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Lobar cerebral microbleeds are most often sporadic and associ-

ated with Alzheimer’s disease. The aim of our study was to

identify the underlying genetic defect in a family with cognitive

complaints andmultiple lobarmicrobleeds and a positive family

history for early onset Alzheimer’s disease. We performed

exome sequencing followed by Sanger sequencing for validation

purposes on genomic DNA of three siblings with cognitive

complaints, reduced amyloid-beta-42 in CSF and multiple cere-

bral lobar microbleeds. We checked for the occurrence of the

variant in a cohort of 363 patientswith early onset dementia and/

or microbleeds. A novel frameshift variant (c.236_237delAC)

generating a premature stop codon in the CCM2 gene shared by

all three siblings was identified. Pathogenicity of the variant was

supported by the presence of cerebral cavernous malformations

in two of the siblings and by the absence of the variant exome

variant databases. Two siblings were homozygous for APOE-e4;

one heterozygous. The cognitive complaints, reduced amyloid-

beta-42 in CSF and microbleeds suggest preclinical Alzheimer’s

disease, but the stability of the cognitive complaints does not.

We hypothesize that the phenotype in this familymay be due to a

combination of the CCM2 variant and the APOE status.

� 2016 The Authors. American Journal of Medical Genetics Part B: Neuro-

psychiatric Genetics Published by Wiley Periodicals, Inc.

Key words: cavernoma; cerebral cavernous malformations;

cognitive impairment; familial clustering; genetics

INTRODUCTION

Cerebral microbleeds (CMBs), small round hypointense lesions on

hemosiderin sensitive MR sequences, are common in Alzheimer’s

disease patients but also occur in the general population [Cordon-

nier and van der Flier, 2011; Shams et al., 2015]. Based on clinical
2016 The Authors. American Journal of Medical Genetics Part B: N
and epidemiological studies, CMBs with a lobar location presum-

ably represent cerebral amyloid angiopathy (CAA), while CMBs

with a deep location may represent hypertensive vasculopathy

[Cordonnier et al., 2006; Poels et al., 2010; Shams et al., 2015].

CAA ismost often sporadic, with age being themost important risk

factor [Biffi and Greenberg, 2011]. Specific (founder) mutations in

the amyloid-precursor protein (APP) gene, the cystatin 3 (CST3)
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gene, and the intergral membrane protein 2B (ITM2B) gene are

associated with hereditary CAA [Ghiso et al., 1986; Vidal et al.,

1999, 2000]. Mutations in presenilin 1 (PSEN1) and presenilin 2

(PSEN2) genes are associated with familial early onset Alzheimer’s

disease with CAA [Nochlin et al., 1998; Dermaut et al., 2001;

Sanchez-Valle et al., 2007]. The APOE e4 allele is the strongest

known genetic risk factor for Alzheimer’s disease [van der Flier

et al., 2006; Kanekiyo et al., 2014], but is also associated with the

incidence and severity of CAA [Esiri et al., 2015] and with the

prevalence of CMBs in Alzheimer’s disease patients [Benedictus

et al., 2013; Yates et al., 2014].

We present a family with CMBs and cognitive complaints with

no known genetic predisposition for CAA or Alzheimer’s disease,

in whom we performed whole exome sequencing in three affected

siblings. We detected a deletion leading to a frameshift in the

CCM2 gene, a gene associated with familial cerebral cavernous

malformations.
MATERIALS AND METHODS

Clinical Ascertainment
We selected a family of which two family members were known at

our clinic, the Alzheimer center of the VU University Medical

Center, because of cognitive complaints and microbleeds and an

autosomal dominant family history for Alzheimer’s disease.

All patients visiting the Alzheimer center are offered an extensive

standardized dementia assessment includingmedical history, infor-

mant-based history, a physical examination, routine blood (includ-

ing glucose) and cerebrospinal fluid (CSF) laboratory tests,

neuropsychological testing, electroencephalogram (EEG), andmag-

netic resonance imaging (MRI)of the brain including susceptibility-

weighted T2� images [van der Flier et al., 2014]. The clinical

diagnosis Alzheimer’s disease is made by consensus in a multidisci-

plinary teambasedon theNINCDS-ADRDAcriteria forAlzheimer’s

disease [McKhann et al., 1984], and a clinical diagnosis mild

cognitive impairment (MCI) based on the Petersen criteria

[Petersen,2004].Patientsare labeledashaving subjectivecomplaints

when reporting cognitive complaintswhile cognitive and laboratory

investigations are normal and criteria for MCI, dementia or any

other neurological or psychiatric disorder associated with cognitive

complaints are not met. All patients who give consent for research

are included in theAmsterdamDementiaCohort [vanderFlier et al.,

2014]. A subset of this cohort, consisting of 363 patients with early

onset AD and/or multiple microbleeds, was selected for whole

exome sequencing for other research purposes.

All participants of this study had at least two MRI’s performed

on a 3.0 T GE scanner (type HDXT) with SWI sequence. Analysis

of small vessel disease was performed according to STRIVE

[Wardlaw et al., 2013]. The three participating subjects of the

described family gave written informed consent for genetic re-

search specifically prior to inclusion. The research protocol was

approved by the ethical review board of our hospital.

Genetic Analysis
DNA of the described participants and of the 363 selected patients

of the Amsterdam dementia cohort was derived from peripheral
blood. Exomes were captured by the Nimblegen human exome v3

capture kit, and were sequenced with 2� 100 paired-end sequenc-

ing on the Illumina HiSeq 2000 platform, according to the man-

ufacturer’s protocol. Reads were mapped to the human reference

genome sequence (UCSC hg19) using the Burrows-Wheeler Align-

ment Tool (http://bio-bwa.sourceforge.net) [Li andDurbin, 2009].

Duplicate read removal, local sequence realignment, and base

quality recalibration were performed by Picard (http://picard.

sourceforge.net) and Genome analysis Tool Kit (GATK, (https://

www.broadinstitute.org/gatk/) [McKenna et al., 2010]. Variants

were called using the GATKHaplotypeCaller, and filtered using the

variant filtration tool. For each variant, we set the filter to PASS if

the variant complied with (i) GATK quality score�50; (ii) quality

over depth �1.5; (iii) Strand bias �60; (iv) total read depth �5.0.

Variants were annotated and analyzed with Cartagenia (http://

www.cartagenia.com/) filter tree specifically designed to detect

variants causative for a trait with an autosomal dominant inheri-

tance pattern. In the described family, variants were selected if

(i) absent in the following databases: dbSNP (http://www.ncbi.

nlm.nih.gov/projects/SNP, build 138), the 1.000 genome project

(www.1000genomes.org) or the National Heart Lung Blood Insti-

tute Exome Variant Server (EVS) (https://evs.gs.washing ton.edu/

EVS); (ii) prevalent �5% in the 363 patients of the Amsterdam

Dementia Cohort [van der Flier et al., 2014]; (iii) heterozygote in

all three affected individuals; (iv) potential causative based on

the possible effects of the variants on the expression or function of

the protein and in a morbid OMIM gene.

To find out whether a predisposition for CCMs is common in

patients with presumed microbleeds, we searched the exomes

of 363 patients of the Amsterdam Dementia Cohort [van der

Flier et al., 2014], including 68 patients with microbleeds,

for occurrence of exonic and splice site variants in the genes

KRIT1, CCM2, and PDCD10. Nucleotides were numbered

according to Genbank accession number NM_004912.3 (KRIT1),

NM_001029835.2 (CCM2), and NM_007217.3 (PDCD10) with A

of initiator ATG numbered as þ1. Variants in the CCM genes

were analyzed by using the Combined Annotation Dependent

Deletion (CADD) scoring tool (http://cadd.gs.washington.edu/)

v1.2.We used Sanger sequencing to confirm the novel variant we

found with exome sequencing. We submitted the variant in the

CCM2 gene to the Leiden Open Variant Database (http://ccm2.

lovd.nl).

APOE genotyping was performed by Sanger sequencing of

codons 112 and 158 of the APOE gene. For this, a 428 bp fragment

was generated from genomic DNA by PCR, checked for size (Fast

DNA analysis with QIAxcel), and sequenced (BigDye Terminator

v3.1 Cycle Sequencing kit followed by ABI 3130XL Genetic

Analyzer).

RESULTS

Characteristics of the Participants
The pedigree is shown in Figure 1. Individuals III-1, III-2, and III-3

participated in our study. They reported early-onset dementia in

one parent (II-6) and one grandparent (I-1). Three siblings of

the affected parent had symptoms of dementia before the age of

65 years (II-1, II-2, and II-3), another relative (II-4) died of a stroke

http://bio-bwa.sourceforge.net
http://picard.sourceforge.net
http://picard.sourceforge.net
https://www.broadinstitute.org/gatk/
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FIG. 1. Pedigree of the described family. The sex of each

individual is masked and the pedigree scrambled to protect the

privacy of the participants. The diamonds indicate individuals

with cognitive complaints and microbleeds (filled symbols),

dementia (filled upper right quadrant), and stroke (filled lower

right quadrant). CCMþ indicates that the subject is positive for

the c.236_237delAC variant in the CCM2 gene. E3 indicates an

APOE e3 allele, E4 an APOE e4 allele. “n” in a diamond indicates

more than one individual. Consequently, the ID under the

symbols with an “n” refers to multiple individuals as a group.
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of unknown aetiology. Of these reported affected relatives, neither

detailed medical information nor DNA was available.
Case III-1
This patient visited our center at the age of 58 years with memory

complaints for over 5 years. The MMSE score was 27 out of 30.
FIG. 2. Cerebral MR imaging. A: Microbleed (arrow) in individual III-1 visib

(arrow) in individual III-2 on T2-weighted image. C: Left frontal cavernous

high signal on T2 weighted image and hypointense outer rim.
Physical examination, routine blood tests, neuropsychological

testing, and EEG were all normal. Cerebral MRI showed nine lobar

CMBs in the absence of cortical atrophy (global cortical atrophy

[GCA] score 0) and hippocampal atrophy (medial temporal lobe

atrophy [MTA] score 0) (Fig. 2A), a few punctiform white matter

lesions (Fazekas 1) and a large T2�-hypointensity in the pons

consistent with a macroscopic hemorrhage. CSF analysis showed

decreased amyloid-beta-42 and increased tau levels (Ab: 529 ng/L,
reference> 550 ng/L; t-tau: 673 ng/L, reference� 375 ng/L; ptau-

181: 86 ng/L, reference� 52 ng/L). The patient was homozygous

for the APOE e4 allele. Diagnostic DNA-analysis revealed no

mutations in the genes APP (Sanger sequencing and copy number

variant analysis), PSEN1, PSEN2, and MAPT.

Since the clinical and neuropsychological exam were within

the normal range, the cognitive complaints were labeled as subjec-

tive cognitive decline. CMBs were interpreted as suggestive of

underlying CAA and the CSF biomarkers indicative of preclinical

AD.

During the following 7 years, the patient reported only mild

progression of her cognitive dysfunction, and neuropsychological

testing remained normal. Repeat MR imaging showed a few new

CMBs but still no signs suggestive of neurodegeneration such as

cortical atrophy.
Case III-2
This patient visited our center at the age of 54 years with complaints

of long lastingmildmemory loss. Physical examination and routine

blood tests showed no relevant abnormalities. The patient scored

29 out of 30 on theMMSE, and neuropsychological testing revealed

only mild language disturbances. T2�-weighted MR imaging

revealed three lobar CMBs, two larger hematomas (cerebellar

and parietal) with a hyperintense center on FLAIR and T1 consis-

tent with a cavernous malformation (Fig. 2B), and a few puncti-

form vascular white matter lesions (Fazekas 1); cerebral cortical or
le on T2-weighted image. B: Left cerebellar cavernous malformation

malformation (arrow) in individual III-3 with characteristic central
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hippocampal atrophy was absent (GCA 0, MTA 0). The EEG was

normal. CSF analysis showed decreased amyloid-beta-42 but nor-

mal t-tau and borderline p-tau levels (Ab: 418 ng/L, t-tau: 343 ng/L,
ptau-181: 56 ng/L). The patient was homozygous for the APOE e4
allele. No mutations were identified in the genes PSEN1, PSEN2,

and MAPT. The cognitive complaints were labelled as subjective

cognitive decline. The CMBs were interpreted as suggestive for

underlying CAA.

During the following 7 years, the patient reported a slight

worsening of cognitive complaints, which could not be confirmed

by neuropsychological testing (criteria for MCI not fulfilled).

Repeat MRI showedmild increase of white matter hyperintensities

and a few new lobar CMBs.
Case III-3
The youngest sibling presented with progressive memory loss and

executive dysfunction at another hospital at the age of 51 years and

was diagnosed with Alzheimer’s disease. Detailed information on

the test results was not available. No mutations, duplications, or

deletions were found in the genes APP and PSEN1.

The patient visited our clinic for a second opinion 4 years later,

as symptoms had not worsened. At this time, MMSE was 25/30,

and neuropsychological assessment revealed executive dysfunc-

tion and mild impairment of memory and naming. MRI showed

more than 20 supra- and infratentorial lobar CMBs, a few

punctiform vascular white matter lesions (Fazekas 1), and a

cavernous malformation in the left frontal lobe (Fig. 2C). There

was no cortical atrophy (GCA 0) or relevant hippocampal atrophy

(MTA 0 on the left and grade 1 on the right). The patient had an

APOE e3/e4 genotype. A lumbar puncture was refused by the

participant.

The patient did not fulfill the criteria for Alzheimer’s disease

and was diagnosed with MCI. The CMBs were interpreted as

probably due to CAA. Two-year follow up showed no further

clinical deterioration.
Genetic Findings
With exome sequencing, we identified a heterozygous two-base

pair deletion in exon 3, c.236_237delAC, in the CCM2 gene in all

three siblings. This deletion creates a frameshift starting at codon

Tyr79 resulting in a premature stop codon. Based on the location of

the new stop, the transcript is likely to be targeted by nonsense-

mediated mRNA decay, resulting in haploinsufficiency. The vari-

ant has not been reported before in literature or in the Dutch

genetic biobank GoNL (http://www.nlgenome.nl/) and was not

found in 363 patients with early onset Alzheimer’s disease and/or

multiple microbleeds. Based on the predicted effect of variants and

known function of the associated genes, we found no other variants

of interest in the family.

To investigate whether mutations in the CCM2-gene or related

genes are common in patients with CMBs, we analyzed the

cohort of 363 patients with early onset Alzheimers disease

and/or microbleeds for rare variants in the genes KRIT1,

CCM2, and PDCD10. We detected two missense variants of

unknown significance in the KRIT1 gene with a minor allele
frequency of less than 0.5%: One protein modifying variant,

c.1882A>C, p.Asn628His was found in an Alzheimer’s disease

patient without vascular abnormalities on brain imaging. This

variant has a CADD score of 23.1 and is found in the Dutch

genomic biobank GoNL with an allele frequency of 0.1%. A

synonymous variant, c.1752C>T, p.Ile584¼with a CADD score

of 17.5 was found in an Alzheimer’s disease patient with moder-

ately severe vascular white matter lesions but no CMBs or

cavernous malformations. The GoNL biobank reports an

allele frequency of close to 0.5% of this variant.
DISCUSSION

We describe a novel variant in the CCM2 gene identified by whole

exome sequencing in a family with non-progressive cognitive

symptoms in three siblings at relatively young age, with CCMs

in two and multiple lobar CMBs in all three on cerebral MRI.

In addition, decreased amyloid beta-42 levels in CSF were found in

both tested individuals. Mutations in the genes APP, PSEN1, and

PSEN2 were absent, and at least one APOE e4 allele was present in
all three.

The novel frameshift variant generates a premature stop

codon in the CCM2 gene, probably resulting in haploinsuffi-

ciency by nonsense mediated mRNA decay. Loss of function

mutations in the CCM2 gene and in the genes KRIT1 and

PDCD10 are associated with familial cerebral cavernous malfor-

mations (FCCM) [Laberge-le et al., 1999; Sahoo et al., 1999;

Liquori et al., 2003; Bergametti et al., 2005]. Cerebral cavernous

malformations (CCMs) are enlarged, thin walled capillaries in

the brain and spinal cord without fibrous support tissue. In

familial cases, a combination of a germ line mutation (first hit)

and a somatic mutation (second hit) in one of the FCCM genes

are associated with CCMs [Akers et al., 2009; Pagenstecher et al.,

2009]. The KRIT1-CCM2-PDCD10-complex is considered to

interact with the PI3 K/Akt signaling pathway associated with

metabolism, growth, proliferation, survival, transcription, and

protein synthesis mechanisms [Kar et al., 2015]. Most symptom-

atic FCCM patients present between the age of 10 and 40 years

with seizures, focal neurologic deficits, non-specific headaches,

or acute cerebral hemorrhage [Denier et al., 2006]. Up to 50%

of the patients with FCCM remain asymptomatic, although

most asymptomatic mutation carriers do have at least one

CCM on MRI [Denier et al., 2006].

The presence of CCMs in two of the three siblings (individual

III-1 and III-2) supports the diagnosis of FCCM in this family.

The absence of a CCM in the third individual does not contradict

this diagnosis, since FCCM is known to have an incomplete

penetrance. However, decreased CSF amyloid beta-42 has not

been reported in FCCM and cognitive complaints and CMBs

are not common symptoms of this disease [Denier et al., 2006].

The (subjective) cognitive decline may reflect a concomitant

preclinical Alzheimer disease. The abnormal amyloid beta levels in

CSF and the presence of APOE e4 in homozygous or heterozygous

state in all three affected siblings would support this. However, the

stable character of the cognitive complaints over 7 years does not.

Poor cognitive function has also been associated with APOE e4
status in the absence of Alzheimer’s disease [Small et al., 2004] as

http://www.nlgenome.nl/
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well as the presence of lobar CMBs [Poels et al., 2012; Hilal et al.,

2014].

Reduced amyloid beta-42 levels in CSF are strongly correlated

with Alzheimer’s disease, but have been associated with the APOE

e4 genotype regardless of the presence of Alzheimer’s disease

[Liu et al., 2015], and with several other brain diseases, such as

CADASIL, neuroinflammation, and Creutzfeldt-Jakob Disease

[Otto et al., 2000; Formichi et al., 2008; Krut et al., 2013]. No

studies have been published on CSF profiles in FCCM patients

[Morrison and Akers, 2003].

An intriguing question is whether the occurrence of CMBs in

this family is due to FCCM, or whether it should be attributed to a

co-existent disease such as preclinical Alzheimer’s disease or iso-

lated CAA. CMBs as such have not been reported in (F)CCM

[Morrison and Akers, 2003]. The mean prevalence of CBMs in

women aged <70 years is about 5% in the general population

[Cordonnier et al., 2007; Sveinbjornsdottir et al., 2008], therefore,

normal ageing does not seem a plausible cause in these siblings.

Based on the CSF findings, also isolated CAA is unlikely. The

aspects and location of the bleeds do not fit with other causes of

small bleeds such as vasculitis, hypertensive encephalopathy, or

coagulopathy.

Another possibility, however, is that the CMBs are in fact

small CCMs. While larger CCMs typically show signs of stag-

nant blood in the sinusoidal lumen, extravasated blood at

varying stages of degradation and a characteristic hemosiderin

rim on MRI [Al-Shahi et al., 2008], the small Zambinski’s

classification type 4 CCM lesions [Zabramski et al., 1994] are

more difficult to distinguish from CMBs. The presence of

variants in the FCCM genes in other patients with presumed

CMBs would support this hypothesis. We did not find any other

variants predicted to result in a loss of function in a cohort of

patients with multiple CBMs, however, the number of tested

individuals was small.

It is interesting to hypothesize whether ApoE and CCM2

interact. No common pathway has been described. However,

APOE e4 has been reported to increase the susceptibility to

blood-brain-barrier injury [Bell et al., 2012] and, therefore

theoretically, this genotype may result in an increased bleeding

risk of CCMs.

Taken together, the non-progressive cognitive complaints, the

lobar hypointense lesions on cerebral MRI, and the reduced

amyloid beta-42 levels in CSF may be due to the combination

of the CCM2 variant and the APOE e4 genotype, although an early

stage of Alzheimer’s disease cannot be ruled out. Unfortunately, no

other relatives were available for segregation analysis. Further

studies on CSF profiles in FCCM patients and mutations in the

FCCM genes in patients with multiple CBMs could give more

insight into the pathogenic mechanism in this family.
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