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Abstract—Identifying equivalent mutants remains the largest
impediment to the widespread uptake of mutation testing. Despite
being researched for more than three decades, the problem
remains. We propose Trivial Compiler Equivalence (TCE) a
technique that exploits the use of readily available compiler
technology to address this long-standing challenge. TCE is
directly applicable to real-world programs and can imbue existing
tools with the ability to detect equivalent mutants and a special
form of useless mutants called duplicated mutants. We present
a thorough empirical study using 6 large open source programs,
several orders of magnitude larger than those used in previous
work, and 18 benchmark programs with hand-analysis equivalent
mutants. Our results reveal that, on large real-world programs,
TCE can discard more than 7% and 21% of all the mutants as
being equivalent and duplicated mutants respectively. A human-
based equivalence verification reveals that TCE has the ability to
detect approximately 30% of all the existing equivalent mutants.

I. INTRODUCTION

Mutation testing has been shown to be a valuable testing
technique, capable of simulating real faults [1], [2], [3] and
almost every other testing adequacy criteria [4], [5], [6], [7].
Mutants are versions of the program under test in which a
fault is deliberately inserted in order to either assess test
effectiveness [8], [9], [10] or to support generation of effective
tests [4], [11], [12], [13].

Despite its undisputed potential, the perception of mutation
testing is that it is expensive. This is partly due to the large
number of mutants and partly because of the ‘equivalent
mutant problem’; the topic of this paper. While the problem of
the large number of mutants has largely been addressed in the
literature by techniques such as mutant sampling [14], [15],
[16] and the mutant execution optimisations [12], [17], [18],
the equivalent mutant problem remains a challenge, particu-
larly because the underlying scientific question is undecidable
[19].

The problem with equivalent mutants is that we may make
a syntactic change to a program, yet leave its semantics
unaffected; some mutants may prove to be equivalent to
the original program from which they are constructed. Un-
fortunately, the question of program equivalence, of course,
undecidable, so we can never hope for a complete solution to
the equivalent mutant problem.

If we can find fast scalable, and reasonably effective ways
to reduce the incidence of equivalent mutants, we may suf-
ficiently overcome the practical ramifications of equivalent
mutants. The equivalent mutant problem is such a large
stumbling block to mutation testing that many researchers
believe that its effective removal would be sufficient to make
mutation testing practical and widely applicable.

Our goal is to provide empirical evidence to support the
claim that a straightforward and effective equivalent mutant
detection technique already exists, yet it is not exploited. Re-
cently, several mutation testing tools have been implemented
for popular programming languages like C and Java [10].
However, none includes any technique for equivalent mutant
detection.

Our results demonstrate that a simple, scalable and widely-
applicable technique, which we call ‘Trivial Compiler Equiv-
alence (TCE)’ can be exploited to imbue existing mutation
tools and techniques with the ability to detect as many as 30%
of equivalent mutants. We present results that evaluate TCE
on benchmarks with known sets of equivalent mutants and
also large-scale systems, several orders of magnitude larger
than those used in any previous work on equivalent mutant
detection. Our TCE approach has now been incorporated into
the MILU mutation testing tool, making it the first tool that
supports equivalent mutant detection fully automated.

We present a thorough empirical study of TCE’s potential
to address this long-standing mutation testing challenge. Our
results are surprising: the simple TCE approach can detect
about 30% of all equivalent mutants thereby having the
potential to dramatically save human effort in mutation testing.
Since the technique is conservative, all identified equivalent
mutants can safely be discarded.

TCE has other applications in mutation testing and beyond.
For example, in mutation testing, there would be no point
in including two mutants that are equivalent to each other,
even if they are not equivalent to the original program from
which they are constructed; either one or the other of these two
mutually equivalent mutants can be discarded, saving some
effort. We refer to these mutants as ‘duplicated’ mutants. This
question of ‘mutual mutant equivalence’ has not been studied
before. Our findings show that at least 21% of mutants are
duplicated and can be discarded.



Our findings may also have implications beyond mutation
testing. For example, in software development environments,
it is quite often the case that developers make small changes
to a system, for example to fix the bug (the inverse of mutate
testing, which insert synthetic bugs). The question arises as to
whether it would be worthwhile for the software development
environment to include, as a sanity check, a check for equiv-
alence using TCE. Our results suggest that this is possible,
given the compilation time involved, but more importantly,
our results show that it is also potentially useful; 7% of all
simple edits (mutants) turn out to be TCE equivalent. Surely
a developer would like to have this sanity check information
available after each edit?

The rest of the paper is organized as follows: Section II
presents mutation testing and related approaches. Section III
details our experiment and the studied research questions,
while, Section IV analyses our results. Our findings are
discussed in Section V. Finally, the threats to validity and
our conclusions are presented in Sections VI and VII.

II. BACKGROUND

A. Mutation Testing

Mutation testing embeds artificial defects on the programs
under test. These defects are called mutants and they are
produced by simple syntactic rules, e.g., changing a relational
operator from > to ≥. These rules are called mutant operators.
By applying an operator only once, i.e., the defective program
has only one syntactic difference from the original one, a
mutant called a first order mutant is produced. By making
several syntactic changes i.e., applying the operators multiple
times, a higher order mutant is produced. In this paper we
consider only first order mutants. These are generated by
applying the operators at all possible locations of the program
under test, as supported by the current version of MILU.

By measuring the ability of the test cases to expose mutants,
an effectiveness measure can be established. Mutants are
exposed when their outputs differ from those of the original
program. When a mutant is exposed, it is called as killed, while
in the opposite case it is called as live. Of course, ideally,
equivalent mutants should be removed from the test effec-
tiveness assessment. Doing so gives the effectiveness measure
called mutation score, i.e., the ratio of the exposed mutants to
the number of the introduced excluding the equivalent ones.

Undecidability of equivalencies means that it is unrealistic
to expect all the equivalent mutants to be removed; the
best we can have here is just effective algorithms that can
remove most equivalent mutants. Currently, a large number of
mutants must pass a manual equivalence inspection [20]. This
constitutes a significant cost. In addition, effort is wasted when
testers generate test cases, either manually or automatically, in
attempting to kill equivalent mutants. Apart from the human
effort, there is a computational cost: since equivalent mutants
cannot be killed, they have to be exercised on the entire test
suite, whereas killable mutants only require the executions
until they are killed.

B. Equivalent Mutants

Early research on mutation testing has demonstrated that
deciding whether a mutant is equivalent is an undecidable
problem [19]. Fortunately, partial and heuristic solutions exist
[21]. However, tackling the equivalent mutant problem is hard.
This is evident by the fact that very few attempts exist. In
literature this problem is tackled in two ways. One is to address
the problem directly by detecting some equivalent mutants,
while, the second one is to avoid them by identify likely non-
equivalent ones or help with the manual analysis. We refer to
them as the Detect and Reduce approaches, respectively.

Table I summarizes the current state-of-the-art techniques in
chronological order. From this table it becomes evident that
very few methods and tools exist. Regarding the equivalent
mutant detection, only one publicly available tool exist with
the largest considered subject being composed of 29 lines
of code. It is noted that all the “large” subjects, i.e., having
more than 1,000 lines of code, that were used in the previous
research, involve a form of sampling. Mutants are sampled
from the studied projects with no information about the
relevant size of the components/classes that these mutants are
located. In these lines, in Table I we report the size of the
projects that we consider.

Acree [23] studied 25 killable and 25 equivalent mutants,
and found that testers correctly identified equivalent mutants
for approximately 80% of the cases. In 12% of the cases, they
identified equivalent mutants as killable, while, in 8% of the
cases they identified killable mutants as equivalent. Therefore,
indicating that detection techniques, such as the one suggested
by the present paper, not only help at saving resources but also
at reducing the mistakes made by the humans.

The idea of using compiler optimization techniques to detect
equivalent mutants was suggested by Baldwin and Sayward
[22]. The main intuition behind this technique is that code
optimization rules, such as those implemented by compilers,
form transformations on equivalent programs. Thus, when the
original program can be transformed by an optimization rule
to one of its mutants, then, this mutant is, ipso facto, equiv-
alent. Baldwin and Sayward proposed adapting six compiler
optimization transformations. These transformations were then
studied by Offutt and Craft [21] who implemented them inside
Mothra, a mutation testing tool for Fortran. They found that
on average 45% of the equivalent mutants can be detected.
Our approach is inspired by this recruitment of compilers
research to assist in equivalent mutant detection. However, we
propose a truly simple (and therefore scalable and directly
exploitable) use of compilers, which remained unexplored.
Our TCE simply declares equivalencies only for those mutants
which their compiled object code is identical to the compiled
object code of the original program.

Offutt and Pan [24], [25] developed an automatic technique
to detect equivalent mutants based on constraint solving.
This technique uses mathematical constraints to formulate
the killing conditions of the mutants. If these conditions are
infeasible then, the mutants are equivalent.



TABLE I: Summary of the related work on equivalent mutants.

Author(s) [Reference] Year Language Largest
Subject

#Eq.
Mutants

Available
Tool Category Findings

Baldwin & Sayward [22] 1979 - - - - Detect Compiler optimization can be used to detect eq. mutants
Acree [23] 1980 Fortran - 25 - Detect Humans make mistakes when they identify eq. mutants
Offutt & Craft [21] 1994 Fortran 52 255 - Detect Compiler optimization can detect on average 45% of eq. mutants
Offutt & Pan [24], [25] 1996-7 Fortran 29 695 ! Detect Constraint-based testing can detect on average 47% of eq. mutants
Voas & McGraw [26] 1997 - - - - Detect Slicing may be helpful in detecting eq. mutants

Hierons et al. [27] 1999 - - - - Detect
/Reduce

Program slicing can be used to detect and assist the identification
of eq. mutants

Harman et al. [28] 2001 - - - - Detect
/Reduce

Dependence analysis can be used to detect and assist the
identification of eq. mutants

Adamopoulos et al. [29] 2004 - - - - Reduce Co-evolution can help in reducing the effects of eq. mutants
Grun et al. [30] 2009 Java 12,449 8 ! Reduce Coverage Impact can be used to classify killable mutants
Schuler et al. [31] 2009 Java 94,902 10 ! Reduce Invariants violations can be used to classify killable mutants
Schuler & Zeller [32], [33] 2010-2 Java 94,902 63 ! Reduce Coverage Impact can be used to classify killable mutants
Nica & Wotawa [34] 2012 Java 380 1424 - Detect Constraint-based testing can detect eq. mutants
Kintis et al. [35], [36] 2012-4 Java 94,902 89 - Reduce Higher order mutants can be used to classify killable mutants

Kintis & Malevris [37] 2014 Java 25,909 84 - Detect Data-flow patterns can detect 69% of the eq. mutants introduced
by the AOIS operator

Papadakis et al. [38] 2014 C 513 5,589 - Reduce Coverage Impact can be used to classify killable mutants

This paper 2014 C 362,769 9,551 ! Detect Compilers can be used to effectively automate the mutant
equivalence detection

Nica and Wotawa [34] implemented a similar constraint-
based approach to detect equivalent mutants and demon-
strated that many equivalent mutants can be detected. Voas
and McGraw [26] suggested that program slicing can help
in detecting equivalent mutants. Later, Hierons et al. [27]
showed that amorphous program slicing can be used to detect
equivalent mutants as well. Although potentially powerful,
these techniques suffer from the inherent limitations of the
constraint-based and slicing-based techniques.

It is evident that the constraint-based approach, [24], [25],
was assessed on programs consisting of 29 lines of code
at maximum, while, the slicing technique remains unevalu-
ated apart from worked examples. The scalability of these
approaches is inherently constrained by the scalability of
the underlying constraint handling and slicing technology.
Furthermore, a new implementation is required for every
programming language to be considered. By contrast TCE
applies to any language for which a compiler exists and so
is as scalable as the compiler itself.

Kintis and Malevris [37] used data-flow patterns to detect
equivalent mutants. They showed that 69% of the equivalent
mutants produced by the AOIS operator, i.e., insertion of
the increment/decrement operator, can be detected. Since, this
approach works only on one operator, lacks implementation
and its evaluation was based on 84 instances, it leaves the
practicality and scalability questions open.

Hierons et al. [27] suggested using program slicing to re-
duce the size of the program considered during the equivalence
identification. Thus, tester can focus on the code relevant
to the examined mutants. Harman et al. [28] also suggested
using dependence-based analysis as a complementary method
to assist in the detection of equivalent mutants.

Adamopoulos et al. [29] suggested the use of co-
evolutionary techniques to avoid the creation of equivalent
mutants. In this approach test cases and mutants are simulta-
neously evolved with the aim of producing both high quality
test cases and mutants. However, these previous approaches
have been evaluated only on case studies and synthetic data
so their effectiveness and efficiency remains unknown.

More recently, several studies sought to measure the impact
of mutant execution. Instead of finding a partial but exact
solution to the problem, as done by the Detect approaches, they
try to classify the mutants to help identify likely killable ones
and likely equivalent ones, based on their dynamic behavior.

This idea was initially suggested by Grun et al. [30] and
developed by the studies of Schuler et al. [31] and Schuler
and Zeller [32], [33] who found that impact on coverage
can accurately classify killable mutants. Papadakis et al. [38]
proposed a mutation testing strategy that takes advantage of
mutant classification. Kintis et al. [35], [36] further develop
the approach, using the impact of mutants on other mutants,
i.e., using higher order mutants.

C. Reducing the Cost of Mutation Testing

Mutant sampling has been suggested as a possible way
to reduce the number of mutants. Empirical results demon-
strate that even small samples [15] can be used as cost
effective alternatives to perform mutation testing [16] and
[14]. Other approaches select mutant operators. Instead of
sampling mutants at random they select mutant operators that
are empirically found to be the most effective. To this end,
Offutt et al. [39] demonstrated that five mutant operators are
almost as effective as the whole set of operators.



More recently, Namin et al. [40] used statistically identified
optimal operator subsets. Other cost reduction methods involve
mutant schemata [41], [18], [12]. This technique works by
parameterizing all the mutants through instrumentation, i.e.,
introduce all the mutants into one parameterized program.
However, apart from the inherent limitations of this technique
[42] and the execution overheads that introduces, it also makes
all the equivalent mutant detection techniques not applicable.

Other approaches identify redundant mutants that fail to
contribute to the testing process. Kintis et al. [43] defined the
notion of disjoint mutants, i.e., a set of mutants that subsumes
all the others, and found 9% to subsume all. Ammann et al.
defined minimal mutants [44] showing that this may reduce the
number of mutants. Kaminski et al. [45], [46] and Just et al.
[47] leverage the suggestions made by Tai [48] on fault-based
predicate testing and demonstrated it possible to reduce the
redundancy within the relational and logical operators. Higher
order mutation can also reduce mutant numbers: Sampling
[16], [49] and searching [50], [51], [52] within the space of
higher order mutants both reduce the number of mutants and
also of the equivalent mutants.

III. EXPERIMENTAL STUDY AND SETTINGS

This section details the settings of our experiment. It
presents the TCE approach, in III-A, our research questions,
in III-B, the programs used, in III-C, the employed mutant
operators, in III-D and the execution environment, in III-E.

A. Detecting Mutant Equivalencies, the TCE approach

Executable program generation involves several transforma-
tion phases that change the machine code. Different optimiza-
tion transformation techniques result in different executables.
However, when we have multiple program versions with iden-
tical source code, then there is no point differentiating them
with test data; it is safe to declare them as functionally equiv-
alent. TCE realizes this idea to detect mutant equivalencies. It
declares equivalent any two program versions with identical
machine code. TCE simply compiles each mutant, comparing
its machine code with that of the original program. Similarly,
TCE also detects duplicated mutants, by comparing each
mutant with the others residing in the same unit, i.e., function.
As the reader will readily appreciate TCE implementation
is truly trivial, hence the name: it is a compile command
combined with a comparison of binaries.

B. Research Questions

The mutation testing process is affected by the distorting
effects of the equivalent and duplicated mutants on the muta-
tion score calculation. Therefore, a natural question to ask is
how effective is the TCE approach at detecting equivalent and
duplicated mutants. This poses our first RQ:
RQ1 (Effectiveness): How effective is the TCE approach at

detecting equivalent and duplicated mutants?
We answer this question by reporting the prevalence of

the equivalent and duplicated mutants detected by the TCE
approach using gcc.

To reduce the confounding effects of different compiler
configurations, we apply four popular options and report the
number of the equivalent and duplicated mutants found. The
answer to this question also allows the estimation of the
amount of effort that can be saved by the TCE method.

Existing literature on mutant equivalent detection techniques
suffers from performance and scalability issues. As a result,
the authors are unaware of any mutation testing system that
includes a proposed equivalent mutant detection. By contrast,
the TCE is static, and can be applied to any program that
can be handled by a compiler. This makes TCE potentially
scalable, but we need some empirical study to determine the
degree to which it scales. Hence, in our second RQ we seek
to investigate the observed efficiency and the scalability of the
TCE approach:
RQ2 (Efficiency): How efficient and scalable is the TCE

approach?
To demonstrate the scalability, we use six large open source

projects and we report the efficiency of the mutant generation,
equivalent mutant detection and duplicated mutant detection
processes. We also explored the trade-off between the effec-
tiveness and efficiency using different compiler settings.

To decide when it is appropriate to stop the testing process,
testers need to know the mutation score. To this end, they
need to identify equivalent mutants. The TCE approach im-
proves the approximation by determining equivalent mutants.
However, to what extent? This is investigated by our next RQ:
RQ3 (Equivalent Mutants) What proportion of the equiva-

lent mutants can be detected? What types of equivalent
mutants can be detected?

To answer RQ3, we need to know the ‘ground truth’: how
many equivalent mutants are there in the subjects studied? We
therefore applied the TCE approach on a benchmark set [20]
with hand-analysed ground-truth data on equivalent mutants.
The benchmark includes 990 manually identified equivalent
mutants over 18 small and medium sized subjects.

We report the proportion of the equivalent mutants found by
the TCE. We also analyse and report the types of the detected
equivalent mutants. This information is useful in the design of
complementary equivalent detection techniques.

Mutation testers usually employ subsets of mutant opera-
tors. Therefore, knowing about the relationship between the
operators and the equivalent and duplicated mutants found by
the TCE approach is useful in the sense that mutation testers
can better understand the importance of their choices. Hence,
our next RQ is to examine the extent of the equivalent and
duplicated mutants found per mutant operator:
RQ4 (Impact on Mutant operators): What is the contribu-

tion of each operator in the proportion of equivalent and
duplicated mutants found by TCE?

Finally, we investigate whether the size of the programs
or the number of mutants they contain correlates with the
effectiveness of the TCE approach. One might expect that in
larger programs, the equivalent mutant identification would be
harder, thereby impeding the TCE’s effectiveness.



RQ5 (Correlation Analysis): Does program size or number
of mutants affect TCE?

We answer this question by investigating correlations be-
tween the number of equivalent and duplicated mutants found
by TCE and program and mutant set size.

C. Subject Programs

We used two sets of subjects. The first is composed of
six large open source programs. In this set, we choose ‘real-
world’ programs that vary in size and application domain. The
second set was taken from the study of Yao et al. [20] and
it is composed of 18 subjects. We choose this set because
it is accompanied by manually identified equivalent mutants.
The availability of known equivalent mutants allows us to
answer the RQ3, because it provides a ‘ground truth’ on the
undersidable equivalence question for a set of subjects. The
rest of RQs are answered using the larger programs.

Regarding the large programs, compiling all their mutants
constitutes a time consuming task. This is due the increase
of the mutants according to the size of the programs. It is
evident by our reported results, presented in Section IV-B,
where it took more than 50 hours to compile only the mutants
involved in the Vim-Eval component (under -O3). TCE may
be scalable in itself, but applying it to all possible mutants of
a large program is clearly infeasible.

Though there are techniques to reduce the number of
mutants, i.e., by sampling, we prefer not to use them in
case we unintentionally bias our sample of mutants. We
prefer to sample, safer, over the code to be mutated in a
systematic way so that we do not pre-exclude any mutants
from our investigation. Therefore, we rank their source files
according to their lines of code. Then, we select the two largest
components. On these two components we apply mutation to
all the functions they contain.

Table II presents the information about the first set of
subjects. The second set contains 8 programs with lines of
code ranging from 10 to 42 lines, 7 programs with 137 to 564
lines and 3 real-world programs with 9,564 to 35,545 lines.
Additional details for this programs can be found in [20].

The Gzip and Make are GNU utility programs. The first
program performs file compression and the second one builds
automatically executable files from several source code files.
The two largest components of Gzip are the ‘trees’ and
‘gzip’. The former implements the source representation using
variable-length binary code trees and the later implements
the main command line interface for the Gzip program. The
two largest components of the Make program are ‘main’ and
‘job’. The later implements utilities for managing individual
jobs during the source building processes and the former
implements the command line interface. The GSL (GNU Sci-
entific Library) is a C/C++ numerical library, which provides
a wide range of common mathematical functions. Its two
largest components are ‘gen’ and ‘blas’. The ‘gen’ implements
utilities that compute eigenvalues for generalised vectors and
matrices. The ‘blas’ implements BLAS operations for vectors
and dense matrices.

TABLE II: Subject program details: the ‘LoC’ shows the lines
of code of the project; ‘Comp’ and ‘Comp-Size’ shows the
components considered and their size; The ‘Func’ and ‘Muts’
show the number of functions and mutants of the components.

Program LoC Comp Comp-Size Func Muts

Gzip-1.6 7,323 tree 1,075 14 3,859
gzip 1,744 26 4,402

MSMTP-1.4.32 13,068 smtp 1,914 23 3,479
msmtp 4,096 26 9,967

Make 4.0 32,122 main 3,439 11 2,268
job 3,618 10 2,106

Git-2.1 106,012 refs 3,726 121 6,644
diff 5,024 125 12,855

GSL-1.16 228,863 gen 2,116 20 7,260
blas 2,190 106 3,889

Vim-7.2 362,769 spell 16,181 136 33,188
eval 22,827 374 39,244

Total 750,157 - 67,950 992 129,161

The program MSMTP is an SMTP client for sending and re-
ceiving emails. The components studied are the ‘smtp’ and the
‘msmtp’. The ‘smtp’ implements the coreutilities for exchang-
ing information with SMTP servers and the ‘msmtp’ compo-
nent implements the command line interface for MSMTP.

The program Git is a source code management system
and the components selected are the ‘refs’ and ‘diff’. The
‘refs’ implements the ‘reference’ data structure that associates
history edits with SHA-1 values and the ‘diff’ component im-
plements utilities for checking differences between git objects,
for example commits and working trees.

Finally, the program Vim is a configurable text editor. The
selected components, ‘spell’ and ‘eval’, implement utilities for
checking and built-in expression evaluation, respectively.

D. Mutant Operators

Based on previous research on mutant operator selection, we
identify and use two sets of operators.The first set, proposed
by Offutt et al. [39], is composed of five operators, i.e., ABS,
AOR, LCR, ROR, and UOI. We use this set due to its extensive
use in literature [10]. The second set was used in the studies of
Andrews et al. [2], [53], where it was shown that it provides
accurate predictions of the real fault detection ability of the
test suites.

This set is composed of eight operators; three of them, i.e.,
AOR, LCR and ROR, are drawn from the first set, while, the
other five, i.e., CRCR, OAAA, OBBN, OCNG and SSDL, are
designed to cater the common C faults. A detailed description
of the operators is reported in Table III.

To generate the mutants, we use MILU [54], an open
source mutation testing tool for C. We detail exactly how
the operators were applied since this is an important piece of
information that differs from one tool to another. The ABS and
UOI operators were only applied on numerical variables. The
CRCR was applied to integer and floating numeric constants.



TABLE III: The mutant operators used.

Name Description
ABS: Absolute Value
Insertion {(e,abs(e)), (e,-abs(e))}

AOR: Arithmetic Op-
erator Replacement {(x, y) | x, y ∈ {+,-,*,/,\%} ∧ x 6= y}

LCR: Logical Con-
nector Replacement {(x, y) | x, y ∈ {&&,||} ∧ x 6= y}

ROR: Relational Op-
erator Replacement

{(x, y) | x, y ∈ {>,>=,<,<=,==,!=} ∧
x 6= y}

UOI: Unary Operator
Insertion {(v,--v), (v, v--), (v,++v), (v, v++)}

CRCR: Integer con-
stant replacement

{(ci, x) | x ∈ {1,−1, 0, ci + 1, ci −
1,−ci}}

OAAA: Arithmetic as-
signment mutation

{(x, y) | x, y ∈ {+=,-=,*=,/=,\=%} ∧
x 6= y}

OBBN: Bitwise oper-
ator mutation {(x, y) | x, y ∈ {&,|} ∧ x 6= y}

OCNG: Logical con-
text negation {(e,!(e)) | e ∈ {if(e),while(e)}}

SSDL: Statement
Deletion {(s,remove(s))}

No mutant operator was applied on the variables of the
lefthand side of assignment statements; we only apply them
at the right hand sides. All operators are applied recursively
to all sub expressions. Further details and the implementation
of the operators can be found on the webpage of MILU1.

E. Experimental Environment

All our experiments were undertaken on the Microsoft
Azure Cloud platform using a A9 Compute Intensive Instance
in the Ubuntu 14.04 operating system with compiler gcc
4.8. To compile the mutants we used four configuration
options. We compile with no optimisation settings, denoted as
None, and with the three popular ones, as realized by the gcc
compiler, denoted as -O, -O2 and -O3 . We use the Linux time
utility to measure the CPU execution time of all the involved
processes. To check whether two binaries are equivalent we
use the ‘diff’ utility with the flag ‘–binary’. In short, we use
a gcc -flag’ combined with a ‘diff’.

IV. RESULTS & ANSWERS TO RESEARCH QUESTIONS

This section reports our results and provides answers to the
research questions.

A. RQ1: TCE Effectiveness

To assess the effectiveness of the TCE approach, answering
RQ1, we measure the number of the detected equivalent and
duplicated mutants. We also measure the proportions of these
mutants per program, computed as the percentage of the
detected to introduced. When mutants are mutually equivalent
to each other, i.e., they are duplicated, one of them should be
kept, while, the other(s) should be discarded. In our results we
only report the number of mutants that should be discarded.

1https://github.com/yuejia/Milu/tree/develop/src/mutators

Table IV reports our results per program and per considered
optimization option. Overall, these results indicate that TCE
can detects in total 9,551 equivalent mutants, accounting for
7.4% of all mutants. TCE also detected 27,163 duplicated
mutants, which account for 21% of all mutants. Overall, TCE
can thus remove approximately 28% of all mutants.

Figure 1 depicts the proportions of both equivalent and
duplicated mutants detected per program. The horizontal axis
of the graph is ordered by the size of the components while
the vertical axis records the proportions of mutants detected.
From these results, it is evident that all the subjects have a rea-
sonably high proportion of equivalent and duplicated mutants.
The proportions of equivalent mutants detected varies from
program to program. In the worst case it is 3%, while, in the
best it is 17%. We observe a small variation in the proportions
of the identified equivalent and duplicated mutants. The only
exceptions are the Gsl-Blas and Gsl-Gen components. In the
former case, TCE detects many equivalent mutants and very
few duplicated ones, while, in the later case, it detects very few
equivalent mutants and a similar to the other programs ratio of
duplicated mutants. This divergence is mainly attributed to the
internal structure and code characteristic of the component.

Finally, Table IV reveals that, depending on the options
used, the detected equivalencies differ. For instance, the -O3
option found on average 84% and 100% of the equivalent
and duplicated mutants that are detected by applying all
the options. Interestingly, with respect to equivalent mutants,
among the different optimization options, i.e., -O, -O2 and -
O3, there is no clear winner and their behavior varies between
programs. However, the overall differences are relatively small
between the options. With respect to duplicated mutants, the
results are clear and they show that the best options are the
-O2 and -O3.

B. RQ2: TCE Efficiency

To assess the efficiency of the TCE approach and answer
the RQ2, we report the CPU execution time. Table V sum-
marises the execution time of TCE in total, average and
per employed component, using the four studied compiler
settings.The columns ‘Comp.’, ‘Eq.D.’ and ‘D.D.’ record the
execution time with respect to the compilation process, the
equivalent mutant detection and duplicated mutant detection,
per considered compilation option, respectively.
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Fig. 1: The proportion of equivalent and duplicated mutants
detected by TCE per program studied.



TABLE IV: Equivalent and duplicated mutants detected by TCE. ‘None’, ‘-O’, ‘-O2’ and ‘-O3’ report the fraction of all
identified equivalent mutants that were detected per optimization flag. ‘Number of Mutants’ reports the distinct number of
detected mutants by all the options together and ‘% of all Mutants’ reports the percentage of detected to the number of mutants.

Program None -O -O2 -O3 Number of Mutants % of all Mutants
Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup.

Gzip–Gzip 0.58 0.85 0.92 0.97 0.94 0.99 0.96 1.00 353 942 8% 21%
Gzip–Trees 0.42 0.60 0.73 0.90 0.97 0.99 0.96 1.00 302 910 8% 24%
Vim–Spell 0.33 0.72 0.76 0.92 0.93 1.00 0.87 1.00 2493 7113 8% 21%
Vim–Eval 0.49 0.83 0.88 0.92 0.61 0.99 0.63 1.00 2570 9028 7% 23%
Make–Main 0.28 0.97 0.56 1.00 0.95 0.97 0.95 0.97 236 625 10% 27%
Make–Job 0.47 0.87 0.85 0.95 0.90 0.98 1.00 1.00 101 529 5% 25%
Git–Diff 0.43 0.85 0.85 0.97 0.92 0.99 0.97 1.00 921 2755 7% 21%
Git–Refs 0.42 0.83 0.84 0.96 0.94 0.99 0.97 1.00 602 1282 9% 19%
Msmtp–Msmtp 0.66 0.72 0.95 0.86 0.73 0.97 0.76 1.00 1017 1835 10% 18%
Msmtp–Smtp 0.33 0.79 0.97 0.96 0.96 0.99 0.97 1.00 178 696 5% 20%
Gsl–Blas 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 651 102 17% 3%
Gsl–Gen 0.66 0.93 0.96 0.99 0.97 1.00 0.95 0.99 127 1346 2% 19%
Total 0.49 0.80 0.86 0.94 0.83 0.99 0.84 1.00 9,551 27,163 7% 21%

TABLE V: Execution time: compilation ‘Comp.’, equivalent mutant detection ‘Eq.D.’ and duplicated mutant detection ‘D.D.’.

Optimisation settings for gcc

Program None -O -O2 -O3
Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D.

sec sec sec sec
Gzip–Trees 269 8 112 532 8 231 747 8 165 1,217 8 183
Msmtp–Smtp 405 7 180 743 7 163 1,085 7 201 1,145 7 197
Gzip–Gzip 496 8 230 941 9 212 1,444 9 236 1,578 9 230
Gsl–Gen 1,352 14 193 2,663 14 215 3,945 15 196 3,988 15 212
Gsl–Blas 814 7 58 1,318 7 53 1,864 7 61 1,914 7 59
Make–Main 322 4 138 654 5 155 994 5 148 1,099 5 139
Make–Job 243 4 112 488 4 93 747 4 89 997 4 133
Git–Refs 2,087 13 243 4,038 14 201 5,878 13 232 10,432 14 226
Msmtp–Msmtp 1,929 21 251 3,801 21 274 6,019 21 218 6,751 21 266
Git–Diff 5,662 27 516 11,015 26 470 17,650 25 446 22,318 26 399
Vim–Spell 20,832 65 348 51,475 65 304 85,313 65 327 142,218 67 335
Vim–Eval 36,890 79 287 81,981 81 266 132,888 77 408 180,505 77 365
Total 71,301 257 2,668 159,649 261 2,637 258,574 256 2,727 374,162 260 2,744
Average 5,942 22 222 13,304 22 220 21,548 21 227 31,180 22 229

These results reveal that the execution time of the equiva-
lence detection process is reasonably small compared to the
compilation one. For instance, TCE requires on average 22
seconds, on all the cases, to detect equivalent mutants, while,
the average compilation cost is 5,942 seconds in the best case.

A similar case arises when considering the costs for de-
tecting duplicated mutants. While this is approximately an
order of magnitude higher than the cost of detecting equivalent
mutants, it is still reasonable; 225 seconds, and no more than
1/30 of the cheapest compilation cost. It is noted that our
approach checks for equivalencies only the combinations of
mutants that are located on the same function.

Therefore, the reported time is analogous to the number of
combinations between the mutants located at each function
of the project and not between the whole combinations of all
project mutants.

Our results show that the compilation time of the -O3 option
is almost 5 times higher than the None option. However, this is
counterbalanced by the improved effectiveness of the option.
In this case, the total time spend for compiling, detecting
equivalent and duplicated mutants is respectively 374,162, 260
and 2,744 seconds. Therefore, TCE analyzed 129,161 mutants
in 377,166 seconds. This time accounts for less than 3 seconds
per mutant suggesting that it is reasonably fast.

C. RQ3: Equivalent Mutants
To determine the ratio of detected to all existing equivalent

mutants, we applied TCE to the equivalent mutants identified
by Yao et al. [20], using the accompanying website data from
www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent mutants/.
This site is regularly updated, so data may differ slightly
from those previously reported [20]. Additional details about
these data can be found on the website.



TABLE VI: Number ‘No.’ and proportion ‘%’ of detected
equivalent mutants on the Yao et al. [20] benchmark set.

Program None -O -O2 -O3
No. % No. % No. % No. %

Min 0 0% 7 78% 9 100% 9 100%
Bubble 0 0% 2 22% 4 44% 2 22%
Profit 0 0% 24 52% 24 52% 24 52%
Mid 0 0% 14 74% 14 74% 14 74%
Prime 0 0% 2 22% 6 67% 6 67%
Triangle 0 0% 16 40% 16 40% 16 40%
Insert 0 0% 11 58% 7 37% 7 37%
Day 3 21% 6 43% 7 50% 7 50%
Calendar 0 0% 12 39% 14 45% 14 45%
Carsimulator 0 0% 33 75% 33 75% 33 75%
Tcas 7 8% 7 8% 8 9% 8 9%
Defroster 16 11% 20 14% 20 14% 20 14%
Schedule 0 0% 14 29% 15 31% 15 31%
Hashmap 0 0% 18 27% 18 27% 18 27%
Replace 29 13% 29 13% 29 13% 29 13%
Space 17 20% 22 25% 26 30% 27 31%
Flex 8 20% 9 23% 12 30% 12 30%
Make 21 35% 39 65% 39 65% 39 65%
Total 101 10% 285 29% 301 30% 300 30%

Table VI reports the number and the proportions of equiv-
alent mutants detected by TCE when using the different
settings. The results are surprisingly good. They reveal that
TCE can detect from 9% to 100% of all the equivalent mutants.
This number accounts for 30% on average which is approx-
imately 7% of all the mutants (both killable and equivalent
mutants). These results are achieved within a few seconds with
the potential to save considerable manual and computational
resources. Together with the previously presented results, we
conclude that TCE is effective and practically applicable on
large real-world programs.

Regarding the types of the equivalent detected mutants, i.e.
second part of RQ3, we recall that equivalent mutants are
equivalent because: a) they reside in unreachable code, b) it
is impossible to affect the program state that pertains immedi-
ately after mutant execution or c) there is no possible way to
propagate the infection they introduce to the program output.
Interestingly, the equivalent mutants detected by TCE reside
within all of these categories. In particular, TCE detected 6%,
25% and 45% of the equivalent mutants caused by the a), b),
and c), respectively.

D. RQ4: Mutant Operators

To determine the influence of the mutant operators on the
effectiveness of TCE, answering RQ4, we measure the number
of detected equivalent and duplicated mutants per operator.
We also measure the ratios of detected to introduced mutants
by the studied operators. It is noted that the choice of which
mutants should be discarded when computing the duplicated
mutants, can unfairly influence the reported numbers with
respect to the mutant operators that they belong to. To avoid
this, in this section we report the number and proportions of
all the mutants that are duplicated and not the discarded ones.

Table VII reports the number and proportions of the equiv-
alent and duplicated mutants found by TCE per program and
operator. These results suggest that on different programs a
similar proportion of equivalent and duplicated mutants can
be detected by TCE. The only exceptions are the Gsl-Blas
and Gsl-Gen components.

Figure 2 depicts the proportions of equivalent and duplicated
mutants detected per operator. The horizontal axis follows the
presentation order of the operators from Table VII, while,
the vertical axis records the proportions of detected mutants.
These results reveal that the ABS and UOI operators introduce
at least 15% equivalent mutants of all that they introduce.
They also show that TCE detects more than 5% of equivalent
mutants produced by the ABS, ROR, UOI and CRCR oper-
ators. Regarding the duplicated mutants, TCE detects large
proportions, above 10%, on all of them but, the ABS, LCR
and OAAA. Interestingly, the LCR operator seems to produce
very few equivalent or duplicated mutants.

In conclusion, our results show that all but the LCR and
OAAA operators produce a relatively high ratio of useless mu-
tants, i.e., equivalent and duplicated. In practice this involves
a huge overhead that, fortunately, can be saved by TCE.

E. RQ5: Program Size and Mutant Equivalencies

To answer RQ5, we use the Spearman rank correlation
coefficient ρ. This is a non-parametric statistical test that
measures whether two variables’ ranks are related, i.e., it
assesses the monotonic relationship between the two variables.
The Spearman correlation gives values in the range of [-1, +1]
with 0 indicating no relationship and +1 indicating a perfect
one (-1, also implies a perfect inverse relationship).

We found a correlation between the number of mutants and
the number of equivalent mutants detected (ρ = 0.818). Since
more mutants leads to more equivalent ones [20], this result
suggests that TCE can identify a certain amount of them. A
stronger correlation was also found for the number of mutants
and the detected duplicated (ρ = 0.930). This is a surprising
result since it indicates that a certain percentage of duplicated
mutants is always produced by the operators.

We also study the relation between the program size and the
number of detected equivalent mutants. We found a medium
to small correlation (ρ = 0.692). A slightly lower correlation
was found between the size of program and the number of
duplicated mutants (ρ = 0.650).
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Fig. 2: The proportion of equivalent and duplicated mutants
detected by TCE per mutant operator



TABLE VII: Number ‘No.’ and proportion ‘%’ of equivalent and duplicated mutants detected by TCE per operator.

Equivalent Mutants

Program
ABS AOR LCR ROR UOI CRCR OAAA OBBN OCNG SSDL

No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %
Gzip–Trees 111 27% 3 0% 0 0% 44 9% 74 9% 39 2% 0 0% 0 0% 1 1% 30 11%
Msmtp–Smtp 43 27% 3 1% 0 0% 7 1% 102 32% 19 1% 0 0% 0 0% 0 0% 4 0%
Gzip–Gzip 42 27% 1 0% 10 16% 37 4% 70 22% 141 6% 0 0% 1 2% 6 2% 45 7%
Gsl–Gen 24 2% 6 0% 0 0% 22 4% 14 21% 59 1% 0 0% 0 – 0 0% 2 0%
Gsl–Blas 0 0% 0 – 0 0% 0 0% 0 – 650 50% 0 – 0 – 0 0% 1 0%
Make–Main 26 59% 26 9% 0 0% 38 10% 14 15% 104 9% 22 26% 0 0% 3 3% 3 1%
Make–Job 22 22% 0 0% 0 0% 16 4% 32 16% 27 2% 0 0% 0 0% 0 0% 4 1%
Git–Refs 131 27% 0 0% 0 0% 19 2% 184 19% 260 8% 0 0% 0 0% 0 0% 8 0%
Msmtp–Msmtp 131 20% 8 3% 0 0% 7 0% 216 17% 645 14% 0 0% 0 0% 0 0% 10 0%
Git–Diff 189 22% 4 0% 0 0% 63 4% 328 19% 327 5% 0 0% 0 0% 0 0% 10 0%
Vim–Spell 832 26% 47 2% 0 0% 476 8% 760 12% 353 3% 9 3% 0 0% 0 0% 16 0%
Vim–Eval 671 32% 8 0% 0 0% 697 7% 836 20% 331 1% 0 0% 0 0% 0 0% 27 0%
Total 2,222 24% 106 1% 10 0% 1,426 6% 2,630 16% 2,955 5% 31 3% 1 0% 10 0% 160 1%

Duplicated Mutants

Program
ABS AOR LCR ROR UOI CRCR OAAA OBBN OCNG SSDL

No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %
Gzip–Trees 24 5% 139 42% 2 20% 193 42% 239 29% 738 50% 8 10% 4 80% 44 80% 65 25%
Msmtp–Smtp 6 3% 66 35% 3 6% 108 18% 46 14% 831 50% 0 0% 3 25% 71 63% 67 16%
Gzip–Gzip 8 5% 25 19% 1 1% 178 22% 74 24% 1193 56% 0 0% 17 41% 97 47% 88 14%
Gsl–Gen 28 3% 418 21% 0 0% 88 18% 8 12% 1691 55% 3 3% 0 – 39 33% 53 8%
Gsl–Blas 0 0% 0 – 0 0% 88 5% 0 – 0 0% 0 – 0 – 88 67% 28 4%
Make–Main 0 0% 145 54% 0 0% 90 24% 9 10% 701 64% 0 0% 0 0% 34 41% 24 10%
Make–Job 3 3% 41 66% 2 5% 84 21% 33 16% 636 68% 0 0% 5 31% 41 47% 40 14%
Git–Refs 25 5% 76 46% 4 3% 170 21% 184 19% 1654 56% 0 0% 27 50% 70 24% 61 6%
Msmtp–Msmtp 17 2% 95 43% 7 4% 188 13% 257 20% 2026 45% 13 13% 9 33% 149 35% 300 22%
Git–Diff 35 4% 95 20% 8 4% 357 23% 313 18% 3494 59% 11 18% 47 35% 142 23% 165 11%
Vim–Spell 353 11% 730 32% 16 4% 1888 31% 1306 21% 6809 59% 22 8% 23 27% 533 60% 504 18%
Vim–Eval 124 5% 329 38% 16 2% 2503 28% 1036 24% 10793 62% 1 0% 13 17% 882 61% 430 11%
Total 623 7% 2,159 31% 59 3% 5,935 25% 3,505 21% 30,566 57% 58 7% 148 32% 2,190 49% 1,825 13%

We found a medium correlation between the size of program
and the whole number of mutants (ρ = 0.671). This result
is surprising since it suggests that larger programs do not
necessarily involve a higher number of mutants. In conclusion,
our results indicate that both the number of mutants and the
equivalences detected by TCE are more related to the code
characteristics of the programs than to their size.

V. IMPLICATIONS

The proposed technique is solely based on the use of
compilers, thereby avoiding the several limitations of other
methods and tools. It does not require any sophisticated source
code analysis techniques or any expensive test executions.
Thus, it can be directly applied on real-world systems and
can be easily incorporated within mutation testing tools.

We have seen that TCE reduces the total number of mutants
by 28%, where 7% are equivalent and 21% are duplicated.
The existence of so many ‘useless’ mutants has a distorting
influence on the accuracy of the mutation score measurement.
According to our results, at least the 21% of all the mutants
are duplicated. This implies that the true mutation score might
be underestimated or overestimated by killed or live duplicated
mutants.

Therefore, it is possible that when we compare testing
methods, one might have a ‘fake’ advantage (by killing more
duplicated mutants than the other). Future empirical studies
must remove these mutants to avoid biased results.

The time to detect equivalent and duplicated mutants is
approximately 22 and 225 seconds per program. This indicates
that once the mutants have been compiled, the equivalence
detection comes ‘almost for free’. This is an important finding
because it suggests that TCE can be applied to remove
equivalent and duplicated mutants before the application of
other time consuming cost-reduction methods.

Interestingly, the detected mutant equivalencies are partly
dependent on the compiler options used. Although it is rather
unlikely that equivalent mutants detected by one compiler
option are not equivalent according to another, to be absolutely
sure, beyond any doubt that TCE guarantees equivalence, we
need to know which compiler settings are going to be used in
the deployment environment.

No previous research takes into account the particular
compiler settings, but since we are using TCE we cannot
ignore it. All previous work seems to assume that there is only
one compiler option, but actually there are as many options
as the actual settings used by the deployed programs.



When the deployed-code compiler settings are known, TCE
can exploit this information. When they are unknown at
mutation test time, we can investigate with a reasonable
sample, checking for variance in equivalence behaviour. We
investigated this using the four most popular compiler settings.

We explored the main gcc settings covering a wide range
of optimization options and found that all of them can be
used to detect mutant equivalencies (some are more effective
than others of course). We also explored the trade off between
effectiveness and efficiency using different settings. Our results
suggest that the -O and -O2 option are reasonably good,
because they consume less compilation time than the -O3
option. However, none of them is superior to the others in
detecting equivalent mutants. We also studied only first order
mutants. However, TCE is generic and can be applied to detect
equivalent and duplicated higher order mutants.

Finally, we can advance our approach by using some form
of either binary abstraction such as semantic interpretation, as
done by BinJuice [55], or checksum, as done by md5. The fist
case might have an effect on the effectiveness of TCE while,
the second one on the performance of the diff comparisons.

VI. THREATS TO VALIDITY

As it is usual in software engineering experiments, our
subjects might not be representative. To ameliorate this issue,
we selected 6 real-world programs, several orders of mag-
nitude larger than those used in previous equivalent mutant
detection studies, of varying size and application domain.
We also performed an additional evaluation using a different
set of programs, composed of 18 benchmark subjects, taken
from the literature. Our approach provided similar results in
these two sets, i.e., on average it detects equivalent mutants
approximately as 7.4% of all the mutants on the 6 real-world
programs, while on the 18 subjects of the literature it detects
approximately 7.2%. Additionally, our results are in line with
those reported in literature2 providing confidence that they
are realistic. We studied the mutants of the C language and
TCE implemented using gcc. Additional studies are needed
to determine TCE performance on other languages.

Other threats are due to the use of software systems. Thus,
the gcc compiler and the ‘diff’ utility may have defects.
However, these systems are heavily tested and deployed. Thus,
it is unlikely that they would have defects that would influence
our results to a great extent. Implementation defects of MILU
may have an influence. To reduce this threat we carefully
check its results. However, we consider this threat as small
since MILU has also been used by several authors in their
studies, e.g., [4], [57], independently of us. Furthermore, we
used the Yao et al. [20] benchmark, which was entirely built
by hand. These results served as a ‘sanity check’ to reduce
the threat to validity.

2Offutt and Pan [25] reported that 9% of all the mutants are equivalent.
Delamaro et al. [56] found 12% , Kintis et al., Schuler and Zeller [36], [32]
7%-8%, Papadakis et al. [38] 17% and Yao et al. [20] 23%. Thus, the actual
ratio of the equivalent mutants is in the range of 8%-25%. TCE detects 7.4%
which is more or less 30%, similar to what we found in RQ3.

Our results might be affected by our choice of mutation
operators. To ameliorate this threat, we used all the popular
operators (included in most existing mutation testing tools).
We also included those empirically found to correlate with
fault detection.

The use of the Yao et al. [20] benchmark may also poses
another threat. This is due to the manual analysis performed:
some killable mutants may have been mistakenly identified as
equivalent. However, this study was performed independently
of the present one and hence, it is not likely that these kind of
mistakes coincidentally match the results of TCE. Addition-
ally, it is equally possible that any such mistakes have also led
to the effectiveness of our method being underestimated.

Finally, all our subjects, tools and data are available in the
accompanied website of the present paper3. This helps reduc-
ing all the above-mentioned threats [58] since independent
researchers can check, replicate and analyse our findings.

VII. CONCLUSIONS

Software engineering is a unique mix of both science and
engineering. Sometimes researchers (including the authors of
this paper) can become so bedazzled by their search for
clever science, that they may overlook simple yet effective
engineering solutions that lie within their grasp. We report
on one such case in this paper: the search for techniques to
ameliorate the effect of equivalent mutants on mutation testing.

Previous, work has concentrated on complicated detection
techniques involving sophisticated semantic dependence anal-
ysis, meaning-preserving transformation rules and constraint
solving techniques. Unfortunately, these techniques proved
neither sufficiently scalable nor widely applicable to have
become adopted in production tools or research prototypes.

By contrast, the Trivial Compiler Equivalence approach that
we advocate in this paper is both as scalable and as widely
applicable as the compiler technology upon which it rests.
We simply declare to be equivalent, any mutant for which the
compiled object code is identical to the program from which
is constructed. Our contribution does not lie in the proposal of
this technique, which is, as the name implies, trivial. Rather,
the contribution of this paper is to demonstrate that TCE can
detect a large proportion of real-world equivalent mutants.

Our empirical study on 18 benchmarks shows that 30% of
equivalent mutants can be detected by TCE. Perhaps more
importantly, in a set of six large programs we found that TCE
can also detect more than 7% of all mutants to be equivalent;
perhaps as many as 30% of all equivalent mutants respectively.
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