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This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to
estimatemicroscopic features specific to the intra- and extra-neurite compartments innervous tissueunconfounded
by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI
method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution
and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in
the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf
sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times.
To demonstrate the developedmethod, we use high-quality diffusion data acquiredwith a bespoke scanner system
from theHuman Connectome Project. This study establishes the normative values of the newbiomarkers for a large
cohort of healthy young adults, whichmay then support clinical diagnostics in patients.Moreover, we show that the
microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical
animalmodel of Tuberous Sclerosis Complex (TSC), a geneticmulti-organ disorderwhich impacts brainmicrostruc-
ture and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

In biomedical research and clinical practice, diffusion MRI is today's
method of choice for the noninvasive detection of microscopic tissue
structure below the nominal image resolution. This technique provides
measurements that are sensitive to diagnostically relevant features in
the range of fewmicrometres like cell size, shape and density. Diffusion
tensor imaging (DTI), a popularmethodwhich builds on a second-order
approximation of the macroscopic diffusion process (Basser et al.,
1994), is routinely used for the clinical assessment of pathological
changes in thebrainmicrostructure. However, theDTI-based anisotropy
indices are not only a function of microscopic tissue features, but are
confounded by fibre crossings and orientation dispersion, which are
ubiquitous in the brain (Schmahmann and Pandya, 2006). Consequently,
it is difficult to trace the origin of observed signal abnormalities; whether
they are due to intrinsic alterations in the tissue microstructure or are
caused by deviations in the neural circuitry which have modified the
neurite orientation distribution. Any comparisons of DTI anisotropy
metrics between subjects are affected by the brain connectome, which
exhibits both high complexity and interindividual variability.
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The directional tissue architecture, including fibre crossings and
orientation dispersion, can be accurately described by orientation distri-
butions. The spherical convolutionwith themicroscopic diffusion signal
(also known as impulse response function), which denotes the signal
arising from a potentially anisotropic microenvironment of nervous tis-
sue, yields theMR signal observable on the voxel scale (von demHagen
and Henkelman, 2002). Thus, two effects are interwoven in the macro-
scopic diffusion signal, that is, themicroscopic diffusion process and the
neurite orientation distribution. Deconvolution techniques aim to
recover the orientation distribution from diffusion MR measurements.
These methods may be categorised according to the signal dictionary
in which the estimation problem is solved. Examples are spherical
harmonics (Tournier et al., 2004; Anderson, 2005), maximum-entropy
regularisation (Alexander, 2005), mixtures of Bingham distributions
(Kaden et al., 2007), reproducing kernel Hilbert spaces (Kaden et al.,
2008; Kaden and Kruggel, 2011) and Dirichlet process mixtures
(Kaden and Kruggel, 2012), among others. However, these dictionaries
model only subsets of neurite orientation distributions, as the space of
all orientation distributions is far too large to be computationally
manageable, hence introducing approximation errors.

Another limitation of DTI and most spherical deconvolution methods
is that they ignore the presence of multiple tissue components, such as
neurons, their cellular extensions, neuroglia and extracellular space, that
compartmentalise water and may have different signal properties.
Multiple tensor models typically describe two or more microscopic
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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compartments (Niendorf et al., 1996) but neglect axon crossings and
orientation dispersion, or are interpreted as multiple fibre bundles
(Tuch et al., 2002) but ignore compartmentalised water on the
(sub-) cellular scale. Since there is no significant attenuation of the
intra-axonal diffusion signal perpendicular to highly myelinated fibres
(in the absence of microscopic undulation) at gradient strengths of
|G|≤100 mT/m and echo times of tTE≤125 ms, it appears reasonable to
set the transverse diffusivity inside the axons to zero, as done by
Behrens et al. (2003a, 2003b, 2007). Their “ball-and-stick”model, howev-
er, considers only a discrete set of axon orientations, neglecting orienta-
tion dispersion within the fibre bundles. WMTI (Fieremans et al., 2011)
infers variousmicrostructural features in the case of a single axon orienta-
tion, which are calculated from metrics obtained with diffusion kurtosis
imaging. Hereafter we shall ignore biophysical models (see Panagiotaki
et al. (2012) for a review) that aim to recover structural parameters like
the axon diameter because current clinical scanners (with |G|≤100 mT/
m) lack sensitivity to such features (Drobnjak et al., 2016). Moreover,
the assumption of a single axon orientation per voxel is grossly simplistic:
even orientationally coherent white matter regions such as the corpus
callosum exhibit significant directional heterogeneity featuring axon un-
dulation and orientation dispersion (Axer et al., 2001;Mikula et al., 2012).

More recently, Jespersen et al. (2007, 2010) estimated the neurite
density and per-dendrite/axon diffusion coefficients in the presence of
complex orientation distributions using low-order spherical harmonics,
which, however, exclude mixtures of Dirac masses and are impractical
for crossings of three fibre bundles. These post-mortem studies of
baboon and rat brain rest on rich MRI data sets with a multitude of
b-values. The “ball-and-rackets” model (Sotiropoulos et al., 2012), a
special case of parametric spherical deconvolution (Kaden et al.,
2007), represents the directional tissue structure using mixtures of
Bingham distributions. Their approach assumes that the parallel intra-
axonal and isotropic extra-axonal diffusivities are equal within a voxel.
TheNODDI technique (Zhang et al., 2012) attempts to recover the neurite
orientation dispersion anddensity. Thismethod describes the axon orien-
tation distribution with a single Watson distribution and thus does not
account for fibre crossings, which can be found in large parts of the
brain white matter (Schmahmann and Pandya, 2006). The technique
also assumes a single and fixed intrinsic diffusivity for nervous tissue (in
human in-vivo studies 1.7 μm2/ms) over the whole brain and across
MRI protocols, subjects of different age and patients with different
neurological conditions, which is doubtful and a major source of
the systematic overestimation of free-water content in the cerebral
white matter, in contrast to what is known from T2-relaxometry
(MacKay et al., 1994) and neuroanatomy studies (Nieuwenhuys
et al., 2008). Further, NODDI models the extra-neurite water pool
in fast exchange over all neurite orientations, which is questionable
since the microenvironment a diffusing water molecule covers during
the observation time is orders ofmagnitudes smaller than the dimension
of the voxel the measured signal comes from.

For the recovery of microscopic tissue features in the brain, it is
clear that first and foremost we need to factor out the intra-voxel
fibre orientation distribution. To achieve this, we use microscopic
diffusion anisotropy mapping based on the Spherical Mean Technique
(SMT). The key insight of the recently proposed method (Kaden et al.,
2016) is that for any fixed gradient magnitude and timing, hence fixed
b-value, the spherical mean of the diffusion signal over the gradient
directions does not dependon themicrodomain orientation distribution.
In particular, the mean diffusion signal is only a function of the voxel-
averagedmicroscopic diffusion process. This seminal result was formally
proven for general microscopic diffusion models or, equivalently,
impulse response functions. To demonstrate the approach, Kaden et al.
(2016) have chosen, for low b-value measurements, a microscopic
diffusion tensor that is rotationally symmetric, i.e. a second-order
approximation of the microscopic diffusion process.

In this paperwe extend SMT-basedmicroscopic diffusion anisotropy
imaging and introduce a multi-compartment model that takes the
presence of multiple tissue components on the microscopic scale into
account. The objective is to map, using clinically viable data, the neurite
density and compartment-specific microscopic diffusivities uncon-
founded by the effects of fibre crossings and orientation dispersion.
This multi-compartment microscopic model overcomes key limitations
in existing techniques like WMTI (Fieremans et al., 2011) or NODDI
(Zhang et al., 2012) as we make no assumptions about the neurite
orientation distribution (e.g. single orientations, spherical harmonics
or mixtures of Bingham distributions) and estimate the microscopic
diffusion coefficients from the data. Once themicroscopic diffusion signal
has been uncovered, we reconstruct the fibre orientation distribution
using spherical deconvolution, which, unlike traditional methods, utilises
a spatially varying multi-compartment impulse response function, and
calculate the orientation dispersion entropy to quantify directional tissue
heterogeneity.

To demonstrate the developed technique, we use high-quality
diffusion data acquired with a bespoke scanner system from the
Human Connectome Project (Van Essen et al., 2012). The aim is to
establish the normative values of the simple-to-estimate biomarkers for
a large cohort of healthy young adults, which may then support clinical
diagnostics in patients. Multi-compartment SMT can be immediately
used in the clinic, as well as with various retrospective studies, since the
method requires only a widely available off-the-shelf pulse sequence
with two or more b-shells and uniformly distributed gradient directions
runnable within clinically feasible scan times. Second, we showcase the
potential of the new technique for the detection of pathological tissue
alterations in a preclinical animal model of TSC, a genetic multi-organ
disorder which also impacts the structural integrity of brain tissue and
hence may lead to neurological manifestations such as autism, epilepsy
and developmental delay (Crino et al., 2006). This ex-vivo MRI study
uses conditional knockouts (CKO) of Rictor and Tsc2 in Olig2-Cre mice,
which both target the formation of oligodendrocyte precursors and oligo-
dendrocyte differentiation (Carson et al., 2015; Kelm et al., 2016). A
distinguishing feature in comparison to previous DTI-based studies
(Jansen et al., 2003; Makki et al., 2007; Simao et al., 2010; Peters et al.,
2012) is that the microscopic diffusion indices have factored out the
neurite orientation distribution, which is useful for the evaluation of TSC
pathology in tissue with complex directional architecture.

Methods and materials

Spherical Mean Technique

To examine microscopic tissue features unconfounded by the
directional brain structure, we use the Spherical Mean Technique
(SMT) to factor out the effects due to the neurite orientation distribution
(Kaden et al., 2016). Thismethod requires the parametric specification of
amicroscopic diffusionmodel describing the signal coming from a tissue
microenvironment, which may be directionally anisotropic. The observ-
able MR signal on the voxel scale is produced by a large population of
microdomains that potentially have a complex orientation distribution.
We assume that themicroscopic tissue geometry is rotationally symmet-
ric with rotation axis ω∈S2, henceforth called orientation, where S2=
{ω∈ℝ3 : ∥ω∥=1} denotes the two-dimensional unit sphere. Let b≥0
denote the diffusion weighting factor and g∈S2 the normalised gradient
direction, whilst keeping the timing of the pulse sequence fixed. Then
the microscopic diffusion signal

hb g;ωð Þ ¼ hb g;ωh ið Þ ð1Þ

depends only on the spherical distance 〈g,ω〉∈[−1,1] between any two
points g ,ω∈S2. We will use both notations in Eq. (1) interchangeably.
The signal function hb is set to be antipodally symmetric, i.e. hb(g,ω)=
hb(−g,ω).

Once themicroscopic diffusion model has been defined, Kaden et al.
(2016) proved that the sphericalmean of the diffusion signaleb over the
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gradient directions –with the other sequence parameters, in particular
the gradient magnitude and timing, hence the diffusion weighting
factor b, fixed – is invariant with respect to the neurite orientation
distribution. More specifically, the mean diffusion signal takes the form

eb ¼
Z π=2

0
hb cos θð Þð Þ sin θð Þ dθ; ð2Þ

where θ is an auxiliary variable which encodes the angle between the
gradient direction and microdomain orientation. Eq. (2) shows that,
for a given b-value, eb is fully determined by the microscopic diffusion
model. This insight has enabled us to estimate the tissuemicroanatomy
unconfounded by and without knowledge of the directional brain archi-
tecture in a simple, fast and robust way. SMT exploits this invariance
property using a two-step procedure as follows (Kaden et al., 2016).
First, the spherical mean signal is computed by averaging the T2-
normalised diffusion signals acquiredwith uniformly sampled gradient
directions for each b-value separately. Second, the parameters of the
microscopic diffusion model (1) are estimated using a least-squares
technique that fits the spherical mean version (2) of the model to the
measured mean signals for a set of diffusion weighting factors.

Multi-compartment microscopic model

Nextwe shall develop a newmicroscopic diffusionmodel. The present
work divides brain tissue into an intra-neurite domain and extra-neurite
compartment. The former component consists of dendrites and axons,
which may be surrounded by myelin sheath. A characteristic feature
of these cellular extensions is their cylindrical geometry. The latter
compartment includes neurons, glial cells, e.g. oligodendrocytes,
neurolemmocytes and astrocytes, and extracellular space. The objective
is to decomposemicroscopic diffusion anisotropy into signal components
coming from thewater pools inside and outside the neurites, respectively,
based on the fact that these signal contributions are markedly different.
Hence, the diffusion signal for a microscopic environment of brain tissue
with orientation ω∈S2 is modelled as

hb g;ωð Þ ¼ vinth
int
b g;ωð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

intra−neurite

þ 1−vintð Þhextb g;ωð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extra−neurite

; ð3Þ

where hb
int denotes the signal from the intra-neurite water pool, hbext the

signal component due to the extra-neurite compartment and vint∈[0,1]
the intra-neurite volume fraction. Sincewater between themyelin layers,
because of its rapid T2-relaxation (MacKay et al., 1994), does not signifi-
cantly contribute to the measured signal at sufficiently long echo times,
we do not include a myelin compartment, but assume that the intra-
and extra-neurite water pools have a similar T2-relaxation behaviour.

Under the assumption that the intra-neurite water pool is isolated
from its surroundings, for low b-value measurements as commonly
obtained in clinical practice the applied gradients are not strong and/
or long enough to produce detectable attenuation of the signal compo-
nent perpendicular to the neurites since the diameter of the dendrites
and axons is too small. Therefore, we set the transverse microscopic
diffusivity to zero as proposed in the “ball-and-stick” model (Behrens
et al., 2003a, 2003b). The microscopic signal from the intra-neurite
compartment reads

hintb g;ωð Þ ¼ exp −b g;ωh i2λ
� �

; ð4Þ

where 0≤λ≤λfree is the intrinsic diffusion coefficient parallel to the
neurites and the upper bound λfree is given by the free-water diffusivity.
Note that λ is an apparent (or effective) parameter that depends not
only on the diffusion process in the underlying material but also on
the MRI experiment, such as the temporal profile of the gradient
sequence (Grebenkov, 2010).
Furthermore, we take into account that the extra-neurite tissue
compartment potentially features a directionally anisotropic geometry
on the micrometre scale. Thus, it is reasonable to describe this signal
component with a rotationally symmetric microscopic tensor model

hextb g;ωð Þ ¼ exp −b g;ωh i2λ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
longitudinal

exp −b 1− g;ωh i2
� �

λext
⊥

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transverse

: ð5Þ

The first term on the right-hand side describes the microscopic diffusion
process in the surroundings parallel to the neurites, while the second
term quantifies the microscopic diffusivity in the characteristic vicinity
perpendicular to the axons and dendrites. The transverse extra-neurite
diffusion coefficient λ⊥ext is modelled as a function of the intra-neurite vol-
ume fraction vint and intrinsic diffusivity λ. Here we use a basic
approach to describing the microscopic diffusion process around
the neurites, that is, the first-order tortuosity approximation λ⊥

ext=
(1−vint)λ which was derived for a system of randomly placed parallel
cylinders of variable diameter with impermeable boundaries in the
long-time diffusion limit using effective medium theory (Bruggeman,
1935; Sen et al., 1981; Szafer et al., 1995). Unlike NODDI (Zhang et al.,
2012), SMT does not assume that there is a fast mixing of extra-
neurite water across all axon and dendrite orientations. The microenvi-
ronment to which the diffusion process is sensitive (on the scale of the
root-mean-square displacement of the water molecules) includes only
an infinitesimal fraction of the large ensemble of neurites inside the
voxel. In addition, this assumption gives rise to certain abnormalities,
which are discussed in Appendix A.

Mean diffusion-signal model

Following (Kaden et al., 2016), we calculate the spherical mean of the
diffusion signal for a large population of microdomains with potentially
complex orientation distribution using Eq. (2). The mean diffusion signal
takes the form

eb ¼ vinte
int
b|fflfflffl{zfflfflffl}

intra−neurite

þ 1−vintð Þeextb|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
extra−neurite

; ð6Þ

where

�eintb ¼
ffiffiffi
π

p
erf

ffiffiffiffiffiffi
bλ

p� �
2
ffiffiffiffiffiffi
bλ

p ð7Þ

and

�eextb ¼ exp −bλext
⊥

� � ffiffiffi
π

p
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b λ−λext

⊥
� 	q
 �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b λ−λext

⊥
� 	q ð8Þ

are the spherical mean signals from the intra- and extra-neurite water
pools, respectively. b≥0 denotes the diffusion weighting factor and erf
the error function. Then we fit the spherical mean version of the multi-
compartment microscopic diffusion model provided in Eqs. (6) to (8),
which have factored out the effects due to fibre crossings and orientation
dispersion, to the measured mean signals for a set of b-values. Given an
extra-neurite diffusion model λ⊥ext, the parameters to be estimated are
the intra-neurite volume fraction vint∈[0,1] and intrinsic diffusion coef-
ficient λ subject to the constraint 0≤λ≤λfree, where the free-water
diffusivity λfree (Mills, 1973) is circa 1.88 μm2/ms at 17 °C (which is
used for the ex-vivo mouse study) and about 3.05 μm2/ms at 37 °C
(for in-vivo human imaging). Thus, the recovered model parameters
are ensured to lie within a physically meaningful range.
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Human data

To establish the normative values of the novel microscopic diffusion
indices, we use high-quality data kindly provided by the Human
Connectome Project, WU-Minn Consortium (500 Subjects Data Release,
Washington University, June 2014, available online at http://www.
humanconnectome.org). The data sets were acquired on a bespoke
Siemens 3T MRI scanner equipped with a customised gradient insert
featuring a maximum gradient strength of 100 mT/m (Van Essen et al.,
2012). A Stejskal–Tanner sequence measured 90 uniformly distributed
gradient directions for each b-shell of nominally 1000, 2000 and
3000 s/mm2, keeping the gradient timing fixed with pulse duration of
10.6 ms and pulse separation of 43.1 ms. Only the magnitude, hence
the b-value, and the directions of the diffusion encoding gradients
were altered during the experiment. Additionally, 18 images without
diffusion weighting were acquired. The spin-echo EPI scan with echo
time of 89.5 ms and repetition time of 5.52 s was performed using a
multi-band sequence (Setsompop et al., 2012) with slice acceleration
factor of 3. The diffusion data were acquired with in-plane phase
encoding in both right-to-left and left-to-right directions. SENSE1
multiple-coil combination was applied (Roemer et al., 1990). The
diffusion-weighted images with an isotropic voxel resolution of
1.25 mm covered the whole brain.

The data sets analysed in this study came from 100 unrelated adult
subjects (47 male, aged 29.1±3.7 years). The magnitude images were
preprocessed using HCP's Minimal Preprocessing Pipeline, version 3.1
(Glasser et al., 2013). Briefly, the signal intensity was normalised across
the scan, the susceptibility-induced distortions were eliminated using
the two images acquired with reversed phase-encoding polarities, and
the data sets were corrected for eddy-current artefacts and subject
motion (Andersson and Sotiropoulos, 2016). Spatial distortions due to
gradient field nonlinearities were rectified and the diffusion-weighting
gradients were adjusted at each voxel. Finally, the diffusion images
were aligned to the axes of MNI152 space using rigid transformations
without scaling (Jenkinson et al., 2002; Greve and Fischl, 2009). We
analyse the diffusion data in the native volume space,which is consistent-
ly oriented across the cohort and faithfully represents the subject's brain
size and shape. Since the MR signal was combined with SENSE1 from
multiple receive coils, the noise regime of the magnitude signal is well
described by a Rician distribution (Gudbjartsson and Patz, 1995), albeit
data preprocessing may alter its characteristics to a certain extent. To
minimise potential effects of the noise-induced bias, the measurements
were adjusted accordingly (Kaden et al., 2016).

Animal study

To test multi-compartment microscopic diffusion imaging for
the evaluation of tuberous sclerosis neuropathology, we conducted an
ex-vivo study with two knockout mouse models of TSC. The disease,
inherited in an autosomal dominant manner or appearing sporadically
due to spontaneous mutations, results from an inactivating mutation
in either the Tsc1 or Tsc2 gene encoding hamartin and tuberin, respective-
ly. These proteins control the activity of the mammalian target of
rapamycin (mTOR) kinase, which regulates cell size, proliferation and dif-
ferentiation (Tee et al., 2002). As a follow-on study to Carson et al. (2012,
2013),weused conditional knockouts ofRictor, the rapamycin-insensitive
component of mTOR, and Tsc2 in Olig2-Cremice, which have been intro-
duced recently (Carson et al., 2015; Kelm et al., 2016). Both models are
expected to impact myelination in the central nervous system, as Olig2
plays an important role in the formation of oligodendrocyte precursors
and oligodendrocyte differentiation (Lu et al., 2000; Zhou et al., 2000).
Rictor-deficient mice showed moderate adverse effects, whilst Tsc2 CKO
resulted in a phenotype with severe adverse effects, yet the mice from
both models were able to live into adulthood. All animal procedures
were completed with approval of the Vanderbilt University Institutional
Animal Care and Use Committee.
Eight normal, five Rictor and five Tsc2 P60mouse brainswere scanned
on a 15.2 T Bruker Biospec systemwith a 35 mm quadrature volume coil
at bore temperature of 17±0.5 °C (Kelm et al., 2016). The preparation of
the excised brains followed standard procedures. In addition, the mouse
brains were doped with 1 mM Gd-DTPA, lowering the T1-relaxation
time to approximately 400 ms and thus increasing the SNR efficiency of
the MRI scan. Note that D'Arceuil et al. (2007) found little change in
various metrics obtained from diffusion tensor imaging over a wide
range of Gd-DTPA concentrations of up to 10mM. The datawere acquired
using a 3D diffusion-weighted fast spin-echo sequence with repetition
time of 200 ms, echo time of 19.0 ms, echo spacing of 7.1 ms and
echo train length of 4. The scan with 128×96×72 image matrix
and 19.2×14.4×10.8 mm3 field of view covered the whole brain,
resulting in an isotropic voxel resolution of 150 μm. Diffusion weighting
was achieved with a Stejskal–Tanner experiment consisting of two b-
shells of nominally 3000 and 6000 s/mm2 with 30 gradient directions
each,whichwere uniformly distributed (Jones et al., 1999) andmeasured
twicewith the gradient polarity reversed. The timing of the gradientswas
fixed with pulse duration of 5 ms and pulse separation of 12 ms so that
the same diffusion propagator is observed during the experiment. In
addition, 5 images without diffusion weighting were collected. The total
scan time was about 12 h per mouse brain.

The MR images were reconstructed from the k-space data using a
custom preprocessing pipeline, which includes Gibbs ringing suppres-
sion via Hannwindowing, 3D Fourier transform andmagnitude compu-
tation. Further, the diffusion scans were corrected for cross-term effects
using the images obtained with opposite gradient polarities (Neeman
et al., 1991). The microscopic diffusion indices are estimated in native
measurement space, thereby neglecting the nature of Rician noise
because SNR in tissue is about 100 for the zero b-value images. For
comparison of the Rictor- and Tsc2-deficient models with control mice,
we arbitrarily chose a mouse brain from the control group as reference,
to which all other subjects were transformed using the FNIRT tool for
nonlinear registration, as implemented in FSL (2012). After spatial
normalisation of the microscopic diffusion maps, the voxelwise signifi-
cance of any population differences were evaluated between Rictor
and control as well as Tsc2 and normal mice via unpaired two-sample
t-tests. We calculated the threshold-free cluster enhanced (TFCE)
pseudo t-statistics using standard parameters (Smith and Nichols,
2009). Multiple comparison correction across space was carried out by
exhaustive permutation testing (Winkler et al., 2014) subject to the
masked brain, which then yielded family-wise error (FWE) corrected
p-value maps.

After MRI scanning, three Rictor, four Tsc2 and six normal mouse
brains were sectioned for histological analysis. Following a midsagittal
cut, we examined fourwhitematter regions, i.e. the genu (GCC),midbody
(MidCC) and splenium (SCC) of the corpus callosum aswell as the anteri-
or commissure (AC). The tissue sections were stained with 1% toluidine
blue and scanned with an FEI Tecnai T12 transmission electron micro-
scope at various magnifications. Since two sections from the Tsc2model
were corrupted during processing, we added a fourth Tsc2 subject. The
images were segmented into myelin and non-myelin pixels (Otsu,
1979), from which we obtained histological measurements of myelin
fraction fmyel and myelinated axon fraction fax. The myelinated axon
density ρax was quantified by manually counting myelinated axons
within the field of view. We refer the reader to Kelm et al. (2016) for
technical details.

Results

Multi-compartment microscopic diffusion

From a population of 100 unrelated young adults we have chosen a
representative subject to demonstrate multi-compartment microscopic
diffusion imaging. Fig. 1 maps the intra-neurite volume fraction vint
(top) and apparent intrinsic diffusivity λ for various slices in the axial

http://www.humanconnectome.org
http://www.humanconnectome.org


Fig. 2. The left-hand side maps the transverse microscopic diffusivity of the extra-neurite
water pool, while the extra-neurite microscopic mean diffusivity is shown on the right-hand
side. Both indices provide useful contrastmechanisms for cerebrospinal fluid. The number in
the upper right corner denotes the plane in unscaled MNI152 space.
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plane. In comparison to previouswork,we have factored out the neurite
orientation distribution, including fibre crossings and orientation
dispersion, to obtain these microscopic diffusion parameters. The figure
shows that the neurite density index is markedly higher in brain white
matter than in grey matter andmicroenvironments of white matter are
heterogeneous across the cerebralwhitematter, even after the directional
tissue structure has been integrated out. For instance, the intra-neurite
volume fraction is higher in the corpus callosum and internal capsule
compared to other white matter regions, which is presumably due to
the converging pattern of the callosal fibres and corticospinal tract,
respectively, that results in a reduction of the extra-neurite space together
with a higher neurite density. Note that the intra-neurite volume fraction
is measured with respect to the voxel volume excluding the myelin
compartment because at an echo time of 89.5 ms the MR signal from
myelin water is almost fully attenuated due to its short T2-relaxation
time. Further, our data analysis suggests that the intrinsic diffusivity,
which is the microscopic diffusion coefficient parallel to the neurites,
varies substantially over the brain and is on average significantly higher
in white matter tissue than earlier assumed (Zhang et al., 2012). The
estimation of this parameter from the data is a key advantage of the
new technique, as the intrinsic diffusivity strongly influences the quanti-
fication of other structural features such as the neurite density.

Another noteworthy result is that in the ventricular system and
subarachnoid space the intrinsic diffusivity approaches the diffusion
coefficient of free water and the intra-neurite volume fraction, i.e. the
signal component of highly anisotropic microscopic diffusion, tends to
zero. Fig. 2 (left) maps the transverse microscopic diffusivity λ⊥

ext

outside the neurites as a function of the intra-neurite volume fraction
vint and intrinsic diffusivity λ, here λ⊥

ext=(1−vint)λ. The right plot of
this figure shows the microscopic mean diffusivity of the extra-neurite
water pool, which is defined as

λ
ext ¼ 1

3
λext
∥ þ 2λext

⊥
� �

¼ 1−
2
3
vint


 �
λ;

ð9Þ

where λ∥ext denotes the extra-neurite longitudinal microscopic diffusivity
which equals λ. The figure demonstrates that the estimated microscopic
diffusivities of the extra-neurite compartment are close to the self-
Fig. 1. This plot depicts the intra-neurite volume fraction vint (top) and intrinsic diffusivity λ fo
feature of these maps is that the confounding effects due to fibre crossings and orientation dis
diffusion coefficient of freewater in the ventricles and around the cerebral
cortex. It is straightforward to segment regions with high free-water
content from these maps; especially the extra-neurite microscopic

mean diffusivity λ
ext

is a useful biomarker of cerebrospinal fluid, whose
microscopic diffusion process is isotropic. In summary, the intra-neurite
volume fraction and intrinsic diffusivity provide contrast between
different types of nervous tissue without the confounding effects of
fibre crossings and orientation dispersion. Multi-compartment micro-
scopic diffusion imaging is also able to discriminate cerebrospinal fluid,
even though the underlying model does not have a dedicated free-
water component. Alternatively, wemay eliminate partial volume effects
due to cerebrospinal fluid contamination by adding a fluid attenuated
inversion recovery (FLAIR) sequence.
Sparse gradient sampling

To demonstrate the reliability of SMT, we simulate fibre orientation
distributions that closely resemble the tissue geometry of whitematter.
Here a Dirichlet process mixture with bipolar Watson kernel (Kaden
and Kruggel, 2012; Kaden et al., 2016) is used to draw random spherical
density functions, which include a broad range of fibre crossings and
r an example subject, shown for various slices in the axial plane from left to right. The key
persion have been factored out. Abbreviations: left (L), right (R).
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orientation dispersion. In fact, under the topology of weak convergence
the Dirichlet process mixture includes all orientation distributions in its
closure. The spherical convolution of these synthetic distributions with
the multi-compartment impulse response function (3) yields the diffu-
sion signals, which are then disturbed by Rician noise. For our simulation
experiments the ground-truth intra-neurite volume fraction vint and
intrinsic diffusivity λ are uniformly drawn from the intervals [0,1] and
[0,λfree], respectively. 50,000 trials each were run to investigate the esti-
mation error of the microscopic diffusion indices under various scenarios
after adjustment for the Rician noise bias. Fig. 3 shows the absolute error
of the intra-neurite volume fraction and the relative error of the intrinsic
diffusivity as a function of the signal-to-noise ratio (SNR, left column),
using the human acquisition protocol, and of the total number of diffusion
gradients evenly distributed over three b-shells, here 1000, 2000 and
3000 s/mm2. The fixed parameter is indicated in a corner of the plots.
The box-and-whisker diagrams demonstrate that the variance of the
estimator decreases as the signal-to-noise ratio and/or the number of
diffusion gradients increase. This average-case study over density
functions drawn from a Dirichlet process mixture suggests that SMT is a
robust estimator of vint and λ. The simulations also show that adverse
effects due to the Rician noise regime are removed to a large extent.

The HCP data sets were acquired on a bespoke scanner system using
a sophisticated imaging protocol with lengthy scan time, which leads to
unique data sets with unprecedented quality but extends only partially
to clinical practice that generally needs to cope with modest hardware
and limited time for MRI examination. These high-quality data total 270
diffusion-encoding gradients evenly distributed over three b-shells.
Since the imaging gradients and field nonlinearities give rise to small
spatial variations in the diffusion weighting factor, we will use the
nominal b-values, in the present study 1000, 2000 and 3000 s/mm2,
to refer to them. The following experiment subsamples the diffusion
Fig. 3. Estimation accuracy of the intra-neurite volume fraction (top) and intrinsic diffusivity. I
signal-to-noise ratios. The right column depicts box-and-whisker plots (with 1.5 times the inter
shells. See text for more details about the simulation study.
gradients, noting that those gradients were arranged in a way so that
a subset of the first n directions, together with their antipodal points,
are approximately evenly distributed on the sphere (Caruyer et al.,
2013). Fig. 4 plots the intra-neurite volume fraction vint and intrinsic
diffusivity λ for subsets of 180, 90 and 45 diffusion gradients over the
three b-shells. This figure also maps the difference v̂int � vint and

ratio λ̂=λ with respect to vint and λ, which were estimated from the
full data set, respectively. Fig. 4 demonstrates that SMT-based
multi-compartment microscopic diffusion imaging produces reliable
results with much less diffusion-sensitising gradients within clinically
feasible scan times, but at the expense of a noisier appearance of the
microscopic diffusion indices. Note, however, that these difference/ratio
maps overestimate the estimation error since the microscopic diffusion
parameters fitted from all 270 diffusion gradients are also subject to
errors.

Next we sampled random subsets of diffusion gradients from the
full data set (without replacement) to study the estimation precision
of the new imaging biomarkers quantitatively. SMT requires two or
more b-shells for the recovery of the intra-neurite volume fraction
and intrinsic diffusivity because otherwise the estimation problem
is underdetermined. In detail, for the representative subject we
investigated four different b-shell designs with {1000, 2000}, {1000,
3000}, {2000, 3000} and {1000, 2000, 3000} s/mm2 over which various
numbers of diffusion gradientswere evenly distributed. Fig. 5 shows the
results of this random subsampling analysis, which was repeated 100-
times for each gradient design configuration. The top row of this figure
plots the absolute estimation error of the intra-neurite volume fraction,
while in the bottom row the relative error of the intrinsic diffusivity is
shown, both with respect to the full data set. The estimation error de-
creases with an increasing number of diffusion gradients. Moreover, a
n the left column the estimation errors are shown for the acquisition protocol and various
quartile range) for different numbers of diffusion gradients evenly distributed over three b-



Fig. 4. Sparse gradient sampling for (from top to bottom) 66.7%, 33.3% and 16.7% subsets of diffusion gradients evenly distributed over three b-shells, here 1000, 2000 and3000 s/mm2. The

first two columns depict the intra-neurite volume fraction vint and difference v̂int � vint , while in the last two columns the intrinsic diffusivity λ and ratio λ̂=λ are shown. The reference
neurite density index vint and intrinsic water diffusivity λ are both estimated from the full data set (cf. Fig. 1).
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two-shell design with {1000, 3000} s/mm2 is statistically more efficient
than two-shell designs with {1000, 2000}, {2000, 3000} s/mm2 or a
three-shell design with {1000, 2000, 3000} s/mm2, which suggests
that the b-values should be separated from each other for better perfor-
mance. In conclusion,we have demonstrated the clinical applicability of
the developed imaging technique, which is able to recover microscopic
Fig. 5. Random subsampling analysis for determining the estimation precision of the intra-n
diffusion gradients for different b-shell designs. The box-and-whisker plots (with 1.5-times th
respect to the estimates obtained from the full data set.
diffusion-based features without the confounding effects due to the
neurite orientation distribution.

Normative database

Next we establish the normative values of the new microscopic
diffusion indices over a population of 100 healthy young adults coming
eurite volume fraction (top) and intrinsic diffusivity as a function of the total number of
e interquartile range) quantify the absolute and relative errors, which are calculated with



Fig. 7. The left-hand side plots the extra-neurite transversemicroscopic diffusivity, while the
microscopicmean diffusivity of the extra-neuritewater pool is shownon the right-hand side.
Both parametermaps are voxel-wise averages over a cohort of 100 healthy young adults. The
number in the upper right corner denotes the plane in MNI152 space.
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from the HCP data set. For this purpose we spatially normalise the
parameter maps, which were obtained in native measurement space,
across the subjects using HCP's Minimal Preprocessing Pipeline, version
3.1 (Glasser et al., 2013). Briefly, the estimated maps were transformed
into MNI152 space using the FNIRT tool for non-linear registration so
that the brain size and shape are the same for all participants. Fig. 6 de-
picts the voxel-wise population averages of the intra-neurite volume
fraction vint (top) and intrinsic diffusivity λ, which are shown for various
axial slices. Note that the number in the upper right corner denotes here
the plane in standard MNI152 space. All observations previously made
on the representative subject extend to the cohort of 100 unrelated
adults, which demonstrates the consistency and reproducibility of the
developed method. For instance, the neurite density index is consider-
ably higher in brain white matter than in grey matter and the intra-
neurite volume fraction is increased in the corpus callosum and internal
capsule compared to other white matter regions. Fig. 7 maps the trans-
verse microscopic diffusivity (left) and microscopic mean diffusivity of
the extra-neuritewater pool averaged across the subjects in stereotactic
coordinate space. We observe that in the ventricular system and sub-
arachnoid space the extra-neurite microscopic mean diffusivity ap-
proaches the self-diffusion coefficient of free water.

For a region-based population analysis the brain white matter was
automatically segmented using HCP's Minimal Preprocessing Pipeline,
where the cortical parcellation obtained by FreeSurfer (2014) was ex-
panded to whitematter. A distance constraint halted the label propaga-
tion after 5 mm, thus producing an anatomical parcellation of the gyral
white matter (Salat et al., 2009). Subsequently we computed the mean
of the parameter under consideration over a region of interest in native
measurement space for each subject. Fig. 8 summarises the empirical
distribution of the intra-neurite volume fraction vint and intrinsic diffu-
sivity λ in various white matter regions for a cohort of 100 healthy
young adults using box-and-whisker plots (with 1.5-times the inter-
quartile range). The figure shows that the neurite density index,
which is obtained with respect to the voxel volume excluding themye-
lin compartment since the echo time of 89.5 ms is significantly longer
than the T2-relaxation time of myelin water, is substantially higher in
the corpus callosum, which is most likely due to the dense packing of
the converging fibres. The plot further illustrates the microscopic
diffusion-based metrics in entorhinal, parahippocampal and precuneus
Fig. 6. This plot displays the populationmean of the intra-neurite volume fraction vint (top) and i
from left to right. These multi-compartment microscopic diffusion maps establish the normati
whitematter, whichwere recently proposed to be important for under-
standing entorhinal cortex pathophysiology and its propagation over
the brain in early preclinical stages of Alzheimer's disease (Khan et al.,
2014). A key feature of the developed biomarkers is that they do not de-
pend on the directional tissue architecture. Moreover, it is evident that
the intrinsic diffusivity is not invariant in whitematter and significantly
higher than previously suggested (Zhang et al., 2012).

Neurite orientation distribution

Once the microscopic diffusion process has been recovered voxel by
voxel, we are able to estimate the fibre orientation distribution from the
diffusion measurements using spherical deconvolution (Tournier et al.,
2004; Anderson, 2005). Knowledge of the microscopic diffusivities is
crucial for the specification of the impulse response function and
hence the quantitative estimation of neurite orientation dispersion.
The density function may be found in a reproducing kernel Hilbert
space (Kaden et al., 2008; Kaden and Kruggel, 2011), which does not
truncate the spherical harmonic expansion and ensures its characteristic
properties, namely antipodal symmetry, non-negativity and
ntrinsic diffusivityλ over 100 unrelated subjects, shown for various slices in the axial plane
ve values of the novel biomarkers for a cohort of healthy young adults.



Fig. 8. Box-and-whisker plots (with 1.5-times the interquartile range) of the intra-neurite volume fraction vint (left) and intrinsic diffusivity λ in various white matter regions for a
population of 100 unrelated subjects. Abbreviations: genu (GCC), midbody (MidCC) and splenium (SCC) of the corpus callosum, entorhinal (Ent), parahippocampal (PHipC),
precuneus (PCun), cingulate (Cing), insula (Ins) and cerebellum (Cbl) white matter, brain stem (BSt).
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normalisation with one. In previous work a microscopic diffusion tensor
was used as impulse response function, which is here replaced by the
multi-compartment model formulated in Eqs. (3) to (5). Fig. 9 demon-
strates the recovery of the neurite orientation distribution from all b-
shell data for a representative subject. The density function p is visualised
by the quasi-spherical surface S2∋ω↦p(ω)ω∈ℝ3. The figure shows the
crossing of the callosalfibres and corona radiata in the centrumsemiovale
of the left hemisphere. Further, the orientation dispersion in the corpus
callosum seems to be higher than previous studies have suggested, but
is in agreement with histological findings (Axer et al., 2001; Mikula
et al., 2012). We may also use alternative deconvolution techniques
Fig. 9. The plot depicts the neurite orientation distribution estimated by a reproducing
kernel Hilbert space (RKHS) technique (Kaden et al., 2008; Kaden and Kruggel, 2011).
The fibre orientation field reveals the radiation of the corpus callosum (CC), the corona
radiata (CR) and their crossing, shown in the coronal plane. The underlying map
displays the standard fractional anisotropy. Abbreviations: cingulum (CG), superior
longitudinal fasciculus (SLF).
based on, for example, mixtures of Bingham distributions (Kaden et al.,
2007; Kaden and Kruggel, 2012).

Moreover, we may calculate summary statistics of the neurite
orientation distributions. A useful example is the relative entropy
H(p) of the density function p : S2→ [0 , ∞ ), which is defined as
Kullback–Leibler divergence

H pð Þ ¼ DKL p; qð Þ
¼
Z

S2
p ωð Þ ln p ωð Þ

q ωð Þ

 �

dω ð10Þ

with respect to a reference measure, here the uniform distribution
q(ω)=1/(4π),ω∈S2 on the sphere. Fig. 10 showsmaps of the orientation
dispersion entropy for various slices in the axial plane, which were esti-
mated in native measurement space. In contrast to previous work, this
index takes the full axon orientation distribution into account. The
orientation dispersion entropy is close to zero when the estimated
microdomain orientation distribution approaches the spherical uniform
distribution, such as in the ventricular system, subarachnoid space and
parts of the grey matter. In the corpus callosum, internal capsule and
other white matter regions mainly formed by a single fibre bundle
with a coherent orientational structure, the relative entropy of the
neurite orientation distribution is high.Whereas the orientation disper-
sion entropy describes the directional tissue architecture, the fractional
anisotropy of the classical tensor model encodes both the microscopic
diffusion process and the neurite orientation distribution. We obtain
similar results for the other subjects studied in this work. To conclude,
SMT does not only allow to recover the microscopic diffusion process
but also facilitates the quantitative estimation of neurite crossings and
orientation dispersion, for the first time without any assumptions on
unknown diffusivities.

Tuberous Sclerosis Complex

The following ex-vivo study of age-matched mice demonstrates that
features of themicroscopic diffusion process provide valuable biomarkers
sensitive to TSC-induced abnormalities in thebrainmicrostructure. Fig. 11
plots the voxelwise difference of the population means we observe
between Rictor CKO and controls (top) as well as FWE-corrected p-
value maps quantifying the significance of voxelwise group differences
between Tsc2 CKO and normal mice for the intra-neurite volume fraction
vint (left) and intrinsic diffusivity λ. The underlying maps in the bottom



Fig. 10. These scalarmaps depict a summary statistics of the neurite orientation distribution in nativemeasurement space, shown for various slices in the axial plane from left to right. The
orientation dispersion entropy is defined as Kullback–Leibler divergence (or relative entropy) of the fibre orientation distribution with respect to the uniform spherical distribution as
reference measure.
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diagrams display, in the coronal plane, the population average of the
microscopic diffusion indices over normal controls. Moreover, we study
the four white matter regions examined in histology, i.e. the genu
(GCC), midbody (MidCC) and splenium (SCC) of the corpus callosum
as well as the anterior commissure (AC) in the midsagittal plane,
which were delineated in the population average of the control
mice. Fig. 12 shows a region-based group analysis for Rictor and Tsc2
CKO with respect to normal controls using unpaired two-sample t-tests.
For Rictor-deficient mice, which result in a phenotype with moderate
adverse effects, we observe only minor deviations in the SMT estimates
(which are not statistically significant in the voxel-level analysis), where-
as Tsc2-deficient mice show a significant decrease in the neurite density
index over wide areas of the brain white matter, presumably leading to
the severe adverse effects seen in this TSC model. The abnormal intrinsic
diffusivities suggest an altered intra- and/or extracellular milieu due to
ongoing neuropathological processes. Further, in contrast to the in-vivo
human data sets, we observe, at a b-value of 6000 s/mm2, a relatively
high diffusion signal for gradient directions parallel to the main fibre
orientation in the corpus callosum and other white matter regions,
suggesting the presence of a signal component of very slow diffusion
(Stanisz et al., 1997; Alexander et al., 2010), which, however, is not
explicitly modelled here.

Finally, we report quantitative histology results from a subsample of
the experimental animals. An initial examination shows that the overall
architecture of the mouse brains remains intact, but with diffuse
Fig. 11. The plot shows the voxelwise difference of the population means between Rictor-defic
icance of group differences between Tsc2-deficient and normal mice for the intra-neurite volu
grams display the control group averages of the respective biomarkers.
hypomyelination. In addition, decreased oligodendrocyte number was
appreciated in the Tsc2 CKO. As seen with other mouse models of TSC,
we could not observe cerebral tubers, i.e. benign focal malformations at
the grey-white matter junction disrupting the normal lamination of the
cortex and a hallmark of the disease, nor a gross inflammatory response
(Carson et al., 2015; Kelm et al., 2016). Fig. 13 shows (from left to right)
the group mean and standard error of the histological myelin fraction
fmyel, myelinated axon fraction with the myelin fraction excluded fax/
(1− fmyel), where fax denotes the histological axon fraction, andmyelinat-
ed axon density ρax, i.e. the number of myelinated axons per unit area, for
four white matter regions in normal controls, Rictor- and Tsc2-deficient
mice. Significant group differences of the respective histologicalmeasures
compared to controls, based on a Wilcoxon rank-sum test, are indicated.
This figure demonstrates a reduction of themyelin fraction andmyelinat-
ed axon density, thus hypomyelination, in the Rictor and especially Tsc2
CKO. The decrease in myelinated axon fraction (with the myelin fraction
excluded) is reflected by a reduction of the MRI-based intra-neurite vol-
ume fraction, which has excluded the myelin compartment because of
its short T2-relaxation time, but generally includes unmyelinated axons.
Note that observed abnormalities in the MRI measure may be not only
due to alterations in the total axon density, but also secondary effects of
reducedmyelination,whichmight lead to substantial water exchange be-
tween the intra- and extra-neurite compartments during the diffusion
time.
ient and control mice (top) as well as FWE-corrected p-value maps quantifying the signif-
me fraction vint (right) and intrinsic diffusivity λ. The underlying maps in the bottom dia-



Fig. 12. This region-based group analysis depicts the population mean and standard deviation of the intra-neurite volume fraction vint (right) and intrinsic diffusivity λ for four white
matter regions in the midsagittal plane. Significant group differences of Rictor- and Tsc2-deficient mice compared to normal controls are indicated with (*) p≤0.05, (**) p≤0.01
and (***) p≤0.001. Abbreviations: genu (GCC), midbody (MidCC), splenium (SCC) of the corpus callosum, anterior commissure (AC).
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Discussion

This paper has introducedmulti-compartmentmicroscopic diffusion
anisotropy imaging based on the recently proposed Spherical Mean
Technique (SMT, Kaden et al., 2016). The rationale of this technique is
that the macroscopic signal we measure on the voxel scale conflates
two physical effects, which are microscopic diffusion anisotropy and
the microdomain orientation distribution. Both features are crucial to
data analysis since, if the microscopic environments were uniformly
oriented and/or not directionally anisotropic, we would not be able to
observe macroscopic diffusion anisotropy. Because of that, a primary
aim of modern diffusion MRI in neuroscience research and clinical
neurology is to disentangle these two effects. SMT-based microscopic
diffusion anisotropy mapping has enabled us to do this, using off-the-
shelf sequences with two (or more) b-shells achievable on standard
clinical scanners. Once the two key contributors of the diffusion signal
have been separated from each other, we are able to recover microstruc-
tural parameters in the presence of directional heterogeneity. Examples
are the neurite density index and intrinsic diffusivity in nervous tissue,
as shown in Figs. 1 and 6. At the same time, we can quantify the
microdomain orientation distribution, including fibre crossings and
orientation dispersion that are ubiquitous in the brain, and calculate
summary statistics such as the orientation dispersion entropy (compare
Figs. 9 and 10).
Fig. 13. Statistical analysis of quantitative histology measures, showing the groupmean and sta
excluded fax/(1− fmyel) and myelinated axon density ρax (from left to right) for control, Rictor
controls. Significance codes: (*) p≤0.05, (**) p≤0.01, (***) p≤0.001.
Model assumptions

To establish clinical practicability, we need to limit the complexity of
the diffusion model and thus the amount of experimental data required
to fit its parameters robustly, which inevitably means that we need to
make simplifying assumptions. It may then come to a surprise that a
distinguishing feature of SMT (Kaden et al., 2016) is that it makes no
assumptions about the a priori unknown orientation distributions and
hence recovers the microscopic features in an unbiased way. The
technique is solely based on the insight that for any fixed gradient
magnitude and timing, thus fixed b-value, the spherical mean of the
diffusion signal over the gradient directions does not depend on the
neurite orientation distribution, but is only a function of themicroscopic
diffusion process. In this paper we have proposed a new multi-
compartment model decomposing the microscopic signal into intra-
and extra-neurite water pools, which are described by two rotationally
symmetric microscopic diffusion tensors. The developed model does
not include a myelin compartment, as the T2-relaxation time of water
between the myelin layers is much shorter than the echo time of
standard clinical scans. Therefore, the obtained volume fractions should
be interpreted accordingly.

We impose three constraints on the double-microscopic-tensor
model since otherwise the estimation problem is underdetermined for
two-shell diffusion data, which can be easily seen after factoring out
the microdomain orientation distribution using SMT. Compare also
ndard error of themyelin fraction fmyel, myelinated axon fraction with the myelin fraction
and Tsc2 CKO mice as well as the significance of group differences with respect to normal
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Jelescu et al. (2016) for an exhaustive analysis of a related model. First,
we assume that the effective transverse diffusivity inside the neurites is
zero (Behrens et al., 2003a, 2003b). This is a sensible choice for myelin-
ated axons because the myelin sheath isolates the intra-neurite water
pool from the surroundings to a large extent and the low b-value
measurements typically performed in clinical practice do not give rise
to any significant attenuation due to the small diameter of the axons.
However, for unmyelinated axons and dendrites this approximation
may hold only partially because of the permeability of membranes
and possible neurite undulation on the microscopic scale (Nilsson
et al., 2012). Second, the proposed method does not differentiate
between the longitudinal microscopic diffusivities inside and outside
the axons and dendrites (which might be different), but estimates a
voxel average over the intra- and extra-neurite compartments. A key
feature of the present work is that the intrinsic water diffusivity,
which describes the hindered diffusion process across neurons and
glia as well as cell organelles and cytoskeleton, is obtained from the
data. Our results in Figs. 1, 6, 8 and 11 demonstrate that this parameter
varies markedly in the brain, reflecting the fine-structural variability of
the underlying cellular milieu.

In contrast to previous work, we do not approximate the extra-
neurite signal component with an isotropic diffusion model (Behrens
et al., 2007; Jespersen et al., 2007; Sotiropoulos et al., 2012), but allow
for microscopic anisotropy in the case of high neurite densities. As a
third constraint, the transverse microscopic diffusion in the extra-
neurite compartment is represented as a function of the intra-neurite vol-
ume fraction and intrinsic diffusivity using a first-order approximation of
the tortuosity effect (Bruggeman, 1935; Sen et al., 1981; Szafer et al.,
1995). This model is based on effective medium treatment of a system
of randomly placed parallel cylinders of variable diameterwith imperme-
able boundaries in the long-time diffusion limit, whichmay only partially
reflect the underlying microgeometry because of microscopic neurite
undulation and the permeability of membranes in unmyelinated axon
and dendrites. Alternatively, we may use a more advanced extra-neurite
model (Novikov and Fieremans, 2012; Novikov et al., 2014) or estimate
the transverse microscopic diffusivity outside the neurites from the
data, which, however, requires a more sophisticated experiment design.
Especially in highly densely packed white matter regions like the corpus
callosum, where the microscopic diffusivity perpendicular to the axons
is very low, diffusion measurements with higher b-values may be able
to resolve the transverse microscopic diffusion process more accurately.
Although the general approach of SMT naturally extends to more
complex microscopic diffusion models as formally proven by Kaden
et al. (2016), the presented multi-compartment model provides simple-
to-estimate markers of microstructural tissue features achievable on
standard scanners, acknowledging the tight time constraints in clinical
settings.

Comparison with WMTI and NODDI

In the following we compare multi-compartment microscopic
diffusion imaging with two related techniques. WMTI (Fieremans
et al., 2011) attempts to infer microstructural parameters from metrics
obtained with diffusion kurtosis imaging. This method provides
independent estimates of the intra-axonal volume fraction vint, the
intra-axonal longitudinal diffusivity λ∥

int, the extra-axonal longitudinal
diffusivity λ∥ext and the extra-axonal transverse diffusivity λ⊥ext, thereby
setting the intra-axonal transverse diffusivity λ⊥int to zero and assuming
that the tangential distribution of the intra-voxel fibre population at
millimetre resolution is a Dirac mass, which means that all axons form
straight lines and run parallel to each other. The latter is overly simplis-
tic as fibre crossings and orientation dispersion are ubiquitous in the
human brain. Even in the corpus callosum the directional architecture
is far from homogeneous (Axer et al., 2001; Mikula et al., 2012). In con-
trast, SMT does not make any assumptions about the fibre orientation
distribution and hence is universally applicable. The proposed
technique estimates a voxel average of λ∥
int and λ∥

ext, which we call in-
trinsic diffusivity λ, and the extra-neurite transverse diffusivity is in-
ferred from λ and the intra-neurite volume fraction vint, as
demonstrated in Figs. 2 and 7. Furthermore, even if the diffusion
signal from a singlemicrodomain ismodelled by amicroscopic diffusion
tensor (thus is mono-exponential in all directions), the diffusion signal
observed at the voxel level is in general not mono-exponential for
complex orientation distributions. Fieremans et al. (2011) made no
attempt to relate higher-order effects seen in diffusion kurtosis imaging
to directional tissue heterogeneity.

The NODDI technique (Zhang et al., 2012) models the neurite
orientation distribution with a single Watson density and hence ig-
nores fibre crossings which are a distinctive feature of human con-
nectional neuroanatomy. Specifically, Kaden et al. (2007) showed
in a diffusion MRI study that the majority of white matter voxels fea-
tures multiple fibre bundles whose accurate representation requires
two or more Bingham distributions. In comparison, SMT is free of
orientation distribution models. NODDI assumes a single and fixed in-
trinsic diffusivity λ (in human in-vivo studies 1.7 μm2/ms), whereas the
developed method estimates the microscopic diffusion coefficients
from the data. Figs. 1, 6, 8 and 11 demonstrate that λ varies significantly
over the brain white matter with an average value that is considerably
higher than earlier assumed (Zhang et al., 2012). We also expect to
see differences in λ across age and neurological conditions, making the
intrinsic diffusivity a valuable biomarker (compare Figs. 11 and 12).
Moreover, the underestimation of λ in NODDI gives rise to a systematic
overestimation of free-water content in the cerebral white matter,
which stands in contrast to T2-relaxometry (MacKay et al., 1994) and
well-known neuroanatomy (Nieuwenhuys et al., 2008), and may ad-
versely affect the recovery of other parameters such as their neurite den-
sity index. Lastly, the NODDI method assumes that the extra-neurite
water pool is in fast exchange across all neurite orientations, which is
doubtful and leads to contradictory results as detailed in Appendix A.
Multi-compartment microscopic diffusion imaging overcomes these
model inconsistencies.
Tuberous Sclerosis Complex

Pathological manifestations of tuberous sclerosis are manifold,
but the impairment of the structural integrity of brain tissue con-
tributes substantially to the morbidity seen in patients. Recent
studies with mouse models of TSC (Meikle et al., 2008; Carson
et al., 2012, 2013) suggested that global diffuse changes in white
matter might give rise to universal cortical dysfunction together
with various neuropsychiatric conditions, in addition to the multifocal
tuber pathology. Indeed,Marcotte et al. (2012) demonstratedwidespread
microstructural alterations distinct from tubers in humanpatients via his-
tological analysis of post-mortem brain specimen. This ex-vivoMRI study
with conditional knockouts of Rictor and Tsc2 in Olig2-Cre mice has
shown that the developed technique is capable of discovering non-
tuber white matter abnormalities, e.g. a significant reduction in the
neurite density index (Figs. 11 and 12), in agreement with histological
measurements (Fig. 13). Note, however, that for low myelinated and
unmyelinated axons there might be significant exchange between the
intra- and extra-neurite water pools, making the differentiation be-
tween hypomyelination and reduced axon density solely based on dif-
fusion experiments not that straightforward. Our findings have clear
translational significance as SMT may help oversee treatment success
in promising clinical trials (Franz et al., 2006; Bissler et al., 2008;
Krueger et al., 2010; Tillema et al., 2012) where patients receive
mTOR inhibitors such as everolimus and sirolimus. Unlike the DTI-
derived anisotropymetrics, the novel biomarkers are invariant with re-
spect to the axon orientation distribution, which exhibits a high vari-
ability between subjects, and thus have potential to increase the
detectability dramatically.
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To establish the normative values of themicroscopic diffusion indices,
we have used high-quality data sets from a large cohort of healthy young
adults acquired on a bespoke scanner (cf. Figs. 6 to 8). Our experiments
have demonstrated that the acquisition time can be greatly reduced for
rapid adoption in hospitals. Indeed, a moderate number of diffusion
gradients evenly distributed over two b-shells is sufficient to recover
the new biomarkers efficiently, as shown in Figs. 4 and 5. For example, a
diffusion protocol with 30 gradient directions for each b-value of 1000
and 2500 s/mm2 – just twice as many as in standard DTI (Jones et al.,
1999) – does not exceed 5 min of scan time on a today's clinical MRI
scanner when acquired with a multiband EPI sequence (Setsompop
et al., 2012) for whole brain coverage in 2 mm isotropic resolution. As
SMT is computationally very fast, microscopic diffusion maps can be
made available to clinicians shortly after the scan has been finished. In
conclusion, multi-compartment microscopic diffusion imaging has
enabled us to reveal key features of brainmicroanatomy, such as neurite
density, without unwanted side effects due to fibre crossings and orien-
tation dispersion. The novel technique provides direct sensitivity to
abnormalities in the microscopic tissue structure, as demonstrated in
a model of tuberous sclerosis, and offers unique opportunities for
various applications, ranging from clinical diagnostics to early patient
stratification and treatment response assessment in interventional
trials. Moreover, this framework recovers the neurite orientation distri-
bution completely, which allows us to track crossingfibre pathways and
then to quantify neural connectivity in the individual brain.

Software

The software is available online at https://ekaden.github.io.
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Appendix A. Extra-neurite water diffusion

In the followingwe shall compare two different approaches tomodel-
ling the diffusion process in the extra-neurite compartment. Specifically,
NODDI (Zhang et al., 2012) assumes that extra-neurite water is in fast
exchange across all axon and dendrite orientations within a voxel,
which is, however, questionable. The microenvironment a diffusing
water molecule covers during the observation time is typically orders of
magnitudes smaller than the dimension of the voxel themeasured signal
comes from. In more detail, Zhang et al. (2012) model the extra-neurite
diffusion signal ebext(g) for a given b-value and gradient direction g as

eextb gð Þ ¼ exp −bgtD
ext

g
� �

; D
ext ¼

Z
S2
p ωð ÞDext ωð Þ dω; ðA:1Þ

where p(ω) denotes the neurite orientation distribution and Dext(ω)=
(λ∥ext−λ⊥ext)ωωt+λ⊥extI3 the extra-neurite diffusion tensor for a dendrite
or axon with orientationω. λ∥ext and λ⊥ext are the parallel and perpendicu-
lar diffusivities, respectively. In plainwords, Eq. (A.1) averages themicro-
scopic diffusion tensor over the microdomain orientation distribution,
instead of averaging themicroscopic diffusion signal fromthemicroscopic
diffusion tensor as done in SMT-based microscopic diffusion anisotropy
imaging, to obtain the macroscopic diffusion signal at the voxel level.

Furthermore, the fast-exchange approach leads to certain model
inconsistencies. Let us consider a high-resolution image consisting of n
equally sized voxels with neurite orientation distributions pi(ω) for i=
1,… ,n, where all other parameters are the same. The extra-neurite

diffusion signal of voxel i reads eextb;i ðgÞ ¼ expð−bgtD
ext
i gÞ . If we

reduce the resolution to one big voxel retrospectively, the total signal
takes the form

eextb gð Þ ¼ 1
n

Xn
i¼1

exp −bgtD
ext
i g

� �
: ðA:2Þ

On the other hand, we next measure a low-resolution image with just
one voxel. The total neurite orientation distribution is then pðωÞ ¼ 1=n
∑n

i¼1piðωÞand, according to Eq. (A.1), the extra-neurite diffusion signal
reads

eextb gð Þ ¼ exp −bgt
1
n

Xn
i¼1

D
ext
i

" #
g

 !
; ðA:3Þ

which may be rewritten as

eextb gð Þ ¼ ∏
n

i¼1
exp −bgtD

ext
i g

� �
 �1=n

: ðA:4Þ

It is obvious that in general Eqs. (A.2) and (A.4) give rise to different sig-
nals, which is contradictory. For this reason, in addition to the observation
that the diffusing water molecules sense only a small environment in the
range of few micrometres which typically includes merely a fraction of
the neurite orientations present in a voxel, we do not assume the fast-
exchange regime for the extra-neurite compartment here.
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