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Modeling asymmetric cavity collapse with plasma equations of state

Brett Tully” and Nicholas Hawker
First Light Fusion Ltd., Begbroke Science Park, OX5 1PF, United Kingdom
and Department of Engineering Science, University of Oxford, OX1 3PJ, United Kingdom

Yiannis Ventikos
Department of Mechanical Engineering, University College London, Torrington Place, Cordon, WCIE 7JE, United Kingdom
(Received 19 November 2013; revised manuscript received 29 February 2016; published 12 May 2016)

We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse
processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant
EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal
gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure
at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs
yield different and more relevant estimates of temperature and density, especially for higher incident shock
strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating
the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain
shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS,
indicating cavity collapse as an experimental method for exploring EOS in this range.
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I. INTRODUCTION

The inertial collapse of a gas cavity suspended in a
liquid can result in a significant focusing of energy. Among
many examples, cavity collapse is known to destroy ship
propellers [1] and can be used to sensitize explosives [2].
More relevant to the present work is the observation of
bright flashes of light from collapsing cavities [3—7]. The
most widely researched example of this phenomenon is
single-bubble sonoluminescence (SBSL), where a single gas
cavity is ultrasonically driven to stably oscillate between
~1 to 50 um radius [4]. SBSL is a resonant phenomenon with
a limited parameter space that places an upper bound on the
achievable energy density at minimum volume [8,9]. Recent
work examines a similar but nonperiodic spherical collapse
process which avoids the limitations of SBSL and achieves
significantly higher energy densities [10].

Asymmetric cavity collapse—characterized by the forma-
tion of a main transverse jet [11]—is a hydrodynamically very
different process to SBSL that can achieve a different set of
thermodynamic conditions. Intensification provided through
spherical symmetry is sacrificed, yet the collapse maintains
various significant energy focusing processes. Previous efforts
by the current authors examine the detailed asymmetric
collapse of a polytropic air cavity in water when struck
by a planar shock wave across a range of intensities. The
incident shock was varied from 0.1 to 100 GPa and peak
densities and temperatures in the gas reached conditions in
the order of 1g/cm? and 10 eV [11]. The hydrodynamics of
the simulated collapse processes showed excellent agreement
with available experimental literature; however, the achieved
conditions exceed the validity of the ideal gas equation of
state (EOS). In the current work we replace air with argon
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and compare and contrast the ideal gas EOS with more
sophisticated, realistic, and detailed plasma modeling.

II. METHODOLOGY
A. Numerical method

The hydrodynamics of shock-cavity interaction are a strong
challenge to computational fluid dynamics methodologies
regardless of the EOS employed; indeed, the problem has
been used as a benchmark [12,13]. The method must solve
Euler’s equations of compressible flow and in doing so must
adequately resolve the interface between the liquid and the
gas as well as the various strong emergent shock waves.
Modern Godunov-type schemes provide sufficient accuracy
for the shock waves; however, numerical diffusion over the
gas-liquid contact smears this all-important interface and an
explicit treatment is required. The volume of fluid method [14]
and the level set method [15] are two schemes often applied,
however, front-tracking approaches compare favorably in a
number of aspects (see section 4 of Ref.[16]).

Front-tracking resolves the gas-liquid interface through the
use of a two-grid methodology; a Lagrangian hypersurface is
used to represent the interface and is overlaid on an Eulerian
grid upon which the bulk flow can be solved. The hypersurface
is comprised of a collection of lines (two dimensional, or
2D) or triangles (three dimensional, or 3D) where each vertex
holds the thermodynamic state for the fluid on either side
of the hypersurface. Per time step, the two states at each
vertex are updated by solving Riemann problems in the normal
and tangential directions, while the location of the vertex is
updated via propagation in the normal direction. Over time the
vertices will converge and diverge, and potentially overlap, so
the method must take care to untangle and/or redistribute the
hypersurface [16—18].

Finally, the updated hypersurface defines a set of boundary
conditions for the update of states on the Eulerian grid. Any
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numerical diffusion over the gas-liquid interface is eliminated
and the coupling between adjacent fluid bodies is encapsulated
within the normal propagation stage. If the Riemann problem
can be solved, entirely distinct physics, e.g., different EOS,
can be modelled in each region, a strong advantage of front
tracking. We employ the van Leer MUSCL solver [19,20] and the
Riemann solver is an implementation of the exact solver [21].

B. Equation of state

For the water component, we use a stiffened polytropic
EOS [22] with constants found by fitting the experimental
data for the principal Hugoniot of water and the IAPWS-95
equations of state [11]. For argon, we compare three families
of EOSs: the ideal gas equation, tables generated based on the
quotidian equation of state(QEOS) [23], and a table from the
SESAME database [24].

The QEOS family of equations calculate the thermody-
namic functions from the Helmholtz free energy, with the
electronic contribution determined from the Thomas—Fermi
(TF) model [25] and ionic contributions from the Cowan
model [23]. The TF cold curve is improved through a soft-
sphere function, giving a better estimate of the critical pressure
and critical temperature [26—28]. We use one table generated
by the Lawrence Livermore National Laboratory (LEOS), and
a second from Goethe University in Frankfurt (FEOS). The
FEOS table is generated by using values for the reference state
(Tt = 82.3 K and B = 3(Cy; +2C1p) = 1.83 GPa [29)]),
cohesive energy (E.on, = 7.74 kJ/mol [30]), and soft-sphere
values (m = 0.9 and n = 4.0 [31]).

As documented and described in the notes of the table,
SESAME 5172 incorporates the physics of six different
theoretical models [32]: (i) a Saha model for the ideal gas,
ideal plasma, and part of the ionization equilibrium regime;
(i1) a nonideal, quantum-statistical-mechanical theory for the
remaining ionization equilibrium regime; (iii) a Thomas—
Fermi—Kirzhnits model corrected for thermal ion contributions
in compression [33]; (iv) electron band theory embodied in a
linear muffin-tin orbital model for the cold curve [34]; (v) an
exponential six-fluid perturbation theory for the high-density
fluid [35]; and (vi) an analytic fit to the Lennard—Jones
potential for the neutral fluid region [36].

The gaseous principal Hugoniot for each EOS is presented
in Figure 1, along with experimental results from Christian
et al. [37]. The QEOS-type EOSs show a smooth departure
from ideal gas conditions. However, at lower pressures
SESAME corresponds closely with ideal gas, diverging around
10 MPa, with the density values matching well to reported
experimental values. As the conditions intensify, SESAME
and QEOS converge in their predictions; Carpenter et al.
discuss the transition and differences in greater detail [38]. It
should be noted that, generally, compared to ideal gas, plasma
EOSs predict greater compression and lower temperature for
a given shock strength because ionization is an energy sink.

1. Thermodynamic functions

To solve for the conservation equations, the Riemann
solver requires the following fundamental state variables to
be provided: density p, temperature 7', pressure P, specific
internal energy E, specific entropy S, specific heat at constant
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FIG. 1. Principal Hugoniot for argon (Tp = 285 K, Py = 1 bar).
Experimental data (red dots) from Christian et al. [37] as presented
in Carpenter et al. [38]. The match of SESAME to experimental data
suggests that, in contrast to the QEOS, this EOS has specifically
incorporated principle Hugoniot studies into its model.

volume ¢, = .£|, > 0, Griineisen parameter (I' = %% 0)s

and thermodynamically consistent sound speed squared (c> =
.%h + %Tr.%h, >0 [39]). In addition, the numerical
methodology requires a number of EOS-specific calculations
outlined below. With analytical EOS, these functions can be
derived explicitly (see Ref. [21] among others); for general
EOS they must be solved numerically.

For a wave of given pressure P; traveling into a known
ahead state (pg, Py) we must be able to calculate the density
behind the wave (o). In the case of a shock wave (P; > Py),
the density is given by the Hugoniot relationship: E; = E; —
p—PI where Ej = Eo + % and P = %(Po + Pp). This equation
can be solved using a simple root-finding algorithm, where
the lower bound on the density is given by the ahead state
and the upper bound can be set by assuming that a single
shock wave provides a maximum compression ratio. The
root-finding process requires that the sign of .% | p is constant
through the range of densities. An initial guess for p; can be
calculated by fitting a stiffened polytropic equation of state
to the ahead state and solving its Hugoniot equation such
that:  Ey = P(Pi = P)l(poco)® + 3 po(P1 = Po)(To +2)T
(obtained from Refs. [22,40]). In the case of a rarefaction
wave (P, < Py, Sop = S1), the density can be calculated by
root finding the EOS relationship for entropy as a function of
density and pressure where the lower bound of density is given
as the vacuum density (10728 g/cm?®) and the upper bound is
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the value of the ahead state. In the case of tabulated EOS,
performance optimization can be achieved by precomputing a
table of p(P,S) to allow direct interpolation for density.

The wave curve w defines a locus of all possible states that
can be connected to the ahead state through either a rarefaction
wave (expansion branch) or a shock wave (compression
branch) and plays a crucial role in the solution of a Riemann
problem [22]. Given the pressure jump across the wave,
the wave curve can be formulated in terms of the change
in particle speed and is intimately linked to the mass flux
across the wave (m), such that w = u; — ug = j:%(P, — Py
where the + defines the direction of the wave (Eq. 3.36 in
Ref. [22]). The mass flux is the shock propagation speed in
Lagrangian coordinates. If there is no pressure gradient, the
change in particle speed is zero and the mass flux is given
by the impedance (z = pc) of the ahead state; for a shock
wave, w = [(P| — Po)(ﬁ - %)]1/2, with p; given by the
Hugoniot relationship as described above; and for a rarefaction
wave w = Iy, = [ 1:0 .i)—f|5. Finally, the iterative procedure of
the Riemann solver often tests for a vacuum mid-state by
calculating the maximum possible velocity of the left wave,
Uimax = U] + Wyyae 1, and the minimum possible velocity of the
right wave, U, min = U, — Wyac.r; if Uimax = Urmin, the mid state
is considered to be a vacuum (see Fig. 4(e) of Ref. [22]).
Calculating the wave curve for the vacuum pressure (1076 Pa)
is challenging for tabulated EOSs, as for all but the lowest
entropies the vacuum pressure is unlikely to be contained
in the table; we overcome this by precomputing a table of
I4,(P,S) that can be interpolated directly, while also defining
a minimum pressure bound for given values of entropy to
prevent extrapolation from this table.

2. Table interpolation

Historically, interpolation is used at run-time to evaluate E,
P, .%h, .%lT, .%b, and .%b for any given (p,T) pair,
where the derivatives are calculated from the interpolating
function. These are used as building blocks for evaluating the
remaining fundamental state variables [24,41]. This approach
was developed with a focus on conserving memory usage at
the cost of CPU compute time; modern computing hardware,
however, allows us to develop an alternative scheme where
we precompute the fundamental state variables on a dense
density-temperature grid. This allows arbitrary order in the
finite difference methods for computing the derivatives and
then, by storing the resulting state variables, a simple bilinear
interpolation can be used at runtime without concern for
derivatives being continuous across grid points. Higher-order
interpolation schemes such as BIMOND [42,43] can be intro-
duced at the precompute stage to up-sample the table density,
increasing accuracy without significant impact on runtime.

Furthermore, the numerical method requires three repre-
sentations of state—(p,T), (p, P), and (p, E)—that are used
interchangeably throughout the different algorithms. Thus, the
interpolation library must provide a mapping between each of
the pairs. The most basic form of this inverse interpolation is
to calculate temperature given density and pressure or energy,
while transferring between pressure and energy is achieved by
using the temperature as a pivot, further details can be found in
Ref. [44]. Finally, for certain isentropic processes mentioned
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above, significant performance gains were achieved through
precomputing pressure-entropy grids of p(P,S) and 1;,(P,S).

C. Model setup

We model a single argon cavity, of 5 mm radius, in water
with initial conditions of Py = 101.3 kPa, Ty = 300 K in
two dimensions [see Fig. 2(a)]. The Eulerian mesh is defined
with 250 cells per radius length, satisfying grid-independence
tests [44]. Previous studies have shown sufficient similarity
between two- and three-dimensional simulations, thus justify-
ing the use of two dimensions in this work [11,45]. Important
features of the collapse are formation of the main transverse jet
[Fig. 2(b)], jet strike [Fig. 2(c)], sheet jetting [Fig. 2(d)], and
minimum volume [Fig. 2(e)] [11]. Given the highly nonlinear
nature of the collapse during sheet jetting, we found the most
robust method for comparing between simulations was to take
a temporal average of the peak values of pressure, density,
and temperature in the gas during jet strike. The window for
this temporal average is defined as beginning when the on-axis
distance between the jet and the leeward wall is constant until
the point when the jet merges with the leeward wall and sheet
jetting is initiated [Fig. 2(f)].

III. RESULTS

By comparing the structure of the gas-liquid interface
during collapse for each argon EOS, we conclude that the pro-
cesses prior to jet strike are governed by the characteristics of
the liquid [Fig. 3(a)]. This is further corroborated by the
negligible difference in the physical time of jet strike and
the velocity of the jet at this point (result not shown), and the
equivalent average peak pressures during jet strike which are
invariant with regard to the gas EOS [Fig. 4(a)]. This matches
expectations from previous work comparing gas and vapor
cavities [46]. We find that conditions during jet strike form
an objective measure and are an accurate proxy for the true
peak conditions, which occur shortly before minimum volume.
Beyond jet strike, the highly nonlinear nature of the collapse
means that the shape of the gas-liquid interface diverges
subtly; although not impacting on the bulk hydrodynamics
[Fig. 3(b)], these changes make comparisons between different
EOSs, particularly temperature, less robust. With that caveat
in mind, we find that, for the 1000 GPa incident shock,
peak temperatures are four to eight times higher than the
temperature at jet strike.

In the ideal gas study conducted by Hawker and Ventikos,
a counterintuitive downward trend in the density during jet
strike was discovered [11]. That study modelled air; we find
the same feature when modeling argon by using a polytropic
EOS [triangles in Fig. 4(b)]. We find that QEOS predicts the
opposite, that density increases with shock strength, while
SESAME predicts there to be a maximum in compression.
These differences can be understood by examining the
differences in the principal Hugnoiots. The multiple-shock
compression present within the gas can be thought of in
two steps; a single strong shock followed by quasi-isentropic
compression from this once-shocked state [47]. As shown in
Fig. 1, single shock can only compress to a limited extent. The
temperature on the principal Hugoniot, however, continues
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(b) Time = 2.080E-06 s
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FIG. 2. Numerical schlieren, n; = |V(p)|, at various instances during the collapse with a 10 GPa incident shock. The four inset images in

panel (f) define the extent of the jet-strike event.

to rise. This affects the subsequent isentropic compression,
where final density is correlated to initial density but inversely
correlated to the initial temperature.

This balance of factors leads the principal Hugnoiot behav-
ior of the different EOSs to be mapped to the compression seen

within the cavity. At an incident shock pressure of 1 GPa, the
first shock in the gas is ~20 MPa. For polytropic, the principal
Hugoniot has already approached maximum compression
and the increasing temperature is thus the dominant effect,
reducing the compression with increasing shock strength.

053105-4



MODELING ASYMMETRIC CAVITY COLLAPSE WITH ...

(a) Time = 3.486E-06 s

Polytropic
SESAME

(b) Time = 3.814E-06 s

PHYSICAL REVIEW E 93, 053105 (2016)

SESAME

\
/ Polytropic

J

FIG. 3. A comparison of the gas-liquid interface for different EOS simulations with an incident shock strength 10 GPa.

QEOS shows the opposite behavior. The principal Hugoniot
continuing to increase in compression until much larger
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FIG. 4. Time averaged peak values of (a) pressure, (b) density,
and (c) temperature during jet strike for the four different EOSs.

pressures, meaning the additional compression in the first
shock acts to counter the increased temperature and the final
density increases with shock strength. SESAME conforms
with expectations, demonstrating a peak in compression. These
differences appear to the authors to make shock-driven cavity
collapse experiments a possible source of new data for the
testing and calibration of EOS.

Figure 4(c) shows the temperature during jet strike; the
transition of SESAME between ideal gas and QEOS shown
in the principal Hugoniot is also apparent here. At high
shock strengths the ideal gas equation is clearly inappropriate
while both families of plasma EOS converge to the same
trend, albeit at reduced values. Importantly, the temperature
remains a strictly increasing function of incident shock
strength, approximately linear for ideal gas and a power law
with exponent ~0.7 for both plasma EOS families. Through
the use of PRISMSPECT (Prism Computation Sciences Inc,
www.prism-cs.com) we estimate for the plasma EOS that both
the average charge state and plasma parameter at jet strike
reaches ~1 for an incident shock of 10 GPa, increasing to
~10 for the 1000 GPa shock. We note, however, that various
physical effects are not currently considered; for instance, at
temperatures above 10 eV radiative losses must be included
for the results to be realistic.

IV. CONCLUSIONS

Through the inclusion of a framework for tabulated equa-
tions of state, we have performed a detailed investigation on the
effects of plasma physics modeling of gas during asymmetric
cavity collapse. Conventional wisdom is that spherical collapse
is necessary to achieve extreme conditions within a collapsing
cavity [10], yet, we show conclusively that these conditions can
be achieved with an asymmetric collapse given a sufficiently
strong incident shock wave. By varying the pressure of the
incident shock wave from 0.1 to 1000 GPa for three families
of argon EOSs, we find that the process of jet formation and
the impact pressure are independent of EOS, while density
is increased and temperature reduced by including plasma
modeling. It is an acknowledged limitation of the current
work that it is solving for Euler equations only; the current
authors have shown that effects such as surface tension are not
important for cavity-collapse simulations [11]; however, future
work will introduce radiative transfer mechanisms because
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these are expected to influence results. With this caveat, we
find that temperature remains a strictly increasing function of
incident shock strength.

Thermodynamic properties of the warm-dense-matter
regime are difficult to obtain experimentally [48]. We have
shown that inertial collapse of a gas cavity by strong shock
waves yields significant differences in predicted density be-
tween SESAME and QEOSs in this regime. These differences
indicate that cavity collapse may provide a novel experimental
method for exploring EOS data. Furthermore, the authors
believe the direct relationship between input (incident shock
strength) and output (temperature) is interesting for the

PHYSICAL REVIEW E 93, 053105 (2016)

technological application of shock-driven cavity collapse, for
example, in material processing or chemical applications, as
the required conditions can be achieved in a straightforward
manner.
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