack of a data item.  

An example case that requires this clarification may be a change in the 

clinical record keeping practice: eg a new piece of clinical data that was not 

recorded previously now needs to be recorded routinely during the care process. 

After a while, there would be two groups of patients with missing data for this clinical 

variable. The first group would have their data recorded when the care process did 

not record this clinical variable. The second group would have missing data due to 

their clinical condition not requiring its creation (as in no glaucoma) even though the 

clinical variable is included in the care process and recorded.  

If lack of this data item in data is interpreted as the condition does not exist, 

this interpretation would incorrectly classify patients who had the condition but 

whose treatment took place during a time when the condition was not recorded. 

Using the exclusion archetype as in the Cataract Pre-Op Booking template allows a 

clear interpretation of missing data. However, using this modelling approach does 

not guarantee that actual data will have the required semantics. A clinician may not 

record the existence of a condition such as glaucoma to express a lack of it and 

may ignore recording its exclusion, which may thereby lead to an ambiguity 

between missing and not recorded data.  

To avoid this situation ADL’s support for invariants may be used to force 

recording of an exclusion when a particular condition is not observed, but this 

scenario may complicate the modelling process for the cases where the number of 

conditions that may require this check is large. 

The use of exclusion archetype provides a good example of the situation in 

which clinical models are developed with a focus on clinical care and even though 

there are powerful mechanisms available to clinical modellers, they may not be 
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employed because they are primarily needed for secondary use cases such as 

building a data set from population queries.  

If the clinical modeller focuses on the clinical care process, handling the 

ambiguity of the type discussed above is not a significant problem for the users of a 

clinical information system. A clinician may spot the lack of a particular condition 

and request clarification. However, secondary uses of clinical data mostly happen in 

contexts other than direct clinical care, with little or no possibility of confirmation or 

clarification of clinical data.  

9.4.3 Cataract Operation 

 

The final step in the clinical care that is included in the scope of the clinical 

modelling is the cataract operation. Figure 46 depicts the openEHR template that 

was used to represent the cataract operation. 

Figure 46 associates the Clinical Interpretation data item to PCR and VR 

CDS variables, which represent the clinical complications that (Narendran et al. 

2008) aims to predict. 

 The PCR and VR complications are represented through the same data item, 

and therefore the ambiguity when selecting their values using archetype paths must 

be removed using the name attribute of the data item as in the case of the clinical 

examination template in Figure 44. 

The operative report template is the last of the three templates that were 

developed for managing data for cataract care using openEHR. These templates 

correspond to the openEHR clinical model component of the CDS architecture in 

Figure 43, and they are the mechanism through with actual clinical data was 

created. As discussed Section in 9.2, synthetic data generation was chosen as the 

method for building the data set for CDS implementation. Due to the openEHR 

driven nature of the CDS, this approach required that synthetic data was 

transformed into openEHR RM based data using these openEHR templates. 
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Figure 46: Cataract operation template 
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9.5 Data Transformation to openEHR RM 
 

Aside from the synthetic nature of the data, transforming the simulated data 

to RM based data represents a realistic requirement for making use of any existing 

clinical data for an openEHR based CDS implementation. This requirement 

originates from the existence of large quantities of clinical data that is kept in legacy 

systems, which could be used as a data source for a CDS based on openEHR.  

The methods used for the transformation are independent of the actual 

values of the clinical data and therefore the synthetic nature of the data used is not 

an issue in the following discussion of the transformation.  

 The transformation used the openEHR XML schemas, which are published 

as part of the openEHR specifications, as the target, which is a common approach 

in openEHR implementations. 

 Synthetic data was transformed into XML form using XSLT, producing valid 

XML files according to XML schemas, which were automatically generated from 

openEHR templates. These automatically generated schemas are called Template 

Data Schemas (TDS) and XML files that are valid according to these schemas are 

called Template Data Documents (TDD).  

The first component of the transformation implementation is the generation of 

XML files (TDDs) that are used as a placeholder for data items. Figure 47 depicts 

how these XML files were generated. 

 

TDS TDD

XSD XML

Test XML 

Generation

Template
Clinical exam

Booking

Operational Notes

Tdd_Clinical_Exam.xml

Tdd_Booking.xml

Tdd_Operational_Notes.xml

 

Figure 47: Test XML document generation from XSD 

 

The openEHR templates discussed in Section 9.4 were exported as TDSs 

from the freely available Template Designer tool. This tool allows development of 

openEHR templates using archetypes and it also supports the capability to generate 

TDSs from templates.  
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Since a TDS is an XSD, it is possible to generate test XML document 

instances based on it using widely available XML tools, as shown in Figure 47. In 

this case, the XML data generation capability of the Eclipse Web Tools Platform 

(WTP) project was used to generate individual XML files for each of the three 

openEHR templates created for the experiment.  

 From an openEHR perspective, these test files are TDDs. Three XML (TDD) 

files were generated as a result of this step. The initial content of the data elements 

in these files were assigned by the XML tool, based on the information in the XSDs 

(TDSs). These files were used as placeholders for clinical data for a single patient’s 

cataract care. Synthetic clinical data was injected into these files, replacing values 

generated by the XML tool, leaving the rest of the content the same, at their 

automatically generated values. Figure 48 visualises this process. 

Figure 48 shows how synthetic data related to a single patient episode was 

injected into three TDD files through the use of XSLT. The XSLT processing injects 

values from synthetic data to relevant points in the TDD, and other content in the 

TDDs is left untouched. Since these values are generated based on the XSD (TDS), 

they may not always be clinically meaningful. The experiment left these values 

untouched for the following reasons. The data contents of the CDS data set is a 

subset of the clinical data defined by the three openEHR templates, so any data 

outside of this data set were not used in the CDS implementation. However, it is 

necessary to have a realistic content structure in the XML files (TDDs), so that the 

persistence implementation based on the approach developed in Chapter 7 can be 

tested with as realistic content as possible.  

Therefore, having XML files (TDDs) with realistic sizes were considered 

important as well, since this factor is likely to become significant from a performance 

point of view for the persistence implementation as the data size grows. Since 

validation of data values based on their definitions in the clinical models is not within 

the scope of this study, automatically generated XML data that is not replaced by 

synthetic data values was left as it was.  

 The process depicted in Figure 48 was performed for each row of synthetic 

data, which represents a patient episode consisting of a clinical examination, 

operation booking and cataract operation. The resulting XML files (TDDs) required 

another transformation. The need for this transformation stems from the nature of 

TDS. A TDS defines a template specific type system based on types from RM. 

These types enforce further modifications to archetype data items that are modified 

in the openEHR templates so that XML data based on the TDS always conforms to 

these specialisations. At any point following its creation, the contents of the XML file 
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with data (TDD) can always be translated back to canonical, unmodified RM types. 

Therefore, the TDS mechanism can be considered as a small, and template specific 

type system based on openEHR. Its outputs can always be translated to the 

canonical XML form. This means that openEHR implementations can work on the 

basis of canonical XML definitions, based on the fact that openEHR template based 

data can always be transformed into this form. 

 

XSLT

TDD for Clinical Examination

TDD for Operation Booking

TDD for Cataract Operation

<?xml version="1.0"...

<?xml version="1.0"...

<?xml version="1.0"...

Synthetic Data

 

Figure 48: Inserting synthetic data to TDDs 

 

The (TDDs) with content based on synthetic data were finally transformed to 

canonical XML files, which are valid according to canonical XML Schema 

documents published by the openEHR foundation, using this approach. Following 

this transformation, XML data was processed by the persistence layer 
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implementation. The details of this step are discussed in Chapter 8. Figure 49 

complements Figure 48 and describes the whole process. 
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Figure 49: Persisting openEHR data to XINO-P 

 

 

The process depicted in Figure 49 provides a good approximation of a real-

life data import method from a legacy system for an openEHR implementation. The 

data import process implemented for the experiment concludes with the population 

of clinical data in the openEHR persistence implementation, called XINO-P, which 

establishes a workbench for performing experiments with the openEHR based CDS. 

Based on the approach developed in Chapter 7, this persistence implementation 

was accessed via AQL queries from the CDS. 

9.6: AQL Based Data Access for CDS 

9.6.1: Using AQL for Use Cases involving Non-Clinical Care Data 

 

AQL has a pivotal role in openEHR data access due to its capability to 

provide a standard access method to data, independent of the underlying 
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persistence implementation. Therefore, an AQL query, as a means of 

implementation independent openEHR data access, was required to map the data 

items in the cataract care templates to CDS variables. The results of this query 

provided the clinical data for the CDS implementation.  

 The CDS data set that was used in the experiment does not focus on a 

single patient or a particular step in the care process, but as observed from the 

associations between data items across multiple templates and CDS variables, 

aggregates data from a number of steps in the care process.  

A common approach to this type of data aggregation requirement is to export 

data from a clinical information system to another form, which can be used for 

analysis purposes and other secondary uses, including development of CDS 

mechanisms. Based on this common practice, extracting data from an openEHR 

implementation to a format that can be further transformed and modified so that it 

becomes native to the tools used for CDS model development, would be a valid 

approach for developing a CDS based on openEHR. 

 However, moving data out of an openEHR context for the purposes of CDS 

model building limits the use of openEHR to clinical care only. An extended use of 

RM based data and AQL is required to observe how openEHR methodology and its 

implementation aspects perform in settings beyond clinical care such as CDS 

system development. Using AQL for population queries to build a data set for a BN 

based CDS served this goal. 

9.6.2: Data Aggregation  

 

AQL was used in the experiment to aggregate data from multiple steps in the 

care of a patient. This data was used for building the CDS model, which is a BN. 

Since the care steps were modelled via openEHR templates, the aggregation used 

them as a definition of the clinical data source, as depicted in Figure 50. 

The AQL query in Figure 50 uses data items from the three templates 

discussed in Section 9.4. The full AQL query from Figure 50 is provided in Figure 

51. 
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Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

SELECT ….

FROM ….

WHERE ...

AQL

Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

 

Figure 50: AQL query for CDS: relation to openEHR templates  

 

The AQL query in Figure 51 aggregates data points from the three 

templates. For the sake of clarity, paths in the SELECT clause have been shortened 

in the diagram. The query defines instances of COMPOSITION RM types that are 

the roots of their respective templates and uses the CONTAINS AQL statement to 

define OBSERVATION instances that are under the COMPOSITION instances.  

These definitions take place in the FROM clause of the AQL query. The 

SELECT clause then uses the references to OBSERVATIONs as the root of a 

number of archetype paths that define the data items to return as the query result.  

The variable defined with the alias ‘e’ in the FROM clause has no constraints 

on its ehr_id attribute since this query is meant to process all clinical data that fits 

the criteria regardless of whose EHR contains it.  

The conditions defined in the WHERE clause ensure that using the same 

archetype as the root of a number of templates does not lead to ambiguity.  
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SELECT 

o_fund_exam/data[at0001]/.../value AS diab_ret,

o_fund_exam/data[at0001]/.../value AS amd,

o_fund_exam/data[at0001]/.../value AS fundal_view,

o_cl_exam/data[at0001]/.../value AS corneal_pathology,

o_refraction/data[at0001]/.../value AS high_myopia,

o_vis_ac/data[at0001]/.../code_string AS eye_examined,

o_vis_ac/data[at0001]/.../numerator AS pre_op_va_num,

o_vis_ac/data[at0001]/.../denumerator AS pre_op_va_denum

o_book_exam/data[at0001]/.../code_string AS brunes_white_cat,

o_book_exam/data[at0001]/.../value AS weak_zonules,

o_book_exam/data[at0001]/.../code_string AS small_pupil,

o_book_section/.../value AS glaucoma,

o_operation/data[at0001]/.../value AS pcr,

o_operation/data[at0001]/.../value AS vl

FROM EHR e 

CONTAINS 

(

COMPOSITION c_exam[openEHR-EHR-COMPOSITION.encounter.v1] 

CONTAINS 

(

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

AND

o_refraction[openEHR-EHR-OBSERVATION.refraction.v1]

 )

AND

COMPOSITION  c_booking[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS  

(

o_vis_ac[openEHR-EHR-OBSERVATION.visual_acuity.v1]

AND

o_book_exam[openEHR-EHR-OBSERVATION.exam.v1]

AND

o_book_section[openEHR-EHR-SECTION.adhoc.v1]

  )

AND

COMPOSITION c_operation[openEHR-EHR-COMPOSITION.report.v1]

CONTAINS  o_operation[openEHR-EHR-OBSERVATION.operation_record.v1]

)

WHERE c_exam.name/value matches {'Cataract Clinic Note'} 

AND

c_booking/name/value matches {'Cataract Pre-op Booking'}

AND

c_operation/name/value matches {'Operative report'}

 

Figure 51: AQL query for CDS 
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All the templates that are used by the AQL query have the same root 

archetype as the root of the template: a COMPOSITION archetype with the 

archetype id ‘openEHR-EHR-COMPOSITION.encounter.v1’. 

Since archetypes are meant to be reused within templates, there is nothing 

problematic in this setting, but the templates are defining different clinical concepts 

and therefore they must be clearly identified in the AQL query. Their names are 

used as constraints in the WHERE clause to distinguish the root COMPOSITIONs 

of templates  

Following the persistence abstraction approach of Chapter 7, the AQL query 

in Figure 51 can be represented in the TPQ form as depicted in Figure 52.  
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name
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AND

o_operation
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Figure 52: AQL query for CDS as a TPQ 

 

Figure 52 shows how the AQL query aggregates information from different 

compositions that are created during the care process. It also shows how CDS 

variables are distributed across these compositions.  

The existence of the EHR typed ‘e’ node is required for two reasons. First, the 

syntax of AQL requires that the FROM clause has a single root item which acts as a 

parent for other items which can be expressed via the CONTAINS statement. 

Therefore, it would not be possible to group the three key COMPOSITION data 
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items (c_exam, c_booking, c_operation) without using a shared container (e). 

Second, even though the ‘e’ node has no EHR id constraints, it still implicitly forces 

the c_exam, c_booking and c_operation nodes to exist under the same EHR, 

through containment constraint. 

The TPQ form of the AQL query employs a logical OR interpretation for the 

data items defined by the SELECT clause, which allows the building of a data set 

for the CDS that may contain missing values. This flexibility leaves the option of 

making use of information about missing data in various steps of BN development 

for the CDS.  

9.6.3: Issues Encountered 

 

The AQL query developed in Section 9.6.2 was used to build a data set from 

a simulated patient cohort. This approach led to significant findings regarding the 

use of AQL for defining and creating a population data set. 

9.6.3.1: Non-clinical CDS Variables 

 

Both the TPQ in Figure 52 and its underlying AQL query define a list of data 

items distributed across three COMPOSITION instances, which are based on three 

templates. This list leaves out some of the CDS variables identified by (Narendran 

et al. 2008) because these variables do not contain clinical data. Two such CDS 

variables are the age of the patient and surgeon grade.  

Both variables were found significant by (Narendran et al. 2008)in terms of 

their contribution to the probability of complications related to cataract surgery and 

were, therefore, included in the logistic regression. However, these variables were 

not included in the openEHR templates, because age would usually be a data item 

associated with patient demographics, and surgeon grade is likely to be classified 

as administrative data, based on the classification of surgeons in a hospital.  

The openEHR RM allows representation of such variables, but as this 

experiment shows, they are not necessarily considered relevant when modelling 

clinical data with a focus on the particular steps of a care process.  

9.6.3.2: Lack of a Care Episode Identifier 

 

The steps of the care process of a patient: clinical examination, operation 

booking and cataract operation, were modelled via separate openEHR templates. A 

clinician accessing information in these templates can use the dates associated with 
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data entry for each of these steps to build an ad-hoc view of the care process even 

if the three steps do not have an explicitly defined data item that identifies a care 

episode.  

openEHR RM allows for tracking of such care episodes without explicitly 

including this information in the clinical models. This capability is based on its 

support for making use of external systems for various tasks, such as using an 

external workflow engine to associate clinical data with workflow steps. But even 

when information about a care episode is not tracked, the users of the clinical 

information system that is based on the templates can still construct the temporal 

sequence of aspects of the care process, intuitively, using date information which is 

likely to be provided.  

In the context of the experiment, it was observed that not having episodic 

data for the care process may cause problems due to the nature of the clinical 

condition CDS focuses on. In case of cataract treatment, a patient can have more 

than one operation if the problem exists in both eyes. This means that a patient’s 

EHR may have more than one instance for each of the steps that make up the care 

process. This situation may lead to duplicate data in the AQL query results. Figure 

53 depicts a simplified tree representation of RM based data in a patient’s EHR, 

along with the relevant part of the TPQ, again, simplified, from Figure 52. The 

hypothetical patient’s EHR contains two episodes of care that concludes with a 

cataract operation. 
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c_booking(1)

c_operation(1)
c_exam c_booking c_operation

e
e
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Data TPQ

c_exam(1) c_booking(1) c_operation(1)
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c_booking(2) c_operation(1)

c_booking(1) c_operation(2)

c_booking(2) c_operation(2)
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c_booking(2) c_operation(2)

Matches for TPQ

 

 Figure 53: Unintended, duplicate TPQ matches 
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Both episodes include a clinical exam, booking for an operation and the 

operation. The TPQ that is a simplified representation of the one in Figure 52 has no 

consideration for the episodic nature of the data, leading to an unintended number 

of matches. The problem is due to TPQ defining a tree pattern based on archetype 

ids, which can be satisfied in eight different combinations of results by the data tree, 

as depicted in Figure 53.  

 The intended representation of the clinical data for this patient consists of the 

first and last rows of the table in Figure 53, grouping COMPOSITION instances 

based on their episodes. The AQL used for the CDS data set needs to include a 

constraint that would allow the steps of a cataract care episode to be grouped 

together to express this intention, explicitly.   

When the episode identifier is not included in the modelling, it is not possible 

to introduce a condition to the AQL query based on this identifier. Moreover, if the 

episode identifier were to be included in the modelling phase, its use in AQL would 

require features that are not explicitly defined by the current AQL specifications. The 

condition that must be expressed in AQL in order to avoid the unintended duplicate 

results depicted in Figure 53 is the equivalence of episode identifiers of 

compositions included in the query. This equivalence condition does not require 

expressing the actual value of episode identifiers, it only requires that three 

COMPOSITION instances that represent the care steps have the same identifier 

value. Expressing this condition in AQL requires referencing values of data items 

within the query without explicitly providing values. A natural way of doing this would 

be extending the WHERE clause. Pseudo AQL code that expresses the 

equivalence of episode id data item values, based on this approach would be: 

 

“…WHERE c_exam/…path_to_episode_id…/value = c_booking/…path_to_episode_id…/value AND…” 

 

Figure 54 shows how equivalence of episode ids for COMPOSITION 

instances recorded under episodes 1 and 2 can be expressed without referring to 

actual values. 
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Figure 54: Episode id in data and query 



 226

 

The current specification of AQL does not clarify if a constraint based on the 

equivalence of values of different data items can be used in the WHERE clause. 

The experimental implementation discussed in Chapter 8 supports this capability via 

the use of SQL’s support for expressing these types of conditions.  

The experiment did not encounter this particular problem since the synthetically 

generated data set included only one episode per patient EHR. However, the 

requirement to support constraints on relative values is obvious. 

9.7: The Bayesian Network 
 

The BN for risk estimation is the main clinical decision support component of 

the experiment. It replaces the logistic regression used in (Narendran et al. 2008) as 

the means of predicting the probability of a complication during cataract surgery. 

The structure of the BN is provided in Figure 55 in the form of a screenshot taken 

from the BN tool GENIE (Druzdzel 1999)  

 

 
Figure 55: BN for CDS 

 

9.7.1: Network Structure 

 

 The structure of the BN in Figure 55 is based on the logistic regression 

model developed in (Narendran et al. 2008). The logistic regression model has an 

outcome variable with two possible results and 12 covariates, and this model is 
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encoded directly in the structure of the BN. The outcome variable has a dependency 

on all factors identified by (Narendran et al. 2008), and there is no dependency 

relationship between any of these factors. Only the structure of the BN is based on 

the semantics of the logistic regression derived by (Narendran et al. 2008). The 

actual probability distributions of the nodes of the BN were learned from the CDS 

data set. 

Defining the structure of the BN in this way has some disadvantages 

compared to alternative structures that could have expressed dependency 

relationships between clinical variables, such as the BN learned from data in 

Section 5.3. Since a BN encodes a joint probability distribution of categorical 

variables, all the nodes with a high number of parents end up having large 

conditional probability tables. A key advantage of a BN is that it allows significant 

computational savings based on the conditional independence properties of 

variables. When there are very few conditional independence relationships in the 

network, both storage and computation requirements of variables increase, which 

has been the case for the network in Figure 55. The outcome variable has 12 parent 

variables leading to a conditional probability table with 92160 entries.  

It is possible that the covariates of the logistic model may have some degree 

of interaction between them, especially between the age variable and some clinical 

conditions. But the model developed in (Narendran et al. 2008) does not include 

such interaction variables. Since this experiment did not have access to the dataset 

underlying the logistic regression model in this study, checking for correlations in the 

data set for a more expressive BN Network structure has not been possible. 

Therefore, the BN used in the experiment has a structure that mimics the 

relationships introduced by the logistic regression model.  

 All covariates in the logistic regression model in (Narendran et al. 2008) are 

categorical. This allows the BN nodes to be parameterized based on the outcome 

categories of the corresponding covariates in the logistic regression model. For 

example, a continuous value such as the age of the patient is represented with a 

discrete covariant with values that represent five age categories in the logistic 

regression, and the corresponding node in the BN that represents the distribution of 

the age has five outcomes which correspond to these categories. 

9.7.2 Network Parameters  

 

The values of the BN parameters were learned from synthetic data through 

the use of bnlearn (Marco Scutari 2009), a package developed for the statistical 
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programming language R (R Development Core Team 2008). The parameters of 

the network, i.e., the distributions expressed by conditional probability tables were 

learned through the maximum likelihood method (Scholz 2004) implemented in 

bnlearn.  

 It was observed that learning network parameters in this setting led to 

missing values for some conditional probabilities. The maximum likelihood approach 

in bnlearn assigns “not available” to some conditional probabilities in the network if 

the data set does not contain a sufficient number of observations for those 

configurations of variables. Therefore, not having access to conditional probabilities 

for some configurations of variables in the network leads to not being able to predict 

outcomes for these configurations. 

In the context of the network used in the experiment, the high number of 

entries in the conditional probability table of the outcome variable (indicating 

whether or not a complication is expected) and the rather low prevalence of the 

complications during a cataract surgery, exacerbates this problem. 92160 

conditional probability entries and the infrequent occurrence of the event the model 

aims to predict (complication during surgery) means that a high number of 

observations would be required to learn the network parameters. Since an event 

with a low prevalence will require a large number of test cases to be observed, 

learning all the conditional probabilities with relatively low prevalence requires a 

large data set. 

9.7.3 Inference Performance and Relation to Data Size 

 

The implications of the rare event nature of the predicted outcome along with 

the change in the classification performance of the BN in response to change in 

data size were tested via building ROC curves (Metz 1978).  

 ROC curves provide an informative, yet compact representation of the 

performance of the BN. A significant determinant of the classification performance 

of the BN that is used to predict the occurrence of a complication during a patient’s 

cataract surgery is the decision threshold value for the estimated probability of the 

complication. The decision threshold is used to classify the patient as high risk or 

not high risk. If the predicted probability is higher than the threshold, then the 

occurrence of the complication becomes the classifier output. Therefore, the 

performance of a classifier depends on the selected threshold and a good metric for 

performance is the true positive(Tp) and false positive (Fp) rates as discussed in 

Section 5.5. The ROC curve is a plot of the Tp and Fp values across different 
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decision threshold values. It enables an evaluation to be made of the decision-

making method at hand and provides a visual clue for deciding the best threshold 

value for a particular decision-making strategy. The ROC curve in Figure 56 shows 

how the BN performed with a data set of ten thousand cataract operations, based 

on synthetic data. 

 

Figure 56: ROC curve for BN performance. 10K data instances 

 

The starting value for the decision-making threshold is 0.001. The threshold 

was incremented by 0.005 until 0.496. Therefore, the ROC curve in Figure 56 is 

based on 100 different threshold values. Each threshold value was used to perform 

k-fold cross validation (Kohavi 1995). K was set as 10 for all steps. During k-fold 

cross validation, 90% of the available data was used to learn the parameters of the 

BN with the same given network structure, and the resulting BN was used to classify 

the remaining 10% of data. This learning-testing process was repeated for all folds, 

10 times in total for any threshold value. 

 The mean values of sensitivity and specificity from each k-fold cross 

validation were used to arrive at Tp and Fp values. Therefore, the ROC curve in 

Figure 56, and the following figures that repeat the same process with more data, 
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are based on 100 applications of k-fold cross validation with a single threshold value 

for each application. 

The classification behaviour of the BN in response to choosing a particular 

threshold value can also be observed from the plots of sensitivity and specificity. 

Figure 57 provides these plots for the same 10K data set: 

 

 

Figure 57: Sensitivity/Specificity for BN performance. 10K data instances 

 

 The sensitivity and specificity curves in Figure 57 do not shift significantly in 

response to changing the threshold beyond the value of 0.1. Threshold values 

above 0.1 result in classifier performance that departs from the desired scenario of 

high Tp and low Fp. 

The ROC curve in Figure 56 shows that the classifier in the main stays 

above the diagonal (which would represent a completely random decision). The 

effect of the data set size on classifier performance can be observed by increasing 

the amount of data while keeping every other factor the same. Figure 58 compares 

the results of following the same procedure using 100K instances of synthetic data 

with the previously used 10K instance data set. 
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As Figure 58 shows, an increase in the data set size leads to better classifier 

performance, achieving better Tp rates given a Fp rate. Increasing the data set size 

to 200K and 500K preserved the same trend as shown in Figure 59. 

The ROC curves discussed above were all generated using clinical data 

retrieved from the openEHR persistence implementation discussed in Chapter 8, 

achieving the thesis goal of an integration of openEHR methodology with a BN for 

CDS. 

 

 

Figure 58: ROC curve for BN performance. 10K and 100K data instances 

 

The performance of the BN classifier demonstrated by the ROC curves in 

Figure 59 is not close to the ideal performance a ROC curve could represent. The 

best performance a ROC curve can represent is high true positive rate 

accompanied by a low false positive rate, which means a ROC curve that comes 

close to upper left corner of the diagram in Figure 59. Even though the BN 

implementation did not achieve a remarkable performance for classification, the use 

of ROC curve to observe its behaviour introduced a useful instrument for observing 

the results of changes to components of the CDS setup, including the data volume. 
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Figure 59: ROC curve for BN performance. 10K to 500K data instances 

   

9.8: Discussion of the CDS Approach 

9.8.1: High Level Architecture 

 
The first step in developing a BN as a CDS mechanism is the identification of 

variables which are considered relevant to the clinical condition at hand. This step 

usually includes input from a domain expert. Even though the clinical variables used 

in the experiment were based on the covariates of the logistic regression model in 

(Narendran et al. 2008), a significant number of these variables were already 

included as data items in the openEHR clinical models, which were initially 

developed independently of this thesis. Therefore, these models provided an initial 

set of clinical variables that could have been used by a domain expert as a 

candidate set from which nodes of the BN could be selected. The usability of 

openEHR clinical models for the development of BNs for estimating the risk of a 

cataract operation suggest that these models have the potential to serve knowledge 

engineering requirements beyond clinical information systems development.  
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In the experiment, the clinical concepts defined in the openEHR archetypes 

were used to connect clinical data and BN development. A single clinical concept 

such as `glaucoma` (meaning that the patient has glaucoma) represents the clinical 

condition, a variable in a joint probability distribution (coded by the BN) and the 

actual value that resides in the persistence implementation and its access using 

AQL. Figure 60 depicts the relationship between these different uses of the same 

concept. 
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 Figure 60: Using openEHR data item for CDS 

 

Figure 60 shows how the glaucoma variable that originates from the clinical 

model was used in both the BN definition and in the AQL query. The relationship 

between the BN, the openEHR models and the AQL model is not depicted for all 

variables in the diagram, for purposes of clarity.  

 The AQL query enables data that is associated with the glaucoma concept 

from the openEHR model to be fetched from the underlying persistence 

implementation. The simplified relationship in Figure 60 is the basis of a scalable 

approach that can be implemented on various platforms. The BN implementation 

and openEHR persistence layer that supports AQL can be based on any 

technology. The templates in Figure 60 can also support clinical information 

systems development even though this is not included in the figure. 
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9.8.2: Implementation Details 

 

The software implementation of the integration of the high level concepts in 

Figure 60 has not been completely seamless. Integration of these concepts requires 

integration of various software tools and frameworks at the implementation level. 

Key software and artefacts that were used to provide this integration are as follows: 

• The clinical models consisted of openEHR archetypes and templates that 

were created with the freely available Archetype Editor and Template 

Designer software from Ocean Informatics. These models were transformed 

to their XML representation (XSD) via the export mechanisms of the 

modelling tools. Synthetic data was generated in the form of comma 

separated value files, and these files were used to create openEHR data in 

XML format, compatible with the XML schemas, which were based on the 

clinical models.  

• The clinical data in XML form was stored into an openEHR persistence 

implementation, which supports Archetype Query Language through a 

transformation from AQL to SQL. Therefore, the actual means of getting 

access to clinical data is to use the SQL implementation of the associated 

relational database. 

• The BN that was used for decision-making was defined and deployed using 

the R package Bnlearn. (M. Scutari 2010) 

 

This integration shows that data creation, openEHR persistence and BN 

implementation required the use of a number of programming languages and 

technologies. Python (Van Rossum 2007), Java (Arnold et al. 1996), Scala 

(Odersky et al. 2004), Eclipse Modelling Framework (Steinberg et al. 2008), 

Postgresql relational database (Momjian 2001) with its SQL (Date and Darwen 

1987) implementation and extensions, R (R Development Core Team 2008) are the 

tools used to build this openEHR-BN integration. The use of these tools, despite 

their substantial learning curves and complexity, was necessary because no single 

technology provided all the functionality required to implement the integration in 

Figure 60. The complexity of individual components of the implementation led to the 

concurrent use of existing tools and frameworks, even though they were built on 

different software technologies. The alternative of implementing all the functionality 

on a single platform would have been impossibly inefficient, due to the work that 

would have had to be done from scratch, and would mean dismissing findings and 

results of a vast amount of published research and development.  
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 Despite the large number of technologies required, in practice, the maturity 

and large user base of these technologies provided rather smooth and well-

established means of connectivity between them. The SQL based implementation of 

AQL exposes the results of an AQL query as a regular SQL query over standard 

database access mechanisms, which can be accessed from R through an R 

package such as rpg (Keitt 2015). All major programming languages have libraries 

and frameworks for processing CSV and XML files and XML schemas. Therefore, 

even though learning curves of a number of technologies had to be tackled to 

implement the main components of an openEHR based CDS implementation, using 

well-established technologies enabled an efficient integration.  

9.8.3: Findings Related to Implementation 

 
The low frequency of complications during a cataract surgery makes data set 

size a critical component of parameter learning for the BN. A 0.2% rate of 

complications as found by (Jaycock et al. 2007) means that a clinical data set with 

50,000 cataract operations would be expected to contain about a 100 events with 

the outcome we would like to detect.  

The maximum likelihood estimation used by the bnlearn R package requires 

observations for a particular combination of values of BN nodes to assign 

probabilities to that combination. When the structure of the BN leads to a conditional 

probability table for the clinical complications node that has 92160 entries, obtaining 

probabilities based on observations requires large amounts of data. Therefore, the 

number of possible observations defined by the structure of the model and the rare 

event nature of the complications both elevate the amount of data required. 

The ROC curves in Figure 59 demonstrate this point. An acceptable and 

consistent performance from the BN requires tens of thousands of data instances 

and increasing data set size helps improve the classification performance.  

This data size requirement of the chosen CDS method leads to the 

requirement for accumulating data for a large number of operations. Use of 

openEHR for both clinical systems implementation and data interchange between 

systems will help fulfil this requirement. Cataract operation data from various 

systems and locations can be pooled with little effort. However, the use of openEHR 

data in a machine learning context requires persistence implementation for such a 

pool of data to perform sufficiently well to feed data to machine learning 

frameworks. There is thus a requirement for an openEHR persistence 
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implementation that can perform large volume queries with a high level of 

performance. 

 From a knowledge engineering perspective, the use of the openEHR models 

helps define the BN structure by providing a set of clinical variables for easily 

identifying and defining the nodes of the network. The data access mechanism 

based on AQL also benefits from the openEHR approach since it can support data 

access based on the same clinical variables, in a platform independent way.  

However, the parameter learning performance of the BN, especially for 

approximate inference methods, is dependent on the data volume. Satisfying the 

requirements related to the performance of the openEHR persistence 

implementation is not sufficient to ensure performant parameter learning. The BN 

implementation such as the bnlearn package used in this experiment has its own 

scalability requirements. Without support for parallel structure and parameter 

learning implementations for BNs, the computing power of a single CPU becomes 

the performance bottleneck for these operations. Therefore, scalability of the 

persistence layer for openEHR based CDS does not imply scalability of the 

integrated architecture. 

The iterative nature of the BN development is likely to require many CPU 

intensive tasks to be performed repeatedly. A CDS implementer may consider 

changing the intervals for discretization of the continuous variables such as age to 

achieve better performance by following different discretization approaches 

(Dougherty, Kohavi, and Sahami 1995), (Irani 1993). In this case, the ROC curves 

must be rebuilt to observe the results of these changes.  

The process of building the multiple ROC curves in Figure 59 is another 

example of the iterative nature of BN development, since the data set size changes 

and consequently the whole computation of the ROC curve is performed from 

scratch. Building the ROC curves require inference task to be performed by the BN, 

which is dependent on parameter learning. Parameter learning is performed via 

bnlearn package, and the inference was performed using the gRain R package 

(Højsgaard 2014) which employs the Junction Tree inference algorithm (Nagarajan, 

Scutari, and Lèbre 2013). Both the bnlearn and gRain packages use a single CPU 

core for computation and as more data is used, mostly to deal with the low 

prevalence of the clinical outcome of interest, the time to learn the parameters of the 

network and perform inference on a data set to measure classifier performance 

grows significantly. The bnlearn package is not limited to implementation of 

sequential algorithms. It supports parallel structure learning (Marco Scutari 2014) 

but in this particular experiment the structure of the network is based on the logistic 
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regression of (Narendran et al. 2008), and therefore performance benefits from 

parallel computation were not realized within the workflow that produced the ROC 

curves in Figure 59. 

The implementation limitations mentioned here are case-specific and should 

not be seen as a limitation of BNs in general. Parallel algorithms for structure and 

parameter learning, as well as approximate and exact inference, are active fields of 

research with potentially useful outcomes for dealing with large data volumes such 

as (X.-L. Wu et al. 2012), (Neiswanger, Wang, and Xing 2013), (Xia and Prasanna 

2008), (Xia and Prasanna 2007) and (V.K. Namasivayam, Pathak, and Prasanna 

2006). 

The last significant finding from the experiment relates to data 

transformations. It was observed that data transformations were required on the 

AQL query results for continuous values of some AQL variables to be used by the 

BN implementation as values of discrete variables. This transformation is required 

due to the discrete nature of conditional probability tables used to represent the 

nodes of the BN. One such variable is the age of the patients going through the 

cataract surgery. It was observed that transformations that are required to import 

legacy data to openEHR persistence and later provide it to the BN implementation, 

create a data transformation pipeline that is susceptible to information loss.  

The term information loss refers to conditions in which various characteristics 

of data become unavailable due to a transformation, such as discretisation of 

continuous values. Once a set of continuous values that fall into the same category 

are grouped together and assigned the same category identifier, the original values 

can no longer be recovered in further steps of the transformation pipeline. For 

example, if systolic blood pressure of a patient is imported from a legacy system 

based on an openEHR model, which defines a data item for systolic blood pressure 

that only has values low or high, further access to openEHR data cannot introduce 

three categories such as low, normal and high. The members of both low and high 

groups are indistinguishable from each other, and without access to original values, 

it is impossible to know which data instances would be classified as normal for the 

new step in the computation pipeline. 

9.9: Comparison of the Thyroid and Ophthalmology 
Experiments 

 

The experiment in Chapter 5, based on thyroid data, provides an example of 

a simplified machine learning implementation, which can be compared with the 
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implementation discussed in this chapter, to observe the requirements for building a 

more realistic BN setup built on openEHR methodology. The pilot implementation in 

Chapter 5 was intentionally kept simple to explore requirements and implementation 

characteristics of a BN based CDS without an EHR platform. 

 The use of a BN with its discrete conditional probability tables introduces the 

same issues in both experiments: the lack of observations that correspond to one or 

more combinations of variables of the network can lead to biased models. A rather 

problematic case arises when lack of certain combinations of observations in the 

analysed population dataset leads to the learned parameters of the network 

computing the probability of that set of observations as zero, implying that they are 

impossible.  

Even when synthetic data generation is used to produce large amounts of 

data, some combinations of values may not be observed, due to both network 

parameterization and the nature of the events. There are well-established methods 

for dealing with missing data, so remedies exist for this issue, but the discrete 

nature of the BN is likely to require their frequent use for BN based CDS. 

The experiment in Chapter 5 follows what is a quite common approach to 

building a data set for machine learning: clinical data is transformed into a comma 

separated value file for direct consumption by any tool that can consume CSV files. 

This approach requires that data from different clinical information systems has 

consistent semantics, which must be checked and ensured by rigorous data 

analysis and cleaning. Adding new data to the existing data set is likely to require 

new mappings in addition to the effort required to implement data export 

functionality from the source systems.  

The openEHR based approach followed by the experimental CDS 

implementation develops a model driven representation of data, which supports a 

number of use cases. The openEHR models, which are central to clinical data 

representation, can also support clinical systems development, CDS design and 

development, and data interoperability.  

Despite the significantly more complicated infrastructure that is required to 

support the openEHR based approach, the platform provided by this infrastructure 

eliminates the need for repeated, error prone data cleaning and mapping tasks that 

are required if a data export approach is adopted.  
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9.10 Summary 
 

The CDS implementation discussed in this chapter attempted to identify key 

aspects of developing a CDS system based on the integration of openEHR and 

BNs. The amount of effort that was required to build the data processing 

infrastructure has been significantly greater than the effort that was required to use 

BNs for CDS functionality.  

 This finding confirms the well-known problem of most CDS development 

efforts: most of the time and available resources is spent on the data infrastructure 

or data cleaning. However, the openEHR based architecture and approach delivers 

an output that can be reused and extended. Even though it was implemented at a 

proof of concept level, the SQL based AQL support produced a promising way of 

eliminating the well-known practice of data extraction from the clinical systems to 

build a separate data set for CDS development. openEHR clinical models that have 

been initially designed for clinical care scenarios provided sufficient support for 

defining data items for the CDS models (BNs), albeit with various workarounds. 

These workarounds, such as adding demographic data (age of patients) into the 

clinical models, are valuable observations that are used as the basis of suggested 

improvements to the openEHR specifications to better support CDS integration 

scenarios, as discussed in Chapter 10.  

 Overall, the pilot implementation discussed in this chapter demonstrates the 

feasibility of the integrated architecture defined in Chapter 4. 
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Chapter 10: Conclusions and Future Research 
 

The primary objective of this thesis is to place openEHR into the heart of a 

clinical decision support setting and to observe the outcomes of this approach on all 

the components of the resulting architecture, both at the specification (abstract) and 

implementation (concrete) levels.  

Establishing this objective with an experimental approach that includes as 

many aspects of a realistic openEHR implementation as possible requires the use 

of a number of technologies. The results of the experiments based on the 

development of such an implementation show that software standards, frameworks 

and tools reveal their strengths and weaknesses according to the use cases at 

hand, and the complex interactions between them depend on the functionality 

supported. 

 This functionality can be classified into two groups: related to clinical 

information system and CDS.  

The openEHR specifications define functionality required to support clinical 

care: the existence of the EHR as a core concept, the fundamental units of clinical 

data such as COMPOSITION instances, and other design characteristics of 

openEHR imply a set of operations on clinical data for clinical care.  

The functionality related to CDS is not currently explicitly identified in the 

openEHR specifications. This is a perfectly natural outcome of openEHR’s primary 

goal: delivering a computable representation of healthcare data that focuses on the 

concept of electronic health record, which in turn implies a patient whose clinical 

data is kept in the EHR. From a data processing point of view, this is a patient-

centric design, which does not include patient populations as a first class concept. 

On the other hand, implementations of the CDS concept has a strong dependence 

on the concept of patient population: a patient’s diagnosis or prognosis can be 

evaluated based on the degree of deviation from the characteristics of the relevant 

patient population.  

This dependency on the population characteristics introduces different 

patterns of data access to clinical data than the patient-centric ones. This thesis has 

explored the feasibility of an architecture that can support both sets of patterns, 

based on a set of implementation driven experiments. From an openEHR point of 

view, the most significant research challenge this thesis has tackled is that of 

introducing openEHR methodology as the basis of both clinical care and CDS 

system implementation, without resorting to completely different architectures.  
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openEHR’s two-level modelling approach allows clinical concepts to be reused in 

different components in this unified architecture. Therefore, concepts defined by the 

openEHR RM provide a significant level of robustness by supporting various CDS 

specific tasks, which were not necessarily included in the initial design of openEHR 

as functional requirements. However, this robustness has its limits. 

 The design and implementation of openEHR persistence emerges as an 

immensely important research topic, central to both overcoming openEHR 

methodology’s current limits to robustness and enabling innovation by supporting 

new capabilities for AQL. Extensions to AQL, such as the Probabilistic AQL idea 

discussed in Chapter 8, have the potential to integrate results of cutting edge 

machine learning research with a clinical query language in novel ways. Further 

research into openEHR persistence, based on persistence abstraction and big data 

frameworks can support this integration, as data volume grows at a rapid rate.  

 Therefore, the findings based on the work done for this thesis, which are 

discussed in the following sections, are considered as starting points for future 

research based on the four key components: openEHR specifications, parallel, large 

scale data processing, AQL and machine learning. 

10.1: openEHR Models for Computable Healthcare Data  
 

The development of archetypes for the ophthalmology domain, which are 

used in the CDS implementation, have been initiated independent of this thesis, and 

their scope includes the data items that would be required to implement a clinical 

information system. These openEHR models have been developed by a highly 

experienced clinical modeller, with input from a senior clinician from the 

ophthalmology domain.  

The implementation based on these models reveals some important findings 

related to their use in a CDS context. First of all, there are multiple ways of 

expressing the same clinical content in a model and modellers can not necessarily 

predict the outcomes of their modelling choices in downstream contexts. An 

example of this case is designing a clinical model that allows multiple clinical 

findings to be included at the same point in the model. The underlying assumption 

for this approach is that a clinician may add any number of data items as he or she 

sees appropriate during the care process. The modeller cannot easily constrain the 

list of clinical findings that can be added; doing so may lead to clinicians not being 

able to record an observation if it was not considered by the modeller.  
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When this clinical model is used for implementing a clinical information 

system, the modelling approach may not lead to any problems. The clinicians 

looking at the list of findings can easily interpret the information. When the same 

model is used in a CDS setting, existence or lack of a particular observation may 

become a key determinant of both CDS model learning and decision-making . The 

existence of any number of data items under the same container in the clinical 

model may also require attention. If there are multiple data items at a single location 

in the openEHR model, then the semantics of corresponding data items must be 

differentiated by some means other than their path. If this scenario is not considered 

in advance by the clinical modeller, openEHR models that present no problems 

when used by a clinical information system may end up causing ambiguity in a CDS 

driven use case.  

Another problem which would not necessarily reveal itself in a clinical care 

setting is an interpretation of the lack of a condition. A human interpretation of a list 

of problems for a patient is manageable for a clinician: he or she can reason about 

the lack of a particular condition or simply ignore it. When a CDS implementation 

uses the existence of a variable as a significant variable for calculating an outcome, 

it cannot mimic the human reasoning of the clinician that is performed at the time of 

care. 

 These potential issues are not related to openEHR’s capability for expressing 

clinical data. They are results of the specific focus the clinical modeller has on a 

limited set of use cases during the model development phase. However, when a 

particular use case is known, its consideration in the modelling process may not be 

without any trade-offs. For example, when a modelling approach that explicitly 

records lack of a condition is adopted so that this setting can be clearly identified in 

a clinical decision support scenario, use of this model in a clinical care setting 

requires the clinicians to record this information. From a clinical information system 

end user perspective, this is an extra step that would take valuable time, which 

would not be required if the clinical model allowed simply not recording a condition 

instead of explicitly recording lack of it.  

 Therefore, a critical finding of the thesis based on the CDS implementation 

process is that flexibility and capabilities of openEHR modelling formalism do not 

provide models that can support different uses of clinical data without any effort. 

Claims of better CDS based on the expressive power of openEHR should 

contemplate this finding for a more insightful approach.  

 The scope of clinical data in openEHR models that are developed with a 

focus on clinical care is another significant issue. The CDS model used in Chapter 9 
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include variables such as age and surgeon experience. Age of a patient is most 

likely to be considered as part of demographics data and despite the existence of a 

demographics information model under openEHR specifications, this data may be 

provided by a shared service such as a master patient index or other specialised 

software. The experience of the surgeon is unlikely to be considered as part of a 

clinical model so this information may also reside in an external system that 

manages administrative data.  

Both age and surgeon level variables used in the CDS model are therefore 

unlikely to be part of clinical models for clinical care, and their actual values are 

likely to reside in a system outside of the openEHR implementation. This situation, 

which can be generalized as dependencies on non-clinical variables in CDS 

models, is problematic in an openEHR based CDS setting at multiple levels.  

Modifying clinical models to include data for potentially non-clinical concepts, 

as done in this thesis as a workaround, is a misuse of openEHR’s capabilities at the 

modelling level. Not including these variables in the models means that AQL can no 

longer be used to define all the data that the CDS implementation would require.  

It can be argued that the potentially non-clinical nature of CDS model variables is 

simply a matter of scope; that non-clinical data is not relevant to openEHR. 

However, if associating openEHR models and data based on these models to non-

clinical concepts and data is considered as a frequently encountered requirement, 

at least in a CDS setting, then this requirement deserves attention as a research 

topic.  

10.2: Using AQL for Clinical Data Access 
 

AQL allows access to clinical data via use of the concepts defined by 

openEHR specifications, independent of the underlying persistence system that 

openEHR persistence is implemented on. Given the recent advances in large scale, 

parallel data processing frameworks such as Hadoop (Borthakur 2007) or Apache 

Spark (Zaharia et al. 2010), AQL becomes the strongest candidate for means of 

data scale independent clinical data access .  

The persistence abstraction approach developed in Chapter 7 strengthens 

the argument for adopting AQL for both clinical information system and CDS system 

development by providing a consistent approach to persistence implementation.  

 However, the maturity of AQL as a specification is not on par with its 

suggested advantages at the time of the writing of this thesis. As it stands, AQL is 

not documented along with the rest of the openEHR specifications. The current 
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documentation available to implementers is a web page (Ma, Frankel, and Beale 

2014) Moreover, the contents of this webpage focuses on the syntax and grammar 

of AQL, leaving some behaviour undefined.  

 The implementation of the tree based persistence abstraction adopts intuitive 

interpretations of this type of undefined behaviour when necessary. One such 

behaviour is the treatment of missing values for data items listed in the SELECT 

clause of AQL.  

The need to provide an interpretation for this behaviour was observed in the 

CDS experiment discussed in Chapter 9. The diagnosis of diabetic retinopathy for a 

cataract patient is a variable, the value of which is required in both parameter 

learning for BN and inference tasks. When the clinical model does not include an 

explicit data item that represents a lack of this diagnosis, all patients without this 

condition would be missing the diagnosis element. If the AQL implementation were 

to leave out all query results that do not have this diagnosis, this would lead to large 

number of patients being excluded, and only a subset of the patients with the 

diagnosis would be included.  

Therefore, the intuitive approach, which is followed by the implementation 

discussed in Chapter 8, is to allow empty values in query results and leave 

interpretation of them to later phases of data processing but this is still unspecified 

behaviour from the standards based data access point of view. The need to select 

COMPOSITION instances with the same care episode id, discussed in Section 

9.6.3, also requires clarification of AQL specifications, regarding the possibility of 

defining conditions based on the equivalence of values of data items, without 

expressing the actual values.  

 Another finding of this thesis is the importance of AQL-first design for the 

performance and flexibility of persistence implementation, even though AQL is 

defined independent of any implementation methods or technologies.  

openEHR data can be persisted in many ways and initial experiments that 

use a relational database as a persistence layer have delivered satisfactory results 

for clinical care use cases. These use cases, such as accessing a list of 

compositions for a patient can be implemented with custom application 

programming interfaces (APIs) without significant difficulty, especially due to the 

availability of high level software development frameworks. However, these custom 

APIs provide a less than an optimum solution for a platform approach based on 

openEHR: data exchange is possible, but moving individual applications such as 

CDS implementations across openEHR implementations becomes complicated. 

AQL solves this problem, but it comes at a price; its data access semantics that 
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heavily rely on constraints on the hierarchy of data elements must be supported by 

the persistence layer.  

The Opereffa implementation described in Chapter 6 showed that building 

custom data access APIs to support clinical applications first is likely to produce a 

persistence architecture that cannot easily support AQL semantics. Since 

development of statistical models for CDS significantly benefits from large data sets, 

the most common solution to this design problem is a data export mechanism to 

another persistence system, which can support large volume queries with better 

performance. This is indeed a widely adopted industry and research practice 

leading to a data warehouse approach.  

Even though such a solution would be possible for Opereffa, it would still fail 

to benefit from the advantage of a unified data access method based on openEHR 

concepts, as provided by AQL. The persistence abstraction method developed in 

this thesis provides the means to implement this unified data access method across 

a variety of persistence systems. However, some transformations on data are 

inevitable, when AQL is used to integrate openEHR to BNs for CDS. The reason for 

this was discovered to be the nature of the AQL result set and openEHR data types.  

The AQL result set could contain empty values, which are suitable for 

representation via use of the relevant types of the implementation technology: such 

as empty values in SQL query results or null values in an in-memory Java object. 

The semantics of lack of a value must be expressed as a specific numeric value for 

a machine learning framework, such as 0, where other numeric values would have 

other meanings.  

The AQL result can also return values based on the reference model of 

openEHR. For example, if existence or lack of a diagnosis was expressed in the 

model with codes from a terminology (either specific to that model or an external 

one), the results would contain one of the two terminology codes which would again 

require a transformation to either numeric values used by the CDS related 

frameworks.  

These transformations are usually required, aside from the rare cases where 

an actual numeric value is to be fetched from openEHR data and used directly in a 

CDS implementation. This is because of the difference between the highly 

specialised type system introduced by the RM and the much simpler and fully 

numeric nature of data that the machine learning algorithms require.  
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Figure 61: openEHR model data vs. machine learning model data 

 

At a high level, this is a transformation from a matrix in which values belong 

to openEHR’s type system, to another one where a much simpler, numeric type 

system is used. Figure 61 illustrates this transformation. 

Figure 61 shows how openEHR models define the semantics of actual 

values and how these semantics end up in openEHR data retrieved by the AQL 

query (“at….” codes). Even though the semantics assigned to this variable stays the 

same in the machine learning model, the transformation to the numeric value used 

in the machine learning model is inevitable.  

Therefore, providing an abstraction over persistence systems via the use of 

AQL does not guarantee clinical data can be used directly in machine learning 

contexts. There exists an extra computational step, which must be performed for 

some values in the AQL query results, consequently having significance from a 

performance point of view.  

10.3: Using Bayesian Networks for Clinical Decision Support 
  

The term “Bayesian Network” has been used in this thesis to refer 

consistently to a particular type of probabilistic graphical model, which is based on a 

directed acyclic graph, nodes of which consist of conditional probability tables. 

Other kinds of probabilistic graphical models (Koller and Friedman 2009), which are 

referred to as continuous Bayesian Networks, hybrid Bayesian Networks, etc. have 

been described, as extensions of the term Bayesian Network. The classification of 

these graphical models as extensions of the BN as defined by (Pearl 1988) is 

specific to this thesis, based on their increased expressiveness in terms of 

semantics of nodes as well as supported topologies.  
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 The primary advantage of a BN as a CDS tool is its high level conceptual 

representation. Even though established statistical methods are available for 

regression or classification tasks, graphical models offer a unique way for domain 

experts to contribute to the construction of a probabilistic model. This contribution 

can become even more efficient when the openEHR clinical models are used as the 

underlying knowledge repository, which allows data items from the clinical models to 

be used to define the nodes of BNs, as discussed in Chapter 9.  

 CDS implementations have an iterative nature, with performance 

improvements achieved experimentally, regardless of the underlying mechanism for 

decision-making.  

Analyses, such as calculation of ROC curves, allow observation of the 

effects of changes to components of the CDS implementation, on its performance, 

such as the assumptions of the decision-making model, data set size or threshold 

values. The iterative process is hampered if increasing data volume introduces a 

performance bottleneck. Such growth in data volume can stem from increased 

adoption of clinical information systems, or the actual CDS scenario at hand, such 

as analysis of rare events that require a large number of observations for the CDS 

to be characterised. Therefore, the robustness of the BN approach to CDS, in the 

face of growing volume and complexity of clinical data, is an important determinant 

of its usability in addition to the use of openEHR methodology - which in itself 

enables data sharing and consequently data pooling by design. The increasing 

adoption of parallel programming methods and their inclusion in popular 

programming language runtimes and frameworks, provides a potentially reliable 

solution to this problem.  

Implementation of parallel learning and inference algorithms for BNs  must 

be complemented by generic parallel computing frameworks so that key tasks in the 

model development lifecycle, such as the k-fold cross validation (Kohavi 1995) used 

in Chapter 9, can be performed on large data sets. The scope of future research on 

this topic should also include extensions of BNs such as continuous and hybrid 

networks.  

10.4: Future Directions for openEHR Based CDS 
 

Both clinical application development and CDS implementation based on 

openEHR have been explored in detail in this thesis. Actual software 

implementations with mainstream technologies have demonstrated experimentally 

that openEHR provides a robust and implementable platform definition.  
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 A very significant amount of time was required for this essential software 

development and for research on tools and technologies that could be used to 

implement various functionalities. This exhaustive approach has been justified by 

the findings from the pilot experiments and the implementations described in the 

thesis.  

 Without implementation driven experiments, research on electronic health 

records is bound to ignore some critical requirements for better CDS since these 

requirements are related to complex interactions between different aspects of the 

components of the chosen CDS approach. Observing these interactions requires 

the implementations of the CDS components in place. One understandable obstacle 

that makes it hard for EHR research to explore these requirements is a lack of freely 

available platform implementations based on standardisation frameworks like 

openEHR. The feedback that was provided in response to public and open source 

release of some of the components developed for this thesis is evidence of 

significant interest, from both industry and academia, in a platform that could 

support future research and development.  

 The potential improvements to the openEHR specifications suggested in this 

thesis are based on requirements that were identified through software 

implementations. These were not, though, solely implementation tasks; they are 

components of an integrated architecture for openEHR and BN integration, and are 

essential research and development contributions in the ongoing mission of 

openEHR.  

 Extending the scope of openEHR models and data with concepts external to 

clinical models is one such requirement. Modifying clinical models to include data 

items that are not directly related to the clinical concepts represented by the models 

is not an acceptable method for extending openEHR’s benefits to CDS. This 

approach carries the risk of introducing data elements that could confuse clinicians 

concerned with non-CDS uses of the models. As commonly shared openEHR 

archetypes such as medications, allergies or blood pressure, are associated with 

more CDS scenarios, extra data items would clutter openEHR models with 

concerns not relevant to clinicians.  

Support for metadata at the openEHR RM level could help express data 

items for these separate concerns, in a flexible way. In the case of including the age 

of a patient in an existing archetype, as discussed in Section 9.6.3.1, the problems 

introduced by adding this extra data item at the clinical model level can be avoided 

by expressing this variable as metadata. This approach would handle the data as an 

optional value associated with an instance of an RM type. Despite the flexibility this 



 249

offers, the integration of metadata within the RM, and its use in various new 

scenarios, require careful evaluation. 

 The openEHR object-oriented reference model presents an opportunity for 

metadata related properties to be defined at the level of abstract types and therefore 

to become available to RM types that inherit from them. Both the representation of 

metadata and its integration to the object oriented design of RM are significant 

future research topics. 

Figure 62 visualises how successful outcomes of research on these topics 

might hypothetically support separation of concerns for multiple CDS 

implementations that use the same clinical model. 
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Figure 62: openEHR metadata for different CDS implementations 

 

The clinical information systems in Figure 62 operate on data items that are 

defined through openEHR archetypes and templates. Since metadata is optional 

content for a reference model type instance, its definition can be completely omitted 

by the clinical modellers. When other uses for clinical data arise such as various 

CDS systems that use these models, these systems can use existing data created 

by clinical information systems without any extensions to the models, via use of 

additional metadata inserted alongside clinical data.  

Operations that create metadata as part of the CDS life cycle, such as 

assigning the value of age of patients to a metadata path based on the underlying 

clinical model, saving the outcome of a risk assessment for a patient before the 

operation, or providing an estimate for prognosis can all take place without affecting 

the operation of existing clinical systems.  

 Metadata support for openEHR would also require the openEHR 

specifications to clearly define how metadata should be managed in various 
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scenarios that make use of RM data. These scenarios include, but are not limited to, 

clinical data versioning, clinical data exchange and AQL based data access.  

 One of the key features of the openEHR methodology is its recognition of the 

importance of tracking changes to clinical data due to both clinical and legal 

requirements. The openEHR specifications fulfil this requirement through strong 

support for versioning. Use cases such as correcting a valid but incorrect data entry, 

or adding a new allergy to an existing list of allergies, can introduce new versions of 

openEHR RM instances. When an existing instance has metadata attached to it, 

how this data should be treated in case of a version increment must be defined by 

the specification, considering various use cases.  

 Clinical data exchange scenarios also need to clarify how metadata is to be 

treated. Moving metadata across information system boundaries along with actual 

RM instances can help receiving systems use CDS implementations that rely on 

particular metadata. This scenario requires that the metadata itself is clearly defined 

so that CDS implementations can consistently use it. The requirement can 

potentially be fulfilled through the use of openEHR’s data types. The privacy 

implications of sharing metadata would also require consideration: since the use of 

metadata is suggested for data that is not necessarily clinical in nature, sharing this 

data across system boundaries may introduce further problems, such as age, 

gender or geographic location of patient unintentionally moving to other systems, 

compromising anonymity; after all, it is likely that the clinical modellers did not 

include it in the scope of openEHR archetypes in the first place.  

 Introducing metadata in the above suggested manner should take care not to 

introduce new and custom methods for access to this data – that would detract 

seriously from the benefits of using AQL, as widely discussed in the thesis. 

Therefore, extending AQL’s syntax and semantics to accommodate metadata 

support in this way, is another important future task.  

 Each of these suggested extensions is likely to require significant efforts, 

with input from clinicians, clinical system implementers and CDS implementers. 

Therefore, they are suggested future research topics for openEHR. 

 Another future line of research, the scope of which arises from observation of 

the behaviour and operations required on RM data in a CDS integration scenario, as 

well as performance requirements for processing RM data, is the extension of 

capabilities of AQL.  

 The experimental setup discussed in Chapter 9 included various processing 

steps which are likely to emerge in CDS implementations based on both BNs  and 

other machine learning methods. Transformation of openEHR RM types to numeric 
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values and discretisation of continuous values, are data transformation tasks which 

are likely to be performed in almost every CDS implementation that uses AQL. 

Supporting some of these tasks at the AQL level could allow AQL to support CDS 

implementation better by shifting frequently required capability from machine 

learning frameworks to AQL implementation.  

Given AQL’s syntax and semantics, which resemble both XPath (Clark and 

DeRose 1999) and SQL (Date and Darwen 1987), various extension mechanisms 

used in these languages might usefully be adopted by AQL to support data 

transformation tasks and other requirements to process data.  

A potential approach to achieving this goal would be support for function 

calls. This approach is part of the standard for both SQL (ISO 2015) and XPath 

(Clark and DeRose 1999). Various relational database servers and XPath 

processors support user-defined function definitions in SQL and XPath queries. The 

advantage of this approach is that it keeps the core language simple. User-defined 

functions not only provide support for extending the capabilities of these query 

languages, but they also allow access to more expressive, general purpose 

programming languages for customising behaviour.  

This is a flexible and powerful approach to developing functionality which 

may be inefficient or simply impossible to deliver directly with SQL or XPath. For 

example, Postgresql (Momjian 2001) supports user-defined functions developed in 

languages such as Java (Arnold et al. 1996) or Python (Van Rossum 2007). 

Similarly, XPath processors allow calls to functions implemented with host 

languages such as C# (Hejlsberg, Wiltamuth, and Golde 2003) and Java (Arnold et 

al. 1996). Successful use of this approach across mainstream relational database 

servers and programming languages is evidence of its versatility.  

The extension of AQL to support user-defined functions should follow the 

same careful approach discussed above for metadata extensions to the openEHR 

specifications. While custom functions could allow implementers of AQL to provide 

advanced data processing capabilities, they could also introduce dependencies on 

the availability of particular functions for CDS implementation. As with the 

suggested metadata extensions, this could potentially diminish the re-usability of 

CDS implementations that utilise specific user-defined functions within AQL.  

Both SQL and XPath attempt to solve this problem through the introduction 

of standard functions. These core functions are gradually introduced to new 

releases of the standard, so that designers of new systems can choose to rely only 

on functionality that they know any standard compliant platform would provide. 

Following a similar approach, based on input from implementers as part of the 
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openEHR specifications development process, is suggested to improve AQL’s 

support for CDS. 

 Given that both metadata and function call extensions for AQL are suggested 

as part of openEHR specifications development, an underlying assumption is that 

the AQL specification is due to become part of openEHR specifications, which is not 

yet the case at the time of the writing of this thesis.  

 Defining AQL as the sole query language for RM based data access for the 

purposes of CDS, means that its implementation becomes a key determinant of the 

efficacy of openEHR and CDS integration, as discussed in the context of BN 

integration in this thesis. However, the benefits of a consistent data access method 

are likely to be cancelled out by the implementation efforts required of persistence 

systems implementers, to address the requirements of new CDS implementations 

such as to introduce large scale, parallel data processing. 

 Therefore, AQL implementation should be based on an approach that is 

technology agnostic and formally consistent, but not necessarily included as a part 

of the openEHR specifications.  

The reasoning behind this suggestion is as follows. First, openEHR’s 

technology agnostic approach to developing specifications should not be 

compromised by references to particular persistence systems, so any approaches 

related to AQL implementation must have the same technology agnostic nature.  

Leaving persistence aspects completely out of the specification, which is the 

case at the time of the writing of this thesis, causes two problems: first, 

implementers find it hard to deal with AQL semantics, especially when using 

relational databases as the basis of implementation. Second, each platform for 

implementation requires design from scratch, making it costly for implementers to 

employ different platforms tuned to different use cases. A technology agnostic 

persistence methodology would offer a solution to these problems, without 

compromising openEHR’s platform independent nature.  

The new persistence abstraction approach developed in thesis fulfils these 

criteria, but is suggested as a methodology, not as a future addition to the openEHR 

specifications. Despite the fact that it is based on a technology agnostic tree 

representation and associated tree operations, this thesis would not recommend 

including persistence concepts within the openEHR specifications. Instead, 

introduction of optional, well defined methodologies for guiding and assisting key 

implementation tasks facing openEHR adopters, such as persistence, should be 

considered, thereby establishing a middle ground between extending the 
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specification with implementation concepts and leaving crucial and inevitable 

implementation tasks completely out of scope.  

The tree based persistence abstraction of Chapter 7 achieves this balance, 

in addition to establishing a rich topic for future research. Large numbers of 

algorithms and architectures, which are already available from research in XML 

processing, can be adapted to numerous implementations involving different 

persistence systems. This new approach establishes openEHR persistence as a 

field of research rather than its currently accepted simply as an implementation task. 

The scope of this newly defined research topic is important and vast, built on the 

intersection of concepts from computer science, information retrieval, medicine, 

knowledge engineering, and also statistics.  

 Recent research in concurrent computing has produced results that offer 

significant capabilities for future research on tree based persistence abstraction for 

openEHR. These results, which are now known as big-data frameworks, have the 

potential to unify all aspects of the integration architecture defined in Section 4.7, by 

simultaneously supporting mainstream programming languages and statistical 

programming languages. The Apache Spark (Zaharia et al. 2010) framework is an 

example of this new holistic platform approach, based on its support for the Java 

(Arnold et al. 1996), Scala (Odersky et al. 2004), Python (Van Rossum 2007) and R 

(R Development Core Team 2008) programming languages, with seamless access 

to large scale distributed data.   

10.5: Concluding Remarks 
 

The first and foremost aim of this thesis has been to test the idea of better 

CDS being made possible through the direct incorporation of standardised 

electronic health records, with openEHR and BNs  chosen as the particular 

representatives of these two key concepts.  

 Adopting an experimental approach, and attempting to develop an 

architecture that tests this idea in practice, by implementing and applying the 

components of this architecture, has proven to be a challenging task. The nature of 

the challenge lies both in the vast scope of both of the key concepts involved, and in 

the skill set and learning required to build a workbench that can be used to 

experiment with the number of complex, interacting components required.  

This thesis does not claim that the architecture and methods that it describes 

are definitive for achieving the purposes set out in the scope of the work. However, 

it does claim that they are original, realistic, open for further research and 
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development, and are built with due consideration of key requirements. These 

requirements cover the building of clinical information systems and CDS systems on 

the same infrastructure, considering the performance requirements of both types of 

systems, and eliminating the need for designing and implementing multiple software 

architectures from scratch. Healthcare informatics needs proven methodology to 

this end – the data analytics of health care will collapse under the weight of the 

current inconsistencies and lack of standardisation in clinically meaningful ways that 

it currently battles. Seemingly small human actions, for example by patients in 

invoking their rights to withdraw consent in relation to their records, or parts of them, 

can currently lead to well-nigh impossible complexity and workload. 

 The implementation of both clinical information systems and CDS 

functionality based on openEHR clinical models has proven openEHR to be a rich 

and robust formalism. However, some of the problems discovered during 

implementation of the CDS system prototype require attention and consideration. 

These findings show that the capabilities of openEHR should not be taken as a 

guarantee for improved CDS adoption and implementation. Generalising the 

versatility of its model-driven approach beyond clinical care, without careful 

experiments and observation, is wrong.  

openEHR’s capabilities and potential uses need to be tested with a realistic 

workbench. Lack of an easily accessible implementation for research purposes 

makes it hard for researchers to follow this approach. However, the suggested 

changes to the openEHR specifications show that experiments on such a testbed 

allow otherwise unachievable bottom up contributions, which justify the 

implementation efforts involved. 

 Despite a significant amount of software development using a number of 

programming languages, open source tools and frameworks, this thesis does not 

explore the complete scope of the openEHR specifications. This was an intentional 

choice, made inevitable by the limited time available for completion of the study. 

Other aspects of an openEHR implementation, such as versioning of data, message 

exchange with external systems or relationship to terminologies and terminology 

servers have been left out of scope.  

 Other aspects of openEHR that were left out of the scope of the thesis are 

considered within the scope of future research, and to be included in a planned 

more comprehensive implementation of the openEHR-CDS integration architecture 

defined in Chapter 4. Therefore, this thesis concludes with the hope that its findings 

will assist CDS implementations based on openEHR move forward, and that the 

new methods and changes to the openEHR specifications that it proposes can be 
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extended in future research, based on the fundamental and crucial components 

defined at the beginning of this chapter. 
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Appendix I: Synthetic Data Generation 
 

Although the primary focus of this thesis is not the use of a BN for predicting 

the outcome in the cataract surgery scenario discussed by (Narendran et al. 2008), 

the use of a test data set for evaluation of the methods it has developed should 

reflect the characteristics of patient population as fully as possible. To achieve the 

scale and consistency of test data required to explore the methods, experimentally, 

synthetic data generation approach was adopted. 

 To this end, a small scale literature search for patient population simulation 

was performed. Research related to Clinical Trial Simulation (CTS) was identified as 

particularly relevant.  

CTS complements the drug development process based on clinical trials, 

and its adoption has been increasing (N. H. G. Holford et al. 2000), (N. Holford, Ma, 

and Ploeger 2010), (Mould and Upton 2012). It consists of three types of 

simulations: system models (input/output models), covariate models and execution 

models (Perez-Ruixo et al. 2007), (Kimko and Duffull 2002). Of these, the covariate 

model is relevant to synthetic data generation for a virtual patient population.  

 The virtual patient population is built on a model that uses covariates such as 

age, weight and gender. The virtual patient population can be generated in different 

ways, depending on availability of real population data and knowledge of 

relationships between covariates (Kimko and Duffull 2002). The approach used in 

this thesis is based on the sampling a vector of covariates with the assumption that 

they are independent. The covariants are taken from (Narendran et al. 2008). The 

assumption of independence is potentially problematic since covariates may be 

correlated. Therefore covariances should be included in the simulation (Kimko and 

Duffull 2002). However, covariance information for the variables is not provided by 

(Narendran et al. 2008) or (Jaycock et al. 2007) which uses the same data set. 

Therefore, individual distributions of covariates, where available, were used to 

generate a covariate vector for each patient. 

 A data generation script was written in R that samples a provided number of 

vectors from the individually defined probability distributions for covariates. For 

continuous variables, first a sample from a normal distribution was taken and 

transformed to a discrete variable, following the same rules for discretization given 

in (Narendran et al. 2008). The data set created with this approach was then 

processed to generate an extra column to represent the existence of the clinical 

problem that the CDS implementation in Chapter 9 focuses on. Data values in every 

row in the data set (which represents the data in the patient’s EHR based on 
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sampled values) is used as input to the logistic regression equation from 

(Narendran et al. 2008) and the resulting value is used as the parameter of the 

Binomial distribution, generating either 1 (problem exists) or 0. This binary outcome 

is then appended to every row, creating the (existence of) clinical problem column. 

The assumption behind this approach was that the logistic regression learned from 

the original data set encapsulated the relationship between the covariates and 

prevalence of the problem, and therefore that using it with sampled values would 

simulate a patient population in which the prevalence of the problem satisfies the 

constraints enforced by the regression equation.  

 Finally, the simulated data set with covariates and clinical problem column is 

persisted as a comma separated value file for further processing by the pipeline, as 

explained in Chapter 9. 
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