
An experimental study and evaluation of a new

architecture for clinical decision support - integrating

the openEHR specifications for the Electronic Health

Record with Bayesian Networks

Sevket Seref Arikan

Thesis submitted in accordance with the requirements of the

University of London for the degree of Doctor of Philosophy

University College London

March 2016

© 2016 Sevket Seref Arikan

All rights reserved

The copyright of this thesis rests with the author and

no quotation from it or information derived from it may be published

without the prior written consent of the author.

 3

I, Sevket Seref Arikan, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

 4

Dedication

This Thesis is dedicated to my wife Zeynep.

It was your love and support that made this work possible. I could

not possibly thank you enough. You truly are my soulmate.

I love you.

 5

Abstract

Healthcare informatics still lacks wide-scale adoption of intelligent decision

support methods, despite continuous increases in computing power and

methodological advances in scalable computation and machine learning, over

recent decades. The potential has long been recognised, as evidenced in the

literature of the domain, which is extensively reviewed.

The thesis identifies and explores key barriers to adoption of clinical decision

support, through computational experiments encompassing a number of technical

platforms. Building on previous research, it implements and tests a novel platform

architecture capable of processing and reasoning with clinical data. The key

components of this platform are the now widely implemented openEHR electronic

health record specifications and Bayesian Belief Networks.

Substantial software implementations are used to explore the integration of

these components, guided and supplemented by input from clinician experts and

using clinical data models derived in hospital settings at Moorfields Eye Hospital.

Data quality and quantity issues are highlighted. Insights thus gained are used to

design and build a novel graph-based representation and processing model for the

clinical data, based on the openEHR specifications. The approach can be

implemented using diverse modern database and platform technologies.

Computational experiments with the platform, using data from two clinical

domains – a preliminary study with published thyroid metabolism data and a

substantial study of cataract surgery – explore fundamental barriers that must be

overcome in intelligent healthcare systems developments for clinical settings. These

have often been neglected, or misunderstood as implementation procedures of

secondary importance. The results confirm that the methods developed have the

potential to overcome a number of these barriers.

The findings lead to proposals for improvements to the openEHR

specifications, in the context of machine learning applications, and in particular for

integrating them with Bayesian Networks. The thesis concludes with a roadmap for

future research, building on progress and findings to date.

 6

Acknowledgements

First and foremost, I’d like to express my immense gratitude to my advisor,

Professor David Ingram. He has been an amazing mentor, a wise teacher and a

great friend during the writing of this thesis, and guided me with infinite patience so

that I can understand what I’m really trying to do. I sincerely hope that I will have the

privilege of having his company in the future.

Thomas Beale and Dr Sam Heard have both been as kind and generous as

a friend can be, never leaving a question unanswered, always offering help, and

sharing all of their experience and wisdom to help me better understand openEHR.

Their friendship has been as much appreciated as their knowledge, if not more.

The staff and students at CHIME could not have been more helpful. I would

like to thank my second supervisor, Professor Dipak Kalra for his insightful

comments and questions, which helped me set the boundaries of my study. I am

also thankful for Dr Matthew Darlison’s continuous support, and his ability to point at

the solutions which I could not see.

I would like to thank both Hugh and Heather Leslie, Heath Frankel and the

rest of Ocean Informatics for being the great colleagues and friends they are and

always supporting my efforts for the PhD, even when they had to carry huge loads

on their shoulders.

Dr. Ian McNicoll of freshEHR and Mr. Bill Aylward of Moorfields Eye Hospital

have both helped me a lot. Dr McNicoll’s clinical modelling help and Mr. Aylward’s

help with the concepts of ophthalmology made the experimental approach of this

thesis possible. Dr Tony Shannon’s feedback and input regarding openEHR models

have been very useful for getting Opereffa implementation started.

I’ve had the great fortune of having a family that never stopped supporting

me, from the moment they heard I’d be moving to the UK, until this very moment.

My parents, Neziha and Yilmaz Arikan, along with my aunts Guler and Sukran

Arikan went above and beyond to help me get a good education. I hope this thesis

makes them proud. I am sorry that Birtanem could not see this thesis finished, but

I’d like to think she’d be proud too.

 I am grateful to my brother Onur Arikan for making sure that our parents

were never left alone. Ergin Yilmaz helped me so much to make sure that I can

chase my dream. Both Necati and Gulsum Kurt saw me as their own son and

treated as such, for which I’d like to extend my most sincere thanks, love and

respect to them.

 7

Contents

Abstract 5

Acknowledgements 6

Tables 12

Figures 13

Equations 16

List of abbreviations 17

Chapter 1: Introduction 21

1.1 Research Context and Motivation ... 21

1.2 Research Scope and Objectives ... 25

1.3 Research Methodology ... 29

1.4 Contribution .. 30

1.5 Thesis structure .. 33

1.6 Summary .. 37

Chapter 2: Clinical Decision Support and Clinical Information Systems 38

2.1: History and Key Concepts .. 38

2.2: The Detachment Problem in Clinical Decision Support .. 43

2.3: EHR, Computable Health and Clinical Decision Support .. 49

2.4: Current State of EHR and CDS integration .. 50

2.5: Summary ... 52

Chapter 3: The openEHR Specifications and Their Relationship to Clinical
Decision Support 53

3.1: The openEHR Standard and Methodology ... 53

 8

3.2: Information Models and Clinical Decision Support .. 60

3.3: Relevant standards .. 61

3.3.1 HL7 ... 62

3.3.2 ISO/EN 13606 ... 64

3.3.3 SNOMED CT .. 65

3.4: Relevant frameworks ... 66

3.5: Summary ... 69

Chapter 4: Bayesian Networks for Clinical Decision Support and Their
Integration with openEHR 71

4.1: Bayesian Approach to Uncertainty ... 71

4.2: Bayesian Reasoning in the Clinical Domain ... 73

4.3: Bayesian Networks .. 76

4.4: Key Concepts of Bayesian Networks.. 78

4.5: Bayesian Networks in Medicine .. 85

4.5.1: Bayesian Networks as CDS Models .. 86

4.5.2: Communication with Domain Experts .. 87

4.5.3: Explaining the Reasoning Process .. 89

4.5.4: Inference Performance of Bayesian Networks .. 90

4.5.5: Summary of Findings ... 90

4.6: Integrating openEHR Methodology with Bayesian Networks 91

4.7 Logical Architecture for openEHR and Bayesian Networks Integration 92

4.8: Summary ... 96

Chapter 5: A Pilot Bayesian Network Implementation Experiment Using
Thyroid Disease Data 98

5.1 The Setting of the Experiment ... 98

5.2 Processing the Raw Data .. 98

5.3 Learning the Network Structure ... 99

 9

5.4 Learning the Network Parameters ... 103

5.5: Performing Inference on Bayesian Network .. 104

5.6 Summary .. 107

Chapter 6: A Pilot openEHR Based Clinical Information System
Implementation Experiment – The Opereffa Open Source Framework 109

6.1: Design and Implementation ... 109

6.2: Findings ... 113

6.3: Summary ... 116

Chapter 7: Persistence Abstraction for openEHR 117

7.1: openEHR Models and RM Data ... 119

7.2: Archetype Query Language ... 121

7.3: Structural Characteristics of openEHR RM .. 124

7.4: Appraisal of XML Representation of openEHR Data .. 126

7.4.1: Design and Goals of XML .. 126

7.4.2: Data Abstraction Methods Used by XML ... 127

7.4.3: Key Findings .. 131

7.5: Tree Based Persistence Abstraction for openEHR ... 133

7.5.1: Tree-based Representation of RM data .. 135

7.5.2: Tree-based Abstraction of AQL Processing .. 137

7.5.3: Mapping Tree-based AQL Processing to Tree Pattern Queries 140

7.5.4: Logical Operator Support in Tree Pattern Queries .. 144

7.6: Relevant Research .. 151

7.7: Summary ... 154

Chapter 8: XINO Architecture for Persistence 156

8.1: Design Principles for Persisting openEHR Data in a Relational Database 157

8.2: Relevant Research .. 159

8.2.1: EAV Approach to Relational Persistence .. 159

 10

8.2.3: XML Query Processing .. 163

8.3: Implementing the XINO Architecture with a Relational Database 168

8.3.1: TPQ Matching for the FROM Section of AQL Queries .. 173

8.3.2: TPQ Matching for the SELECT Section of AQL Queries .. 176

8.3.3: Linking Matches for Different TPQ Hierarchical Relationships 177

8.3.4: Representing Boolean Operator Semantics for TPQ Node Relationships 180

8.3.5: TPQ Matching for the WHERE Section of AQL Queries ... 181

8.3.6: Discussion of the Relational Modelling Approach ... 185

8.4: Extensions of the Purely Relational Model and Other Improvements 187

8.5: Summary ... 194

Chapter 9: An Experimental openEHR Based Clinical Decision Support
Implementation for Ophthalmology: Risk Estimation for Cataract Operations 196

9.1: Relevant Research ... 197

9.2: Setup of the Experiment ... 198

9.3: Components of the openEHR Based CDS Experiment .. 203

9.4: Development of the Clinical Models ... 205

9.4.1: Clinical Examination .. 206

9.4.2 Pre-Operation Booking ... 210

9.4.3 Cataract Operation ... 213

9.5 Data Transformation to openEHR RM ... 215

9.6: AQL Based Data Access for CDS .. 218

9.6.1: Using AQL for Use Cases involving Non-Clinical Care Data .. 218

9.6.2: Data Aggregation ... 219

9.6.3: Issues Encountered ... 223

9.7: The Bayesian Network ... 226

9.7.1: Network Structure .. 226

9.7.2 Network Parameters ... 227

9.7.3 Inference Performance and Relation to Data Size ... 228

9.8: Discussion of the CDS Approach ... 232

9.8.1: High Level Architecture .. 232

9.8.2: Implementation Details .. 234

 11

9.8.3: Findings Related to Implementation .. 235

9.9: Comparison of the Thyroid and Ophthalmology Experiments 237

9.10 Summary .. 239

Chapter 10: Conclusions and Future Research 240

10.1: openEHR Models for Computable Healthcare Data ... 241

10.2: Using AQL for Clinical Data Access ... 243

10.3: Using Bayesian Networks for Clinical Decision Support 246

10.4: Future Directions for openEHR Based CDS ... 247

10.5: Concluding Remarks .. 253

Appendix I: Synthetic Data Generation 256

REFERENCES 258

 12

Tables

Table 1: Classifier performance ... 105

Table 2: Detailed breakdown of classification results .. 105

Table 3: Classifier performance ... 106

 13

Figures
Figure 1: openEHR RM, Archetypes and Templates ... 54

Figure 2: The openEHR Health Computing Platform ... 59

Figure 3: Causal relationship: Disease and Test ... 74

Figure 4: Causal relationship: multiple variables ... 75

Figure 5: A simple Bayesian Network .. 78

Figure 6: BN for clinical diagnosis .. 80

Figure 7: BN with node probabilities .. 81

Figure 8: BN with an observation ... 81

Figure 9: Logical architecture for openEHR – Bayesian Network integration 93

Figure 10: BN structure, learned from 1000 observations ... 100

Figure 11: BN structure, learned from 5000 observations ... 101

Figure 12: Background information for BN structure ... 101

Figure 13: BN structure, learned with background information and 5000 observations 102

Figure 14: BN structure used in the experiment .. 102

Figure 15: The distributions of nodes, learned via EM .. 103

Figure 16: Opereffa framework and relevant concepts .. 110

Figure 17: Software architecture of the Opereffa framework ... 111

Figure 18: Screenshot from Opereffa User Interface ... 111

Figure 19: Opereffa’s use of wrappers ... 113

Figure 21: AQL query and openEHR clinical model .. 123

Figure 22: openEHR RM: EHR package ... 124

Figure 23: openEHR EHR: organisation of data .. 125

Figure 24: Abstractions of XML content ... 129

Figure 25: openEHR as XML: abstract and concrete components...................................... 131

Figure 26: XML based openEHR persistence.. 132

Figure 27: Tree based persistence of openEHR data ... 133

Figure 28: Implicit vs explicit tree based persistence .. 135

Figure 29: openEHR RM based data as tree ... 136

Figure 30: AQL FROM clause as constraints on a tree ... 137

Figure 31: AQL SELECT clause as constraints on a tree .. 139

Figure 32: AQL WHERE clause as constraints on a tree .. 140

Figure 33: AQL FROM clause as a TPQ ... 141

Figure 34: AQL SELECT clause as a TPQ .. 142

Figure 35: AQL WHERE clause as a TPQ ... 143

Figure 36: Extended openEHR template ... 145

Figure 37: AQL with Boolean operators ... 146

Figure 38: AQL with AND operator and its TPQ representation .. 146

Figure 39: AQL with OR operator and its TPQ representation .. 147

 14

Figure 40: AQL SELECT clause with multiple data items .. 148

Figure 41: AQL SELECT clause: logical OR interpretation ... 150

Figure 42: AQL WHERE clause with Boolean operators ... 151

Figure 64: XINO-P: main components ... 169

Figure 65: XML to DAG transformation with region encoding ... 170

Figure 66: Database representation of DAGs .. 171

Figure 67: DAG to tuple transformation via TPQ matching ... 173

Figure 68: TPQ for FROM section of AQL ... 174

Figure 69: CTEs for matching TPQ nodes ... 174

Figure 70: CTE that enforces ‘descendant of’ constraint ... 175

Figure 71: TPQ matching for SELECT clause of AQL ... 176

Figure 72: Enforcing relative path in a CTE ... 177

Figure 73: Optional containment for data items in SELECT clause 178

Figure 74: CTE for fundal view node of TPQ ... 178

Figure 75: SQL for the complete TPQ matching .. 179

Figure 76: Query results when no diabetic retinopathy exists ... 179

Figure 77: Query results when diabetic retinopathy exists .. 179

Figure 78: Query results: unintended exclusion of fundal view node 180

Figure 79: TPQ for AQL with an AND operator in the FROM clause................................... 180

Figure 80: TPQ for AQL with a WHERE clause ... 182

Figure 81: Enforcing AND operator with INNER JOIN ... 182

Figure 82: TPQ for AQL: multiple AND operators in WHERE clause 183

Figure 83: Enforcing multiple Boolean Operators in TPQ .. 184

Figure 84: Individual CTEs for AQL WHERE clause constraints ... 185

Figure 85: Postgresql query plan and execution for simple CTE ... 187

Figure 86: Node transformation from tuples to column via JSON 188

Figure 87: Using JSON and functions in a CTE... 190

Figure 88: TPQ matching and BN inference integration for probabilistic AQL 191

Figure 89: Implementation of probabilistic AQL in SQL via user-defined function call 192

Figure 90: Representing references to XML nodes as a DAG node attribute 194

Figure 43: Components of the openEHR based CDS experiment 203

Figure 44: Clinical examination template ... 208

Figure 45: Pre-Operation booking template ... 211

Figure 46: Cataract operation template ... 214

Figure 47: Test XML document generation from XSD ... 215

Figure 48: Inserting synthetic data to TDDs ... 217

Figure 49: Persisting openEHR data to XINO-P .. 218

Figure 50: AQL query for CDS: relation to openEHR templates.. 220

Figure 51: AQL query for CDS ... 221

Figure 52: AQL query for CDS as a TPQ ... 222

 15

Figure 53: Unintended, duplicate TPQ matches .. 224

Figure 54: Episode id in data and query .. 225

Figure 55: BN for CDS ... 226

Figure 56: ROC curve for BN performance. 10K data instances ... 229

Figure 57: Sensitivity/Specificity for BN performance. 10K data instances 230

Figure 58: ROC curve for BN performance. 10K and 100K data instances 231

Figure 59: ROC curve for BN performance. 10K to 500K data instances 232

Figure 60: Using openEHR data item for CDS .. 233

Figure 61: openEHR model data vs. machine learning model data 246

Figure 62: openEHR metadata for different CDS implementations 249

 16

Equations
Equation 1: Bayes’ theorem ... 71

Equation 2: Conditional probability of a disease .. 73

 17

List of abbreviations

Abbreviation Meaning Page

ADL Archetype Definition
Language

52

AI Artificial Intelligence 20

AM Archetype Model 58

AMD Age Related Macular
Degeneration

208

AQL Archetype Query
Language

21

BMI Body Mass Index 143

BN Bayesian Network 23

CCR Continuity of Care Record 61

CDA Clinical Document
Architecture

61

CDS Clinical Decision Support 20

CDSS Clinical Decision Support
System

44

CIMI Clinical Information
Modelling Initiative

50

CKM Clinical Knowledge
Manager

204

CLIPS C language integrated
Production System

51

CSER Clinical Sequencing
Explanatory Research

50

CTE Common Table Expression 173

CTS Clinical Trial Simulation 255

DAG Directed Acyclic Graph 75

DOM Document Object Model 126

 18

DSTF Draft Standard for Trial
Use

62

EAV Entity Attribute Value 158

EAV/CR Entity Attribute
Value/Classes and
Relationships

159

EHR Electronic Health Record 21

EM Expectation Maximisation 102

EMF Eclipse Modelling
Framework

167

FHIR Fast Health Interoperability
Resources

62

FTI Free T4 Index 98

GEHR Good European Health
Record

52

GEM Guidelines Element Model 46

GENIE Graphical Network
Interface

79

GDL Guideline Definition
Language

50

GLIF Guideline Interchange
Format

92

GLIF3 Guideline Interchange
Format 3

46

GTPQ Generalized Tree Pattern
Query

153

HIS Hospital Information
System

44

HL7 Health Level Seven 49

HL7 RIM Health Level Seven
Reference Information
Model

66

HTML HyperText Markup
Language

128

ICD International Classification
of Diseases

42

ICU Intensive Care Unit 62

 19

IHTSDO International Health
Terminology Standards
Development Organisation

42

Infoset XML Information Set 86

ITS Implementation
Technology Specification

56

JAGS Just Another Gibbs
Sampler

71

JSON Javascript Object Notation 187

MCMC Markov Chain Monte Carlo 71

MLM Medical Logic Module 46

OWL Web Ontology Language 87

PC stands for Peter Spirtes
and Clark Glymour,
authors of the algorithm

98

PCR Posterior Capsular
Rupture

196

PGM Probabilistic Graphical
Model

70

POC Proof Of Concept 167

PTPQ Partial Tree Pattern Query 153

RDBMS Relational Database
Management System

152

RIM Reference Information
Model

61

RM (openEHR) Reference
Information Model

52

ROC Receiver Operator
Characteristics

29

SM Service Model 58

SMILE Structural Modelling,
Inference and Learning
Engine

87

SNOMED CT Systematised
nomenclature of medicine
clinical terms

42

SQL Structural Query Language 34

 20

T3 Triiodothyronine 98

T4 Thyroxine 98

T4U Thyroxine resin uptake 98

TDD Template Data Document 214

TDS Template Data Schema 215

TPQ Tree Pattern Query 221

TRIM Templated RIM 66

URI Uniform Resource
Identifier

28

VL Vitreous Loss 196

WTP Web Tools Platform 215

XDM XPath 2.0 Data Model 126

XML Extensible Markup
Language

22

XPath XML Path Language 152

XQuery XML Query 126

XSD XML Schema Document 126

XSLT XSL Transformations 129

 21

Chapter 1: Introduction

This introductory chapter presents the problem that the thesis attempts to

solve, the objectives set for providing solutions, the methods employed and the

research contributions made, followed by a description of the structure of the thesis.

1.1 Research Context and Motivation

The use of computers to help clinicians in their decision-making, referred to

as Clinical Decision Support (CDS) in this thesis, is a long-standing and active field

of research. Integrating the decision-making capabilities of computers with the

practice of medicine presents numerous challenges (Clancey and Shortliffe 1984),

(Robert A. Greenes 2014) and these challenges have been a significant area of

focus for artificial intelligence (AI) research, long before the use of computers

became prevalent in other fields of daily life (Ledley and Lusted 1959b), (De Dombal

et al. 1972), (Leaper et al. 1972) (Edward H. Shortliffe et al. 1975).

The complex and multi-dimensional nature of clinical decision-making

requires a multi-disciplinary view of the processes involved, in order to improve the

outcomes. The existence of a large body of research on understanding how

clinicians’ reasoning works (Ledley and Lusted 1959a), how expert knowledge and

clinical data can be transformed into a computable form (Markwell, Sato, and

Cheetham 2008), (Aikins 1980), (David Ingram 2002) , how they can be shared (M.

A Musen 1992), (Beeler 1998), mathematically processed (Spiegelhalter and Knill-

Jones 1984) and represented (Luciani and Stefanini 2012), shows that

improvements in CDS depend on a combination of contributions from many different

fields of research. Knowledge engineering, statistical modelling, artificial

intelligence, information systems design and implementation and large scale data

processing are all relevant in the development of better CDS, encompassing a vast

intersection of domains of scientific research.

Even where successful outcomes have been achieved in the integration

between components of this multi-disciplinary field of research, and these have

been adopted within experimental innovations in the practice of medicine (Robert A.

Greenes 2014), the widescale use of CDS is still elusive, despite the increase in

processing power and the emergence of large scale data processing architectures

and frameworks. Individual implementations can benefit from developments in

science and engineering but the CDS demonstrated thereby is, typically, still

 22

localised, case-specific and isolated, in general. The difficulty of integrating clinical

data that originates from multiple information systems contributes significantly to this

situation.

The reasons for this less than expected level of adoption of CDS are not

purely based on problems with technology. A significant part of the problem lies in

the difficulty of making the increases in computing capability available to clinicians in

ways that enable them to integrate that capability with care processes. The difficulty

of expressing clinical knowledge in the form of mathematical concepts such as

probability, makes it hard for clinicians to use CDS approaches that require

communication based on this language (Leaper et al. 1972) (R. A Greenes 2007).

Such difficulties have led to an increasing divide between what is computationally

possible, such as the use of graphical probabilistic models, and what is actually

usable in the CDS implementations, since statistical methods for CDS depend on or

benefit from availability of more data and greater computing power.

The emergence of new electronic healthcare record standards that are

based on information models, primarily in response to requirements for data

integration between different clinical information systems, presents an opportunity to

overcome some of the most significant problems of CDS adoption. The openEHR

electronic health record (EHR) specifications (Beale et al. 2006) provide a capable,

flexible and mature representative of these standardisation efforts. openEHR’s

scope goes beyond the integration of health data across systems. It provides a

comprehensive domain model and domain specific languages and tools that allow

clinicians to express clinical concepts using this model. This strongly clinician-driven

approach to defining clinical data allows complete information system

implementations based on the domain model, in a technology agnostic way.

openEHR also provides a query language called the Archetype Query Language

(AQL) (Ma, Frankel, and Beale 2014) that allows querying of clinical data based on

the domain model of openEHR.

The combination of openEHR’s clinician-driven approach to defining clinical

data, its support for a high level domain specific query language and its technology

agnostic nature, makes possible a health computing platform that can support both

clinical information systems development and CDS functionality. The use of such a

platform provides an inherent solution to data integration issues, but its real,

currently underutilised potential lies in the use of clinician input to build CDS

systems, allowing clinicians to take control of functionality that is normally isolated

from them by non-clinical, hard to grasp concepts, such as probability calculus.

 23

A particular CDS approach based on the use of Bayesian Networks (BNs)

(Koller and Friedman 2009) offers advantages similar to those offered by

openEHR, in terms of letting domain experts define domain concepts without having

to tackle complex implementation details. Bayesian Networks provide clinicians with

a user interface that lets them quickly see an overall picture of clinical variables

relevant to a patient’s condition. This user interface hides the complexity of

processing of probability concepts, while still providing the advantages of

probabilistic reasoning in decision-making, thus offering a solution to the problem of

integrating powerful statistical methods with clinical care for better CDS.

Despite its advantages and the increasing worldwide adoption of the

openEHR methodology for EHR implementation, there is currently no

systematic integration of openEHR methodology with probabilistic inference

methods that are used highly effectively in other domains. This presents an

opportunity to build a comprehensive health computing platform that includes

decision support as a first class functionality. Therefore, based on the

conceptual similarity between openEHR and BNs in their support for efficient

representation of domain concepts, the fundamental research question this

thesis seeks to answer is:

Can openEHR support clinical decision methods based on Bayesian

Networks, by providing a model driven health computing platform that supports

clinical data interoperability, clinical information systems development and machine

learning functionality, and what, if any changes are required to the openEHR

specifications to achieve this?

In its attempt to answer this question, the thesis uses the openEHR

specifications as a basis for implementing several large-scale and innovative

software frameworks, to make possible a hands-on and experimental approach to

the testing of the openEHR specifications and methodology, in the context of CDS.

Previously released open source libraries for openEHR, freely available clinical

modelling tools and clinical models, and a number of open source libraries for

software development and machine learning are used throughout the development

of these experimental frameworks. The thesis uses research on XML data

representation and XML persistence in relational databases, along with research on

representation of clinical data using both relational and non-relational persistence

systems, to deliver its research outcomes.

 24

A logical breakdown of the fundamental research question provided above

leads to the following specific research motivations:

• Evaluation of the clinical modelling capabilities provided by openEHR in a

CDS setting in which clinical models are used to define CDS related

concepts.

It is frequently conjectured that EHR driven approaches can deliver better

health IT and can be used to implement CDS. A fundamental assumption

that must be proven true, for this conjecture to be true in the context of

openEHR based CDS, is that the openEHR methodology and its

implementations can support a Bayesian Network (BN) based decision-

making mechanism. This assumption implies that openEHR’s clinical

modelling capabilities, the scope of concepts covered by these

capabilities and the expressiveness of openEHR-based clinical models,

can support definition of CDS concepts. Since CDS concepts are related

to but not necessarily the same as the clinical concepts, the extent to

which openEHR methodology can support representation and

computation of both EHR and CDS concepts must be explored.

• Analysis of the feasibility and characteristics of a software architecture for

CDS based on openEHR and BNs.

openEHR’s technology agnostic nature means that it has no dependence

on any particular programming language or platform. Even though this

independence is an advantage that allows openEHR to be implemented

with any platform of choice, it usually establishes the implementation as a

technology specific task with very little if any focus on robust, reusable

generic software architectures for support of the implementation process,

per se. The introduction of CDS functionality increases the complexity of

an openEHR implementation even further, since establishing the links

between clinical data and CDS mechanisms is also a platform specific

requirement and task.

The openEHR specifications cannot themselves include suggestions for

software architecture or CDS implementation, due to the vast range of

available options, but this does not mean that a high level, yet highly

adoptable, generic architectural approach to implementation cannot be

identified. To our UCL team’s knowledge, there has currently been no

research effort in this direction.

 25

• Analysis of the suitability of BNs as a decision-making engine for

openEHR based CDS.

BNs are already used in many clinical decision making scenarios, but

their use in a context in which data is defined, persisted and queried

using openEHR constitutes a highly specific setting. Various factors

come into play in this setting, such as: the use of openEHR data types

instead of arbitrary methods for representing data; the use of AQL as the

means of data access, which may or may not introduce issues of

expressiveness based on AQL’s features and the structure of the

openEHR clinical models that are used in AQL queries.

Existing uses of BNs in non-openEHR based clinical settings support

their usefulness for CDS, but offer no helpful information for the specific

setting this thesis sets out to evaluate. Therefore, the efficacy of BNs in

an openEHR-based approach to CDS is an open research question.

• Identification of any revealed shortcomings of openEHR in delivery of a

generic CDS platform, along with potential approaches to overcoming

these shortcomings.

The motivations of this thesis are not limited solely to analysis of key

aspects of openEHR and BN integration, or to the identification of

shortcomings revealed in such an integration. The work aims also to lead

to proposed changes in the specifications, based on research outcomes

achieved in the thesis, to contribute to improvement of the openEHR

methodology in the context of CDS implementation. This objective has

hitherto received rather little attention, compared with that devoted to

clinical information systems implementation.

1.2 Research Scope and Objectives

The scope and research motivations of the thesis embody the conjunction of

a number of individually vast research topics. This places feasibility limits on an

implementation experiment driven approach. Therefore, the thesis scope and

experiments undertaken are defined and constrained by the most fundamental and

relevant elements of openEHR, BNs and software architecture, as follows:

• The openEHR clinical models and the use of openEHR methodology in

general, throughout the thesis, focus on an information model approach

to clinical data representation. openEHR supports the use of clinical

 26

terminologies and they are included in the discussion at various points,

where relevant. But these terminologies were not used in building the

underlying clinical models for the experiments described, primarily due to

time constraints. They offer significant benefits and would certainly be

included in future work.

• The use of BNs is limited to discrete networks - that is, networks with

discrete random variables only. BNs belong to the family of graphical

models, as explained in Chapter 4, and other types of graphical models

are excluded from the experiments. The number of available tools and

frameworks that support discrete networks has been a key factor in this

decision: significant implementation effort would be required to make use

of other types of BNs, for which there is far less tooling available.

• The persistence abstraction for openEHR developed in the thesis is

applicable to a number of persistence systems. The thesis provides an

implementation on top of a relational database and other suggested

implementations are left for future research.

• Access to clinical data to be used in the experiments is a major limiting

factor in the scope of the thesis. The thesis uses both real patient data

and synthetic data. Anonymised real patient data, publicly available from

the UCI machine learning repository (Bache and Lichman 2013), is used

for the experiment on detection of thyroid diseases in Chapter 5, as an

example of BN based CDS. Attempts to use real patient data for the

more substantial experiment described in Chapter 9 has led to multiple

problems which reveal a major barrier to be overcome in future research

studies similar to the experiments presented in this thesis. Access to

existing, high-quality research data is subject to rigorous ethical approval

and related rules and regulations. However, these approval processes

require information that cannot be provided in advance for some machine

learning approaches, such as the list of variables from the data set that

will be used in the research. Even though existing regulations and

associated processes are in place for good reasons and have been

introduced with great care, machine learning use cases, such as

identifying BN variables automatically, do not fit well within these existing

processes. Moreover, extensive effort to produce a data set from an

existing operational clinical legacy system, which had been in routine use

at a world leading research centre, has failed due to data quality issues,

as discussed in Chapter 9 in Section 9.2. Therefore, synthetic data is

 27

created and used for the experiment discussed in Chapter 9. Availability

of large scale clinical data for research could have allowed this thesis to

explore a wider set of CDS scenarios. The extensive effort required to

build a data set suitable for this final experiment have taken considerable

time, which could have been used to expand the thesis scope instead.

The objectives of the thesis are determined with respect to their foundational

nature for development of a robust health-computing platform that can support CDS

research in as many future directions as possible, within the scope defined above.

These objectives are set out as follows, along with the expected contributions that

will follow from their achievement:

1) To test the suitability of both openEHR and BNs for expressing clinical

concepts, and computations on these concepts, in a CDS setting.

Such an analysis will help in identifying the overlapping and disjoint concepts

used in an openEHR based CDS setting. Identification and classification of

these concepts will then enable testing of the adequacy of the current scope

and expressiveness of openEHR for CDS implementation. The results of

this test will contribute to establishing a baseline for openEHR’s

support for CDS modelling, thereby providing evidence for openEHR to

use in systematically improving its capabilities.

2) To define a novel architecture for openEHR implementation which can

support both clinical application development and CDS implementation

scenarios, across a number of implementation technology options.

Clinical modelling itself provides no information about the software

implementation required to process the models. An implementation

architecture that can be used with multiple software platforms would enable

the advantages of different platforms to be exploited in providing information

system and CDS functionality. Such an architecture is the key to establishing

a robust, experimental platform for future openEHR CDS research. The

definition of this novel architecture will help openEHR overcome the

challenge of staying technology agnostic while encouraging and

enabling systematic implementation utilising different implementation

technologies.

 28

3) To inspect the relationship between clinical information system and CDS

system implementations based on openEHR

The most common approach to software architecture when designing CDS

systems is to assume that CDS will be developed as a standalone system.

Defining a unified architecture for both clinical information system and CDS

implementation eliminates many integration problems, but different use

cases for clinical data access lead to orthogonal requirements at the

software design and implementation level. Understanding how

requirements imposed by clinical information systems functionality

and CDS functionality interact with one another in an openEHR

implementation context, will offer the opportunity to develop a generic

implementation architecture that can be customised and optimised for

specific scenarios without losing its unified platform advantages.

4) To test the query capabilities and decision making performance of the

openEHR and BN components of the new architecture with high volume

clinical data.

The query capabilities and performance of openEHR AQL has to date only

been evaluated in the context of clinical information systems implementation.

Consequently, the features provided by AQL have hitherto only aimed to

address this functionality. Using AQL in a CDS context, in which a large

amount of data for many patients must be accessed, quite probably

alongside non-clinical care data and controlled by an algorithmic inference

mechanism, presents a very different use case than that seen in the clinical

information system context. In the clinical information system context, data

access is focussed on a single patient, and is therefore rather small in terms

of data volume and the reasoning process always has a human actor,

namely the clinician. The viability of openEHR as a generic health-computing

platform, in the face of requirements to process hugely increasing data

volumes, will depend on its capability to enable performant AQL queries at a

large scale, with support also for operations on data that are specific to

machine learning methods and scenarios. The achievement of this

objective will provide observations and feedback from an actual CDS

implementation, which is rarely provided in detail by openEHR

implementers. This type of feedback will present an opportunity to

develop, for example, a version of AQL supporting probabilistic search

 29

criteria, in order to support clinical data processing for machine

learning implementations.

1.3 Research Methodology

Extensive software implementation, based on real life requirements

gathering and literature review, is used as the primary research methodology to

achieve the research objectives of the thesis, based on the completion of the

following tasks:

1) An extensive preliminary literature review of CDS history and approaches is

performed. This literature review shows how CDS approaches have evolved

in the last five decades and what the current problems are. The openEHR

standard and methodology is classified as an extension and evolution of the

data bank approach to CDS identified in the literature review. A discussion of

the openEHR specifications and methodology is provided in Chapter 3,

which shows how openEHR can connect information models to CDS.

2) A software development framework which uses openEHR models to support

automatic, web based user interface generation along with automatic

persistence and retrieval of clinical data is developed to serve as a test bed

for the clinical information system development aspects of openEHR

implementation. The requirements for this framework are gathered via

collaboration with a clinician.

3) A literature review is performed for the use of BNs in medicine, in order to

determine their fitness for the purposes of providing a generic reasoning

mechanism for CDS. This literature review is supplemented by an

implementation experiment that uses a BN to diagnose thyroid diseases in a

non-openEHR setting, using published, anonymised real patient data.

4) A tree based representation of openEHR data along with a Tree Pattern

Query (TPQ) representation of AQL, is developed for persistence

abstraction. This builds on a literature review of XML data representation

and persistence methods, common approaches to handling clinical data in

relational databases, and the findings of the preceding openEHR-based

clinical information system implementation experiment.

5) The tree based persistence and query abstraction is implemented on top of

a relational database server. This implementation is then populated with

 30

simulated data for half a million patients and integrated with a BN

implementation.

6) A real life CDS scenario from the domain of ophthalmology is identified and

openEHR clinical models representing the relevant clinical concepts are

developed, mainly by clinicians and an expert clinical modeller. These

models are extended to address the CDS scenario specific data

requirements. An existing implementation of the identified CDS scenario,

based on an alternative statistical approach, is used to compare and

contrast with the combined openEHR and BN based approach developed in

the thesis.

7) Finally, the clinical models, tree based persistence implementation and

synthetically generated data are used to estimate the risk for a clinical

operation using a BN. Following an extensive real patient data analysis on a

legacy system in Moorfields Eye Hospital, synthetic data generation is

adopted, due to data quality issues. Risk estimation performance of the BN

is measured via use of the Receiver Operator Characteristics (ROC) curve

(Bradley 1997).

1.4 Contribution

The experimental results and contributions made to the field are as follows:

1) A detailed analysis of openEHR in a CDS implementation scenario is

provided. The analysis builds on openEHR models developed for clinical

care records, which are later extended to support CDS implementation. This

pushes openEHR methodology beyond its role in supporting interoperability

and clinical information system implementations. By targeting such a large

scope, the thesis reveals issues which might have been neglected or missed

in studies that focus on limited scenarios, in an isolated manner. To our

knowledge, this thesis is the first study that has targeted such a

comprehensive analysis of openEHR implementation challenges.

2) The orthogonality of the implementation challenges posed by two openEHR-

based scenarios - clinical information systems implementation and CDS

implementation - is demonstrated in the implementation of the Opereffa

framework. This experiment clearly shows that design choices related to

persistence implementation can significantly limit the use of openEHR for

machine learning and population scale data analysis. This is a key finding for

implementers and could not have been straightforwardly deduced from the

 31

openEHR specifications alone. This finding also shows that openEHR

adoption is potentially vulnerable to implementation challenges that are not

currently addressed by the openEHR specifications.

3) The development of the new persistence abstraction for openEHR,

presented in the thesis, based on tree data structure and TPQs , provides a

solution to the challenge of keeping openEHR platform technology

independent, without introducing a steep learning and implementation curve

for the implementation of fundamental required functionality, such as data

persistence, for each and every implementation platform. The

implementation of the persistence abstraction, on top of a relational

database, shows that this original approach, as described in Chapter 8, can

be used with a mainstream persistence option. The use of published

research on XML data representation and persistence, along with published

research on managing clinical data, establishes a new link between

openEHR implementation and research outcomes from both computer

science and information retrieval. This is an original contribution to a key

challenge influencing the wider adoption of openEHR adoption, which has

hitherto been treated as case-specific software development activity. It

paves the way for future research on EHR persistence, in collaboration with

rich and alive research activity on graph processing, especially at large-

scale.

4) The use of openEHR clinical models for CDS identifies shortcomings of

current openEHR methodology, as revealed in the case of a specific

machine learning scenario. The clear focus of openEHR models on clinical

data leaves administrative and demographic data out of the models, which

are focused solely on particular clinical concepts. Even though this approach

is soundly justified in the openEHR specifications, it nonetheless leaves

significant CDS variables, such as the professional experience of the

clinician performing an operation or the age of the patient, outside the scope

of the clinical models, although these variables are required for a CDS

implementation. The thesis suggests extensions to the openEHR

specifications to allow inclusion of relevant but non-clinical data in openEHR

models as metadata. Requirements to manage this metadata are also

recognized, in scenarios such data exchange between systems or updates

to existing clinical data. The use of openEHR models in the experimental

CDS of Chapter 9 also shows that the use of standardised clinical

terminologies within the information models is critical for ensuring reliable

 32

automated processing of the described clinical data. The examples reported

show that, even though a human end-user of an information system can

understand and process textual information, failure to use standardised

terminologies to represent the associated clinical semantics can introduce

potential ambiguity in the implementation of machine learning use-cases,

and that the openEHR clinical models are not automatically immune to this

kind of problem.

5) The use of AQL for large-scale queries shows that AQL can successfully

express a subset of clinical data that spans multiple clinical models, to

provide data input to a BN implementation. This finding strengthens the

suggestion that AQL can be used for querying requirements beyond those of

patient-centred clinical information systems. The thesis proposes extensions

to the AQL specification, based on the data processing requirements

exemplified by the experimental BN integration with openEHR. These

extensions can be implemented in the form of function call support within

AQL queries, allowing AQL support to be integrated with BNs and other

machine learning methods for CDS, with markedly less effort than would

otherwise be required.

6) The thesis implements BN based decision making for two different settings.

By providing both non-openEHR and fully openEHR based scenarios, the

thesis identifies issues with BNs that are independent of the use of

openEHR, such as problems associated with lack of observations for

combinations of values of clinical variables. The openEHR based BN

implementation also shows that integrating machine learning frameworks

with openEHR implementation requires consideration of scalability, and

consequently parallelisation, of associated data processing. This finding

provides a strong incentive to focus in the future on large scale, parallel

processing frameworks for openEHR implementation.

7) Overall, the combination of the contributions described delivers the definition

and experimental validation of a flexible software architecture that can

potentially support orthogonal software architecture requirements for clinical

data processing in CIS and CDS systems, across multiple levels of data

scale, which are currently served via separate, dedicated solutions.

 33

1.5 Thesis structure

The thesis consists of a further 9 chapters, followed by an appendix. The

contents of these are structured as follows:

Chapter 2 Clinical Decision Support and Clinical Information Systems.

Begins with the history of CDS and its key concepts, followed by a definition

of a key problem in CDS, identified by the thesis and named “The Detachment

Problem”. This view of barriers to wide-scale adoption of CDS makes EHR concepts

a promising candidate basis for a computable health platform. The recent literature

reviewed in this chapter shows that, despite advances in computing power and CDS

capabilities, the fundamental problems identified almost five decades ago still exist.

The review also shows that there is a convergence towards the use of information

models for CDS implementations in the health informatics domain.

Chapter 3 The openEHR Specifications and Their Relationship to Clinical Decision

Support.

Provides background relevant to this thesis about the openEHR standard

and the methodology implied by its specifications and tools. A discussion of

openEHR’s features is provided, which shows how openEHR can be used for an

information model based approach to CDS. These arguments underlie the

suggested use of openEHR methodology as a common platform for interoperability,

clinical information system and CDS development. However, this platform is only

half of the solution for a generic CDS solution that can be reused across different

clinical domains. The second half: BNs, is introduced in the following chapter.

Chapter 4 Bayesian Networks for Clinical Decision Support and Their Integration

with openEHR

BNs are introduced as a generic decision making mechanism which is a

member of a family of probabilistic reasoning methods called graphical models. The

use of BNs in medicine is analysed via literature review, performed to answer

specific questions regarding the feasibility of using BNs as a generic, robust CDS

mechanism. The review shows that there is sufficient evidence to support the

suggested use of BNs for the purposes of this thesis. Therefore, an integration

architecture combining openEHR methodology and BN concepts is developed. This

integration architecture completes the high level description of the openEHR based

CDS platform idea introduced in the summary section of Chapter 3. Experiments

 34

based on software implementation of both components of this unified architecture

are described in chapters 5 and 6.

Chapter 5 A Pilot Bayesian Network Implementation Experiment Using Thyroid

Disease Data

An existing BN framework is used to diagnose thyroid diseases, based on

publicly available real patient data. This experiment aims to explore the use of BNs

as a CDS mechanism and is intentionally performed in a non-openEHR setting. This

approach makes it possible to observe if and how the use of BNs in an openEHR

context is different than the well-established approach of exporting clinical data to a

simple format, such as comma separated values, for non-clinical uses. The

experimental results show that access to larger volume of data improves the

outcomes for key steps in BN development, such as defining the network structure.

However, in integrating data from different sources, the existence of outliers in the

data and missing observations for combinations of clinical variables, are challenges

that must be dealt with. The experiment also shows that using existing tools and

frameworks for implementing data processing and BN functionality is not an option,

but a necessity, due to the infeasibility, due to time and resource constraints, of

developing this functionality from scratch. Therefore, the capability of a health

computing platform to be accessible to existing tools is found to be a critical factor

for its success.

Chapter 6 A Pilot openEHR Based Clinical Information System Implementation

Experiment – The Opereffa Open Source Framework

Discusses the development of a clinical information system implementation

framework based on openEHR. This substantial implementation, which is available

as open source software, shows that openEHR is capable of supporting a generic

platform approach for clinical application development, but that this capability does

not fluently extend to supporting CDS functionality, especially if AQL is not

considered as a first class design requirement. The findings of this chapter, along

with the non-openEHR BN experiment in Chapter 5 underlie the importance

attached to the development of the persistence abstraction in Chapter 7.

Chapter 7 Persistence Abstraction for openEHR

An abstract representation of openEHR data and query semantics of AQL is

developed and implemented. This representation, named XINO, solves the problem

 35

of having to develop data representation and query processing mechanisms for

each implementation platform. The representations for data and query semantics is

built on the large amount of research on XML processing and persistence, with a

focus on the requirements of openEHR data and AQL. An extension of the Tree

Pattern Query (Lakshmanan, Wang, and Zhao 2006) representation of AQL is

developed. An essential goal of this approach is to allow openEHR to be efficiently

implemented on top of different persistence systems and thereby to use their

specific features and advantages. In order to prove the achievability of this goal with

the abstract representation at hand, a proof of concept implementation is developed

on top of the open source relational database Postgresql (Momjian 2001). This

implementation, details of which are discussed in Chapter 8, is then used as the

data source for a comprehensive CDS implementation in the domain of

ophthalmology in Chapter 9.

Chapter 8 XINO Architecture for Persistence

The persistence abstraction developed in Chapter 7 is implemented using

the open source relational database Postgresql (Momjian 2001). This

implementation, named XINO-P, proves that the platform agnostic XINO

architecture can be mapped to widely used relational databases, via generation of

SQL based on the TPQs. Recognising the well-known challenges of representing

hierarchical structures in relational form (Celko 2012), the mappings developed in

this chapter and their use in Chapter 9 to serve clinical data to a BN implementation,

provide crucial proof of the feasibility of XINO. Moreover, this chapter shows how

XINO’s tree based approach can be mapped to the native capabilities of a

persistence system, which opens the door to many persistence implementations of

openEHR on different persistence systems. Chapter 7 and 8 therefore present the

definition and implementation of a generic persistence framework for openEHR,

filling a critical current gap in feasible technical pathways to wider openEHR

adoption.

Chapter 9 An Experimental openEHR Based Clinical Decision Support

Implementation for Ophthalmology: Risk Estimation for Cataract Operations

An end to end implementation of a CDS based on XINO and BNs is

developed, for estimating the risk in cataract operations. The CDS scenario is based

on an existing published clinical research study, in order to benefit from its

published design as well as provide a rationale for comparison of an openEHR/BN

 36

CDS approach with an established alternative statistical method that relies on data

extraction and logistic regression analysis(Narendran et al. 2008) .

The XINO implementation is driven by openEHR models, which were initially

developed in the Moorfields Eye Hospital and later extended for the purposes of the

CDS implementation described here. The results of the analysis of clinical

ophthalmology data kept by Moorfields Eye Hospital in its existing clinical system,

show that the quality and amount of existing data is insufficient to implement the full

scope of the experiment. Synthetic data generation is therefore used to simulate

realistic datasets for half a million patient operations, which are then persisted to

the XINO framework. This data is then consumed by an existing open source BN

implementation and the decision making performance of this combined architecture

is evaluated through multiple, computationally intensive iterations to produce ROC

curves (Bradley 1997). The elements used in the BN consist of data items from the

openEHR models with data access defined by AQL queries.

This extensive implementation uses openEHR models to drive every aspect

of a CDS scenario and provides valuable insight into the issues and opportunities

arising therefrom, such as extending AQL to establish a generic probabilistic query

capability, named in the thesis as Probabilistic AQL. Other findings include, but are

not limited to, the confirmation of issues relating to missing observations, as

identified in Chapter 5, the effects of modelling clinical data with openEHR data

types, and the limitations of BN inference achievable, exacerbated by the lack of

parallelisation of computations.

Chapter 10 Conclusions and Future Research

Findings from Chapters 7, 8, and 9 are discussed and extended to an

overview of future research potential. The chapter concludes that currently

emerging big-data ecosystems provide an exciting opportunity for openEHR

methodology for CDS implementation. The most significant advantage of these eco-

systems is their ability to integrate machine learning and data persistence in a

scalable manner. This unified approach to processing large scale data allows

parallelization of data processing, which has been found to be a bottleneck in the

XINO and BN integration scenario discussed in Chapter 9. The thesis concludes

with the view that, despite shortcomings identified, that must be addressed mostly

through extensions to the current specifications, the openEHR standard provides a

capable platform for health computing and CDS implementation, with the possibility

of exciting future research.

 37

Appendix I Synthetic Data Generation

The method used to generate synthetic patient data for cataract operations is

explained.

1.6 Summary

The thesis provides an analysis of the published openEHR standard for the

EHR, as the basis of a health computing platform that support data interoperability,

clinical information systems development and CDS implementation. The motivation

for the research described stems from the current lack of published research on the

use of openEHR as the basis for a generic clinical data platform, despite its mature

and flexible design and widespread adoption, internationally.

The research objectives are achieved by means of experiments based on large

scale software implementations and by literature review. The results provide

insights about the openEHR standard and its key use cases, which will be of wide

interest to implementers and researchers. The results also pave the way for a

number of new research directions for openEHR, most notably for extending AQL

and using big-data frameworks.

 38

Chapter 2: Clinical Decision Support and Clinical
Information Systems

This chapter provides an overview and discussion of relevant research,

covering a time span from the origins of the field in the 1960s to the present day. At

the outset of the PhD project in 2008, a literature review was conducted, which

clarified both motivation and rationale for the research to be conducted. The scope

of this review is the intersection of artificial intelligence (AI), information systems and

CDS. CDS is here positioned as a bridge between the two other domains. This

historical review was subsequently supplemented, and described in a separate

section devoted to literature published during the period of the PhD work, from

2008-2015. This shows that, despite new approaches, based in the main on the use

of information models to tackle recognized historic challenges of CDS, some long-

identified fundamental problems remain unchanged. The chapter makes extensive

reference to other related research domains, and their evolution to the present day.

2.1: History and Key Concepts

The use of computers to help clinicians in decision-making is a long-standing

and active field of research. (Clancey and Shortliffe 1984) provides some of the key

aspects of using artificial intelligence for decision-making in medicine (p. 1-17).

 This work is significant, since it was produced at a time where a paradigm

shift in AI was happening. It reports at a convenient point in time where some of the

key paradigms have matured enough to be thoroughly evaluated, and successor

paradigms are emerging to provide potential solutions to problem issues introduced

by their predecessors. Therefore, (Clancey and Shortliffe 1984) is a convenient

anchor for observing the evolution of the field, and it will be referred to often in this

chapter.

 An important term from (Clancey and Shortliffe 1984) is knowledge base,

which identifies a key component of software-based approaches to clinical problem

solving in medicine. Currently this term does not have a strict meaning. It may apply

to an electronic repository of patient information taken as a stored form of

knowledge or to a set of rules for determining the appropriate action in an

information system. It may even apply to a set of mathematical definitions.

This thesis considers knowledge base as any coherent form of computable

knowledge representation that encapsulates statements about the domain

concepts. The existence of a knowledge base in an information system implies that

 39

domain concepts or rules have been identified and separated from the rest of the

software. This component usually has a key role in the way a system behaves in

response to some input. Because of its theoretical and engineering advantages, a

knowledge base has been adopted as a central component in many systems,

across the clinical domains that are within the scope of this thesis. The idea of

defining knowledge in a formal, processable and flexible form has strong similarities

to some of the current mainstream software development methodologies such as

model driven architectures. The knowledge base can also act as a unifying concept

across research domains within the scope of this thesis. Therefore, the following

discussion adopts a knowledge base centric view of the CDS domain that will be

extended to other relevant domains as required.

 (Clancey and Shortliffe 1984) provides a set of different dimensions on which

to compare knowledge based systems (p 11). Upon classifying CDS

implementations as knowledge based systems, a subset of these dimensions

provides convenient criteria for discussion of the different paradigms that have

hitherto been adopted in decision support systems. This subset consists of:

(1)content, (2)hypothesis formation and evaluation, (3)management of uncertainty,

(4)data collection and explanation and (5)knowledge acquisition. These high-level

concepts are still relevant today in the context of CDS design and implementation.

 Similarly, the methods for CDS identified in (E. H Shortliffe, Buchanan, and

Feigenbaum 1979) are mostly still relevant, although they have evolved. Especially

methods based on accumulating data in a computer processable form has become

comprehensive enough to encompass others by providing a platform, on top of

which other functionality can be built. The five paradigms given below are mainly

based on the classification of (E. H Shortliffe, Buchanan, and Feigenbaum 1979).

Symbolic reasoning

Symbolic reasoning has been a widely studied field of artificial intelligence

since at least the 1970s. This paradigm attempted to mimic the reasoning process

of human beings, by employing methods such as rules representing expert

knowledge. The knowledge base (Clancey and Shortliffe 1984) corresponds to a

combination of these rules and related domain concepts within this symbolic

reasoning paradigm.

The advantage of this approach is that the content of the knowledge base is

expressed in a form that is meaningful to human beings. (E. H Shortliffe, Buchanan,

 40

and Feigenbaum 1979) focuses on MYCIN (Shortliffe, 1976), which is a

representative of the symbolic reasoning approach.

MYCIN chose to use formal rules to represent and evaluate expert

knowledge. Since rules are easy for experts to understand and communicate, this

approach contributes to achieving better intelligibility. By using such rules for its

knowledge base, MYCIN is able to provide data collection and explanation of

decisions in a form that is relatively easily understood by clinicians.

A decision support system is capable of performing reasoning on its

knowledge base, but the reasoning capability on its own does not guarantee

successful outcomes. The rules are used to process the content stored in the

knowledge base, so the quality of that content is critical. More efficient

communication with physicians during construction of the rules within the knowledge

base improves the overall success of the system. Reasoning is performed by way of

execution of rules, and when these rules are in a format that is understandable by

humans, following the process is also easier. This helps the clinicians make better

use of the outputs from the system, since they can see the reasoning behind the

decisions made. (Edward H. Shortliffe et al. 1975) explains how this explanation

mechanism works in MYCIN. Even though rules based representation provides

advantages in CDS, rules are not sufficient as the sole basis for symbolic reasoning.

What is inherent in the clinical decision-making process is the uncertainty. The

clinician deals with uncertainty using evidence and his observations, and his actions

follow accordingly. Rules may encode these actions, but the decision mechanics for

activation of rules has to handle uncertainty. MYCIN employs certainty factors for

this purpose. (E. H Shortliffe and Buchanan 1975) says that the adoption of the

certainty factors in MYCIN was introduced as an approximation to conditional

probabilities, referring to issues associated with the use of statistical methods such

as Bayesian methods.

This approach is not free of problems. (Duda and Shortliffe 1983) recognizes

the problem with the semantics of the values of this approximation in the clinical

context; the certainty factors are not probabilities, hence their meaning is not as

clear as the rules which they guide. The relationship between probabilities and

certainty factors has been explored by (Barclay Adams 1976), which points to

potential issues that may arise with wider use of the certainty factors approach,

even though the approach performs well in MYCIN. In summary, symbolic

reasoning provides convenient methods for knowledge engineering and explanation

of decisions based on rules, but handling uncertainty is not easy compared to

statistical methods such as the Bayesian approach.

 41

Bayesian Methods

(E. H Shortliffe, Buchanan, and Feigenbaum 1979) considers Bayesian

statistical approaches as one of the major paradigms of Clinical Decision Support.

Impressive diagnostic accuracy is not uncommon in systems where Bayesian

methods of inference are used, and this is a point in favour of the approach (De

Dombal et al. 1972).

However, diagnostic accuracy is not the only criterion for successful CDS.

The Bayesian method requires inputs in the form of probabilities. This requirement

introduces significant challenges for knowledge engineering as providing domain

knowledge in the form of probabilities has not proved a familiar and convenient

method for clinicians. Compared to expressing knowledge in the form of rules or

using explanations based on their execution, conditional probabilities are

significantly less convenient as a domain language for clinical decision support.

With a statistical approach, the quantitative expression of probabilities turns into a

language embracing data collection, knowledge acquisition, and even explanation of

the reasoning, as well.

According to (Leaper et al. 1972) which discusses the problems associated

with the use of probabilities for knowledge engineering, two applications of the

Bayesian approach on the same set of data, using different sources for probabilities,

result in significantly different levels of performance. When the conditional

probabilities are obtained with the help of software, from patient data, the

performance of the system can end up being significantly better compared to the

case where the conditional probabilities are obtained from direct input of experts.

Potential problems with the Bayesian approach extend deep into probability

theory and assumptions made about conditional probabilities. Due to the

computational challenge of handling dependencies between input variables and

outcomes of interest, most of the uses of the Bayesian approach end up with a form

known as naive Bayes. In a simple clinical decision-making setting, this form uses

random variables to represent diagnoses and symptoms. In this mathematical form,

the candidate diagnoses are presumed to be mutually exclusive and their set is

exhaustive. The symptoms are assumed to arise independently of one another. This

set of assumptions does not realistically or adequately reflect the expert opinion in

many cases.

Given that the naïve Bayesian paradigm can perform quite well even with

these constraints, it is still an alternative to the symbolic reasoning paradigm.

 42

(Spiegelhalter and Knill-Jones 1984) provides a useful discussion of the statistical

methods in CDS. According to this study, the principal barrier to wider use of

statistical methods (including Bayesian methods) is related to difficulties in building

the knowledge bases (probabilities). Even though recent advances in Bayesian

modelling and computation may help deal with incorrect or inadequate assumptions

about probabilities, the problems associated with using probabilities as a descriptive

language for a knowledge base still remain.

Efficient representation of domain knowledge is a significant factor for

successful decision support, as demonstrated in both the symbolic and probabilistic

paradigms. The modern extensions of the next paradigm focus heavily on this goal.

Data bank analysis

A term coined in (E. H Shortliffe, Buchanan, and Feigenbaum 1979) is “Data

Bank Analysis for Prognosis and Therapy Selection”, and this term identifies a

further CDS paradigm which has seen exponential growth in popularity compared to

the others. What was described as a “Data Bank” in the 1970s has evolved into

today’s electronic healthcare records, if one refers to the key features and goals of

such systems, as described in (E. H Shortliffe, Buchanan, and Feigenbaum 1979),

which positions the medical record repository as a tool to provide access to large

amounts of data for better care management. The principal suggested use is

clinician access to a library of past cases that are relevant to a current patient’s

case, and consuming that information to make decisions, an approach that is widely

adopted by modern clinical information systems.

Since the umbrella term used for this approach in modern systems is EHR,

this thesis considers the EHR as the modern representation of data bank paradigm.

(Kalra and Ingram 2006) provides an in depth, up to date exploration of the concept,

showing how EHR became a unifying platform for many purposes. The diversity of

the studies referenced by (Kalra and Ingram 2006) is proof for this unifying, platform

centric view of the EHR. In the following excerpt from this work, the authors refer to

CDS functionality that can be provided through the use of the EHR:

“The widescale use of decision support and alerting systems that interact with

patient records is considered an essential informatics solution to the prevention of

errors”

 43

The growth in adoption of the EHR alone cannot deliver the potential benefits

for decision support. The focus on EHR in the medical informatics domain is

obvious, supported by the discussion in (Kalra and Ingram 2006), but the extent to

which EHR implementations have managed to support better care via decision

support is another matter. (Linder et al. 2007) finds no significant improvement in 14

of the 17 indicators they examine in the context of EHR use.

This thesis acknowledges the potential benefits of decision support in EHR

systems, but it also observes that these benefits are not necessarily reflected into

clinical information systems due to a number of reasons. Also, the focus of this

thesis on EHR does not imply that a crucial method for representing and processing

clinical data, that is, use of coding systems in medicine is ignored in the context of

CDS. The practice of coding health data significantly predates the emergence of

computers, given that the International Classification of Diseases (ICD) was first

published in 1893 (WHO 2015), (James J. Cimino 1996). The use of codes for

representing clinical concepts is a cross cutting component of both symbolic

reasoning (J. J. Cimino 2011) and EHR based approaches to clinical decision-

making (James J. Cimino 1996) and is used at the national level (de Lusignan et al.

2001).

The use of healthcare terminologies as components of healthcare

information models, which are the building blocks of modern EHR implementations,

is a well established approach (R. A Greenes 2007), (Al Rector et al. 2006),(Mori

1995), which has led to recognition of the use of these terminologies by information

model standards development groups (Zanstra et al. 1998). Therefore, this thesis

assumes that the EHR is an encapsulating concept which makes use of

terminologies such as ICD-10 (World Health Organization 1992) or SNOMED-CT

(IHTSDO 2015) to fulfil requirements that depend on existence of semantic

identifiers for information model elements.

2.2: The Detachment Problem in Clinical Decision Support

The performance of decision support systems is dependent on a number of

variables, such as the amount of clinical data available to the decision-making

mechanism, the ease of building and maintaining the knowledge base that allows

processing of the data and the execution methods and performance of the software

that implements the decision support mechanism. The components of decision

support systems, which these variables are associated with, are usually research

topics in their own right, connecting the CDS domain to other research domains

 44

from other disciplines, and sometimes they have further dependencies on other

variables, such as the choice for the underlying computing platform.

The efficiency of the collective functionality of the components of CDS

determines the performance of the implementation, and failure to establish a

sufficient level of integration between these components leads to a detachment

problem.

The detachment problem describes the state in which CDS cannot deliver

the desired and expected outcomes due to integration inefficiencies, the scope of

which includes both CDS components and data. The nature of the problem can be

broadly described in terms of:

• Conceptual detachment

CDS implementations cannot fully benefit from a promising method such as

probabilistic reasoning, because it cannot incorporate and utilise the relevant

concepts in an efficient, acceptable way.

• Data detachment

A CDS implementation cannot access clinical data to function as expected, or it

can only access the data in limited and specific ways, which limit the benefits

achievable, even if the CDS method is broadly applicable. In the first case, the

CDS is detached from data, and in the second case, the CDS is detached from

other settings and systems where it could have been useful.

An example of conceptual detachment would be handling uncertainty in a

rule based system, exemplified by MYCIN’s certainty factors which represent

probabilities. The conceptual detachment that necessitates the use of certainty

factors is the inconvenience faced by the domain experts when they need to provide

probabilities to express uncertainty.

Data detachment can be exemplified in most clinical systems integration

scenarios for a CDS implementation. In probabilistic models, access to a higher

number of instances of a set of domain variables allows more precise discovery of

the nature of relations among these variables. Accessing to more domain variables

that may have significance in the model is also of key importance. In cases where

data is divided among different systems, such as patient demographics data and

laboratory data residing in different systems, or past clinical data scattered among

various institutions, only a subset of these detached data subsets is available to

probabilistic model implementation, diminishing its performance.

 These problems have been recognized by the research community. Various

studies, implicitly and explicitly discuss either the connection between information

 45

systems and decision support, or the lack of it. (E. H Shortliffe 1987) provides an

early discussion of the issues, referring to them as “logistical issues”. He discusses

the requirement to provide the same data separately to different systems, where

there is no connection between systems.

The following quotation from (Shiffman 1994) expresses the importance of

access to data. Referring to (Shortliffe EH, Perreault LE, Wiederhold G, and Fagan

LM. eds. 1990) he says:

“Successful use of decision support tools is dependent on their integration into
routine data management tasks”

(Sim et al. 2001) recognizes the difficulty of building the links between routine data

and decision support systems as follows:

“Significant financial and organizational resources are often needed to implement
CDSSs, especially if the CDSS requires integration with the electronic medical
record or other practice systems”

(E. H Shortliffe 1993) also underlies the problem where the CDS cannot become

available to users:

“I believe that the greatest barrier to routine use of decision support
by clinicians has simply been inertia; systems have been designed for single
problems that arise infrequently and have generally not been integrated into the
routine data-management environment of the user”

(Müller et al. 2001) provides a case study in which an existing, standalone

CDS is integrated with a Hospital Information System (HIS). The study outlines the

requirements necessary to unify decision support functionality with software based

medical information management to integrate an abdominal pain scoring system

and a hospital information system. (M. A Musen, Shahar, and Shortliffe 2006)

expresses the importance of this kind of integration in the following statement:

“We need more innovative research on how best to tie knowledge-based computer
tools to programs designed to store, manipulate, and retrieve patient-specific
information”

This quotation implicitly assumes that software that is designed to store and

process patient specific information is different from knowledge based software, i.e.

the decision support software in our context.

 46

This differentiation between information storing, and information processing

software is worth noting. The difference has its roots in the history of these two

types of systems. As discussed before, the initial expectation from EHR systems

has been to store as much information as possible and to retrieve information when

the clinician needs it. The decision support systems must process the data, and

consequently, the related domain knowledge must be represented in a consistently

and efficiently computable form.

The problem of detachment of key components of CDS such as clinical data,

decision-making mechanism and knowledge representation is actually an

undesirable side effect of the evolution and specialization of these components.

This specialization has been recognized by early works such as (E. H Shortliffe

1987). Understanding the current state of these components and the relations

between them is crucial to improving their connectivity.

Despite the increase in use of computers in healthcare, potential

improvements to clinical practice that can be provided by clinical decision support

systems, and quite clear recognition of the problems with CDS approaches, the

implementations of CDS systems have not become widely available in the health

informatics domain. This rather small amount of adoption is worth recognizing as

the first point regarding the current state of such systems, even though the

capability of existing clinical decision support systems may far exceed the early

systems of the past. This point is helpful as a motivation for questioning the

successful and less than satisfactory aspects of current clinical decision support

systems.

(R. A Greenes 2007) is a recent study that provides a detailed treatment of

the CDS domain, which identifies key problems and issues in CDS and suggests

possible solutions. The following list of observations and references to relevant

works are taken from this work, with additional comments where necessary.

• CDS systems are hard to develop due to the difficulties encountered in

constructing the knowledge base component required to drive them. The

construction of a knowledge base is followed by maintenance and

improvements, effectively extending the knowledge representation task into a

knowledge management lifecycle.

• In order to make use of wider clinical input in the construction of CDS systems,

knowledge representation must employ standard methods that allow sharing of

results across systems and between clinicians.

• Even though CDS based diagnosis has been a strong focus of interest, it has

been rarely implemented and used in actual everyday clinical practice, beyond

 47

its place of origin. Prognosis related CDS implementations seem to be more

widely used(R. A Greenes 2007).

• The relationship between the Clinical Information System and the CDS system

is critical in terms of the capabilities of the CDS. The following quotation from (R.

A Greenes 2007) refers to this relationship in the context of interactions required

for the CDS system to perform successfully:

“For these kind of interactions to work, the specification of the data elements
needed by CDS must be compatible with those in the IT system, and the actions
that CDS determines should be performed must be capable of being carried out by
the IT system.”

• Regardless of the capabilities of the CDS system, the implementation should

consider the workflow of clinicians during the clinical processes. (R. A Greenes

2007) gives an example which, for lack of this consideration, led to complaints

from clinicians about the performance of a computerized physician order entry

system, as described in (Shabot 2004)

• There has been a continuous effort to formalize and improve various aspects of

CDS systems. This formalization is required to enable easier creation and

management of knowledge bases and facilitate integration with Clinical

Information Systems. Various specifications have been created as a result of

this requirement, and they have been in continuous evolution to respond to

increasing complexity of information systems.

For example the Medical Logic Module (MLM) devised by (George Hripcsak

1994) and implemented in Arden Syntax (George Hripcsak 1994) is a good

example of formalization of multiple CDS components within a single

specification. Arden Syntax, as explained in (G. Hripcsak et al. 1994) and

(George Hripcsak 1994), includes components to define the trigger event for

invoking decision support, the logic that will be executed as a result, the action

that will be performed in response to execution of that logic, and finally a data

mapping from the underlying clinical data source to the MLM components. (R. A

Greenes 2007) provides several independent contributions in the field which

have formalized clinical actions as computable guidelines: Guidelines Element

Model (GEM) (Shiffman et al. 2000), Guideline Interchange Format 3 (GLIF3)

(Boxwala et al. 2004) and GELLO (HL7 2005). These formalisms focus on

defining the logic and actions in a computable way. (R. A Greenes 2007) also

cites (Peleg et al. 2003) for a comparison of computer interpretable guideline

methods.

 48

Other published components of Arden Syntax, such as its data mappings, have

also been influential in the development of modern CDS approaches. EHR

standards now provide a much richer, and formal method for representing and

mapping clinical data between systems. Thus, modern decision support

implementations can now make use of the clinical information models developed

using these standards, rather than creating CDS system specific methods for

data representation and mapping. In fact, modern EHR specifications have

scope that goes beyond data representation: they can now be used to model

actions that need to be carried out during the care process, such as prescription

and administration of medications.

Despite continuing efforts to formalize the representation of key components

of CDS systems, some key mechanisms that underlie their decision-making

capabilities, and problems associated with them, have not greatly changed.

Probabilistic approaches, such as BNs , for assessing and processing clinical data

are still not widely used, beyond the research exemplars and according to (R. A

Greenes 2007), simpler mathematical approaches have been dominant, as

expressed in the following quote:

“Just as in the foregoing discussion relating rule-based systems and more
sophisticated knowledge representation paradigms, simple understandable models
(e.g., linear and logistic regression, score systems) have far outweighed in number
and utilization the more sophisticated machine learning models (e.g., support vector
machines, neural networks, and recursive partitioning algorithms), many of which
remain limited to research applications.”

However, even the most common and well understood statistical methods

may require extra steps during statistical model building, such as performing a

transformation on some of the covariates in a logistic regression. These types of

tasks, as outlined before, tend to block the use of efficient probabilistic methods,

due to clinicians having difficulty in handling probabilistic concepts and operations.

These observations lead to two main conclusions in the context of this thesis:

First, there has been great effort devoted to developing formal methods for

providing CDS. Second, powerful and promising methods for handling intrinsic

uncertainty are still not widely available in CDS system implementations. Therefore,

potential improvements to CDS need to explore the formal methods of defining and

processing clinical data as the underlying approach.

In the larger context of medical informatics, another field of research

characterized by a recent strong focus on the formalization of clinical data is

electronic health records. This parallel attempt to improve the state of the art via

 49

formal representation and information processing methods in both EHR and CDS

research is a significant unifying characteristic for both domains.

2.3: EHR, Computable Health and Clinical Decision Support

The EHR paradigm provides all the functionality that the data bank approach

to Clinical Information Systems aims to provide. However, during its evolution the

EHR became more than a data storage formalism. Many factors have contributed to

the evolution of the EHR concept, such as increased capacity and lower cost of

computer hardware and software, evolving ethico-legal requirements, greater

prominence of requirements for shared care and cost effectiveness considerations.

The following factors have been highly influential in changing the concept of an EHR

from a data store to an infrastructure for computation:

• The requirement for data sharing across various clinical information systems

and, as a consequence, the requirement for EHRs to be accessible using the

different technologies that are the basis of those information system

implementations.

• The requirement for the EHR to provide functionality to support as many

scenarios from different clinical domains as possible, leading to the

requirements for conceptual coherence, data integrity and interoperability.

Standardization efforts for the EHR can be considered as the most

successful method for handling these requirements. Modern EHR standards have

usually avoided focusing on selected clinical domains or technologies. They

introduce methods that allow definition of clinical data in a consistent way

regardless of the clinical domain that the data comes from. EHR standards also

address the issue of being available for implementation in multiple technologies,

through the publication of a range of implementation technology specifications.

Through this approach, modern EHR standards have defined computable

health information platforms, which can both exchange data and allow development

of information systems using standards based data representation (Wollersheim,

Sari, and Rahayu 2009), (Lopez and Blobel 2009), (P. H. Cheng et al. 2004, 7),

(Kuhn 2007).Due to these infrastructural considerations, additional key components

of health informatics software, such as demographics can now be positioned on top

of the EHR, using it as a platform. This trend can be clearly seen in studies such as

(Kalra and Ingram 2006) where many requirements of medical care are discussed in

the context of EHRs, with references to other works that also support this view.

 50

In the context of CDS, this approach makes the EHR is an obvious candidate

for the underlying source of clinical data. The data mapping component of Arden

Syntax (George Hripcsak 1994) is built on this approach, with the aim of connecting

the large variety of clinical information systems that contain relevant data to a CDS

formalism. The CDS implementation can delegate the responsibility for accessing

clinical data to the EHR implementation, by using a formally defined information

model as a source of data.

Recent developments in CDS related formalization attempts show that this

division of responsibility for clinical data access is becoming a common approach.

GELLO’s (HL7 2005) close relationship to object models and Health Level 7 (HL7)

is one such example.

2.4: Current State of EHR and CDS integration

A review of most recent studies on CDS reveals two key findings: the most

fundamental problems related to CDS adoption still remain, but recent research is

offering solutions to these problems, with notable emphasis on the conceptual

integration between EHR and CDS, which is the focus of this thesis.

As may be expected, the problems reported by these studies have different

architectural and technological contexts from their predecessors reported two

decades ago, but their nature stays remarkably similar, albeit that a more standards

focussed approach is recognisable.

From an architectural point of view, the standalone CDS implementations

that require duplicate data entry are rarely adopted (Khalifa 2014). The lack of

integration of clinical systems is a potential disruption to clinical workflow when

accessing data that is required for CDS (Berner 2009) and much of health data is

still not in machine-understandable form (Mark A. Musen, Middleton, and Greenes

2014). The maintenance of formally expressed knowledge for CDS is a challenge,

both in central, service oriented and embedded architectures, in which, the CDS

functionality is directly included in a clinical software with local specialisations

(Berner 2009).

Even though the availability of specialised devices for clinical tasks helps

clinicians, the data produced by these devices can only be used for CDS if they are

part of an integrated architecture (Mark A. Musen, Middleton, and Greenes 2014).

The use of terminologies such as SNOMED-CT (IHTSDO 2015) is an improvement,

but data semantics problems still exist (Wright et al. 2015) and improvements in

 51

standards that target CDS are defined as a priority (Wright et al. 2015; Kawamoto

2010)

These solutions focus on standards built on information models, in line with

the approach developed in this thesis, and the collaborative use of multiple e-health

standards for CDS, such as using openEHR's clinical data modelling approach and

data types with the Virtual Medical Record (vMR) defined by HL7 (González-Ferrer

et al. 2013). The standards harmonization work of the Clinical Information Modelling

Initiative (CIMI 2015), which uses concepts parallel to those of openEHR’s to

represent CIMI models, attempts to provide well defined methods for this type of

collaborative use of different standards. (Tao et al. 2013).

Currently, both openEHR and HL7 methodologies are used for the

integration of CDS and EHR concepts and the use of EHRs is seen as an

improvement for tasks that require large scale data, such as analysis of

multimorbidity (Fraccaro et al. 2015). This line of thought is extended by the

prediction of the future of the EHR as a vehicle for delivery of CDS (Mark A. Musen,

Middleton, and Greenes 2014). These emerging solutions are also benefitting from

the increasing availability of distributed computing frameworks and cloud

architectures, such as the use of Hadoop in a cloud setting for building different

types of applications based on EHR standards. Examples of these new kinds of

applications are web and mobile applications (Bahga and Madisetti 2013; Bahga

and Madisetti 2015) and data mining (Batra et al. 2014; Robert A. Greenes 2014).

The availability of open source and model driven EHR platforms such as openMRS

(Mamlin et al. 2006) enable easier development of these types of applications

(MacLeod et al. 2012; Fraser et al. 2012) even in low-resource settings

(Mohammed-Rajput et al. 2010).

The adoption of EHR as a platform is found also in new initiatives that aim to

extend the practice of clinical care with new types of data, such as the CSER

Electronic Medical Record Working Group, which was created to explore informatics

issues related to integration of genomics data with EHRs and CDS (Tarczy-Hornoch

et al. 2013). This integration, which, as of 2013, is implemented solely by

embedding PDF files into patient EHRs, marks the addition of a new type of data to

the EHR scope. Consequently, standards for processing genomic data in the

context of EHRs are a requirement for enabling their use in CDS implementations

(Overby et al. 2013; Tarczy-Hornoch et al. 2013).The HL7 Clinical Genomics Work

Group is actively working on the development of standards for communication of

genomic data (HL7 2015a).

 52

From an openEHR perspective, the most significant recent development is

the integration of CDS and EHR concepts in the openEHR Guideline Definition

Language (R. Chen and Corbal 2015), which is currently in the process of being

incorporated in the openEHR specifications. GDL enables the expression of rules

that process clinical data based on openEHR data types and is used for real life

CDS implementations (Chen 2012). Prior studies on openEHR based CDS show

that use of external rule languages such as CLIPS (Riley 2015) with openEHR

concepts for CDS, is also possible (Chen 2009).

The recent literature shows that a platform based approach to EHR and CDS

integration, based on different architectures and technologies, is becoming the

predominant approach, in both research and implementation efforts, and that

openEHR is widely and actively in use. The research motivations of this thesis are

thus confirmed as relevant and of interest in CDS implementations and in other

studies.

2.5: Summary

Despite the improvements in the implementation of the various

computational methods for providing clinical decision making capability, almost five

decades of multidisciplinary effort is still unable to deliver widely usable CDS. A

strong focus on the use of information models, and standards based on these

models, is the current dominant approach for tackling these well-recognized

limitations of CDS, and this approach implies the emergence of health computing

platforms based on standards, in line with the architecture that this thesis work set

out to define, using openEHR.

 53

Chapter 3: The openEHR Specifications and Their
Relationship to Clinical Decision Support

This chapter provides an overview of the openEHR specifications (David

Ingram 2002), (Beale et al. 2006). The focus is on the concept of computable

healthcare and how it helps in sharing information and behaviour with an aim to

build the links between capabilities of openEHR, CDS and AI research.

 The openEHR specifications, which are freely accessible in the form of

multiple documents from the web site of openEHR foundation

(http://www.openehr.org), provides a modern design for an EHR solution, which can

potentially fulfil the requirements described in (Kalra and Ingram 2006). A more

detailed exploration of the requirements of a modern EHR design can be found in

the Good European Health Record GEHR project (D. Ingram 1995), (Lloyd et al.)

deliverables. The openEHR specifications have their roots in the GEHR project.

 Both GEHR and openEHR specifications tackle a key issue in healthcare IT:

providing a standard method for computing healthcare related information, based on

unified support for information models and terminologies. These specifications

represent the evolution of software engineering and information systems design in

clinical informatics. There are other initiatives such as Health Level Seven (HL7)

and (ISO/EN 13606 2012), which are related to openEHR in terms of their goals and

content (Schloeffel et al. 2006). The ISO/EN 13606 standard is based on a subset

of the openEHR specifications.

 The scope of these specifications covers both clinical and technical domains.

An in-depth comparison of these specifications is out of the scope of this thesis.

openEHR is the specification and the standard this thesis will build on. The following

section provides an overview of the aspects of openEHR that enable computable

health, followed by a discussion of the relationship between these aspects and

probabilistic methods.

3.1: The openEHR Standard and Methodology

The fundamental characteristic of openEHR is its use of archetypes (Beale

and Heard 2007a), (Beale and Heard 2008a) expressed via Archetype Definition

Language (ADL) (Beale and Heard 2008b). The archetypes define clinical models

via specifying constraints on structure and values of a reference model (RM). This

approach is defined as two-level modelling (Beale and Heard 2008a).

 54

The two-level modelling approach of openEHR is built on the accumulated

results of a series of large scale research projects that took place over more than

twenty years (David Ingram 2002), refining the results of research projects such as

Synapses, which is based on the idea of an object model supported by a data

dictionary (Grimson et al. 1997), (Grimson et al. 1998), (Bisbal, Stephens, and

Grimson), and GEHR (Lloyd et al.).

The fundamental components of openEHR are brought together in a process

that produces outputs which can be used to implement clinical information systems

that support a wide variety of functionality. Even though this process it not explicitly

named in the openEHR specifications, the design of the fundamental components

and the ways they are meant to be used, which is clearly explained in the

specifications, implicitly describes a methodology.

This thesis refers to this methodology as the openEHR methodology,

referring to a clinical model driven software implementation lifecycle with an iterative

nature. Therefore, the term openEHR methodology refers to a superset of openEHR

specifications, extending them with the processes that make use of them. A high

level representation of both the primary components of openEHR standard and the

openEHR methodology that encapsulates them is provided in Figure 1.

openEHR RM Archetype A

Archetype B

Archetype C

Template X

Archetype A

Archetype B Archetype C

package

package

package

EHR

COMPOSITION

DV_CODED_TEXT

Operational Template X

Figure 1: openEHR RM, Archetypes and Templates

The first level of the two-level modelling approach of the openEHR

methodology is the RM, which consists of a limited number of types defined in

detail. The term “type”, when used in the context of openEHR RM in this thesis,

refers to the widely adopted mechanism of data abstraction as implemented by

most object oriented languages without implying an approach taken by a particular

 55

programming language. The openEHR specifications use the term “class” as well,

without explicitly defining the relationship between the terms type and class. This

thesis assumes that these terms are used interchangeably, and adopts the same

approach. RM types will be written in uppercase, such as COMPOSITION,

ELEMENT, or LIST_ITEM to distinguish them from programming language types or

data item names.

These types, which collectively define the contents of the RM, address the

requirements of representing values and structures with a focus on clinical

concepts, including, but not limited to EHR (Beale et al. 2008e), Demographic

(Beale et al. 2008a), Data Structures (Beale et al. 2008d), and Data Types (Beale et

al. 2008b).

The RM is the basis of clinical models, called openEHR archetypes (Beale

and Heard 2007a). The types in RM, organised under packages as shown in Figure

1, are brought together to define archetypes, using the ADL (Beale and Heard

2008b). The archetypes use RM types to compose clinical models to represent

concepts such as blood pressure measurement or a list of allergies.

An archetype can use RM types such as COMPOSITION and their fields to

define the structure of a clinical concept as well as allowed values of data such as a

limited number of codes for a field that has the type DV_CODED_TEXT. This

practice of composing clinical models represented by archetypes based on RM

types is the second level of two-level modelling approach. The development of

archetypes is most frequently described as clinical modelling. The practice of

creating downstream artefacts of archetypes in Figure 1 also falls under this

description. Figure 1 shows how a number of archetypes can be modelled using RM

types. Archetypes also support the use of terminologies via the use of both

capabilities of RM types and term and terminology binding capabilities of

archetypes. Term binding allows an archetype-local identifier of a data item to be

associated with a term from a specific terminology. Terminology binding allows a set

of terms from a terminology to be defined as the valid values of a data item.

A key trait of archetypes is that they are meant to represent maximal data

sets. That is, all data items that could be considered under a clinical concept should

be included in the archetype for that concept. The term “data item” as used in this

thesis refers to a clinical concept included in an openEHR archetype or another

modelling artefact derived from an archetype. All the nodes in the diagram in Figure

1 that are in the containers that lie to the right of the openEHR RM represent data

items, regardless of what their RM type or the complexity of that RM type is.

 56

The archetypes are meant to be the basis of interoperability in the openEHR

methodology and the maximal dataset approach ensures that if a particular

archetype is used by different systems, there is ideally no need to add extra data

items, leading to a modification to the archetype, which consequently may break

compatibility with other systems. However, following this approach to avoid

modifications to archetypes for adding content has the downside of archetypes

representing many data items, not all of which may be required in every scenario.

There is also the possibility of the definition of a clinical concept optionally

containing other clinical concepts with sufficient complexity that requires their own

archetypes, in which case archetypes need to be included in other archetypes in

various combinations, based on the clinical modelling requirements at hand.

These requirements are fulfilled via openEHR templates (Beale and Heard

2007b). As shown in Figure 1, an openEHR template can be used to bring together

a number of openEHR archetypes. Archetypes can be included in other archetypes

using their slot mechanism, their fields can be further specialised, such as limiting

the set of codes allowed for a DV_CODED_TEXT field to an even smaller subset or

some fields which are not needed can be removed. The modifications in a template

can never conflict with the definitions of archetypes, they can only introduce further

constraints on data items. If a data item is defined as mandatory in an archetype, it

cannot be removed in a template, but the set of values defined as valid for that data

item can be limited to a smaller subset.

The benefit of templates is that they allow specialisation of archetypes for a

specific scenario without the need to introduce new archetypes. This approach

keeps the number of shared archetypes to a minimum and encourages their re-use.

The use of templates for further customisation of archetypes introduces

another modelling artefact to the openEHR methodology. Even though templates

are implementation specific, their role and capabilities overlap with the second level

of two-level modelling. At the time of the writing of this thesis, the openEHR

specifications are being updated to remove the difference between templates and

archetypes to eliminate the need for another downstream modelling artefact. This

thesis focuses on the currently established method of openEHR implementation

based on templates.

The clinical model defined by a template goes through a final transformation

as shown in Figure 1 to create an operational template. An operational template is

still a clinical model, which is based on RM types, but it is meant for deployment to a

software implementation based on openEHR, and it cannot be modified further as a

modelling artefact. The software implementation of openEHR is responsible for the

 57

representation and management of actual clinical data generated during clinical

care. The data represented by the openEHR implementations is referred to as a

“data instance” or “RM based data” in this thesis. The term instance refers to the

distinction between the clinical models which are blueprints of values that are

generated during clinical care and the actual values stored and processed by

openEHR implementations.

The process of going from a set of RM types to artefacts that are used by

software implementations depicted in Figure 1 shows how openEHR methodology

supports building clinical information systems based on domain models. The

iterative nature of the methodology, not depicted in Figure 1, comes from the

versioning support of archetypes defined in openEHR specifications. If a new use

case for a system identifies a data item that should belong to an archetype, a new

version of the archetype is develop based on the previous version, and then made

available so that the process in Figure 1 can be repeated with the new version of

archetype. The term “use case” refers to a scenario, in which a party, which may be

an end user, or an information system, makes use of a particular functionality

provided by an information system, which may be referred to as “system” for brevity.

The division of responsibilities between modelling artefacts depicted in

Figure 1 imply that templates and their downstream artefacts are more

implementation oriented than archetypes. The clinical models used in this thesis for

experiments based on implementation are therefore discussed at the template level,

but they are always produced following the approach in Figure 1.

Even though templates are more related to clinical information systems

implementation than archetypes, they are still independent of any particular

programming language or framework. The architecture of openEHR explained in

Beale et al. (2007) does not assume or demand a specific technology for its

implementation. Instead, the Implementation Technology Specification (ITS)

approach of openEHR (Beale and Heard 2008a) provides mappings from openEHR

concepts to technology stacks such as XML (Bray et al. 1997) or Java (Gosling et

al. 2005). Actual implementations of these mappings can be used as the core of

many different information systems in various medical domains.

Archetype based clinical models can represent concepts from many different

clinical domains by bringing together a small set of data types in different

combinations. The openEHR methodology provides a comprehensive solution to

communication problems of medical informatics which are discussed in (M. A

Musen 1992) in depth via use of these clinical models as a domain specific

 58

language that acts as a means of liaison between clinicians and software

developers, and is used globally (openEHR Foundation 2015).

Through shared models, different systems can share both data and

behaviour. When a particular software implementation is built on the data types and

structures provided by openEHR, it becomes capable of functioning in all systems

that process data using openEHR. Therefore, the interoperability of health

information between multiple systems delivers a key benefit by design: the

decoupling of implementation technologies of clinical information systems from the

clinical information processed by those systems.

In the context of decision support, this decoupling can improve the outcomes

of two fundamental scenarios:

• When the required clinical information resides in multiple systems

• When a particular capability is required in multiple systems.

These scenarios provide a generalization of the interaction of multiple clinical

information systems, which can be improved by openEHR in the following ways:

• The openEHR methodology provides a robust way to represent clinical data via

two-level modelling, based on its ability to express many clinical concepts in

addition to its technology agnostic specifications.

The effective outcome of this design is the ability to exchange clinical data

between clinical information systems in many clinical domains, independent of

software platforms used for clinical information systems implementation.

• Information models are not the only formal way to represent and process

knowledge and data. Use of standardized terminologies for the same purpose is

a common method in many information systems. Terminologies such as

SNOMED-CT (IHTSDO 2015) can also address key knowledge management

requirements of healthcare-informatics, and their relationship to EHR

specifications is an active topic of research and discussion. (Markwell, Sato, and

Cheetham 2008) discusses the integration of SNOMED-CT to both HL7 and

openEHR. (Al Rector et al. 2006) evaluates the use of ontologies to perform

terminology to EHR bindings. (A. L. Rector 2001) defines a framework for

allocating information in a setup where terminologies and information models

are used together.

openEHR’s support for binding information models to terminologies extends its

capability for clinical data exchange beyond information models, which

addresses a larger set of use cases.

 59

• openEHR specifications contain a query language for data access (in draft form

at the time of writing of this thesis), specified in the same technology

independent way as with the other parts of the specifications. This query

language named Archetype Query Language (AQL) allows access to clinical

data based on openEHR RM types, taking the platform independent clinical data

representation concept even further by defining how this data representation

should be queried. When a particular behaviour that relies on RM based data is

implemented in a clinical information system, its portability to other systems can

be improved if its data access mechanism is based on AQL.

As a health computing platform openEHR aims to support a substantial set of

functionality building on the core capabilities described above. The diagram in

Figure 2, taken from (Beale et al. 2006) shows how key concepts are distributed to

layers which build on each other. This diagram shows the multi-layer vision of the

health computing platform along with the relationship between abstract

specifications and how abstract specifications are related to layers of the platform.

The abstract specifications for RM, archetype model (AM), and service model (SM)

allow definition of artefacts and functionality for the layers of the health computing

platform.

Figure 2: The openEHR Health Computing Platform

 60

The key research question for this thesis is, whether the health computing

platform depicted in Figure 2 can successfully support probabilistic methods for

CDS to improve their availability to clinical information systems.

3.2: Information Models and Clinical Decision Support

As discussed in Chapter 2, historically there has been a significant overlap

between AI and CDS. Most of the methods that process clinical data to arrive at

conclusions have their origins in AI research, which in turn builds on the results of

other fields of research with varying levels of abstractness. Therefore, various

branches of mathematics, set theory, statistics, information theory, computer

science are connected to clinical practice through CDS to an extent that depends on

the nature of the AI approach used.

The adoption of results of research from the large domain of AI for CDS is a

complex procedure due to the vast scope of medicine and consequently the variety

of data generated during medical care. The MLM concept used in Arden Syntax

(George Hripcsak 1994), which is discussed in Chapter 2 shows that making use of

even a rather simple decision-making mechanism, such as the rule based

approach, for CDS can be a challenge due to complexity of underlying data. The

rule based functionality of the CDS implementation based on Arden syntax can be

disrupted due to changes in the format of the clinical data (Jenders et al. 1995).

Integration of the decision-making logic to actual clinical systems may suffer from

various problems such as the lack of support from Arden syntax for complex data

types required to represent clinical data (Peleg et al. 2001) or efforts required to

implement integration for each clinical information system (Samwald et al. 2012).

The problems encountered during integration of Arden syntax

implementation to clinical information systems are independent of the capabilities of

the decision-making mechanism, and underlying AI research. Therefore, integration

of CDS functionality to EHR requires an in depth analysis to discover if successful

adoption of the reasoning method for CDS is feasible in the context of the

integration of interest.

When a particular reasoning approach is employed in the EHR standards

based CDS context, the extent to which it can be supported is dependent on both

the design of the underlying standard and the nature of the CDS approach. The

successful integration of a reasoning approach is dependent on aspects of these

two components. This chapter concludes with a brief discussion of some of the key

traits of openEHR, which represents the first component of EHR and probabilistic AI

 61

methods integration for CDS. The other component, BNs will be discussed in the

next chapter

Some of the key computational features of openEHR that are immediately

relevant in a CDS implementation are as follows:

• Domain specific data types

The openEHR data types model a wide range of concepts from the clinical

domain, and they also allow the use of standardised clinical terminologies to

encode values. This allows the representation of both numeric data and nominal

variables in a computable way. openEHR data types encapsulate all the clinical

data that will be created and used within an openEHR-based system.

Representation and access to clinical data are provided by a small number of

types that are basic to computation about a large variety of clinical values.

• Constraint based model definition

The constraints defined by the openEHR ADL on RM types are not only

structural constraints. They can cover any attribute of the RM types, including

data types and their values. Having the capability to define valid data through

constrained attributes allows openEHR-based systems to reject clinical data

immediately at its creation if it does not comply with the constraints of the model.

This means that outliers, missing values or inconsistent values in clinical data

will either not exist, or they’ll be at a minimum.

• Coherent and consistent abstraction

openEHR’s features allow using same formal definitions of clinical data for all

operations related to data processing. Clinical models, clinical data that

complies with those models, and finally access to clinical data through a custom

query language all use same components of the specification. This allows all

implementations of openEHR to compute solely on the specification, without

falling back to an implementation specific aspect. An important point worth

noting is that the robustness of the openEHR type system and modelling

methodology does not mean full coverage for all computations that may be

required. There is inevitably a limit to robustness, and exploring that limit in the

context of probabilistic CDS is one of the primary goals of this work.

3.3: Relevant standards

The focus of this thesis is on the integration of two high-level concepts, EHR

and CDS, explored through experimental implementations of two representative

methodologies – openEHR and Bayesian Networks. This choice reflects the

 62

significant overlap between the features of openEHR and Bayesian Networks and

the integration requirements identified by CDS research. Other prominent electronic

health standards also have features that overlap with these requirements but they

were considered less suitable for the research goals of this thesis, as confirmed in

an evaluation performed at the outset of the research. Nonetheless, these

standards, namely HL7, ISO/EN 13606 and SNOMED-CT, are still actively

developed and used. Therefore, their relevance and important traits are discussed

in the following sections.

3.3.1 HL7

The HL7 standard has a strong focus on the concept of messaging between

healthcare systems. Even though the standard itself has gone through major

changes between its second version, that was released in 1998, and its third

version released in 2005, the emphasis on messaging has not changed. This

emphasis is significant in the context of this thesis, since formalising messages that

are exchanged between systems does not necessarily imply or necessitate

implementation of these systems on the basis of the same clinical data models that

are used for messaging. The focus on messaging does not imply that a clinical

information system cannot be completely based on HL7 standards. At least one

software framework, Tolven (Tolven Institute 2015b) has shown that this is

possible. However, the information model used in HL7 V3 does not have

fundamental EHR concepts at its core, in the way that openEHR does. This does

not mean that HL7's modelling capabilities are strictly limited to messages. A subset

of the standard that consists of a Clinical Document Architecture (CDA) (Benson

2012) for exchanging clinical documents, and a Continuity of Care Record (CCR)

(Benson 2012) for expressing the critical care history of patients, extends HL7's

scope to the exchange of clinical documents and transfer of patients' existing

records to new systems. In particular, the CCR overlaps with EHR concepts, due to

its potentially longitudinal record nature.

The Reference Information Model (RIM) introduced by HL7 V3 supports an

approach similar to that provided by openEHR, reusing a small number of data

types to represent a large number of clinical concepts. However, HL7's approach to

developing domain models does not align with the object oriented approach to

domain modelling as much as that of openEHR. For example, the specialisations of

 63

a core set of high level classes are expressed via codes in HL7, whereas openEHR

uses only strict inheritance rules to express type information. HL7 introduces

methods such as omission of member attributes of classes along with cloning of

classes, which do not easily map to object oriented modelling concepts. openEHR's

approach, on the other hand, introduces the Archetype mechanism to provide a

single method for reusing its core reference information model components, and this

mechanism is fully specified and implemented as reusable open source software

libraries using object oriented languages. HL7's support for the use of terminologies

is extensive, allowing similar capabilities to openEHR.

The complexity encountered by implementers in making use of the HL7

information model introduced in V3, is currently being addressed by a new addition

to the HL7 standard, named Fast Health Interoperability Resources (FHIR) (HL7

2015d) (Bender and Sartipi 2013). At the time of the writing of this thesis, FHIR is in

Draft Standard for Trial Use (DSFT) state, but it is likely to replace the complicated

modelling practices of HL7 V3 with a simpler framework based on the concepts of

resources and, in addition, a much stronger focus on implementation (HL7 2015d).

FHIR represents a step change in the way HL7 information models are

created and extended, but it is not the only recent development of this kind. Another

relevant standards initiative, established in 2011 in its early form, is the Clinical

Information Modelling Initiative (CIMI) (CIMI 2015), which aims to deliver logical

models which can be used to produce multiple downstream physical data

representations. The importance of CIMI, especially in the context of HL7, lies in its

approach based on a reference model and archetypes, strongly influenced by early

contributions from the openEHR community At the time of the completion of the

writing of this thesis, CIMI is actively engaged on establishing CIMI models as the

basis of FHIR profiles (HL7 2015b), based on a harmonisation of models from

different standards and terminologies, using the logical models to be developed by

CIMI. Therefore, this approach implies introduction of two level modelling in the HL7

domain, via logical model harmonisation provided by CIMI.

These developments lead to the following observation: HL7 is an electronic

health standard with a large community and its adoption is definitely capable of

providing support for machine processable health data. However, this support is not

focused on the concept of the EHR and clinical system implementation. Even

though recent initiatives, as described here, are paving the way to easier

implementation of these EHR concepts within an HL7 based system architecture,

these same initiatives are also continuously changing the information modelling

methods of HL7. In contrast, the information modelling paradigm of openEHR has

 64

not changed or needed to change since its inception, making it a more

straightforward and less volatile option on which to base an experimental approach

to EHR and CDS integration.

3.3.2 ISO/EN 13606

The ISO/EN 13606 standard aims to achieve semantic interoperability in

electronic health record communication (CEN/ISO 13606 Association 2015). It aims

to enable communication of all, or a part of, an EHR between EHR systems.

ISO/EN 13606 has the EHR concept at its core, and is also built on the dual

modelling approach of openEHR, based on a reference model and constraints

defined by archetypes. This conceptual similarity between ISO/EN 13606 and

openEHR is not a coincidence: ISO/EN 13606 is a subset of the openEHR

specification and was developed under the leadership of founding members of the

openEHR Foundation, based at UCL.

Even though its scope emphasises exchange of information rather than

implementation of EHR systems, ISO/EN 13606's reference model and use of

archetypes allows it to be used for implementation of clinical information systems,

sometimes making use of existing openEHR archetypes, enabled by the very close

relationship between the two standards (Cornet 2015). There is at least one

operational implementation of the standard as an EHR system (Austin et al. 2011).

The standard has been used for automated generation of user interfaces (Kohler et

al. 2011) and web applications (Menárguez-Tortosa, Martínez-Costa, and

Fernández-Breis 2011). These use-cases have focused on application

development. Thus, ISO/EN 13606 is used both for data exchange (Nogueira Reis

et al. 2015), (C. Rinner, Wrba, and Duftschmid 2007) and application development.

The close relationship with openEHR and the existence of research and

implementations that address data exchange and persistence, are positive aspects

of ISO/EN 13606 in the context of the research goals of this thesis. However,

ISO/EN 13606 presents a number of problems in the same context, that make it a

less than ideal option for implementation work. Firstly, as with HL7 at the outset of

this thesis project, the use of the ISO standards is governed by rules that are less

liberal than those for openEHR adopters: (Austin et al. 2013) points out that

programmers are forbidden to add details of the standard to an implementation

artefact, due to IP restrictions.

 65

The second and more limiting problem is that ISO/EN 13606 lacks a publicly

accessible and usable, shared implementation technology specification. Such a

specification, for example, is frequently provided in the form of an XML schema,

which enables exchange of well-formed documents between implementations,

providing a lowest common denominator for implementation. Not only does ISO/EN

13606 not provide an XML schema, but, according to (Austin et al. 2013), it cannot

be directly represented in this form, forcing implementers to find workarounds for

developing a suitable XML schema for data exchange.

As a result, implementers that make use of ISO/EN 13606 either develop

their own XSDs or they try to re-use the ones provided by other research groups or

implementers. Even though the problems introduced by differences between such

schemas can be eliminated technically during the integration of systems, this

practice is no better than the inevitable manual process that was required in most

applications based on the still very widely used HL7 V2 messaging standard, which

suffered from a similar lack of rigour and coherence, though for different reasons.

The lack of easily accessible clinical models or a modelling community for

ISO/EN 13606, is also a disadvantage as a candidate for use in this thesis, although

the use of openEHR models, made possible by the significant overlap of the

methodologies, can to some extent alleviate this problem.

Therefore, even though, in principle, it offers many of the advantages of

openEHR , in all aspects the use of ISO/EN 13606 would be less efficient and

straightforward than the use of openEHR, and the end result would be a platform

that could not offer a standard method of integration with other systems, based on

XML.

3.3.3 SNOMED CT

The systematised nomenclature of medicine clinical terms (SNOMED CT) is

a clinical terminology that is maintained by The International Health Terminology

Standards Development Organisation (IHTSDO 2015). The use of a clinical

terminology, in conjunction with an EHR standard, is necessary to express,

independently of human language, the semantics used to record clinical information

and the structure of that information within an EHR implementation.

SNOMED CT provides a framework for expressing concepts and

relationships to define semantics and is used by HL7, ISO/EN 13606 and openEHR

to clarify semantics and improve semantic interoperability. The evolving capability of

 66

SNOMED CT to express complex meanings (Benson 2012) has led to an increasing

overlap between SNOMED CT and EHR standards that make use of it (Martínez-

Costa et al. 2015) (Markwell, Sato, and Cheetham 2008). This thesis does not

address this overlap nor approaches to manage it. SNOMED-CT provides

capabilities to express complex concepts, but these require careful and consistent

use, as do the information modelling capabilities provided by EHR standards, in

order correctly to express meaning (Alan Rector and Iannone 2012).

SNOMED -CT is increasingly in use, internationally (Lee et al. 2014), and

can be used for reasoning about records. Its size and complexity (with more than

300,000 concepts and 1.4 million relationships (Benson 2012)) posed a significant

implementation challenge for its use in this thesis, although an open source

terminology server was used in one of the early experiments. Its importance is

acknowledged and problems that could be alleviated with the use of terminology

support in the experiments reported, are recognized and discussed in the body of

the thesis. A complete integration of SNOMED CT with the models created and

experiments conducted, had to be left out of scope, due to time and resource

constraints.

3.4: Relevant frameworks

Given the breadth of the EHR and CDS integration that this thesis tackles, an

evaluation of all relevant health IT frameworks and standards based on the

implementation driven approach of the thesis, is not possible. However, two

potentially relevant software frameworks were briefly evaluated at the beginning of

the project in late 2008, for an assessment of advantages they might offer in

collaboration with openEHR, or as an alternative to it, especially for ease of

software implementation. Even though these frameworks were not used in the

thesis, their on-going progress has been continuously monitored during the

progress of the project and the writing of the thesis, since they are both based on

information models and helped in identifying trends in EHR implementation.

The two frameworks that were considered are Tolven and openMRS. The

key characteristics of these frameworks in the context of the research goals of this

thesis are summarised below.

 67

• Tolven

The Tolven platform (Tolven Institute 2015b) is built on the HL7 V3 (Beeler

1998, 3) Reference Information Model (RIM) (HL7 2015c) . However, Tolven

extends the standard HL7 RIM with the aim of providing an application

framework. These extensions, the most significant one being Templated RIM

(TRIM) (Tolven Institute 2015a), provide capabilities similar to that of openEHR's

two level modelling approach. Tolven documentation also emphasizes its

attempt to break out of the HL7 message focused approach.

Tolven provides a generic mechanism that processes clinical data in the form

of documents, where documents can contain standards based content as well

as non-standard data. Rules governing these documents are then used to

process content, which is normalised according to the HL7 RIM data types. This

document processing mechanism can be extended via the use of software

plugins, which is the mechanism offered by Tolven for implementing new

functionality. Tolven offers a pre-defined set of clinical content models along with

a web based user interface and other functionality that provides a web based

application for use by health care providers and patients.

 Even though the scope and functionality of Tolven enables its use as a

platform for clinical information systems and CDS (Aziz, Rodriguez, and Chatwin

2014), (Kondylakis et al. 2012), (Welch et al. 2014), a number of issues arise in

the context of the research goals of this thesis.

First of all, Tolven's functionality is an extension of HL7, which, at the time of

starting this PhD project (2008) did not have an intellectual property policy as

liberal as that of openEHR. The HL7 standard only became freely usable in

2012. In comparison, the openEHR Foundation has been offering excellently

documented standards, completely free of charge, since its establishment in

2003.

The other issue associated with Tolven, as far as this thesis is concerned, is

the extension of the HL7 RIM standard with Tolven specific modelling

mechanisms, such as the TRIM. This Tolven specific modelling approach does

not align with the goal of using a platform that is completely based on a global

EHR standard , that was adopted for this project and thesis. Compared with the

very rigorously defined and continuously, internationally, reviewed clinical

models of openEHR, along with freely its available software tooling, the TRIM is

a niche approach with much less widespread adoption and support.

Finally, Tolven's software architecture, based on open source and flexible

components, is designed to be extended via its plugin mechanism and includes

 68

functionality such as user authentication, which is not included in the scope of

this thesis. Its architecture and existing implementation allows fast development

of web based clinical applications, but only a subset of its components and

functionality are relevant for the work of this thesis. Isolating that subset, without

having to deal with ripple effects in terms of code refactoring elsewhere, would

be potentially a very large task, with no guarantee of being able to use Tolven's

existing extension mechanism under these circumstances.

These findings, in addition to there being significantly less published

documentation in comparison with openEHR, led to the early elimination of Tolven

as an experimental implementation platform. However, these finding are specific to

the aims of this thesis and do not imply inferiority of Tolven itself, which is

successfully used for both application development and research.

• OpenMRS

OpenMRS (OpenMRS Inc 2015) is an EHR implementation that is used

extensively in low-resource settings in developing countries (Mohammed-Rajput

et al. 2011). Its goal of enabling EHR functionality in highly demanding

environments where both basic infrastructure and human resource are scarce,

requires that its functionality can be reused and extended with a minimum

amount of effort (Allen et al. 2007).

Therefore, OpenMRS provides a data model and functionality that is

comprehensive and extensible. The data model supports both clinical and

demographic concepts. OpenMRS also offers capability to define and create

user interfaces. Therefore, it can be defined as a self-contained, extensible EHR

implementation and a platform.

The single, most significant disadvantage of OpenMRS as a candidate

platform for the experiments required in this thesis is that its information model is

not directly built on a particular EHR standard. Instead, a flexible information

model is used with consideration of standards such as ICD10 (World Health

Organization 1992) for terminology and HL7 (Fraser et al. 2013) for messaging.

Despite the attention given to use of these standards, some studies have

found the integration of openMRS's data model with capable ontologies such as

SNOMED-CT (IHTSDO 2015) to be problematic (Halland, Britz, and Gerber

2011). Recent research is focusing on adopting standards based APIs for

connecting OpenMRS to other applications, using the relatively new Fast

Healthcare Interoperability Resources (FHIR) (Bender and Sartipi 2013)

 69

standard from HL7 (Kasthurirathne et al. 2015). This design is presented as a

better alternative than OpenMRS's current approach to interoperability with

other systems, which has been described as neither sustainable nor

generalizable (Kasthurirathne et al. 2015) and non-trivial (Waters et al. 2010).

These findings position OpenMRS as a platform that offers benefits for

implementations where there is a need to develop new functionality as quickly

as possible, using a non-standards based internal data model. Even though

these benefits have allowed OpenMRS to be used successfully in clinical care

and research projects such as workflow integration (Yu and Wijesekera 2013),

the lack of a standards based information model limits the usability of the

potential research outcomes as compared to an openEHR based approach.

Despite its shortcomings in the context of the research aims set out in this

thesis, OpenMRS provides significantly better documentation than does Tolven, and

its data model and extension mechanisms allow efficient development of clinical

applications, as proven by its many deployments around the world (Mohammed-

Rajput et al. 2011). Therefore, had it been available in suitably complete form at the

time, and were it to have adopted a less application centric design and focused on

fully standards based information models for EHRs, OpenMRS would have been a

preferable framework, compared with Tolven, for adoption in the project described

in this thesis.

3.5: Summary

The openEHR specifications provide a method for expressing domain

information in a computable way. They go beyond the data bank definition of early

systems, by providing a computable health platform. They also support other

relevant formalisms, such as clinical terminologies.

Artificial Intelligence research in clinical decision support developed formal

representations of clinical domain knowledge earlier than researchers in the EHR

domain. More recently, principally due to greater recognition of the requirements for

semantic interoperability, EHR research has begun to focus on the formal

representation of domain knowledge. This common convergence towards formal

methods of information representation, is the unifying characteristic of both CDS

and EHR, on which new approaches towards better CDS may be formulated.

 70

The features of openEHR make it a modern example of an EHR formalism,

and even though some of the advanced functionality defined in the openEHR

specifications is still not universally implemented, this thesis classifies openEHR as

a mature EHR specification and a good candidate for hosting complex CDS

approaches, due to its strong support for formally defining data. This naturally leads

next to a discussion of the CDS approach adopted, namely Bayesian Networks, in

an openEHR context. The next chapter provides a discussion of the integration of

BNs with openEHR, and the potential benefits of an openEHR based CDS

implementation.

 71

Chapter 4: Bayesian Networks for Clinical Decision
Support and Their Integration with openEHR

A BN is a probabilistic model which belongs to a larger family of models

called Probabilistic Graphical Models (PGM). PGM research in AI has been gaining

traction in the last two decades and outcomes of this research is used for tasks

such as clustering, reasoning, classification and decision-making (Larrañaga and

Moral 2011), (Koller and Friedman 2009). Increasing interest in PGMs in general

and BNs in particular is mainly a result of the availability of significantly more

computing power, removing the necessity for restrictive assumptions imposed by

the more simplistic Bayesian methods deployed in the 60s and 70s.

BNs have some traits that make them convenient and capable decision-

making tools for CDS. Some of these traits bear similarities to model driven

approach of openEHR at a high level, which makes BNs a good candidate for a

CDS mechanisms based on an openEHR implementation. This chapter explains

what BNs are, their promise and their potential relationship to the openEHR

specifications, in the context of computable health and decision support based on it.

The discussion begins with fundamentals of Bayesian methods of handling

uncertainty and extends to more complex settings.

4.1: Bayesian Approach to Uncertainty

Bayes’ theorem, which is at the root of Bayesian statistics, was published

after Thomas Bayes’s death. Richard Price, a friend of Thomas Bayes found an

essay after Bayes had passed away, and he sent it to the Philosophical

Transactions of the Royal Society of London. (Bayes and Richard, 1763)

The mathematical form of Bayes’ theorem is a very simple formula, as follows:

���|�� = 	
���|��. ����

����
	

Equation 1: Bayes’ theorem

Despite this simple form, the effect of the Bayesian approach to probability

has been profound. Bayes’ theorem is actually a restatement of conditional

probability. Equation 1 describes the relationship between two random variables. It

shows that the probability of variable X taking a particular value, given that the value

of random variable Y is known, is proportional to likelihood of Y taking its known

 72

value times prior probability of X’s particular value. Both X and Y can be vectors of

random variables, which lets this form to represent the relationship between multiple

random variables. The interpretation of this simple function has been a major topic

of discussion between statisticians who follow different interpretations of probability.

The dominant school of statistics uses the concept of frequency of a particular event

taking place (the frequentist approach), and Bayesian approach uses one’s belief,

or judgement about the value of a random variable to interpret Bayes’ theorem.

Despite the fundamental difference in interpretation of probability, the literature on

Bayesian approach to statistics usually provides clear explanations of how Bayesian

concepts are related to their frequentist counterparts (Bolstad 2004).

A key advantage of the Bayesian approach to statistics is the ability to map

the inference process to three key components: prior probability, evidence (or

observation), and posterior probability. The posterior probability is a modification of

the prior probability based on the observation. The power of the Bayesian approach

lies in the applicability of this basic idea to a large range of statistical inference

tasks, employing various probability distributions (Gelman et al. 2004). The

applicability of updating the prior probability to posterior through observation can be

extended to more complex settings, without abandoning the fundamental principles.

The complexity of settings in this context refers to both the complexity of domain

concepts and their relationships, and the mathematical methods required to

represent and perform inference on those domain concepts.

Both in the single random variable and vector of random variables (joint

distribution) cases, Bayes’ theorem requires either nested summations (in case of

discrete distributions) or multiple integrals (in case of continuous distributions) for

both normalization constant and posterior distribution. As the number of variables

included in the model increases, the complexity of summations and integrations

lead to analytically intractable calculations.

Numerical approximation methods can be used for handling these

calculations, but their use in high dimensional integrals can be problematic when the

inference task at hand introduces hundreds of variables (Sloan 2000). Sampling

techniques such as Markov Chain Monte Carlo (MCMC) are used as a means of

approximation for these high dimensional integrals (Kloek and Van Dijk 1978).

These techniques make increasing computing power more accessible to Bayesian

methods through various software implementations, such as WinBugs (Lunn et al.

2000) and JAGS (Plummer 2003). The availability of these tools makes sampling

based inference on Bayesian models a common practice today.

 73

As discussed in Chapter 2, Bayesian approach to decision-making has been

a widely used approach in clinical decision support even before the availability of

sampling based inference, despite the lack of capability to handle complex relations

among variables. Therefore, with sampling methods enabling inference on more

complex models, one of the major barriers to adoption of Bayesian inference in CDS

has become less of a challenge.

The following set of examples introduces some simplified clinical decision-

making contexts, demonstrating the use of Bayesian approach before going into

details and discussing improvements achieved with the increasing availability of

computing power. The examples aim to demonstrate the wide applicability of the

Bayesian approach by mapping the fundamental components of Bayesian thinking

to clinical decision-making . In keeping with this goal, the examples are intentionally

kept simple in terms of the underlying probabilistic concepts.

4.2: Bayesian Reasoning in the Clinical Domain

The clinical scenario that is going to be modelled with the Bayesian approach

is a very simple one. In this scenario, there exists a particular disease, with a known

prevalence, and there is a test for the disease. The disease either exists or not, and

the test produces either a positive outcome (meaning that the disease exists) or a

negative one. The test is not a perfect one; it has a certain success rate, so it will

generate either false positives or false negatives sometimes. A rewrite of Equation 1

produces the following equation:

���	
����|��
����� = 	
���������|��������.���������	�

����������

Equation 2: Conditional probability of a disease

In this equation, D represents the disease which may exist, in which case D

has the value true. T is the test, which may produce a positive outcome (for the

existence of the disease), which is expressed with the value true. A representation

of the causal relationship between these clinical concepts is provided in Figure 3.

 What Equation 2 does is to express a clinical scenario using Bayesian

concepts of probability. The prevalence of the disease is the prior probability of the

disease. The test is an observation related to the disease. The probability of the

disease given the test outcome is the posterior probability.

 74

Figure 3: Causal relationship: Disease and Test

As simple as it may be, this example demonstrates some fundamental

aspects of Bayesian approach to clinical decision support:

• It specialises a purely mathematical definition and places it into a clinical

context. The context free variables in Bayes’ theorem in Equation 1 become

variables from the clinical domain.

• It expresses the relation between the disease and the test mathematically

through the assumption of probabilistic dependence between the test and

disease probabilities.

• The fundamental concepts of Bayesian model, prior probability, observation and

posterior probability successfully expresses the clinical scenario

Another example of modelling a clinical scenario with a Bayesian approach

would be linking a set of diseases to possible symptoms, following the naïve Bayes

approach mentioned in Chapter 2, as depicted in Figure 4.

 In Figure 4, the disease variable can take a value from a set of limited

amount of values, such as tuberculosis, cancer, asthma or pneumonia. Each

symptom such as cough, fever, weight loss is given its own random variable in the

model.

This probabilistic model demonstrates the limitations of the naïve Bayesian

approach. The disease variable assigns probabilities to various diseases, so the

diseases are mutually exclusive. Therefore the model cannot support queries such

as “what is the probability of a patient having both asthma and pneumonia?” The

symptoms are also independent of each other, so this is a rather simple view of the

 75

clinical scenario; a clinical condition such as diabetes could cause problems which

themselves could be subject to diagnosis, in which case the existence of these

conditions is not independent of each other.

Disease

Symptom2Symptom1 Symptom3

Figure 4: Causal relationship: multiple variables

 The reasons for the use of this oversimplified approach to modelling

relationships between variables are the computational advantages of this approach

and its classification performance. The good classification performance which has

led to widespread use of this approach is related to the nature of classification

tasks, that is, a correct ranking of the probabilities of outcomes, rather than the

precise probabilities is what matters (Hand and Yu 2001)

Even though it performs well (Hand and Yu 2001), one cannot guarantee

that the assumption of independence can deliver the best performance in all

decision-making tasks. In addition to this, given the large amount of decision-

making settings, both in a diagnosis and prognosis context, classification is not the

only function that a CDS system must support. Therefore, there has been

continuous interest in the research domain for delivering alternatives and extensions

to this simple probabilistic method.

 One such example, a well-established probabilistic method in decision-

making , used for both classification and for estimation of actual values of interest, is

regression. Use of various regression methods is a common approach to decision-

making in medicine (R. A Greenes 2007). Despite the common frequentist

approach, Bayesian methods for regression exist and they allow the use of

Bayesian approach beyond the naïve setting (Gelman et al. 2004).

 76

Bayesian regression methods can help deal with the issues introduced by

the oversimplification of the naïve approach, and they can also extend the

capabilities for decision-making beyond classification. However, their use, especially

the building of the probabilistic model from domain concepts is not as

straightforward as the naïve model. Therefore, they provide a solution to the

representational inaccuracy of the naïve model at the price of less efficient

communication with domain experts.

BNs provide another alternative to the simple model in Figure 4 that can

deal with the issues introduced by independence assumptions, while keeping the

advantage of easily expressing domain concepts and relationships between them.

Therefore, they present a powerful alternative to well established probabilistic

methods for clinical decision-making .

4.3: Bayesian Networks

The building blocks of BN concept has been introduced by the seminal work

of Judea Pearl titled Probabilistic Reasoning in Intelligent Systems (Pearl 1988).

A BN encodes a joint probability distribution using a directed acyclic graph

(DAG). It consists of nodes, representing random variables, and arcs representing

dependency relationships between variables. The expression of dependency

relations via graph representation allows factoring of the joint probability distribution,

which in turn allows efficient inference methods.

This factoring is built on a specific interpretation of the directed arcs that

connect nodes. The directed arcs in a BN represent the dependency relationships of

variables they connect and they are used to derive a key property that follows

dependency relationships: conditional independence (Koller and Friedman 2009).

Conditional independence is a relationship between random variables in which a

random variable is independent of another variable, given that the value of a third

variable is known. It can be generalized to vectors of variables; hence, it is

applicable to the whole of a BN. The precise definition of conditional independence

is as follows:

 Given three random variables X, Y and Z, X and Y are independent, if value

of Z is known, that is:

��|�, �� =
��|��

When the value of Z is not known, X and Y are not independent variables.

 77

A BN allows identification of conditional independence relations among

variables by using methods that exploit information from its graph based

representation. A fundamental concept that helps identify conditional independence

relationships of nodes in a BN is D-Separation (Geiger, Verma, and Pearl 1990). D-

Separation defines a set of rules that allow identification of the independence

relationship of any two nodes of a BN. Algorithms such as Bayes-Ball (Shachter

1998) allow checking the nature of the relationship between nodes using the

definition of D-Separation.

The advantage of a BN is that this key mathematical property, which allows

efficient probabilistic inference by avoiding unnecessary calculations, is encoded in

the graph structure by the domain expert in the form of arcs that connect variables.

Domain information is represented in the form of relations among variables by the

domain expert, but the resulting graph structure encodes key probabilistic properties

without any specific effort for doing so, consequently extending the expressiveness

of the naïve Bayesian approach without giving up on the benefits of easily

expressing domain concepts.

Despite their capability to overcome some of the issues introduced by the

naïve models, BNs have their own limitations. For example, the definition of a BN is

built on a DAG, meaning that the interactions among random variables (nodes) in

the model cannot create directed loops. This topological constraint of BNs

introduces limitations in terms of modelling of clinical concepts such as the inability

to model feedback loops among variables since interactions between variables may

lead to infinite loops of probability updates in response to observation of values of

variables in the model. No calculus has been developed to deal with these loops (F.

V. Jensen 2002) .

Some limitations of BNs can be overcome by relaxing topological constraints

such as the directed, non-cyclic nature of arcs in a DAG or by using continuous

probability distributions as nodes of the BN. These changes introduce new graph

topologies and node types, which are studied in depth in the larger context of PGMs

(Koller and Friedman 2009). These extended representations can reason on more

complex relationships than the ones expressed by DAGs of BNs.

 Due to significant size and scope of the research on PGMs, this thesis limits

its focus to BNs as the inference mechanism for CDS. Other members of the family

of PGMs, are not considered within the scope of this work, but they will be

discussed briefly when the context requires to do so, to draw the boundaries of the

capabilities of BNs and to identify potential future extensions to CDS mechanism

developed in this thesis.

 78

 The existence of extensions to BNs should not be interpreted as a sign of

their failure to handle decision-making in non-trivial scenarios. The underlying joint

probability distribution nature of BNs links them to various significant research

domains such as AI, statistics, computer science and machine learning (Korb and

Nicholson 2003), (Russell and Norvig 2002), (Bishop 2007). Outcomes of research

from these domains have enabled successful use of BNs in many scenarios, CDS

being one of them (Pourret, Naïm, and Marcot 2008).

Therefore, BNs have been chosen as the preferred method of probabilistic CDS

from the family of PGMs for this thesis, based on the fine balance they offer

between inference capability and modelling simplicity.

 The key concepts of BNs that provide this fine balance are discussed next,

along with relevant extensions.

4.4: Key Concepts of Bayesian Networks

The components of a BN can be classified into two groups: qualitative and

quantitative components. The qualitative components are nodes and arcs,

describing the structure of the network. The quantitative components are the

parameters of the probability distributions, which are represented by the nodes. The

qualitative components are frequently referred to as the structure of the network,

while the quantitative components are called as the parameters of the network.

 Figure 5 provides an example network with a sample probability distribution

for random variable RV1. The probability distribution that RV1 belongs to defines

two outcomes: True of False, represented by T and F in the table.

Figure 5: A simple Bayesian Network

 79

In this network, domain concepts are transferred into random variables, and

arcs that connect the variables encode dependency relationships.

The use of nodes and arcs make it easy for a domain expert to build

probabilistic models in a particular domain without substantial knowledge of

probabilistic concepts. However, development of a BN is not a trivial operation that

consists of merely representing expert knowledge as a DAG. It is a complex

knowledge engineering process that requires various tasks to be performed

(Pradhan et al. 1994), (Julia Flores et al. 2011). These tasks can be classified into

two broad groups:

• Tasks related to structure of the network, such as learning the structure from

collected data, which is referred to as structure learning (Buntine 1996), eliciting

structure from domain experts and testing claimed relations among variables

using collected data.

• Tasks related to parameters of the network, such as learning parameters of

probability distributions from data (Neapolitan 2004), which is referred to as

parameter learning, eliciting priors from data or experts or both (Julia Flores et

al. 2011), performing inference based on observation and performing

simulations.

The knowledge engineering process based on these tasks can be a

combination of both human input and algorithmic discovery of network components.

A human expert such as a clinician could easily define the structure of a BN based

on concepts from the medical domain without requiring any clinical data but defining

the parameters of the BN requires assigning values to conditional probabilities: a

task computers perform significantly better than humans via discovering the

parameters from data (Leaper et al. 1972). In case of BNs with a large number of

variables, automatic learning of structure of BNs (Neapolitan 2004), (Koller and

Friedman 2009) can help human experts by providing an initial BN for further

improvement.

 Defining both the structure and parameters of a BN produces a probabilistic

model, which supports inference based on observations of the values of the

probabilistic variables represented by the nodes of the BN. The actual use of BNs

for decision-making is based on this operation.

Inference on a BN is the calculation of updated probabilities of the random

variables of a joint probability distribution in response to an observation. The

observation, also called the evidence, is the observed value of one or more nodes

 80

of the BN and it is used to calculate updated probabilities of the remaining nodes in

the network.

Figure 6 contains an example network, which can be used for clinical

decision-making via performing inference. This network is provided as an example

with the software GENIE (Druzdzel 1999), a freely available tool for developing and

performing inference on BNs. The BN is originally from (Lauritzen and Spiegelhalter

1988).

Figure 6: BN for clinical diagnosis

The arcs in the BN in Figure 6 represent the interactions between variables.

A visit to Asia has an effect on the probability of someone having Tuberculosis,

smoking has an effect on both Lung Cancer and Bronchitis, and so on. Figure 7

shows both the structure and the parameters of the network using GENIE’s support

for displaying BNs in different formats.

Figure 7 shows that the BN is describing a joint probability distribution where

no observation has been performed. In this state, the nodes represent the prior

probabilities of outcomes. When an observation is performed, that is, the value of

one of the variables is observed and therefore known for certain, the other variables

are assigned updated probabilities.

 81

Figure 8 shows new values of random variables updated in response to a

change in the “Smoking” variable. Inference based on this observation updates

probabilities of some variables. This new piece of information, that a person is a

smoker increases the probability of “Lung Cancer”.

Figure 7: BN with node probabilities

Figure 8: BN with an observation

 82

An important point to note in Figure 8 is that the probability of Tuberculosis

has not changed, and neither has Visit To Asia’s. Intuitively, this makes sense.

Finding out that a person smokes should not have any relation to that person’s

recent travel history. The underlying inference method that performs this update is

based on conditional independence. The conditional independence relations

between variables stop the effect of observation of “Smoking” variable’s value from

propagating to Tuberculosis and Visit To Asia.

The Tuberculosis or Lung Cancer is a deterministic node. This node allows

definition of two states, “Nothing” and “CancerOrTuberculosis”. The reason this

node is called deterministic is that its outputs are defined based on rules, which map

values of its parent nodes to its outputs. This node can be thought of a

transformation node on the network, which will generate the value “Nothing” when

both Tuberculosis and Lung Cancer nodes have the value Absent. This rule based

generation of values based on outputs of other nodes allows the BN to express new

semantics which may not have been considered and recorded as a clinical variable

during clinical care. This deterministic node is an example of extending the BN

formalism, which helps the network represent a larger set of domain concepts.

The updating of probabilities (inference) is an important topic in PGM

research in general and BN research in particular. Inference methods for updating

the probabilities of a BN can be classified into two categories as exact inference and

approximate inference. Choosing an inference method for a BN is a case specific

task that requires an awareness of the relative benefits and complications of the

method chosen.

Exact inference in Bayesian networks calculates probabilities without any

loss of precision. Some of the most common exact inference algorithms have their

roots in the method introduced by (Pearl 1986). Pearl’s approach establishes a

method to propagate information within the graph structure of BN, where information

represents the observation of the value of a random variable. The propagation of

this information corresponds to updating other random variables in the network

based on the modelled dependence relationships among the variables. Various

approaches have been developed on this idea of “message propagation” which

updates local probabilities of nodes based on observations (Lepar 1998).

Exact inference methods have constraints related to topology of the graph

and probability distributions of nodes. The network must be a DAG. Some exact

inference algorithms can be used with BNs but they can not be used for some

extensions of BNs that can include continuous probability distributions in their

 83

nodes. This problem can be dealt with approximating continuous distributions via

discrete ones, but in this case the number of intervals chosen for discretization has

an effect on the inference performance of the BN, and the inference is no longer

exact due to discrete approximation.

In exact inference on discrete variables, each variable has a conditional

probability table, including all possible combinations of all parent variables. The BN

in Figure 8 provides an example of this setting. The number of entries in conditional

probability tables is determined by the number of parents of a node as well as the

number of intervals of discrete distributions represented by these nodes. When a

large number of parents and a large number of intervals for discrete distributions

exists simultaneously, the size of the conditional probability tables can grow large.

Inference can become intractable in this setting.

Using an extension of the BN such as conditional Gaussian BNs (Shenoy

2006) may solve this problem. This extension to BNs uses Gaussian distribution to

represent continuous variables and allows discrete and continuous variables to co-

exist subject to some structural limitations such as continuous nodes not being

allowed to have discrete children. This extension allows representing domain

concepts that include continuous variables (such as age, temperature, weight etc.)

without a discretisation based approximation and without losing the capability for

exact inference (Lauritzen and Jensen 2001).

 Even though some extensions of BNs allow use of continuous variables and

support exact inference, these extensions still have their limitations such as using a

Gaussian distribution to represent a continuous variable which may not be realistic

representation for all the variables. Further extensions to BNs may include other

distributions (Moral, Rumí, and Salmerón 2001), (Krauthausen and Hanebeck 2010)

fewer topological constraints (Koller, Lerner, and Angelov 1999), (Schrempf and

Hanebeck 2004) and more compact representations such as decision trees (Su and

Zhang 2005). These extensions increase the expressive power of BNs, but the

resulting joint probability distributions may not allow exact inference anymore. In this

case, approximate inference methods may be used.

Approximate inference methods allow keeping the benefits of more

expressive extensions to BNs without completely losing the capability to perform

inference. Most widely used approximate inference methods in BNs is based on

sampling algorithms such as Gibbs sampling (Pearl 1988), (Neal 1993). Less

frequently used approximation methods also exist, such as variational

approximation (Murphy 1999; Jaakkola and Jordan 1997), but they are not

 84

discussed in depth in this thesis, mostly due to significantly larger amount of

literature and tooling available to sampling methods.

 Sampling methods are built on the idea of drawing samples from the

posterior distribution of the joint probability distribution encoded by the BN and

analysing the characteristics of the posterior distribution based on these samples.

This approach has wide applicability to a large set of calculations (Gilks,

Richardson, and Spiegelhalter 1996), inference in a BN is only one of them.

Approximate inference via sampling can be used for both BNs and their

extensions (Langseth et al. 2009), (Koller and Friedman 2009), (Brewer, Aitken, and

Talbot 1996). Generic sampling tools such as WinBUGS (Lunn et al. 2000) and

JAGS (Plummer 2003) provide the capability to define graphical models using a

number of probability distributions for the nodes. These tools support a domain

specific language to build a probabilistic model along with features for analysis of

the sampled data and visualisation of graphical models.

The generic approach of these sampling frameworks for graphical models

bears a resemblance to openEHR’s approach for building clinical models. A number

of probability distributions can be brought together in a graphical model in an infinite

number of combinations to model domain concepts and relationships between

them.

It should be noted that despite its flexibility, these sampling frameworks still

have their limitations. They allow the use of a pre-defined set of distributions, which

can be used to build graphical models, including BNs, within the capabilities of the

domain specific languages they support. These constraints attempt to guarantee

that the sampling operation can be performed, though sampling methods may not

always converge to stable results. The limitations of these sampling frameworks is

not mathematical; they can be extended with the outcomes of research (Wabersich

and Vandekerckhove 2013). The current approach of these tools is to set a good

balance between rather stable results from sampling based on a set of probability

distributions and the ways they can be used together in a graphical model to

express a decision-making context, i.e. their expressiveness.

 Therefore, even though the currently available, well known tools do not

support all extensions of BNs, this limitation can be overcome via custom

implementations of more advanced approaches or extensions to existing tools for

both modelling and inference. These improvements constitute an important line of

future research for better CDS beyond the current scope of this thesis. Such future

research can be built on outcomes of numerous studies that improve on the existing

methods adopted by the current tools.

 85

Studies that focus on a large variety of topics such as improving the

performance of sampling when unlikely evidence is encountered (J. Cheng and

Druzdzel 2000), (Yuan and Druzdzel 2003), improving performance of discretisation

(Kozlov and Koller 1997), (Di Tomaso and Baldwin 2008), improving sampling

performance for very large BNs (C. S. Jensen and Kong) and parallel inference

(Vasanth Krishna Namasivayam, Pathak, and Prasanna) are all examples of

research that can be used to improve a BN based CDS approach.

The family of PGMs and computation tools stemming from BNs and leading

to these potential future extensions spans a vast domain for research. This thesis

identifies the basic, yet powerful definition of BNs as introduced by (Pearl 1988) as

the central point of this domain as well as a knowledge engineering methodology (E.

H Shortliffe, Buchanan, and Feigenbaum 1979) that can be extended to more

complex and capable representations and inference methods depending on the

decision-making or prediction tasks at hand. BNs allow the same principles of

knowledge engineering to be used in many scenarios with multiple options for

adjusting the balance between the expressiveness of the domain model and the

performance and accuracy of inference. However, BNs have not been identified as

the CDS mechanism for this thesis based on these advantages alone. The findings

related to overall advantages of BNs is complemented by a rather specific appraisal

based on a review of the uses of BNs in medicine, as provided in the next section

4.5: Bayesian Networks in Medicine

The integration of BNs into the domain of medicine through medical

informatics creates a context in which many variables from different disciplines

interact. Different types of clinical data and processes from medicine, as well as

many components of information technology and concepts of BNs and their

extensions are all connected in such a context.

This large and complex set of relations makes it impossible to suggest that

BNs can improve outcomes in every single CDS scenario over alternative methods.

However, a review of existing studies that explore the use of BNs in various settings

in medicine would help evaluate their performance and potential as a generic,

widely applicable knowledge engineering and inference framework for CDS. To this

end, a literature review was performed using the facilities provided by

www.sciencedirect.com. The search facility of this research repository returned

6423 articles in response to the search phrase “Bayesian networks clinical” (in “all

fields” field in the search form).

 86

A set of studies relevant to decision-making based on BNs in medicine has

been identified through a detailed evaluation of the first 250 members of this result

set, along with 308 results returned from the same search performed for the

publication “Artificial Intelligence In Medicine”. These studies cover BNs as well as

their various extensions from the family of PGMs. The review has been performed

with the goal of answering the following questions:

• Do BNs provide a clinical modelling formalism that allows clinicians to define

domain concepts in a large number of clinical domains?

• Do BNs help domain experts define clinical scenarios without having to deal with

the underlying mathematical models? How expressive BNs are for describing

the various components of clinical decision-making ?

• Can BNs provide feedback about the reasoning process so that clinicians can

interpret the outcomes?

• Can BNs perform inference at least as well as the more established methods of

probabilistic modelling in CDS domain?

These questions address the critical requirements for using probabilistic

methods in CDS, and positive answers to them, provided by the findings of existing

studies, provide evidence for the feasibility of using BNs for CDS. The following

sections provide the findings of the review, performed mainly with a focus on

answering the questions above, treating mathematical and computational aspects of

the studies to be of secondary concerns.

4.5.1: Bayesian Networks as CDS Models

openEHR’s capability to model concepts from a multitude of clinical domains

requires that, for a CDS framework to be consistently integrated to openEHR, it

must also be able to represent these concepts. Therefore, a BN based CDS

approach must be applicable across different clinical domains to support openEHR

integration.

An evaluation of the boundaries of the expressiveness of BNs for all CDS

scenarios would not be feasible for this thesis. However, successful use of BNs in a

variety of clinical decision-making scenarios from different clinical domains indicate

sufficient expressiveness. The review shows that BNs are used in a variety of

clinical domains, in scenarios such as choosing antibiotics for treating severe

infections (Andreassen et al. 1999), modelling clinical performance of pancreatic

cancer patients (Hayward et al. 2010), diabetes monitoring (Riva and Bellazzi

 87

1996), insulin therapy management (Andreassen 1992), diagnosing the stage of

oesophageal cancer (van der Gaag et al. 2002) and diagnosis of pneumonia cases

in ICU (Lucas et al. 2000).

 Further uses of BNs include diagnosing heart problems (Long, Fraser, and

Naimi 1997) and nasopharyngeal cancer (Galán et al. 2002), analysis of adverse

drug reactions (Cowell et al. 1991), estimating survival in malignant skin melanoma

(Sierra and Larrañaga 1998), neuromuscular diagnosis (Xiang et al. 1993), ovarian

tumour classification (Antal et al. 2003), (Antal et al. 2004), analysis of tuberculosis

epidemiology (Getoor et al. 2004), diagnosing pyloric stenosis (Alvarez, Poelstra,

and Burd 2006), classifying SPECT images (Sacha, Goodenday, and Cios 2002),

predicting blood glucose concentration (Ramoni et al. 1995), diagnosis of breast

cancer (Kahn Jr et al. 1997), analysis of dynamics of organ failure in intensive care

unit (Peelen et al. 2010) and monitoring laboratory errors (Doctor and Strylewicz

2010).

Even this small scale literature review shows that BN approach to CDS can

address clinical scenarios with considerable variety of concepts from domains such

as cardiology (Díez et al. 1997), (Verduijn et al. 2007), psychiatry (Chevrolat et al.

1998), neurology (R. Chen et al. 2012), ophthalmology (Tucker et al. 2005), urology

(Montironi et al. 1996), (Montironi et al. 2002) and oncology (X.-H. Wang et al.

1999), (Smith et al. 2009).

Based on the substantial variety of both the clinical cases and the clinical

domains these cases belong to, the expressiveness of BNs as a CDS modelling

formalism, using their extensions when necessary, is deemed sufficient for

expressing CDS concepts for the diverse set of clinical applications that can be

developed based on openEHR.

However, this sufficiency does not necessarily imply that BNs provide an

easy to use knowledge elicitation tool. The degree of convenience with which this

expressiveness can be put to use for building CDS models must be assessed.

4.5.2: Communication with Domain Experts

A significant difficulty of the probabilistic approach to CDS is that the

underlying mechanism for inference has a highly abstract nature. The use of

statistical terms for expressing relationships between clinical concepts is not a

convenient language for extracting knowledge from domain experts. The graph

based representation of BNs can improve the efficiency of this process.

 88

The studies that discuss the use of input from domain experts for defining

the structure of BNs partially support this claim while pointing at potential challenges

of the process.

Clinicians can use the graph based representation of BNs to encode domain

concepts and their relationships with the help of a knowledge engineer, who

explains the options available to them in terms of relationships between BN nodes

and defining clinical concepts (Onisko 2003)

The advantages of this approach for building an expert system is described

as follows by (Gappa, Puppe, and Schewe 1993):

“The most important precondition for knowledge acquisition systems by experts is
that the underlying model is sufficiently tailored to the domain and/or its problem
solving strategy, so that the expert can easily get acquainted to it. For this, well-
chosen graphical knowledge representations can greatly support the
understandability of the knowledge model and thus the model building of the
expert.”

The emphasis of (Gappa, Puppe, and Schewe 1993) on the importance of

predefined concepts for a knowledge model bears resemblance to the approach

adopted by openEHR:

“The usefulness and efficiency of a knowledge acquisition tool crucially depends on
the adequacy of the predefined concepts of its underlying knowledge model and
therefore it is important to ask which of the concepts may not be that easy to
understand and thus are hardly or not at all instantiated.”

 Attempts to improve the process for defining the structure of graphical

models include automated interviews (Luciani and Stefanini 2012) and joining

human input with automated learning of structure from data in a knowledge

engineering workflow (Julia Flores et al. 2011).

 The availability of software tools such as HUGIN (Andersen et al. 1989),

WinBUGS (Lunn et al. 2000) and SMILE (Druzdzel 1999),which help follow these

knowledge engineering practices, support the claim that BNs present a valid

knowledge representation option for automated reasoning (Long 2001).

 The similarities and relationships between BNs along with their extensions

and some well-established knowledge engineering methods such as OWL, Web

Ontology Language (McGuinness and Van Harmelen 2004), is both an opportunity

to improve current BN implementations and a probable topic for future research. For

example, using existing ontologies for network construction (Fenz 2012) allows

previously encoded knowledge to be used, which is a method suggested more than

20 years ago (Gappa, Puppe, and Schewe 1993).

 89

Expert input from clinicians or the use of domain ontologies can lead to

requirements that cannot be expressed with a BN that is based on the fundamental

definition of (Pearl 1988) which has limitations in terms of both network topology

and probability distributions that can be expressed as network nodes.

Therefore, some concepts such as temporal aspects of a clinical case or

making decisions based on the results of inference require capabilities beyond the

fundamental definition of BNs used by this thesis.

 Temporal aspects of a clinical case are implicitly included in prognostic

decision-making scenarios. These aspects may be evident, such as in the case of

estimating the value of a clinical variable given a fixed length of time, for example in

estimating reoccurrence of cancer in a five year period (Gevaert et al. 2006). These

inference tasks can be performed without any explicit representation of temporal

aspects. Inference requirements with more complex temporal aspects are

represented by Dynamic Bayesian Networks (Murphy 2002).

The review has identified uses of BNs that address temporal aspects of

diagnosis or prognosis for tasks such as blood glucose time series analysis (Riva

and Bellazzi 1996), pneumonia treatment at the intensive care unit (Lucas et al.

2000), reasoning about cardiovascular disorders with temporal relations (Long,

Fraser, and Naimi 1997), modelling the spread of cancer (Galán et al. 2002), and

analysis of organ failures (Peelen et al. 2010) and ventilator-associated pneumonia

(Charitos et al. 2009) in the intensive care unit.

 The availability of studies that use BNs for knowledge engineering,

complemented by the possibility of using existing knowledge encoded in other forms

makes BNs a viable option for user friendly development of CDS models. The

studies show that BNs can model many key components of the decision-making

context using the same consistent representation.

4.5.3: Explaining the Reasoning Process

Understanding the reasoning used by the CDS mechanism is a crucial

advantage for a clinician. No matter how successful a particular CDS approach is, a

black box implementation makes it impossible for a clinician to follow the reasoning

process. Including feedback from such a system in the care process becomes

particularly problematic if the feedback conflicts with the clinician’s opinion.

Rule based approaches to CDS make it easy to deal with this potential

problem by providing access to rules that were used in inference. For probabilistic

approaches, the mechanics of providing this functionality is more complicated due

 90

to underlying probabilistic reasoning mechanism. Despite this relative difficulty,

explanation of reasoning in BNs has been an active field of research.

 Capabilities such as explaining the reasoning of a BN (Haddawy, Jacobson,

and Kahn Jr. 1997),(Elvira 2002),(C. Lacave and Díez 2002),(C. Lacave, Luque,

and Díez 2007),(Carmen Lacave, Oniśko, and Díez 2006) , generating verbal

explanations from BNs (Druzdzel 1996), and graphical explanation of reasoning

(Madigan, Mosurski, and Almond 1997) allows clinicians to follow reasoning

process.

Despite the availability of explanation methods for BNs, bridging the gap

between the mathematical reasoning and clinical explanations is not as easy as rule

based systems, especially when approximate inference methods are used.

4.5.4: Inference Performance of Bayesian Networks

 Even though this thesis places a strong emphasis on high-level, graphical

representation capabilities of BNs and the advantages they provide over other

probabilistic methods, these traits of BNs alone are not sufficient to suggest that

they perform better than the alternatives for classification or prediction tasks.

Therefore, BNs should provide performance at least on par with well established

probabilistic methods for these tasks. Evidence of such performance complements

other advantages of BNs, making them a good overall option for CDS.

Studies that compare well established probabilistic methods such as logistic

regression with BNs usually report similar performance for classification and

prediction tasks. One such example is the prediction of clinical performance of

pancreatic cancer patients (Hayward et al. 2010) in which BNs perform better in

various predictive tasks compared to logistic and linear regression, with the

exception of predicting tumour size. BNs are considered as a successful

replacement for certainty factors (Heckerman and Shortliffe 1992) as well as an

improvement over naïve Bayesian model (Sakellaropoulos and Nikiforidis 2000)

based on more precise definition of dependencies between variables.

4.5.5: Summary of Findings

 The findings of the literature review show a level of use of BNs that

sufficiently support their capability to address various requirements of a widely

applicable CDS framework. However, the integration between the underlying

sources of clinical data and BNs is not the focus of these studies. Consequently, the

formal representation of domain concepts in information systems is not included in

 91

the scope of BN based CDS research, arguably with the exception of using OWL

(McGuinness and Van Harmelen 2004), which provides a formal representation of

domain concepts.

BN based CDS in an openEHR context introduces a new approach, which

formalises the data access aspect of BN implementation that is of secondary

importance to these studies. In this new approach, openEHR specifications provide

a well defined set of capabilities and services for computable health across multiple

systems by generalising underlying data sources to an openEHR representation as

discussed in the following section.

4.6: Integrating openEHR Methodology with Bayesian
Networks

The expected benefit of introducing openEHR as the underlying clinical data

representation for BN modelling and implementation is a significant contribution to

the solution of the isolation problem outlined in Section 2.2. The benefits of high

level representation of domain concepts provided by both openEHR and BN are

similar. Both approaches allow complex operations to be performed on domain

concepts based on this representation. The particulars of this similarity are the basis

of a logical architecture for their integration.

 A major barrier to developing better clinical information systems is the

incomplete or incorrect representation of requirements. Clinicians mostly provide

software requirements in their own terms through analysts and developers.

Requirements are transformed into software by developers, and individual

developers may understand the same requirements in different ways. As a result,

the quality of the representation of domain concepts in software is dependent on the

level of understanding of the domain the developers possess. As the domain gets

more complicated, precisely expressing domain concepts in software becomes

harder, leading to less accurate representations. Clinicians can only indirectly

influence the content and behaviour of information systems through developers,

since only developers are capable of creating computable concepts.

openEHR allows domain experts to create computable models based on

clinical concepts as explained in Section 3.1. Therefore, clinicians drive the clinical

information system development process through domain models without going into

details of the software development domain. This approach eliminates the

inaccuracy that stems from the rather traditional software requirement analysis

practices.

 92

BNs provide a similar improvement for building probabilistic models, allowing

domain experts to define the statistical representation of domain concepts without

tackling complex probabilistic terms such as joint probability distributions or

conditional independence. Furthermore, it is possible to use a combination of a

small number of probability distributions to represent an arbitrary number of domain

concepts, similar to openEHR’s reference model. Therefore, both approaches allow

clinicians to extend their control to non-clinical domains based on similar principles.

 An important research question that originates from this observation is

therefore to what extent these similarities could support an integration between

openEHR specifications and BN based CDS. Two primary software

implementations are required in order to answer this question via the experimental

approach adopted by this thesis: an implementation of the openEHR specifications

sufficient for the chosen scope, and an implementation of a BN based inference

engine. The relationships between these two software components are first

identified and discussed based on a logical architecture, partial implementation of

which is used as the basis of hands on experiments.

4.7 Logical Architecture for openEHR and Bayesian Networks
Integration

The purpose of the logical architecture for openEHR and BN integration is to

identify the nature of the relationships between the components of the integration.

These relationships define how key features of both openEHR methodology for

clinical application development and BN based CDS can be connected.

Consequently, they provide the architectural guidelines for actual software

development to achieve this integration. However, these guidelines still require an

appraisal for feasibility of implementation. A relationship defined in the logical

architecture may suffer from performance problems or laborious efforts such as

large scale data mapping tasks. Therefore, testing the assumptions of the logical

architecture through software implementation is the method of appraisal adopted in

this thesis as discussed in Chapters 5, 6 and 9.

 Studies that discuss the use of CDS to improve clinical care frequently refer

to EHR implementations as the platform that hosts CDS functionality. (Kuperman et

al. 2007), (Bates and Gawande 2003), (Kalra and Ingram 2006). EHR specifications

and information systems based on them provide an answer to a well-known problem

in the decision support domain: access to data.

 93

 The integration of computer interpretable guidelines to HL7 Reference

Information Model (Beeler 1998, 7) in (Peleg et al. 2001) provides a healthcare

specific example of standards based data access based on GLIF (Boxwala et al.

2004), similar to use of Arden Syntax for development of a data and query model

(Jenders, Corman, and Dasgupta 2003). These studies show that the integration

between CDS and EHR concepts has problems such as incompatibilities between

the HL7 RIM and Arden syntax (Peleg et al. 2001). Developing solutions for

impedance mismatch of EHR systems and computerised guidelines have been

suggested as a method of overcoming these integration problems (Schadow,

Russler, and McDonald 2001). The problems identified by these HL7 focused

studies show that computability of EHR and CDS concepts do not guarantee a

problem free integration.

 The logical architecture is the starting point of an analysis similar to these

studies, with three goals:

• To introduce probabilistic AI based decision support into openEHR

• To identify problems in the process

• To develop and offer solutions to identified problems

Figure 9 provides the main components of the logical architecture.

openEHR

Specifications

Bayesian

Network

Definitions

openEHR

Implementations

Bayesian Network

Implementations

1

2
3

4

5

Abstract

Components

Concrete

Components

Figure 9: Logical architecture for openEHR – Bayesian Network integration

 94

The elements of the diagram in Figure 9 provide components of openEHR

and BN implementations. The components are classified into two groups as abstract

and concrete.

 openEHR specifications and BN definitions are the abstract components

which are independent of implementation aspects such as programming languages

or algorithms for exact or approximate inference. These components support a

knowledge engineering approach by allowing domain experts define domain

concepts.

Concrete components represent the various software implementations of

both openEHR specifications and BN definitions. Numbered connections in the

logical architecture in Figure 9 represent possible relationships in the context of

integration. The following is a discussion of these relationships, describing the

scope of research and implementation implied by them, referring to connection

numbers in the logical architecture.

1) Integrating openEHR’s modelling approach with Bayesian Network

Definitions

openEHR’s domain models and their underlying formalism can support

the implementation of multiple aspects of an information system. Various

openEHR implementations already use the openEHR archetypes (Beale and

Heard 2007a) for a number of implementation tasks such as data validation

and persistence or user interface generation. Reusing openEHR archetypes

as a repository of clinical domain concepts extends the use of openEHR

models to CDS development and has the potential to improve the

construction of BNs , allowing clinicians to identify domain concepts easily.

2) Implementation of the openEHR specifications

An actual implementation of openEHR specifications is required to

observe both the benefits of openEHR methodology and its problems in the

context of clinical information systems implementation and CDS integration.

Aspects of implementation such as data access performance and scalability,

which are affected by the underlying architecture and technology platform,

must be observed as well since they are at least partial determinants of

performance in every operation on openEHR data. Therefore, a testbed is

crucial for an in depth analysis of both the openEHR methodology and

aspects of its implementation in a CDS context.

 95

3) Bayesian Network implementation

The efficacy of the integration between openEHR specifications and BN

based CDS cannot be observed without a BN implementation. Similar to

openEHR methodology, a domain concept can be represented in multiple

ways using BNs. Inference on a BN can be performed via different

algorithms, as discussed in Section 4.3, and these algorithms can be

implemented using a number of platforms. Even though the availability of

various options for BN implementations is acknowledged in the logical

architecture, time limit for this thesis allows only a subset of these options to

be used through freely available and open source tools. However, both

comparing the performance of different inference algorithms as well as

exploring the scalability of these algorithms, especially through parallelisation

(Vasanth Krishna Namasivayam, Pathak, and Prasanna), (X.-L. Wu et al.

2012), (Neiswanger, Wang, and Xing 2013) are key future research topics

identified by the logical architecture.

4) Integrating Bayesian Network implementations with openEHR

implementations

The integration described by the logical architecture defines openEHR

implementations as the source of clinical data. Since BN implementations

need to access clinical data for inference, methods of data access for this

specific goal must be developed. Accessing clinical data for purposes such

as learning the parameters of a network is a significantly different scenario

from an openEHR implementation point of view than patient centric data

access, which is the case for clinical information systems built on openEHR.

The difference is due to increase in the volume of data that is used in the

former case. Technology independent, widely applicable methods for large

volume data access for openEHR implementations need to be developed

considering the fact that both ends of the relationship in the logical

architecture can be built on different technologies. The transformations from

the object oriented (Meyer 1988) openEHR data types to rather primitive

data types required by BN inference algorithms are also a key part of this

relationship. The findings of research focusing on this relationship have the

potential to introduce changes and additions to openEHR specifications for

large scale clinical data processing.

 96

5) Integrating openEHR implementations with Bayesian network definitions

openEHR implementations, which provide access to clinical data,

complement openEHR clinical models for defining BNs by contributing to

both structure and parameter learning.

 Automated structure learning algorithms, which make use of clinical data

that is provided by openEHR implementations, can create BNs with an initial

set of variables and relationships, which can be improved upon by the

domain experts. Especially when the number of clinical variables is large,

this initial network can shorten structure definition process.

If the BN structure is specified with full or partial domain expert input, the

clinical data can be used to validate the dependency relationships asserted

by the structure, or to discover additional, unspecified ones.

The parameters of a BN can be learned from previously collected data,

based on the BN structure. This approach enables domain experts to define

outcomes for clinical variables of interest, without having to specify

probabilities of these outcomes, i.e. the parameters of the network.

4.8: Summary

Bayesian approach to handling uncertainty has improved significantly from

the days of naïve Bayesian classifiers. Due to increased processing power, more

advanced methods, such as BNs have matured to the point of being a reliable

option for many clinical decision-making tasks. The research about probabilistic

graphical models, with BNs being the dominant type of model, has delivered

satisfactory and promising outcomes in many clinical domains.

Based on the suggestion that openEHR is a mature, modern representative

of the EHR concept, the integration of openEHR and BNs for CDS is chosen as the

focus of this thesis, with the goal of exploring the sufficiency of EHR concepts in

supporting better CDS via this integration.

The suggested method of research is a set of experiments performed on a

testbed, which is an implementation of a logical architecture for integration of

openEHR and BN concepts both at the specification and implementation levels. The

results of the experiments form the basis of a software architecture for openEHR

implementation as well as suggestions for changes and additions to openEHR

specifications to support BN based CDS.

 97

To identify how the use of the openEHR approach to modelling and

processing clinical data affects BN based CDS implementation process, an isolated,

rather basic BN has been developed and used for classification initially. The

discussion of this scenario provided in the next chapter aims to identify

characteristics of the BN approach without an underlying openEHR platform. How

these characteristics change in the context of openEHR integration is analysed in

depth in the chapters that follow after.

 98

Chapter 5: A Pilot Bayesian Network Implementation
Experiment Using Thyroid Disease Data

The BN approach to managing uncertainty provides multiple options for

building domain models and inference on them. This chapter examines the process

of developing and using a BN. There is no assumption of clinical information system

integration and clinical data is provided in the form of a flat text file.

 The BN is designed as a classifier which uses clinical data of patients with

thyroid problems. Well known software tools for BNs are used, to achieve reliable

results and to complete experiments in an acceptable time frame. The primary focus

of the experiment is on issues such as data quality and problems and barriers

related to it, what modelling and inference options are available given the domain

concepts, and what are the advantages and disadvantages of these options. The

actual classification performance of the BNs is of secondary importance.

5.1 The Setting of the Experiment

The BN approach is used for diagnosis of thyroid disorders. This clinical

domain was selected based on the availability of clinical data from the UCI machine

learning repository (Blake and Merz 1998) which provides access to various data

sets. The experiment develops a BN with discrete conditional probability tables.

Steps for building the network such as pre-processing of data, learning their

structures and parameters were performed. The BN was then used for classification

to diagnose thyroid disorders.

5.2 Processing the Raw Data

The thyroid data that was used in the experiment had data quality problems

such as outliers and missing observations. These problems were identified via an

analysis of data using the open source WEKA machine learning workbench (Hall et

al. 2009). WEKA was used to remove the data instances with one or more missing

values for clinical variables used in the BN, resulting in a data set of 5635 rows.

After missing values were removed, the data set was processed with open source

statistical language and framework: R (R Development Core Team 2008) to remove

outliers. The final step in processing raw data was transforming the diagnosis

outcomes to consistent values using features of freely available text editors.

 99

The pre-processing phase of thyroid data consisted of typical examples of

the trivial, yet time consuming tasks that are frequently performed when data

exported from multiple sources needs to be analysed. Even though there were

many freely available tools such as WEKA or R, the process was time consuming,

and sometimes required dealing with the data interoperability problems introduced

by the tools themselves, such as different interpretations of structure of data in

comma separated files.

 The efforts required to pre-process data even in this small scale experiment

demonstrated the advantages of standards driven clinical information systems

approaches, which can significantly decrease the pre-processing time required for

data analysis by allowing automatic data integration from multiple sources in

addition to performing data validation during data entry.

5.3 Learning the Network Structure

 The relationships between thyroid disorder related concepts for the BN were

first learned via automatic structure learning, followed by manual modifications. The

structure of the BN was learned via GENIE (Druzdzel 1999), a freely available BN

development and inference environment. GENIE’s built in discretisation algorithm

was used on continuous variables prior to learning the network structure. The

following variables from the data set, identified via a limited literature review for

thyroid disorders, were used as the nodes of the BN:

• Age: The age of the patient

• T4(thyroxine): The measurement of the major thyroid hormone secreted by the

thyroid gland

• T3(triiodothyronine): The measurement of the T3 hormone, which is the result of

the conversion of T4.

• FTI(free T4 index): The form of T4 in the blood, which can exert effects on target

tissues.

• T4U: Thyroxine resine uptake test results

• Diagnosis: The diagnosis in the data set.

Learning the structure of the BN using the PC algorithm (Spirtes, Glymour,

and Scheines 2000) implementation in GENIE with gradually increasing amounts of

data shows how the performance of structure learning benefits from more data.

The automatically learned BN structure in Figure 10, based on a data set of

1000 elements, connects all predictor variables to the response variable

 100

(DIAGNOSIS). The connections from predictor variables to response variable are

directional, and the direction of the connections is correct. However, the structure in

Figure 10 has bidirectional connections between predictor variables in addition to

the non directional connection between T3 and FTI nodes.

Figure 10: BN structure, learned from 1000 observations

The BN structure in Figure 11 was produced by increasing data set size to

5000 elements. This BN has no bidirectional arrows, showing that the nature of the

relationships between domain concepts was learned more precisely. The undirected

connections between predictor variables and response variable still exist, and the

network is still not a directed acyclic graph.

 GENIE’s support for providing background information during structure

learning allows expert input to be used alongside the relationships discovered from

data. This feature was used to provide the background information in Figure 12 to

the structure learning algorithm, along with the previously used data set with 5000

elements.

The background information in Figure 12 was used to express the

relationship between the predictor variables and the outcome variable at a basic

level, and led to the BN structure in Figure 13.

 101

Figure 11: BN structure, learned from 5000 observations

Figure 12: Background information for BN structure

 102

Figure 13: BN structure, learned with background information and 5000 observations

Other than the three undirected connections, the BN in Figure 13 has no

problems in terms of required directed acyclic graph structure for inference. By

deleting these undirected connections, the structure of the BN in Figure 14 was

obtained.

Figure 14: BN structure used in the experiment

 103

The structure of the BN in Figure 14 does not necessarily reflect the precise

relationships between domain concepts, especially for the connections between

predictor variables. However, the process which results in this structure shows how

both human input and clinical data can be used together to model a clinical

decision-making context.

5.4 Learning the Network Parameters

The parameters of the BN were learned completely from data using the

Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977)

implementation in GENIE. Only 1000 of the 5635 records in the dataset were used

for parameter learning to avoid overfitting the data. The operation took less than 2

seconds on an Intel Core2 Duo based system (3.33 GHZ), running Windows XP

resulting with the BN in Figure 15.

Figure 15: The distributions of nodes, learned via EM

The probability distributions defined by the nodes of the BN in Figure 15 (i.e.

parameters of the network) assign zero to conditional probabilities of some

combinations of outcomes of events that are represented by the nodes, which is a

problem that stems from insufficient number of observations for these outcomes

 104

(the 0% frequencies in Figure 15 do not represent these conditional probabilities,

they are actually values close to 0, rounded down for compact display of nodes

only). Even though the EM algorithm can deal with missing observations to an

extent, some of the conditional probabilities end up with zero assigned to them,

effectively describing these outcomes as impossible. This problem can be dealt with

in various ways, such as changing the discretisation parameters so that extremely

rare events do not end up as individual outcomes but instead they are categorised

under outcomes with higher probabilities. However, this approach leads to less

precise approximations to continuous distributions and in some cases in which the

rare outcome must be specifically included in the model, it may not be an option at

all.

Availability of more data can solve this problem by allowing the EM algorithm

to assign non-zero probabilities to rare outcomes using more observations that

include these outcomes.

 Despite these problems, due to there being insufficient observations for

some outcomes, the advantages of learning parameters from the data are evident.

A large number of conditional probabilities would have to be specified by a domain

expert even for the rather small BN in Figure 15. Not only would the expert have

had to provide these conditional probabilities, but the resulting distributions would

have had to comply with the basic rules of probability, such as requiring conditional

probabilities of outcomes of events to sum to correct values.

5.5: Performing Inference on Bayesian Network

 The following experiment used the clustering algorithm of (Lauritzen and

Spiegelhalter 1988), which is an exact inference algorithm, to perform classification

on the 4635 instances of the data set that were not used for parameter learning.

Each instance was used to set the values of predictor variables of the BN, which

were then used to predict the diagnosis node probabilities. These updated

probabilities for the diagnosis node were used to select the classification outcome,

which corresponds to the diagnosis outcome with the highest probability, after the

update. This outcome was compared with the actual diagnosis as recorded in the

data instance, to determine if the predicted diagnosis as correct. These operations

were performed using a Java wrapper around the SMILE (Druzdzel 1999) library,

which is the underlying library used by GENIE.

 The inference process used with the test set failed for 41 of the 4636 data

instances, due to the SMILE library attempting to process impossible observations.

 105

These observations were deemed impossible due to their probabilities having the

value 0 in the BN. These problematic data instances were subsequently excluded

from the analysis of the inference results. However, they show that problematic

parameters in a BN may lead to an inability to process real patient data. This

behaviour may cause problems when patient data for patients with rarely

encountered conditions is being processed.

The overall classification performance of the BN is provided in Table 1. The

BN predicted the correct diagnosis in 77% of cases. Table 2 provides further details

of the test results.

Correctly classified

instances:

Incorrectly classified

instances:

Total

3541 1054 4595

Table 1: Classifier performance

Number of healthy instances 3424

Number of unhealthy instances 1171

Correct prediction for unhealthy

instances

147

Incorrect prediction for unhealthy

instances

1024

Breakdown of incorrect prediction for

unhealthy instances: found healthy when

not

984

Breakdown for incorrect prediction for

unhealthy instances: found the wrong

disease

40

Incorrect prediction for healthy

instances

30

Correct prediction for healthy

instances

3394

Table 2: Detailed breakdown of classification results

 A potential approach for improving the classifier performance, given that

3.9% (40/1024) of the classification errors is due to misclassification of a thyroid

disorder, is to produce a binary output from the classifier as healthy or not healthy,

leaving further evaluation of the findings to the clinician who uses the CDS system.

 106

 The classification performance of the BN can also be defined in terms of

Sensitivity and Specificity (Loong 2003), which are used to assess accuracy of

clinical tests (Parikh et al. 2008), (Lalkhen and McCluskey 2008).

The definitions of Sensitivity and Specificity in a clinical decision-making context,

along with the terms these definitions are based on, are as follows:

• True positive: A test outcome that correctly diagnoses a condition

• False positive: A test outcome that incorrectly diagnoses a condition when the

condition does not exist.

• True negative: A test outcome that correctly finds that a condition does not exist.

• False negative: A test outcome that incorrectly finds that a condition does not

exist when the condition exists.

• Specificity: number of true negatives / (number of true negatives + number of

false positives)

• Sensitivity: number of true positives / (number of true positives + number of false

negatives)

 Healthy (real) Unhealthy(real)

Healthy(predicted) Tn: 3394 Fn: 984

Unhealthy(predicted) Fp: 30 Tp:187

Total: 3424 1171

Table 3: Classifier performance

The sensitivity and specificity values for the BN classifier, based on the

classification of test outcomes in Table 3 is as follows:

Specificity: 3394 / (3394 + 30) = 0.99

Sensitivity: 187 / (187 + 984) = 0.15

The high specificity of a test means that it performs well in identifying lack of

a condition. Therefore, a positive outcome from such test would rule in a condition.

The high sensitivity of a test means that it performs well in identifying the presence

of a condition. Therefore, a negative outcome from such a test would rule out a

condition. Based on these definitions, the outcome of the experiment is a BN that

could be used by a clinician to rule in a condition.

Evaluating the performance of the BN based on sensitivity and specificity

characteristics, is a more informative definition of its properties than simply

providing the overall classification performance with the test data set.

 107

5.6 Summary

Despite its limited scope and depth, the experimental development of a BN

for thyroid disorder diagnosis has helped to identify key characteristics of the BN

based approach to CDS.

The effort required to clean and transform data so that it can be used for

structure and parameter learning was found to be significant. This data preparation

phase required modifications to data, such as discretisation of continuous values,

which can directly affect the performance of the resulting BN.

 The size of the dataset available for structure and parameter learning was a

key determinant of the quality of the results for both processes. Using human input

as background information allowed better use of existing data for structure learning.

Using existing data for parameter learning makes it possible for clinicians to avoid

complex and error-prone aspects of defining BN probabilities.

 However, the dataset size available for parameter learning is crucial for

developing BNs that can accurately reflect the relationships between clinical

concepts. Not having access to sufficiently descriptive data leads to a BN that may

be unable to process some patient data, if the values of observations do not fall

within the learned parameter boundaries. Defining the structure of a BN is less

susceptible to lack of clinical data, especially if the number of domain concepts is

small, and domain experts can easily identify them and define their relationships.

 Detailed evaluation of the performance of a BN, with an emphasis on

decision-making strategies specific to a particular clinical domain, can help

clinicians make better use of its capabilities.

 The experiment showed that, especially with the use of existing data, it is

possible to develop and use a BN for CDS with minimum exposure to the underlying

probabilistic concepts. The limited scope of the experiment leaves out many

extensions and features of BNs that was discussed in Section 4.4. Yet, even such a

basic implementation allows relevant clinical concepts to be used for purposes of

probabilistic inference.

 The inefficiencies and problems identified during different phases of the

experiment overlap with well known issues encountered in clinical systems

integration, for which solutions are provided by the openEHR specifications. The

identification of key domain concepts as the components of the BN is another stage

 108

of the experiment that can benefit from the openEHR methodology, as discussed in

Section 4.7 in the discussion of the logical architecture for systems integration.

The pilot experiment identified aspects of a BN based approach to CDS that

can be improved by exploiting the capabilities of openEHR. The experimental use of

openEHR methodology to this end, is discussed in detail in the chapters that follow.

 109

Chapter 6: A Pilot openEHR Based Clinical
Information System Implementation Experiment – The
Opereffa Open Source Framework

The openEHR specifications place significant emphasis on the term

computable health, a concept that underlies all the functionality that openEHR is

expected to provide, including better clinical decision support.

The scope, depth and quality of the openEHR specifications now provides a

solid basis for computable health. However, the technology independent nature of

the specification makes it hard to envision the extent to which the concept can be

realised in practice, in the face of many implementation challenges. These

challenges include limitations of the technologies used for the implementation and

achieving the breadth and variety of functionality that a full openEHR

implementation should support.

Therefore, the only reliable method to assess the sufficiency of the

openEHR specifications for building clinical information systems and supporting

CDS integration within these systems, is experiment and observation based on

technical and clinical implementation. The Opereffa framework was undertaken as a

proof of concept implementation of the openEHR specifications to serve this

purpose.

6.1: Design and Implementation

Opereffa was developed in the Java programming language using open

source technologies. It implements primary components of an openEHR based

information system and provides EHR functionality to support clinical care. Its goal

is to provide a workbench for experimenting with openEHR implementation and for

observing the effects of design decisions made, on system characteristics such as

performance and ease of integration with other software.

Opereffa’s design positions it as a framework that can support core

functionality for building an openEHR based system. Figure 16 provides a

conceptual overview of the approach adopted.

 110

Figure 16: Opereffa framework and relevant concepts

Some of the components in Figure 16 represent pre-existing open source

software projects, such as the Java based implementation of various openEHR

tools and the Eclipse platform (desRivieres and Wiegand 2004) from the Eclipse

Foundation. A clinical application development framework that supports the

construction of a modern clinical information system based on openEHR was

assembled using these components. Opereffa’s implementation scope was limited

to a necessary subset of these components, due to time limitations and relevance to

the goals of this thesis.

 Opereffa has been an open source effort from its outset, to enable wider

feedback about the validity of its design and its approach to openEHR

implementation. During its development, it was downloaded in over 70 countries

and was used in a number of projects as well as academic studies. The software

architecture of Opereffa is depicted in Figure 17.

The Opereffa software architecture comprises openEHR tooling and runtime

components. The tooling, which is integrated into the Eclipse development

environment, used pre-existing open source openEHR libraries to generate user

interface code for Java Server Faces (Mann 2005), which is a Java based software

framework for web applications development.

 The automatically generated user interfaces contain data entry and display

fields that correspond to data items defined in the openEHR clinical models. These

user interfaces can be customised, in terms of visual styles, within the Eclipse

development environment, which provides the user interface generation capability

via a plugin developed for Opereffa. When the user interface code is deployed to

the Java Server Faces environment, it automatically becomes available for data

entry and display to users as an experimental clinical information system, which is

accessible with a standard web browser. Figure 18 is a screenshot of an

 111

automatically generated user interface, which includes data entry fields generated

from an openEHR archetype, in addition to integration with an open source

terminology server, LexBIG (Pathak et al. 2009), for performing searches and

selection of applicable SNOMED-CT (IHTSDO 2015) terms.

openEHR

Models

User

Interface

Opereffa

Persistence

Eclipse IDE

Integration

Postgresql

Relational

Database

Java Server Faces

User

Figure 17: Software architecture of the Opereffa framework

Figure 18: Screenshot from Opereffa User Interface

 Filling in the fields of an automatically generated user interface, and then

saving the contents, invokes the persistence implementation of Opereffa, which

stores the data collected into the open source Postgresql (Momjian 2001) database.

 112

Requests from the user interface to display previously saved documents also invoke

this software component to fetch the data from the database and display it using the

automatically generated user interface code, thereby also allowing users to update

existing data.

The Opereffa design focuses on the concept of a clinical application driven

directly by openEHR clinical models. A small number of such archetypes, developed

with input from Dr. Tony Shannon, an active member of openEHR community, were

used to assess the feasibility of the model driven clinical application development

approach and to generate test data.

 Opereffa demonstrated the capability to add new user interfaces based on

openEHR clinical models, without any modification required to other parts of the

system. This showed that a small number of components driven by openEHR

models can support clinical records for a large variety of clinical domains - a key

design goal of the openEHR specifications (Beale and Heard 2008a).

 The Opereffa architecture represents clinical data by using information in

openEHR archetypes to associate actual data values with their relevant openEHR

RM types. Figure 19 shows how this association is implemented.

 Opereffa maps these types from the openEHR specifications to

corresponding Java classes. These Java classes, named as wrapper classes in

general, associate the definitions of data items in openEHR archetypes with actual

clinical data, entered by users through user interfaces, which are also generated

from the same data items.

The elements on the right-hand side of Figure 19 represent implementations

of these wrapper classes in the Java programming language. Their structure

matches the structure of the openEHR model on the left of Figure 19, which is

represented in a simplified form, for clarity.

The “Event” shown on the left-hand side of Figure 19 is a type defined by the

openEHR specifications, and it has a time and a state, in addition to other

properties, which allow instances of this type to model an actual clinical event. The

instance of the Event type contains fields, such as “data”, which is specified as an

instance of ITEM_LIST openEHR type. The “data” field, with type ITEM_LIST,

contains items, which are of type ELEMENT. Instances of ELEMENT type have

values, which may be either a quantity, a terminology rubric, or some plain text.

 The Opereffa persistence model is based on the capability of wrapper types

to save their contents to a database and later read it back, using the Hibernate

object relational mapping library (Bauer and King 2005).

 113

 The association between the RM types and their corresponding Java

wrapper types allows Opereffa to create data, persist it in a suitable database and

read it back, effectively performing all operations on data using the clinical model on

which the data is based. The open source openEHR libraries allow access to all

aspects of these clinical models, such as the definition of valid values for a data

item. This allows Opereffa to perform data validation at entry, a feature implemented

only to a limited extent. The database representation for the contents of the wrapper

types uses the paths of corresponding data items from the openEHR archetype to

save their position in a tree comprising all wrappers that together represent the

archetype.

Figure 19: Opereffa’s use of wrappers

 None of the methods used in the Opereffa implementation is technology

specific. The Java platform was chosen based on the availability of open source

libraries for openEHR and other functionality that was required to implement the

architecture in Figure 17, as quickly and reliably as possible.

6.2: Findings

 The Opereffa experiment showed that a flexible, web based clinical

information system can be developed with a model driven approach using open

 114

source clinical modelling tools, along with open source libraries for processing

openEHR models.

 Automatic generation of user interfaces, complemented by a generic

persistence layer that connects these user interfaces to a relational database,

provides a flexible solution that can process clinical data from various domains.

However, a purely web based application approach to building a clinical information

system places limitations on the functionality achievable, and decreases its

flexibility, especially in the persistence layer.

 The initial and strong focus of the experiment was on providing access to

patient data with a web based clinical information system. This does not require a

generic openEHR data access method. There was no requirement in this

experiment for sharing data with other systems. All the components of the Opereffa

implementation, save for the pre-existing openEHR libraries, were developed from

scratch, and customised to work with together to provide the envisioned

functionality.

It has been observed that this approach leads to a strong specialisation of

the openEHR implementation in all its layers, making it hard to expose data and

functionality to other information systems. This problem reveals itself when new

functionality that was not included in the initial requirements, becomes necessary. In

the case of Opereffa, this new functionality corresponds to implementation of the

openEHR AQL (Ma, Frankel, and Beale 2014), a domain specific query language

for performing queries on openEHR data which was still in draft status, at the time of

writing of this thesis.

The logical architecture for the openEHR and BN integration defined in

Section 4.7 assumes multiple implementations for the openEHR specifications and

learning BN network structures and parameters. The platform independent and

openEHR specific nature of AQL makes it an appropriate method for connecting

these implementations.

 However, implementing AQL to integrate third party BN tools such as

GENIE (Druzdzel 1999) and BNLearn (Marco Scutari 2009) on top of Opereffa

requires the semantics of AQL queries to be supported by the persistence layer. It

was observed that the Opereffa design, which assumes data access only from the

web application, made it infeasible to support the requirements of AQL.

Two primary causes of this infeasibility are the data access assumptions of

Opereffa and its focus on openEHR archetypes as a unit of user interface and

persistence.

 115

Opereffa’s software architecture is designed to support flexibility for a clinical

web portal, with a specific data access pattern. A list of previously committed

documents is provided for a patient, and only one of them is displayed on the

screen at a time. All of the data items that belong to a clinical document, based on

an archetype as depicted in Figure 19, are fetched together from the relational

database. Therefore, the unit of both writes and reads is single documents. AQL

semantics allows for the description of parts of documents that satisfy specified

conditions, and these parts can also be defined as query results. It defines

hierarchical relationships between query components and it can set the scope of the

search in an openEHR persistence implementation. Clinical data persisted by

Opereffa does not include the relationships among data items that would be

required to support these aspects of AQL queries. Therefore, the flexibility of the

Opereffa persistence layer lies in its schemaless nature, but it does not extend to

queries that make use of the structure of the data it contains.

The use of openEHR archetypes as the unit of persistence means that

Opereffa replaces a significant component of the openEHR specifications in an ad-

hoc way. The openEHR specifications define the openEHR RM (Beale et al. 2008e)

as the means for representing actual clinical data, conforming to structural and

value constraints defined by the openEHR archetypes. Opereffa uses the wrapper

approach depicted in Figure 19 to represent actual data values, effectively replacing

the RM representation with wrappers. The consequence of this approach to the

persistence layer is that the data values are associated with custom paths based on

wrapper types instead of archetype paths. AQL queries are based on archetype

paths, assuming that the AQL implementation is capable of retrieving results using

this information. This mismatch between the Opereffa persistence design and AQL’s

assumptions makes it unable to support AQL’s way of describing data items.

The adoption of openEHR archetypes as the unit of the clinical model that

Opereffa uses to drive user interface generation, in addition to persistence, means

that all clinical domain input should be provided in the form of archetypes. This

approach was not fully aligned with the openEHR methodology, which assumes that

archetypes should be re-usable models with maximal data set properties rather than

clinical system specific models. Therefore, Opereffa’s interpretation of clinical

models in the context of openEHR is not compatible with the widely adopted

approach, which would diminish its capability to re-use globally available openEHR

clinical models as well as its capability to share its models with other systems. This

interpretation was sufficient to support the envisioned functionality for Opereffa,

which was limited to a proof of concept EHR access portal that supports easy and

 116

automatic generation of user interfaces in addition to data persistence support to

serve these user interfaces. This definition of functionality did not include any

clinical model or data sharing scenarios.

6.3: Summary

The primary finding from the Opereffa experiment described here is that the

consideration of data access patterns, along with query result volumes, is a

fundamental design requirement for openEHR implementations. Classifying some

data access scenarios as of secondary importance for design leads to an

architecture that makes their subsequent implementation infeasible, due to conflicts

with the previous design choices.

The problems identified with AQL implementation do not mean, however,

that Opereffa was a failed experiment. Despite its shortcomings in responding to the

requirements of the logical architecture in Section 4.7, Opereffa has provided

valuable insight into the capabilities of openEHR for model driven health data

processing. In fact, the strong and worldwide interest in Opereffa, despite its

extremely limited exposure, is evidenced by references made to it in many already

published studies. These cover a range of topics, such as: generation of user

interfaces, use of big data frameworks, mobile applications and clinical decision

support (Kopanitsa et al. 2013), (H.J. Parashar et al. 2013), (Cd, S, and P 2009),

(Velte et al. 2012), (Hem Jyotsana Parashar, Sachdeva, and Batra 2013), (Kohler et

al. 2011), (Saxena, Sachdeva, and Batra 2015), (Kashfi and Jairo Jr 2011), (Batra

et al. 2014), (Christoph Rinner et al. 2011), (Madaan et al. 2013), (Menárguez-

Tortosa, Martínez-Costa, and Fernández-Breis 2011), (Sachdeva et al. 2011),

(Madaan and Bhalla 2014), (Duftschmid, Chaloupka, and Rinner 2013), (Kohl

2012), (Sundvall et al. 2013), (Menarguez 2013).

 The most significant conclusion from the Opereffa experiment was the crucial

responsibility of the persistence layer to support fundamentally different kinds of

data access patterns, within an openEHR driven approach. A more flexible

persistence design is thus required to fulfil the requirements of the logical

architecture for CDS integration, to ensure a unified software framework that is

more robust in the face of highly variable patterns and volume of data access. A

novel design exhibiting these properties is the focus of the next chapter, leading, in

the following chapter to its implementation and evaluation in a comprehensive CDS

setting.

 117

Chapter 7: Persistence Abstraction for openEHR

Both clinical models based on openEHR and CDS built on BNs have the

capability to support a wide range of functionality in their respective domains, and

their integration leads to interactions between EHR and BN concepts, most of which

require a BN based CDS implementation accessing clinical data via an openEHR

implementation. Significant challenges exist in fulfilling this requirement.

The data access characteristics of particular interactions between openEHR

and BN implementations can vary significantly. For example, survival prediction

based on a BN and the value of a prognostic variable requires access to clinical

data for a single patient, but learning the structure and parameters of the BN would

benefit from access to clinical data of a large population of patients. Therefore, the

capabilities of openEHR persistence implementation are crucial in robust CDS

integration.

The openEHR specifications do not include the implementation of

persistence of openEHR data or access to it via AQL in its scope. This keeps the

openEHR specifications adequately concise, which lets implementers use a

technology that is appropriate for their use cases without the risk of losing the

benefits of openEHR compliance.

However, the high number of options for implementing openEHR persistence

introduces the inevitable cost of developing the openEHR data representation and

AQL support for each implementation technology. Given that implementation can

follow a different design approach for each technology, a significant amount of

repeated effort is likely to be required. This repeated effort is a limiting factor for

implementing openEHR across a number of persistence technologies, especially to

better support CDS integration. Each of these persistence technologies potentially

offers a unique advantage such as large scale in memory data processing

(Stonebraker and Weisberg 2013), batch data processing (Borthakur 2007),

streaming data processing (Ranjan 2014) and more. Given that these advantages

can help improve performance of different CDS scenarios, eliminating this limiting

factor could potentially improve openEHR based CDS by making use of the results

of ongoing research.

Another aspect of integration that needs to be considered is the effect of

previous design decisions for persistence that are implemented prior to CDS

integration. As discussed in Section 6.3, an openEHR implementation can fulfil

functional requirements for a clinical information system and still fail to support data

access for CDS integration.

 118

Overcoming these challenges is necessary to benefit from the technology

independent nature of both openEHR methodology and BNs in the context of their

integration. Otherwise, integration of openEHR methodology and BNs cannot go

beyond a series of case specific systems integration tasks, falling short of the

unified architecture this thesis aims to develop.

This thesis develops abstract, robust and consistent representations of both

openEHR data and the Archetype Query Language to overcome these challenges.

These representations allow openEHR data persistence and AQL to be

implemented on a number of persistence systems. Persistence system is used as

an umbrella term in this thesis that refers to software that provides the capability to

save data to a durable medium and read it back, such as relational databases, big

data frameworks, graph and document databases.

An abstract definition of openEHR data and AQL processing with a focus on

implementation across different persistence systems complements openEHR

methodology without compromising its technology independent nature. This

persistence abstraction establishes a balance between technology independence

and implementations fully specialised to particular technologies. Consequently, it

enables AQL based data access to a number of underlying persistence systems,

providing a unified platform to support CDS based on BNs

An ideal abstraction should sufficiently support the following requirements to

achieve this goal:

• Expressiveness

The abstraction should be able to express openEHR RM based data and

AQL semantics.

• Extensibility

The abstraction should support extensibility to accommodate changes to the

openEHR specifications and support extensions which may not be part of the

specification, but deemed useful.

• Feasibility of implementation

The abstraction should be implementable across a number of persistence

systems.

• Consistent representation

The abstraction should ideally have a consistent representation that can

define data and operations on data across implementations on different

platforms.

• Scientific relevance

 119

The abstraction should have research associated with it that identifies its

benefits and shortcomings in relation to its use in openEHR persistence,

especially for supporting CDS.

The scope of the persistence abstraction consists of openEHR RM (Beale et

al. 2008e) and AQL (Ma, Frankel, and Beale 2014).

7.1: openEHR Models and RM Data

Persistence abstraction for RM provides a representation of data that is

based on RM types. The RM types, as discussed in Section 3.1, are defined

independent of any particular technology. Therefore, openEHR data can be

represented in many data formats, as long as the representation conforms to

definitions of RM types. Textual formats such as XML, custom binary formats, or

custom data structures based on built in type systems of programming languages

can all represent RM data. The XML format is frequently used for openEHR data

representation due to its strong adoption by many platforms as well as being human

readable, and it allows openEHR data to be transformed to other formats when

necessary.

The screenshot in Figure 20 shows the relationship between an openEHR

model and RM data. The term openEHR model refers to an openEHR template. As

discussed in Section 3.1, openEHR templates are modelling artefacts that are

strongly associated with openEHR implementation and openEHR methodology

encourages actual clinical data to be created based on them. Therefore, they will be

referred to as openEHR models or clinical models in the context of persistence

abstraction.

 The screenshot from the freely available template designer tool in the left

hand of the diagram in Figure 20 illustrates the clinical model, which is an openEHR

template, and the visual representation of RM data to the right of the same diagram

illustrates an RM instance that is valid according to this model.

 The clinical data on the right is in XML format and a few data items such as

the Systolic and Diastolic from the model are associated with actual data in the XML

file.

 The archetype path of the Systolic data item of the clinical model in Figure 20

provides a mechanism for referring to data items as defined in the openEHR

specifications (Beale et al. 2008c). The archetype path consists of a root and a

sequence of elements listed under the root in a parent/child format in which each

 120

element except the root has a parent. Predicates that constraint archetype node

identifiers to particular values can be placed on elements. The elements can be

uniquely identified among their siblings using their archetype node identifier values

in predicates, as exemplified by the [at0006] predicate on the events element of the

path.

The archetype path of a data element is independent of the format that is

used for representing actual clinical data, providing a semantically meaningful

pointer to data without the need to know the underlying data format used by the

openEHR implementation. It is the implementer's responsibility to provide access to

actual clinical data pointed at by the archetype path.

The clinical model on the left in Figure 20 defines a set of data instances that

fits the structure defined by the model along with the criteria for data values. The

RM instance on the right is just one instantiation of data that is valid according to

this model, based on the implementation of RM types using the XML type system,

such as COMPOSITION and OBSERVATION types.

 The XML data in Figure 20 is an example of RM instance data that could be

created in many openEHR implementations. Regardless of its persisted form or the

persistence system it is saved in, RM data such as this should be queryable in a

platform independent way. This requirement is fulfilled by the Archetype Query

Language, which is therefore within the scope of persistence abstraction along with

RM data.

 121

/content[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]/

data[at0001]/events[at0006]/data[at0003]/items[at0004]

Figure 20: openEHR clinical model and RM based data instance

7.2: Archetype Query Language

Querying openEHR data using AQL is a platform independent method of

data access, which is widely adopted by openEHR implementers, despite AQL not

being part of the openEHR specifications at the time of the writing of this thesis.

Similar to openEHR templates, it is likely to become part of openEHR specifications

in a bottom up manner, following its adoption by implementers. Therefore, it is

chosen as the means of data access in this thesis.

 122

AQL queries consist of three major sections identified by three clauses in an

AQL query: SELECT, FROM and WHERE. Their brief explanation is as follows:

• FROM

The FROM clause defines the data points in an RM instance that will be

used as reference points in other AQL clauses. They can be used directly or

become reference points for accessing other data points through relative paths.

This clause supports describing the hierarchical relationships of data points

along with the use of predicates on their attributes such as their archetype node

identifiers.

• SELECT

The SELECT clause identifies the data points in an RM instance that the

AQL query should return in its results. These points can either be the ones

identified in the FROM clause or other data points that lie on a path relative to

them.

• WHERE

The WHERE clause allows expressing various constraints either directly on

the data points identified by the FROM clause or on data points at a relative

path to them, for the purposes of filtering results.

Figure 21 contains an example AQL query that should return the Systolic

data point from the RM instances that match the criteria defined in the query. The

right hand side of Figure 21 contains a template, which shows how AQL queries are

defined by criteria based on clinical models.

This AQL query can be deconstructed as follows, based on the key clauses:

• FROM

The FROM clause identifies three data points based on the RM types. The

EHR is the highest level container in the openEHR specifications that contains

all clinical data for a patient and it is not represented in the clinical model in

Figure 21. Nonetheless, the AQL implementation is responsible for identifying

the EHR instance that has the ehr_id value of ‘1234’. The EHR instance is given

the alias ‘e’.

FROM clause in this query uses the CONTAINS keyword to define a

hierarchical containment constraint to identify the patient encounter element (of

RM type COMPOSITION) that should reside within an EHR. The encounter

element is given the alias ‘c’ and its archetype node id is constrained to

‘openEHR-EHR-COMPOSITION.encounter.v1’ via a predicate.

 123

A second use of CONTAINS keyword introduces another containment

constraint that requires a blood pressure observation (o) (of RM type

OBSERVATION) to exist at some relative path to patient encounter (c).

Connections in Figure 21 from c and o elements to clinical model on the right

illustrate the hierarchical relationship the FROM clause is describing.

Therefore, the FROM clause, identifies three data points with aliases e,c and o.

These points are then used directly or indirectly in other clauses.

• SELECT

The SELECT clause uses only one data point identified by the FROM clause

which has an RM type of OBSERVATION and alias ‘o’. SELECT clause uses

this data point as the root of a path that identifies the actual data point of

interest.

The data point defined as “Systolic” in the clinical model in Figure 21 is an

RM object that represents a quantity. Its path relative to the root of the

OBSERVATION typed RM object is

“/data[at0001]/events[at0006]/data[at0003]/items[at0004]” based on the clinical

model. By using the ‘o’ alias the SELECT clause identifies the Systolic data as

the result to be returned from the query.

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id = '1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

Figure 21: AQL query and openEHR clinical model

 124

7.3: Structural Characteristics of openEHR RM

The structural characteristics of openEHR RM carry significance both in

clinical modelling and implementation.

The RM, which is the starting point of clinical modelling in openEHR

methodology, enforces a hierarchical structure for representation of clinical data. As

depicted in the high level overview of openEHR RM type hierarchy diagram in

Figure 22, which is taken from the openEHR EHR Information Model specification

(Beale et al. 2008e), instances of EHR type (representing the concept of Electronic

Health Record) create a single container for all clinical data that belongs to a

particular EHR. Therefore, the EHR is the top-level concept.

The EHR instance is the container of actual clinical data that is represented

by instances of the COMPOSITION type. Even though there are many other types

in the RM, EHR and COMPOSITIONs under EHR instances are key determinants of

structure of actual clinical data, as the diagram from openEHR EHR Information

Model specification in Figure 23 shows.

Figure 22: openEHR RM: EHR package

 125

Figure 23: openEHR EHR: organisation of data

Regardless of the method and persistence system chosen for

implementation, access to RM based data based on the structural characteristics of

clinical models requires the implementation to make use of structural aspects of it.

The functionality that is defined in the openEHR specifications, which uses

archetype paths, as well as AQL query processing, which uses both relative paths

and containment of data items, are examples of data access based on structural

characteristics. Therefore, a persistence abstraction for openEHR and an

implementation based on it must support the representation of these characteristics

of RM based data.

Based on these requirements, persistence abstraction can be defined as

platform independent representation and querying of structured clinical content

where querying supports content model based access methods. Aside from its

specific focus on clinical content, this definition bears noticeable similarity to

capabilities of XML and query mechanisms it supports. This similarity is important

since a large amount of research has been conducted on XML for content

representation in addition to query processing, results and findings of which can

contribute to the design of an openEHR specific persistence abstraction.

 The inclusion of XML in openEHR specifications as an implementation

technology specification, as discussed in Section 3.1, confirms XML’s capability to

represent openEHR data, strengthening the argument that its underlying content

model may provide valuable insights for building a persistence abstraction for

openEHR.

 126

 To this end, an appraisal of XML representation of openEHR along with

XML’s underlying data abstraction methods is performed. The findings of this

appraisal are then used as the basis of the persistence abstraction for openEHR,

without any dependencies on XML.

7.4: Appraisal of XML Representation of openEHR Data

7.4.1: Design and Goals of XML

The Introduction section of the XML specification (Bray et al. 1997) provides

insight into XML’s fundamental characteristics that has made it a ubiquitous data

representation and thus exchange method:

“Extensible Markup Language, abbreviated XML, describes a class of data objects
called XML documents and partially describes the behavior of computer programs
which process them. XML is an application profile or restricted form of SGML, the
Standard Generalized Markup Language [ISO 8879]. By construction, XML
documents are conforming SGML documents.
XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which
form character data, and some of which form markup. Markup encodes a
description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.
[Definition: A software module called an XML processor is used to read XML
documents and provide access to their content and structure.] [Definition: It is
assumed that an XML processor is doing its work on behalf of another module,
called the application.] This specification describes the required behavior of an XML
processor in terms of how it must read XML data and the information it must provide
to the application.”

XML documents have a well-defined structure and the specification clearly

outlines the functionality that must be supported by software that will process XML

data. Processing XML data has become a common capability for a large number of

platforms through the implementation of XML processors in many different

programming languages.

One of XML’s goals is supporting a wide variety of applications. This goal is

established by not only describing how XML documents are supposed to be

processed but also by keeping XML independent of the concepts of a particular

domain. XML refers to some fundamental concepts such as documents, elements,

tags etc. but these concepts are domain neutral and the specification focuses on

syntax and structure of these concepts when represented in textual form.

 127

Through the use of these generic concepts, XML has been able to represent

many types of data from various domains in the form of XML documents, including

openEHR RM data. The openEHR foundation has published XML Schema

Documents (XSD) that define the openEHR RM based on XML’s type system and

XML documents that comply with published XSDs represent RM based data.

The initial conclusion from this observation would be that XML is a

convenient intermediate form for openEHR RM data. This intermediate form can be

used to move openEHR data across systems by leveraging ubiquitous support for

XML processing, delivering a successful solution to the requirement of representing

clinical data consistently across different platforms. The data abstraction methods

used by XML, which are discussed next, play a key role in its success since they

enable consistent implementation of XML across platforms.

7.4.2: Data Abstraction Methods Used by XML

A set of XML related specifications define the data abstraction methods used

by XML along with query languages that target XML data, such as XML Information

Set Specification(Infoset) (Cowan and Tobin 2004), Document Object Model

Specification (DOM) (Wood et al. 1998) and XQuery 1.0 (Boag et al. 2002) and

XPath 2.0 Data Model (XDM) Specification (Fernández et al. 2002).

An in-depth discussion of these specifications is out of the scope of this

thesis, but a high level overview of their relationship is provided in Figure 24. The

diagram in Figure 24 outlines the relationship between the XML specification and

three other specifications from World Wide Web Consortium (W3C) that provide

abstractions of XML data at various levels.

The diagram also provides the goals of XML Infoset, DOM and XDM along

with the increasing level of abstractions they build on each other to achieve these

goals.

XML Infoset defines concepts such as Element Information Item or Attribute

Information Item. These concepts are more abstract than the ones used in XML

specification, for the purpose explained in the introduction of XML Infoset

specification:

“This specification defines an abstract data set called the XML Information Set
(Infoset). Its purpose is to provide a consistent set of definitions for use in other
specifications that need to refer to the information in a well-formed XML document”

 128

DOM and XDM in turn, are both built on the abstractions provided by Infoset.

DOM’s goal is to allow access to documents along with the capability to modify

them. To achieve this goal, DOM provides a set of interface definitions, which define

the functionality that must be implemented by software. The Node interface defined

by DOM is a fundamental interface that allows access to documents. The concept of

a node is a component of the larger concept of a tree that consists of nodes.

Although the DOM specification does not contain a formal definition of the tree,

“What is the Document Object Model” section of DOM Level 3 Core Specification

(Nicol et al. 2001) establishes the the relationship between tree and node concepts

as follows:

“In the DOM, documents have a logical structure which is very much like a tree; to
be more precise, which is like a "forest" or "grove", which can contain more than
one tree. Each document contains zero or one doctype nodes, one document
element node, and zero or more comments or processing instructions; the
document element serves as the root of the element tree for the document.
However, the DOM does not specify that documents must be implemented as a tree
or a grove, nor does it specify how the relationships among objects be implemented.
The DOM is a logical model that may be implemented in any convenient manner. In
this specification, we use the term structure model to describe the tree-like
representation of a document. We also use the term "tree" when referring to the
arrangement of those information items which can be reached by using "tree-
walking" methods; (this does not include attributes).”

 129

The Node interface and its related interfaces do not directly mention XML. In

fact, DOM is capable of providing access to both XML and HTML (Berners-Lee and

Connolly 1995). The concepts used by DOM to represent documents, such as

F
ig

u
re

 2
4
:
A

b
s
tr

a
c
ti
o
n
s
 o

f
X

M
L
 c

o
n
te

n
t

 130

nodes and trees are more abstract then the underlying XML Infoset concepts, which

are more specific to a document, such as Element Information Item. This increased

abstraction is what allows DOM to provide a unified access model to different

document types.

 This approach is adopted by XDM as well, by introducing a data model

based on XML Infoset, but with a focus on XML query languages, as described in

“Introduction” section of XQuery 1.0 and XPath 2.0 Data Model specification:

“The XQuery 1.0 and XPath 2.0 Data Model (henceforth "data model") serves two
purposes. First, it defines the information contained in the input to an XSLT or
XQuery processor. Second, it defines all permissible values of expressions in the
XSLT, XQuery, and XPath languages. A language is closed with respect to a data
model if the value of every expression in the language is guaranteed to be in the
data model. XSLT 2.0, XQuery 1.0, and XPath 2.0 are all closed with respect to the
data model.
The data model is based on the [Infoset] (henceforth "Infoset"), but it requires the
following new features to meet the [XPath 2.0 Requirements] and [XML Query
Requirements]: …”

XDM focuses on read-only access for querying, but it uses abstractions

similar to DOM, such as Document Node, Element Node and other Node types as

shown in Figure 24. The “Terminology” section of XQuery 1.0 and XDM

specification describes how these concepts are brought together:

“Nodes form a tree that consists of a root node plus all the nodes that are reachable
directly or indirectly from the root node via the dm:children, dm:attributes, and
dm:namespace-nodes accessors. Every node belongs to exactly one tree, and
every tree has exactly one root node.
…
[Definition: A tree whose root node is a Document Node is referred to as a
document.]
…”

Despite being more specific compared to DOM, XDM’s definition of a tree

structure that consists of nodes and it use for representing documents overlaps with

DOM’s approach based on the same concepts. The XPath module of DOM depicted

in Figure 24 is proof for this overlap.

 The key finding from the brief analysis of the relationships between the

specifications included in Figure 24 is that these abstractions are the basis on top of

which XML representation of openEHR is built, indicating the feasibility of

representing openEHR data and queries that target this data with a small number of

platform independent concepts.

 131

7.4.3: Key Findings

 The implementations of the interfaces defined by the specifications in Figure

24 enables XML form of RM based data to be processed in many platforms. Both

the representation of content via DOM interfaces and the capability to query this

content using specialised XML query languages such as XQuery (Boag et al. 2002)

or XPath (Clark and DeRose 1999) make heavy use of the tree based abstraction.

Therefore, the XML representation of openEHR indirectly shows the feasibility of

using a tree abstraction for openEHR data

The diagram in Figure 25 shows how openEHR specifications and tree

based abstractions provided by XML specifications are related to actual software

implementations. The research that focuses on XML processing is also depicted in

Figure 25.

Abstract Specifications

Concrete Implementations

openEHR

Specification

Tree based

abstraction of

data

(InfoSet)

XML

Documents

XQuery/Xpath

Query Language

Implementations

Other

abstractions

built on trees

(DOM/XDM)

Transform
U

s
es

R
e

p
re

se
n

te
d

 a
s

Xquery/Xpath

Query Language

Specifications

Uses

Relevant ResearchHas

Figure 25: openEHR as XML: abstract and concrete components

The relationships presented in Figure 25 hints at the possibility of using XML

representation of openEHR to accomplish the goals identified at the beginning of

this chapter. This approach would build on the ubiquity of both XML documents and

implementations of XML query languages using an XML document representation of

openEHR RM data along with a mapping of openEHR AQL to XML specific query

languages, as depicted in Figure 26.

 132

Abstract Specifications

Concrete Implementations

openEHR

Specification

Tree based

abstraction of

data

(InfoSet)

XML

Documents

XQuery/Xpath

Query Language

Implementations

Other

abstractions

built on trees

(DOM/XDM)

Transform

Xquery/Xpath

Query Language

Specifications

Relevant ResearchHas

AQL

Figure 26: XML based openEHR persistence

The diagram in Figure 26 includes AQL alongside openEHR specifications to

delegate both data representation and querying to XML and its query languages.

Although this approach has the potential to fulfil the requirements of the persistence

abstraction for openEHR, its complete reliance on XML is likely to introduce various

problems. These problems stem from XML’s fundamental traits that improve its

versatility, which comes with the price of lower storage and computation efficiency

compared to specialised data formats.

 Human readability is one such trait that leads to XML documents using a

textual representation and content layout that is not as space efficient as other

alternatives. Implementations of powerful XML query languages, which are

dependencies of the approach depicted in Figure 24, would need to be available in

every context in which openEHR data is queried. Not all the features of these

generic query languages are necessarily required to support the functionality of

AQL, but there features are nonetheless implemented, potentially introducing

computational overhead. This overhead may introduce performance issues in use

cases where a high number of XML documents must be processed, such as

epidemiological queries (Freire et al. 2012), even when optimised XML databases

are used.

Another potential problem associated with delegating persistence abstraction

to XML processing lies in the difference between availability of XML processors and

feasibility of embedding them into other software. Given the large number of

persistence systems that can be used for openEHR persistence, embedding an

 133

XML processor to these systems may lead to a complex implementation step for

openEHR persistence.

Due to these potential problems, despite the versatility and success of its

underlying data models, direct use of XML does not sufficiently fulfil the

requirements of persistence abstraction for openEHR as defined in this thesis.

However, problems associated with XML’s implementation do not necessarily rule

out the use of its internal abstraction methods. The tree based abstraction of data is

therefore used as the basis of a persistence framework for openEHR.

7.5: Tree Based Persistence Abstraction for openEHR

 The experimental persistence abstraction for openEHR developed in this

thesis uses the tree representation of RM data, based on the findings of appraisal of

XML and related query language specifications. This approach has the benefit of

excluding representation and processing requirements for data that are not relevant

to RM or AQL query processing, achieving significant simplification for both

persistence abstraction and its implementation. Figure 27 depicts the fundamental

components of this architecture.

Abstract Specifications

openEHR

Specification

Tree based

abstraction of

openEHR data

Query

Method A

AQL processing

model
Uses

AQL

Serialisation

format A
Serialisation

format B

...

Query

Method B

...

Persistence

System A

Persistence

System B
...

Figure 27: Tree based persistence of openEHR data

Both the RM based data representation and the AQL processing model use

tree based abstractions in this architecture. A particular implementation of

 134

persistence abstraction on a persistence system is based on two components: a

serialisation format and a query method.

The serialisation format can be any data format supported by the persistence

system to store data, and query method is any mechanism that allows access to

data stored in the persistence system. Both the serialisation format and the query

method are mapped to platform independent components of the persistence

abstraction as depicted in Figure 27. These mappings enable different persistence

systems such as relational databases, graph databases, or large scale data

processing frameworks such as Hadoop (Borthakur 2007) to support AQL based on

their native features, providing a unified data access method to RM based data.

Therefore, the architecture in Figure 27 provides a generalisation of the openEHR

persistence implementation based on the use of tree based persistence abstraction

for openEHR.

This generalisation is built on the tree representation of openEHR data, with

a strong specialisation on RM types instead of a generic content representation

approach. The same specialisation is adopted for AQL processing as well. Tree

representation and AQL processing based on this representation are defined in a

technology independent way, similar to openEHR. Therefore, this generalisation is

technology independent.

The specialisation in openEHR RM types and AQL processing reduces

complexity in both representation and implementation by excluding all data

representation and querying requirements that are not related to openEHR, in

addition to eliminating the need for any intermediate representation and processing

layers such as XML documents and processors. The difference between the two

approaches is depicted in Figure 28.

When XML is used as the means of representing and querying openEHR

data, the tree based representation and query mechanisms for openEHR are

encapsulated within the relevant XML specifications and implementations. This

approach corresponds to an implicit and limited abstraction of openEHR persistence

via the use of XML.

Explicitly defined RM data and AQL abstractions remove the dependencies

for XML storage and processing capability for a persistence system to be used for

openEHR implementation. This approach also allows particular implementations

based on persistence system specific serialisation formats and query methods to be

optimised for openEHR persistence, which would not be possible in case of

embedding an XML processor into persistence systems.

 135

The first step in achieving these suggested benefits is the development of

tree representation for RM data.

Abstract Specifications

openEHR

Specification

Tree based

abstraction of

openEHR data

Query

Method A

AQL processing

model
AQL

Serialisation

format A Persistence

System A

Abstract Specifications

openEHR

Specification

AQL

XML Document

Tree based

abstraction of

openEHR data

Xpath/Xquery/X...

AQL processing

model

Persistence

System A

Implemented with

Implemented with

openEHR specific data and AQL

abstractions

Implementation based on XML

Figure 28: Implicit vs explicit tree based persistence

7.5.1: Tree-based Representation of RM data

In the context of this thesis, the term tree refers to tree data structure (Knuth

1968) and its computer science interpretation. The trees that represent RM data are

singly rooted, and each node has at most one parent. All nodes of a tree are

instances of the same data type. The data type used for nodes is a collection of key-

value pairs, frequently implemented as a hash table (Cormen 2009). Using this data

type enables nodes to represent named attributes with values. Therefore, when this

thesis references an attribute of a node, the reference implies an entry in the

collection of key-value pairs.

The connections between nodes represent the parent-child relationship in

which a parent node may have zero or more child nodes. The connections (edges)

between nodes are represented via consistently named attributes of nodes such as

children or parent. The root node of a tree is the only node with a null value for the

parent attribute. There are no constraints on the names of attributes that can be

used. Therefore, any aspect of openEHR RM data can be represented with an

attribute added to a node instance.

 136

The mapping from openEHR RM data instance to a tree is therefore

representing instances of the RM types as nodes of a tree.

...

{
id = 1

name = ‘composition’

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR…

children = [2,3,4,...]

parent = <null>

value = <null>

...

{
id = 4

name = ‘content’

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR…

children = [8,9...]

parent = 1

value = <null>

...

Figure 29: openEHR RM based data as tree

Figure 29 provides a high-level overview of this approach based on a visual

representation of RM based data. The data in this figure is based on the blood

pressure clinical model in Figure 20. The RM type instances are represented as

nodes of the tree on the right. The tree nodes with ellipsis represent a group of

nodes that are not included in full detail in the tree for the sake of clarity.

The root node of the tree represents the top-level object of the RM data with

the RM type COMPOSITION. The root node of the tree represents the

“composition” element of RM data. The attributes of the root node are partially

included in Figure 29 to demonstrate how node attributes are used. The id attribute

is the unique identifier of the node. The value of this attribute is used by parent and

children attributes of nodes to express parent-child relationships. The children

attribute of the root node is a collection of ids of its children, of which only the one

with id 4 is individually presented in Figure 29. The rm_type attribute contains RM

type of a data item, archetype_node_id contains the semantic identifier of a data

item as defined by the openEHR specifications and name attribute contains the

name of the field defined by the RM type. If an RM type has a field that contains an

actual numeric or literal value, this value can be represented by a node attribute

named “value”. The value of “value” attribute is null for nodes which do not have a

single, primitive value, as depicted in Figure 29.

The attributes of nodes of the tree in Figure 29 are only illustrative of the key-

value nature of the nodes and not the precise list of attributes that every node has in

the experimental implementation discussed in Chapter 9. These details are provided

in Chapter 8. The flexible nature of key-value pairs based nodes allows both RM

 137

data and other data that can be used by AQL processing implementations, such as

parent-child relationships, to be expressed in a simple way. The creation and

content of node level data is a key part of both this thesis and future research.

The tree based representation of RM based data provides the target for AQL

processing, which is built on a small number of operations on trees.

7.5.2: Tree-based Abstraction of AQL Processing

 The term AQL processing as used in this thesis refers to producing a result

set of RM based data instances in response to applying the conditions defined in an

AQL query on data. A tree based abstraction of AQL processing therefore implies

expressing the semantics of these conditions based on constraints on nodes of tree

based representation of RM. The conditions defined by an AQL query are

distributed across the fundamental clauses of AQL, with potential dependencies on

each other. The tree based abstraction is therefore developed based on the

“FROM”, “SELECT” and “WHERE” AQL clauses which are written in upper case in

the rest of this chapter.

7.5.2.1: The ‘FROM’ AQL Clause as Source of Constraints on Trees

Identifying tree nodes defined by the conditions of the FROM clause requires

two types of constraints to be applied: constraints on node attributes and constraints

on node hierarchy. Figure 30 shows how FROM clause of an AQL query is

associated with a tree that represents RM based data.

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e

...

{ id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

Figure 30: AQL FROM clause as constraints on a tree

A predicate such as [ehr_id=’1234’] for a data item corresponds to a

constraint on the tree node attribute ehr_id with value ‘1234’. The “EHR” type of the

 138

same data item in the FROM clause is also expressed as a constraint on “rm_type”

attribute.

The optional alias for the data item which is ‘e’ in this case is included in

Figure 30 for convenience but it is not a constraint and is not part of the mapping

from AQL to tree constraints. Since AQL assumes that an unquoted string in a

predicate is a constraint on archetype node identifier, the data items with aliases ‘c’

and ‘o’ can be written as c[archetype_node_id=’ openEHR-EHR-

COMPOSITION.encounter.v1’] which is consequently expressed as a constraint on

a node attribute as depicted in Figure 30.

The constraints on node hierarchy are introduced by the CONTAINS

keyword used in the FROM clause which expresses a “descendant of” relationship

between data items. That is, given a containment constraint such as A CONTAINS

B, there should exist a data item B that is accessible by recursively following child

nodes where A is the root node. In other words, B should be a descendant of A.

This definition includes direct parent-child relationships since they are also

ascendant-descendant relationships. Figure 30 shows the descendant status of

nodes via the use of dashed arrows which means there may be zero or more nodes

between a parent and its descendant.

7.5.2.2: The ‘SELECT ‘ AQL Clause as Source of Constraints on Trees

The SELECT clause introduces constraints on both node hierarchy and node

attributes as depicted Figure 31.

The SELECT clause uses the ‘o’ alias for the node identified in the FROM

clause as the root of a path that ends with a data item of interest that should be

returned as the result of the AQL query. In case of query in Figure 31, this item is

given the alias ‘Systolic’.

The ‘Systolic’ data item defined by SELECT clause can be expressed as a

series of hierarchical constraints on tree nodes similar to ones introduced by the

CONTAINS keyword. However, these constraints are parent-child relationships

between nodes as expressed by straight connectors in Figure 31. The nodes on the

path from ‘o’ to ‘Systolic’, including ‘Systolic’ node itself are subject to node attribute

constraints for the archetype_node_id attribute. ‘Systolic’ alias is included in the

diagram in Figure 31 for convenience, similar to ‘o’ alias, but it is not related to any

constraints.

 139

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e

...

{
id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

{
id = 36

name = ‘data’

...

archetype_node_id = ‘at0001’

{
id = 42

name = ‘events’

...

archetype_node_id = ‘at0006’

{
id = 49

name = ‘data’

...

archetype_node_id = ‘at0003’

{
id = 52

name = ‘items’

...

archetype_node_id = ‘at0004’

Systolic

...

...

...

...

...

Figure 31: AQL SELECT clause as constraints on a tree

7.5.2.3: The ‘WHERE’ AQL Clause as Source of Constraints on Trees

The WHERE clause allows AQL queries to introduce further constraints

either directly on data items defined in the FROM clause or data items accessible

through relative paths. These constraints can be constraints on hierarchy or

constraints on archetype attributes as shown in Figure 32.

Even though the sample query in Figure 32 points at a data element that is

defined in the SELECT clause (‘Systolic’), this is not necessarily the case all the

time. The AQL syntax and semantics allow the WHERE clause to point at any node

using a relative path based on the data items defined in the FROM clause.

Therefore, the WHERE clause may introduce constraints on data items that are not

included in the SELECT clause.

The example AQL query in Figure 32 actually uses this feature of the

WHERE clause to refer to a node named ‘value’, which is a child node of the

‘Systolic’ node. The ‘value’ node has an attribute named ‘value’, and a constraint is

placed on this attribute.

 140

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/value >= 90

o

c

e

...

{ id = 1

rm_type = ‘EHR’

ehr_id = ‘1234

{
id = 6

rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-

COMPOSITION.encounter.v1’

{
id = 18

rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-

OBSERVATION.blood_pressure.v1’

CONTAINS

CONTAINS

{
id = 36

name = ‘data’

...

archetype_node_id = ‘at0001’

{
id = 42

name = ‘events’

...

archetype_node_id = ‘at0006’

{
id = 49

name = ‘data’

...

archetype_node_id = ‘at0003’

{
id = 52

name = ‘items’

...

archetype_node_id = ‘at0004’

Systolic

...

...

...

...

...

{
id = 58

name = ‘value’

...

value >= 90

...

Figure 32: AQL WHERE clause as constraints on a tree

7.5.3: Mapping Tree-based AQL Processing to Tree Pattern
Queries

The mapping of AQL query clauses to constraints on hierarchy and attributes

of tree nodes establishes the AQL query semantics based on trees. However, the

discussion in 7.5.2 is a textual definition of these mappings, even though it is

supported by visual representation. This textual definition does not provide a means

of expressing constraints on trees that can be processed by software

implementation. Using the Tree Pattern Query (TPQ) representation, AQL queries

can be expressed in a compact and platform independent way.

7.5.3.1: Tree Pattern Query Representation

A TPQ (Lakshmanan, Wang, and Zhao 2006) is a specialised representation

that depicts the parent-child and ancestor-descendant relationships of nodes on a

tree. TPQ processing, also called TPO matching, applies a TPQ on a tree and

returns tree nodes that match the pattern defined by the TPQ.

The base TPQ representation for queries developed in this thesis expresses

the ascendant-descendant relationship between nodes using double edges, and the

 141

parent-child relationship with single edges following the definition from (Amer-Yahia

et al. 2001). This base representation is extended with constraints on node

attributes.

The use of TPQs to represent query semantics follows the same approach

as in Section 7.5.2, based on AQL query clauses.

7.5.3.2: Mapping Tree Constraints of FROM AQL Clause to TPQ

FROM clause of AQL introduces only ascendant-descendant constraints on

nodes in a tree, based on the CONTAINS keyword as depicted in Figure 30. Figure

33 provides an extension of this scenario: the TPQ representation of the FROM

clause with constraints on attributes in addition to constraints on hierarchy.

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1234

{
rm_type = ‘COMPOSITION’

archetype_node_id = ‘openEHR-EHR-

COMPOSITION.encounter.v1’

{
rm_type = ‘OBSERVATION’

archetype_node_id = ‘openEHR-EHR-

OBSERVATION.blood_pressure.v1’

TPQ

Figure 33: AQL FROM clause as a TPQ

Figure 33 shows that the constraints introduced by FROM clause can be

expressed with the TPQ semantics. For the purposes of clarity, the diagrams that

include TPQs do not show all the constraints on node attributes.

7.5.3.3: Mapping Tree Constraints of SELECT AQL Clause to TPQ

The SELECT clause may use relative paths to point at nodes based on the

nodes defined by the FROM clause. These relative paths may include predicates

which express constraints on node attributes.

In order to express relative paths with TPQ, the relative paths are

transformed to an ascendant-descendant relationship. This transformation relies on

the fact that every parent-child relationship introduced by the components of a path

is also an ascendant-descendant relationship. This transformation is complemented

by a constraint on an attribute, which uses the concept of a derived attribute. The

 142

value of the derived attribute is based on the relationship between the root of the

relative path and the last node on it: the absolute path of the last node on the

relative path can be obtained by following the relative path on top of the absolute

path of the root node. Figure 34 shows how relative path extension to TPQ is

represented.

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

o{
id = 18

...

path=’absolute_path_from_tree_root’

{
id = 36

...

archetype_node_id = ‘at0001’

{
id = 42

...

archetype_node_id = ‘at0006’

{
id = 49

...

archetype_node_id = ‘at0003’

{

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]’

Systolic

...

...

...

...

o

Systolic

id = 52

...

archetype_node_id = ‘at0004’

path=’…/data[at0001]/events[at0006]/data[at0003]/items[at0004]’

{

openEHR RM Data Tree
TPQ

Figure 34: AQL SELECT clause as a TPQ

Figure 34 shows the RM based data tree and TPQ side by side. Each node

on the tree has its absolute path from the root of the tree assigned to its path

attribute. The value ‘absolute_path_from_tree_root’ of the path attribute of node o is

a placeholder value used in the diagram for the purposes of clarity.

The node with the alias Systolic is reachable from o by following a series of

nodes. Therefore, its absolute path from the tree root can be obtained by taking the

absolute path of o and appending the relative path of each node on the path

recursively. The reachability of Systolic node from o also implies that it is a

descendant of o.

The TPQ in Figure 34 expresses this relationship through connecting

Systolic to its ascendant o with a double edge and introducing a derived attribute

constraint on a path by referring to the path value of o. Since TPQ represents a

pattern and not any specific RM based data tree instance, the value of o’s path

 143

attribute is referred to as path(o) which means that this value must be resolved by

the actual implementation of TPQ.

The only actual value used in the derived attribute is the relative path of

Systolic, which is available from the SELECT clause. This relative path is

independent of the actual absolute path of o and Systolic so it can be used in the

TPQ as it is. The underlying requirement for the derived attribute value approach is

that the absolute path of every node from the root is assigned to its path attribute.

The implementation details of this approach are discussed in Chapter 8.

7.5.3.4: Mapping Tree Constraints of WHERE AQL Clause to TPQ

 The WHERE clause of AQL can represent complex conditions for filtering via

the use of Boolean operators. Figure 35 depicts a rather simple example of the use

of WHERE clause, in which filtering criteria for a numeric value is defined using a

data item at a relative path to OBSERVATION o. In this simple case, the data item

pointed at by the WHERE clause is represented as an anonymous node in the TPQ.

The anonymous node uses the relative path representation approach in addition to

another constraint on an attribute named value.

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004] AS Systolic

FROM EHR e[ehr_id='1234']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/value >= 140

o{
id = 18

...

path=’absolute_path_from_tree_root’

{
id = 36

...

archetype_node_id = ‘at0001’

{ id = 42

...

archetype_node_id = ‘at0006’

{ id = 49

...

archetype_node_id = ‘at0003’

{

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]’

Systolic

...

...

...

...

o

Systolic

id = 52

...

archetype_node_id = ‘at0004’

path=’…/data[at0001]/events[at0006]/data[at0003]/items[at0004]’

{

openEHR RM Data Tree
TPQ

path= path(o) + ’/data[at0001]/events[at0006]/

data[at0003]/items[at0004]/value’

value >= 140
{

Anonymous ‘where’

constraint node

Figure 35: AQL WHERE clause as a TPQ

 144

The TQP representation is sufficient to express the fundamental semantics

of AQL clauses. However, the use logical operators for more complex queries as

well as various unspecified aspects of AQL processing requires further extensions

to basic TPQ representation.

7.5.4: Logical Operator Support in Tree Pattern Queries

The support for logical operators enables AQL queries to express complex

logic for accessing RM based data. The Boolean logical operators are supported in

the following ways in the AQL grammar:

• Combining CONTAINS expressions in the FROM clause

AQL provides support for expressing ascendant-descendant relationships

grouped together through AND, OR and NOT operators within the hierarchy

defined by the FROM clause. The AQL specification (Ma, Frankel, and Beale

2014) describes support for these operators as:

“Boolean operators (AND, OR, NOT) and parentheses are used when multiple

containment constraints are required.”

• Combining WHERE clause conditions

Multiple constraints can be introduced in the WHERE clause by connecting

these constraints using Boolean operators (AND,OR,NOT). The Boolean

operators can be used to connect path-constraint pairs, or they can be used to

express multiple constraints in a predicate.

• The unspecified behaviour of SELECT clause

AQL can define multiple data points as results. Even though the AQL syntax

does not explicitly define any Boolean operator support in this context, AQL

implementation needs to establish an implicit Boolean operator connecting

multiple data items.

Previously developed mappings from AQL to TPQ representation cannot

express queries which use these Boolean operators without extensions. The scope

of extensions to TPQ representation to support Boolean operators is limited to AND

and OR Boolean operators due to time constraints and rather frequent use of these

operators. The draft AQL specifications include NOT and XOR operators as well.

The extensions to TPQ representation are discussed based on an extended

version of the previously used AQL query, along with an openEHR template that is a

modified version of the one depicted in Figure 20. The modified template defines a

clinical encounter as before, but body mass index (BMI) concept has been added

 145

alongside the blood pressure measurement. Figure 36 contains a screenshot of this

clinical template, which is used as the target of the AQL query with Boolean

operators.

COMPOSITION

OBSERVATION

OBSERVATION

[openEHR-EHR-COMPOSITION.sample_encounter.v1]

[openEHR-EHR-OBSERVATION.body_mass_index.v1]

[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

 Figure 36: Extended openEHR template

7.5.4.1: Expressing Boolean Operators for FROM Clause in TPQs

The use of AND or OR Boolean operators within the FROM clause requires

that the relationship between sibling data items are explicitly defined. The template

in Figure 36 has a COMPOSITION with two OBSERVATIONS. An AQL query that

selects both OBSERVATION data items is provided in Figure 37.

The query in Figure 37 selects two different data items, both having the

same RM type: OBSERVATION. It is targeted at the clinical model represented by

the template on the right and it needs to define the bmi and bpressure data items in

the FROM clause so that they can be expressed as query results in the SELECT

clause. The structure of the template makes body mass index and blood pressure

data items siblings under the content field of the parent archetype (Encounter).

The query uses parenthesis and AND Boolean operator to explicitly describe

the structure of the data the query is targeting. The Boolean operator is required to

clarify the relationship between bmi and bpressure. Without this operator, AQL

implementation could process data instances where there is only bmi data item

(assuming OR) and another implementation could exclude the same data instances

 146

(assuming AND). Therefore, when the TPQ contains multiple data items with a

shared parent the interpretation for their existence must be explicitly expressed

using Boolean operators.

SELECT bmi,bpressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

AND

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

Figure 37: AQL with Boolean operators

This thesis uses a node representation of logical operators similar to (Izadi,

Härder, and Haghjoo 2009) for containment constraints defined by the FROM

clause. Figure 38 provides this representation based on the query from Figure 37.

SELECT bmi,bpressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

AND

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

AND

bmi bpressure

enc

TPQ

Figure 38: AQL with AND operator and its TPQ representation

Figure 38 depicts the AQL query, the template and the resulting TPQ for the

FROM clause. The rectangular AND node is used to define the structural constraint

 147

with a Boolean operator. The AND node is connected to ‘enc’ node with double

edges to maintain the ascendant-descendant relationship, but it is connected to its

operands with single edges to emphasize that they are operands of the AND node.

The AQL query could have used OR operator in the CONTAINS statement which

could then be expressed with the TPQ representation in Figure 39.

SELECT bmi,bpressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

OR

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

OR

Figure 39: AQL with OR operator and its TPQ representation

The semantics of the connections of the OR node with other nodes in this

diagram is the same as the AND node in Figure 38: the ascendant-descendant

relationship is preserved by the OR node. Recursive uses of logical operators in the

FROM clause can be expressed in the TPQ representation following the same

pattern.

7.5.4.2: Expressing Boolean for SELECT Clause in TPQs

AQL specification does not include support for logical operators for the data

items defined in the SELECT clause. However, consistent interpretation is required

for these items in the context of TPQ representation. The data items defined by the

SELECT clause are based on the ones defined by the FROM clause. They can be

the same, or they can be descendants, which are accessible via relative paths. The

TPQ representations of constraints on hierarchy and attributes that are introduced

by SELECT clause have been discussed in Section 7.5.3.3. However, these

constraints actually require special treatment because of the unspecified semantics

of AQL query processing behaviour.

 148

When there are multiple data items defined in the SELECT clause, AQL

processing implementation may or may not allow returning empty values for the

items that cannot be found in data. Figure 40 depicts various RM based data

instances in tree form along with a TPQ that has data items introduced by the AQL

SELECT clause.

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

AND

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

e [ehr_id=’1234’]

enc

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value

pulse_pressure

RM BASED DATA

INSTANCES

AND

Figure 40: AQL SELECT clause with multiple data items

Figure 40 includes an AQL query that selects the bmi value and pulse

pressure value based on the encounter template that has been used in Figure 36.

The TPQ representation of the query includes ‘bmi_value’ and ‘pulse_pressure’

nodes in the TPQ using the descendant representation. The data instances on the

right of the diagram in Figure 40 represent two different encounters during which

RM based data instances have been created. However, the pulse pressure was not

recorded in Encounter 2. Since the openEHR template defines pulse pressure as an

optional value, these two data instances are both valid.

The TPQ here interprets the relationship between “bmi_value” and

“pulse_pressure” nodes and their parents based on the same semantics expressed

by the CONTAINS statement in the FROM clause. That is, the existence of a

 149

“bmi_value” node somewhere below the “bmi” node is a condition that has to be

satisfied by a data tree for that tree to provide a match for this TPQ. The same

requirement exists for “pulse_pressure” and “bpressure” nodes. Therefore,

Encounter 2 would not be considered a match for this TPQ.

This TPQ implies an AND operation on the nodes based on the AQL

SELECT clause. The AND semantics is not explicitly defined by the AQL query but

arises due to the way these nodes are included in the TPQ structure.

If the expected behaviour of the AQL processing implementation is to return

pulse_pressure as an empty value for Encounter 2, the TPQ would be expressing a

structural condition that would not correctly represent the expected implementation

behaviour. This conflict reveals the requirement to distinguish TPQ nodes

introduced by the SELECT clause from the ones introduced by the FROM clause.

Data trees that cannot satisfy the constraints on the hierarchy of the nodes

introduced by the FROM clause should not be included in further processing.

However, data trees that fully satisfy these constraints but only partially satisfy the

constraints introduced by SELECT clause may be included in the results based on

configuration of query processing or AQL implementation’s preference of one

interpretation of SELECT clause over the other.

The interpretation that allows empty values to be returned for data items

defined in the SELECT clause requires the TPQ to distinguish between nodes

introduced by FROM and SELECT clauses. In this case, SELECT clause based

nodes have an optional structural constraint, termed “optional containment” in this

thesis. There is also a requirement to discard data instances in which none of the

optionally contained TPQ nodes introduced by the SELECT clause exists.

Therefore, this interpretation can be expressed by adding optional constraints on

the hierarchy of nodes introduced by the SELECT clause nodes along with a

Boolean operator that eliminates data instances that contain none of these nodes.

Figure 41 depicts this approach.

Figure 41 depicts the optional constraint on hierarchy using dashed edges to

‘bmi_value’ and ‘pulse_pressure’ nodes from their respective parents. The OR

Boolean operator ensures that data trees that contain none of the nodes from the

SELECT clause are not returned since the existence of none of these nodes would

result in a false Boolean value. This OR operator checks the existence of its

operands and not their containment under their parents.

Introducing this OR operator node to the TPQ changes its structure from one

in which each node in the TPQ has a single parent to one in which some nodes

 150

having multiple parents, such as ‘bmi_value’ having ‘bmi’ and the OR operator node

as parents.

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

AND

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

bmi bpressure

enc

TPQ

e [ehr_id=’1234’]

enc

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value

pulse_pressure

OR

RM BASED DATA

INSTANCES

AND

Figure 41: AQL SELECT clause: logical OR interpretation

7.5.4.3: Expressing Boolean Operators for WHERE Clause in TPQs

The WHERE clause supports the use of Boolean operators for connecting

constraints on the data items it defines in addition to the capability to use nested

Boolean operators. The optional containment representation is used for nodes

introduced by the WHERE clause. The details of this requirement are discussed in

depth in Chapter 8.

Figure 42 extends the query in Figure 42 with a WHERE clause that

introduces multiple constraints. Figure 42 depicts an AQL query with three

conditions in the WHERE clause which makes use of grouped Boolean operators.

The diagram in this figure shows how Boolean operator nodes for WHERE clause

constraints are represented in the TPQ, extending the previously introduced implicit

OR operator based on the SELECT clause. For the purposes of clarity, attribute

constraints are not explicitly depicted in the diagram in Figure 42.

 151

SELECT bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004] as bmi_value,

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007] pulse_pressure

FROM EHR e[ehr_id=’1234’]

CONTAINS COMPOSITION enc[openEHR-EHR-COMPOSITION.sample_encounter.v1]

CONTAINS

(

OBSERVATION bmi[openEHR-EHR-OBSERVATION.body_mass_index.v1]

OR

OBSERVATION bpressure[openEHR-EHR-OBSERVATION.sample_blood_pressure.v1]

)

WHERE (

bmi/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value/value > 20

OR

bpressure/data[at0001]/events[at0002]/data[at0003]/items[at1007]/value/value > 30

)

AND

enc/name/value matches {‘gp_bp_bmi_encounter’}

bmi bpressure

enc

TPQ

OR

e [ehr_id=’1234’]

enc

bmi bpressure

bmi _value

pulse_pressure

e [ehr_id=’1234’]

enc

bmi bpressure

bmi_value

Encounter 1

Encounter 2

bmi_value pulse_pressure

RM BASED DATA

INSTANCES

OR

AND

OR

name

name

value value

value

Figure 42: AQL WHERE clause with Boolean operators

 The optional containment extension to TPQs is required for the TPQ to

return values from the Encounter 2 data tree, as intended. Since the Encounter 2

data tree does not have the pulse pressure node, it also does not have the value

node which would be a child of it. If the TPQ expresses the relevant constraint’s

node with a mandatory descendant connection to ‘bpressure’, the Encounter 2 data

tree would be incorrectly excluded from query processing.

7.6: Relevant Research

The tree based abstraction developed in 7.5 aims to deliver the benefits of a

flexible representation for RM based data. This approach leads to an openEHR

specific model for persistence, but this specialisation does not necessarily mean

 152

that outcomes of wider research on the underlying tree representation cannot be

used.

Where available, findings from research on trees and operations on trees

can offer the possibility of improving various aspects of the approach developed in

7.5 A review of tree processing methods has been performed to this end, with an

initial focus on literature on XML processing. XML’s successful use for representing

openEHR data hints at the possibility of adopting research related to processing its

underlying abstractions to improve the TPQ based AQL processing approach.

 Improving the performance and capabilities of XML processing is an active

topic of research. The use and processing of XML are relevant in a number of other

fields of research, including but not limited to information retrieval, large-scale data

processing and database systems, mostly due to XML’s ubiquitous nature.

A relatively recent review of tree matching in the context of XML retrieval,

(Tahraoui et al. 2013) provides a list of widely used methods for both exact and

approximate matching. The exact matching methods covered in (Tahraoui et al.

2013), described as structural and holistic join methods, along with sequential

matching methods, provide a number of options for implementing the TPQ matching

developed in Section 7.5.

The structural join approach to twig pattern matching is defined as follows in

(Tahraoui et al. 2013):

“… (1) decomposition, (2) matching and (3) merging. Firstly, a twig pattern is
decomposed into a set of basic parent–child and ancestor–descendant relationships
between pairs of nodes. In the second phase, each binary relationship is separately
executed using structural join techniques and its intermediate results are stored for
further processing. The final result is formed by merging these intermediate results.
…”

The definition of twig patterns from the same study is:

“twig patterns, i.e., small trees”

The structural join approach is considered as an improvement over the

traversal methods, which adopt the approach of walking the nodes for the target of

the query one by one. As (Al-Khalifa et al. 2002) shows, as the size of the target for

search operation grows the performance of traversal methods decreases.

The relational database implementation approach to structural joins (Al-

Khalifa et al. 2002) is usually considered less efficient than specialized XML

databases such as TIMBER (Jagadish et al. 2002). However, discussion of

 153

‘containment queries’ (Zhang et al. 2001) using relational databases provide insight

into implementation of applying constraints on hierarchies, which is relevant to TPQ

based implementation of AQL. In depth analysis of the reasons behind performance

problems with use of relational databases for queries on XML (Zhang et al. 2001)

shows that various extensions to relational database features can improve

performance:

“While it is premature to make concrete predictions, we are optimistic that by
combining better join algorithms with better cache utilization, an RDBMS will be able
to natively support containment queries efficiently”

The use of relational databases for processing XML, such as using mappings

from XPATH to SQL, is not always considered inefficient (Tatarinov et al. 2002) and

there are many studies that present methods for representing XML data in a

relational setting (Harding, Li, and Moon 2003).

 Despite their performance advantages over traversal methods, the structural

join methods introduce the problem of generating a high number of intermediate

nodes as a result of repeated join operations between the components of the query

patterns. A family of tree matching methods classified as holistic twig matching deal

with this problem using special data structures to decrease the number of

intermediate results (Tahraoui et al. 2013).

A significant amount of research for XML processing focuses on introducing

either variations of families of algorithms outlined in (Tahraoui et al. 2013) or

developing various indexing or processing methods to improve the performance of

existing approaches. Examples of such studies include using a look-ahead

approach to improve holistic join performance (Lu, Chen, and Ling 2004), using

structural indexes to decrease number of intermediate results (T. Chen, Lu, and

Ling 2005), encoding tree structures in a relational database (Weigel, Schulz, and

Meuss 2005), using indexing methods for high performance XML retrieval in

relational databases (Weigel et al. 2003) as well as developing indexing methods

and labelling schemes for tree pattern matching (H. Wang and Meng 2005), (Rao

and Moon 2004), (H. Wang et al. 2003), (Lu et al. 2005), (Lu, Meng, and Ling 2011),

(Barbay 2005), (Arion et al. 2007).

Research on efficient implementation of query languages for XML content

provides methods that are applicable to tree structured data such as using indexes

based on the trie data structure (Bodon and Rónyai 2003) for XPath query

processing (Brenes et al. 2008) or extracting tree patterns from XQuery queries for

faster query processing (Arion et al. 2006).

 154

 The query languages for XML content are implemented via different

methods. The introduction of formal methods for implementing these languages

involves dealing with language features that are significantly more complex than the

features offered by AQL at the time of the writing of this thesis. Results of research

on implementing these languages partially or fully, based on formal representation

and methods, is potentially useful for implementing AQL processing based on the

tree based approach. Partial Tree Pattern Queries (PTPQ)(X. Wu et al. 2011),

(Theodoratos et al. 2006), Generalized Tree Pattern Queries (GTPQ) (Zeng, Jiang,

and Zhuge 2011) and development of a special pattern matching language

(Benzaken, Castagna, and Miachon 2005) are examples of research that focuses

on features of these XML query languages.

The above studies show that the benefits realised through querying XML

data with specialised languages have prompted a significant amount of research on

methods for improving performance and integrating these languages into other well-

established frameworks such as relational databases. Developing indexing methods

and algorithms that improve performance of a particular aspect of a query is a

common research topic.

Much existing research can be used to improve various aspects of the

implementation of the openEHR persistence abstraction. In particular, methods for

integrating XML content and query languages into relational databases can help in

development of a relational database implementation that solves the design

problems encountered with the pilot Opereffa framework, as discussed in Section

6.3. Wider research focused on specific aspects of queries on tree content, such as

ascendant-descendant or parent-child relationships, will inform adoption of

specialised algorithms for AQL processing, based on operations on trees.

In summary, tree based persistence abstraction is considered a valid

approach to meeting the requirements identified in Section 7.1, while also bringing

significant benefits from wider existing research findings.

7.7: Summary

The motivation for building a persistence abstraction for openEHR stems

from the requirement to implement this key functionality for openEHR based on

different options. Recent research has been delivering high-performance,

specialised persistence systems for handling large data sets, based on distributed

 155

computation to facilitate machine learning and data analysis, and complementing

the capabilities of existing persistence systems such as relational databases.

Being able to implement openEHR persistence across a variety of

persistence systems has been identified as a promising approach to support

openEHR and CDS integration in a large number of settings, with the goal of

making use of the comparative advantages of the underlying frameworks. This

approach provides the bridge between electronic health records and research on

scalable machine learning which in turn allows further research on the intersection

of two major topics of research.

The feasibility of related implementations must be improved to enable the

use of openEHR on multiple persistence systems. To this end, a new tree

representation of RM based data was developed and TPQ representation chosen

as the method for expressing AQL semantics using trees. This approach satisfies

the requirements for expressiveness, extensibility, feasibility of implementation,

consistent representation and scientific relevance identified in Chapter 7.

This chapter described a novel tree-based abstraction method, designed to support

a multi-persistence system architecture for consistent openEHR and CDS

integration. This is further explored experimentally in Chapter 9, with an

implementation of this method for persistence of openEHR RM data, for a CDS

based on a BN created for analysis of clinical data in the domain of ophthalmology.

 156

Chapter 8: XINO Architecture for Persistence

This thesis explores the feasibility of an openEHR based CDS architecture

via an experimental approach. The term “openEHR based architecture” means

using all the support openEHR specifications provide for computable health for the

components of the architecture whenever possible.

 A unifying aspect of both clinical care and CDS use cases is data access.

Even though openEHR methodology can be followed for design and implementation

of both clinical information systems and CDS functionality, orthogonal data access

patterns may require switching from an openEHR based approach to a more

implementation and platform specific one based on the requirements.

 Even though this specialisation may be required to benefit from the strengths

of a particular technology such as document database or a distributed file system, it

is a step back from the conceptual integrity of openEHR. An interesting research

question is therefore, would it be possible to preserve the use of openEHR concepts

for data access across different use cases and data volumes.

 The tree-based persistence abstraction developed in Chapter 7 is the first

component an openEHR persistence framework called XINO that has been

developed to answer this question. The second component of XINO is the mappings

from the tree structures and operations on them to functionalities of various

persistence systems. The design goal behind XINO is to introduce a small number

of operations that can be implemented across a variety of persistence systems,

which leads to an openEHR persistence implementation.

 Two key requirements must be fulfilled in order to achieve this design goal:

RM based data needs to be persisted based on a representation that can be

supported by different persistence systems and a number of previously defined

operations on data must be implemented using the features of the target

persistence system. The implementation used in this thesis is based on Postgresql

relational database server (Momjian 2001).

 The choice of a relational database as the target persistence system for

implementation is intentional. Relational databases are used extensively in

information systems implementation across a wide range of domains and due to

their maturity, stability and emphasis on data consistency they are regularly used in

healthcare information systems.

 However, despite their capabilities relational databases present a

challenging option for healthcare data modelling. The underlying relational model

 157

(Codd 1970) can become too verbose and complicated when it comes to

representing clinical data and performing operations on it, potentially introducing

performance problems as well. It is worth mentioning that specialised software

frameworks that can deal with characteristics of clinical data have been under

development since as early as 1966. The development of MUMPS system (Bowie

and Barnett 1976) at Massachusetts General Hospital, pre-dates Codd’s hugely

influential paper by 4 years and its derivatives are still used in successful, large-

scale health information systems such as VistA (Brown et al. 2003).

Data creation and manipulation in relational database implementations are

subject to more strict constraints in a relational database compared to persistence

systems that handle large amounts of data such as Hadoop (Borthakur 2007).

Relational databases provide strong support for data consistency, but this support

leads to limits on performance as data size grows. Most of the recent large scale

persistence systems are able to overcome performance and scalability limitations of

relational databases by waiving guarantees provided by relational database

implementations. Concepts such as eventual consistency (Vogels 2009) enable

large scale distributed persistence systems, often characterised with the term

‘NOSQL’, to handle large volumes of data (Cattell 2011)

Therefore, due to both relational data modelling challenges and potential

performance problems of relational databases encountered during processing of

hierarchical data (Celko 2012), relational database implementation is probably the

most exigent configuration for XINO.

 The primary reason for choosing Postgresql for the particular XINO

implementation used in this thesis, despite these challenges, is the size of the

industry and research community that works on relational databases. A relational

database implementation of XINO that can adequately support data access

scenarios for both clinical care and machine learning provides a versatile openEHR

based platform using a single persistence system. Therefore, this thesis has

explored the feasibility of such a configuration by implementing XINO on a

Postgresql database server.

8.1: Design Principles for Persisting openEHR Data in a
Relational Database

The flexibility of relational algebra (Codd 1970) presents a number of options

for persisting openEHR data in a relational database. Implementation specific

extensions provided by different relational database servers increase the number of

 158

these options if implementers decide to trade portability in exchange for benefits of

specialisation.

It is not possible for this thesis to cover all options for persisting openEHR

data in a relational database when an experimental approach based on

implementation is adopted. Both the time frame and the skill set that would be

required would be unattainable. However, a few guiding principles are used to arrive

at a XINO based persistence design in a relational database. Different approaches

to a relational implementation of XINO can be used, as long as they comply with

these principles.

 The first design principle, probably the one with the highest priority, is

handling changes in the structure of data. openEHR is designed to represent a

potentially infinite number of clinical concepts using a small number of data types,

so not including this characteristic in persistence design is bound to produce an

unmanageable implementation. Since data in a relational database must reside

within tables defined by a schema, arrival of clinical data with continuously changing

structure should not require changes to the database schema. Even though these

changes could potentially be accommodated programmatically, i.e. new schemas

and tables could be generated based on openEHR models that create the data,

there is still the problem of not having an upper bound on the number of schemas

that may be required. Therefore, a database schema that is resilient to changes in

the structure of data is a crucial requirement from a design point of view.

 The second design principle, which is introduced by this thesis’ attempt to

explore limits of openEHR in supporting both clinical care and CDS scenarios, is

applicability to most, if not all persistence systems that can be considered as

alternatives to relational databases, especially for machine learning tasks. This

applicability is required to ensure that data volume does not introduce limits on

functionality and use of a relational database is built on an approach that can be

used with alternative persistence systems.

 The third design principle, which could be considered implicit in any

information system implementation, is performance. The persistence design should

consider users’ performance expectations from the openEHR implementation for

both clinical care and CDS functionality. Precisely defining performance in settings

as behaviourally complex and diverse as clinical information systems and CDS

implementations, made even more complex by factors such as data volume,

security, etc. is hard, if not impossible. However, this does not mean that

performance can be dismissed as a design principle.

 159

Conforming to these design principles for a large number of use cases

defined by clinical information systems and CDS implementations is a challenge.

Furthermore, these principles may conflict at times. Therefore, this is a

multidimensional optimisation task; a particular implementation may choose to put

more emphasis on a single principle.

8.2: Relevant Research

The Postgresql based implementation of XINO consists of mappings from

the tree representation of data and TPQs (as described in Chapter 7) to relational

data and SQL. This approach has been developed and improved through extensive

experimental implementations, guided by the design principles set by this thesis,

and relevant published research. Two pertinent lines of research provide valuable

insight into how XINO’s design goals can be accomplished: representing clinical

data using the Entity-Attribute-Value (EAV) model and querying XML documents,

especially in relational databases. As with the development of the abstract data

representation for openEHR, the findings from these lines of research may not be

directly applicable to a relational database based implementation, but they can be

adopted and used for implementations based on other persistence systems.

8.2.1: EAV Approach to Relational Persistence

Persisting and processing data that has highly variable structure without

having to make changes to the underlying relational database schema is a

frequently arising requirement in software development. The diversity of both the

type and structure of clinical data implies that clinical information systems design

and implementation must often fulfil this requirement except in cases of systems

targeting very limited clinical scope.

A particular relational data model that has been used extensively in clinical

data representation, with the aim of addressing this requirement, is EAV. This model

provides a high level of flexibility via representing Entities (such as a patient, an

operation or any clinical concept), Attributes (such as age and gender of the patient)

and Values (such as 33, the actual numeric value of a patient’s age attribute) at the

database level with three tables in its most common form. Derivatives of this most

common form may use slightly different table structures.

This approach allows any concept to be defined at the database level by

creating an entity, assigning attributes to it and creating data instances with actual

data values that reference these entities and attributes. Change to domain

 160

concepts, such as adding a new attribute, consists of inserting a new row to the

attributes table. Following this step, new data instances with this attribute can be

created by inserting a value for the attribute with a reference to its definition in the

attributes table.

Discussions about this modelling approach regularly emphasise its

shortcomings, especially in long-term management of data and performance

problems associated with a large number of join operations, which are required to

retrieve concepts that are represented as highly granular data items in the

database. It is remarkable that despite heavy criticism and discouragement (Celko

2012) EAV modelling and its derivatives have found significant use in clinical data

processing with relational databases.

The use of EAV and related approaches focusing on generic relational

database schemas for clinical systems implementation has been evaluated in depth

by various studies, taking into account the characteristics of clinical data, with a

more detailed approach compared to the rather generic treatment of (Celko 2012).

These studies provide both positive and negative aspects of generic

relational modelling for clinical data. (Helms and McCanless 1990) questions the

suitability of relational databases for hierarchical clinical trial data, while (Johnson

1996) presents generic data modelling as a promising approach. As more

implementations that use generic and EAV influenced designs emerge during the

90s, in parallel to the larger adoption of relational databases, methods for dealing

with its shortcomings and problems are developed, for example for querying EAV

data in biomedical databases (Nadkarni 1997).

Making use of automatically generated SQL is one such method, which can

be implemented in a number of ways, such as developing a query kernel that

generates SQL queries on an EAV database by making use of metadata (Nadkarni

1998). The use of metadata can be seen as a precursor of capabilities provided by

AQL, in the sense that it allows query operations to be defined without the details of

the actual relational design.

The extension of pure EAV to EAV/CR (Classes and Relationships)

(Nadkarni et al. 1999) is another attempt to improve the EAV approach by making

use of object-oriented data modelling. Despite having query performance

disadvantages (R. S. Chen et al. 2000), this unified approach introduces a

consistent domain modelling practice for EAV design and implementation.

However, the integration of object oriented concepts with an EAV design is

not without challenges, as expressed in the following quote from (Dinu and Nadkarni

2007):

 161

“Typically, not all classes in the data will meet the requirements for EAV modeling.
Therefore, production schemas tend to be mixed, with a given class represented in
either conventional, EAV or hybrid form as appropriate. The introduction of an EAV
component to the schema, however, mandates the creation of a metadata
component to capture the logical data model for the EAV data: in the absence of
this, the EAV component is essentially unusable. The necessity (and difficulty) of
creating a complex meta-schema, as well as a code framework that is driven by it, is
one of the major factors that has inhibited the more widespread use of EAV data
models: the availability of open-source schemas and frameworks may gradually
change this.”

The challenges of making use of well-defined domain concepts for EAV

representation leads to hybrid approaches that use both EAV and rather traditional

relational design (Dinu, Zhao, and Miller 2007). The requirement to establish a

method for mapping the domain models to EAV representation of data is discussed

in healthcare specific cases as well, such as extracting data from an EAV based

EHR system to a format based on ISO/EN 13606 (ISO/EN 13606 2012) archetypes

(Duftschmid, Wrba, and Rinner 2010). These studies show that using object

oriented concepts to overcome data representation problems of the EAV model is a

valid approach supported by research.

 EAV’s widely acknowledged performance issues have also been targeted by

research. An adaptation based on the characteristics of data access can help in

improving the performance of the EAV approach. Approaches such as extending

the EAV model for read-only data warehouse implementations (Paul and Hoque

2011) assume particular access patterns, which enable design extensions to EAV

that perform better.

Even though clinical information systems are normally used to perform

patient-centric queries during clinical care, i.e. not fetching records of multiple

patients, the nature of the clinical care process itself favours a similar “read-

optimized” data access scenario. Patient care frequently includes access to a

patient’s medical history, which requires most, if not all the patient data to be

accessed. As medical data accumulates in the patient’s EHR, large volume reads

are bound to happen, with relatively far fewer writes; each care episode may write

some data, but it is likely to read all data that has been created before. This

assumption makes read optimized EAV design a strong option for clinical

information systems and CDS implementation.

 Due to its flexibility, EAV model can also represent hierarchical

characteristics of data by expressing parent-child relationships between data items

by defining attributes such as ‘parent’ or ‘children’. However, in a relational

 162

database setting, this approach may lead to an arbitrary number of join operations,

dependent on the complexity of the hierarchical relationships defined in the queries,

and lead to significantly decreased performance as either the query complexity or

data volume increases (Löper et al. 2012).

 A high level decomposition of the topics covered in these studies revealed a

number of key findings. First, despite being subject to criticism and suffering from

well-known performance and data management issues for almost 25 years, the EAV

design is still not obsolete. It is still considered as a design option for clinical data

persistence with various extensions and modifications to help deal with the chronic

problems it introduces. This is most probably due to the highly volatile structure of

clinical data. Apparently, dealing with this volatility is so important that implementers

are willing to forgo the performance gains that could be provided by less generic

database schemas.

 Second, building better defined representations of the clinical concepts is

accepted as an improvement over the simplest EAV model. These improved

representations provide mechanisms for data transformation, data extraction or

improved query capabilities.

 Finally, even though high level tools can isolate users from the complex SQL

queries that would be required to access EAV data, the fundamental mechanism of

table joins that must be used to build query results cannot be avoided. This

introduces an inevitable performance problem, which would be further aggravated

by the handling of hierarchical aspects of the data in an EAV model.

 Ignoring for the moment the performance issues, re-evaluating these

research findings in the light of the new assumption that all clinical data will be

based on openEHR models, presents multiple new opportunities for improving an

EAV based implementation.

The primary reason for opting for an EAV model for persistence - dealing

with the structural volatility of data - is handled by openEHR by design. The

openEHR RM guarantees that no clinical data instance will introduce a new entity

type or attribute since all data is built of combinations of highly reusable types,

brought together via archetypes. Therefore, the entity and attribute definitions are

known in advance for every possible clinical data instance.

The type system introduced by the RM can be used to codify an EAV

representation in advance, before any data is committed, and this encoding can be

used to generate SQL queries automatically. The results from these queries will

then populate instances of RM types without any need for semantic mapping, as

would be required by some of the approaches mentioned previously. Therefore, the

 163

openEHR RM and its type system can significantly eliminate one of the well-known

problems of an EAV design. The openEHR RM can also improve the applicability of

an EAV model to other persistence systems since the Entity and Attribute

components of EAV can be encoded and kept out of the persistence layer, leaving

only Value as a list made of most basic types representing actual data. This is a

representation that can be supported by many persistence technologies including

non-relational ones.

 Not all aspects of an openEHR based approach to EAV are an improvement

on the more traditional implementation. openEHR already offers a query language,

AQL, which would be the natural choice to isolate users from writing SQL queries

against the EAV. This is another improvement over various, case-specific

approaches developed in other studies, but AQL queries have a strong focus on the

hierarchy of data. Therefore, arbitrary join operations for enforcing the hierarchy

constraints expressed in high level AQL would inevitably introduce performance

issues.

 Therefore, an openEHR based approach to an EAV design offers significant

improvements, but in the context of relational databases some critical problems still

remain, mostly around the difficulty of managing hierarchical aspects of structural

data in a relational database. This difficulty is not specific to an EAV context -

representing clinical data in a relational database is a frequently encountered

requirement that can be interpreted as a particular instance of a more generic

requirement, which is representing hierarchical data in a relational database.

This requirement has been studied in depth in its more general form due to

the natural occurrence of hierarchical data in many domains. There are both

relational data modelling approaches as discussed in depth in (Tropashko and

Burleson 2007) and (Celko 2012) as well as custom extensions to the SQL

language provided by relational database vendors. The methods discussed in both

(Tropashko and Burleson 2007) and (Celko 2012) have wide applicability in a large

number of scenarios. However, another field of research also provides a large

number of results that are closely related to processing TPQs (which is how we

represent AQL) as defined in Chapter 7: processing XML queries.

8.2.3: XML Query Processing

Processing of XML queries via query languages such as XPath (Clark and

DeRose 1999) and XQuery (Boag et al. 2002) has extensive research associated

 164

with it. Matching patterns in XML content has been studied in depth, due to XML’s

ubiquitous use in data exchange and storage. Research in this field focuses on

processors for XML query languages, and storing XML in relational databases and

native XML databases as well as in big data frameworks.

The results of these studies are relevant to the requirement of handling

hierarchical aspects of AQL queries because the abstract design for AQL

processing developed in Chapter 7 is similar to XML content processing. Moreover,

these studies provide insight into both the specific scenario of storing XML content

in a relational database and rather abstract algorithms that can be used in many

implementation contexts beyond relational databases. Therefore, these findings can

be used in multiple implementations of XINO, based on both relational databases

and other persistence systems.

Current capabilities of AQL, especially in terms of expressing hierarchical

relationships between query elements is functionally a subset of the capabilities

supported by XPath and XQuery for the same purpose. Therefore, various methods

and algorithms developed for XML processing, both in relational databases and

other environments, may be considered insufficient to formalise or support complete

scope of specialised XML processing languages but they may offer more utility in

case of rather limited tree pattern matching cases for AQL processing.

Research publications on XML processing that are relevant to handling

hierarchical aspects of AQL queries can be classified into two groups, in the context

of a relational database based XINO implementation: relational and non-relational.

The studies in the former group assume that XML is processed through use of a

relational database, which implies use of SQL and widely supported database

features such as indexes, while those in the latter group adopt a rather relaxed

assumption regarding the means available for operations on XML content. This

does not imply that studies in the second group are irrelevant though; modern

relational databases support extension mechanisms to SQL that allow access to

mainstream programming languages. Therefore findings from both these groups

can be used in a relational database implementation.

(Zhang et al. 2001) discusses supporting “containment queries” in relational

databases, defining the core concept of this study as follows:

“By “containment query” we mean queries that are based on the containment
and proximity relationships among elements, attributes, and their contents.”

This definition refers to components of XML content and (Zhang et al. 2001)

discusses both performance issues and benefits of implementing queries that fall

 165

within this definition. The approach to XML content representation adopted in this

study of SQL based implementation of containment queries has some noticeable

features in the context of XINO.

First, the representation uses an encoding of XML content that is aimed at

efficiently performing containment queries. Use of an inverted index that encodes

positions of elements in a document provides a more efficient means of answering

hierarchical queries compared to simply expressing parent-child relationships in an

EAV setting. Second, aside from this difference in handling hierarchy information,

the representation of XML content in (Zhang et al. 2001) bears resemblance to an

EAV approach, in the sense that the same relational schema can be used to persist

any XML document without changes to it. Despite the performance problems it

uncovers, this study concludes with an optimistic view of the use of relational

databases for containment queries.

 The data representation in (Zhang et al. 2001) is strongly influenced by the

nature of the queries their study focuses on. Therefore, the representation of XML in

this study is not a strong candidate for a generic representation method.

Representation of XML content in relational databases is a well explored

research topic, which has produced many methods for this purpose.

(Shanmugasundaram et al. 1999) discusses document specific representation of

XML content in relational databases, based on the XML schema. Similarly,

(Florescu and Kossmann 1999a) and (Florescu and Kossmann 1999b) discuss the

relationship between various XML storage options in a relational database along

with query performance using SQL. (Bohannon et al. 2002) establishes a cost-

based optimisation method for finding the optimum relational representation of XML

schemas where cost is defined by SQL query costs. (Du, Amer-Yahia, and Freire

2004) uses annotations of XML schemas to create the relational representation.

Using XML schemas for constructing relational representation and querying is not

always a straightforward method; it can lead to issues in query translation to XML

form when XML schemas are recursive in nature (Fan et al. 2005) .

 The different approaches to persisting XML employed by these studies show

that whether to consider XML schema information or not for relational

representation is very much a design choice. (Yoshikawa et al. 2001) defines these

design options as “Structure-mapping approach” and “Model-mapping approach”;

the former referring to XML schema driven relational schema construction and the

latter referring to a fixed relational schema for all XML content. (Yoshikawa et al.

2001) uses the latter approach based on two key pieces of data: the full path of

every XML node from the XML content root is used, along with a region encoding of

 166

nodes to represent XML content. Another important aspect of XML storage in

relational databases, re-building either partial or complete XML documents from

their relational representation, is also discussed in (Yoshikawa et al. 2001). The

method used for handling this requirement is to keep the entire text of XML content

along with its encoded form.

The approach based on keeping both XML content and its relational

representation in the database is reported to be implemented by a well known

commercial relational database server product which also uses specialised

numerical encoding of XML nodes (Pal et al. 2004). The path based representation

of nodes approach is used as the basis of a fast indexing method for XML content in

(Cooper et al. 2001) which is reported to outperform indexing mechanisms of a

commercial relational database server.

 (Haifeng Jiang et al. 2002) introduces a relational design that is based on a

generic schema similar to (Yoshikawa et al. 2001) but its representation can support

both parent-child and ancestor-descendant information explicitly. This strategy can

improve query performance for ancestor-descendant queries in a trade-off with

increased storage costs. In the context of AQL query implementation via TPQ

matching, this specialised representation, used by (Haifeng Jiang et al. 2002), offers

a significant advantage since AQL uses ancestor-descendant constraints heavily.

(Harding, Li, and Moon 2003) provides another node encoding scheme that can

support parent-child and ascendant-descendant queries.

Indexing mechanisms that rely on path information, along with numeric

region encodings, are not solely of interest to XML persistence based on relational

databases. They have also been studied extensively in other contexts such as

implementation of query processors for XML. The findings of such studies are

relevant and important in the context of a relational database implementation of

XINO. This is because of the extension mechanisms to SQL, which are supported

by all major relational database servers.

Therefore, assuming that these extension mechanisms are available to

implementers, many potential improvements to TPQ matching based AQL

implementation can be accomplished through the use of such research findings,

which are usually classified as native XML processing and indexing approaches.

For example, (Han, Xi, and Le 2005) develops a hybrid index that uses both

structure and value information of nodes. (Barbay 2005) introduces a specialized

index structure for descendant elements queries. (Haifeng Jiang et al. 2003)

develops another specialized index structure which offers optimized I/O

performance for the same type of queries.

 167

Aside from the relational database focused and native XML processing

approaches, a third category of research for XML processing links native XML

processing methods with relational ones, presenting a family of hybrid approaches

(H. Wu et al. 2012), (Weigel, Schulz, and Meuss 2005), (Weigel et al. 2003).

 Some of the results of this large body of research that focuses on XML query

processing are relevant to the design principles of XINO. These are mainly the

results of studies that focus on persisting XML content in relational databases,

which exhibits features similar to the EAV model of relational persistence. Highly

granular representation of XML content in a relational database is prone to

performance issues, yet there has been significant effort to use relational databases

for XML querying, similar to widespread adoption of EAV model despite its well-

known performance issues. This is attributable to the maturity of relational

databases and amount of research that has gone into improving their performance.

The benefits of a generic database schema approach are recognised, with the

alternative being XML schema driven relational representations. Aside from content

representation, transformations from XML query languages to SQL and the

relationship between database schema design and query performance achieved

from these transformations, have been extensively explored.

Query processing and indexing approaches for a native XML processing

context - i.e. XML query processors and native XML databases - provide highly

specialised algorithms for particular aspects of queries such as finding all

descendants of a node. These approaches do not assume the use of SQL, and are

therefore free to assume more flexible execution environments. Hybrid approaches

have been followed, aiming to leverage outcomes of research from this group of

studies in the context of relational databases.

The findings of these studies have been used in the development of XINO,

considering both relational and non-relational approaches to implementation of

openEHR persistence. The details of this process are discussed next.

The relational implementation of XINO architecture is based on Postgresql

and will be referred to as XINO-P. The primary goal of this implementation is to

provide data access for the BN based CDS scenario discussed in Chapter 9. This

does not mean that clinical information systems development has been disregarded.

Even though this clinical care scenario has not been comprehensively tested, it has

been included in the design, and key aspects have been implemented at the proof

of concept level. XINO-P aims to comply with the previously stated design

principles, while making use of the results of relevant research.

 168

There exists a significant number of studies in the XML processing domain

that are relevant to methods used for the implementation of XINO-P (which is based

on AQL processing via TPQ matching, as described in Chapter 7). Comprehensive

reviews of these studies are provided in (Hachicha and Darmont 2013), (Gou and

Chirkova 2007) and (Tahraoui et al. 2013).

The timescale for completion of this thesis has made it impractical to adopt

and experiment with all the algorithms and architectures from the literature. Instead,

these findings are employed in two ways. First, to implement a persistence layer for

openEHR, using a relational database that is capable of supporting the holistic

approach to clinical information systems and CDS based on openEHR, at least at a

proof of concept (POC) level. Second, to build a research roadmap based on the

use of these findings from the literature for the construction of a large scale data

processing platform based on openEHR.

8.3: Implementing the XINO Architecture with a Relational
Database

XINO-P is an openEHR persistence implementation that is based on DAGs

encoded as rows in a single table and TPQ matching implemented via SQL. The

interactions of main components of persistence and the overall process are

depicted in Figure 64.

The central component for persisting openEHR data in XINO-P is the

Eclipse Modelling Framework (EMF) based analysis. This step takes an openEHR

Composition instance in XML form as input and loads its content as an instance of

an EMF ECore model. This ECore model is created via EMF’s support for

transforming XML schemas to ECore models, which has also been used to process

XML schemas published as part of the published openEHR specifications. Once

XML content is loaded as an instance of the ECore model, capabilities of EMF are

used to analyse this data in order to create a DAG representation of it. This DAG

representation is then persisted to a single table in a Postgresql database.

Access to data, after it is persisted to Postgresql, is performed via AQL.

Following the approach developed in Chapter 7, an AQL query is represented as a

TPQ, which is then expressed as an SQL query. Therefore, the process of building

the SQL query can be defined as compiling AQL to SQL based on an intermediate

representation, which is TPQ.

 169

<?xml version="1.0"?>

<composition archetype_node_id="openEHR-

EHR-COMPOSITION.encounter.v1" ...>

<name xsi:type="DV_CODED_TEXT">

<value>Cataract Pre-op Booking</value>

...

Eclipse

Modelling

Framework:

openEHR Ecore

Model

openEHR XSD AQL

SQL

XML EMF

DAG

TPQ

Postgresql

Figure 64: XINO-P: main components

During initial experiments on this architecture, an AQL parser and an SQL

generator that takes a TPQ as input has been developed and tested to a limited

extent. Despite the components working as expected, a short cut had to be

adopted, due to the time it was taking to reflect changes in AQL to TPQ, or TPQ to

SQL transformation, into code. Instead, mappings between different representations

across subsequent steps were used for manual implementation of the AQL query

used for data access in Chapter 9.

A key aspect of the architecture in Figure 64 is that all the components aside

from Postgresql and the SQL query are platform independent. Therefore, both the

relational database representation and SQL based data access can be replaced

with other persistence systems.

The EMF based analysis treats every element of XML content as a node,

and the output of this process is a DAG, which consists of a list of nodes. All nodes

are then persisted into a single database table. Every node of the resulting DAG has

the following six attributes:

• Pathstring: a string value that contains the archetype path of a node starting

from the root of the COMPOSITION instance.

• Valstring: a string value that contains the actual value that a node may point

at. These values are actual numeric or literal values which would normally

map to primitive types such as strings or numbers. Therefore, not all nodes

necessarily have this attribute set.

• ArchetypeNodeId: the archetype node id of the data item, if there is one

defined in the openEHR archetype.

 170

• ActualRmTypeName: the openEHR RM type name of the data item.

• Left: Left value of node based on DAG’s region encoding.

• Right: Right value of node based on DAG’s region encoding.

Figure 65 depicts the high level transformation from a Composition XML file

to a DAG.

Composition

name

value

defining code

terminology

id

value

code string

<composition archetype_node_id="openEHR-EHR-COMPOSITION.encounter.v1"

xsi:type="COMPOSITION">

<name xsi:type="DV_CODED_TEXT">

<value>Cataract Pre-op Booking</value>

<defining_code>

<terminology_id>

<value>...</value>

</terminology_id>

<code_string>...</code_string>

</defining_code>

</name>

</composition>

E
M

F

(1:11)

(2:10)

(3:3)
(4:9)

(5:7)

(6:6)

(8:8)

archetypenodeid:openEHR-EHR-COMPOSITION.encounter.v1

actualrmtypename:COMPOSITION

...

{

Figure 65: XML to DAG transformation with region encoding

Figure 65 shows how XML elements are transformed into an in memory

DAG, using EMF’s capabilities. The “actualrmtypename” attribute of all nodes that

represent an element with an RM type is set to the corresponding type. The

“archetypenodeid” attribute is assigned the corresponding value from the XML

element.

The pair of numbers next to each node of the DAG provide position

information based on the location of the elements in the XML file. These values are

the “left” and “right” attributes of nodes, displayed separately in the diagram for

clarity. The position information is based on a depth-first traversal of the DAG

starting from the root node. The left attribute of each node is found by incrementing

the left position of its parent. The right attribute is found by incrementing the last

child of a node during depth-first traversal. Leaf nodes have equal left and right

attributes.

 171

This is a simplified version of the positional representation used by (Bruno,

Koudas, and Srivastava 2002). The advantage of this representation, as discussed

in (Bruno, Koudas, and Srivastava 2002) and (Al-Khalifa et al. 2002) is that it allows

easy identification of structural relationships between DAG nodes.

The (Left:Right) encoding is sufficient for checking the descendant status of

a node given another one. A DAG node �� with (�:!�) is an ancestor of a node �"

if � < " and !� > !" . A more comprehensive encoding that includes node level

alongside left and right enumerations can be used to test parent child relationship

as described in (Bruno, Koudas, and Srivastava 2002) but this type of structural

relationship is not explicitly expressed and therefore not needed in AQL, and

therefore only left and right values are encoded.

If the processed XML element contains a value represented with a primitive

type, as shown in the value of the name element in the XML snippet in Figure 65,

which is “Cataract Pre-Op Booking”, this value is assigned to the valstring attribute

of the DAG node. The end result of the process in Figure 65 is a set of nodes, each

containing six attributes, with values assigned to them whenever necessary. This

set is then persisted into a table in Postgresql, which has a column for each node

attribute along with some extra columns. The screenshot below shows how DAG

nodes are represented at the database level:

Figure 66: Database representation of DAGs

As seen in Figure 66, the table that contains DAG nodes has three columns

added to the six columns that are based on DAG node attributes. These are id,

ehr_id and instance_id columns. The id column is an automatically generated

primary key value for each row, which also serves as the unique identifier of a DAG

node. The ehr_id is the id of the openEHR EHR which contains the Composition the

 172

DAG is created from, and finally the instance_id is an identifier shared by all rows

generated by processing a DAG. The instance_id , therefore, corresponds to the

document id used as part of the XML element encoding in (Bruno, Koudas, and

Srivastava 2002). The remaining columns represent values of DAG node attributes

generated during EMF based processing, and they can have null values when a

DAG attribute has no value assigned to it, as seen in Figure 66.

The ehr_id column represents a critical aspect of the XINO architecture: the

requirement for a persistence system to process openEHR data as DAG does not

mean that all data will be represented or treated in the same way. Various nodes

and aspects of a DAG may be represented and processed in different ways to

benefit from specific advantages of a persistence system or to avoid specific

disadvantages of it.

Even though the EHR is the top-level concept in openEHR RM, it is not

represented as a node in XINO-P. This is due to performance reasons. As

discussed below, the number of joins required to implement TPQ matching is a

critical determinant of the query performance. Directly associating every node with

its highest level ascendant, which is the EHR node instance, saves XINO-P from

having to perform join operations whenever the TPQ contains an EHR node. Since

most data access during clinical care is driven by the identity of the patient, which

consequently implies use of an EHR that belongs to the patient, encoding EHR id at

the relational table level for all rows (DAG nodes) improves performance

significantly for clinical care use cases. It should be noted that this and further

specialisations for DAG representation and TPQ matching are all driven by the tree-

based approach to the openEHR persistence of Chapter 7. Therefore, these

specialisations do not modify this fundamental approach. They are just performance

driven optimisations specific to a persistence system. The DAG representation of

openEHR stays intact and consistent.

 The nine columns used for the relational persistence of DAG nodes are all

that are needed to implement the key operations of TPQ matching defined in

Chapter 7. The result of these operations is a transformation from DAG instances to

rows of a result set, as depicted in the following Figure 67.

 173

DAG

TPQ DAG

DAG

A

BC

1A

2A

3A

1B

1C

2B

3B

2C

3C

1

2

3

A B C

1A

2A

3A

1B

2B

3B

1C

2C

3C

Figure 67: DAG to tuple transformation via TPQ matching

The TPQ in Figure 67 is simplified in the interests of clarity. It represents a

structural constraint where an instance of node type A has two descendants of type

C and B. When this TPQ is matched against the three DAGs in the diagram, the

result set transforms all matches into rows. Each DAG that satisfies the TPQ is

returned as a row. The identifiers of TPQ nodes (which, in this simplified form

correspond to their types) become the columns of the result set.

Even though the TPQ representation of AQL and constraints expressed by it can

become significantly more complicated, this fundamental transform does not

change.

 The following sections discuss the implementations of various TPQ matching

operations implemented via SQL, results of which are then joined together to create

the result set structure in Figure 66.

8.3.1: TPQ Matching for the FROM Section of AQL Queries

The FROM section of an AQL query defines a list of nodes which are later

referenced from either SELECT or WHERE sections, along with hierarchical

constraints on the members of this list. Therefore, matches for the TPQ defined by

the FROM section of an AQL query can be considered as a precondition for

matches based on other sections; both SELECT and WHERE sections define their

constraints based on nodes from the FROM section.

 174

A simplified AQL query with an emphasis on the FROM section is mapped to

a TPQ as depicted in Figure 68.

o

c

e{ actualrmtypename = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT ...

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

Figure 68: TPQ for FROM section of AQL

This TPQ has three nodes arranged in a structure that defines the

Observation instance o as a descendant of Composition instance c, which in turn is

a descendant of EHR node e. There are also value constraints on attributes of

nodes. This TPQ can be translated into an SQL query that assumes the nine

column table schema described above, as follows:

1) Define SQL subqueries that match individual nodes based on node

attribute constraints

A convenient feature of SQL is common table expressions (CTE) that

define a temporary result set which can be used easily as a subquery.

Using this feature, the c and o nodes of the TPQ can be selected as

shown in Figure 69.

Figure 69: CTEs for matching TPQ nodes

WITH

ehr AS

 (SELECT distinct(node.ehr_id) as id FROM DAG node

 WHERE node.ehr_id = '3'),

c AS
 (SELECT node.* FROM eav node

 WHERE node.archetypenodeid = 'openEHR-EHR-

COMPOSITION.encounter.v1'

 AND node.actualrmtypename = 'COMPOSITION'

 AND node.ehr_id = '1')

,o AS

 (SELECT node.* FROM eav node

 WHERE node.archetypenodeid = 'openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1'

 AND node.actualrmtypename = 'OBSERVATION'

 AND node.ehr_id = '1')

....

 175

The c and o subqueries match all nodes (rows) of DAGs with the

archetype node ids, and RM types expressed in the TPQ, which in turn is

based on the AQL. The semantics of EHR with id ‘3’ is expressed in SQL

via a constraint on the ‘ehr_id’ column of the DAG nodes table. Once

these CTEs are in place, the rest of the SQL query can use them.

2) Enforce structural constraints of nodes using positional encoding

The structural constraints are enforced through the use of positional

encoding of nodes. The constraint on the “ehr_id “ column value

automatically establishes the structural constraint that all nodes that are

selected are descendants of the EHR node that the TPQ targets. This is

due to the EHR root position, by RM design. The other structural

constraint, o being a descendant of c, can be enforced within another

CTE as in Figure 70.

Figure 70: CTE that enforces ‘descendant of’ constraint

The CTE named as “from_nodes” in the query in Figure 70 selects c and

o node instances which satisfy the following properties: every o is a

descendant of c (using positional encoding), both o and c are from the

same DAG (using “instanceId” equality) and finally both o and c are

under the same EHR whose id is known. The “from_nodes” CTE uses

previously defined CTEs, and it returns values of columns of the table

row that contains o node.

....

,from_nodes AS

 (SELECT --FROM NODES SUB-QUERY
 '3' ehr_id,

 obs_fund_exam.id obs_fund_exam_id,

 obs_fund_exam.instance_id obs_fund_exam_ins_id,

 obs_fund_exam."left" obs_fund_exam_left,

 obs_fund_exam."right" obs_fund_exam_right,

 obs_fund_exam.pathstring obs_fund_exam_pstring

 FROM comp_encounter c_root_cl_exam

 INNER JOIN obs_fundoscopic_exam obs_fund_exam

 ON c_root_cl_exam.instance_id =

obs_fund_exam.instance_id

 AND c_root_cl_exam."left" < obs_fund_exam."left" AND

c_root_cl_exam."right" > obs_fund_exam."right"

 AND obs_fund_exam.ehr_id = '3'

 WHERE c_root_cl_exam.ehr_id = '3'

)

....

 176

The “from_nodes” CTE in the example in Figure 70 returns information

related to the Observation node o, for clarity of the example. Using a

reference to o node, the SELECT section of AQL query may define the value

that the AQL query is supposed to return, as discussed next.

8.3.2: TPQ Matching for the SELECT Section of AQL Queries

The SELECT section of an AQL query defines the result set using data items

defined in the FROM section, either directly or as the root of a relative path that

points at the data item that should be returned. In order to demonstrate how TPQ

matching is implemented via SQL for this purpose, the AQL query in Figure 68 is

expanded to include a fully defined SELECT section that returns diagnosis of

diabetic retinopathy in Figure 71.

o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

dret

Figure 71: TPQ matching for SELECT clause of AQL

The SELECT section of the AQL query in Figure 71 points at the ‘dret’ node

via a relative path that starts from the o node. This relationship between o and dret

is represented in the extended TPQ. This hierarchical relationship requires selecting

all DAG nodes that are reachable via the relative path from o. This operation is

performed as follows through use of another CTE:

 177

Figure 72: Enforcing relative path in a CTE

The CTE defined as ‘dret’ uses the nodes returned by the ‘from_nodes’ CTE

and it leverages both instance id and positional encoding columns along with ehr_id

column since any node reachable through a path relative to a DAG node o is

guaranteed to be a descendant of it.

The relative path that is defined in the AQL query is used to identify the ‘dret’

node through the use of the pathstring column of the DAG nodes table. Since all

nodes have their absolute paths from the COMPOSITION root encoded in the

‘pathstring’ column any node A and its descendant B have the following relationship:

Path of A + relative path of B from Path of A = Path of B

Therefore, ‘dret’ CTE allows selection of the ‘dret’ node in the TPQ in Figure

71, using SQL. However, for a result set of a TPQ matching operation to be

returned, the CTEs created for the SELECT and FROM sections must be joined

with consideration for nodes that may not exist.

8.3.3: Linking Matches for Different TPQ Hierarchical
Relationships

TPQ matching based on SQL Subqueries handle different semantics that

can be represented in the TPQ approach developed in Chapter 7 and for the whole

TPQ matching to provide a result set, the results from subqueries must be brought

together.

In doing so, other TPQ semantics become relevant when queries with more

data items and constraints must be processed. An extension of the TPQ used so far

with another data item in the SELECT section is provided in Figure 73 as an

example:

....

,dret AS

 (SELECT fn.obs_fund_exam_id, T.valstring as valstring

 FROM DAG T INNER JOIN from_nodes fn

 ON T.instance_id = fn.obs_fund_exam_ins_id

 AND T."left" > fn.obs_fund_exam_left AND T."right" <

fn.obs_fund_exam_right

 AND T.pathstring = fn.obs_fund_exam_pstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/val

ue/value'

 AND T.ehr_id = '3'

)

....

 178

o

c

e{ rm_type = ‘EHR’

ehr_id = ‘1’

{actualrmtypename = ‘COMPOSITION’

archetypenodeid = ‘openEHR-EHR-COMPOSITION.encounter.v1’

{
actualrmtypename = ‘OBSERVATION’

archetypenodeid = ‘openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1’

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o["openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1"]

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/value/value

dret

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0009]/

items[at0027]/value/value

fundal_view

OR

Figure 73: Optional containment for data items in SELECT clause

Figure 73 extends the previous TPQ with another node: ‘fundal_view’. With

this node under o, the relationship between dret and fundal_view requires

clarification. As discussed in Chapter 7, an intuitive expectation for matching this

TPQ would be that if diabetic retinopathy does not exist, but fundal view has been

recorded, the results should represent this. This implies optional containment for

both nodes under o and when CTEs that perform the TPQs are joined, this behavior

must be preserved.

This is established via using the relevant SQL join operations as shown in

Figure 74. First, the CTE for fundal_view, following the same approach with dret:

Figure 74: CTE for fundal view node of TPQ

Then the SQL query that uses previous CTEs to build the result set:

....

,fundal_view as

 (SELECT fn.obs_fund_exam_id,T.valstring as valstring

 FROM DAG T INNER JOIN from_nodes fn

 ON T.instance_id = fn.obs_fund_exam_ins_id
 AND T.pathstring = fun.obs_fund_exam_pstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0009]/ite

ms[at0027]/value/value'

 AND t."left" > fn.obs_fund_exam_left AND t."right" <

fn.obs_fund_exam_right

 AND t.ehr_id = '3'

)

....

 179

Figure 75: SQL for the complete TPQ matching

The main WITH…SELECT…FROM SQL query matches the TPQ on DAG

nodes table using previously defined CTEs. The optional containment is

implemented via use of FULL OUTER JOINs, which ensures that if dret or

fundal_view nodes are missing, the TPQ matching results include existing nodes.

When run on an EHR which has no diabetic retinopathy, this query returns the

results in Figure 76.

Figure 76: Query results when no diabetic retinopathy exists

Whereas, when run on an EHR with diabetic retinopathy diagnosis, both

nodes are returned in the results as depicted in Figure 77.

Figure 77: Query results when diabetic retinopathy exists

WITH

 comp_encounter AS

 (SELECT)

 ,obs_fundoscopic_exam AS

 (SELECT)

 ,from_nodes AS

 (SELECT )

 ,dret AS
 (SELECT)

 ,fundal_view AS

 (SELECT)

SELECT

 '3' as ehr_id,

 fn.obs_fund_exam_ins_id,

 ,dret.valstring as dret,

 ,fundal_view.valstring as fview

FROM from_nodes fn

 FULL OUTER JOIN dret ON dret.obs_fund_exam_id = fn.obs_fund_exam_id,

 FULL OUTER JOIN fundal_view ON fundal_view.obs_fund_exam_id =

fn.obs_fund_exam_id

 180

If an INNER JOIN were used in the main query for joining nodes returned by

the CTEs, the results for the EHR which does not have diabetic retinopathy would

incorrectly exclude the fundal_view node as depicted in Figure 78.

Figure 78: Query results: unintended exclusion of fundal view node

The FROM statement of the main SQL query for TPQ matching uses nodes

defined in the FROM section of AQL for connecting relevant CTEs together. The

inclusion of more variables in the AQL SELECT section is therefore simply a matter

of adding CTEs for nodes and including them in the FROM section of main SQL

query using FULL OUTER JOINs.

 The use of different types of SQL JOIN operations for expressing TPQ

semantics is not limited to optional containment. Another fundamental aspect of

TPQ matching, applying Boolean operators, is also implemented via use of different

SQL join operations.

8.3.4: Representing Boolean Operator Semantics for TPQ Node
Relationships

 Explicit use of Boolean operators is required by AQL grammar when multiple

data items share a parent data item. Figure 79 shows an extension of the previous

example to include another node in the TPQ: an Observation which can be used to

select extra information.

o

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0032]value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

)

dret
fundal_view

AND

o_cl_exam

OR

Figure 79: TPQ for AQL with an AND operator in the FROM clause

 181

The AND operator in Figure 79 requires selection of c nodes only if the DAG

contains both o and o_cl_exam nodes as c’s descendants. AQL also supports

nesting of Boolean operators in the FROM section so these complex scenarios must

be handled as well. To deal with this requirement the AND Boolean operator is

implemented with INNER JOINs and the OR Boolean operator is implemented with

LEFT OUTER JOINs along with the use of nested SQL subqueries. An INNER JOIN

between a parent node and a number of its descendants requires that all the

descendant nodes from TPQ have at least one instance in the DAG, or the CTE for

the parent node would return zero rows. In case of a LEFT OUTER JOIN expressed

as:

‘parent_node_CTE’ LEFT OUTER JOIN ‘child_node_CTE’ ON…

As long as the parent exists in the DAG and instance, the parent and any

existing children would be returned. Handling nested Boolean operators then

becomes repeated INNER JOINs or LEFT OUTER JOINs through subqueries. Use

of Boolean operators for the WHERE section of AQL is handled differently as

discussed next

8.3.5: TPQ Matching for the WHERE Section of AQL Queries

The WHERE section of AQL can refer to any node from the FROM section in

order to introduce constraints, either on them or on their descendants accessible via

relative paths. The AQL WHERE section can also employ Boolean operators. The

constraints defined in the WHERE section are implemented via WHERE keyword of

SQL. The TPQ representation of the AQL WHERE section can take two forms. The

first form introduces a single constraint which can be expressed with a value node

and a value check on the value node’s attribute, as depicted in Figure 80.

 182

o_fund_exam

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

)

WHERE

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/

name/value = 'Interpretation D-Ret'

dret

fundal_view

AND

o_cl_exam

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/name/value

{valstring = “Interpretation D-Ret”

OR

Figure 80: TPQ for AQL with a WHERE clause

The TPQ in Figure 80 has a node that is a descendant of o and valstring

attribute of this node should be equal to ‘Interpretation D-Ret’. This node is

introduced to TPQ by the WHERE section of AQL, and its existence and value can

be enforced by introducing an INNER JOIN into CTE for o as shown in Figure 81.

Figure 81: Enforcing AND operator with INNER JOIN

This inner join forces all obs_fundoscopic nodes that are returned to have a

descendant that corresponds to a node that satisfies the WHERE constraint of AQL.

 When more than one constraint is specified in the AQL WHERE clause, their

relationship must be predicated with a Boolean operator, whether or not the

constraints are placed on the same data item. If all the constraints are placed on the

....

,obs_fundoscopic_exam AS

(SELECT node.* FROM DAG node

 INNER JOIN DAG T ON T.instance_id = node.instance_id

 AND T."left" > node."left" AND T."right" < node."right"

 AND T.pathstring = node.pathstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/nam

e/value'

 and T.valstring = 'Interpretation D-Ret'
 AND T.ehr_id = '3'

 WHERE node.archetypenodeid = 'openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1'

 AND node.ehr_id = '3')

....

 183

same node, then they can be included in the CTE for the node using the previously

defined mappings to INNER JOIN and LEFT OUTER JOIN operations along with

nesting of subqueries.

 If all constraints in the WHERE section of AQL are not placed on the same

data item, then Boolean operators across these constraints can only be applied at

the main SQL query level since a CTE for a node can only refer to its ascendant

and its descendants. This makes it impossible for a single CTE to enforce

constraints on other CTEs if they are not on the same ascendant-descendant axis of

the DAG.

Therefore, constraints on multiple nodes are implemented through the use of

CTEs for these constraints that are included in the main SQL query. An example of

this scenario is depicted in Figure 82.

o

c

e

TPQ

SELECT o/data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/

value/value as dret,

o_fund_exam/data[at0001]/events[at0002]/data[at0003]/items[at0007]/

items[at0009]/items[at0027]/value/value AS fundal_view,

FROM EHR e[ehr_id='1']

CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS (

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

)

WHERE

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/

name/value = 'Interpretation D-Ret'

AND

o_cl_exam/data[at0001]/events[at0002]/

data[at0003]/items[openEHR-EHR-

CLUSTER.exam_anterior_chamber.v1]/

items[at0002]/value/value = ‘Corneal Pathology’
dret

fundal_view

AND

o_cl_exam

o/data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0032]/name/value

{valstring = “Interpretation D-Ret”

{valstring = “Corneal Pathology”

data[at0001]/events[at0002]/data[at0003]/

items[at0007]/items[at0009]/

items[at0027]/value/value

AND

OR

Figure 82: TPQ for AQL: multiple AND operators in WHERE clause

The AQL query and corresponding TPQ in the diagram enforce the existence

of diabetic retinopathy along with corneal pathology. The AND operator in the

diagram can be implemented as in Figure 83.

 184

Figure 83: Enforcing multiple Boolean Operators in TPQ

The ‘dret_where’ and ‘corneal_pathology_where’ CTEs select the nodes

from the TPQ attributes of which (valstring in this case) must have the values

specified in the AQL WHERE criteria. The outermost WHERE clause of TPQ

matching SQL uses SQL AND operator to implement the TPQ AND operator.

The individual CTEs for ‘dret_where’ and ‘corneal_pathology’ that enforce the

constraints for filtering out TPQ matches are provided in Figure 84.

These CTEs individually ensure that the constraint nodes that are operands

of the AND operator in the TPQ exist. Their results are appended to other CTE

results that join nodes created by the FROM and SELECT sections of AQL with a

FULL OUTER JOIN. This approach treats results returned from the CTEs of AQL

WHERE clause as if they’re subject to optional containment, in the same way the

nodes introduced by the SELECT clause of AQL: their existence is optional and

would not affect query results due to the FULL OUTER JOIN. The logical AND

operator is then applied at the main SQL query level, turning these nodes into a

filter mechanism for all the results.

This approach provides support for other Boolean operators such as OR or

NOT with nesting, if necessary, since the SQL WHERE clause enables nesting of

logical operators.

WITH
 comp_encounter AS

 (....)
 ,obs_fundoscopic_exam AS

 (....)
 ,o_cl_exam AS

 (....)
 -- THIS IS WHERE FROM NODES HIERARCHY IS ENFORCED

 ,from_nodes AS

 (....)
 ,dret AS

 (....)
 ,dret_where AS

 (....)
 ,fundal_view as

 (....)
 ,corneal_pathology_where as

 (....)

SELECT

FROM from_nodes fn
 FULL OUTER JOIN dret ON dret.obs_fund_exam_id = fn.obs_fund_exam_id

 FULL OUTER JOIN fundal_view ON fundal_view.obs_fund_exam_id =

fn.obs_fund_exam_id

 FULL OUTER JOIN dret_where ON dret_where.obs_fund_exam_id = fn.obs_fund_exam_id
 FULL OUTER JOIN corneal_pathology_where ON corneal_pathology_where.o_cl_exam_id

= fn.o_cl_exam_id

WHERE dret_where.valstring = 'Interpretation D-Ret' AND

corneal_pathology_where.valstring = 'Corneal pathology'

 185

Figure 84: Individual CTEs for AQL WHERE clause constraints

8.3.6: Discussion of the Relational Modelling Approach

XINO-P consists of a small number of fundamental operations and the use

of a single database table that provides a TPQ matching based implementation of

AQL, using SQL. The most significant and gratifying aspect of this design is its

simplicity, which is the key to its applicability to architectures that may not

necessarily use a relational database. XINO-P leverages SQL features for querying,

but its data representation makes little use of the relational approach to data

modelling. Instead of relying on a relational representation of the openEHR RM, a

single table is used that is repeatedly joined on itself (self-join). This design can be

classified as a highly specialized form of EAV where only the value table exists, and

entity and attribute definitions are ignored. RM types and archetype node ids are

included as columns without formally defining these attributes with an attribute table.

This simplified representation, accompanied by structural attributes such as

positional encoding of DAG nodes and their absolute paths from the DAG root

(similar to (Yoshikawa et al. 2001)) is built on a few key properties of openEHR.

The most important aspect of openEHR in the context of implementing

XINO-P is that openEHR RM and archetypes provide both structural and value

constraints ahead of the creation of actual data. When this information is accessed

....

,corneal_pathology_where as

 (SELECT fn.o_cl_exam_id,T.valstring as valstring

 FROM EAV T INNER JOIN from_nodes fn

 ON T.instance_id_int = fn.o_cl_exam_ins_id

 AND T.pathstring = fn.o_cl_exam_pstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[openEHR-EHR-

CLUSTER.exam_anterior_chamber.v1]/items[at0002]/value/value'

 AND t."left" > fn.o_cl_exam_left AND t."right" <

fn.o_cl_exam_right

 AND t.ehr_id = '3'
 AND t.valstring = 'Corneal pathology'

)

....

,dret_where AS

 (SELECT fn.obs_fund_exam_id, T.valstring as valstring

 FROM eav T INNER JOIN from_nodes fn

 ON T.instance_id_int = fn.obs_fund_exam_ins_id

 AND T."left" > fn.obs_fund_exam_left AND T."right" <

fn.obs_fund_exam_right

 AND T.pathstring = fn.obs_fund_exam_pstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]/name

/value'

 AND T.valstring = 'Interpretation D-Ret'

 AND T.ehr_id = '3'

)

....

 186

through a framework such as EMF, it becomes possible to process and encode all

clinical data based on openEHR RM type information. Even though an essentially

infinite number of clinical models for an infinite number of clinical concepts can be

created with openEHR, instances of all these models conform to the structures of a

small number of types brought together in a flexible way.

AQL queries on the clinical data have the same characteristic: a large

number of clinical models can be queried based on the same RM. These iteratively

evolved and hard-won features of openEHR allow all information about the clinical

data to be available outside of the actual persistence implementation. XINO-P

leverages this approach by not representing any openEHR related information at

the database level unless that information is necessary to get the data back.

Furthermore, the only assumed method for retrieving data from the persistence

implementation is AQL; no data access characteristics other than those used by

AQL are considered.

As a result of this specialization, both the data representation and TPQ

matching operations used in XINO-P can easily be used in non-relational settings,

thereby delivering the persistence system portability goal of the XINO architecture.

For example, removing the EHR id condition from the SQL queries that were used

as examples in the XINO-P implementation of TPQ turns these queries into

population queries instead of queries specific to a single EHR. This approach, used

to build the data set that was used in Chapter 9, conveniently lends itself to

parallelization when the underlying persistence system supports it. Using a big data

framework such as Apache Hive (Thusoo et al. 2009) that supports parallel

processing of table structures with a query language that is highly compatible with

SQL, the approach used by XINO-P can be reused with minimum change with the

benefit of running the join operations across hundreds or even thousands of servers

with very large data sets.

It should be noted that neither the availability of SQL nor table based

representation is a requirement for leveraging other platforms for TPQ processing,

even though various big data platforms already support SQL. The operations on

nodes that are implemented via SQL, such as finding descendant nodes, finding

nodes at a relative path or applying logical operators, can be implemented by other

means. In fact, XINO-P uses extensions of the fundamental model described thus

far in order to improve performance as discussed next.

 187

8.4: Extensions of the Purely Relational Model and Other
Improvements

The TPQ matching implementation of XINO-P allows the fundamental

semantics of AQL to be expressed using SQL. The use of SQL can be improved by

use of extension mechanisms provided by the relational database servers, for better

query performance. These extension mechanisms can also support the addition of

new features to AQL and the enablement of a richer set of types in query results.

 From a performance point of view, the use of repeated self joins to select

DAG nodes based on TPQs presents a challenge for XINO-P. Repeated self-joins

on a table, size of which is bound to grow as new data arrives, leads to a large

number of index scans being performed by Postgresql. As the data size grows,

index scans need to cover a larger number of rows to identify the ones defined by

the CTEs. The analysis of the CTE performed on a test database, using

Postgresql’s EXPLAIN ANALYZE feature, demonstrates this problem as shown in

Figure 85.

Figure 85: Postgresql query plan and execution for simple CTE

Since the constraints expressed in the WHERE clause of SQL query require

the Postgresql engine to perform separate index scans, the number of rows the

index scans must process becomes the primary determinant of the query

performance. As Figure 85 shows, 32.7 milliseconds of the 33.348 millisecond total

query runtime is spent on the archetype node id index scan that must process 100K

EXPLAIN ANALYZE SELECT node.* FROM temp_eav_table_global node

WHERE node.archetypenodeid = 'openEHR-EHR-COMPOSITION.encounter.v1'

 AND node.ehr_id = '3'

Bitmap Heap Scan on temp_eav_table_global node (cost=2353.66..2377.73

rows=6 width=399) (actual time=33.307..33.309 rows=2 loops=1)

 Recheck Cond: (((ehr_id)::text = '3'::text) AND ((archetypenodeid)::text

= 'openEHR-EHR-COMPOSITION.encounter.v1'::text))

 -> BitmapAnd (cost=2353.66..2353.66 rows=6 width=0) (actual

time=33.299..33.299 rows=0 loops=1)

 -> Bitmap Index Scan on temp_eav_table_global_ehrid

(cost=0.00..45.07 rows=2201 width=0) (actual time=0.176..0.176 rows=931

loops=1)

 Index Cond: ((ehr_id)::text = '3'::text)

 -> Bitmap Index Scan on temp_eav_table_global_archndId

(cost=0.00..2308.34 rows=122636 width=0) (actual time=32.718..32.718

rows=100000 loops=1)

 Index Cond: ((archetypenodeid)::text = 'openEHR-EHR-

COMPOSITION.encounter.v1'::text)

Total runtime: 33.348 ms

 188

rows. As more data is added, based on an archetype that has this archetype id, this

index scan would have to process the growing number of rows that satisfy the same

criteria. This behaviour is there by design and cannot be avoided.

As a result, the more joins a TPQ structure leads to, the more query

performance for the same TPQ drops, as the total data size stored by XINO-P

grows. This drop in performance is bound to happen even though the increase in

data volume is due to the arrival of new data that would not be matched by this

TPQ. Therefore, processing as few rows as possible during querying, or even

keeping the number of rows in the DAG table as few as possible, can improve

performance and provide resilience against this performance drop.

Two of Postgresql’s features have been used to this end: JSON (Crockford

2006) type support and custom functions that process JSON content. JSON stands

for JavaScript Object Notation, a text based data representation format that has

been replacing XML for many use cases in recent years. Postgresql allows the

storage of JSON content alongside other data types it supports, and it provides a

number of functions and operators that operate on JSON data.

XINO-P uses JSON to represent some nodes of the DAG during pre-

persistence processing, and these nodes are inserted into a column with JSON type

in the row that represents their parent, as depicted in Figure 86.

JSON representable rows }

JSON

Column

Figure 86: Node transformation from tuples to column via JSON

 As shown in Figure 86, this representation decreases the number of rows by

moving multiple rows into the row of their parent as a column. The JSON content is

exactly the same as row content, but it is a textual representation that can

compactly represent child nodes of a DAG node as an attribute of its parent. The

CTEs for matching nodes can access this compact representation using functions

 189

that process the JSON content. Figure 87 contains an example of a CTE before and

after use of JSON representation for some rows.

The use of JSON processing functions replaces two joins that are required to

select two child nodes. Instead, JSON content is dynamically extracted to an array

of values and queried. Since JSON content is created from child nodes, some of the

checks such as node coordinates or instance id checking is no longer necessary.

Moreover, JSON processing functions are provided directly with the contents of the

row that has been selected by the previous table reference in the same FROM

clause, saving more index scans.

 This approach both decreases the number of rows in the table that holds all

nodes and avoids costly joins and scans. The criteria for selecting child nodes to be

represented as JSON is an interesting topic, arising here, for future research. In the

XINO-P implementation that has been used to provide data to the BN

implementation, as described in Chapter 9, all child nodes that do not have an

archetype node id have been collapsed into JSON content, but this is a criterion that

has been used for the data set at hand without any claim or expectation of its

general applicability.

In the context of the applicability of the TPQ matching approach to

persistence systems other than relational databases, use of JSON and custom

functions may not necessarily achieve the same performance benefits as were

found for Postgresql. The text based nature of JSON allows its storage in both

relational and non-relational persistence systems. The capability to introduce user-

defined functions into SQL queries is implemented by most major databases and

even in big data frameworks such as Apache Hive (Thusoo et al. 2009). Therefore,

this approach allows the extension of TPQ matching based on SQL, with a

significant level of applicability to other platforms.

The use of JSON or alternative serialisation formats allow the persistence

layer to perform AQL path access on small amounts of content, without having to

return this content as interim query results, which must be further processed for

path extraction. This approach avoids the need to return and process the whole

content of an openEHR COMPOSITION instance to access only a few fields, and

can provide significant performance improvements for a class of queries that require

a small number of simple values, especially if the number of the COMPOSITION

instances that must be processed is large.

The use of user-defined functions can allow implementation of many

advanced features on top of AQL. This is another topic suggested for future

research. One such feature that can be built on user- defined functions is the use of

 190

BN inference directly from within AQL for CDS. This extension, provisionally named

Probabilistic AQL, is based on the idea of extending AQL syntax to use an existing

BN definition as a filter for AQL results. Figure 88 depicts the extended AQL query

along with the relationship with the corresponding TPQ.

Figure 87: Using JSON and functions in a CTE

....

,dret AS

(SELECT fn.obs_fund_exam_id, Z.instance_id_int AS instanceid, Z.valstring as

valstring

 FROM temp_eav_table_global T INNER JOIN ehr ON T.ehr_id = ehr.id
 INNER JOIN from_nodes fn ON T.instance_id_int = fn.obs_fund_exam_ins_id

 AND T."left" > fn.obs_fund_exam_left AND T."right" < fn.obs_fund_exam_right

 AND T.pathstring = fn.obs_fund_exam_pstring || '/' ||
'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]'

 INNER JOIN temp_eav_table_global Y ON Y.instance_id_int = T.instance_id_int

 AND Y."left" > T."left" AND Y."right" < T."right"
 AND Y.pathstring = T.pathstring || '/' || 'name/value'

 AND Y.valstring = 'Interpretation D-Ret'
 AND Y.ehr_id = ehr.id

 INNER JOIN temp_eav_table_global Z ON Z.instance_id_int = T.instance_id_int

 AND Z."left" > T."left" AND Z."right" < T."right"
 AND Z.pathstring = T.pathstring || '/' || 'value/value'

 AND Z.ehr_id = ehr.id

)

....

,dret AS
(SELECT fn.obs_fund_exam_id, Z->>'instance_id_int' AS instanceid,Z->>'valstring'

AS valstring
 FROM ehr, temp_eav_table_global t,from_nodes fn,json_array_elements(t.jsndata) AS

Y,json_array_elements(t.jsndata) AS Z

 WHERE t.instance_id_int = fn.obs_fund_exam_ins_id
 AND t.pathstring = fn.obs_fund_exam_pstring || '/' ||

'data[at0001]/events[at0002]/data[at0003]/items[at0007]/items[at0032]'
 AND t."left" > fn.obs_fund_exam_left AND t."right" < fn.obs_fund_exam_right

 AND Y->>'pathstring' = t.pathstring || '/' || 'name/value'
 AND Y->>'valstring' = 'Interpretation D-Ret'

 AND Z ->>'pathstring' = t.pathstring || '/' || 'value/value'

 AND t.ehr_id = ehr.id

)

....

 191

X

Y
Z

T V

P(V | T,Z)

SELECT

… AS T

, … AS Z,

, … AS G

FROM ….

WHERE

P_BN(V|T,Z) > 0.75

TPQ Bayesian Network

T
Z

G

From

Nodes

Select

Nodes

Figure 88: TPQ matching and BN inference integration for probabilistic AQL

The AQL query in Figure 88 defines three data items for selection, which

have the aliases T, Z and G. These are represented in the corresponding TPQ and

grouped together as Select Nodes for clarification. A subset of these nodes, T and

Z, are used as observations in a BN, through a function call from AQL named

P_BN. This syntax means that the AQL query should return results that produce a

probability larger than 0.75 when the T and Z nodes are used as observations. This

approach can be extended with a more expressive syntax for referring to

probabilities of multiple nodes from the BN. The implementation of such an

extension to AQL syntax can readily be implemented using the mechanisms used in

XINO-P. Figure 89 contains the pseudo code of a possible implementation.

This pseudo code uses a user-defined function called INFER_BN which

takes a string representation of the observations for a particular BN structure, the

semantics of which is assumed known. Since user-defined functions in Postgresql

can be implemented in a number of programming languages, including Python and

even R, this function call would effectively call a BN implementation, infer the

probabilities of the network for each row of the result set and produce a column

named BN_RESULT, which can be used as a filter to select only rows that satisfy

the probabilistic constraint.

It is of note that, even though this thesis has focused on BNs as the CDS

mechanism, this approach could be used to add probabilistic querying capabilities to

AQL through use of other CDS methodologies, using the user-defined function

method for filtering TPQ results.

 192

The use of user-defined functions along with JSON representation presents

another opportunity for future research around integrating various TPQ processing

algorithms into XINO-P and other implementations. The current implementation of

XINO-P uses the same logic for processing both nodes represented as rows and

rows represented as JSON.

Since the strategy for collapsing some nodes of the DAG into JSON is

implemented in the pre-persistence analysis phase of the methodology, multiple

representations for groups of nodes can be used in the form of sub-trees which can

be processed via different TPQ matching algorithms that would address these sub-

trees. This approach would allow the use of algorithms that offer clear advantages

for specific tree structures under a set of conditions which would not necessarily

apply to all of the DAG. Examples of research relevant to this approach is covered

in stack based twig matching algorithms (L. Chen, Gupta, and Kurul 2005) and

improvements over them such as TwigList (Qin, Yu, and Ding 2007) as well as

extensions of basic TPQs (Xiaoying Wu et al. Dec.). Handling pattern matching with

logical operators (H. Jiang, Lu, and Wang 2004), (Izadi, Haghjoo, and Härder 2012),

(Zeng, Jiang, and Zhuge 2011), improving performance of descendant only TPQs

(Götz, Koch, and Martens 2009), leveraging parallel processing for TPQ matching

(Machdi, Amagasa, and Kitagawa 2009) are examples of research outcomes that

can be adopted in the context of this future research.

Figure 89: Implementation of probabilistic AQL in SQL via user-defined function call

WITH

 ...

 ,from_nodes AS

 (....)

 ,T AS

 (....)

 ,Z AS

 (....)

 ,G AS

 (....)

SELECT
.... AS Z_value,

.... AS T_value,

.... AS G_value,

INFER_BN('BayesianNetwork1', '{T:'|| T_Value || ',Z:' || Z_Value ||' }',
 '{V}') AS BN_RESULT

FROM from_nodes fn
 LEFT OUTER JOIN T ON ...

 LEFT OUTER JOIN Z ON ...

 LEFT OUTER JOIN G ON ...
WHERE BN_RESULT.V > 0.75

....

 193

An important design requirement of XINO-P, the ability to support both

building of clinical information systems and CDS systems with the same

architecture, is another important future direction for research which has been partly

explored and experimented with. The SQL based TPQ matching that has been used

for learning the parameters of the BN that is described Chapter 9 returns a result set

that consists of values only. This is the most likely result set content for machine

learning scenarios: the input to machine learning frameworks consists of values

instead of data that represents complex objects.

Using the same query mechanism for clinical information systems

implementation usually requires a higher level data representation in the query

results that is closer in nature to the concepts of mainstream, object oriented

programming languages, as modelled by the openEHR RM. The DAG based

representation of the RM in XINO-P presents a higher level granularity: instances of

RM types are modelled as a number of nodes. Therefore, if the SELECT section of

AQL defines a node that corresponds to a complex object such as an Observation

or an Entry, selecting the row that represents the root of this object is not enough to

return the requested content. Inserting all rows that represent a complex object

provides one option but this approach breaks the consistency of the semantics of

the result set, due to the inclusion of a complex object in the SELECT section of the

AQL query. Also, the process to construct a complex object from its DAG

representation must still be dealt with.

 In order to overcome this problem, EMF based pre-processing has been

extended with the capability to link each node to its corresponding location in the

XML content that is transformed to DAG. EMF supports navigation to a particular

object in an EMF model instance, using a unique path that identifies that object. The

EMF pre-processing builds this unique path for all nodes along with its openEHR

path, and this path is assigned to an attribute of DAG nodes. The XML content that

is processed via EMF is then persisted in a separate table along with the instance id

that associates it to all the DAG nodes created from it. Figure 90 depicts the

relationship between nodes and the original XML content.

The extended table schema for nodes allows TPQ matches to return EMF

URIs (Uniform Resource Locator) for nodes. Therefore, if a node introduced by the

SELECT section of AQL is required to be an RM object, this URI can be used to

access the EMF representation of the object by loading the XML content as an EMF

resource.

 194

…

<Observation…>

...

<Item>

...

XML

EMF

Emf Uri #1

Emf Uri #2

DAG

URI

Emf Uri #1

Emf Uri #2

{
…

uri:Emf Uri #1

...

{
…

uri:Emf Uri #2

...

XML InstanceId

InstanceId
1

1

1

1

1

1

1

2

3

4

Figure 90: Representing references to XML nodes as a DAG node attribute

This approach requires an iteration over query results returned by SQL to

identify XML payload(s) that should be loaded, therefore it implies a multi-step

process for constructing the result set for TPQ matching, with potential performance

problems that may arise in cases where large result sets are returned.

 It is envisaged that access to an object form of AQL results is a requirement

that is associated with use cases for clinical information systems , which usually

require much smaller size data that will be used for human interpretation, compared

to the model building and model training use cases for machine learning. Therefore,

the dual content representation is considered a viable approach, allowing SQL

based TPQ matching to address significantly different use cases with the same

architecture.

8.5: Summary

The architecture and implementation discussed in this chapter has been the

result of many iterative experiments, addressing persistence requirements with both

clinical information systems and CDS natures. It is a specific implementation of a

generic approach that uses the Postgresql relational database and SQL as the

underlying persistence system.

Despite being at the proof of concept level, the Postgresql based

implementation has allowed an openEHR driven CDS implementation to be tested.

Although less time has been allocated for testing the clinical information system

 195

implementation scenarios and requirements, limited experiments have confirmed

feasibility of using this implementation for this purpose.

 The TPQ matching approach has been implemented with SQL, and this

implementation is used to support the fundamental semantics of AQL functionality in

a CDS setting. At the time of writing, the AQL specification has a proposal status

and is not part of the officially released openEHR specification. Therefore, some of

its features are selectively implemented by software vendors, and there is not yet a

clear definition of the functionality that an implementation must support to claim

having a complete implementation of AQL. Two extensions to SQL based TPQ

matching – user-defined functions and JSON representation of sub-trees – have

significantly improved the capabilities and performance of XINO-P. These

extensions provide a robust mechanism to deal with both fundamental and less

frequently implemented features of AQL as well as being the basis of new features

such as Probabilistic AQL.

Despite SQL providing the required expressiveness for TPQ matching, albeit

with some extensions, the Postgresql based implementation is not immune to

various problems. Some aspects of the current design, such as using a single

database table for all clinical data, would benefit from further optimizations. The

effect of growing data size on performance of queries on existing EHRs, difficulty of

returning representations of complex objects instead of atomic values, and storage

requirements of holding full paths for all nodes as well as complete XML documents

for easy construction of complex objects, are all topics that require attention for the

current proof of concept implementation to address real life requirements. These

problems have been identified as key next steps for research, and early solutions

are being identified at the time of writing of this thesis.

The existence of these various issues does not diminish the promising aspects of

XINO. The extension of current work, both in terms of design and implementations

based on new persistence technologies and data access scenarios presents a large

set of options for future research.

The implementation discussed in this chapter is used for the experiments

performed in the next one, to explore an end to end CDS setting based on

openEHR

 196

Chapter 9: An Experimental openEHR Based Clinical
Decision Support Implementation for Ophthalmology:
Risk Estimation for Cataract Operations

This chapter presents the development of CDS functionality based on an

implementation of the persistence abstraction method developed in Chapter 7 on a

relational database, as discussed in Chapter 8. This implementation, named XINO-

P, is integrated to a BN that provides the decision-making capability for risk analysis

prior to a cataract operation.

 The persistence abstraction for openEHR described in Chapter 7 links

openEHR methodology coherently with the different characteristics of

implementations required for both clinical information systems and CDS.

Even though the use of different persistence systems can address issues of

data size and parallel processing, a more detailed look at an actual openEHR-based

CDS is required to identify other issues, independent of the underlying persistence

implementation, in the use of BNs and other machine learning approaches for CDS

in combination with an openEHR-based clinical record.

A number of issues arise:

First, ability to process larger amounts of openEHR standardised data does

not in itself guarantee solutions to the barriers discussed in Section 2.2, such as the

difficulty of integrating clinical information system implementations to CDS

implementations. The extent to which openEHR’s approach to modelling clinical

information can support CDS requirements must be determined. The logical

architecture for integrating openEHR and BNs set out in Section 4.7 assumes that

the openEHR specifications can be used during the design of BNs , and this

assumption must be tested.

Second, the clinical care process is the dominant approach in building

openEHR models, and the implications of this approach in CDS integration need to

be examined. As observed in the Opereffa experiment described in Chapter 6, a

strong focus on a particular subset of use cases may fail to support others.

Third, there will be an inevitable interaction between the above two factors in

any actual software implementation context, which is likely to introduce new

complexities due to the specific underlying technology platform.

Therefore, testing the assumptions around openEHR’s potential

improvement of CDS requires a setting that includes the factors identified above,

which is provided by the CDS implementation discussed in this chapter. This CDS

 197

implementation calculates the probability of a complication that can be encountered

during cataract surgery, based on the values of relevant clinical variables.

The clinical scenario for decision support was identified with help from Mr.

Bill Aylward from the Moorfields Eye Hospital, who was actively involved in

openEHR based clinical model development for ophthalmology in addition to

leading a software development team tasked with development of an open source

EHR implementation for Moorfields Eye Hospital. Mr. Aylward has also suggested

the use of an existing study (Narendran et al. 2008) as the gold standard for the

decision-making model. This study uses data from 55,567 cataract operations to

build a logistic regression model (Agresti 2007), which, in turn is used to develop a

risk assessment tool.

The clinical decision-making scenario from the ophthalmology domain, as

defined by (Narendran et al. 2008), was used to define and implement a BN, which

is then integrated to openEHR data hosted in the XINO-P. A data extraction pipeline

was developed to load already existing patient data for cataract care from a legacy

information system at Moorfields Eye Hospital into the XINO-P. However, the

complexity of the relational database design used by this legacy software and its

retired status at the time of the writing of this thesis produced an unreliable data set

despite vigorous efforts. As a result, a synthetic data generation method was used

to create clinical data, which was then persisted in XINO-P, using some

components of the data extraction pipeline.

The openEHR based CDS setup was tested via use of ROC Curves (Metz

1978), however, comparison of the performance of the BN based CDS with

(Narendran et al. 2008), was not possible due to lack of similar performance

evaluation for (Narendran et al. 2008), accompanied by lack of access to data used

by this study.

9.1: Relevant Research

The openEHR based CDS experiment (referred to as ‘experiment’ from now

on) is built on the approach developed in (Narendran et al. 2008) which presents a

predictive model for posterior capsular rupture (PCR) (Howard Vance Gimbel 1990),

(Howard V Gimbel et al. 2001) and vitreous loss (VL) (Astbury et al. 2008). Both

conditions are complications that can be encountered in a cataract operation.

(Narendran et al. 2008) uses a data set that was collected from a single

ophthalmology software to identify variables that are relevant to PCR and VL. The

variables that are found to be statistically significant is then used to build a logistic

 198

regression model for predicting the probability of PCR, VL or both for a patient.

Clinicians are provided with the predicted probability of a complication during

cataract surgery based on this logistic regression model, which allows taking

precautionary actions such as assigning a more experienced surgeon to the

operation.

Identifying a clinical problem that could benefit from CDS, building the CDS

approach and identifying the initial set of relevant clinical variables require

significant clinician input. Moreover, accessing clinical data that would allow

development and testing of CDS is notoriously complicated due to the obvious

sensitivity of clinical data. (Narendran et al. 2008) is a study that has fulfilled all of

these critical tasks. Taking it as a template for an openEHR based CDS

implementation allows this thesis to focus on openEHR and BN related aspects of

CDS for a well-defined CDS setting.

For the purposes of distinguishing between variables that are included in the

CDS model and data items in clinical models such as openEHR archetypes, the

variables of the CDS model will be referred to as CDS variables below.

9.2: Setup of the Experiment

The experiment aims to develop a CDS implementation that serves as a

workbench for openEHR and BN integration experiments, which, at the same time,

makes it possible to observe the relative advantages and disadvantages of such an

approach compared to logistic regression based method adopted in(Narendran et

al. 2008). A comparison between the implementation discussed in this chapter and

(Narendran et al. 2008) requires some extensions to logistic regression based

approach.

First of all, (Narendran et al. 2008) uses logistic regression to develop a

probability chart. This probability chart is meant to be used by a clinician to find out

the probability of a complication for a particular patient based on two factors. The

first factor is the baseline probability of a complication discovered from data, which

belongs to a group of patients whose clinical and demographic variables have a

certain set of values. This baseline probability of risk is multiplied by a ratio, which is

the second factor for finding the probability of a complication. This ratio is obtained

via a calculation based on the combinations of the values of clinical variables for a

particular patient. The probability chart maps values of the ratio to the probability of

a complication and the chart is the decision-making mechanism that is meant to be

used by the clinician.

 199

This approach requires the clinician to take action based on his or her

subjective threshold for risk level, which is the estimated probability found by

consulting the probability chart. (Narendran et al. 2008) does not include a

performance evaluation of this decision-making method that shows the relationship

between a threshold value for probability that classifies a patient as likely to have a

complication or not and the overall successful prediction rate based on that

threshold.

A meaningful comparison between BN based risk assessment and the

logistic regression method developed in (Narendran et al. 2008) requires that they

perform the same task for CDS, so that their performance can be compared. This

task is defined as the prediction of a complication during surgery in the context of

the experiment. This prediction is used to implement a classifier, which classifies

patients into complications or no complications category prior to surgery, using a

threshold value. When both logistic regression and BN classifiers are used for this

task, their performance can be compared by visualising their classification

performances via ROC curves, which shows their correct classification rates in

response to changing the classification threshold.

Therefore, drawing ROC curves for both the logistic regression would be the

first extension to (Narendran et al. 2008) that would be required for a healthy

comparison. ROC curves would also allow the results of modifications to both

approaches, such as changing the number of intervals for categorical variables as

well as changes to openEHR models to be observed as well.

Another useful extension to (Narendran et al. 2008) would be the analysis of

correlations between covariates, which corresponds to conditional dependencies

expressed as parent-child relationships in a BN. (Narendran et al. 2008) does not

include any interaction terms between covariates used in the logistic regression,

which, translates to a rather simple topology for a BN with no conditional

dependencies between clinical variable nodes.

These extensions to (Narendran et al. 2008), required to perform a

meaningful and informative comparison with the BN based approach implemented

in this chapter depend on access to the clinical data set used in (Narendran et al.

2008). In order to observe the results of adopting an openEHR and BN based

approach, the same data set should be transformed into RM based data and

persisted to XINO-P.

The most significant issue that has made extensions to (Narendran et al.

2008) ,and consequently the ideal comparison with the implementation discussed in

 200

this chapter, infeasible is that the dataset that has been used in (Narendran et al.

2008) has not been available for access during the writing of this thesis.

 Failing access to the original data set that was used, a second best option is

to use a data set from another source, which must at least contain same data

elements. In order to adopt this option, a data analysis and extraction project was

initiated at the Moorfields Eye Hospital in London with the aim of building a data set

that could provide the same clinical data as with the unavailable data set. This data

set would then be used to repeat the development of logistic regression of

(Narendran et al. 2008) from scratch.

The analysis step of the project aimed mapping the relational database

design of a legacy information system, which contained cataract data, to openEHR

clinical models that define cataract care. The extraction step aimed building a data

transformation pipeline, which would allow exporting data from relational database

to flat files and to XML files compatible with published XML schemas from the

openEHR foundation, accomplishing a transform from the information model of the

existing information system for cataract care to openEHR RM.

At the time of the data analysis, Moorfields Eye Hospital was in a state of

transition from a retired information system, which contained almost all the historic

cataract care data, to the OpenEyes system. This situation complicated the

analysis. The retired status of the clinical software containing the cataract care data

meant that enquiring about the design of the relational database tables and how

data was laid out across them was not possible since the software vendor no longer

provided support. Despite significant efforts from Moorfields IT staff, attempts to

discover the location and semantics of the cataract care data led to a rather fuzzy

data source for the data extraction and transformation pipeline.

The transformation pipeline was implemented in the Python programming

language and it was used to apply transformations to results of SQL queries which

were persisted into an HDF5 file, a scientific data persistence format developed by

the HDF group (Folk et al. 2011, 5). This flat file was used as input to further

transformations that generated XML files compatible with the published openEHR

XML schemas. Therefore, the transformation pipeline had the capability to generate

both flat files and openEHR XML files from the relational database.

Despite the flexibility of the pipeline, the lack of insight into how the data is

kept in the relational database by the original clinical information system has led to

unsatisfactory results. It was also confirmed by Mr. Bill Aylward that some of the

clinical data included in the analysis of (Narendran et al. 2008) was not collected by

this system. However, this issue was of secondary importance compared to the

 201

difficulty of being sure that the data extraction mechanism was pulling the data it

was thought to be pulling from the relational database. The following findings from

the data analysis are therefore provided here with that underlying uncertainty:

The total number of cataract operations found in the relational database

tables is 79656. These data were analysed with the view that each operation marks

the end of a care episode that consists of one or more clinical examinations, a

booking for the operation and the operation itself. This view was adopted as the

data related to risk estimation for surgery is distributed across these care steps and

for an operation to be included in the data set for a CDS, it must be complemented

by other relevant steps in the care episode.

When records that either could not be linked to an episode or that did not

include key data were excluded, only 16070 care episodes remained from the

79656 operations. Of these 16070 cataract care episodes, only 163 were found to

have the clinical complication that was to be predicted. The ratio of complication

(0.010) in the data set with complete episodic data is similar to the overall ratio for

the whole data set (0.012), for which episodic relationships are discarded and only

frequency of complications is considered.

The existence of only 163 incidents from 16070 observations shows the

rather rare nature of the event, which compounds the data quality and uncertainty

issues already mentioned.

Even though Moorfields Eye Hospital staff have been successfully providing

reports from this data source for other purposes, the uncertainty of the data

representation for this particular data set, and the amount of time that would be

required to eliminate this uncertainty, meant that the analysis possible was

insufficient for the purposes of this thesis. This was especially the case given that

no guidance was available from the software vendor.

 Given this situation, synthetic data generation was chosen as the means of

generating a dataset with the properties required for the controlled implementation

experiment being sought. The details of the synthetic data generation method

developed are discussed in Appendix I, in full detail.

The primary benefit of using synthetic data is full control over data set size

and clinical characteristics. As discussed in Appendix I, synthetic data generation

can produce any number of observations with adjustable characteristics for

subsequent analysis with the experimental CDS. The low prevalence of

complications that the CDS implementation aims to predict means that a large

number of observations are required in order for a sufficient number of occurrences

of the event that needs to be predicted, to be observed. A study based on the data

 202

set used in (Narendran et al. 2008) finds the overall prevalence of complications

(either posterior capsular rupture, vitreous loss or both) to be %1.92 (Jaycock et al.

2007), which shows the low prevalence of the condition.

Another advantage of synthetic data set generation is the capability to

generate patient data with target characteristics, for example in terms of numbers of

high-risk patients. This capability allows detailed profiling of various CDS

components such as the BN, not only at different data scales but also across

changing prevalence characteristics of the outcome being predicted.

 Although the synthetic data generation method makes it impossible to

perform a detailed comparison between the predictions of (Narendran et al. 2008)

and the experimental openEHR based CDS implementation, it nonetheless allows

the CDS design to be based on clinical variables that were found to be significant

for decision-making in a study based on real patient data.

 The collaboration at Moorfields Eye Hospital on cataract data analysis and

modelling has led to significant secondary benefits. Even though the initial focus of

the analysis has been on cataract surgery data, significant interest in openEHR from

the Moorfields Eye Hospital contributed to its use in another project.

The primary health IT project that had been under active development at the

Moorfields Eye Hospital when cataract data analysis began is called OpenEyes.

OpenEyes is a project that is closely associated with some of the key concepts

discussed in this study.

First, its origins lie in the senior clinicians’ awareness of data quality issues

that stem from shortcomings of healthcare IT. Second, Mr. Bill Aylward who initiated

the OpenEyes project to deal with these shortcomings has been aware of and

interested in openEHR approach since before the initiation of OpenEyes.

This alignment in principles and methods has enabled an openEHR centric

collaboration with the Moorfields Eye Hospital team. The use of openEHR

archetypes in cataract data analysis contributed to discussions about using

openEHR methodology in OpenEyes. A small scale project has been implemented

with support from NHS to connect practices in Wales to OpenEyes for better

glaucoma care to this end. This interoperability focused project used openEHR

models for data exchange between clinical information systems and concluded with

a successful pilot implementation.

The use of openEHR archetypes has also led to development of openEHR

templates that were created by Dr. Ian McNicoll, a senior clinical modeller, in

response to requirements derived through detailed study of the Moorfields cataract

care records and the clinical decision support approach followed in (Narendran et al

 203

2008). These templates were used as the basis of a data transformation pipeline

that was required for analysis of cataract care data. They were also used as the

basis of the experimental CDS implementation based on BNs discussed in this

chapter.

9.3: Components of the openEHR Based CDS Experiment

The openEHR based experiment for CDS consist of the following primary

components:

• Clinical models

• openEHR persistence implementation

• Predictive model

• Predictive model implementation

As discussed in 9.2, the openEHR based CDS was built on the approach

developed in (Narendran et al. 2008) and therefore some of these components have

counterparts in that study and some are specific to the openEHR based approach.

Figure 43 depicts the relationship between the components of the openEHR based

CDS experiment:

openEHR clinical

Models

openEHR

Persistence

Implementation

Predictive Model

Predictive Model

Implementation

Synthetic Data
openEHR formatted

data
CDS Client System

Clinical Data openEHR Bayesian Network Clinical Information System

Transformed

to

Complies with

Persisted in

Provides

data

Uses

concepts

from

Provides

predictions

Parameters

learned by

Figure 43: Components of the openEHR based CDS experiment

The starting point of the experiment is the synthetic data generation. The

data generated through the mechanisms discussed in Appendix I was transformed

into openEHR compliant XML files, which are represented in Figure 43 as

‘openEHR formatted data’. This transformation to XML represents a step that would

be necessary if clinical data were to be provided by any of the large number of

 204

legacy EHR systems currently in use. Even though the data used in the experiment

was synthetic, the process for moving the data into the openEHR persistence

implementation followed a valid, reusable approach.

The structure of the openEHR formatted data complies with the openEHR

clinical models in the form of openEHR templates. This data was persisted into the

openEHR Persistence Implementation as discussed in detail in Chapter 8. This

persistence implementation is based on the novel persistence abstraction of RM

based data, which is discussed in Chapter 7.

The persistence implementation is used by the Predictive Model

Implementation for its required data access, as Figure 43 shows. The Predictive

Model Implementation in Figure 43 corresponds to a BN inference algorithm that

calculates the probability of a complication during the cataract operation. The

Predictive Model is a BN, which provides a decision-making model for probabilistic

reasoning on the clinical data via defining clinical variables and relationships

between them. These clinical variables are based on the data items defined in the

openEHR clinical models, as depicted in Figure 43.

The nodes of the BN that represent the clinical variables, which are used to

calculate the probability of a complication during cataract surgery, are based on

data items defined in the openEHR templates. Therefore, a mapping from these RM

based data items to a BN structure creates an implementation independent

mapping from clinical concepts to probabilistic reasoning.

The horizontal dashed line in Figure 43 emphasises the technology agnostic

nature of this mapping by separating clinical model definitions and predictive model

(BN definitions) from components that are actual software implementations.

Particular implementations of the technology agnostic CDS components that are

above this line are discussed in detail through the rest of this chapter, but each

component can potentially be implemented on many different platforms with

different technology options. The openEHR XML format that was used as an

intermediate data representation for clinical data could be replaced with other

representations such as custom, binary encoded data, to achieve faster

performance. The openEHR Persistence Implementation, which used a relational

database for this experiment, can be replaced by alternative persistence systems,

based on the approach developed in Chapter 7 and discussed in detail in Chapter 8.

Likewise, the Predictive Model Implementation can be built with many different

languages and algorithms.

Therefore, this experiment explores both the feasibility of generalising an

openEHR based CDS architecture and the efficacy of a particular configuration of its

 205

components. As discussed in Chapter 7, a principal assumption that such feasibility

rests on, here, is the successful abstraction of RM based data persistence and

access. This assumption was tested through a relational database based

implementation.

Finally, the rightmost component of Figure 43 represents any client system

that might use the predictive model implementation to calculate actual probabilities

of a complication before a cataract operation.

The components in Figure 43 were built and integrated via a number of

steps, which consist of:

• The development of openEHR archetypes and templates that provide formal

models for the relevant ophthalmology data.

• The creation of the clinical data set based on the openEHR models and

openEHR persistence implementation

• The development of an AQL query that provides access to the clinical data

for the CDS.

• The definition of the structure of a BN.

• Building the connection between AQL query execution and BN

implementation, for parameter learning and inference.

The following sections provide the details of these steps, followed by a

discussion of the findings and a comparison of the experiment with the pilot BN

implementation experiment discussed in Chapter 5.

9.4: Development of the Clinical Models

All clinical data used in the CDS represented via openEHR templates.

Therefore, the first step for a CDS implementation based on openEHR is to build the

clinical models. The models need to cover all the clinical data that has been

classified as significant by (Narendran et al. 2008).

 The openEHR archetypes that were used for the experiment were previously

developed by an openEHR modelling expert Dr. Ian McNicoll who worked with Mr.

Bill Aylward from Moorfields Eye Hospital. These archetypes are publicly available

from an instance of Clinical Knowledge Manager (CKM) (Ocean Informatics 2015)

software run under openEHR foundation’s website. An initial review of archetypes

with input from Dr McNicoll revealed that their scope covered most of the clinical

scenario that the CDS experiment focused on. A number of additions and changes

were implemented by Dr McNicoll based on the input provided by Mr Aylward and

 206

the author. A number of new openEHR templates were produced as a result of

these changes.

 It was observed that previously developed openEHR archetypes, which were

used as the basis of these templates, provided a significant amount of coverage for

the clinical concepts that define the cataract care scenario, including the cataract

operation. However, despite their relevant content, these archetypes did not include

data items which would be required to represent some of the variables used in the

logistic regression in (Narendran et al. 2008).

The missing data items in these archetypes consisted of both clinical and

non-clinical variables. Clinical variables such as “patient can lie flat”,

“Pseudoexfoliation” or “doxazosin” had not been included in the original archetype

design because they were not part of the data that is collected at the Moorfields Eye

Hospital. The remaining missing data items were non-clinical variables such as the

age of the patient and the category of the surgeon performing the operation.

Therefore, it was normal that they would not be included in the clinical model design

process.

Despite the justification for their exclusion, these variables were still required

for the predictive model. Therefore, a final set of changes to the openEHR models

was implemented by the author. The inclusion of non-clinical variables in archetypes

is not considered as a generic and widely acceptable solution, but this approach

was considered as an acceptable workaround for the proof of concept

implementation in the current experiment.

 The resulting openEHR templates, therefore, represented a large superset of

clinical information that was gathered across the three key stages of cataract

treatment at Moorfields Eye Hospital.

 The care process that leads to a cataract operation begins with an

examination of the patient by the clinician. In case there is a need and also consent

for a cataract operation, the operation is booked, and the cataract operation is

performed, during which the complications PCR and VL may arise.

 The three templates that were developed to model these steps in the care

process are discussed next, with their structure depicted in figures.

9.4.1: Clinical Examination

The clinical examination of the patient was modelled by the template

depicted in Figure 44. Figure 44 presents the openEHR template that consists of a

top level COMPOSITION archetype (Cataract Clinic Note) that contains three

 207

archetypes which in turn represent clinical concepts. The archetypes are marked in

the figure. Data items within the archetypes are associated with CDS variables that

are relevant to PCR and VL, as identified by (Narendran et al. 2008).

 208

Age related macular degeneration (AMD)

Diabetic Retinopathy

Fundal view

Corneal Pathology

High myopia

Archetype

(COMPOSITION)

Archetype

(OBSERVATION)

Archetype

(OBSERVATION)

CDS model

variable

Archetype

(OBSERVATION)

CDS model

variable

Figure 44: Clinical examination template

 209

 The fundoscopic examination archetype used in the cataract clinic node

template contains a particular modelling approach that is likely to arise in clinical

systems development: Interpretation data item corresponds to two different CDS

variables: Age Related Macular Degeneration (AMD) and Diabetic Retinopathy. The

Interpretation data item is capable of representing different content based on its

value. The chosen modelling approach allows multiple interpretations of a clinical

condition to be recorded at the same point in the RM instance. This is possible

because the archetype is a model, and actual data instances may have a number of

Interpretation data item instances as long as the archetype allows for a cardinality

that is greater than one.

 From a clinical modelling point of view, the advantage of using Interpretation

to represent multiple data items is that a potentially very large number of clinical

interpretations can be recorded against this field. If the modeller specifies AMD and

Diabetic Retinopathy as separate fields instead of using Interpretation alone then

this modelling approach leads to adding a new field for every problem that the

modeller thinks the clinicians may record for a single eye. This is likely to be a

problematic modelling approach since it requires the definition of a potentially large

number of data items.

The side effect of using Interpretation field for representing multiple clinical

problems is that the archetype path to multiple problems would be the same. That is

both the AMD and Diabetic Retinopathy variables in Figure 44 would have the

following path:

/composition[openEHR-EHR-COMPOSITION.encounter.v1]/content[openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1]/data[at0001]/events[at0002]/data[at0003]/ite

ms[at0007]/items[at0032]/value/value

This path would also point at any other clinical problems that could be

recorded by the clinician. The actual semantics of the clinical data for this path is

established through the name property of the Identification data item, which is also

accessible via the path:

/composition[openEHR-EHR-COMPOSITION.encounter.v1]/content[openEHR-EHR-

OBSERVATION.fundoscopic_examination.v1]/data[at0001]/events[at0002]/data[at0003]/ite

ms[at0007]/items[at0032]/name/value

 210

Therefore, the semantics of particular data becomes dependent on a textual

description, which is a significantly weaker form of computable healthcare data

representation than openEHR’s features can support. The weakness stems from the

modelling approach used. Considering the fact that the …/name/value path may

change based on the actual human language the implementation can use (English,

Spanish, etc.) the problem may be elevated further when data sets from different

sources that use different languages need to be merged for CDS.

 It is important to underline that the modelling approach taken in this particular

archetype by Dr. Ian McNicoll does not point at a weakness of the openEHR

formalism. The clinical modeller who created the archetypes, suggested using

openEHR’s support for clinical terminologies to strengthen the semantics of the

Interpretation field when notified about this potential problem, but this thesis kept the

initial modelling approach in order to highlight and discuss the potential implications

of modelling choices made.

 The template in Figure 44 shows that clinical modellers can stay within the

bounds of openEHR formalism to express clinical concepts and still face

problematic issues of semantic interoperability. This is an important finding:

openEHR formalism cannot guarantee the realisation of all of its potential benefits

without consideration of how the models are going to be used.

 For this particular modelling issue, using openEHR’s support for

terminologies would solve the problem. Through the use of a code from a widely

used terminology such as SNOMED-CT (IHTSDO 2015), via the

DV_CODED_TEXT openEHR type, the archetype and resulting RM data would

become resilient to these semantic interoperability issues.

The remaining CDS variables that are based on data points in the template

are similar to AMD and Diabetic Retinopathy: they are represented with text fields

and the discussion about the use of the Interpretation field is valid for them as well.

9.4.2 Pre-Operation Booking

During the clinical care process, a clinical examination may lead to a

decision to perform a cataract operation. In this case, the operation needs to be

booked and clinical data expressed in some of the CDS variables from (Narendran

et al. 2008) is created at this step.

Figure 45 depicts the association of data items from the openEHR template

for pre-operation booking to CDS variables in the same way as in Figure 44.

 211

Figure 45: Pre-Operation booking template

 212

This figure includes only sections of the template that contain CDS variables

for the sake of clarity.

The associations in Figure 45 are similar to ones in Figure 44. The

numerator and denominator in the diagram are different fields of the Metric Snellen

data item and not two different variables with the same archetype path as discussed

before.

The Cataract Pre-Op Booking template used a key clinical modelling practice

supported by openEHR: an exclusion archetype. Even though it is not associated

with a CDS variable, and not used in the implementation, the Exclusion of a

Problem/Diagnosis archetype included in the template is related to the semantics of

the CDS variable Glaucoma. It explicitly expresses the semantics of a patient

having no glaucoma. This is a modelling approach that the clinical modeller can use

to clarify the meaning of lack of a data item.

An example case that requires this clarification may be a change in the

clinical record keeping practice: eg a new piece of clinical data that was not

recorded previously now needs to be recorded routinely during the care process.

After a while, there would be two groups of patients with missing data for this clinical

variable. The first group would have their data recorded when the care process did

not record this clinical variable. The second group would have missing data due to

their clinical condition not requiring its creation (as in no glaucoma) even though the

clinical variable is included in the care process and recorded.

If lack of this data item in data is interpreted as the condition does not exist,

this interpretation would incorrectly classify patients who had the condition but

whose treatment took place during a time when the condition was not recorded.

Using the exclusion archetype as in the Cataract Pre-Op Booking template allows a

clear interpretation of missing data. However, using this modelling approach does

not guarantee that actual data will have the required semantics. A clinician may not

record the existence of a condition such as glaucoma to express a lack of it and

may ignore recording its exclusion, which may thereby lead to an ambiguity

between missing and not recorded data.

To avoid this situation ADL’s support for invariants may be used to force

recording of an exclusion when a particular condition is not observed, but this

scenario may complicate the modelling process for the cases where the number of

conditions that may require this check is large.

The use of exclusion archetype provides a good example of the situation in

which clinical models are developed with a focus on clinical care and even though

there are powerful mechanisms available to clinical modellers, they may not be

 213

employed because they are primarily needed for secondary use cases such as

building a data set from population queries.

If the clinical modeller focuses on the clinical care process, handling the

ambiguity of the type discussed above is not a significant problem for the users of a

clinical information system. A clinician may spot the lack of a particular condition

and request clarification. However, secondary uses of clinical data mostly happen in

contexts other than direct clinical care, with little or no possibility of confirmation or

clarification of clinical data.

9.4.3 Cataract Operation

The final step in the clinical care that is included in the scope of the clinical

modelling is the cataract operation. Figure 46 depicts the openEHR template that

was used to represent the cataract operation.

Figure 46 associates the Clinical Interpretation data item to PCR and VR

CDS variables, which represent the clinical complications that (Narendran et al.

2008) aims to predict.

 The PCR and VR complications are represented through the same data item,

and therefore the ambiguity when selecting their values using archetype paths must

be removed using the name attribute of the data item as in the case of the clinical

examination template in Figure 44.

The operative report template is the last of the three templates that were

developed for managing data for cataract care using openEHR. These templates

correspond to the openEHR clinical model component of the CDS architecture in

Figure 43, and they are the mechanism through with actual clinical data was

created. As discussed Section in 9.2, synthetic data generation was chosen as the

method for building the data set for CDS implementation. Due to the openEHR

driven nature of the CDS, this approach required that synthetic data was

transformed into openEHR RM based data using these openEHR templates.

 214

PCR

VR

Archetype

(COMPOSITION)

Archetype

(OBSERVATION)

Archetype

(CLUSTER)

CDS model

variable

Figure 46: Cataract operation template

 215

9.5 Data Transformation to openEHR RM

Aside from the synthetic nature of the data, transforming the simulated data

to RM based data represents a realistic requirement for making use of any existing

clinical data for an openEHR based CDS implementation. This requirement

originates from the existence of large quantities of clinical data that is kept in legacy

systems, which could be used as a data source for a CDS based on openEHR.

The methods used for the transformation are independent of the actual

values of the clinical data and therefore the synthetic nature of the data used is not

an issue in the following discussion of the transformation.

 The transformation used the openEHR XML schemas, which are published

as part of the openEHR specifications, as the target, which is a common approach

in openEHR implementations.

 Synthetic data was transformed into XML form using XSLT, producing valid

XML files according to XML schemas, which were automatically generated from

openEHR templates. These automatically generated schemas are called Template

Data Schemas (TDS) and XML files that are valid according to these schemas are

called Template Data Documents (TDD).

The first component of the transformation implementation is the generation of

XML files (TDDs) that are used as a placeholder for data items. Figure 47 depicts

how these XML files were generated.

TDS TDD

XSD XML

Test XML

Generation

Template
Clinical exam

Booking

Operational Notes

Tdd_Clinical_Exam.xml

Tdd_Booking.xml

Tdd_Operational_Notes.xml

Figure 47: Test XML document generation from XSD

The openEHR templates discussed in Section 9.4 were exported as TDSs

from the freely available Template Designer tool. This tool allows development of

openEHR templates using archetypes and it also supports the capability to generate

TDSs from templates.

 216

Since a TDS is an XSD, it is possible to generate test XML document

instances based on it using widely available XML tools, as shown in Figure 47. In

this case, the XML data generation capability of the Eclipse Web Tools Platform

(WTP) project was used to generate individual XML files for each of the three

openEHR templates created for the experiment.

 From an openEHR perspective, these test files are TDDs. Three XML (TDD)

files were generated as a result of this step. The initial content of the data elements

in these files were assigned by the XML tool, based on the information in the XSDs

(TDSs). These files were used as placeholders for clinical data for a single patient’s

cataract care. Synthetic clinical data was injected into these files, replacing values

generated by the XML tool, leaving the rest of the content the same, at their

automatically generated values. Figure 48 visualises this process.

Figure 48 shows how synthetic data related to a single patient episode was

injected into three TDD files through the use of XSLT. The XSLT processing injects

values from synthetic data to relevant points in the TDD, and other content in the

TDDs is left untouched. Since these values are generated based on the XSD (TDS),

they may not always be clinically meaningful. The experiment left these values

untouched for the following reasons. The data contents of the CDS data set is a

subset of the clinical data defined by the three openEHR templates, so any data

outside of this data set were not used in the CDS implementation. However, it is

necessary to have a realistic content structure in the XML files (TDDs), so that the

persistence implementation based on the approach developed in Chapter 7 can be

tested with as realistic content as possible.

Therefore, having XML files (TDDs) with realistic sizes were considered

important as well, since this factor is likely to become significant from a performance

point of view for the persistence implementation as the data size grows. Since

validation of data values based on their definitions in the clinical models is not within

the scope of this study, automatically generated XML data that is not replaced by

synthetic data values was left as it was.

 The process depicted in Figure 48 was performed for each row of synthetic

data, which represents a patient episode consisting of a clinical examination,

operation booking and cataract operation. The resulting XML files (TDDs) required

another transformation. The need for this transformation stems from the nature of

TDS. A TDS defines a template specific type system based on types from RM.

These types enforce further modifications to archetype data items that are modified

in the openEHR templates so that XML data based on the TDS always conforms to

these specialisations. At any point following its creation, the contents of the XML file

 217

with data (TDD) can always be translated back to canonical, unmodified RM types.

Therefore, the TDS mechanism can be considered as a small, and template specific

type system based on openEHR. Its outputs can always be translated to the

canonical XML form. This means that openEHR implementations can work on the

basis of canonical XML definitions, based on the fact that openEHR template based

data can always be transformed into this form.

XSLT

TDD for Clinical Examination

TDD for Operation Booking

TDD for Cataract Operation

<?xml version="1.0"...

<?xml version="1.0"...

<?xml version="1.0"...

Synthetic Data

Figure 48: Inserting synthetic data to TDDs

The (TDDs) with content based on synthetic data were finally transformed to

canonical XML files, which are valid according to canonical XML Schema

documents published by the openEHR foundation, using this approach. Following

this transformation, XML data was processed by the persistence layer

 218

implementation. The details of this step are discussed in Chapter 8. Figure 49

complements Figure 48 and describes the whole process.

XSLT

TDD for

Clinical

Examination

TDD for

Operation

Booking

TDD for

Cataract

Operation

<?xml version="1.0"...

<?xml version="1.0"...

<?xml version="1.0"...

Synthetic Data

XSLT

<?xml version="1.0"...

XSLT

XSLT

<?xml version="1.0"...

<?xml version="1.0"...

XINO-P

openEHR

Canonical

XML

openEHR

Canonical

XML

openEHR

Canonical

XML

Figure 49: Persisting openEHR data to XINO-P

The process depicted in Figure 49 provides a good approximation of a real-

life data import method from a legacy system for an openEHR implementation. The

data import process implemented for the experiment concludes with the population

of clinical data in the openEHR persistence implementation, called XINO-P, which

establishes a workbench for performing experiments with the openEHR based CDS.

Based on the approach developed in Chapter 7, this persistence implementation

was accessed via AQL queries from the CDS.

9.6: AQL Based Data Access for CDS

9.6.1: Using AQL for Use Cases involving Non-Clinical Care Data

AQL has a pivotal role in openEHR data access due to its capability to

provide a standard access method to data, independent of the underlying

 219

persistence implementation. Therefore, an AQL query, as a means of

implementation independent openEHR data access, was required to map the data

items in the cataract care templates to CDS variables. The results of this query

provided the clinical data for the CDS implementation.

 The CDS data set that was used in the experiment does not focus on a

single patient or a particular step in the care process, but as observed from the

associations between data items across multiple templates and CDS variables,

aggregates data from a number of steps in the care process.

A common approach to this type of data aggregation requirement is to export

data from a clinical information system to another form, which can be used for

analysis purposes and other secondary uses, including development of CDS

mechanisms. Based on this common practice, extracting data from an openEHR

implementation to a format that can be further transformed and modified so that it

becomes native to the tools used for CDS model development, would be a valid

approach for developing a CDS based on openEHR.

 However, moving data out of an openEHR context for the purposes of CDS

model building limits the use of openEHR to clinical care only. An extended use of

RM based data and AQL is required to observe how openEHR methodology and its

implementation aspects perform in settings beyond clinical care such as CDS

system development. Using AQL for population queries to build a data set for a BN

based CDS served this goal.

9.6.2: Data Aggregation

AQL was used in the experiment to aggregate data from multiple steps in the

care of a patient. This data was used for building the CDS model, which is a BN.

Since the care steps were modelled via openEHR templates, the aggregation used

them as a definition of the clinical data source, as depicted in Figure 50.

The AQL query in Figure 50 uses data items from the three templates

discussed in Section 9.4. The full AQL query from Figure 50 is provided in Figure

51.

 220

Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

SELECT ….

FROM ….

WHERE ...

AQL

Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

Figure 50: AQL query for CDS: relation to openEHR templates

The AQL query in Figure 51 aggregates data points from the three

templates. For the sake of clarity, paths in the SELECT clause have been shortened

in the diagram. The query defines instances of COMPOSITION RM types that are

the roots of their respective templates and uses the CONTAINS AQL statement to

define OBSERVATION instances that are under the COMPOSITION instances.

These definitions take place in the FROM clause of the AQL query. The

SELECT clause then uses the references to OBSERVATIONs as the root of a

number of archetype paths that define the data items to return as the query result.

The variable defined with the alias ‘e’ in the FROM clause has no constraints

on its ehr_id attribute since this query is meant to process all clinical data that fits

the criteria regardless of whose EHR contains it.

The conditions defined in the WHERE clause ensure that using the same

archetype as the root of a number of templates does not lead to ambiguity.

 221

SELECT

o_fund_exam/data[at0001]/.../value AS diab_ret,

o_fund_exam/data[at0001]/.../value AS amd,

o_fund_exam/data[at0001]/.../value AS fundal_view,

o_cl_exam/data[at0001]/.../value AS corneal_pathology,

o_refraction/data[at0001]/.../value AS high_myopia,

o_vis_ac/data[at0001]/.../code_string AS eye_examined,

o_vis_ac/data[at0001]/.../numerator AS pre_op_va_num,

o_vis_ac/data[at0001]/.../denumerator AS pre_op_va_denum

o_book_exam/data[at0001]/.../code_string AS brunes_white_cat,

o_book_exam/data[at0001]/.../value AS weak_zonules,

o_book_exam/data[at0001]/.../code_string AS small_pupil,

o_book_section/.../value AS glaucoma,

o_operation/data[at0001]/.../value AS pcr,

o_operation/data[at0001]/.../value AS vl

FROM EHR e

CONTAINS

(

COMPOSITION c_exam[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS

(

o_fund_exam[openEHR-EHR-OBSERVATION.fundoscopic_examination.v1]

AND

o_cl_exam[openEHR-EHR-OBSERVATION.exam.v1]

AND

o_refraction[openEHR-EHR-OBSERVATION.refraction.v1]

)

AND

COMPOSITION c_booking[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS

(

o_vis_ac[openEHR-EHR-OBSERVATION.visual_acuity.v1]

AND

o_book_exam[openEHR-EHR-OBSERVATION.exam.v1]

AND

o_book_section[openEHR-EHR-SECTION.adhoc.v1]

)

AND

COMPOSITION c_operation[openEHR-EHR-COMPOSITION.report.v1]

CONTAINS o_operation[openEHR-EHR-OBSERVATION.operation_record.v1]

)

WHERE c_exam.name/value matches {'Cataract Clinic Note'}

AND

c_booking/name/value matches {'Cataract Pre-op Booking'}

AND

c_operation/name/value matches {'Operative report'}

Figure 51: AQL query for CDS

 222

All the templates that are used by the AQL query have the same root

archetype as the root of the template: a COMPOSITION archetype with the

archetype id ‘openEHR-EHR-COMPOSITION.encounter.v1’.

Since archetypes are meant to be reused within templates, there is nothing

problematic in this setting, but the templates are defining different clinical concepts

and therefore they must be clearly identified in the AQL query. Their names are

used as constraints in the WHERE clause to distinguish the root COMPOSITIONs

of templates

Following the persistence abstraction approach of Chapter 7, the AQL query

in Figure 51 can be represented in the TPQ form as depicted in Figure 52.

OR

AND

AND

o_vis_ac

o_book_exam

o_book_section

o_fund_exam

o_cl_exam

o_refraction

c_exam c_booking c_operation

e

diab_ret amd fundal_view corneal_pathology

high_myopia

eye_examined pre_op_va_num

pre_op_va_denum

brunescent_white_cat

weak_zonules

small_pupil

glaucoma

pcr

vl

name

name
name

AND

o_operation

AND

Figure 52: AQL query for CDS as a TPQ

Figure 52 shows how the AQL query aggregates information from different

compositions that are created during the care process. It also shows how CDS

variables are distributed across these compositions.

The existence of the EHR typed ‘e’ node is required for two reasons. First, the

syntax of AQL requires that the FROM clause has a single root item which acts as a

parent for other items which can be expressed via the CONTAINS statement.

Therefore, it would not be possible to group the three key COMPOSITION data

 223

items (c_exam, c_booking, c_operation) without using a shared container (e).

Second, even though the ‘e’ node has no EHR id constraints, it still implicitly forces

the c_exam, c_booking and c_operation nodes to exist under the same EHR,

through containment constraint.

The TPQ form of the AQL query employs a logical OR interpretation for the

data items defined by the SELECT clause, which allows the building of a data set

for the CDS that may contain missing values. This flexibility leaves the option of

making use of information about missing data in various steps of BN development

for the CDS.

9.6.3: Issues Encountered

The AQL query developed in Section 9.6.2 was used to build a data set from

a simulated patient cohort. This approach led to significant findings regarding the

use of AQL for defining and creating a population data set.

9.6.3.1: Non-clinical CDS Variables

Both the TPQ in Figure 52 and its underlying AQL query define a list of data

items distributed across three COMPOSITION instances, which are based on three

templates. This list leaves out some of the CDS variables identified by (Narendran

et al. 2008) because these variables do not contain clinical data. Two such CDS

variables are the age of the patient and surgeon grade.

Both variables were found significant by (Narendran et al. 2008)in terms of

their contribution to the probability of complications related to cataract surgery and

were, therefore, included in the logistic regression. However, these variables were

not included in the openEHR templates, because age would usually be a data item

associated with patient demographics, and surgeon grade is likely to be classified

as administrative data, based on the classification of surgeons in a hospital.

The openEHR RM allows representation of such variables, but as this

experiment shows, they are not necessarily considered relevant when modelling

clinical data with a focus on the particular steps of a care process.

9.6.3.2: Lack of a Care Episode Identifier

The steps of the care process of a patient: clinical examination, operation

booking and cataract operation, were modelled via separate openEHR templates. A

clinician accessing information in these templates can use the dates associated with

 224

data entry for each of these steps to build an ad-hoc view of the care process even

if the three steps do not have an explicitly defined data item that identifies a care

episode.

openEHR RM allows for tracking of such care episodes without explicitly

including this information in the clinical models. This capability is based on its

support for making use of external systems for various tasks, such as using an

external workflow engine to associate clinical data with workflow steps. But even

when information about a care episode is not tracked, the users of the clinical

information system that is based on the templates can still construct the temporal

sequence of aspects of the care process, intuitively, using date information which is

likely to be provided.

In the context of the experiment, it was observed that not having episodic

data for the care process may cause problems due to the nature of the clinical

condition CDS focuses on. In case of cataract treatment, a patient can have more

than one operation if the problem exists in both eyes. This means that a patient’s

EHR may have more than one instance for each of the steps that make up the care

process. This situation may lead to duplicate data in the AQL query results. Figure

53 depicts a simplified tree representation of RM based data in a patient’s EHR,

along with the relevant part of the TPQ, again, simplified, from Figure 52. The

hypothetical patient’s EHR contains two episodes of care that concludes with a

cataract operation.

c_exam(1)

c_booking(1)

c_operation(1)
c_exam c_booking c_operation

e
e

c_exam(2)

c_booking(2)

c_operation(2)

Data TPQ

c_exam(1) c_booking(1) c_operation(1)

c_exam(1)

c_exam(1)

c_exam(1)

c_exam(2)

c_exam(2)

c_exam(2)

c_exam(2)

c_booking(2) c_operation(1)

c_booking(1) c_operation(2)

c_booking(2) c_operation(2)

c_booking(1) c_operation(1)

c_booking(2) c_operation(1)

c_booking(1) c_operation(2)

c_booking(2) c_operation(2)

Matches for TPQ

 Figure 53: Unintended, duplicate TPQ matches

 225

Both episodes include a clinical exam, booking for an operation and the

operation. The TPQ that is a simplified representation of the one in Figure 52 has no

consideration for the episodic nature of the data, leading to an unintended number

of matches. The problem is due to TPQ defining a tree pattern based on archetype

ids, which can be satisfied in eight different combinations of results by the data tree,

as depicted in Figure 53.

 The intended representation of the clinical data for this patient consists of the

first and last rows of the table in Figure 53, grouping COMPOSITION instances

based on their episodes. The AQL used for the CDS data set needs to include a

constraint that would allow the steps of a cataract care episode to be grouped

together to express this intention, explicitly.

When the episode identifier is not included in the modelling, it is not possible

to introduce a condition to the AQL query based on this identifier. Moreover, if the

episode identifier were to be included in the modelling phase, its use in AQL would

require features that are not explicitly defined by the current AQL specifications. The

condition that must be expressed in AQL in order to avoid the unintended duplicate

results depicted in Figure 53 is the equivalence of episode identifiers of

compositions included in the query. This equivalence condition does not require

expressing the actual value of episode identifiers, it only requires that three

COMPOSITION instances that represent the care steps have the same identifier

value. Expressing this condition in AQL requires referencing values of data items

within the query without explicitly providing values. A natural way of doing this would

be extending the WHERE clause. Pseudo AQL code that expresses the

equivalence of episode id data item values, based on this approach would be:

“…WHERE c_exam/…path_to_episode_id…/value = c_booking/…path_to_episode_id…/value AND…”

Figure 54 shows how equivalence of episode ids for COMPOSITION

instances recorded under episodes 1 and 2 can be expressed without referring to

actual values.

EHR

c1 c2 c3

EHR

Composition

(Clinical exam)

Composition

(Booking)
Composition

(Operation)

Data
TPQ

1 1 1
2 2 2

Composition

(Clinical exam)

Composition

(Booking)
Composition

(Operation)
Composition

(Clinical exam)

Composition

(Booking)
Composition

(Operation)

c1.episodeId == c2.episodeId c2.episodeId == c3.episodeId

Figure 54: Episode id in data and query

 226

The current specification of AQL does not clarify if a constraint based on the

equivalence of values of different data items can be used in the WHERE clause.

The experimental implementation discussed in Chapter 8 supports this capability via

the use of SQL’s support for expressing these types of conditions.

The experiment did not encounter this particular problem since the synthetically

generated data set included only one episode per patient EHR. However, the

requirement to support constraints on relative values is obvious.

9.7: The Bayesian Network

The BN for risk estimation is the main clinical decision support component of

the experiment. It replaces the logistic regression used in (Narendran et al. 2008) as

the means of predicting the probability of a complication during cataract surgery.

The structure of the BN is provided in Figure 55 in the form of a screenshot taken

from the BN tool GENIE (Druzdzel 1999)

Figure 55: BN for CDS

9.7.1: Network Structure

 The structure of the BN in Figure 55 is based on the logistic regression

model developed in (Narendran et al. 2008). The logistic regression model has an

outcome variable with two possible results and 12 covariates, and this model is

 227

encoded directly in the structure of the BN. The outcome variable has a dependency

on all factors identified by (Narendran et al. 2008), and there is no dependency

relationship between any of these factors. Only the structure of the BN is based on

the semantics of the logistic regression derived by (Narendran et al. 2008). The

actual probability distributions of the nodes of the BN were learned from the CDS

data set.

Defining the structure of the BN in this way has some disadvantages

compared to alternative structures that could have expressed dependency

relationships between clinical variables, such as the BN learned from data in

Section 5.3. Since a BN encodes a joint probability distribution of categorical

variables, all the nodes with a high number of parents end up having large

conditional probability tables. A key advantage of a BN is that it allows significant

computational savings based on the conditional independence properties of

variables. When there are very few conditional independence relationships in the

network, both storage and computation requirements of variables increase, which

has been the case for the network in Figure 55. The outcome variable has 12 parent

variables leading to a conditional probability table with 92160 entries.

It is possible that the covariates of the logistic model may have some degree

of interaction between them, especially between the age variable and some clinical

conditions. But the model developed in (Narendran et al. 2008) does not include

such interaction variables. Since this experiment did not have access to the dataset

underlying the logistic regression model in this study, checking for correlations in the

data set for a more expressive BN Network structure has not been possible.

Therefore, the BN used in the experiment has a structure that mimics the

relationships introduced by the logistic regression model.

 All covariates in the logistic regression model in (Narendran et al. 2008) are

categorical. This allows the BN nodes to be parameterized based on the outcome

categories of the corresponding covariates in the logistic regression model. For

example, a continuous value such as the age of the patient is represented with a

discrete covariant with values that represent five age categories in the logistic

regression, and the corresponding node in the BN that represents the distribution of

the age has five outcomes which correspond to these categories.

9.7.2 Network Parameters

The values of the BN parameters were learned from synthetic data through

the use of bnlearn (Marco Scutari 2009), a package developed for the statistical

 228

programming language R (R Development Core Team 2008). The parameters of

the network, i.e., the distributions expressed by conditional probability tables were

learned through the maximum likelihood method (Scholz 2004) implemented in

bnlearn.

 It was observed that learning network parameters in this setting led to

missing values for some conditional probabilities. The maximum likelihood approach

in bnlearn assigns “not available” to some conditional probabilities in the network if

the data set does not contain a sufficient number of observations for those

configurations of variables. Therefore, not having access to conditional probabilities

for some configurations of variables in the network leads to not being able to predict

outcomes for these configurations.

In the context of the network used in the experiment, the high number of

entries in the conditional probability table of the outcome variable (indicating

whether or not a complication is expected) and the rather low prevalence of the

complications during a cataract surgery, exacerbates this problem. 92160

conditional probability entries and the infrequent occurrence of the event the model

aims to predict (complication during surgery) means that a high number of

observations would be required to learn the network parameters. Since an event

with a low prevalence will require a large number of test cases to be observed,

learning all the conditional probabilities with relatively low prevalence requires a

large data set.

9.7.3 Inference Performance and Relation to Data Size

The implications of the rare event nature of the predicted outcome along with

the change in the classification performance of the BN in response to change in

data size were tested via building ROC curves (Metz 1978).

 ROC curves provide an informative, yet compact representation of the

performance of the BN. A significant determinant of the classification performance

of the BN that is used to predict the occurrence of a complication during a patient’s

cataract surgery is the decision threshold value for the estimated probability of the

complication. The decision threshold is used to classify the patient as high risk or

not high risk. If the predicted probability is higher than the threshold, then the

occurrence of the complication becomes the classifier output. Therefore, the

performance of a classifier depends on the selected threshold and a good metric for

performance is the true positive(Tp) and false positive (Fp) rates as discussed in

Section 5.5. The ROC curve is a plot of the Tp and Fp values across different

 229

decision threshold values. It enables an evaluation to be made of the decision-

making method at hand and provides a visual clue for deciding the best threshold

value for a particular decision-making strategy. The ROC curve in Figure 56 shows

how the BN performed with a data set of ten thousand cataract operations, based

on synthetic data.

Figure 56: ROC curve for BN performance. 10K data instances

The starting value for the decision-making threshold is 0.001. The threshold

was incremented by 0.005 until 0.496. Therefore, the ROC curve in Figure 56 is

based on 100 different threshold values. Each threshold value was used to perform

k-fold cross validation (Kohavi 1995). K was set as 10 for all steps. During k-fold

cross validation, 90% of the available data was used to learn the parameters of the

BN with the same given network structure, and the resulting BN was used to classify

the remaining 10% of data. This learning-testing process was repeated for all folds,

10 times in total for any threshold value.

 The mean values of sensitivity and specificity from each k-fold cross

validation were used to arrive at Tp and Fp values. Therefore, the ROC curve in

Figure 56, and the following figures that repeat the same process with more data,

 230

are based on 100 applications of k-fold cross validation with a single threshold value

for each application.

The classification behaviour of the BN in response to choosing a particular

threshold value can also be observed from the plots of sensitivity and specificity.

Figure 57 provides these plots for the same 10K data set:

Figure 57: Sensitivity/Specificity for BN performance. 10K data instances

 The sensitivity and specificity curves in Figure 57 do not shift significantly in

response to changing the threshold beyond the value of 0.1. Threshold values

above 0.1 result in classifier performance that departs from the desired scenario of

high Tp and low Fp.

The ROC curve in Figure 56 shows that the classifier in the main stays

above the diagonal (which would represent a completely random decision). The

effect of the data set size on classifier performance can be observed by increasing

the amount of data while keeping every other factor the same. Figure 58 compares

the results of following the same procedure using 100K instances of synthetic data

with the previously used 10K instance data set.

 231

As Figure 58 shows, an increase in the data set size leads to better classifier

performance, achieving better Tp rates given a Fp rate. Increasing the data set size

to 200K and 500K preserved the same trend as shown in Figure 59.

The ROC curves discussed above were all generated using clinical data

retrieved from the openEHR persistence implementation discussed in Chapter 8,

achieving the thesis goal of an integration of openEHR methodology with a BN for

CDS.

Figure 58: ROC curve for BN performance. 10K and 100K data instances

The performance of the BN classifier demonstrated by the ROC curves in

Figure 59 is not close to the ideal performance a ROC curve could represent. The

best performance a ROC curve can represent is high true positive rate

accompanied by a low false positive rate, which means a ROC curve that comes

close to upper left corner of the diagram in Figure 59. Even though the BN

implementation did not achieve a remarkable performance for classification, the use

of ROC curve to observe its behaviour introduced a useful instrument for observing

the results of changes to components of the CDS setup, including the data volume.

 232

Figure 59: ROC curve for BN performance. 10K to 500K data instances

9.8: Discussion of the CDS Approach

9.8.1: High Level Architecture

The first step in developing a BN as a CDS mechanism is the identification of

variables which are considered relevant to the clinical condition at hand. This step

usually includes input from a domain expert. Even though the clinical variables used

in the experiment were based on the covariates of the logistic regression model in

(Narendran et al. 2008), a significant number of these variables were already

included as data items in the openEHR clinical models, which were initially

developed independently of this thesis. Therefore, these models provided an initial

set of clinical variables that could have been used by a domain expert as a

candidate set from which nodes of the BN could be selected. The usability of

openEHR clinical models for the development of BNs for estimating the risk of a

cataract operation suggest that these models have the potential to serve knowledge

engineering requirements beyond clinical information systems development.

 233

In the experiment, the clinical concepts defined in the openEHR archetypes

were used to connect clinical data and BN development. A single clinical concept

such as `glaucoma` (meaning that the patient has glaucoma) represents the clinical

condition, a variable in a joint probability distribution (coded by the BN) and the

actual value that resides in the persistence implementation and its access using

AQL. Figure 60 depicts the relationship between these different uses of the same

concept.

Glaucoma

Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

SELECT ….

FROM ….

WHERE ...

AQL

Diabetic Retinopathy

AMD

Fundal view

Corneal pathology

High myopia

Eye examined

Pre op Visual Acuity

Brunescent White Cataract

Weak zonules

Small pupil

Glaucoma

PCR

VL

Glaucoma
Glaucoma

Bayesian

Network

openEHR

Models

AQL

Query

 Figure 60: Using openEHR data item for CDS

Figure 60 shows how the glaucoma variable that originates from the clinical

model was used in both the BN definition and in the AQL query. The relationship

between the BN, the openEHR models and the AQL model is not depicted for all

variables in the diagram, for purposes of clarity.

 The AQL query enables data that is associated with the glaucoma concept

from the openEHR model to be fetched from the underlying persistence

implementation. The simplified relationship in Figure 60 is the basis of a scalable

approach that can be implemented on various platforms. The BN implementation

and openEHR persistence layer that supports AQL can be based on any

technology. The templates in Figure 60 can also support clinical information

systems development even though this is not included in the figure.

 234

9.8.2: Implementation Details

The software implementation of the integration of the high level concepts in

Figure 60 has not been completely seamless. Integration of these concepts requires

integration of various software tools and frameworks at the implementation level.

Key software and artefacts that were used to provide this integration are as follows:

• The clinical models consisted of openEHR archetypes and templates that

were created with the freely available Archetype Editor and Template

Designer software from Ocean Informatics. These models were transformed

to their XML representation (XSD) via the export mechanisms of the

modelling tools. Synthetic data was generated in the form of comma

separated value files, and these files were used to create openEHR data in

XML format, compatible with the XML schemas, which were based on the

clinical models.

• The clinical data in XML form was stored into an openEHR persistence

implementation, which supports Archetype Query Language through a

transformation from AQL to SQL. Therefore, the actual means of getting

access to clinical data is to use the SQL implementation of the associated

relational database.

• The BN that was used for decision-making was defined and deployed using

the R package Bnlearn. (M. Scutari 2010)

This integration shows that data creation, openEHR persistence and BN

implementation required the use of a number of programming languages and

technologies. Python (Van Rossum 2007), Java (Arnold et al. 1996), Scala

(Odersky et al. 2004), Eclipse Modelling Framework (Steinberg et al. 2008),

Postgresql relational database (Momjian 2001) with its SQL (Date and Darwen

1987) implementation and extensions, R (R Development Core Team 2008) are the

tools used to build this openEHR-BN integration. The use of these tools, despite

their substantial learning curves and complexity, was necessary because no single

technology provided all the functionality required to implement the integration in

Figure 60. The complexity of individual components of the implementation led to the

concurrent use of existing tools and frameworks, even though they were built on

different software technologies. The alternative of implementing all the functionality

on a single platform would have been impossibly inefficient, due to the work that

would have had to be done from scratch, and would mean dismissing findings and

results of a vast amount of published research and development.

 235

 Despite the large number of technologies required, in practice, the maturity

and large user base of these technologies provided rather smooth and well-

established means of connectivity between them. The SQL based implementation of

AQL exposes the results of an AQL query as a regular SQL query over standard

database access mechanisms, which can be accessed from R through an R

package such as rpg (Keitt 2015). All major programming languages have libraries

and frameworks for processing CSV and XML files and XML schemas. Therefore,

even though learning curves of a number of technologies had to be tackled to

implement the main components of an openEHR based CDS implementation, using

well-established technologies enabled an efficient integration.

9.8.3: Findings Related to Implementation

The low frequency of complications during a cataract surgery makes data set

size a critical component of parameter learning for the BN. A 0.2% rate of

complications as found by (Jaycock et al. 2007) means that a clinical data set with

50,000 cataract operations would be expected to contain about a 100 events with

the outcome we would like to detect.

The maximum likelihood estimation used by the bnlearn R package requires

observations for a particular combination of values of BN nodes to assign

probabilities to that combination. When the structure of the BN leads to a conditional

probability table for the clinical complications node that has 92160 entries, obtaining

probabilities based on observations requires large amounts of data. Therefore, the

number of possible observations defined by the structure of the model and the rare

event nature of the complications both elevate the amount of data required.

The ROC curves in Figure 59 demonstrate this point. An acceptable and

consistent performance from the BN requires tens of thousands of data instances

and increasing data set size helps improve the classification performance.

This data size requirement of the chosen CDS method leads to the

requirement for accumulating data for a large number of operations. Use of

openEHR for both clinical systems implementation and data interchange between

systems will help fulfil this requirement. Cataract operation data from various

systems and locations can be pooled with little effort. However, the use of openEHR

data in a machine learning context requires persistence implementation for such a

pool of data to perform sufficiently well to feed data to machine learning

frameworks. There is thus a requirement for an openEHR persistence

 236

implementation that can perform large volume queries with a high level of

performance.

 From a knowledge engineering perspective, the use of the openEHR models

helps define the BN structure by providing a set of clinical variables for easily

identifying and defining the nodes of the network. The data access mechanism

based on AQL also benefits from the openEHR approach since it can support data

access based on the same clinical variables, in a platform independent way.

However, the parameter learning performance of the BN, especially for

approximate inference methods, is dependent on the data volume. Satisfying the

requirements related to the performance of the openEHR persistence

implementation is not sufficient to ensure performant parameter learning. The BN

implementation such as the bnlearn package used in this experiment has its own

scalability requirements. Without support for parallel structure and parameter

learning implementations for BNs, the computing power of a single CPU becomes

the performance bottleneck for these operations. Therefore, scalability of the

persistence layer for openEHR based CDS does not imply scalability of the

integrated architecture.

The iterative nature of the BN development is likely to require many CPU

intensive tasks to be performed repeatedly. A CDS implementer may consider

changing the intervals for discretization of the continuous variables such as age to

achieve better performance by following different discretization approaches

(Dougherty, Kohavi, and Sahami 1995), (Irani 1993). In this case, the ROC curves

must be rebuilt to observe the results of these changes.

The process of building the multiple ROC curves in Figure 59 is another

example of the iterative nature of BN development, since the data set size changes

and consequently the whole computation of the ROC curve is performed from

scratch. Building the ROC curves require inference task to be performed by the BN,

which is dependent on parameter learning. Parameter learning is performed via

bnlearn package, and the inference was performed using the gRain R package

(Højsgaard 2014) which employs the Junction Tree inference algorithm (Nagarajan,

Scutari, and Lèbre 2013). Both the bnlearn and gRain packages use a single CPU

core for computation and as more data is used, mostly to deal with the low

prevalence of the clinical outcome of interest, the time to learn the parameters of the

network and perform inference on a data set to measure classifier performance

grows significantly. The bnlearn package is not limited to implementation of

sequential algorithms. It supports parallel structure learning (Marco Scutari 2014)

but in this particular experiment the structure of the network is based on the logistic

 237

regression of (Narendran et al. 2008), and therefore performance benefits from

parallel computation were not realized within the workflow that produced the ROC

curves in Figure 59.

The implementation limitations mentioned here are case-specific and should

not be seen as a limitation of BNs in general. Parallel algorithms for structure and

parameter learning, as well as approximate and exact inference, are active fields of

research with potentially useful outcomes for dealing with large data volumes such

as (X.-L. Wu et al. 2012), (Neiswanger, Wang, and Xing 2013), (Xia and Prasanna

2008), (Xia and Prasanna 2007) and (V.K. Namasivayam, Pathak, and Prasanna

2006).

The last significant finding from the experiment relates to data

transformations. It was observed that data transformations were required on the

AQL query results for continuous values of some AQL variables to be used by the

BN implementation as values of discrete variables. This transformation is required

due to the discrete nature of conditional probability tables used to represent the

nodes of the BN. One such variable is the age of the patients going through the

cataract surgery. It was observed that transformations that are required to import

legacy data to openEHR persistence and later provide it to the BN implementation,

create a data transformation pipeline that is susceptible to information loss.

The term information loss refers to conditions in which various characteristics

of data become unavailable due to a transformation, such as discretisation of

continuous values. Once a set of continuous values that fall into the same category

are grouped together and assigned the same category identifier, the original values

can no longer be recovered in further steps of the transformation pipeline. For

example, if systolic blood pressure of a patient is imported from a legacy system

based on an openEHR model, which defines a data item for systolic blood pressure

that only has values low or high, further access to openEHR data cannot introduce

three categories such as low, normal and high. The members of both low and high

groups are indistinguishable from each other, and without access to original values,

it is impossible to know which data instances would be classified as normal for the

new step in the computation pipeline.

9.9: Comparison of the Thyroid and Ophthalmology
Experiments

The experiment in Chapter 5, based on thyroid data, provides an example of

a simplified machine learning implementation, which can be compared with the

 238

implementation discussed in this chapter, to observe the requirements for building a

more realistic BN setup built on openEHR methodology. The pilot implementation in

Chapter 5 was intentionally kept simple to explore requirements and implementation

characteristics of a BN based CDS without an EHR platform.

 The use of a BN with its discrete conditional probability tables introduces the

same issues in both experiments: the lack of observations that correspond to one or

more combinations of variables of the network can lead to biased models. A rather

problematic case arises when lack of certain combinations of observations in the

analysed population dataset leads to the learned parameters of the network

computing the probability of that set of observations as zero, implying that they are

impossible.

Even when synthetic data generation is used to produce large amounts of

data, some combinations of values may not be observed, due to both network

parameterization and the nature of the events. There are well-established methods

for dealing with missing data, so remedies exist for this issue, but the discrete

nature of the BN is likely to require their frequent use for BN based CDS.

The experiment in Chapter 5 follows what is a quite common approach to

building a data set for machine learning: clinical data is transformed into a comma

separated value file for direct consumption by any tool that can consume CSV files.

This approach requires that data from different clinical information systems has

consistent semantics, which must be checked and ensured by rigorous data

analysis and cleaning. Adding new data to the existing data set is likely to require

new mappings in addition to the effort required to implement data export

functionality from the source systems.

The openEHR based approach followed by the experimental CDS

implementation develops a model driven representation of data, which supports a

number of use cases. The openEHR models, which are central to clinical data

representation, can also support clinical systems development, CDS design and

development, and data interoperability.

Despite the significantly more complicated infrastructure that is required to

support the openEHR based approach, the platform provided by this infrastructure

eliminates the need for repeated, error prone data cleaning and mapping tasks that

are required if a data export approach is adopted.

 239

9.10 Summary

The CDS implementation discussed in this chapter attempted to identify key

aspects of developing a CDS system based on the integration of openEHR and

BNs. The amount of effort that was required to build the data processing

infrastructure has been significantly greater than the effort that was required to use

BNs for CDS functionality.

 This finding confirms the well-known problem of most CDS development

efforts: most of the time and available resources is spent on the data infrastructure

or data cleaning. However, the openEHR based architecture and approach delivers

an output that can be reused and extended. Even though it was implemented at a

proof of concept level, the SQL based AQL support produced a promising way of

eliminating the well-known practice of data extraction from the clinical systems to

build a separate data set for CDS development. openEHR clinical models that have

been initially designed for clinical care scenarios provided sufficient support for

defining data items for the CDS models (BNs), albeit with various workarounds.

These workarounds, such as adding demographic data (age of patients) into the

clinical models, are valuable observations that are used as the basis of suggested

improvements to the openEHR specifications to better support CDS integration

scenarios, as discussed in Chapter 10.

 Overall, the pilot implementation discussed in this chapter demonstrates the

feasibility of the integrated architecture defined in Chapter 4.

 240

Chapter 10: Conclusions and Future Research

The primary objective of this thesis is to place openEHR into the heart of a

clinical decision support setting and to observe the outcomes of this approach on all

the components of the resulting architecture, both at the specification (abstract) and

implementation (concrete) levels.

Establishing this objective with an experimental approach that includes as

many aspects of a realistic openEHR implementation as possible requires the use

of a number of technologies. The results of the experiments based on the

development of such an implementation show that software standards, frameworks

and tools reveal their strengths and weaknesses according to the use cases at

hand, and the complex interactions between them depend on the functionality

supported.

 This functionality can be classified into two groups: related to clinical

information system and CDS.

The openEHR specifications define functionality required to support clinical

care: the existence of the EHR as a core concept, the fundamental units of clinical

data such as COMPOSITION instances, and other design characteristics of

openEHR imply a set of operations on clinical data for clinical care.

The functionality related to CDS is not currently explicitly identified in the

openEHR specifications. This is a perfectly natural outcome of openEHR’s primary

goal: delivering a computable representation of healthcare data that focuses on the

concept of electronic health record, which in turn implies a patient whose clinical

data is kept in the EHR. From a data processing point of view, this is a patient-

centric design, which does not include patient populations as a first class concept.

On the other hand, implementations of the CDS concept has a strong dependence

on the concept of patient population: a patient’s diagnosis or prognosis can be

evaluated based on the degree of deviation from the characteristics of the relevant

patient population.

This dependency on the population characteristics introduces different

patterns of data access to clinical data than the patient-centric ones. This thesis has

explored the feasibility of an architecture that can support both sets of patterns,

based on a set of implementation driven experiments. From an openEHR point of

view, the most significant research challenge this thesis has tackled is that of

introducing openEHR methodology as the basis of both clinical care and CDS

system implementation, without resorting to completely different architectures.

 241

openEHR’s two-level modelling approach allows clinical concepts to be reused in

different components in this unified architecture. Therefore, concepts defined by the

openEHR RM provide a significant level of robustness by supporting various CDS

specific tasks, which were not necessarily included in the initial design of openEHR

as functional requirements. However, this robustness has its limits.

 The design and implementation of openEHR persistence emerges as an

immensely important research topic, central to both overcoming openEHR

methodology’s current limits to robustness and enabling innovation by supporting

new capabilities for AQL. Extensions to AQL, such as the Probabilistic AQL idea

discussed in Chapter 8, have the potential to integrate results of cutting edge

machine learning research with a clinical query language in novel ways. Further

research into openEHR persistence, based on persistence abstraction and big data

frameworks can support this integration, as data volume grows at a rapid rate.

 Therefore, the findings based on the work done for this thesis, which are

discussed in the following sections, are considered as starting points for future

research based on the four key components: openEHR specifications, parallel, large

scale data processing, AQL and machine learning.

10.1: openEHR Models for Computable Healthcare Data

The development of archetypes for the ophthalmology domain, which are

used in the CDS implementation, have been initiated independent of this thesis, and

their scope includes the data items that would be required to implement a clinical

information system. These openEHR models have been developed by a highly

experienced clinical modeller, with input from a senior clinician from the

ophthalmology domain.

The implementation based on these models reveals some important findings

related to their use in a CDS context. First of all, there are multiple ways of

expressing the same clinical content in a model and modellers can not necessarily

predict the outcomes of their modelling choices in downstream contexts. An

example of this case is designing a clinical model that allows multiple clinical

findings to be included at the same point in the model. The underlying assumption

for this approach is that a clinician may add any number of data items as he or she

sees appropriate during the care process. The modeller cannot easily constrain the

list of clinical findings that can be added; doing so may lead to clinicians not being

able to record an observation if it was not considered by the modeller.

 242

When this clinical model is used for implementing a clinical information

system, the modelling approach may not lead to any problems. The clinicians

looking at the list of findings can easily interpret the information. When the same

model is used in a CDS setting, existence or lack of a particular observation may

become a key determinant of both CDS model learning and decision-making . The

existence of any number of data items under the same container in the clinical

model may also require attention. If there are multiple data items at a single location

in the openEHR model, then the semantics of corresponding data items must be

differentiated by some means other than their path. If this scenario is not considered

in advance by the clinical modeller, openEHR models that present no problems

when used by a clinical information system may end up causing ambiguity in a CDS

driven use case.

Another problem which would not necessarily reveal itself in a clinical care

setting is an interpretation of the lack of a condition. A human interpretation of a list

of problems for a patient is manageable for a clinician: he or she can reason about

the lack of a particular condition or simply ignore it. When a CDS implementation

uses the existence of a variable as a significant variable for calculating an outcome,

it cannot mimic the human reasoning of the clinician that is performed at the time of

care.

 These potential issues are not related to openEHR’s capability for expressing

clinical data. They are results of the specific focus the clinical modeller has on a

limited set of use cases during the model development phase. However, when a

particular use case is known, its consideration in the modelling process may not be

without any trade-offs. For example, when a modelling approach that explicitly

records lack of a condition is adopted so that this setting can be clearly identified in

a clinical decision support scenario, use of this model in a clinical care setting

requires the clinicians to record this information. From a clinical information system

end user perspective, this is an extra step that would take valuable time, which

would not be required if the clinical model allowed simply not recording a condition

instead of explicitly recording lack of it.

 Therefore, a critical finding of the thesis based on the CDS implementation

process is that flexibility and capabilities of openEHR modelling formalism do not

provide models that can support different uses of clinical data without any effort.

Claims of better CDS based on the expressive power of openEHR should

contemplate this finding for a more insightful approach.

 The scope of clinical data in openEHR models that are developed with a

focus on clinical care is another significant issue. The CDS model used in Chapter 9

 243

include variables such as age and surgeon experience. Age of a patient is most

likely to be considered as part of demographics data and despite the existence of a

demographics information model under openEHR specifications, this data may be

provided by a shared service such as a master patient index or other specialised

software. The experience of the surgeon is unlikely to be considered as part of a

clinical model so this information may also reside in an external system that

manages administrative data.

Both age and surgeon level variables used in the CDS model are therefore

unlikely to be part of clinical models for clinical care, and their actual values are

likely to reside in a system outside of the openEHR implementation. This situation,

which can be generalized as dependencies on non-clinical variables in CDS

models, is problematic in an openEHR based CDS setting at multiple levels.

Modifying clinical models to include data for potentially non-clinical concepts,

as done in this thesis as a workaround, is a misuse of openEHR’s capabilities at the

modelling level. Not including these variables in the models means that AQL can no

longer be used to define all the data that the CDS implementation would require.

It can be argued that the potentially non-clinical nature of CDS model variables is

simply a matter of scope; that non-clinical data is not relevant to openEHR.

However, if associating openEHR models and data based on these models to non-

clinical concepts and data is considered as a frequently encountered requirement,

at least in a CDS setting, then this requirement deserves attention as a research

topic.

10.2: Using AQL for Clinical Data Access

AQL allows access to clinical data via use of the concepts defined by

openEHR specifications, independent of the underlying persistence system that

openEHR persistence is implemented on. Given the recent advances in large scale,

parallel data processing frameworks such as Hadoop (Borthakur 2007) or Apache

Spark (Zaharia et al. 2010), AQL becomes the strongest candidate for means of

data scale independent clinical data access .

The persistence abstraction approach developed in Chapter 7 strengthens

the argument for adopting AQL for both clinical information system and CDS system

development by providing a consistent approach to persistence implementation.

 However, the maturity of AQL as a specification is not on par with its

suggested advantages at the time of the writing of this thesis. As it stands, AQL is

not documented along with the rest of the openEHR specifications. The current

 244

documentation available to implementers is a web page (Ma, Frankel, and Beale

2014) Moreover, the contents of this webpage focuses on the syntax and grammar

of AQL, leaving some behaviour undefined.

 The implementation of the tree based persistence abstraction adopts intuitive

interpretations of this type of undefined behaviour when necessary. One such

behaviour is the treatment of missing values for data items listed in the SELECT

clause of AQL.

The need to provide an interpretation for this behaviour was observed in the

CDS experiment discussed in Chapter 9. The diagnosis of diabetic retinopathy for a

cataract patient is a variable, the value of which is required in both parameter

learning for BN and inference tasks. When the clinical model does not include an

explicit data item that represents a lack of this diagnosis, all patients without this

condition would be missing the diagnosis element. If the AQL implementation were

to leave out all query results that do not have this diagnosis, this would lead to large

number of patients being excluded, and only a subset of the patients with the

diagnosis would be included.

Therefore, the intuitive approach, which is followed by the implementation

discussed in Chapter 8, is to allow empty values in query results and leave

interpretation of them to later phases of data processing but this is still unspecified

behaviour from the standards based data access point of view. The need to select

COMPOSITION instances with the same care episode id, discussed in Section

9.6.3, also requires clarification of AQL specifications, regarding the possibility of

defining conditions based on the equivalence of values of data items, without

expressing the actual values.

 Another finding of this thesis is the importance of AQL-first design for the

performance and flexibility of persistence implementation, even though AQL is

defined independent of any implementation methods or technologies.

openEHR data can be persisted in many ways and initial experiments that

use a relational database as a persistence layer have delivered satisfactory results

for clinical care use cases. These use cases, such as accessing a list of

compositions for a patient can be implemented with custom application

programming interfaces (APIs) without significant difficulty, especially due to the

availability of high level software development frameworks. However, these custom

APIs provide a less than an optimum solution for a platform approach based on

openEHR: data exchange is possible, but moving individual applications such as

CDS implementations across openEHR implementations becomes complicated.

AQL solves this problem, but it comes at a price; its data access semantics that

 245

heavily rely on constraints on the hierarchy of data elements must be supported by

the persistence layer.

The Opereffa implementation described in Chapter 6 showed that building

custom data access APIs to support clinical applications first is likely to produce a

persistence architecture that cannot easily support AQL semantics. Since

development of statistical models for CDS significantly benefits from large data sets,

the most common solution to this design problem is a data export mechanism to

another persistence system, which can support large volume queries with better

performance. This is indeed a widely adopted industry and research practice

leading to a data warehouse approach.

Even though such a solution would be possible for Opereffa, it would still fail

to benefit from the advantage of a unified data access method based on openEHR

concepts, as provided by AQL. The persistence abstraction method developed in

this thesis provides the means to implement this unified data access method across

a variety of persistence systems. However, some transformations on data are

inevitable, when AQL is used to integrate openEHR to BNs for CDS. The reason for

this was discovered to be the nature of the AQL result set and openEHR data types.

The AQL result set could contain empty values, which are suitable for

representation via use of the relevant types of the implementation technology: such

as empty values in SQL query results or null values in an in-memory Java object.

The semantics of lack of a value must be expressed as a specific numeric value for

a machine learning framework, such as 0, where other numeric values would have

other meanings.

The AQL result can also return values based on the reference model of

openEHR. For example, if existence or lack of a diagnosis was expressed in the

model with codes from a terminology (either specific to that model or an external

one), the results would contain one of the two terminology codes which would again

require a transformation to either numeric values used by the CDS related

frameworks.

These transformations are usually required, aside from the rare cases where

an actual numeric value is to be fetched from openEHR data and used directly in a

CDS implementation. This is because of the difference between the highly

specialised type system introduced by the RM and the much simpler and fully

numeric nature of data that the machine learning algorithms require.

 246

Eye
at0013

at0013

at0012

at0012

at0012

at0013

Left eye

Right eye

Eye
0

0

1

1

1

0

Left eye

Right eye

Machine

learning

Model

Figure 61: openEHR model data vs. machine learning model data

At a high level, this is a transformation from a matrix in which values belong

to openEHR’s type system, to another one where a much simpler, numeric type

system is used. Figure 61 illustrates this transformation.

Figure 61 shows how openEHR models define the semantics of actual

values and how these semantics end up in openEHR data retrieved by the AQL

query (“at….” codes). Even though the semantics assigned to this variable stays the

same in the machine learning model, the transformation to the numeric value used

in the machine learning model is inevitable.

Therefore, providing an abstraction over persistence systems via the use of

AQL does not guarantee clinical data can be used directly in machine learning

contexts. There exists an extra computational step, which must be performed for

some values in the AQL query results, consequently having significance from a

performance point of view.

10.3: Using Bayesian Networks for Clinical Decision Support

The term “Bayesian Network” has been used in this thesis to refer

consistently to a particular type of probabilistic graphical model, which is based on a

directed acyclic graph, nodes of which consist of conditional probability tables.

Other kinds of probabilistic graphical models (Koller and Friedman 2009), which are

referred to as continuous Bayesian Networks, hybrid Bayesian Networks, etc. have

been described, as extensions of the term Bayesian Network. The classification of

these graphical models as extensions of the BN as defined by (Pearl 1988) is

specific to this thesis, based on their increased expressiveness in terms of

semantics of nodes as well as supported topologies.

 247

 The primary advantage of a BN as a CDS tool is its high level conceptual

representation. Even though established statistical methods are available for

regression or classification tasks, graphical models offer a unique way for domain

experts to contribute to the construction of a probabilistic model. This contribution

can become even more efficient when the openEHR clinical models are used as the

underlying knowledge repository, which allows data items from the clinical models to

be used to define the nodes of BNs, as discussed in Chapter 9.

 CDS implementations have an iterative nature, with performance

improvements achieved experimentally, regardless of the underlying mechanism for

decision-making.

Analyses, such as calculation of ROC curves, allow observation of the

effects of changes to components of the CDS implementation, on its performance,

such as the assumptions of the decision-making model, data set size or threshold

values. The iterative process is hampered if increasing data volume introduces a

performance bottleneck. Such growth in data volume can stem from increased

adoption of clinical information systems, or the actual CDS scenario at hand, such

as analysis of rare events that require a large number of observations for the CDS

to be characterised. Therefore, the robustness of the BN approach to CDS, in the

face of growing volume and complexity of clinical data, is an important determinant

of its usability in addition to the use of openEHR methodology - which in itself

enables data sharing and consequently data pooling by design. The increasing

adoption of parallel programming methods and their inclusion in popular

programming language runtimes and frameworks, provides a potentially reliable

solution to this problem.

Implementation of parallel learning and inference algorithms for BNs must

be complemented by generic parallel computing frameworks so that key tasks in the

model development lifecycle, such as the k-fold cross validation (Kohavi 1995) used

in Chapter 9, can be performed on large data sets. The scope of future research on

this topic should also include extensions of BNs such as continuous and hybrid

networks.

10.4: Future Directions for openEHR Based CDS

Both clinical application development and CDS implementation based on

openEHR have been explored in detail in this thesis. Actual software

implementations with mainstream technologies have demonstrated experimentally

that openEHR provides a robust and implementable platform definition.

 248

 A very significant amount of time was required for this essential software

development and for research on tools and technologies that could be used to

implement various functionalities. This exhaustive approach has been justified by

the findings from the pilot experiments and the implementations described in the

thesis.

 Without implementation driven experiments, research on electronic health

records is bound to ignore some critical requirements for better CDS since these

requirements are related to complex interactions between different aspects of the

components of the chosen CDS approach. Observing these interactions requires

the implementations of the CDS components in place. One understandable obstacle

that makes it hard for EHR research to explore these requirements is a lack of freely

available platform implementations based on standardisation frameworks like

openEHR. The feedback that was provided in response to public and open source

release of some of the components developed for this thesis is evidence of

significant interest, from both industry and academia, in a platform that could

support future research and development.

 The potential improvements to the openEHR specifications suggested in this

thesis are based on requirements that were identified through software

implementations. These were not, though, solely implementation tasks; they are

components of an integrated architecture for openEHR and BN integration, and are

essential research and development contributions in the ongoing mission of

openEHR.

 Extending the scope of openEHR models and data with concepts external to

clinical models is one such requirement. Modifying clinical models to include data

items that are not directly related to the clinical concepts represented by the models

is not an acceptable method for extending openEHR’s benefits to CDS. This

approach carries the risk of introducing data elements that could confuse clinicians

concerned with non-CDS uses of the models. As commonly shared openEHR

archetypes such as medications, allergies or blood pressure, are associated with

more CDS scenarios, extra data items would clutter openEHR models with

concerns not relevant to clinicians.

Support for metadata at the openEHR RM level could help express data

items for these separate concerns, in a flexible way. In the case of including the age

of a patient in an existing archetype, as discussed in Section 9.6.3.1, the problems

introduced by adding this extra data item at the clinical model level can be avoided

by expressing this variable as metadata. This approach would handle the data as an

optional value associated with an instance of an RM type. Despite the flexibility this

 249

offers, the integration of metadata within the RM, and its use in various new

scenarios, require careful evaluation.

 The openEHR object-oriented reference model presents an opportunity for

metadata related properties to be defined at the level of abstract types and therefore

to become available to RM types that inherit from them. Both the representation of

metadata and its integration to the object oriented design of RM are significant

future research topics.

Figure 62 visualises how successful outcomes of research on these topics

might hypothetically support separation of concerns for multiple CDS

implementations that use the same clinical model.

EHR

Data

Composition

(Clinical exam)

Composition

(Booking)
Composition

(Operation)

Age Risk level

Clinical

Information

System A

Clinical

Information

System B

CDS

Implementation A

CDS

Implementation B

Figure 62: openEHR metadata for different CDS implementations

The clinical information systems in Figure 62 operate on data items that are

defined through openEHR archetypes and templates. Since metadata is optional

content for a reference model type instance, its definition can be completely omitted

by the clinical modellers. When other uses for clinical data arise such as various

CDS systems that use these models, these systems can use existing data created

by clinical information systems without any extensions to the models, via use of

additional metadata inserted alongside clinical data.

Operations that create metadata as part of the CDS life cycle, such as

assigning the value of age of patients to a metadata path based on the underlying

clinical model, saving the outcome of a risk assessment for a patient before the

operation, or providing an estimate for prognosis can all take place without affecting

the operation of existing clinical systems.

 Metadata support for openEHR would also require the openEHR

specifications to clearly define how metadata should be managed in various

 250

scenarios that make use of RM data. These scenarios include, but are not limited to,

clinical data versioning, clinical data exchange and AQL based data access.

 One of the key features of the openEHR methodology is its recognition of the

importance of tracking changes to clinical data due to both clinical and legal

requirements. The openEHR specifications fulfil this requirement through strong

support for versioning. Use cases such as correcting a valid but incorrect data entry,

or adding a new allergy to an existing list of allergies, can introduce new versions of

openEHR RM instances. When an existing instance has metadata attached to it,

how this data should be treated in case of a version increment must be defined by

the specification, considering various use cases.

 Clinical data exchange scenarios also need to clarify how metadata is to be

treated. Moving metadata across information system boundaries along with actual

RM instances can help receiving systems use CDS implementations that rely on

particular metadata. This scenario requires that the metadata itself is clearly defined

so that CDS implementations can consistently use it. The requirement can

potentially be fulfilled through the use of openEHR’s data types. The privacy

implications of sharing metadata would also require consideration: since the use of

metadata is suggested for data that is not necessarily clinical in nature, sharing this

data across system boundaries may introduce further problems, such as age,

gender or geographic location of patient unintentionally moving to other systems,

compromising anonymity; after all, it is likely that the clinical modellers did not

include it in the scope of openEHR archetypes in the first place.

 Introducing metadata in the above suggested manner should take care not to

introduce new and custom methods for access to this data – that would detract

seriously from the benefits of using AQL, as widely discussed in the thesis.

Therefore, extending AQL’s syntax and semantics to accommodate metadata

support in this way, is another important future task.

 Each of these suggested extensions is likely to require significant efforts,

with input from clinicians, clinical system implementers and CDS implementers.

Therefore, they are suggested future research topics for openEHR.

 Another future line of research, the scope of which arises from observation of

the behaviour and operations required on RM data in a CDS integration scenario, as

well as performance requirements for processing RM data, is the extension of

capabilities of AQL.

 The experimental setup discussed in Chapter 9 included various processing

steps which are likely to emerge in CDS implementations based on both BNs and

other machine learning methods. Transformation of openEHR RM types to numeric

 251

values and discretisation of continuous values, are data transformation tasks which

are likely to be performed in almost every CDS implementation that uses AQL.

Supporting some of these tasks at the AQL level could allow AQL to support CDS

implementation better by shifting frequently required capability from machine

learning frameworks to AQL implementation.

Given AQL’s syntax and semantics, which resemble both XPath (Clark and

DeRose 1999) and SQL (Date and Darwen 1987), various extension mechanisms

used in these languages might usefully be adopted by AQL to support data

transformation tasks and other requirements to process data.

A potential approach to achieving this goal would be support for function

calls. This approach is part of the standard for both SQL (ISO 2015) and XPath

(Clark and DeRose 1999). Various relational database servers and XPath

processors support user-defined function definitions in SQL and XPath queries. The

advantage of this approach is that it keeps the core language simple. User-defined

functions not only provide support for extending the capabilities of these query

languages, but they also allow access to more expressive, general purpose

programming languages for customising behaviour.

This is a flexible and powerful approach to developing functionality which

may be inefficient or simply impossible to deliver directly with SQL or XPath. For

example, Postgresql (Momjian 2001) supports user-defined functions developed in

languages such as Java (Arnold et al. 1996) or Python (Van Rossum 2007).

Similarly, XPath processors allow calls to functions implemented with host

languages such as C# (Hejlsberg, Wiltamuth, and Golde 2003) and Java (Arnold et

al. 1996). Successful use of this approach across mainstream relational database

servers and programming languages is evidence of its versatility.

The extension of AQL to support user-defined functions should follow the

same careful approach discussed above for metadata extensions to the openEHR

specifications. While custom functions could allow implementers of AQL to provide

advanced data processing capabilities, they could also introduce dependencies on

the availability of particular functions for CDS implementation. As with the

suggested metadata extensions, this could potentially diminish the re-usability of

CDS implementations that utilise specific user-defined functions within AQL.

Both SQL and XPath attempt to solve this problem through the introduction

of standard functions. These core functions are gradually introduced to new

releases of the standard, so that designers of new systems can choose to rely only

on functionality that they know any standard compliant platform would provide.

Following a similar approach, based on input from implementers as part of the

 252

openEHR specifications development process, is suggested to improve AQL’s

support for CDS.

 Given that both metadata and function call extensions for AQL are suggested

as part of openEHR specifications development, an underlying assumption is that

the AQL specification is due to become part of openEHR specifications, which is not

yet the case at the time of the writing of this thesis.

 Defining AQL as the sole query language for RM based data access for the

purposes of CDS, means that its implementation becomes a key determinant of the

efficacy of openEHR and CDS integration, as discussed in the context of BN

integration in this thesis. However, the benefits of a consistent data access method

are likely to be cancelled out by the implementation efforts required of persistence

systems implementers, to address the requirements of new CDS implementations

such as to introduce large scale, parallel data processing.

 Therefore, AQL implementation should be based on an approach that is

technology agnostic and formally consistent, but not necessarily included as a part

of the openEHR specifications.

The reasoning behind this suggestion is as follows. First, openEHR’s

technology agnostic approach to developing specifications should not be

compromised by references to particular persistence systems, so any approaches

related to AQL implementation must have the same technology agnostic nature.

Leaving persistence aspects completely out of the specification, which is the

case at the time of the writing of this thesis, causes two problems: first,

implementers find it hard to deal with AQL semantics, especially when using

relational databases as the basis of implementation. Second, each platform for

implementation requires design from scratch, making it costly for implementers to

employ different platforms tuned to different use cases. A technology agnostic

persistence methodology would offer a solution to these problems, without

compromising openEHR’s platform independent nature.

The new persistence abstraction approach developed in thesis fulfils these

criteria, but is suggested as a methodology, not as a future addition to the openEHR

specifications. Despite the fact that it is based on a technology agnostic tree

representation and associated tree operations, this thesis would not recommend

including persistence concepts within the openEHR specifications. Instead,

introduction of optional, well defined methodologies for guiding and assisting key

implementation tasks facing openEHR adopters, such as persistence, should be

considered, thereby establishing a middle ground between extending the

 253

specification with implementation concepts and leaving crucial and inevitable

implementation tasks completely out of scope.

The tree based persistence abstraction of Chapter 7 achieves this balance,

in addition to establishing a rich topic for future research. Large numbers of

algorithms and architectures, which are already available from research in XML

processing, can be adapted to numerous implementations involving different

persistence systems. This new approach establishes openEHR persistence as a

field of research rather than its currently accepted simply as an implementation task.

The scope of this newly defined research topic is important and vast, built on the

intersection of concepts from computer science, information retrieval, medicine,

knowledge engineering, and also statistics.

 Recent research in concurrent computing has produced results that offer

significant capabilities for future research on tree based persistence abstraction for

openEHR. These results, which are now known as big-data frameworks, have the

potential to unify all aspects of the integration architecture defined in Section 4.7, by

simultaneously supporting mainstream programming languages and statistical

programming languages. The Apache Spark (Zaharia et al. 2010) framework is an

example of this new holistic platform approach, based on its support for the Java

(Arnold et al. 1996), Scala (Odersky et al. 2004), Python (Van Rossum 2007) and R

(R Development Core Team 2008) programming languages, with seamless access

to large scale distributed data.

10.5: Concluding Remarks

The first and foremost aim of this thesis has been to test the idea of better

CDS being made possible through the direct incorporation of standardised

electronic health records, with openEHR and BNs chosen as the particular

representatives of these two key concepts.

 Adopting an experimental approach, and attempting to develop an

architecture that tests this idea in practice, by implementing and applying the

components of this architecture, has proven to be a challenging task. The nature of

the challenge lies both in the vast scope of both of the key concepts involved, and in

the skill set and learning required to build a workbench that can be used to

experiment with the number of complex, interacting components required.

This thesis does not claim that the architecture and methods that it describes

are definitive for achieving the purposes set out in the scope of the work. However,

it does claim that they are original, realistic, open for further research and

 254

development, and are built with due consideration of key requirements. These

requirements cover the building of clinical information systems and CDS systems on

the same infrastructure, considering the performance requirements of both types of

systems, and eliminating the need for designing and implementing multiple software

architectures from scratch. Healthcare informatics needs proven methodology to

this end – the data analytics of health care will collapse under the weight of the

current inconsistencies and lack of standardisation in clinically meaningful ways that

it currently battles. Seemingly small human actions, for example by patients in

invoking their rights to withdraw consent in relation to their records, or parts of them,

can currently lead to well-nigh impossible complexity and workload.

 The implementation of both clinical information systems and CDS

functionality based on openEHR clinical models has proven openEHR to be a rich

and robust formalism. However, some of the problems discovered during

implementation of the CDS system prototype require attention and consideration.

These findings show that the capabilities of openEHR should not be taken as a

guarantee for improved CDS adoption and implementation. Generalising the

versatility of its model-driven approach beyond clinical care, without careful

experiments and observation, is wrong.

openEHR’s capabilities and potential uses need to be tested with a realistic

workbench. Lack of an easily accessible implementation for research purposes

makes it hard for researchers to follow this approach. However, the suggested

changes to the openEHR specifications show that experiments on such a testbed

allow otherwise unachievable bottom up contributions, which justify the

implementation efforts involved.

 Despite a significant amount of software development using a number of

programming languages, open source tools and frameworks, this thesis does not

explore the complete scope of the openEHR specifications. This was an intentional

choice, made inevitable by the limited time available for completion of the study.

Other aspects of an openEHR implementation, such as versioning of data, message

exchange with external systems or relationship to terminologies and terminology

servers have been left out of scope.

 Other aspects of openEHR that were left out of the scope of the thesis are

considered within the scope of future research, and to be included in a planned

more comprehensive implementation of the openEHR-CDS integration architecture

defined in Chapter 4. Therefore, this thesis concludes with the hope that its findings

will assist CDS implementations based on openEHR move forward, and that the

new methods and changes to the openEHR specifications that it proposes can be

 255

extended in future research, based on the fundamental and crucial components

defined at the beginning of this chapter.

 256

Appendix I: Synthetic Data Generation

Although the primary focus of this thesis is not the use of a BN for predicting

the outcome in the cataract surgery scenario discussed by (Narendran et al. 2008),

the use of a test data set for evaluation of the methods it has developed should

reflect the characteristics of patient population as fully as possible. To achieve the

scale and consistency of test data required to explore the methods, experimentally,

synthetic data generation approach was adopted.

 To this end, a small scale literature search for patient population simulation

was performed. Research related to Clinical Trial Simulation (CTS) was identified as

particularly relevant.

CTS complements the drug development process based on clinical trials,

and its adoption has been increasing (N. H. G. Holford et al. 2000), (N. Holford, Ma,

and Ploeger 2010), (Mould and Upton 2012). It consists of three types of

simulations: system models (input/output models), covariate models and execution

models (Perez-Ruixo et al. 2007), (Kimko and Duffull 2002). Of these, the covariate

model is relevant to synthetic data generation for a virtual patient population.

 The virtual patient population is built on a model that uses covariates such as

age, weight and gender. The virtual patient population can be generated in different

ways, depending on availability of real population data and knowledge of

relationships between covariates (Kimko and Duffull 2002). The approach used in

this thesis is based on the sampling a vector of covariates with the assumption that

they are independent. The covariants are taken from (Narendran et al. 2008). The

assumption of independence is potentially problematic since covariates may be

correlated. Therefore covariances should be included in the simulation (Kimko and

Duffull 2002). However, covariance information for the variables is not provided by

(Narendran et al. 2008) or (Jaycock et al. 2007) which uses the same data set.

Therefore, individual distributions of covariates, where available, were used to

generate a covariate vector for each patient.

 A data generation script was written in R that samples a provided number of

vectors from the individually defined probability distributions for covariates. For

continuous variables, first a sample from a normal distribution was taken and

transformed to a discrete variable, following the same rules for discretization given

in (Narendran et al. 2008). The data set created with this approach was then

processed to generate an extra column to represent the existence of the clinical

problem that the CDS implementation in Chapter 9 focuses on. Data values in every

row in the data set (which represents the data in the patient’s EHR based on

 257

sampled values) is used as input to the logistic regression equation from

(Narendran et al. 2008) and the resulting value is used as the parameter of the

Binomial distribution, generating either 1 (problem exists) or 0. This binary outcome

is then appended to every row, creating the (existence of) clinical problem column.

The assumption behind this approach was that the logistic regression learned from

the original data set encapsulated the relationship between the covariates and

prevalence of the problem, and therefore that using it with sampled values would

simulate a patient population in which the prevalence of the problem satisfies the

constraints enforced by the regression equation.

 Finally, the simulated data set with covariates and clinical problem column is

persisted as a comma separated value file for further processing by the pipeline, as

explained in Chapter 9.

 258

REFERENCES

1. Agresti, A. 2007. An Introduction to Categorical Data Analysis. Wiley-
Blackwell.

2. Aikins, J. S. 1980. “Representation of Control Knowledge in Expert
Systems.” In Proceedings of the First AAAI, 121–23,198.

3. Al-Khalifa, S., H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and
Y. Wu. 2002. “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching.” In Data Engineering, 2002. Proceedings. 18th
International Conference on, 141–52. IEEE.

4. Allen, Christian, Darius Jazayeri, Justin Miranda, Paul G. Biondich, Burke
W. Mamlin, Ben A. Wolfe, Chris Seebregts, Neal Lesh, William M. Tierney,
and Hamish S. F. Fraser. 2007. “Experience in Implementing the
OpenMRS Medical Record System to Support HIV Treatment in Rwanda.”
Studies in Health Technology and Informatics 129 (Pt 1): 382–86.

5. Alvarez, Sonia M., Beverly A. Poelstra, and Randall S. Burd. 2006.
“Evaluation of a Bayesian Decision Network for Diagnosing Pyloric
Stenosis.” Journal of Pediatric Surgery 41 (1): 155–61.
doi:10.1016/j.jpedsurg.2005.10.019.

6. Amer-Yahia, Sihem, SungRan Cho, Laks VS Lakshmanan, and Divesh
Srivastava. 2001. “Minimization of Tree Pattern Queries.” In ACM
SIGMOD Record, 30:497–508. ACM.

7. Andersen, S. K, K. G Olesen, F. V Jensen, and F. Jensen. 1989. “HUGIN—
a Shell for Building Bayesian Belief Universes for Expert Systems.” In
Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, 2:1080–85.
8. Andreassen, Steen. 1992. “Planning of Therapy and Tests in Causal

Probabilistic Networks.” Artificial Intelligence in Medicine 4 (3): 227–41.
doi:10.1016/0933-3657(92)90029-O.

9. Andreassen, Steen, Christian Riekehr, Brian Kristensen, Henrik C.
Schønheyder, and Leonard Leibovici. 1999. “Using Probabilistic and
Decision–theoretic Methods in Treatment and Prognosis Modeling.”
Artificial Intelligence in Medicine 15 (2): 121–34. doi:10.1016/S0933-
3657(98)00048-7.

10. Antal, Peter, Geert Fannes, Dirk Timmerman, Yves Moreau, and Bart De
Moor. 2003. “Bayesian Applications of Belief Networks and Multilayer
Perceptrons for Ovarian Tumor Classification with Rejection.” Artificial
Intelligence in Medicine 29 (1–2): 39–60. doi:10.1016/S0933-
3657(03)00053-8.

11. Antal, Peter, Geert Fannes, Dirk Timmerman, Yves Moreau, and Bart De
Moor. 2004. “Using Literature and Data to Learn Bayesian Networks as
Clinical Models of Ovarian Tumors.” Artificial Intelligence in Medicine 30
(3): 257–81. doi:10.1016/j.artmed.2003.11.007.

12. Arion, Andrei, Véronique Benzaken, Ioana Manolescu, and Yannis
Papakonstantinou. 2007. “Structured Materialized Views for XML
Queries.” In Proceedings of the 33rd International Conference on Very
Large Data Bases, 87–98. VLDB ’07. VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1325851.1325865.

13. Arion, Andrei, Véronique Benzaken, Ioana Manolescu, Yannis
Papakonstantinou, and Ravi Vijay. 2006. “Algebra-Based Identification of
Tree Patterns in XQuery.” In Flexible Query Answering Systems, edited
by Henrik Larsen, Gabriella Pasi, Daniel Ortiz-Arroyo, Troels Andreasen,
and Henning Christiansen, 4027:13–25. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg.
http://www.springerlink.com/content/n66j6v486423026x/abstract/.

14. Arnold, Ken, James Gosling, David Holmes, and David Holmes. 1996. The
Java Programming Language. Vol. 2. Addison-wesley Reading.

 259

15. Astbury, Nick, Mark Wood, Uday Gajiwala, Rajesh Patel, Yi Chen, Larry
Benjamin, and Sunday O Abuh. 2008. “Management of Capsular Rupture
and Vitreous Loss in Cataract Surgery.” Community Eye Health 21 (65):
6–8.

16. Austin, Tony, Yin Lim, David Nguyen, and Dipak Kalra. 2011. “Design of
an Electronic Healthcare Record Server Based on Part 1 of ISO EN
13606.” Journal of Healthcare Engineering 2 (2): 143–60.

17. Austin, Tony, Shanghua Sun, Taher Hassan, and Dipak Kalra. 2013.
“Evaluation of ISO EN 13606 as a Result of Its Implementation in XML.”
Health Informatics Journal 19 (4): 264–80.
doi:10.1177/1460458212473993.

18. Aziz, Ayesha, Salvador Rodriguez, and Chris Chatwin. 2014. “From
Guidelines to Practice: Improving Clinical Care through Rule-Based
Clinical Decision Support at the Point of Care.” In Rules on the Web. From
Theory to Applications, edited by Antonis Bikakis, Paul Fodor, and
Dumitru Roman, 178–85. Lecture Notes in Computer Science 8620.
Springer International Publishing.
http://link.springer.com/chapter/10.1007/978-3-319-09870-8_13.

19. Bache, Kevin, and Moshe Lichman. 2013. UCI Machine Learning
Repository.

20. Bahga, A., and V.K. Madisetti. 2013. “A Cloud-Based Approach for
Interoperable Electronic Health Records (EHRs).” IEEE Journal of
Biomedical and Health Informatics 17 (5): 894–906.
doi:10.1109/JBHI.2013.2257818.

21. Bahga, A., and V.K. Madisetti. 2015. “Healthcare Data Integration and
Informatics in the Cloud.” Computer 48 (2): 50–57.
doi:10.1109/MC.2015.46.

22. Barbay, Jérémy. 2005. “Index-Trees for Descendant Tree Queries on XML
Documents.” University of Watreloo Technical Reports.

23. Barclay Adams, J. 1976. “A Probability Model of Medical Reasoning and
the MYCIN Model.” Mathematical Biosciences 32 (1-2): 177–86.

24. Bates, David W., and Atul A. Gawande. 2003. “Improving Safety with
Information Technology.” New England Journal of Medicine 348 (25):
2526–34. doi:10.1056/NEJMsa020847.

25. Batra, Shivani, Shelly Sachdeva, Pulkit Mehndiratta, and Hem Jyotsana
Parashar. 2014. “Mining Standardized Semantic Interoperable Electronic
Healthcare Records.” Pham, TD, Ichikawa, K., Oyama-Higa, M., Coomans,
D., Jiang, X. Eds, 179–93.

26. Bauer, Christian, and Gavin King. 2005. “Hibernate in Action.”
27. Beale, T., and Sam Heard. 2007a. “The openEHR Archetype System.”

openEHR Foundation.
http://www.openehr.org/releases/1.0.2/architecture/am/archetype_syste
m.pdf.

28. Beale, T., and Sam Heard. 2007b. “Archetype Definitions and Principles.”
openEHR Foundation.

29. Beale, T., and Sam Heard. 2008a. “openEHR Architecture Overview.”
openEHR Foundation.
http://www.openehr.org/releases/1.0.2/architecture/overview.pdf.

30. Beale, T., and Sam Heard. 2008b. “Archetype Definition Language.”
openEHR Foundation.

31. Beale, T., Sam Heard, D Kalra, and D Lloyd. 2008a. “The openEHR
Reference Model Demographic Information Model.” openEHR Foundation.

32. Beale, T., Sam Heard, D Kalra, and D Lloyd. 2008b. “The openEHR
Reference Model Data Types Information Model.” openEHR Foundation.

33. Beale, T., Sam Heard, D Kalra, and D Lloyd. 2008c. “The openEHR
Reference Model Common Information Model.” openEHR Foundation.

 260

34. Beale, T., Sam Heard, D Kalra, and D Lloyd. 2008d. “The openEHR
Reference Model Data Structures Information Model.” openEHR
Foundation.

35. Beale, T., Sam Heard, D Kalra, and Kalra Lloyd. 2008e. “The openEHR
Reference Model EHR Information Model.” openEHR Foundation.

36. Beale, T., S. Heard, D. Kalra, and D. Lloyd. 2006. “OpenEHR Architecture
Overview.” The OpenEHR Foundation.
http://www.openehr.org/releases/1.0.1/html/architecture/overview/Outp
ut/front.html.

37. Beeler, George W. 1998. “HL7 Version 3—An Object-Oriented
Methodology for Collaborative Standards development1.” International
Journal of Medical Informatics 48 (1–3): 151–61. doi:10.1016/S1386-
5056(97)00121-4.

38. Bender, D., and K. Sartipi. 2013. “HL7 FHIR: An Agile and RESTful
Approach to Healthcare Information Exchange.” In 2013 IEEE 26th
International Symposium on Computer-Based Medical Systems (CBMS),
326–31. doi:10.1109/CBMS.2013.6627810.

39. Benson, Tim. 2012. Principles of Health Interoperability HL7 and
SNOMED. Springer Science & Business Media.

40. Benzaken, Véronique, Giuseppe Castagna, and Cédric Miachon. 2005. “A
Full Pattern-Based Paradigm for XML Query Processing.” In Practical
Aspects of Declarative Languages, edited by Manuel Hermenegildo and
Daniel Cabeza, 3350:235–52. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg.
http://www.springerlink.com/content/9xlntv1me75nd790/abstract/.

41. Berner, Eta S. 2009. “Clinical Decision Support Systems: State of the
Art.” AHRQ Publication, no. 09-0069: 4–26.

42. Berners-Lee, Tim, and Dan Connolly. 1995. Hypertext Markup Language-
2.0. RFC 1866, November.

43. Bisbal, Jesús, Gaye Stephens, and Jane Grimson. “Generic Access to
Synapses EHCR Data.” In .

44. Bishop, Christopher M. 2007. Pattern Recognition and Machine Learning.
1st ed. 2006. Corr. 2nd printing. Springer.

45. Blake, C., and C. J Merz. 1998. “{UCI} Repository of Machine Learning
Databases.”

46. Boag, Scott, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, Jérôme Siméon, and Mugur Stefanescu. 2002. XQuery
1.0: An XML Query Language.

47. Bodon, F., and L. Rónyai. 2003. “Trie: An Alternative Data Structure for
Data Mining Algorithms.” Mathematical and Computer Modelling,
Hungarian Applied Mathematics, 38 (7–9): 739–51. doi:10.1016/0895-
7177(03)90058-6.

48. Bohannon, P., J. Freire, P. Roy, and J. Simeon. 2002. “From XML Schema
to Relations: A Cost-Based Approach to XML Storage.” In 18th
International Conference on Data Engineering, 2002. Proceedings, 64–75.
doi:10.1109/ICDE.2002.994698.

49. Bolstad, W. M. 2004. Introduction to Bayesian Statistics. Wiley-Ieee.
50. Borthakur, D. 2007. “The Hadoop Distributed File System: Architecture

and Design.” Hadoop Project Website.
51. Bowie, Jack, and G.Octo Barnett. 1976. “MUMPS — An Economical and

Efficient Time-Sharing System for Information Management.” Computer
Programs in Biomedicine 6 (1): 11–22. doi:10.1016/0010-
468X(76)90048-9.

52. Boxwala, A. A, M. Peleg, S. Tu, O. Ogunyemi, Q. T Zeng, D. Wang, V. L
Patel, R. A Greenes, and E. H Shortliffe. 2004. “GLIF3: A Representation
Format for Sharable Computer-Interpretable Clinical Practice Guidelines.”
Journal of Biomedical Informatics 37 (3): 147–61.

 261

53. Bradley, A. P. 1997. “The Use of the Area under the ROC Curve in the
Evaluation of Machine Learning Algorithms.” Pattern Recognition 30 (7):
1145–59.

54. Bray, T., J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
1997. “Extensible Markup Language (XML).” World Wide Web Journal 2
(4): 27–66.

55. Brenes, S., Y. Wu, D. Van Gucht, and P. Santa Cruz. 2008. “Trie Indexes
for Efficient Xml Query Evaluation.” WebDB, Vancouver, Canada.

56. Brewer, M. J., C. G. G. Aitken, and M. Talbot. 1996. “A Comparison of
Hybrid Strategies for Gibbs Sampling in Mixed Graphical Models.”
Computational Statistics & Data Analysis 21 (3): 343–65.

57. Brown, Steven H., Michael J. Lincoln, Peter J. Groen, and Robert M.
Kolodner. 2003. “VistA—U.S. Department of Veterans Affairs National-
Scale HIS.” International Journal of Medical Informatics, Working
Conference on Health Information Systems, 69 (2–3): 135–56.
doi:10.1016/S1386-5056(02)00131-4.

58. Bruno, Nicolas, Nick Koudas, and Divesh Srivastava. 2002. “Holistic Twig
Joins: Optimal XML Pattern Matching.” In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, 310–21.
SIGMOD ’02. New York, NY, USA: ACM. doi:10.1145/564691.564727.

59. Buntine, W. 1996. “A Guide to the Literature on Learning Probabilistic
Networks from Data.” Knowledge and Data Engineering, IEEE
Transactions on 8 (2): 195–210.

60. Cattell, Rick. 2011. “Scalable SQL and NoSQL Data Stores.” SIGMOD Rec.
39 (4): 12–27. doi:10.1145/1978915.1978919.

61. Cd, Kohl, Garde S, and Knaup P. 2009. “Facilitating Secondary Use of
Medical Data by Using openEHR Archetypes.” Studies in Health
Technology and Informatics 160 (Pt 2): 1117–21.

62. Celko, Joe. 2012. Joe Celko’s Trees and Hierarchies in SQL for Smarties.
Elsevier.

63. CEN/ISO 13606 Association. 2015. “The CEN/ISO 13606 Association
Site.” December 12. http://www.en13606.org/.

64. Charitos, Theodore, Linda C. van der Gaag, Stefan Visscher, Karin A.M.
Schurink, and Peter J.F. Lucas. 2009. “A Dynamic Bayesian Network for
Diagnosing Ventilator-Associated Pneumonia in ICU Patients.” Expert
Systems with Applications 36 (2, Part 1): 1249–58.
doi:10.1016/j.eswa.2007.11.065.

65. Cheng, J., and M. J Druzdzel. 2000. “AIS-BN: An Adaptive Importance
Sampling Algorithm for Evidential Reasoning in Large Bayesian
Networks.” J. Artif. Intell. Res. (JAIR) 13: 155–88.

66. Cheng, P.H., C.H. Yang, H.S. Chen, S.J. Chen, and J.S. Lai. 2004.
“Application of HL7 in a Collaborative Healthcare Information System.” In
26th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, 2004. IEMBS ’04, 2:3354–57.
doi:10.1109/IEMBS.2004.1403942.

67. Chen, Li, Amarnath Gupta, and M. Erdem Kurul. 2005. “Stack-Based
Algorithms for Pattern Matching on DAGs.” In Proceedings of the 31st
International Conference on Very Large Data Bases, 493–504. VLDB ’05.
VLDB Endowment. http://dl.acm.org/citation.cfm?id=1083592.1083651.

68. Chen, Roland S., Prakash Nadkarni, Luis Marenco, Forrest Levin, Joseph
Erdos, and Perry L. Miller. 2000. “Exploring Performance Issues for a
Clinical Database Organized Using an Entity-Attribute-Value
Representation.” Journal of the American Medical Informatics Association
7 (5): 475–87. doi:10.1136/jamia.2000.0070475.

69. Chen, Rong, and Iago Corbal. 2015. “Guideline Definition Language
(GDL).” openEHR Foundation.

 262

70. Chen, Rong, Susan M. Resnick, Christos Davatzikos, and Edward H.
Herskovits. 2012. “Dynamic Bayesian Network Modeling for Longitudinal
Brain Morphometry.” NeuroImage 59 (3): 2330–38.
doi:10.1016/j.neuroimage.2011.09.023.

71. Chen, T., J. Lu, and T. W. Ling. 2005. “On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques.” In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of

Data, 455–66. ACM.
72. Chevrolat, Jean-Paul, Jean-Louis Golmard, Salomon Ammar, Roland

Jouvent, and Jean-François Boisvieux. 1998. “Modelling Behavioral
Syndromes Using Bayesian Networks.” Artificial Intelligence in Medicine
14 (3): 259–77. doi:10.1016/S0933-3657(98)00037-2.

73. CIMI. 2015. “Mission and Goals | Www.opencimi.org.” December 30.
http://www.opencimi.org/.

74. Cimino, James J. 1996. “Review Paper: Coding Systems in Health Care.”
Methods of Information in Medicine-Methodik Der Information in Der

Medizin 35 (4): 273–84.
75. Cimino, J. J. 2011. “High-Quality, Standard, Controlled Healthcare

Terminologies Come of Age.” Methods of Information in Medicine 50 (2):
101.

76. Clancey, W. J, and E. H Shortliffe. 1984. Readings in Medical Artificial
Intelligence: The First Decade. Addison-Wesley Longman Publishing Co.,
Inc.

77. Clark, James, and Steve DeRose. 1999. “XML Path Language (XPath).”
http://www.w3.org/TR/xpath/.

78. Codd, E. F. 1970. “A Relational Model of Data for Large Shared Data
Banks.” Commun. ACM 13 (6): 377–87. doi:10.1145/362384.362685.

79. Cooper, Brian F., Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and
Moshe Shadmon. 2001. “A Fast Index for Semistructured Data.” In VLDB,
1:341–50.

80. Cormen, Thomas H. 2009. Introduction to Algorithms. MIT press.
81. Cornet, R. 2015. “ISO 13606 Based System for Biomedical Parameter

Storage, Querying and Alarm Detection.”
82. Cowan, John, and Richard Tobin. 2004. XML Information Set. W3C REC

REC-xml-infoset-20040204.
83. Cowell, R.G., A.P. Dawid, T. Hutchinson, and D.J. Spiegelhalter. 1991. “A

Bayesian Expert System for the Analysis of an Adverse Drug Reaction.”
Artificial Intelligence in Medicine 3 (5): 257–70. doi:10.1016/0933-
3657(91)90031-6.

84. Crockford, Douglas. 2006. “The Application/json Media Type for
Javascript Object Notation (json).”

85. Date, Chris J., and Hugh Darwen. 1987. A Guide to the SQL Standard.
Vol. 3. Addison-Wesley New York.

86. De Dombal, F. T., D. J. Leaper, J. R. Staniland, A. P. McCann, and J. C.
Horrocks. 1972. “Computer-Aided Diagnosis of Acute Abdominal Pain.”
British Medical Journal 2 (5804): 9.

87. de Lusignan, Simon, Christopher Minmagh, John Kennedy, Marco Zeimet,
Hans Bommezijn, and John Bryant. 2001. “A Survey to Identify the
Clinical Coding and Classification Systems Currently in Use across
Europe.” Studies in Health Technology and Informatics, no. 1: 86–89.

88. Dempster, A. P, N. M Laird, and D. B Rubin. 1977. “Maximum Likelihood
from Incomplete Data via the EM Algorithm.” Journal of the Royal
Statistical Society. Series B (Methodological) 39 (1): 1–38.

89. desRivieres, J., and J. Wiegand. 2004. “Eclipse: A Platform for Integrating
Development Tools.” IBM Systems Journal 43 (2): 371–83.

 263

90. Díez, F.J., J. Mira, E. Iturralde, and S. Zubillaga. 1997. “DIAVAL, a
Bayesian Expert System for Echocardiography.” Artificial Intelligence in
Medicine 10 (1): 59–73. doi:10.1016/S0933-3657(97)00384-9.

91. Dinu, Valentin, and Prakash Nadkarni. 2007. “Guidelines for the Effective
Use of Entity–attribute–value Modeling for Biomedical Databases.”
International Journal of Medical Informatics 76 (11–12): 769–79.
doi:10.1016/j.ijmedinf.2006.09.023.

92. Dinu, Valentin, Hongyu Zhao, and Perry L. Miller. 2007. “Integrating
Domain Knowledge with Statistical and Data Mining Methods for High-
Density Genomic SNP Disease Association Analysis.” Journal of
Biomedical Informatics, Intelligent Data Analysis in Biomedicine, 40 (6):
750–60. doi:10.1016/j.jbi.2007.06.002.

93. Di Tomaso, E., and J. F. Baldwin. 2008. “An Approach to Hybrid
Probabilistic Models.” International Journal of Approximate Reasoning 47
(2): 202–18.

94. Doctor, Jason N., and Greg Strylewicz. 2010. “Detecting ‘wrong Blood in
Tube’ Errors: Evaluation of a Bayesian Network Approach.” Artificial
Intelligence in Medicine 50 (2): 75–82.
doi:10.1016/j.artmed.2010.05.008.

95. Dougherty, James, Ron Kohavi, and Mehran Sahami. 1995. “Supervised
and Unsupervised Discretization of Continuous Features.” In Machine
Learning: Proceedings of the Twelfth International Conference, 12:194–
202.

96. Druzdzel, M. J. 1996. “Qualitiative Verbal Explanations in Bayesian Belief
Networks.” AISB QUARTERLY, 43–54.

97. Druzdzel, M. J. 1999. “SMILE: Structural Modeling, Inference, and
Learning Engine and GeNIe: A Development Environment for Graphical
Decision-Theoretic Models.” In Proceedings of the National Conference on
Artificial Intelligence, 902–3. JOHN WILEY & SONS LTD.

98. Duda, R. O, and E. H Shortliffe. 1983. “Expert Systems Research.”
Science 220 (4594): 261–68.

99. Du, Fang, Sihem Amer-Yahia, and Juliana Freire. 2004. “ShreX: Managing
XML Documents in Relational Databases.” In Proceedings of the Thirtieth
International Conference on Very Large Data Bases - Volume 30, 1297–
1300. VLDB ’04. Toronto, Canada: VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1316689.1316818.

100. Duftschmid, Georg, Judith Chaloupka, and Christoph Rinner. 2013.
“Towards Plug-and-Play Integration of Archetypes into Legacy Electronic
Health Record Systems: The ArchiMed Experience.” BMC Medical
Informatics and Decision Making 13 (1): 11. doi:10.1186/1472-6947-13-
11.

101. Duftschmid, Georg, Thomas Wrba, and Christoph Rinner. 2010.
“Extraction of Standardized Archetyped Data from Electronic Health
Record Systems Based on the Entity-Attribute-Value Model.” International
Journal of Medical Informatics 79 (8): 585–97.
doi:10.1016/j.ijmedinf.2010.04.007.

102. Elvira, Consortium. 2002. “Elvira: An Environment for Creating and Using
Probabilistic Graphical Models.” In Proceedings of the First European
Workshop on Probabilistic Graphical Models, 222–30.

103. Fan, Wenfei, Jeffrey Xu Yu, Hongjun Lu, Jianhua Lu, and Rajeev Rastogi.
2005. “Query Translation from XPath to SQL in the Presence of Recursive
DTDs.” In Proceedings of the 31st International Conference on Very Large
Data Bases, 337–48. VLDB Endowment.

104. Fenz, Stefan. 2012. “An Ontology-Based Approach for Constructing
Bayesian Networks.” Data & Knowledge Engineering 73 (March): 73–88.
doi:10.1016/j.datak.2011.12.001.

 264

105. Fernández, Mary, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and
Norman Walsh. 2002. “XQuery 1.0 and XPath 2.0 Data Model.” W3C
Working Draft 15.

106. Florescu, Daniela, and Donald Kossmann. 1999a. “A Performance
Evaluation of Alternative Mapping Schemes for Storing XML Data in a
Relational Database.”

107. Florescu, Daniela, and Donald Kossmann. 1999b. “Storing and Querying
XML Data Using an RDMBS.” IEEE Data Engineering Bulletin, Special
Issue on 1060 (22): 3.

108. Folk, Mike, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. 2011. “An Overview of the HDF5 Technology Suite and Its
Applications.” In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, 36–47. AD ’11. New York, NY, USA: ACM.
doi:10.1145/1966895.1966900.

109. Fraccaro, Paolo, Mercedes Arguello Castelerio, John Ainsworth, and Iain
Buchan. 2015. “Adoption of Clinical Decision Support in Multimorbidity: A
Systematic Review.” JMIR Medical Informatics 3 (1): e4.
doi:10.2196/medinform.3503.

110. Fraser, Hamish SF, Ali Habib, Mark Goodrich, David Thomas, Joaquin A.
Blaya, Joseph Reginald Fils-Aime, Darius Jazayeri, Michael Seaton, Aamir
J. Khan, and Sharon S. Choi. 2013. “E-Health Systems for Management
of MDR-TB in Resource-Poor Environments: A Decade of Experience and
Recommendations for Future Work.” In MedInfo, 627–31.

111. Fraser, Hamish SF, David Thomas, Juan Tomaylla, Nadia Garcia, Leonid
Lecca, Megan Murray, and Mercedes C Becerra. 2012. “Adaptation of a
Web-Based, Open Source Electronic Medical Record System Platform to
Support a Large Study of Tuberculosis Epidemiology.” BMC Medical
Informatics and Decision Making 12 (1): 125. doi:10.1186/1472-6947-
12-125.

112. Freire, Sergio Miranda, Erik Sundvall, Daniel Karlsson, and Patrick
Lambrix. 2012. “Performance of XML Databases for Epidemiological
Queries in Archetype-Based EHRs.” In , 51–57. Linköping University
Electronic Press. http://www.diva-
portal.org/smash/record.jsf?pid=diva2%3A558990&dswid=2323.

113. Galán, S.F., F. Aguado, F.J. Dı́ez, and J. Mira. 2002. “NasoNet, Modeling
the Spread of Nasopharyngeal Cancer with Networks of Probabilistic
Events in Discrete Time.” Artificial Intelligence in Medicine 25 (3): 247–
64. doi:10.1016/S0933-3657(02)00027-1.

114. Gappa, Ute, Frank Puppe, and Stefan Schewe. 1993. “Graphical
Knowledge Acquisition for Medical Diagnostic Expert Systems.” Artificial
Intelligence in Medicine 5 (3): 185–211. doi:10.1016/0933-
3657(93)90024-W.

115. Geiger, D., T. Verma, and J. Pearl. 1990. “Identifying Independence in
Bayesian Networks.” Networks 20 (5): 507–34.

116. Gelman, A., J. B Carlin, H. S Stern, and D. B Rubin. 2004. Bayesian Data
Analysis. CRC press.

117. Getoor, Lise, Jeanne T Rhee, Daphne Koller, and Peter Small. 2004.
“Understanding Tuberculosis Epidemiology Using Structured Statistical
Models.” Artificial Intelligence in Medicine 30 (3): 233–56.
doi:10.1016/j.artmed.2003.11.003.

118. Gevaert, O., F. De Smet, D. Timmerman, Y. Moreau, and B. De Moor.
2006. “Predicting the Prognosis of Breast Cancer by Integrating Clinical
and Microarray Data with Bayesian Networks.” Bioinformatics 22 (14):
e184–90.

119. Gilks, W. R, S. Richardson, and D. J Spiegelhalter. 1996. Markov Chain
Monte Carlo in Practice. Chapman & Hall/CRC.

 265

120. Gimbel, Howard Vance. 1990. “Posterior Capsule Tears Using Phaco-
Emulsification Causes, Prevention and Management.” European Journal of
Implant and Refractive Surgery, Capsular Surgery, 2 (1): 63–69.
doi:10.1016/S0955-3681(13)80127-X.

121. Gimbel, Howard V, Ran Sun, Maria Ferensowicz, Ellen Anderson Penno,
and Aasim Kamal. 2001. “Intraoperative Management of Posterior
Capsule Tears in Phacoemulsification and Intraocular Lens
implantation1.” Ophthalmology 108 (12): 2186–89. doi:10.1016/S0161-
6420(01)00716-3.

122. González-Ferrer, Arturo, Mor Peleg, Bert Verhees, Jan-Marc Verlinden,
and Carlos Marcos. 2013. “Data Integration for Clinical Decision Support
Based on openEHR Archetypes and HL7 Virtual Medical Record.” In
Process Support and Knowledge Representation in Health Care, edited by
Richard Lenz, Silvia Miksch, Mor Peleg, Manfred Reichert, David Riaño,
and Annette ten Teije, 71–84. Lecture Notes in Computer Science 7738.
Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-36438-9_5.

123. Gosling, J., B. Joy, G. Steele, and G. Bracha. 2005. Java (TM) Language
Specification, The (Java (Addison-Wesley)). Addison-Wesley Professional.

124. Götz, Michaela, Christoph Koch, and Wim Martens. 2009. “Efficient
Algorithms for Descendant-Only Tree Pattern Queries.” Information
Systems 34 (7): 602–23. doi:10.1016/j.is.2009.03.010.

125. Gou, Gang, and R. Chirkova. 2007. “Efficiently Querying Large XML Data
Repositories: A Survey.” IEEE Transactions on Knowledge and Data
Engineering 19 (10): 1381–1403. doi:10.1109/TKDE.2007.1060.

126. Greenes, R. A. 2007. Clinical Decision Support: The Road Ahead.
Academic Press.

127. Greenes, Robert A. 2014. Clinical Decision Support (Second Edition).
Edited by Robert A. Greenes. Oxford: Academic Press.
http://www.sciencedirect.com/science/article/pii/B978012398476000001
4.

128. Grimson, J., E. Felton, G. Stephens, W. Grimson, and D. Berry. 1997.
“Interoperability Issues in Sharing Electronic Healthcare Records-the
Synapses Approach.” In , Third IEEE International Conference on
Engineering of Complex Computer Systems, 1997. Proceedings, 180–85.
doi:10.1109/ICECCS.1997.622309.

129. Grimson, J., W. Grimson, D. Berry, G. Stephens, E. Felton, D. Kalra, P.
Toussaint, and O.W. Weier. 1998. “A CORBA-Based Integration of
Distributed Electronic Healthcare Records Using the Synapses Approach.”
IEEE Transactions on Information Technology in Biomedicine 2 (3): 124–
38. doi:10.1109/4233.735777.

130. Hachicha, M., and J. Darmont. 2013. “A Survey of XML Tree Patterns.”
IEEE Transactions on Knowledge and Data Engineering 25 (1): 29–46.
doi:10.1109/TKDE.2011.209.

131. Haddawy, Peter, Joel Jacobson, and Charles E Kahn Jr. 1997. “BANTER: A
Bayesian Network Tutoring Shell.” Artificial Intelligence in Medicine 10
(2): 177–200. doi:10.1016/S0933-3657(96)00374-0.

132. Halland, Ken, Katarina Britz, and Aurona Gerber. 2011. “Investigations
into the Use of SNOMED CT to Enhance an OpenMRS Health Information
System.” South African Computer Journal 47: 33–45.

133. Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H
Witten. 2009. “The WEKA Data Mining Software: An Update.” ACM
SIGKDD Explorations Newsletter 11 (1): 10–18.

134. Hand, D. J, and K. Yu. 2001. “Idiot’s Bayes—Not So Stupid after All?”
International Statistical Review 69 (3): 385–98.

135. Han, Zhongming, Congting Xi, and Jiajin Le. 2005. “Efficiently Coding and
Indexing XML Document.” In Database Systems for Advanced

 266

Applications, edited by Lizhu Zhou, Beng Chin Ooi, and Xiaofeng Meng,
138–50. Lecture Notes in Computer Science 3453. Springer Berlin
Heidelberg. http://link.springer.com/chapter/10.1007/11408079_14.

136. Harding, Philip J., Quanzhong Li, and Bongki Moon. 2003. “XISS/R: XML
Indexing and Storage System Using RDBMS.” In Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, 1073–
76. VLDB ’03. Berlin, Germany: VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1315451.1315552.

137. Hayward, John, Sergio A. Alvarez, Carolina Ruiz, Mary Sullivan, Jennifer
Tseng, and Giles Whalen. 2010. “Machine Learning of Clinical
Performance in a Pancreatic Cancer Database.” Artificial Intelligence in
Medicine 49 (3): 187–95. doi:10.1016/j.artmed.2010.04.009.

138. Heckerman, David E., and Edward H. Shortliffe. 1992. “From Certainty
Factors to Belief Networks.” Artificial Intelligence in Medicine 4 (1): 35–
52. doi:10.1016/0933-3657(92)90036-O.

139. Hejlsberg, Anders, Scott Wiltamuth, and Peter Golde. 2003. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc.

140. Helms, Ronald W., and Imogene McCanless. 1990. “The Conflict between
Relational Databases and the Hierarchical Structure of Clinical Trials
Data.” Controlled Clinical Trials 11 (1): 7–23. doi:10.1016/0197-
2456(90)90028-Z.

141. HL7. 2005. “GELLO.” http://wiki.hl7.org/index.php?title=Product_GELLO.
142. HL7. 2015a. “HL7 Clinical Genomics Group.” December 12.

http://www.hl7.org/special/committees/clingenomics/.
143. HL7. 2015b. “Profiling - FHIR v0.5.0.” December 12.

https://www.hl7.org/FHIR/2015May/profiling.html.
144. HL7. 2015c. “Reference Information Model (RIM).” December 12.

http://www.hl7.org/implement/standards/rim.cfm.
145. HL7. 2015d. “Summary - FHIR v1.0.2.” December 12.

https://www.hl7.org/fhir/summary.html.
146. Højsgaard, Søren. 2014. gRain: Graphical Independence Networks.

http://cran.r-project.org/web/packages/gRain/index.html.
147. Holford, N. H. G., H. C. Kimko, J. P. R. Monteleone, and C. C. Peck. 2000.

“Simulation of Clinical Trials.” Annual Review of Pharmacology and
Toxicology 40 (1): 209–34. doi:10.1146/annurev.pharmtox.40.1.209.

148. Holford, N., S. C. Ma, and B. A. Ploeger. 2010. “Clinical Trial Simulation:
A Review.” Clinical Pharmacology & Therapeutics 88 (2): 166–82.
doi:10.1038/clpt.2010.114.

149. Hripcsak, George. 1994. “Writing Arden Syntax Medical Logic Modules.”
Computers in Biology and Medicine 24 (5): 331–63. doi:10.1016/0010-
4825(94)90002-7.

150. Hripcsak, G., P. Ludemann, T. A Pryor, O. B Wigertz, and P. D Clayton.
1994. “Rationale for the Arden Syntax.” Computers and Biomedical
Research 27 (4): 291–324.

151. IHTSDO. 2015. “Snomed CT.” IHTSDO. Accessed August 13.
http://www.ihtsdo.org/snomed-ct/.

152. Ingram, D. 1995. “The Good European Health Record.” Health in the New
Communication Age, MF Laires, MF Ladeira and JP Christensen (Eds),

IOS, 66–74.
153. Ingram, David. 2002. “openEHR - Origins of openEHR.” October.

http://www.openehr.org/about/origins.
154. Irani, Keki B. 1993. “Multi-Interval Discretization of Continuous-Valued

Attributes for Classification Learning.”
155. ISO. 2015. “ISO/IEC DIS 9075-1 Information Technology -- Database

Languages -- SQL -- Part 1: Framework (SQL/Framework).” Accessed
January 2.

 267

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?cs
number=63555.

156. ISO/EN 13606. 2012. “ISO/EN 13606.” Accessed July 16.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?cs
number=40784.

157. Izadi, Sayyed Kamyar, Mostafa S. Haghjoo, and Theo Härder. 2012. “S3:
Processing Tree-Pattern XML Queries with All Logical Operators.” Data &
Knowledge Engineering 72 (February): 31–62.
doi:10.1016/j.datak.2011.09.003.

158. Izadi, Sayyed Kamyar, Theo Härder, and Mostafa S. Haghjoo. 2009. “S3:
Evaluation of Tree-Pattern XML Queries Supported by Structural
Summaries.” Data & Knowledge Engineering 68 (1): 126–45.
doi:10.1016/j.datak.2008.09.001.

159. Jaakkola, T., and M. Jordan. 1997. “A Variational Approach to Bayesian
Logistic Regression Models and Their Extensions.” In Proceedings of the
Sixth International Workshop on Artificial Intelligence and Statistics.
Citeseer.

160. Jagadish, H. V., S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A.
Nierman, S. Paparizos, J. M. Patel, et al. 2002. “TIMBER: A Native XML
Database.” The VLDB Journal 11 (4): 274–91. doi:10.1007/s00778-002-
0081-x.

161. Jaycock, P., R. L. Johnston, H. Taylor, M. Adams, D. M. Tole, P. Galloway,
C. Canning, and J. M. Sparrow. 2007. “The Cataract National Dataset
Electronic Multi-Centre Audit of 55 567 Operations: Updating Benchmark
Standards of Care in the United Kingdom and Internationally.” Eye 23
(1): 38–49.

162. Jenders, R. A, R. Corman, and B. Dasgupta. 2003. “Making the Standard
More Standard: A Data and Query Model for Knowledge Representation in
the Arden Syntax.” In AMIA Annual Symposium Proceedings, 2003:323.
American Medical Informatics Association.

163. Jenders, R. A., G. Hripcsak, R. V. Sideli, W. DuMouchel, H. Zhang, J. J.
Cimino, S. B. Johnson, E. H. Sherman, and P. D. Clayton. 1995. “Medical
Decision Support: Experience with Implementing the Arden Syntax at the
Columbia-Presbyterian Medical Center.” Proceedings of the Annual
Symposium on Computer Application in Medical Care, 169–73.

164. Jensen, C. S., and A. Kong. “Blocking-Gibbs Sampling in Very Large
Probabilistic Expert Systems.” International Journal of Human-Computer
Studies 42: 647–66.

165. Jensen, Finn V. 2002. Bayesian Networks and Decision Graphs.
Corrected. Springer.

166. Jiang, Haifeng, Hongjun Lu, Wei Wang, and Beng-Chin Ooi. 2003. “XR-
Tree: Indexing XML Data for Efficient Structural Joins.” In 19th
International Conference on Data Engineering, 2003. Proceedings, 253–
64. doi:10.1109/ICDE.2003.1260797.

167. Jiang, Haifeng, Hongjun Lu, Wei Wang, and Jeffrey Xu Yu. 2002. “Path
Materialization Revisited: An Efficient Storage Model for XML Data.” In
Proceedings of the 13th Australasian Database Conference - Volume 5,
85–94. ADC ’02. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc. http://dl.acm.org/citation.cfm?id=563906.563916.

168. Jiang, H., H. Lu, and W. Wang. 2004. “Efficient Processing of XML Twig
Queries with OR-Predicates.” In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, 59–70. ACM.

169. Johnson, Stephen B. 1996. “Generic Data Modeling for Clinical
Repositories.” Journal of the American Medical Informatics Association 3
(5): 328–39. doi:10.1136/jamia.1996.97035024.

170. Julia Flores, M., Ann E. Nicholson, Andrew Brunskill, Kevin B. Korb, and
Steven Mascaro. 2011. “Incorporating Expert Knowledge When Learning

 268

Bayesian Network Structure: A Medical Case Study.” Artificial Intelligence
in Medicine 53 (3): 181–204. doi:10.1016/j.artmed.2011.08.004.

171. Kahn Jr, Charles E., Linda M. Roberts, Katherine A. Shaffer, and Peter
Haddawy. 1997. “Construction of a Bayesian Network for Mammographic
Diagnosis of Breast Cancer.” Computers in Biology and Medicine 27 (1):
19–29. doi:10.1016/S0010-4825(96)00039-X.

172. Kalra, D., and D. Ingram. 2006. “Electronic Health Records.” Information
Technology Solutions for Healthcare, 135–81.

173. Kashfi, Hajar, and Robledo Jairo Jr. 2011. “Towards a Case-Based
Reasoning Method for openEHR-Based Clinical Decision Support.” In
Proceedings of The 3rd International Workshop on Knowledge

Representation for Health Care (KR4HC’11).
174. Kasthurirathne, Suranga N., Burke Mamlin, Harsha Kumara, Grahame

Grieve, and Paul Biondich. 2015. “Enabling Better Interoperability for
HealthCare: Lessons in Developing a Standards Based Application
Programing Interface for Electronic Medical Record Systems.” Journal of
Medical Systems 39 (11): 1–8. doi:10.1007/s10916-015-0356-6.

175. Kawamoto, Kensaku. 2010. “Standards for Scalable Clinical Decision
Support: Need, Current and Emerging Standards, Gaps, and Proposal for
Progress.” The Open Medical Informatics Journal 4 (1): 235–44.
doi:10.2174/1874431101004010235.

176. Keitt, H. Timothy. 2015. Rpg: Easy Interface to Advanced PostgreSQL
Features (version 1.4). R. Accessed April 17. http://cran.r-
project.org/web/packages/rpg/index.html.

177. Khalifa, Mohamed. 2014. “Clinical Decision Support: Strategies for
Success.” Procedia Computer Science 37: 422–27.

178. Kimko, Hui, and Stephen B. Duffull. 2002. Simulation for Designing
Clinical Trials: A Pharmacokinetic-Pharmacodynamic Modeling

Perspective. CRC Press.
179. Kloek, T., and H. K. Van Dijk. 1978. “Bayesian Estimates of Equation

System Parameters: An Application of Integration by Monte Carlo.”
Econometrica: Journal of the Econometric Society, 1–19.

180. Knuth, D. E. 1968. “The Art of Computer Programming, Volume 1:
Fundamental Algorithms Addison-Wesley.” Reading, Mass.

181. Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection.” In Ijcai, 14:1137–45.

182. Kohl, Christian Dominik. 2012. “Patientenübergreifende, Multiple
Verwendung von Patientendaten Für Die Klinische Forschung Unter
Nutzung von Archetypen.”

183. Kohler, Michael, Christoph Rinner, Gudrun Hübner-Bloder, Samrend
Saboor, Elske Ammenwerth, and Georg Duftschmid. 2011. “The
Archetype-Enabled EHR System ZK-ARCHE-Integrating the ISO/EN 13606
Standard and IHE XDS Profile.” In MIE, 799–803.

184. Koller, D., and N. Friedman. 2009. Probabilistic Graphical Models:
Principles and Techniques. The MIT Press.

185. Koller, D., U. Lerner, and D. Angelov. 1999. “A General Algorithm for
Approximate Inference and Its Application to Hybrid Bayes Nets.” In Proc.
UAI, 15:324–33.

186. Kondylakis, H., L. Koumakis, E. Genitsaridi, M. Tsiknakis, K. Marias, G.
Pravettoni, A. Gorini, and K. Mazzocco. 2012. “IEmS: A Collaborative
Environment for Patient Empowerment.” In 2012 IEEE 12th International
Conference on Bioinformatics Bioengineering (BIBE), 535–40.
doi:10.1109/BIBE.2012.6399770.

187. Kopanitsa, G., C. Hildebrand, J. Stausberg, and K. H. Englmeier. 2013.
“Visualization of Medical Data Based on EHR Standards.” Methods Inf Med
52 (1): 43–50.

 269

188. Korb, Kevin B., and Ann E. Nicholson. 2003. Bayesian Artificial
Intelligence. 1st ed. Chapman and Hall/CRC.

189. Kozlov, A. V, and D. Koller. 1997. “Nonuniform Dynamic Discretization in
Hybrid Networks.” In Uncertainty in Artificial Intelligence, 13:314–25.
Citeseer.

190. Krauthausen, P., and U. D Hanebeck. 2010. “Parameter Learning for
Hybrid Bayesian Networks with Gaussian Mixture and Dirac Mixture
Conditional Densities.” In American Control Conference (ACC), 2010,
480–85. IEEE.

191. Kuhn, K. 2007. “Model-Centric Approaches for the Development of Health
Information Systems.” Medinfo 2007, 28.

192. Kuperman, G. J, A. Bobb, T. H Payne, A. J Avery, T. K Gandhi, G. Burns,
D. C Classen, and D. W Bates. 2007. “Medication-Related Clinical
Decision Support in Computerized Provider Order Entry Systems: A
Review.” Journal of the American Medical Informatics Association 14 (1):
29–40.

193. Lacave, Carmen, Agnieszka Oniśko, and Francisco J. Díez. 2006. “Use of
Elvira’s Explanation Facility for Debugging Probabilistic Expert Systems.”
Knowledge-Based Systems 19 (8): 730–38.
doi:10.1016/j.knosys.2006.05.010.

194. Lacave, C., and F. J Díez. 2002. “A Review of Explanation Methods for
Bayesian Networks.” The Knowledge Engineering Review 17 (2): 107–27.

195. Lacave, C., M. Luque, and F. J Díez. 2007. “Explanation of Bayesian
Networks and Influence Diagrams in Elvira.” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 37 (4): 952–65.

196. Lakshmanan, Laks V. S., Hui Wang, and Zheng Zhao. 2006. “Answering
Tree Pattern Queries Using Views.” In Proceedings of the 32Nd
International Conference on Very Large Data Bases, 571–82. VLDB ’06.
Seoul, Korea: VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1182635.1164177.

197. Lalkhen, Abdul Ghaaliq, and Anthony McCluskey. 2008. “Clinical Tests:
Sensitivity and Specificity.” Continuing Education in Anaesthesia, Critical
Care & Pain 8 (6): 221–23. doi:10.1093/bjaceaccp/mkn041.

198. Langseth, H., T. D Nielsen, R. Rumí, and A. Salmerón. 2009. “Inference
in Hybrid Bayesian Networks.” Reliability Engineering & System Safety 94
(10): 1499–1509.

199. Larrañaga, P., and S. Moral. 2011. “Probabilistic Graphical Models in
Artificial Intelligence.” Applied Soft Computing, The Impact of Soft
Computing for the Progress of Artificial Intelligence, 11 (2): 1511–28.
doi:10.1016/j.asoc.2008.01.003.

200. Lauritzen, S. L, and F. Jensen. 2001. “Stable Local Computation with
Conditional Gaussian Distributions.” Statistics and Computing 11 (2):
191–203.

201. Lauritzen, S. L, and D. J Spiegelhalter. 1988. “Local Computations with
Probabilities on Graphical Structures and Their Application to Expert
Systems.” Journal of the Royal Statistical Society. Series B
(Methodological) 50 (2): 157–224.

202. Leaper, D. J., J. C Horrocks, J. R. Staniland, and F. T. De Dombal. 1972.
“Computer-Assisted Diagnosis of Abdominal Pain Using ‘estimates’
Provided by Clinicians.” British Medical Journal 4 (5836): 350–54.

203. Ledley, R. S., and L. B. Lusted. 1959a. “Reasoning Foundations of Medical
Diagnosis.” Science 130 (3366): 9–21.

204. Ledley, R.S., and L.B. Lusted. 1959b. “The Use of Electronic Computers
to Aid in Medical Diagnosis.” Proceedings of the IRE 47 (11): 1970–77.
doi:10.1109/JRPROC.1959.287213.

205. Lee, Dennis, Nicolette de Keizer, Francis Lau, and Ronald Cornet. 2014.
“Literature Review of SNOMED CT Use.” Journal of the American Medical

 270

Informatics Association 21 (e1): e11–19. doi:10.1136/amiajnl-2013-
001636.

206. Lepar, V. 1998. “A Comparison of Lauritzen-Spiegelhalter, Hugin, and
Shenoy-Shafer Architectures for Computing Marginals of Probability
Distributions.” In Uncertainty in Artificial Intelligence, 14:328–37.
Citeseer.

207. Linder, J. A, J. Ma, D. W Bates, B. Middleton, and R. S Stafford. 2007.
“Electronic Health Record Use and the Quality of Ambulatory Care in the
United States.” Archives of Internal Medicine 167 (13): 1400.

208. Lloyd, D., D. Kalra, T. Beale, A. Maskens, R. Dixon, J. Ellis, D. Camplin, P.
Grubb, and D. Ingram. The GEHR Final Architecture Description.
European Commission, Brussels; 1995; The Good European Health

Record Project: Deliverable 19. 11 Chapters; 250 Pages.
209. Long, William J. 2001. “Medical Informatics: Reasoning Methods.”

Artificial Intelligence in Medicine 23 (1): 71–87. doi:10.1016/S0933-
3657(01)00076-8.

210. Long, William J., Hamish Fraser, and Shapur Naimi. 1997. “Reasoning
Requirements for Diagnosis of Heart Disease.” Artificial Intelligence in
Medicine 10 (1): 5–24. doi:10.1016/S0933-3657(97)00381-3.

211. Loong, T. W. 2003. “Understanding Sensitivity and Specificity with the
Right Side of the Brain.” Bmj 327 (7417): 716.

212. Löper, Dortje, Meike Klettke, Ilvio Bruder, and Andreas Heuer. 2012.
“Integrating Healthcare-Related Information Using the Entity-Attribute-
Value Storage Model.” In Health Information Science, edited by Jing He,
Xiaohui Liu, Elizabeth A. Krupinski, and Guandong Xu, 13–24. Lecture
Notes in Computer Science 7231. Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-29361-0_4.

213. Lopez, Diego M., and Bernd G. M. E. Blobel. 2009. “A Development
Framework for Semantically Interoperable Health Information Systems.”
International Journal of Medical Informatics 78 (2): 83–103.
doi:10.1016/j.ijmedinf.2008.05.009.

214. Lucas, Peter J.F., Nicolette C. de Bruijn, Karin Schurink, and Andy
Hoepelman. 2000. “A Probabilistic and Decision-Theoretic Approach to
the Management of Infectious Disease at the ICU.” Artificial Intelligence
in Medicine 19 (3): 251–79. doi:10.1016/S0933-3657(00)00048-8.

215. Luciani, Davide, and Federico M. Stefanini. 2012. “Automated Interviews
on Clinical Case Reports to Elicit Directed Acyclic Graphs.” Artificial
Intelligence in Medicine 55 (1): 1–11.
doi:10.1016/j.artmed.2011.11.007.

216. Lu, Jiaheng, Ting Chen, and Tok Wang Ling. 2004. “Efficient Processing of
XML Twig Patterns with Parent Child Edges: A Look-Ahead Approach.” In
Proceedings of the Thirteenth ACM International Conference on

Information and Knowledge Management, 533–42. CIKM ’04. New York,
NY, USA: ACM. doi:10.1145/1031171.1031272.

217. Lu, Jiaheng, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. 2005.
“From Region Encoding to Extended Dewey: On Efficient Processing of
XML Twig Pattern Matching.” In Proceedings of the 31st International
Conference on Very Large Data Bases, 193–204. VLDB ’05. Trondheim,
Norway: VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1083592.1083618.

218. Lu, Jiaheng, Xiaofeng Meng, and Tok Wang Ling. 2011. “Indexing and
Querying XML Using Extended Dewey Labeling Scheme.” Data &
Knowledge Engineering 70 (1): 35–59. doi:10.1016/j.datak.2010.08.001.

219. Lunn, D. J, A. Thomas, N. Best, and D. Spiegelhalter. 2000. “WinBUGS-a
Bayesian Modelling Framework: Concepts, Structure, and Extensibility.”
Statistics and Computing 10 (4): 325–37.

 271

220. Machdi, Imam, Toshiyuki Amagasa, and Hiroyuki Kitagawa. 2009.
“Executing Parallel TwigStack Algorithm on a Multi-Core System.” In
Proceedings of the 11th International Conference on Information

Integration and Web-Based Applications & Services, 176–84. iiWAS
’09. New York, NY, USA: ACM. doi:10.1145/1806338.1806376.

221. Ma, Chunlan, Heath Frankel, and Thomas Beale. 2014. “Archetype Query
Language Description - Specifications - openEHR Wiki.” Accessed
December 30.
https://openehr.atlassian.net/wiki/display/spec/Archetype+Query+Langu
age+Description.

222. MacLeod, Bruce Bradford, James Phillips, Allison Stone, Aliya Walji, and
John Koku Awoonor-Williams. 2012. “The Architecture of a Software
System for Supporting Community-Based Primary Health Care with
Mobile Technology: The Mobile Technology for Community Health
(MoTeCH) Initiative in Ghana.” Online Journal of Public Health Informatics
4 (1). doi:10.5210/ojphi.v4i1.3910.

223. Madaan, Aastha, and Subhash Bhalla. 2014. “Usability Measures for
Large Scale Adoption of the Standardized Electronic Health Record
Databases.” Journal of Information Processing 22 (3): 508–26.
doi:10.2197/ipsjjip.22.508.

224. Madaan, Aastha, Wanming Chu, Yaginuma Daigo, and Subhash Bhalla.
2013. “Quasi-Relational Query Language Interface for Persistent
Standardized EHRs: Using NoSQL Databases.” In Databases in Networked
Information Systems, edited by Aastha Madaan, Shinji Kikuchi, and
Subhash Bhalla, 182–96. Lecture Notes in Computer Science 7813.
Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-37134-9_15.

225. Madigan, D., K. Mosurski, and R. G Almond. 1997. “Graphical Explanation
in Belief Networks.” Journal of Computational and Graphical Statistics,
160–81.

226. Mamlin, Burke W., Paul G. Biondich, Ben A. Wolfe, Hamish Fraser, Darius
Jazayeri, Christian Allen, Justin Miranda, and William M. Tierney. 2006.
“Cooking Up An Open Source EMR For Developing Countries: OpenMRS –
A Recipe For Successful Collaboration.” AMIA Annual Symposium
Proceedings 2006: 529–33.

227. Mann, Kito D. 2005. Java Server Faces in Action. Dreamtech Press.
228. Markwell, D., L. Sato, and E. Cheetham. 2008. “Representing Clinical

Information Using SNOMED Clinical Terms with Different Structural
Information Models.” Proceedings of KR-MED 2008.

229. Martínez-Costa, Catalina, Ronald Cornet, Daniel Karlsson, Stefan Schulz,
and Dipak Kalra. 2015. “Semantic Enrichment of Clinical Models towards
Semantic Interoperability. The Heart Failure Summary Use Case.” Journal
of the American Medical Informatics Association 22 (3): 565–76.
doi:10.1093/jamia/ocu013.

230. McGuinness, D. L., and F. Van Harmelen. 2004. “OWL Web Ontology
Language Overview.” W3C Recommendation 10: 2004–03.

231. Menarguez, Marcos. 2013. “Digitum : Depósito de La Universidad de
Murcia: Modelos de Representación de Arquetipos En Sistemas de
Información Sanitarios.” May 30.
https://digitum.um.es/jspui/handle/10201/35157.

232. Menárguez-Tortosa, Marcos, Catalina Martínez-Costa, and Jesualdo
Tomás Fernández-Breis. 2011. “A Generative Tool for Building Health
Applications Driven by ISO 13606 Archetypes.” Journal of Medical
Systems 36 (5): 3063–75. doi:10.1007/s10916-011-9783-1.

233. Metz, Charles E. 1978. “Basic Principles of ROC Analysis.” Seminars in
Nuclear Medicine 8 (4): 283–98. doi:10.1016/S0001-2998(78)80014-2.

234. Meyer, Bertrand. 1988. “Object Oriented Software Construction.”

 272

235. Mohammed-Rajput, Nareesa A., Nyoman W. Ribeka, Sylvester Kimaiyo,
and Martin C. Were. 2010. “Creating and Evaluating a Dynamic Study
Randomization and Enrollment Tool within a Robust EHRs.” AMIA Annual
Symposium Proceedings 2010: 517–21.

236. Mohammed-Rajput, Nareesa A., Dawn C. Smith, Burke Mamlin, Paul
Biondich, and Brad N. Doebbeling. 2011. “OpenMRS, A Global Medical
Records System Collaborative: Factors Influencing Successful
Implementation.” AMIA Annual Symposium Proceedings 2011: 960–68.

237. Momjian, Bruce. 2001. PostgreSQL: Introduction and Concepts. Vol. 192.
Addison-Wesley New York.

238. Montironi, Rodolfo, Peter H Bartels, Peter W Hamilton, and Deborah
Thompson. 1996. “Atypical Adenomatous Hyperplasia (adenosis) of the
Prostate: Development of a Bayesian Belief Network for Its Distinction
from Well-Differentiated Adenocarcinoma.” Human Pathology 27 (4):
396–407. doi:10.1016/S0046-8177(96)90114-8.

239. Montironi, Rodolfo, Roberta Mazzucchelli, Paola Colanzi, Marco Streccioni,
Marina Scarpelli, Deborah Thompson, and Peter H. Bartels. 2002.
“Improving Inter-Observer Agreement and Certainty Level in Diagnosing
and Grading Papillary Urothelial Neoplasms:: Usefulness of a Bayesian
Belief Network.” European Urology 41 (4): 449–57. doi:10.1016/S0302-
2838(02)00028-3.

240. Moral, S., R. Rumí, and A. Salmerón. 2001. “Mixtures of Truncated
Exponentials in Hybrid Bayesian Networks.” Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, 156–67.

241. Mori, Angelo Rossi. 1995. “Coding Systems and Controlled Vocabularies
for Hospital Information Systems.” International Journal of Bio-Medical
Computing, Information System with Fadin Boundaries, 39 (1): 93–98.
doi:10.1016/0020-7101(94)01085-F.

242. Mould, Dr, and Rn Upton. 2012. “Basic Concepts in Population Modeling,
Simulation, and Model-Based Drug Development.” CPT: Pharmacometrics
& Systems Pharmacology 1 (9): 1–14. doi:10.1038/psp.2012.4.

243. Müller, M. L, T. Ganslandt, H. P Eich, K. Lang, C. Ohmann, and H. U
Prokosch. 2001. “Towards Integration of Clinical Decision Support in
Commercial Hospital Information Systems Using Distributed, Reusable
Software and Knowledge Components.” International Journal of Medical
Informatics 64 (2-3): 369–77.

244. Murphy, K. P. 1999. “A Variational Approximation for Bayesian Networks
with Discrete and Continuous Latent Variables.” In Proc. UAI, 99:457–66.

245. Murphy, K. P. 2002. “Dynamic Bayesian Networks.” Probabilistic
Graphical Models, M. Jordan.

246. Musen, M. A. 1992. “Dimensions of Knowledge Sharing and Reuse.”
Computers and Biomedical Research 25 (5): 435–67.

247. Musen, Mark A., Blackford Middleton, and Robert A. Greenes. 2014.
“Clinical Decision-Support Systems.” In Biomedical Informatics, 643–74.
Springer.

248. Musen, M. A, Y. Shahar, and E. H Shortliffe. 2006. “Clinical Decision-
Support Systems.” Biomedical Informatics, 698–736.

249. Nadkarni, Prakash M. 1997. “QAV: Querying Entity-Attribute-Value
Metadata in a Biomedical Database.” Computer Methods and Programs in
Biomedicine 53 (2): 93–103. doi:10.1016/S0169-2607(97)01815-4.

250. Nadkarni, Prakash M. 1998. “Data Extraction and Ad Hoc Query of an
Entity—Attribute— Value Database.” Journal of the American Medical
Informatics Association 5 (6): 511–27.
doi:10.1136/jamia.1998.0050511.

251. Nadkarni, Prakash M., Luis Marenco, Roland Chen, Emmanouil Skoufos,
Gordon Shepherd, and Perry Miller. 1999. “Organization of
Heterogeneous Scientific Data Using the EAV/CR Representation.” Journal

 273

of the American Medical Informatics Association 6 (6): 478–93.
doi:10.1136/jamia.1999.0060478.

252. Nagarajan, Radhakrishnan, Marco Scutari, and Sophie Lèbre. 2013.
“Bayesian Network Inference Algorithms.” In Bayesian Networks in R,
85–101. Use R! 48. Springer New York.
http://link.springer.com/chapter/10.1007/978-1-4614-6446-4_4.

253. Namasivayam, Vasanth Krishna, Animesh Pathak, and Viktor K.
Prasanna. “Parallelizing Exact Inference in Bayesian Networks.”

254. Namasivayam, V.K., A Pathak, and V.K. Prasanna. 2006. “Scalable
Parallel Implementation of Bayesian Network to Junction Tree Conversion
for Exact Inference.” In 18TH International Symposium on Computer
Architecture and High Performance Computing, 2006. SBAC-PAD ’06,
167–76. doi:10.1109/SBAC-PAD.2006.26.

255. Narendran, N., P. Jaycock, R. L. Johnston, H. Taylor, M. Adams, D. M.
Tole, R. H. Asaria, P. Galloway, and J. M. Sparrow. 2008. “The Cataract
National Dataset Electronic Multicentre Audit of 55 567 Operations: Risk
Stratification for Posterior Capsule Rupture and Vitreous Loss.” Eye 23
(1): 31–37. doi:10.1038/sj.eye.6703049.

256. Neal, R. M. 1993. “Probabilistic Inference Using Markov Chain Monte
Carlo Methods (Technical Report CRG-TR-93-1).” Department of
Computer Science, University of Toronto.

257. Neapolitan, R. E. 2004. Learning Bayesian Networks. Pearson Prentice
Hall Upper Saddle River, NJ.

258. Neiswanger, Willie, Chong Wang, and Eric Xing. 2013. “Asymptotically
Exact, Embarrassingly Parallel MCMC.” arXiv Preprint arXiv:1311.4780.

259. Nicol, Gavin, Lauren Wood, Mike Champion, and Steve Byrne. 2001.
“Document Object Model (DOM) Level 3 Core Specification.” W3C
Working Draft 13: 1–146.

260. Nogueira Reis, Zilma Silveira, Marcelo Rodrigues dos Santos Junior,
Juliano de Souza Gaspar, Thais Abreu Maia, Andreia Cristina de Souza,
and Marcelo Rodrigues dos Santos. 2015. “Electronic Systems
Interoperability Study: Based on the Interchange of Hospital Obstetrical
Information.” In Computer-Based Medical Systems (CBMS), 2015 IEEE
28th International Symposium on, 201–4. IEEE.

261. Ocean Informatics. 2015. “Clinical Knowledge Manager.” Accessed August
9. http://www.openehr.org/ckm/.

262. Odersky, Martin, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian
Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. 2004. “An Overview of the Scala
Programming Language.”

263. Onisko, A. 2003. “Probabilistic Causal Models in Medicine: Application to
Diagnosis of Liver Disorders.” Ph. D. thesis, Institute of Biocybernetics
and Biomedical Engineering, Polish Academy of Science, Warsaw.

264. openEHR Foundation. 2015. “openEHR - Deployed Solutions.” July 31.
http://www.openehr.org/who_is_using_openehr/healthcare_providers_an
d_authorities.

265. OpenMRS Inc. 2015. “OpenMRS.” December 12. http://openmrs.org/.
266. Overby, Casey Lynnette, Isaac Kohane, Joseph L. Kannry, Marc S.

Williams, Justin Starren, Erwin Bottinger, Omri Gottesman, et al. 2013.
“Opportunities for Genomic Clinical Decision Support Interventions.”
Genetics in Medicine 15 (10): 817–23. doi:10.1038/gim.2013.128.

267. Pal, Shankar, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo
Giakoumakis, and Vasili Zolotov. 2004. “Indexing XML Data Stored in a
Relational Database.” In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, 1146–57. VLDB ’04.
Toronto, Canada: VLDB Endowment.
http://dl.acm.org/citation.cfm?id=1316689.1316787.

 274

268. Parashar, Hem Jyotsana, Shelly Sachdeva, and Shivani Batra. 2013.
“Enhancing Access to Standardized Clinical Application for Mobile
Interfaces.” In Databases in Networked Information Systems, edited by
Aastha Madaan, Shinji Kikuchi, and Subhash Bhalla, 212–29. Lecture
Notes in Computer Science 7813. Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-37134-9_17.

269. Parashar, H.J., S. Sachdeva, S. Batra, and P. Mehndiratta. 2013.
“Usability and Information Retrieval Issues for Electronic Healthcare
Record Databases.” In 2013 Sixth International Conference on
Contemporary Computing (IC3), 410–14.
doi:10.1109/IC3.2013.6612230.

270. Parikh, Rajul, Annie Mathai, Shefali Parikh, G Chandra Sekhar, and Ravi
Thomas. 2008. “Understanding and Using Sensitivity, Specificity and
Predictive Values.” Indian Journal of Ophthalmology 56 (1): 45–50.

271. Pathak, Jyotishman, Harold R. Solbrig, James D. Buntrock, Thomas M.
Johnson, and Christopher G. Chute. 2009. “LexGrid: A Framework for
Representing, Storing, and Querying Biomedical Terminologies from
Simple to Sublime.” Journal of the American Medical Informatics
Association 16 (3): 305–15. doi:10.1197/jamia.M3006.

272. Paul, Razan, and Abu Sayed Md. Latiful Hoque. 2011. “Optimized Entity
Attribute Value Model: A Search Efficient Representation of High
Dimensional and Sparse Data.” Interdisciplinary Bio Central 3 (3): 1–5.
doi:10.4051/ibc.2011.3.3.0009.

273. Pearl, J. 1986. “Fusion, Propagation, and Structuring in Belief Networks.”
Artificial Intelligence 29 (3): 241–88.

274. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

275. Peelen, Linda, Nicolette F. de Keizer, Evert de Jonge, Robert-Jan Bosman,
Ameen Abu-Hanna, and Niels Peek. 2010. “Using Hierarchical Dynamic
Bayesian Networks to Investigate Dynamics of Organ Failure in Patients
in the Intensive Care Unit.” Journal of Biomedical Informatics 43 (2):
273–86. doi:10.1016/j.jbi.2009.10.002.

276. Peleg, M., O. Ogunyemi, S. Tu, A. A Boxwala, Q. Zeng, R. A Greenes, and
E. H Shortliffe. 2001. “Using Features of Arden Syntax with Object-
Oriented Medical Data Models for Guideline Modeling.” In Proceedings of
the AMIA Symposium, 523. American Medical Informatics Association.

277. Peleg, M., S. Tu, J. Bury, P. Ciccarese, J. Fox, R. A Greenes, R. Hall, P. D
Johnson, N. Jones, and A. Kumar. 2003. “Comparing Computer-
Interpretable Guideline Models: A Case-Study Approach.” Journal of the
American Medical Informatics Association 10 (1): 52.

278. Perez-Ruixo, Juan Jose, Filip De Ridder, Hui Kimko, Mahesh Samtani,
Eugene Cox, Surya Mohanty, and An Vermeulen. 2007. “Simulation in
Clinical Drug Development.” In Biosimulation in Drug Development,
edited by rtin Bertau, Erik Mosekilde, and Hans V. Westerhoff, 1–26.
Wiley-VCH Verlag GmbH & Co. KGaA.
http://onlinelibrary.wiley.com/doi/10.1002/9783527622672.ch1/summar
y.

279. Plummer, M. 2003. “JAGS: A Program for Analysis of Bayesian Graphical
Models Using Gibbs Sampling.” In Proceedings of the 3rd International
Workshop on Distributed Statistical Computing (DSC 2003). March, 20–
22.

280. Pourret, Olivier, Patrick Naïm, and Bruce Marcot, eds. 2008. Bayesian
Networks: A Practical Guide to Applications. 1st ed. Wiley.

281. Pradhan, Malcolm, Gregory Provan, Blackford Middleton, and Max
Henrion. 1994. “Knowledge Engineering for Large Belief Networks.” In
Proceedings of the Tenth International Conference on Uncertainty in

Artificial Intelligence, 484–90. UAI’94. San Francisco, CA, USA: Morgan

 275

Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=2074394.2074456.

282. Qin, L., J. X. Yu, and B. Ding. 2007. “TwigList: Make Twig Pattern
Matching Fast.” In Proceedings of the 12th International Conference on
Database Systems for Advanced Applications, 850–62. Springer-Verlag.

283. Ramoni, Marco, Alberto Riva, Mario Stefanelli, and Vimla Patel. 1995. “An
Ignorant Belief Network to Forecast Glucose Concentration from Clinical
Databases.” Artificial Intelligence in Medicine 7 (6): 541–59.
doi:10.1016/0933-3657(95)00026-1.

284. Ranjan, R. 2014. “Streaming Big Data Processing in Datacenter Clouds.”
IEEE Cloud Computing 1 (1): 78–83. doi:10.1109/MCC.2014.22.

285. Rao, P., and B. Moon. 2004. “PRIX: Indexing and Querying XML Using
Prufer Sequences.” In 20th International Conference on Data
Engineering, 2004. Proceedings, 288–99.
doi:10.1109/ICDE.2004.1320005.

286. R Development Core Team. 2008. “R: A Language and Environment for
Statistical Computing.” R Foundation for Statistical Computing Vienna
Austria ISBN 3 (10).

287. Rector, A. L. 2001. “The Interface between Information, Terminology,
and Inference Models.” Studies in Health Technology and Informatics, no.
1: 246–50.

288. Rector, Alan, and Luigi Iannone. 2012. “Lexically Suggest, Logically
Define: Quality Assurance of the Use of Qualifiers and Expected Results of
Post-Coordination in SNOMED CT.” Journal of Biomedical Informatics 45
(2): 199–209. doi:10.1016/j.jbi.2011.10.002.

289. Rector, Al, Md Phd, R. Qamar Msc, and T. Marley Msc. 2006. “Binding
Ontologies & Coding Systems to Electronic Health Records and
Messages.” In Proc of the Second International Workshop on Formal
Biomedical Knowledge Representation (KR-MED 2006); 2006; 2006. P.

11-9. The SAGE Guideline Model Page 30 of 35, 11–19.
290. Riley, Gary. 2015. “CLIPS: A Tool for Building Expert Systems.”

December 12. http://clipsrules.sourceforge.net/.
291. Rinner, Christoph, Michael Kohler, Gudrun Hübner-Bloder, Samrend

Saboor, Elske Ammenwerth, and Georg Duftschmid. 2011. “Creating
ISO/EN 13606 Archetypes Based on Clinical Information Needs.” In
Proceedings of EFMI Special Topic Conference" E-Health Across Borders

Without Boundaries, 14–15.
292. Rinner, C., T. Wrba, and G. Duftschmid. 2007. Publishing Relational

Medical Data as Cen 13606 Archetype Compliant Ehr Extracts Using Xml

Technologies. Citeseer.
293. Riva, Alberto, and Riccardo Bellazzi. 1996. “Learning Temporal

Probabilistic Causal Models from Longitudinal Data.” Artificial Intelligence
in Medicine 8 (3): 217–34. doi:10.1016/0933-3657(95)00034-8.

294. Russell, Stuart, and Peter Norvig. 2002. Artificial Intelligence: A Modern
Approach. 2nd ed. Prentice Hall.

295. Sacha, Jarosław P., Lucy S. Goodenday, and Krzysztof J. Cios. 2002.
“Bayesian Learning for Cardiac SPECT Image Interpretation.” Artificial
Intelligence in Medicine 26 (1–2): 109–43. doi:10.1016/S0933-
3657(02)00055-6.

296. Sachdeva, Shelly, Daigo Yaginuma, Wanming Chu, and Subhash Bhalla.
2011. “Dynamic Generation of Archetype-Based User Interfaces for
Queries on Electronic Health Record Databases.” In Databases in
Networked Information Systems, edited by Shinji Kikuchi, Aastha
Madaan, Shelly Sachdeva, and Subhash Bhalla, 109–25. Lecture Notes in
Computer Science 7108. Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-25731-5_10.

 276

297. Sakellaropoulos, G.C, and G.C Nikiforidis. 2000. “Prognostic Performance
of Two Expert Systems Based on Bayesian Belief Networks.” Decision
Support Systems 27 (4): 431–42. doi:10.1016/S0167-9236(99)00059-7.

298. Samwald, Matthias, Karsten Fehre, Jeroen de Bruin, and Klaus-Peter
Adlassnig. 2012. “The Arden Syntax Standard for Clinical Decision
Support: Experiences and Directions.” Journal of Biomedical Informatics,
Translating Standards into Practice: Experiences and Lessons Learned in
Biomedicine and Health Care, 45 (4): 711–18.
doi:10.1016/j.jbi.2012.02.001.

299. Saxena, Upaang, Shelly Sachdeva, and Shivani Batra. 2015. “Moving
from Relational Data Storage to Decentralized Structured Storage
System.” In Databases in Networked Information Systems, edited by
Wanming Chu, Shinji Kikuchi, and Subhash Bhalla, 180–94. Lecture
Notes in Computer Science 8999. Springer International Publishing.
http://link.springer.com/chapter/10.1007/978-3-319-16313-0_13.

300. Schadow, G., D. C Russler, and C. J McDonald. 2001. “Conceptual
Alignment of Electronic Health Record Data with Guideline and Workflow
Knowledge.” International Journal of Medical Informatics 64 (2-3): 259–
74.

301. Schloeffel, P., T. Beale, G. Hayworth, S. Heard, and H. Leslie. 2006. “The
Relationship between CEN 13606, HL7, and openEHR.” HIC 2006 and
HINZ 2006: Proceedings 24.

302. Scholz, F. W. 2004. “Maximum Likelihood Estimation.” In Encyclopedia of
Statistical Sciences. John Wiley & Sons, Inc.
http://onlinelibrary.wiley.com/doi/10.1002/0471667196.ess1571.pub2/a
bstract.

303. Schrempf, O. C, and U. D Hanebeck. 2004. “A New Approach for Hybrid
Bayesian Networks Using Full Densities.” In Proceedings of 6th Workshop
on Computer Science and Information Technologies, CSIT 2004. Citeseer.

304. Scutari, M. 2010. “Bnlearn: Bayesian Network Structure Learning.” R
Package.

305. Scutari, Marco. 2009. “Learning Bayesian Networks with the Bnlearn R
Package.” arXiv Preprint arXiv:0908.3817.

306. Scutari, Marco. 2014. “Bayesian Network Constraint-Based Structure
Learning Algorithms: Parallel and Optimised Implementations in the
Bnlearn R Package.” arXiv Preprint arXiv:1406.7648.

307. Shabot, M. M. 2004. “Ten Commandments for Implementing Clinical
Information Systems.” Proceedings (Baylor University. Medical Center) 17
(3): 265.

308. Shachter, Ross D. 1998. “Bayes-Ball: Rational Pastime (for Determining
Irrelevance and Requisite Information in Belief Networks and Influence
Diagrams).” In Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, 480–87. UAI’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=2074094.2074151.

309. Shanmugasundaram, Jayavel, Kristin Tufte, Chun Zhang, Gang He, David
J. DeWitt, and Jeffrey F. Naughton. 1999. “Relational Databases for
Querying XML Documents: Limitations and Opportunities.” In Proceedings
of the 25th International Conference on Very Large Data Bases, 302–14.
VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=645925.671499.

310. Shenoy, P. P. 2006. “Inference in Hybrid Bayesian Networks Using
Mixtures of Gaussians.” In Proceedings of the Twenty-Second Conference
on Uncertainty in Artificial Intelligence, 428–36.

311. Shiffman, R. N. 1994. “Towards Effective Implementation of a Pediatric
Asthma Guideline: Integration of Decision Support and Clinical Workflow
Support.” In Proceedings of the Annual Symposium on Computer

 277

Application in Medical Care, 797. American Medical Informatics
Association.

312. Shiffman, R. N, B. T Karras, A. Agrawal, R. Chen, L. Marenco, and S.
Nath. 2000. “GEM: A Proposal for a More Comprehensive Guideline
Document Model Using XML.” Journal of the American Medical Informatics
Association 7 (5): 488.

313. Shortliffe, Edward H., Randall Davis, Stanton G. Axline, Bruce G.
Buchanan, C.Cordell Green, and Stanley N. Cohen. 1975. “Computer-
Based Consultations in Clinical Therapeutics: Explanation and Rule
Acquisition Capabilities of the MYCIN System.” Computers and Biomedical
Research 8 (4): 303–20. doi:10.1016/0010-4809(75)90009-9.

314. Shortliffe, E. H. 1987. “Computer Programs to Support Clinical Decision
Making.” JAMA: The Journal of the American Medical Association 258 (1):
61–66.

315. Shortliffe, E. H. 1993. “The Adolescence of AI in Medicine: Will the Field
Come of Age in the’90s?” Artificial Intelligence in Medicine 5 (2): 93–106.

316. Shortliffe, E. H, and B. G Buchanan. 1975. “A Model of Inexact Reasoning
in Medicine.” Mathematical Biosciences 23 (3): 351–79.

317. Shortliffe, E. H, B. G Buchanan, and E. A Feigenbaum. 1979. “Knowledge
Engineering for Medical Decision Making: A Review of Computer-Based
Clinical Decision Aids.” Proceedings of the IEEE 67 (9): 1207–24.

318. Shortliffe EH, Perreault LE, Wiederhold G, and Fagan LM. eds. 1990.
Medical Informatics. Computer Applications in Health Care. Reading, MA:

Addison-Wesley Publishing Company.
319. Sierra, Basilio, and Pedro Larrañaga. 1998. “Predicting Survival in

Malignant Skin Melanoma Using Bayesian Networks Automatically
Induced by Genetic Algorithms. An Empirical Comparison between
Different Approaches.” Artificial Intelligence in Medicine 14 (1–2): 215–
30. doi:10.1016/S0933-3657(98)00024-4.

320. Sim, I., P. Gorman, R. A Greenes, R. B Haynes, B. Kaplan, H. Lehmann,
and P. C Tang. 2001. “Clinical Decision Support Systems for the Practice
of Evidence-Based Medicine.” Journal of the American Medical Informatics
Association 8 (6): 527–34.

321. Sloan, I. H. 2000. “Multiple Integration Is Intractable but Not Hopeless.”
Journal of the Australian Mathematical Society-Series B 42 (1): 3–8.

322. Smith, Wade P., Jason Doctor, Jürgen Meyer, Ira J. Kalet, and Mark H.
Phillips. 2009. “A Decision Aid for Intensity-Modulated Radiation-Therapy
Plan Selection in Prostate Cancer Based on a Prognostic Bayesian
Network and a Markov Model.” Artificial Intelligence in Medicine 46 (2):
119–30. doi:10.1016/j.artmed.2008.12.002.

323. Spiegelhalter, D. J, and R. P Knill-Jones. 1984. “Statistical and
Knowledge-Based Approaches to Clinical Decision-Support Systems, with
an Application in Gastroenterology.” Journal of the Royal Statistical
Society. Series A (General), 35–77.

324. Spirtes, P., C. N Glymour, and R. Scheines. 2000. Causation, Prediction,
and Search. The MIT Press.

325. Steinberg, D., F. Budinsky, E. Merks, and M. Paternostro. 2008. EMF:
Eclipse Modeling Framework. Addison-Wesley Professional.

326. Stonebraker, Michael, and Ariel Weisberg. 2013. “The VoltDB Main
Memory DBMS.” IEEE Data Eng. Bull. 36 (2): 21–27.

327. Su, J., and H. Zhang. 2005. “Representing Conditional Independence
Using Decision Trees.” In PROCEEDINGS OF THE NATIONAL CONFERENCE
ON ARTIFICIAL INTELLIGENCE, 20:874. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999.

328. Sundvall, Erik, Mikael Nyström, Daniel Karlsson, Martin Eneling, Rong
Chen, and Håkan Örman. 2013. “Applying Representational State
Transfer (REST) Architecture to Archetype-Based Electronic Health

 278

Record Systems.” BMC Medical Informatics and Decision Making 13 (1):
57.

329. Tahraoui, Mohammed Amin, Karen Pinel-Sauvagnat, Cyril Laitang,
Mohand Boughanem, Hamamache Kheddouci, and Lei Ning. 2013. “A
Survey on Tree Matching and XML Retrieval.” Computer Science Review 8
(May): 1–23. doi:10.1016/j.cosrev.2013.02.001.

330. Tao, Cui, Guoqian Jiang, Thomas A. Oniki, Robert R. Freimuth, Qian Zhu,
Deepak Sharma, Jyotishman Pathak, Stanley M. Huff, and Christopher G.
Chute. 2013. “A Semantic-Web Oriented Representation of the Clinical
Element Model for Secondary Use of Electronic Health Records Data.”
Journal of the American Medical Informatics Association 20 (3): 554–62.
doi:10.1136/amiajnl-2012-001326.

331. Tarczy-Hornoch, Peter, Laura Amendola, Samuel J. Aronson, Levi
Garraway, Stacy Gray, Robert W. Grundmeier, Lucia A. Hindorff, et al.
2013. “A Survey of Informatics Approaches to Whole-Exome and Whole-
Genome Clinical Reporting in the Electronic Health Record.” Genetics in
Medicine 15 (10): 824–32. doi:10.1038/gim.2013.120.

332. Tatarinov, Igor, Stratis D. Viglas, Kevin Beyer, Jayavel
Shanmugasundaram, Eugene Shekita, and Chun Zhang. 2002. “Storing
and Querying Ordered XML Using a Relational Database System.” In
Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data, 204–15. SIGMOD ’02. New York, NY, USA: ACM.
doi:10.1145/564691.564715.

333. Theodoratos, D., S. Souldatos, T. Dalamagas, P. Placek, and T. Sellis.
2006. “Heuristic Containment Check of Partial Tree-Pattern Queries in the
Presence of Index Graphs.” In Proceedings of the 15th ACM International
Conference on Information and Knowledge Management, 445–54. ACM.

334. Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy.
2009. “Hive: A Warehousing Solution over a Map-Reduce Framework.”
Proc. VLDB Endow. 2 (2): 1626–29. doi:10.14778/1687553.1687609.

335. Tolven Institute. 2015a. “Templates - Tolven.org.” December 12.
http://home.tolven.org/?page_id=149.

336. Tolven Institute. 2015b. “The Tolven Open Source Project.” December
12. http://home.tolven.org/.

337. Tropashko, Vadim, and Donald Burleson. 2007. SQL Design Patterns:
Expert Guide to SQL Programming. Rampant Techpress.

338. Tucker, Allan, Veronica Vinciotti, Xiaohui Liu, and David Garway-Heath.
2005. “A Spatio-Temporal Bayesian Network Classifier for Understanding
Visual Field Deterioration.” Artificial Intelligence in Medicine 34 (2): 163–
77. doi:10.1016/j.artmed.2004.07.004.

339. van der Gaag, L.C., S. Renooij, C.L.M. Witteman, B.M.P. Aleman, and
B.G. Taal. 2002. “Probabilities for a Probabilistic Network: A Case Study
in Oesophageal Cancer.” Artificial Intelligence in Medicine 25 (2): 123–
48. doi:10.1016/S0933-3657(02)00012-X.

340. Van Rossum, Guido. 2007. “Python Programming Language.” In USENIX
Annual Technical Conference. Vol. 41.

341. Velte, Linda, Tiago Pedrosa, Carlos Costa, and José Luís Oliveira. 2012.
“An OpenEHR Repository Based on a Native XML Database.”
http://bibliotecadigital.ipb.pt/handle/10198/8804.

342. Verduijn, Marion, Peter M.J. Rosseel, Niels Peek, Evert de Jonge, and Bas
A.J.M. de Mol. 2007. “Prognostic Bayesian Networks: II: An Application in
the Domain of Cardiac Surgery.” Journal of Biomedical Informatics 40
(6): 619–30. doi:10.1016/j.jbi.2007.07.004.

343. Vogels, Werner. 2009. “Eventually Consistent.” Commun. ACM 52 (1):
40–44. doi:10.1145/1435417.1435432.

 279

344. Wabersich, Dominik, and Joachim Vandekerckhove. 2013. “Extending
JAGS: A Tutorial on Adding Custom Distributions to JAGS (with a
Diffusion Model Example).” Behavior Research Methods 46 (1): 15–28.
doi:10.3758/s13428-013-0369-3.

345. Wang, Haixun, and Xiaofeng Meng. 2005. “On the Sequencing of Tree
Structures for XML Indexing.” In Data Engineering, 2005. ICDE 2005.
Proceedings. 21st International Conference on, 372–83. IEEE.

346. Wang, Haixun, Sanghyun Park, Wei Fan, and Philip S. Yu. 2003. “ViST: A
Dynamic Index Method for Querying XML Data by Tree Structures.” In
Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, 110–21. SIGMOD ’03. New York, NY, USA: ACM.
doi:10.1145/872757.872774.

347. Wang, Xiao-Hui, Bin Zheng, Walter F. Good, Jill L. King, and Yuan-Hsiang
Chang. 1999. “Computer-Assisted Diagnosis of Breast Cancer Using a
Data-Driven Bayesian Belief Network.” International Journal of Medical
Informatics 54 (2): 115–26. doi:10.1016/S1386-5056(98)00174-9.

348. Waters, Evan, Jeff Rafter, Gerald P. Douglas, Mwatha Bwanali, Darius
Jazayeri, and H. S. Fraser. 2010. “Experience Implementing a Point-of-
Care Electronic Medical Record System for Primary Care in Malawi.” Stud
Health Technol Inform 160 (Pt 1): 96–100.

349. Weigel, Felix, Holger Meuss, François Bry, and Klaus U. Schulz. 2003.
Content-Aware DataGuides: Interleaving IR and DB Indexing Techniques

for Efficient Retrieval of Textual XML Data.
350. Weigel, Felix, Klaus U. Schulz, and Holger Meuss. 2005. “Exploiting

Native XML Indexing Techniques for XML Retrieval in Relational Database
Systems.” In Proceedings of the 7th Annual ACM International Workshop
on Web Information and Data Management, 23–30. WIDM ’05. New York,
NY, USA: ACM. doi:10.1145/1097047.1097054.

351. Welch, Brandon M., Salvador Rodriguez-Loya, Karen Eilbeck, and
Kensaku Kawamoto. 2014. “Clinical Decision Support for Whole Genome
Sequence Information Leveraging a Service-Oriented Architecture: A
Prototype.” AMIA Annual Symposium Proceedings 2014 (November):
1188–97.

352. WHO. 2015. “WHO | International Classification of Diseases (ICD)
Information Sheet.” WHO. Accessed August 6.
http://www.who.int/classifications/icd/factsheet/en/.

353. Wollersheim, Dennis, Anny Sari, and Wenny Rahayu. 2009. “Archetype-
Based Electronic Health Records: A Literature Review and Evaluation of
Their Applicability to Health Data Interoperability and Access.” Health
Information Management Journal 38 (2): 7.

354. Wood, Lauren, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike
Champion, Scott Isaacs, Ian Jacobs, Gavin Nicol, Jonathan Robie, and
Robert Sutor. 1998. “Document Object Model (DOM) Level 1
Specification.” W3C Recommendation 1.

355. World Health Organization. 1992. ICD-10: International Statistical
Classification of Diseases and Related Health Problems: 10th Revision.
World Health Organization.

356. Wright, Adam, Dean F. Sittig, Joan S. Ash, Jessica L. Erickson, Trang T.
Hickman, Marilyn Paterno, Eric Gebhardt, et al. 2015. “Lessons Learned
from Implementing Service-Oriented Clinical Decision Support at Four
Sites: A Qualitative Study.” International Journal of Medical Informatics
84 (11): 901–11. doi:10.1016/j.ijmedinf.2015.08.008.

357. Wu, Huayu, Ruiming Tang, Tok Wang Ling, Yong Zeng, and Stéphane
Bressan. 2012. “A Hybrid Approach for General XML Query Processing.”
In Database and Expert Systems Applications, edited by Stephen W.
Liddle, Klaus-Dieter Schewe, A. Min Tjoa, and Xiaofang Zhou, 10–25.

 280

Lecture Notes in Computer Science 7446. Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-32600-4_3.

358. Wu, Xiao-Lin, Chuanyu Sun, Timothy M Beissinger, Guilherme JM Rosa,
Kent A Weigel, Natalia de Leon Gatti, and Daniel Gianola. 2012. “Parallel
Markov Chain Monte Carlo - Bridging the Gap to High-Performance
Bayesian Computation in Animal Breeding and Genetics.” Genetics,
Selection, Evolution : GSE 44 (1): 29. doi:10.1186/1297-9686-44-29.

359. Wu, Xiaoying, S. Souldatos, D. Theodoratos, T. Dalamagas, Y. Vassiliou,
and T. Sellis. Dec. “Processing and Evaluating Partial Tree Pattern Queries
on XML Data.” IEEE Transactions on Knowledge and Data Engineering 24
(12): 2244–59. doi:10.1109/TKDE.2011.137.

360. Wu, X., S. Souldatos, D. Theodoratos, T. Dalamagas, Y. Vassiliou, and T.
Sellis. 2011. “Processing and Evaluating Partial Tree Pattern Queries on
XML Data.” IEEE Transactions on Knowledge and Data Engineering PP
(99): 1. doi:10.1109/TKDE.2011.137.

361. Xiang, Yang, B. Pant, A. Eisen, M.P. Beddoes, and D. Poole. 1993.
“Multiply Sectioned Bayesian Networks for Neuromuscular Diagnosis.”
Artificial Intelligence in Medicine 5 (4): 293–314. doi:10.1016/0933-
3657(93)90019-Y.

362. Xia, Yinglong, and Viktor K. Prasanna. 2008. “Junction Tree
Decomposition for Parallel Exact Inference.” In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, 1–12.
IEEE.

363. Xia, Yinglong, and V.K. Prasanna. 2007. “Node Level Primitives for
Parallel Exact Inference.” In 19th International Symposium on Computer
Architecture and High Performance Computing, 2007. SBAC-PAD 2007,
221–28. doi:10.1109/SBAC-PAD.2007.18.

364. Yoshikawa, Masatoshi, Toshiyuki Amagasa, Takeyuki Shimura, and
Shunsuke Uemura. 2001. “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases.” ACM
Transactions on Internet Technology 1 (1): 110–41.

365. Yuan, C., and M. J Druzdzel. 2003. “An Importance Sampling Algorithm
Based on Evidence Pre-Propagation.” In Proceedings of the 19th Annual
Conference on Uncertainty on Artificial Intelligence, 624–31.

366. Yu, Bo, and Duminda Wijesekera. 2013. “Building Dialysis Workflows into
EMRs.” Procedia Technology, CENTERIS 2013 - Conference on
ENTERprise Information Systems / ProjMAN 2013 - International
Conference on Project MANagement/ HCIST 2013 - International
Conference on Health and Social Care Information Systems and
Technologies, 9: 985–95. doi:10.1016/j.protcy.2013.12.110.

367. Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2010. “Spark: Cluster Computing with Working Sets.” In
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud

Computing, 10–10.
368. Zanstra, P.E, A.L Rector, W Ceusters, and P.F de Vries Robbé. 1998.

“Coding Systems and Classifications in Healthcare: The Link to the
Record.” International Journal of Medical Informatics 48 (1–3): 103–9.
doi:10.1016/S1386-5056(97)00115-9.

369. Zeng, Qiang, Xiaorui Jiang, and Hai Zhuge. 2011. “Adding Logical
Operators to Tree Pattern Queries on Graph-Structured Data.”
arXiv:1109.4288, September. http://arxiv.org/abs/1109.4288.

370. Zhang, C., J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. 2001. “On
Supporting Containment Queries in Relational Database Management
Systems.” In Acm Sigmod Record, 30:425–36. ACM.

