
Automated Transplantation of Call Graph and Layout
Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features currently
missing from Kate: call graph generation and automatic layout for C programs,
which have been requested by users on the Kate development forum. Our approach
uses a lightweight annotation system with Search Based techniques augmented by
static analysis for automated transplanting. The results are promising: on average,
our tool requires 101 minutes of standard desktop machine time to transplant the
call graph feature, and 31 minutes to transplant the layout feature. We repeated each
experiment 20 times and validated the resulting transplants using unit, regression
and acceptance test suites. In 34 of 40 experiments conducted our search-based
autotransplantation tool, µSCALPEL, was able to successfully transplant the new
functionality, passing all tests.

1 Introduction
We recently introduced a search based technique for automated software transplanta-
tion [2,7]. Guided by dependence analysis and testing, our approach uses a variant
of genetic programming to identify and extract useful functionality from a donor pro-
gram, and transplant it into a (possibly unrelated) host program. We implemented our
autotransplantation approach as a tool called µSCALPEL, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and useful
real-world transplantation can be achieved using µSCALPEL. We apply our tool to the
SSBSE 2015 Challenge program Kate1, a popular text editor based on KDE. Its rich
feature set and available plugins make it a popular, lightweight IDE for C developers.
We perform two automated transplantations using µSCALPEL. In the first example, we
transplant call graph drawing ability from the GNU utility program Cflow, to augment
the features of Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be nontriv-
ial to implement from scratch. Using our search based autotransplantation, µSCALPEL,
the developer merely needs to identify the entry point of the source code in the donor
program (GNU cflow in this case) and the tool will do the rest; extracting the relevant
code, matching names spaces between host and donor and executing regressions, unit and
acceptance tests. Like much previous work on genetic programming [12], our approach
relies critically on the availability of high quality test suites. We do not directly address
this issue in the present paper, but believe that existing achievements in Search Based [5]
and other [4] test data generation techniques will help us to ensure that this reliance is
reasonable and practical.

1 http://kate-editor.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79520887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://kate-editor.org


2

Our second transplantation incorporates a pretty printer feature for C, which Kate
only partially supports and which its users have requested. At the time of writing, we
deployed a new version of Kate that incorporates these features. We hope to be able to
report on the uptake of this ’genetically improved’ Kate at the conference.

Our work is closely related to recent achievements in genetic improvement, which
have been able to dramatically speed up real world systems [9,14,15], port between
languages [8], balance memory consumption and execution time [16], reduced energy
consumption [3,13] and fix bugs [10]. Most closely related to our approach is work
on auto-specialisation using transplantation [11] and grow and graft genetic improve-
ment [6]. Whereas auto-specialisation transplants from different versions of the same
system (or closely related systems) and grow and graft transplants newly grown simple
features, µSCALPEL transplants large-scale features (and subsystems) from one or more
donors into an unrelated host.

2 The µSCALPEL Transplantation Framework

We presented a framework for transplanting a feature between two unrelated systems and
a tool to implement our approach [1] in our recent ISSTA paper [2], so we provide merely
a summary here to make the paper self-contained. Given a host H program that is lacking
a feature of interest, a donor program D, that implemented the feature, and a lightweight
annotation system, our tool, µSCALPEL, attempts to autotransplant the feature from D
into H. The feature of interest in the donor is called the Organ. From the entry of the
donor, there are one or more path that reaches the Organ Entry point, called veins.

Our approach uses Genetic Programming (GP), augmented by static analysis, for
extracting, configuring, and transplanting the organ into the host environment. GP ex-
plores combinations of statements on the vein, and in the host–donor variable mappings,
that will enable the organ to execute in the host environment, guided by testing. The
first stage of our approach uses context insensitive slicing on the call graph of the donor
program to construct a map, with the key being the variables available in the vein, and
the values being the variables in scope at the implantation point in the host [2]. GP
is used to transplant the feature in the host system, having the host–donor map, and
the code base represented by these context insensitive slices. The search space has two
dimensions: the variable mapping and the statements available to form the transplant
itself. The tool that implements out approach, µSCALPEL, is publicly available [2].

3 Applying Autotransplantation to Kate

We chose two popular, real world systems, as the donor programs: GNU cflow2, and
GNU indent3. The former generates call graphs for C programs, a feature is currently
missing from Kate; the latter provides a pretty prints C source files, with far fewer restric-
tions than Kate’s existing built-in indentation functionality. Kate’s existing indentation
feature fails to wrap a line that is too long, for example. It simply adds space or tabs in a

2 http://www.gnu.org/software/cflow/
3 http://www.gnu.org/software/indent/

http://www.gnu.org/software/cflow/
http://www.gnu.org/software/indent/


3

programming language independent manner, whereas GNU’s indent exploits language
awareness to provide far better formatting functionality.

µSCALPEL requires user to provide an implantation point in H, and the entry point
of the feature in D. We chose one of the Kate plugins as the implantation point. We
start from the time date plugin template4, and annotate the entry point in Kate, in the
function “void TimeDatePluginView:: slotInsertTimeDate()” of the plugin.
This function is called every time the user selects the menu element corresponding to
the current plugin. We chose this point as the implantation point for allowing the user to
chose whenever wants to generate the call graphs. The annotation added in the host is:
“void TimeDatePluginView::slotInsertTimeDate(){ /* IP */” .

For the cflow donor, the desired functionality is to transplant the tree form of the call
graphs. Thus, we label the function “tree_output()” as the organ entry in the donor
system. The organ generates the call graph of a C program and displays it in the tree for-
mat (option “-T” from cflow). The annotation is: “void tree_output(){ /*OE*/”.
For the indent donor, the desired functionality is to enable Kate to completely format a
C source file. We want to format the current opened document in the Kate’s main page.
Thus, we label the function “indent_single_file” as the organ entry point. This func-
tion reformats the source file, according to the settings of GNU indent. The annotation
is: “exit_values_ty indent_single_file(BOOLEAN using_stdin){/*OE*/” .
The software engineer need only provide µSCALPEL with these simple annotations and
suitable test cases and the reminder of the transplantation process is entirely automated.

We used several different test suites to validate our transplant. First, we execute
the original regression test suite, available with Kate. Since this test suite does not
execute the organ, we augmented it with test cases specifically aimed at executing the
organ. Second, we generated an acceptance test suite, aimed at checking the transplanted
functionality when executed in the host. As with all approaches to GP, the test cases are
used to guide the search for suitable code.

Provision of these test cases remains the responsibility of the software engineer. Such
tests, or a large subset thereof, would be likely required by a human transplantation
process in any case, so this is not a significant additional burden. Furthermore, even were
such costs attributed to the autotransplantation process, it would be likely easier, in many
cases, to define suitable test cases to check a transplant than it would be to generate one
from scratch while ensuring it is sufficiently tested. In order to estimate the human cost,
we recorded the elapsed developer time required to construct the isolation, acceptance,
and regression++ test cases that are specifically required to validate the transplantation,
thereby providing an upper bound on human effort. Our estimation for annotations and
the test suites is one hour for both of the transplants.

For all our test suites we provide coverage information. Table 2 shows the results of
our tests for both donor programs. We also manually generated the ice-box test suite,
used by the GP in the process of transplanting the feature.

4 https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor_Plugins

https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor_Plugins


4

4 Experiments and Results

We seek to answer three research questions. RQ1) Can we transplant the two desired
features into Kate, without breaking the original functionality of Kate? RQ2) Do the
transplanted features (organs) provide the desired functionality inside Kate? RQ3) What
is the computational effort required by automatic transplantation? We repeat each of the
transplantation experiments 20 times, executing µSCALPEL on a Ubuntu 14.10 machine,
64-bit architecture, 16 GB ram, and 8 cores processor.

Table 2 presents the number of runs in which for every test suite, all test cases pass.
We report the number of successful runs for the regression, augmented regression, and
acceptance test suites individually and also report the coverage achieved by test cases
(of the entire Kate system, and of just the transplanted organ). This coverage data is that
reported by the publicly available coverage metric tool gcov. Table 2a shows the results
of the test suites for cflow donor transplant, while Table 2b shows the results of the test
suites for indent donor transplant. For cflow, 16 out of 20 runs where unanimously
successful, while for indent 18 out of 20 runs were unanimously successful.

We deem a transplantation attempt to be successful if (and only if) all the test cases
from the corresponding test suite passed. The row labelled ”Unanimously” reports the
number of transplantation attempts in which all test cases passed in all test suites. The
line ”Isolation” reports the results of the isolation test suite, which is used by the GP
algorithm for evolving the organ (as opposed to being used for valuation purposes).

Observe that even were we to find that automated transplantation was only successful
one a few of the 20 attempts, then this would be sufficient to demonstrate the feasibil-
ity of autotransplantation in general. The testing process can be used to validate any
transplantation attempt, allowing the software engineer to discard any and all failed
attempts. As a result show, autotransplantation achieves a much higher success rate than
this, minimal, feasibility requirement. Overall, we have evidence that autotransplantation
is feasible for the popular real world system Kate. We now turn to the specific research
questions, we posed to answer them.

Table 1: Runtime data
in minutes, averaged
over 20 runs.

Donor Time(minutes)

Average Std Dev

cflow 101 31
GNU Indent 31 6

RQ1 Table 2 revels that for both of the transplants, all the
regression test cases passed. However, the organs were not
executed by the existing regression test suites, so we manually
augmented them to generate the regression++ test suites. Organ
coverage for the regression++ test suites is: 59% for cflow,
and 58% for indent. For cflow 17 out of 20 transplantation
attempts passed all test in these augmented test suits, while
for indent, 18 out of 20 pass all. Clearly one can never do
enough regression testing, but these results provide release
some confidence. In future work we plan to use automated
search based software testing [5] to further improve autotrans-
plantation regression testing.

RQ2 For cflow 18 out of 20 transplants passed all acceptance tests, while for indent
19 out of 20 pass, giving confidence that µSCALPEL has successfully transplanted code,
such that the desired functionality is available to host program.



5

Table 2: Transplantation results. Figures marked with * exclude regression test cases that
failed before the transplantation (only one for Kate).

(a) GNU Cflow Donor

Category Pass Rate Coverage (%)

All Organ

Unanimously 16 - -
Isolation 18 - -
Regression 20* 62 0
Regression++ 17 74 59
Acceptance 18 52 59

(b) GNU IndentDonor

Category Pass Rate Coverage (%)

All Organ

Unanimously 18 - -
Isolation 19 - -
Regression 20* 66 0
Regression++ 18 78 68
Acceptance 19 48 68

process_args(){
}
main(){

...
process_args();
indent_all();

}

indent_all(){
...
indent_single_

file();
...

}

(a) Indent Code

...
BOOL using_stdin = false;
exit_status = total_success;

...
for (i = 1; i < argc; ++i) {

char *optArg = argv[i];
...

input_files++;
...
in_file_names[input_files-1]

= optArg;
...

if (exit_status == total_success) {
...

exit_status=indent_single_file
(using_stdin);

...
}

(b) Indent Inlined Source Code

void graft_h264(...,
char * $_host_input, ...) {
...
BOOL $_main_using_stdin;
$_main_using_stdin = false;
$_main_exit_status = $_donor_total_success;
...
BOOL * $_process_args1_using_stdin1 = &

$_main_using_stdin;
...
$_global_input_files++;
...
$_global_in_file_names[$_global_input_files

- 1] = $_host_input;
...
if ($_main_exit_status ==

$_donor_total_success) {
BOOL $_indent_single_file_using_stdin_2 =

$_main_using_stdin;
return $_organ_entry_indent_single_file(

$_indent_single_file_using_stdin_2);
}

}

(c) Transplanted Source Code
Figure 1

Fig. 1: Transplant operation in Cflow donor transplant. Code snippet from the beginning
of the graft. means function inlining; optArg is mapped to $_host_input; means
original statement replacement under α — renaming; grayed statements are deleted.

RQ3 Table 1 reports the timing information for the transplants. On average, transplant-
ing the call graph computation from cflow took 101 minutes, while the layout feature
from indent took 31 minutes. In less than 44 hours total time, we were able to complete
all 40 repetitions of the two experiments. The human effort required to incorporate these
two new features would surely have been considerably greater.

A Favour for the Transplants Produced by µSCALPEL Figure 1 provides a flavour
of the indent transplant. Figure 1a shows portion of the vein, identified in the static
slicing processing. The vein starts at the function main, and ends at organ entry; the
function indent_single_file. The vein contains the function process_args, which
initialises globals, based on the command line parameters originally used in the donor
indent. Figure 1b shows the resulting code after the inlining process. The brackets
capture the code corresponding to each original function. Figure 1c shows the code
transplanted into Kate by one of the successful transplants. An α–renaming scheme is
used to avoid namespace conflicts within the host, and between the inlined functions.



6

Some organ statements must be removed, due to failed test cases or incorrect binding
to host variables. Some variables may even be unbindable, leading to an uncompilable
(or crashable) transplant. For example, the variables argc and argv simply cannot be
bound to host variables, because Kate has no concept of ‘command line argument’.
Fortunately, GP discovers such issues. It removes the first for statement in the figure
Figure 1b . The variable optArg is used for parsing the command line parameters of
indent. This variable was mapped at the variable $_host_input$, thereby correctly
using input from Kate call graph computation.

5 Conclusions

We demonstrated that search based automated transplantation (a form of genetic improve-
ment) can be used to automatically transplant non-trivial features (that are requested by
users, but hitherto unimplemented by developers) into the large real-world system Kate.

References
1. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: µscalpel. http://crest.cs.ucl.

ac.uk/autotransplantation/MuScalpel.html (2014), accessed: 2015-04-30
2. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software transplantation.

In: ISSTA (2015), to appear
3. Bruce, B., Petke, J., Harman, M.: Reducing energy consumption using genetic improvement.

In: GECCO 2015 (2015)
4. Cadar, C., Sen, K.: Symbolic execution for software testing: Three decades later. CACM

56(2), 82–90 (2013)
5. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for search based

software testing (keynote). In: ICST (2015)
6. Harman, M., Langdon, W.B., Jia, Y.: Babel pidgin: SBSE can grow and graft entirely new

functionality into a real world system. In: SSBSE (2015)
7. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engineering

(keynote paper). In: WCRE (2013)
8. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template. In: IEEE

CEC (2010)
9. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. TEVC

19(1), 118 – 135 (2015)
10. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software repair. SQJ

21(3), 421–443 (2013)
11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement & code

transplants to specialise a C++ program to a problem class. In: EuroGP (2014)
12. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via

http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008)
13. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software optimization

for reducing energy. In: ASPLOS. pp. 639–652 (2014)
14. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.C.: Managing performance

vs. accuracy trade-offs with loop perforation. In: FSE. pp. 124–134 (2011)
15. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for shader

simplification. ACM TOG 30(6), 152:1–152:11 (2011)
16. Wu, F., Harman, M., Jia, Y., Krinke, J., Weimer, W.: Deep parameter optimisation. In: GECCO

2015 (2015)

http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html
http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html

	Automated Transplantation of Call Graph and Layout Features into Kate
	Introduction
	The Scalpel Transplantation Framework
	Applying Autotransplantation to Kate
	Experiments and Results
	Conclusions


