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Abstract 

The Hedgehog (Hh) signalling pathway is an important mediator of many 

mammalian developmental processes and mutations in Hh genes cause 

serious developmental disorders and birth defects in both mice and 

humans. The role of Hh signalling in the development of αβTCR+ cells has 

been, and continues to be, explored by our and other laboratories. 

However, the impact of Hh signalling on unconventional T cells is not well 

characterised.  

 

Here, we aim to investigate the effect of Hh signalling on thymic and 

peripheral γδ T cells, both in mice and humans. Our study reveals that key 

components of the Hh pathway are present in the murine thymus and 

spleen and that γδ T cells are responsive to Hh signalling. Furthermore, 

flow cytometry of mutant mice revealed that Sonic (Shh) and Desert (Dhh) 

hedgehog affect γδ T cell biology in distinct ways. Our research detected 

numerous changes in cell numbers, key cytokine production, subtype 

differentiation, peripheral localization in both fetal and adult tissues and in 

a LPS-induced disease model. In humans, we expanded γδ thymocytes and 

assessed their responsiveness to Hh signalling.  

 

Furthermore, we investigated the role of Indian hedgehog (Ihh) in the 

transition from CD4-CD8- double negative (DN) to CD4+CD8+ double 

positive (DP) stage during αβ T cell development. Analysis of mice with 

conditional deletion of Indian hedgehog showed that Ihh negatively 

regulates DN to DP transition of αβTCR+ cells. Crossing of this conditional 

knockout (KO) to the male-specific antigen HY indicated that this effect is 

related to TCR rearrangement and signalling and thymic selection. 

Analysis of fetal and adult thymi also demonstrated that Ihh plays a role in 

DP to single positive (SP) transition too. Analysis of hydrocortisone (HC)-

treated heterozygous Ihh and RagKO conditional Ihh mice further 

elucidated the role of Ihh in αβ T cell development.  
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Oh sancta simplicitas! In what strange simplification and falsification man 

lives! One can never cease wondering once one has acquired eyes for this 

marvel! How we have made everything around us clear and free and easy 

and simple! How we have been able to give our senses a passport to 

everything superficial, our thoughts a divine desire for wanton leaps and 

wrong inferences! How from the beginning we have contrived to retain 

our ignorance in order to enjoy an almost inconceivable freedom, lack of 

scruple and caution, heartiness, and gaiety of life, in order to enjoy life! 

And only on this now solid, granite foundation of ignorance could 

knowledge rise so far, the will to knowledge on the foundation of a far 

more powerful will, the will to no knowledge, to uncertainty, to the 

untruth! Not as its opposite, but rather—as its refinement! Even if 

language, here as elsewhere, will not get over its awkwardness, and will 

continue to talk of opposites where there are only degrees and many 

subtleties of gradation; even if the inveterate Tartuffery of morals, which 

now belongs to our unconquerable "flesh and blood," infects the words 

even of those of us who know better: here and there we understand it and 

laugh at the way in which precisely science at its best seeks most to keep 

us in this simplified, thoroughly artificial, suitably constructed and suitably 

falsified world, at the way in which, willy-nilly, it loves error, because, 

being alive—it loves life!1 

                                                        
1  Friedrich Nietzsche, Beyond Good and Evil: The free spirit. 1886. 25-26   
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1.1 Murine T cell biology 

 

1.1.1 The thymus 
 

T lymphocytes are central players of the adaptive immune system. They 

take their name from the site of maturation, the primary lymphoid organ 

called the thymus, where the majority of T cells develop. Blood borne 

progenitors migrate to the thymus from the bone marrow (or fetal liver 

during embryonic development) (Moore and Zlotnik 1995), (Kawamoto, 

Wada et al. 2010). This thymic seeding begins at around embryonic day 

(E) 11 in mice and continues throughout adult life (Scollay, Smith et al. 

1986) (Jotereau, Heuze et al. 1987).  

The thymus provides a unique microenvironment with all the necessary 

cytokines, extra-cellular matrix components and cell-surface ligands 

needed to produce a functional repertoire of non-self reactive T cells. 

The thymus is a flat, bilobed organ situated just above the heart, in the 

upper right thorax. Each lobe is surrounded by a capsule and divided into 

lobules, separated from each other by connective tissue called trabeculae. 

Each lobule is organised into two compartments, the cortical region, which 

is densely packed with immature T cells and the inner medullary region. 

Embryologically, the tissue derives from the gut endoderm of the third 

pharyngeal pouch (Carpenter and Bosselut 2010). For T cells to develop 

successfully, thymocytes must dynamically relocate within the different 

microenvironments of the thymus during different developmental stages 

(Petrie and Zuniga-Pflucker 2007).  

1.1.2 αβ T cell development 
 
In adults, progenitors from the bone marrow enter the thymus through a 

narrow region of the perimedullary cortex, the cortico-medullary junction, 
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to give rise to the early thymic progenitor (ETP) population (Prockop and 

Petrie 2000). These progenitors do not express CD4 or CD8 and are 

referred to as Double Negative (DN). Based on the expression of the cell 

adhesion protein CD44 and IL-2 receptor chain CD25, the DN population 

can be subdivided into four sequential phenotypic subsets. DN1 is the 

earliest thymic subset and is characterised by expression of CD44 but not 

CD25. These pluripotent cells also express CD117 and steadily migrate 

towards the outer subcapsular region. Upon acquisition of CD25, 

thymocytes enter the DN2 stage. DN2 cells are more restricted in their 

differentiation potential and are thought to have lost their ability to 

develop into B cells but can still differentiate into NK cells and thymic 

dendritic cells (Wu, Li et al. 1996). Cells then lose CD44 expression to 

become DN3 cells. By this stage, developing cells are fully committed to 

the T cell lineage. The last DN stage, DN4, is marked by a CD25- and CD44- 

phenotype. DN4 cells proliferate rapidly and differentiate into Double 

Positive cells (DP), expressing both CD4 and CD8 co-receptors often via a 

CD8+ single positive intermediate (ISP) (MacDonald, Budd et al. 1988). DN 

cells account for only 1-3% of all thymocytes whereas around 80% of the 

adult thymus consists of cells in the DP stage (Takahama 2006). The final 

step of T cell development involves downregulating either CD4 or CD8. 

Fully functional and mature CD4+CD8- or CD4-CD8+ T cells have now been 

produced (Godfrey, Kennedy et al. 1993), ready to leave the thymus and 

migrate to the peripheral lymphoid organs via the circulatory system. 

About twice as many CD4 as CD8 cells will leave the thymus. Details and 

possible explanations regarding this phenomenon will be provided later in 

this chapter. These unprimed, naïve T cells that have not encountered an 

antigen and are not activated, are in G0 stage, contain little cytoplasm and 

show basic, low level transcriptional activity (Kindt T 2007b).  
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1.1.3 TCR Rearrangement 
 

TCR rearrangement is critical for developing thymocytes and only cells 

which have undergone a successful in-frame TCRβ rearrangement will 

proceed to the following stages of development, while the rest undergo 

apoptosis (Petrie, Pearse et al. 1990). This process, also called ‘’β-

selection’’, takes place during the DN3 stage of development. Rag1 and 

Rag2 genes are transiently expressed, leading to the rearrangement of the 

TCRβ chain locus (Godfrey, Kennedy et al. 1993), (Mallick, Dudley et al. 

1993). Rag1 and Rag2 deficient mice show a profound arrest at the DN3 

stage, indicating how essential TCRβ rearrangement is for differentiation 

to subsequent stages of development (Mombaerts, Iacomini et al. 1992), 

(Oettinger, Schatz et al. 1990), (Shinkai, Rathbun et al. 1992).  The 

rearranged TCRβ interacts on the cell surface with the 33-kDa pre-TCRα 

chain (pre-Tα) and associates with CD3, forming the pre-TCR complex. 

Succesfull formation of the pre-TCR complex supresses further 

rearrangment of the TCRβ chain, leading to allelic exclusion, and signals 

progression to the DP stage. The pre-TCR complex on developing cells 

shows considerable structural resemblance to the TCRαβ complex on 

mature T cells, as both rely on CD3 chains to transmit signals from the cell 

surface to the nucleus. On treatment with anti-CD3 antibody, Rag-/- 

thymocytes can reverse arrest at the DN3 stage and resume differentiation 

to form DP cells, highlighting the importance of crosslinking between CD3 

chains for the pre-TCR signal (Shinkai and Alt 1994). The notion that 

unlike TCRαβ, pre-TCR mediated signaling does not require a ligand 

(Irving, Alt et al. 1998) is currently under controversy (Mallis, Bai et al. 

2015). Importantly, cells lacking ligand-independent pre-TCR signalling 

fail to progress to the DP stage. Thymocytes entering the DP stage 

immediately undergo rapid proliferation but rearrangement of the TCRα 

chain occurs only after proliferation has stopped and Rag2 protein levels 

have increased. This mechanism allows the production of an extremely 
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diverse population because each clone of cells with a single TCRβ chain 

rearrangement can rearrange a different TCRα chain gene. Overall, this 

random TCR germ-line rearrangement can generate more than 1015 

different αβ receptors, able to recognize a great variety of antigens and 

major histocompatibility complex (MHC) molecules, both self and non-self 

(Robey and Fowlkes 1994).  

1.1.4 Positive and negative Selection 
 

Thymic selection reassures that only T cells, whose TCR recognizes a 

foreign antigen coupled to a self MHC molecule, will survive to leave the 

thymus. T cell selection is an extremely selective process with just 1-3% of 

all T cells managing to reach the last stage of development (Egerton, 

Scollay et al. 1990).  

Positive selection occurs in the thymic cortex and refers to the elimination 

of those developing T cells which fail to bind a self-MHC class I or class II 

molecule, resulting in MHC restriction (Jameson, Hogquist et al. 1995). The 

DP cells that recognize a MHC class I will develop into CD8 T cells whereas 

DP cells recognizing a MHC class II will develop into CD4 T cells. CD4/CD8 

lineage commitment is a topic of intense scientific interest and several 

hypotheses have been put forward in an attempt to explain the mode of 

action (Singer, Adoro et al. 2008). The TCR signal strength hypothesis 

suggests that recognition of either class I or class II MHC molecules and 

commitment to its subsequent cell fate is influenced by TCR signal 

strength. A stronger TCR signal favours commitment to the CD4 lineage 

and a weaker TCR signal favoring commitment to the CD8 lineage (Robey, 

Fowlkes et al. 1991). Another hypothesis implicates the duration rather 

than the strength of TCR signaling in the cell fate decision, where TCR 

signals of longer duration appears to terminate CD8 transcription. 

Alternatively, the stochastic model suggests that termination of 

transcription of one of the co-receptors occurs randomly and is followed 
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by a TCR-dependent rescue step in order to allow only SP thymocytes with 

appropriate co-receptors for their MHC restriction to survive (Chan, 

Cosgrove et al. 1993), (Davis, Killeen et al. 1993), (Itano, Kioussis et al. 

1994), (Leung, Thomson et al. 2001). Further research on this demanding 

topic will shed light on the details of lineage commitment. It is important 

to mention that DP TCRintCD5hi cells are asymmetric in their death rates, 

such that Class I MHC restricted cells undergo higher apoptosis, compared 

to Class II-restricted cells, despite similar levels of both cell types being 

initiated for development (Sinclair, Bains et al. 2013). This finding could 

explain why there is a 2:1-3:1 bias of CD4 to CD8 cells leaving the thymus. 

Positively selected thymocytes will migrate to the thymic medulla where 

negative selection occurs. Negative selection refers to the elimination of 

self-reactive T cells bearing high affinity TCRs for self-molecules, either 

antigens or MHC. It is a process that requires thymocyte-epithelium 

crosstalk. During negative selection, antigen presenting cells (APCs)  - 

macrophages and dendritic cells (DCs) - bearing class I and class II MHC 

molecules interact with developing thymocytes, exposing them to a wide 

range of antigenic products. Negative selection results in self-tolerance by 

clearing out potentially self-reactive T cells (Jameson, Hogquist et al. 

1995), (Goldrath and Bevan 1999).  

Early evidence for the elimination of self-reactive thymocytes came from 

experiments using the HY-TCR transgenic mouse model. The transgenic 

HY-TCR recognizes the Smcy gene-deriving, male-specific HY peptide in 

association with class I MHC H-2Db. In male HY-TCR transgenic severe 

combined immunodeficiency (SCID) mice, all transgenic CD8-expressing T 

cells were deleted (including DP cells), while in females where the HY 

peptide is not present, single positive CD8 cells survived (Kisielow, 

Bluthmann et al. 1988), (Markiewicz, Girao et al. 1998). 

Presentation of self-peptides to developing thymocytes is a key 
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requirement for negative selection of self-reactive thymocytes. The 

Autoimmune Regulator (Aire) transcription factor has been identified to 

be the master-switch in the regulation of several ectopic peripheral 

proteins in medullary epithelial and monocyte populations (Anderson, 

Venanzi et al. 2002), (Kogawa, Nagafuchi et al. 2002), (Liston, Lesage et al. 

2003). 

1.1.5 αβ T cell activation 
 

Immune responses, either humoral or cell-mediated, require T cell 

activation and clonal expansion. The first necessary step for T cell 

activation is the interaction of the TCR-CD3 complex of an unprimed T cell 

with a processed antigen bound to the MHC class I or class II molecule on 

the surface of an APC. Antigen recognition is a necessary but not sufficient 

event for T cell activation. For full T cell activation, T cells require 

subsequent antigen-nonspecific co-stimulatory signals, provided primarily 

by interactions between CD28 on the T cell surface and members of the B7 

family on APCs (June, Bluestone et al. 1994). The two members of the B7 

family of protein receptors, glycoproteins CD80 and CD86, are 

constitutively expressed in dendritic cells and activated macrophages and 

B cells. Their ligands are CD28, which delivers a stimulatory signal to the T 

cell and promotes activation and proliferation and CTLA-4, also known as 

CD152, which shows the opposite effect and strongly inhibits T cell 

activation (Linsley, Brady et al. 1991). Only CD28 is present on the cell 

surface of resting T cells. CTLA-4, the expression of which interestingly 

relies on CD28 co-stimulatory signals, is detectable about 24h after T cell 

activation and peaks 2-3 days later. CTLA-4 shows a higher affinity to 

CD80 and CD86 than CD28. Therefore, in direct proportion to CD28 

stimulation, CTLA-4 provides a regulatory brake on T cell expansion 

(Azuma, Ito et al. 1993, Hathcock, Laszlo et al. 1993). CTLA-4 knockout 

(KO) mice show lymphadenopathy, splenomegaly and die 3-4 weeks after 

death (Kindt T 2007b). Clearly, the production of inhibitory signals by 
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engagement of CTLA-4 is important for lymphocyte homeostasis. T cells 

that experience antigen recognition but do not recieve the co-stimulatory 

signal via CD28 fail to activate properly and exhibit a state of 

nonresponsiveness, named clonal anergy (Chen and Flies 2013).  

T cell activation triggers several signal transduction pathways that result 

in gene transcription, proliferation and differentiation into memory or 

effector phenotypes. The most important of these cascades of biochemical 

events involve Phospholipase γ (PLCγ), Protein Kinase C (PKC), the 

Ras/MAP Kinase pathway, NfκΒ and calcium (Ca2+), whose release from 

the endoplasmic reticulum (ER) results in the phosphorylation of the 

transcription factor NFAT which promotes T cell growth and proliferation 

by supporting transcription of cytokine genes (Kindt T 2007b).  

During T cell activation, changes in gene transcription can be grouped 

according to their detection time upon antigen recognition. Immediate 

genes, expressed within 30 minutes after the initial interaction, encode 

mostly transcription factors such as c-Fos, c-Myc and Nf-κB. Early genes, 

expressed no more than two hours after antigen recognition, encode 

Interleukin 2 (IL-2), IL-3, IL-6, IL-2R and Interferon gamma (IFN-γ). Last, 

the so called late genes, whose expression is detected no earlier than two 

days after antigen recognition, involve mostly adhesion molecules (Kindt T 

2007b). 

The number of ligands a T cell must recognise for sufficient activation has 

been a very active research area for many years. Finally, experiments 

using antigenic compounds bound to biotin molecules, which emit light 

when a streptavidin-phycoerythrin conjugate is added, revealed that as 

little as 10 TCR-MHC interactions are sufficient in both CD4 and CD8 cells 

for T cell activation (Irvine, Purbhoo et al. 2002).  

Activated CD4 T cells differentiate into T helper (Th) effector cells and CD8 
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T cells into cytotoxic T cells. Activated CD8+ T cells particularly express 

tumor necrosis factor (TNF) and secrete IFNγ. CD4 Th cells are subdivided 

into several types according to cytokine production and function. More 

specifically, Th1 cells, whose differentiation is promoted by APC-secreted 

IL-12 and the transcription factor Tbx21, also known as Tbet, secrete IFNγ, 

IL-2 and tumor necrosis factor alpha (TNFα) which support pro-

inflammatory immunity against viral and intracellular bacterial pathogens. 

On the other hand, Th2 cells are promoted by IL4 and Gata3 and produce 

IL-4, IL-5, IL-9 and IL-13 (Constant and Bottomly 1997). Th2 cells play a 

key role in allergic inflammation as well as the protection against 

extracellular parasites. Not surprisingly, Th17 cells mainly produce IL-17 

and modulate protection against extracellular bacteria and fungi while 

also playing an important role in autoimmunity (Korn, Bettelli et al. 2009).  

Regulatory T (Treg) cells, with the distinct CD4+CD25+FoxP3+CD122- 

phenotype, negatively regulate immune responses and are therefore 

critical in maintaining lymphocyte homeostasis. Two major groups of 

Tregs have been identified, natural Tregs (nTregs) and inducible (iTregs), 

with the former differentiating in the thymus and the latter in the 

periphery (Curotto de Lafaille and Lafaille 2009). 
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Figure 1.1: αβ T cell development in murine thymus 

Blood borne lymphoid progenitors enter the thymus at the cortico-medullary 
junction and undergo a series of developmental stages and selection processes as 
they move to different thymic micro-environments. Different developmental stages 
can be classified according to expression of cell surface markers. Proliferation occurs 
at the DN2 stage and after pre-TCR signaling at the DN to DP stage. Selection takes 
place at several checkpoint stages; β selection occurs at the DN3 stage as the pre-
TCR is formed by joining a rearranged β chain with a pTa, αβ selection occurs at the 
DP stage as the TCR is formed by joining a β chain with a rearranged α chain, 
positive selection occurs at the DP stage as only cells with moderate MHC affinity 
progress to further developmental stages and negative selection occurs at the final 
SP stage when self-reactive cells are eliminated. Cells that fail any of the above 
selection steps undergo apoptosis. Thymocytes that have completed their thymic 
development successfully will leave the thymus to migrate to primary lymphoid 
organs in the periphery. 
DN – double negative, DP – double positive, SP – single positive, TCR – T cell 
receptor, MHC – major histocompatibility complex 
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1.1.6  γδ T cell lineage commitment 
 

Both αβ and γδ T cells derive from common thymic precursors. The timing 

of lineage divergence however is not well defined, largely due to the lack of 

definitive markers that allow cells commited to a γδ lineage to be 

distinguished prior to γδTCR expression (Ciofani and Zuniga-Pflucker 

2010). It appears that DN1 cells are uniformly bipotent, giving rise to both 

αβ and γδ lineage T cells (Ciofani, Knowles et al. 2006). In contrast, only 

half of DN2 cells retain bipotency, whereas by the DN3 stage, almost all 

cells appear to be lineage committed (Ciofani, Knowles et al. 2006).  

 

The mechanisms that regulate γδ cell fate commitment are also poorly 

understood. TCR signaling plays an important role in this stage but 

existing data does not support a deterministic role because the type of TCR 

initially produced by the T cell does not absolutely determine the lineage, 

and the presence of a γδTCR or a premature αβTCR can lead to either αβ 

or γδ lineage commitment (Garbe, Krueger et al. 2006). Support for the 

non-deterministic role of the TCR was provided by two studies in which 

αβ and γδ T cell lineage fate was mediated exclusively by a γδTCR 

transgene (Hayes, Li et al. 2005) (Haks, Lefebvre et al. 2005). It seems that 

TCR signal strength, rather than type of TCR, is crucial for lineage 

commitment, with a strong TCR signal promoting a γδ T cell fate and a 

weak signal an αβ T cell fate (Hayes, Li et al. 2005). A stronger TCR signal 

is associated with strong activation of the extracellular signal-regulated 

kinase (ERK), early growth response (EGR) and inhibitor of DNA binding 3 

(ID3) pathway (Haks, Lefebvre et al. 2005). In support of the signal 

strength hypothesis, γδ T lineage cells express higher levels of EGR1, EGF2 

and EGR3 transcription factors and also induce higher expression levels of 

ID3 compared to β-selected thymocytes. It is worth noting that TCRα and 
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TCRδ share the same gene locus and therefore, expression of rearranged 

segments is mutually exclusive (Satyanarayana, Hata et al. 1988).  

 

Other factors can also contribute to αβ versus γδ lineage determination.  In 

IL-7Rα deficient mice, development of γδ cells is completely abolished as a 

result of TCRγ chain absence as IL-7 is known to stimulate rearrangement 

and expression of the TCR γ genes (Perumal, Kenniston et al. 1997). 

Importantly, It has been shown that DN2 (CD25+C44+c-Kit+TCR-) 

thymocytes expressing high levels of IL-7R give rise to γδ T cells more 

frequently than thymocytes lacking or expressing low levels of IL-7R 

(Kang, Volkmann et al. 2001). IL-7Rhi DN2 cells showed a fivefold greater 

potential to develop into γδ T cells, indicating that a proportion of early 

DN thymocytes can be biased towards a γδ linage commitment before β-

selection and fully independently of TCR-mediated signals. 

 

In addition, the presence of the transcription factor SOX13 promotes a γδ 

T cell (Melichar, Narayan et al. 2007). Indeed, in a 2007 screen for 

transcription factors that are differentially expressed between αβ and γδ 

thymocytes, SOX13 was found to be the only γδ-specific gene. SOX13-

deficient mice produced normal functional mature αβ T cells yet γδ Τ cell 

development was severely impaired (Melichar, Narayan et al. 2007). It is 

believed that SOX13, whose expression precedes and is independent of 

TCR rearrangement, interacts with the developmentally important Wnt 

signaling pathway. This is possibly mediated by the antagonizing T cell 

factor (TCF), a high motility gene (HMG) transcription factor, which is 

induced by Wnt and seems to promote an αβ lineage by repressing TCRγ 

gene expression (Melichar, Narayan et al. 2007).  

 

Finally, the Notch pathway has also been implicated in γδ lineage 

specificity, although its contribution appears to be less crucial. It is worth 
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noting, however, that although Notch signaling promotes the formation of 

γδ T cells in humans (Van de Walle, De Smet et al. 2009), in contrast, it 

promotes the αβ T cell lineage in mice (Washburn, Schweighoffer et al. 

1997). 
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Figure 1.2: Murine γδ ΤCR ontogeny 

In the murine thymus, DN cells can rearrange γδ TCR at the DN3 or the DN4 stage 
under the influence of the γδ-specific transcription factor SOX13 and γδ T cells 
acquire their final functional fate according to the presence of an agonist signal. In the 
prenatal thymus, fetus-derived γδ cells that produce IFNγ express CD27 and IL-17-
producing γδ cells fail to express CD27. In the postnatal thymus, γδ development 
relies on a pool of bone marrow progenitors that give rise predominantly to naïve 
cells that do not show functional pre-programming, however some postnatally-
developed γδ cells that engage agonists are believed to give rise to intestinal 
intraepithelial lymphocytes (IEL), not shown here. It is also believed that IL-17-
producing γδ cells cannot be generated from bone marrow progenitors, indicating 
that γδ development of IL-17-producing cells is restricted in prenatal, fetus-derived 
thymocytes. 
DN – Double Negative, DP – double positive, SOX13 - SRY-related HMG-box, NK – 
natural killer, IL – interleukin, IFNγ – Interferon gamma, RORγt - Retinoid-Acid 
Receptor-related Orphan Receptor gamma
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1.1.7  Murine γδ thymic subtypes and effector fate 
 

The murine TCRγ chain was discovered in 1984 (Saito, Kranz et al. 1984) 

and its human counterpart just two years later (Brenner, McLean et al. 

1986). Nevertheless, many aspects regarding the ontogeny, function and 

diversity of γδ Τ cells remain unclear. 

 

Despite the presence of a TCR, it is difficult to categorize γδ cells as 

adaptive or innate because, depending on the particular context, γδ cells 

can share features of one or the other system. In fact, γδ cells are 

increasingly being classified as a third branch of the immune system 

altogether (Hayday 2000). 

 

In mice, the first wave of γδ T cell development appears in E14 and 

precedes aβ cells (Strominger 1989). Importantly, α and δ chains share the 

same locus and therefore expression of rearranged αTCR and δTCR are 

mutually exclusive (Satyanarayana, Hata et al. 1988).  In the postnatal 

murine thymus and peripheral blood, γδ T cells constitute only a small 

population, rarely more than 3% of nucleated cells. Yet, the percentage 

rises dramatically in peripheral tissues, especially the epithelium (Hayday 

2009). Five distinct γδ cell populations can be identified by expression of 

markers CD27, CD25, CD24 and CD44 markers (Ribot, deBarros et al. 

2009), (Prinz, Sansoni et al. 2006). The most immature γδTCR cells are 

CD27+CD25+CD24+CD44- with high proliferative potential (Ribot, deBarros 

et al. 2009), (Prinz, Sansoni et al. 2006) and express low TCR. These 

progenitors downregulate CD25 to become CD27+CD25-CD24+CD44- cells 

that make up the majority of thymic γδ cells and can possibly already 

colonise the periphery (Tough and Sprent 1998). They probably also 

represent precursors for three mature γδ thymocyte populations that lack 

surface expression of CD24. The CD27-CD44+ subset (Haas, Gonzalez et al. 
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2009) is already committed to IL-17 expression (Ribot, deBarros et al. 

2009). By contrast, mature CD27+CD44- γδ T cells have the potential to 

secrete IFN-γ and can be subdivided into the CD122+ and CD122- subsets. 

The former are largely NK1.1+ (Haas, Gonzalez et al. 2009) and express 

γδTCR poorly, exhibiting common characteristics and functional overlap 

with natural killer (NK) cells (Stewart, Walzer et al. 2007). Overall, the 

thymus generates distinct γδ T cell populations with clear phenotypic links 

to peripheral γδ subsets.  

 

Although conventional αβ Τ cells differentiate into effector subsets after 

encountering pathogens in peripheral tissues, the function of γδ T cell 

subtypes seems to be programmed in the thymus (Azuara, Levraud et al. 

1997), (Jensen, Su et al. 2008), (Ribot, deBarros et al. 2009). Jensen et al. 

introduced the concept that thymic TCR ligation determines the 

differentiation of γδ T cells into antigen-experienced IFN-γ-producing and 

antigen-naive IL-17-producing cells. The signals, however, that actually 

promote proinflammatory IL-17 or IFN-γ production by effector γδ T cells 

are poorly understood. It is known that they can produce IL-17 in 

response to IL-23 (Lockhart, Green et al. 2006) and IFN-γ in response to 

cooperative activation with IL-12 and IL-18 (Qureshi, Zhang et al. 1999).  

 

It is important to mention that a functional dichotomy between IFN-γ and 

IL-17-producing cells also exists in the spleen and lymph nodes of adult 

mice and has been largely attributed to thymic developmental 

preprogramming as opposed to peripheral plasticity (Jensen, Su et al. 

2008). Interestingly, however, the underlying mechanisms remain 

unresolved.  

 

Apart from cell surface markers, murine γδ Τ cell development can be 

classified according to Vγ and Vδ chains, where different subtypes migrate 



 38 

to and populate different tissues and body surfaces (Prinz, Silva-Santos et 

al. 2013). For example, CD44+ Vγ6 T cells and CD44+ Vγ4 T cells are highly 

concentrated at the peritoneal cavity and the dermis respectively.  

CD27+CD44+ Vγ1 cells, able to secrete both IFNγ and IL-4 upon activation, 

are localized in the liver and the spleen. The first wave of γδ Τ cells to 

leave the thymus is believed to be CD44+ Vγ5 cells, detected by flow 

cytometry in the murine epidermis already by E15.  

 

Unlike αβ Τ cells, there is thymus-independent γδ T cell development. 

Patients with DiGeorge syndrome suffer from severe thymic hypoplasia 

and lack functional αβ T cell, yet they have normal γδ T cells (Borst and 

van Dongen 1990). The human fetal liver is one site of γδ T cell 

development, where Vγ9Vδ2 cells develop even before thymic formation 

(Wucherpfennig, Liao et al. 1993) (McVay and Carding 1996).  

 

Notably, intraepithelial γδ lymphocytes, mainly gut CD27+ Vγ7 T cells, 

exhibit strong cytolytic and immunoregulatory capacities and seemingly 

lack peptide–MHC restriction, indicating that they bypass the complex 

medullary developmental progression of DP cells (Hayday and Gibbons 

2008). Evidence that supports the concept of extrathymic γδ T cell 

development includes the rescue of intestinal γδ T cell development in IL-

7 KO mice by gut epithelium-specific IL-7 expression (Laky, Lefrancois et 

al. 2000) as well as detection of gut γδ T cell in athymic mice (Hayday, 

Theodoridis et al. 2001). 

 

γδ T cells recognize a plethora of molecules in a wide variety of contexts 

and understanding the different settings in which these ligands are 

presented to γδ Τ cells is essential to comprehend the range of functions 

carried out by γδ T cells. Phosphorylated isoprenoid precursors, 

collectively called phosphoantigens, are recognized by γδ TCR via TCR 
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binding. Phosphoantigens constitute the first description of a non-peptide 

T cell antigen (Tanaka, Sano et al. 1994). It is not clear yet how 

phosphoantigens are presented to γδ T cells. Soluble phosphoantigens fail 

to activate γδ T cells, and MHC class I or II, as well as cell-surface 

expression of CD1 are not required for successful presentation (Morita, 

Beckman et al. 1995). It is also known that γδ T cells can present 

phosphoantigens to other γδ Τ cells (Morita, Beckman et al. 1995). Some 

γδ T cells recognize proteins directly, without being processed. Examples 

include viral proteins (Sciammas, Johnson et al. 1994) and heat shock 

proteins (O'Brien, Happ et al. 1989). Some evidence suggests that γδ T 

cells can also recognize lipids (Azuara, Levraud et al. 1997). 

 

The main function of γδ T cells is not the recognition of MHC complexes 

(Strominger 1989). Instead, γδ T cells have been proposed to constitute a 

first line of defense against pathogens (Allison and Havran 1991, Hayday 

2000). In a study involving infection with Listeria, γδ T cells peaked 3 days 

after injection and αβ T cells 5 days later, suggesting that γδ T cells block 

the infection before αβ cells clear it at a later stage (Ohga, Yoshikai et al. 

1990). However, some γδ T cells in the lymph nodes and the spleen have 

been described to express CD8, exhibiting lytic activity in vivo, hence being 

called CD8+ cytotoxic γδ T cells (Lake, Pierce et al. 1991). Other γδ T-cells 

(1-4% of all peripheral T cells) co-express CD4 and secrete IL-4 (Wen, 

Barber et al. 1998). Finally, the existence of γδ regulatory T cells (Treg) 

has been proposed (Traxlmayr, Wesch et al. 2010). Taken together, it 

becomes clear that γδ T cells constitute a diverse arm of the immune 

system with different subsets playing distinct roles in immune responses.  



 40 

Figure 1.3: Mouse γδ T cell subsets in the thymus and periphery 

Proposed developmental relationships between Vγ subsets, cell surface expression of key markers, potential for cytokine secretion and 
tissue localization are shown. IL-17 – interleukin 17; IFN-γ – interferon-γ  
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1.2 Human γδ T cell subtypes and effector fate 

 

In humans, γδ T cells are also a minor population in peripheral blood with 

numbers more predominant in epithelial layers. The current view suggests 

that although γδ T cell function is associated with Vγ chains in the mouse, 

it correlates with Vδ usage in humans (Pang, Neves et al. 2012). For 

identification purposes, human γδ T cells are divided into three major 

categories according to their Vδ chain; Vδ1, Vδ2, or nonVδ1-nonVδ2 chain 

(Hayday 2000).  

 

Vδ1 and nonVδ1-nonVδ2 are more abundant in mucosal surfaces such as 

the skin and intestine and can combine with several Vγ chains (Deusch, 

Luling et al. 1991, Ebert, Meuter et al. 2006). The most common Vδ1 T cell 

population in adult blood shows a CD45RA+ phenotype, which can be 

subdivided virtually evenly between two populations, IL-2-secreting 

CD27+CD11a- and IFNγ-secreting CD27-CD11a+ (De Rosa, Andrus et al. 

2004). 

 

Unlike Vδ2 cells, Vδ1 cells frequently express CD8 and show considerable 

cytotoxic activity, found to respond to a broad range of antigenic 

compounds including autologous and endogenous phospholipids 

(Russano, Bassotti et al. 2007), cytomegalovirus (Dechanet, Merville et al. 

1999), HIV (De Maria, Ferrazin et al. 1992), malaria (Hviid, Kurtzhals et al. 

2001) and a range of epithelial tumors (Maeurer, Martin et al. 1996). This 

is mediated possibly through recognition of the stress-induced MHC class I 

– related molecules MICA and MICB (Groh, Rhinehart et al. 1999). The 

percentage of Vδ1 cells circulating in the peripheral blood remains 

relatively constant until late middle age, suggesting a constant thymic 

production (De Rosa, Andrus et al. 2004). 
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On the other hand, Vδ2, which are almost exclusively Vγ9, dominate the 

peripheral blood (Strauss, Quertermous et al. 1987) and characteristically 

show substantial expansion during certain bacterial and parasitic 

infections - to the point they can become the majority of circulatory 

leukocytes (Morita, Jin et al. 2007). The investigation of Vγ9Vδ2 cells is 

largely problematic because this population is only shared between higher 

primates with the absence of murine counterparts making them a difficult 

population to study. 

 

Vγ9Vδ2 cells are unique in their recognition of non-peptide 

phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-

enylpyrophosphate (HBB-PP) and isopentenyl pyrophosphate (IPP) 

(Tanaka, Morita et al. 1995), (Wang, Sarikonda et al. 2011), both 

intermediate metabolites of microbial isoprenoid biosynthesis and human 

mevalonate pathway of isoprenoid synthesis, respectively. The mechanism 

of activation and the nature of the molecules that present 

phosphoantigens to γδ T cells remain unclear as MHC I or II and CD1 

expression are not required for successful phosphoantigen presentation 

and soluble, unprocessed phosphoantigens fail to activate γδ T cells 

(Morita, Beckman et al. 1995). 

 

The Vγ9Vδ2 can be further subdivided according to CD27 and CD45RA cell 

surface expression. Unlike mice, however, CD27 expression in humans 

does not signify capacity for robust IFNγ production and secretion. These 

two markers identify four distinct populations: CD27+CD45RA+ naïve 

(Tnaive), CD27+CD45RA- central memory (TCM), CD27-CD45RA- memory 

(TEM) and CD27- CD45RA+ effector memory (TEMRA) γδ T cells (Pang, Neves 

et al. 2012).  
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Naïve γδ Τ cells, the only Ag-inexperienced phenotype, are also CCR7+ and 

CD62L+, indicating migratory ability to lymph nodes. They can also 

proliferate rapidly upon IPP activation and do not secrete IFNγ (Dieli, 

Poccia et al. 2003), lacking cytotoxic function. Central memory cells retain 

the phenotype of naïve cells but switch expression of CD45RA for CD45RO. 

In healthy individuals, TCM cells account for ≤50% of γδ cells in peripheral 

blood and around 25% in lymph nodes. TCM cells can become activated in 

very low concentrations of IPP and secrete low levels of IFNγ (Dieli, Poccia 

et al. 2003). Approximately 2 weeks after IPP activation, TCM cells give rise 

to TEM, with a distinct phenotype CD45RO+CCR7-CD62L- and positive for 

the tissue-associated chemokine receptors CCR2, CCR5, CCR6 and CXCR3. 

These cells show reduced proliferative capacity compared to CD62L+ 

Vγ9Vδ2 subtypes, but upon IPP activation can secrete abundant IFNγ as 

well as TNFα. IL-15 is believed to upregulate CD45RA in TEM  cells, 

generating TEMRA γδ cells (Caccamo, Meraviglia et al. 2005) which are 

unresponsive to further TCR engagement and show little proliferative 

capacity. Nevertheless, TEMRA cells, although minor contributor of IFNγ, 

exhibit strong cytolytic activity due to ample production of perforin and 

granulysin (Pang, Neves et al. 2012). TEM and TEMRA γδ cells strongly 

express the adhesion molecule CD11α, aiding their migration into sites of 

inflammation (Angelini, Borsellino et al. 2004).  

It is noteworthy that one study has shown evidence of extrathymic 

selection for the Vδ2 T cell subset (Parker, Groh et al. 1990). More 

specifically, they showed that the percentage of Vδ2 cells was higher in the 

periphery than the thymus whereas Vδ1 cells declined. The change 

increased proportionally with age of donors and it was not accompanied 

by a similar change in the thymus, strongly suggesting peripheral 

selection. Another interesting finding is that different human populations 

show preference for different Vδs. For example, Vδ1 cells predominate in 

West African communities (Hviid, Akanmori et al. 2000) whereas Vδ2 cells 
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are more prominent in people living in Europe and the US, including 

African Americans in the US (De Rosa, Andrus et al. 2004).  

 

The functional plasticity of Vγ9Vδ2 does not stop here. Expression of 

FoxP3 and regulatory activity has been demonstrated in Vδ2Vγ6 cells 

treated with IL-15 and TGFβ1 (Casetti, Agrati et al. 2009) whereas several 

studies report antigen-presenting activity either to other γδ cells in vivo 

(Morita, Beckman et al. 1995) or to αβ T cells in vitro (Brandes, Willimann 

et al. 2005), along with surface expression of MHC class II, CD80 and CD86. 

Unlike all other adaptive lymphocytes, γδ T cells can acquire pseudopodia 

similarly to myeloid cells when, for example, they engulf E.coli (Wu, Wu et 

al. 2009). Opsonization of γδ cells seems to be one means by which they 

become professional APCs (Himoudi, Morgenstern et al. 2012). 

 

There are considerable differences between murine γδ T cells and human 

Vδ2 T cells beyond their cell surface markers. One example is IL-17 

production, which is usually abundant in mice within inflamed tissues but 

very difficult to demonstrate in humans. The only IL-17-producing human 

Vγ9Vδ2 γδ Τ cells which form a subtype of non-cytotoxic CD45RA+CD27- 

TEMRA cells have been identified in psoriasis (O'Brien and Born 2015). 

Furthermore, as described above, murine γδ T cells are believed to acquire 

their effector fate during development in the thymus whereas human 

Vδ2Vγ6 γδ Τ cells show remarkable plasticity upon activation.  
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Figure 1.4: Human Vδ2 T cells 

Vδ2Vγ9 cells are divided into four distinct subtypes according to cell surface 

expression of CD45RA and CD27.  Naïve Vδ2 γδ cells, expressing CCR7, are the major 

subtype in the lymph nodes, capable of robust proliferation upon IPP activation. Naïve 

cells that downregulate CD27 become Central Memory cells that can be found in 

virtually equal numbers in the lymph nodes and peripheral blood. These cells, which 

are also able to proliferate extensively, show low IFNγ-secreting capacity. 

Downregulation of CD62L gives rise to Effector Memory cells, positive for CCR2, CCR5 

and CCR6. These cells are absent from the lymph nodes and abundant in peripheral 

blood and inflammatory sites. They show decreased proliferative capacity and secrete 

ample IFNγ and TNFα. Finally, IL-15-induced activation of Effector Memory cells gives 

rise to a CD45RA Effector Memory subset that expresses CCR5 and shows strong 

killing capacity by robust production of perforin and granulysin and little IFNγ. These 

cells show minimal proliferative capacity and are unresponsive to TCR signaling.  
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1.3 The Hedgehog (Hh) signalling pathway 

 

1.3.1 The Hedgehog proteins 
 

In 1980, a large scale phenotype-driven screening was conducted to 

identify mutations that impair development in Drosophila melanogaster 

(fruit flies) (Nusslein-Volhard and Wieschaus 1980). The hedgehog gene 

was identified revealing its role in controlling the development of the 

larval body plan (Nusslein-Volhard and Wieschaus 1980). In Hh mutants, 

each larvae segment was entirely covered by spikes, hence the name. Later 

studies revealed that Hh genes are conserved in all vertebrates and that 

the family of Hh proteins affect a wide variety of functions in embryonic 

development including cell differentiation, survival and cell fate (Jiang and 

Hui 2008).   

Three mammalian Hh proteins have been discovered, sharing about 90% 

homology to each other (Shimeld 1999): Sonic (Shh), Indian (Ihh) and 

Desert (Dhh) hedgehog. All three hedgehogs share the same canonical 

pathway although different expression patterns result in non-redundant 

roles during development (Ingham and McMahon 2001). 

1.3.2 Hh signalling 
 

The crucial receptor for the mammalian Hh pathway is known as Patched 

(Ptch), a 12-span transmembrane protein. Two Ptch homologues exist in 

mammals, Ptch1 and Ptch2 (Goodrich, Johnson et al. 1996),(Stone, Hynes 

et al. 1996), (Motoyama, Takabatake et al. 1998). 

In the absence of Hh proteins, Ptch suppresses Smoothened (Smo), a 7-

span transmembrane protein, disabling any downstream transcriptional 

activity (Alcedo, Ayzenzon et al. 1996). The exact mechanism of inhibition 

is unclear although recent evidence suggests that Ptch inhibits the 
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synthesis of Phosphatidylinsositol-4-phosphate, an essential protein for 

Smo activation (Yang and Lin 2010). 

Binding of Hh with Ptch results in Ptch relieving its inhibitory effect on 

Smo, which then acts as the central transducer of the Hh signaling pathway 

and activates the gliomablastoma-associated (Gli1, Gli2 and Gli3) protein 

family of transcription factors (Matise and Joyner 1999) (Crompton, 

Outram et al. 2007). Gli proteins are then transported to the nucleus to 

promote target gene transcription. Gli proteins bind defined DNA 

consensus sequences, with Gli1 and Gli3 recognizing GACCACCCA and Gli2 

recognizing GAAACCACCCA (Tanimura, Dan et al. 1998), (Vortkamp, 

Gessler et al. 1995). 

Interestingly, Gli transcription factors are found even in the most primitive 

metazoan and thus seem to predate Hh itself (Srivastava, Simakov et al. 

2010).  

Gli1 lacks the N-terminal repressor domain and acts as a constitutive 

activator of Hh target genes (Marigo, Johnson et al. 1996). Gli1 is also a 

target gene of the Hh signaling pathway, so that detection of its 

transcription levels indicates the degree of Hh signaling in a population of 

cells (Crompton, Outram et al. 2007). By contrast, Gli2 and Gli3 can 

function as both transcriptional activators and transcriptional repressors, 

if they undergo cleavage of their C-terminal activation domain (Sasaki, 

Nishizaki et al. 1999) (Aza-Blanc, Lin et al. 2000). The ratio of the Gli 

activator to Gli repressor forms of the protein is affected by the Hh signal 

gradient received by the target cell. Cells closer to the Hh source will 

increase the amount of activator forms of Gli protein whereas the 

repressor forms of Gli proteins will be inhibited and vice versa (Stamataki, 

Ulloa et al. 2005) (Crompton, Outram et al. 2007).  

On the contrary, if Hh signalling is completely absent, kinase recognition 
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motifs near the C- termini of Gli proteins are phosphorylated by Protein 

Kinase-A (PKA), Glycogen Synthase Kinase-3 (GSK3) and Casein Kinase-I 

(CKI) (Pan, Wang et al. 2009), (Pan, Wang et al. 2009), (Price and Kalderon 

2002) marking them for ubiquitylation, catalyzed by Btrcp proteins 

(Zhang, Zhao et al. 2005, Tempe, Casas et al. 2006). For ubiquitylation to 

occur, the above proteins must associate with the scaffolding protein Kif7, 

which together with a serine/threonine kinase called Fused (Fu), form the 

hedgehog signaling complex. The mode of action of Kif7, the orthologue of 

fruit fly’s Costal2 (Cos2) suggests that the hedgehog signalling complex 

regulates the processing of Gli proteins by controlling intracellular 

localization (Endoh-Yamagami, Evangelista et al. 2009), (Sisson, Ho et al. 

1997), (Zhang, Zhao et al. 2005). Another important cell surface receptor, 

Hedgehog-interacting protein (Hhip) inhibits the Hh pathway by 

sequestering the Hh ligand, although it does not seem to have an active 

role in signal transduction itself (Beachy, Hymowitz et al. 2010).  

Mutant mice studies have revealed that the three Gli proteins possess 

individual and partially overlapping functions. Gli1 KO are viable (Park, 

Bai et al. 2000), however, Gli2 and Gli3 KO mice are both embryonic lethal 

(Bai, Auerbach et al. 2002). The Gli2 KO embryos are small in size, suffer 

from teeth defects, cleft palate, flattened head and craniofacial 

abnormalities (Mo, Freer et al. 1997) while Gli3 KO have polysyndactyly 

(extra toes) and severe skeletal defects (Bai, Auerbach et al. 2002). Double 

mutants of Gli1 and Gli2 or Gli2 and Gli3 show more severe phenotypes. 

Gli1 expression under the control of Gli2 promoter can partially rescue 

Gli2KO mice, indicating functional redundancies (Bai and Joyner 2001). 

In humans, loss of Gli2 results in serious defects in anterior pituitary 

formation and pan-hypopituitarism with or without cleft-palate (Roessler, 

Du et al. 2003), whereas mutations in Gli3 lead to severe skeletal and lung 

abnormalities, including Greig’s Cephalopolysyndactyly (Vortkamp, 
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Gessler et al. 1991), (Hui and Joyner 1993).  

Hedgehog signalling is also implicated in a number of cancers. Ptch 

mutations have been identified in the aetiology of a number of childhood 

cancers including medulloblastoma (Wolter, Reifenberger et al. 1997), 

rhabdomyosarcoma (Endoh-Yamagami, Evangelista et al. 2009). Ptch 

mutations are also the main cause of Gorlin syndrome, which increases 

pre-disposition to Basal Cell Carcinoma (BCC) (Gorlin 1995). An 

abnormally steep increase in Gli1 and Gli2 expression is found in nearly all 

cases of BCC (Dahmane, Lee et al. 1997), (Regl, Neill et al. 2002). Moreover, 

abnormal Hh signalling is involved in many malignant tumours such as 

pancreatic, prostate and lung cancer (Thayer, di Magliano et al. 2003), 

(Karhadkar, Bova et al. 2004), (Chi, Huang et al. 2006).  

1.3.3  The regulation of Hh activity 
 
Hh proteins act as morphogens. Studies have confirmed that the Hh-

induced effect is regulated in a concentration-dependent manner, allowing 

responding cells to be exposed to different concentrations of Hh proteins 

during different stages of development (Harfe, Scherz et al. 2004) 

(Varjosalo and Taipale 2008). Hh also acts in a duration-dependent 

method, where duration of signal influences outcome (Briscoe and Ericson 

1999). Thus, Hh controls cellular development dependent on the 

responding cell type, the concentration and the duration of exposure to Hh 

by target cells.  
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Figure 1.5 The mammalian Hedgehog signaling pathway    

In the absence of a member of the Hedgehog family of proteins (Sonic, Indian, 
Desert), Patched inhibits the constitutive activity of Smoothened, allowing Gli 
proteins to be recruited to the scaffolding protein Kif7, which also recruits 
serine/threonine kinases to form the Hedgehog signalling complex. This enables 
PKA to phosphorylate Gli proteins generating repressor forms of Gli2 and Gli3 
that inhibit downstream transcriptional activation. In the presence of a Hedgehog 
protein, Patched relieves the inhibition on Smo. Smo signals for the 
phosphorylation of Kif7, allowing the Gli multiprotein complex to dissociate from 
the microtubule. Activator forms of Gli proteins are released and translocate to 
the nucleus, leading to transcription of Hedgehog-specific target genes. The 
middle black dashed line separates the two conditions. The outer membrane 
represents the cell surface and the inner the nuclear membrane. A blunt ended 
line indicates inhibition.  
 
Shh - Sonic Hedgehog, Ihh – Indian Hedgehog, Dhh – Desert Hedgehog, Ptc – 
Patched, Smo – Smoothened, PKA - Protein Kinase A, Fu – Fused, Sufu - 
Suppressor of Fused, Hhip – Hedgehog inhibiting protein, BMP - bone 
morphogenetic protein  
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1.3.4 The role of Shh in T cell development 
 

Shh is the most abundant Hh protein in mammals and plays an important 

role in many developmental processes, where it controls cellular 

proliferation and differentiation (Varjosalo and Taipale 2008). Shh signaling 

is also crucial in organogenesis, most notably in ear, eye and kidney 

development. It is also essential in embryogenesis, where Shh is expressed 

in midline tissues, regulating the patterning of embryonic tissue, including 

the spinal cord, axial skeleton and limbs (Chiang, Litingtung et al. 1996). Not 

surprisingly, aberrations in Shh signaling cause serious developmental 

damage in vertebrates and lead to embryonic lethality (Heussler and Suri 

2003).  

 

The first evidence showing that the Hh signaling pathway mediates 

development of immune cells was provided by our lab (Outram, Varas et al. 

2000).  

In terms of T cell development, Shh is a negative regulator of pre-TCR-

induced differentiation from DN to DP cells (Outram, Varas et al. 2000). In 

this study, mouse fetal thymus organ cultures (FTOCs) treated with 

recombinant Shh (rShh) showed a developmental arrest in the DN stage, 

whereas addition of a Hh-neutralising antibody and subsequent 

neutralization of endogenous Shh resulted in an expansion of DP cells. In 

2004, we also showed that Shh signaling regulates differentiation, survival, 

and proliferation of the earliest double-negative (DN) thymocytes, as thymi 

from Shh-/- mice contain approximately 10 times fewer thymocytes with a 

partial arrest at the DN1 to DN2 stage compared to WT littermates (Shah, 

Hager-Theodorides et al. 2004). The duration and concentration of the Shh-

induced signal is believed to account for the dual function of Shh in the DN to 

DP transition (Crompton, Outram et al. 2007).  
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More specifically, when Hedgehog signaling was reduced in the Shh-/- and 

Gli2-/- thymus or by T lineage-specific transgenic expression of a 

transcriptional-repressor form of Gli2 (Gli2C2), differentiation to DP cell 

after pre-TCR signal transduction was increased (Rowbotham, Furmanski et 

al. 2008). In contrast, when Hh signaling was constitutively activated in 

thymocytes by transgenic expression of a constitutive transcriptional-

activator form of Gli2 (Gli2N2), the production of DP cells was decreased 

(Rowbotham, Furmanski et al. 2008).  

Shh is also important in later stages of T-cell development. DP thymocytes 

are Hh-responsive and thymocyte-intrinsic Shh signaling was recently 

shown to decrease the CD4:CD8 SP thymocyte ratio (Furmanski, Saldana et 

al. 2012).  In the thymus, Shh is produced by epithelial cells in the medulla, 

sub-capsular region and in the cortico- medullary region (Outram, Varas et 

al. 2000), (Virts, Phillips et al. 2006).  

 

1.3.5  The role of Ihh in T cell development 
 
Defects in Ihh signalling have a dramatic effect on bone formation with 

conditional Ihh KO mice showing reduced proliferation of chondrocytes and 

osteoblast leading to the truncation of long bones (Razzaque, Soegiarto et al. 

2005), (St-Jacques, Hammerschmidt et al. 1999). Ihh-/- embryos die around 

1-2 days before birth due to a poorly developed yolk sac (Dyer, Farrington et 

al. 2001). 

 

Although expression of Ihh is generally more restricted than Shh, DN 

thymocytes are highly responsive to Ihh, which regulates T cell development 

and controls thymocytes numbers in both embryos and adult mice.  
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In fetal Ihh-/- thymi, thymocyte numbers and differentiation to DP were 

reduced compared to WT littermates. Surprisingly, however, Ihh+/- thymi 

had increased thymocyte numbers and DP proportions relative to WT, 

indicating that Ihh both promotes and restricts thymocyte differentiation 

(Outram, Hager-Theodorides et al. 2009). In adult thymi, Ihh signaling 

promotes T cell development before pre-TCR signaling but negatively 

regulates T cell development after pre-TCR signaling has taken place. Of 

interest, quantitative PCR (qPCR) analysis on expression levels of Ihh and 

Gli1 showed that Ihh first appears at the DN3 stage and peaks at the DP 

stage where a six-fold increase in expression is observed. However, Gli1 was 

not detectable in DP cells with the highest expression seen in the DN3 stage 

(Outram, Hager-Theodorides et al. 2009). Collectively, these data suggest 

that DP cells produce and secrete Ihh that then feeds back to DN3 and DN4 

cells in order to arrest thymocyte development. Part of this thesis will show 

data that investigates this ‘’feedback loop’’ hypothesis. DP cells are the major 

source of Ihh in the human and mouse thymus. 

 

1.3.6  The role of Dhh in T cell development 
 

The role of Dhh signaling in embryonic development is well defined and its 

function appears to be restricted to testis development (Bitgood, Shen et al. 

1996), Schwann cells (Parmantier, Lynn et al. 1999) and erythropoiesis 

(Lau, Outram et al. 2012).  In the thymus, Dhh is produced by epithelial cells 

in the medulla, sub-capsular region and in the cortico- medullary region 

(Outram, Varas et al. 2000).  

DhhKO mutant mice appear normal and healthy but males are infertile 

(Clark, Garland et al. 2000). 
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Material and methods 
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2.1 Mice 

Strain Origin 

C57BL/6 B&K Universal (UK) 

Ihh+/- 
Gift from Andrew McMahon (Harvard University, Cambridge, 

MA) 

Dhh+/- 
Gift from Andrew McMahon (Harvard University, Cambridge, 

MA) 

Shh+/- 
Gift from Philip Beachy (The John Hopkins University School 

of Medicine, Baltimore, MD) 

Gli3+/- Purchased from Jackson Laboratories (USA) 

Kif7+/- Purchased from Davies, California (USA) 

HY-TCR Purchased from Jackson Laboratories (USA) 

CD4-Cre+ Purchased from Jackson Laboratories (USA) 

Shh Floxed Purchased from Jackson Laboratories (USA) 

Ihh Floxed Gift from Beate Lanske (Harvard School of Dental Medicine) 

FoxN1-Cre+ Gift from George Holländer (Basel, Switzerland) 

GBS-GFP 
Gift from James Briscoe (Balaskas, Ribeiro et al. 2012) 

 

Lck-Gli2Ν2 As described (Rowbotham, 2007)  

Lck-Gli2C2 As described (Rowbotham, 2007)  

Table 2.1: Strains of mice used 
 
All adult mice used were between 4-8 weeks old. Timed mates were 

performed by mating a male with two females and monitoring the females 

for plugs. The day the plug was found was counted as embryonic day 0.5 

(E0.5). Mice were bred and maintained at the Institute of Child Health under 

UK Home Office regulations.  

2.2 Antibodies and Flow Cytometry 

2.2.1 Cell surface staining  
Cell suspensions were prepared by meshing tissue through a 70 μm cell 

strainer (Falcon, US) using the plunger of a 1ml needleless syringe (Terumo, 

Philippines). Cells were stained using combinations of the following directly 

conjugated antibodies (e-Bioscience, US): 
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1. Murine γδ T cell analysis: anti-CD3PE-Cy7, anti-CD4FITC, anti-CD4PE, anti-

CD4PercP-Cy5.5, anti-CD4APC, anti-CD24PercP-Cy5.5, anti-CD25Alexa700, anti-

CD27FITC, anti-CD27PE, anti-CD44eFluor450, anti-CD122FITC, anti-γδTCRPE, 

anti-γδTCRAPC, anti-NK1.1PercP-Cy5.5, anti-Vγ1PE, anti-Vγ2e710, anti-

CCR6e660. 

 

2. Human γδ T cell analysis: anti-CD3 PercP-Cy5.5, anti-CD27eFluor450, anti-

CD45RAPE-Cy7, anti-CD62LAPC-Cy7, anti-γδTCRFITC, anti-Vδ1APC, anti-

Vδ2PE.  

 

3. Ihh feedback loop hypothesis: anti-CD3FITC, anti-CD3PE, anti-CD3PercP-

Cy5.5, anti-CD3APC, anti-CD4FITC, anti-CD4PE, anti-CD4PercP-Cy5.5, anti-

CD4APC, anti-CD5FITC, anti-CD8FITC, anti-CD8PE, anti-CD8PercP-Cy5.5, anti-

CD8APC, anti-Vb6, anti-Vb8.1/8.2FITC, anti-CD25FITC, anti-CD27PE, anti-

CD44PE, anti-CD69FITC, anti-NK1.1PercP-Cy5.5, anti-γδAPC, anti-HSAFITC, 

anti-B220PE, anti-Qa2FITC, anti-HY (T3.70 clone)FITC. 

 

Suspensions were stained for 20 minutes on ice in 100μL Phosphate buffer 

saline (Sigma-Aldrich, US) supplemented with 5% Fetal Calf Serum (FCS). 

Cells were washed in the same medium between incubations and prior to 

analysis by either C6 (BD Biosciences, US) or LSRII (BD Biosciences, US) flow 

cytometer. Events (minimum 106) were collected using FACSDiva software 

(BD Biosciences, US) and analysed using Flowjo 7.6 (Tree Star, US).  

 

2.2.2 Annexin-V apoptosis staining assay 
Annexin-V staining was carried out using an Annexin-V-FITC apoptosis 

detection kit (BD Pharmingen, US) according to the manufacturer’s protocol. 

Prior to Annexin-V staining, cells were stained as described in 2.2.1. 



58 
 

2.2.3 Propidium iodide (PI) staining 
For PI staining, 2.5x105 cells were permeabilized in 0.1% Triton X-100 

(Sigma, UK) and incubated with 50μg/ml PI (Sigma, UK) and 0.1M sodium 

citrate (Sigma, UK) in PBS for 30 minutes in the dark and at room 

temperature. 

 

2.2.4 Intracellular stain (ic) for cytokines 
 

2.2.4.1 Activation Assay 

Splenocytes and lymphocytes were isolated and cultured in AIM-V medium 

(Life Technologies, US) supplemented with 50ng/ml PMA (Sigma), 

500ng/ml Ionomycin (Sigma) and 2μg/ml Brefeldin A (eBiosciences) at a 

concentration of 5 x 106 cells/ml in 24 well plate at 37°C and 5% CO2. Cells 

were harvested at 4h.  

 

2.2.4.2 Intracellular stain 

Intracellular cytokine staining for IL-17 and IFN-γ was carried out on cells 

stained for surface markers as described in 2.2.1, following fixation and 

permeabilization with the Fix/Perm solutions (BD Biosciences, US) 

according to the manufacturer’s instructions. Anti-IL-17FITC, anti-IFN-γFITC, 

anti-IFN-γPE were supplied by e-Bioscience. Minimum 106 cells were stained 

for 1h in 100ml ice cold PBS supplemented with 5% FCS. Antibodies were 

used at a 1:25 final ratio. 

 

2.2.5 Cell Sorting  
Thymocytes and splenocytes from adult mice (6-8 weeks) were sorted at the 

ICH/GOSH Flow Cytometry Core facility using a Modular Flow Cytometer 

(MoFlo XDP; Beckman Coulter, US). Staining with anti-CD3FITC and anti-
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CD4PE, anti-CD8PercP-Cy5.5 and anti-CD25APC allowed sorting of the DP, SP and 

DN thymic populations. Sorting of γδ T cells required anti-CD3FITC, anti-

CD4PE, anti-CD8PerCP-Cy5.5 and anti-γδTCRAPC. All cells collected fell within the 

forward scatter/ side scatter (FSC/SSC) live gate.  

 

2.3 Fetal Thymic Organ Cultures (FTOCs)  

E14.5 – Ε19.5 fetal thymi were cultured on 0.8m membrane filters 

(Millipore, US) in 1ml AIM-V medium (Invitrogen, US) in 24-well plates for 5 

days. Cultures were incubated at 37C and 5% CO2. Where appropriate, 1μg 

of rHhip, rShh or rDhh, all purchased by R&D Systems, US, was added in the 

medium. 

 

2.4 Skin digestion 

Skin samples were collected from anatomically matched locations, minced 

with scissors and digested with 150μg/ml Liberase (Roche, UK) and 

500μg/ml DNAse (Roche, UK) in sterile DMEM (Sigma, UK) for 3 hours at 

370 C. Every 30 min, the tube was gently swirled to dissociate cells. The 

sample was filtered through a 70μm filter to obtain a single cell suspension 

and washed twice. 

 

2.5 RNA extraction and cDNA synthesis 

Cell suspensions were pelleted and resuspended in the appropriate amount 

of lysis buffer and β-mercaptoethanol (Stratagene). RNA was extracted using 

the Arctutus PicoPure kit (Life Technologies, US) according to the 

manufacturer’s protocol, including the DNAse digestion step. cDNA was 

synthesized from this RNA using the High Capacity cDNA Reverse 

Transcription (Life Technologies, US)  kit following manufacturer’s protocol. 
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The mix was incubated at 250 C for 10 minutes to allow primer binding 

followed by 370 C for 120 minutes to allow elongation and finally 850 C for 5 

minutes to terminate the reaction. cDNA was stored at -200 C. 

 

2.6 Quantitative Reverse Transcribed-Polymerase Chain 

Reaction (QRT-PCR) 

QRT-PCR was carried out in triplicates on the cDNA samples obtained (as 

described above) on an iCycler (Bio-Rad Laboratories, Hercules, CA) using 

the iQ SYBR Green Supermix (Bio-Rad, UK) according to the manufacturer’s 

protocol. The housekeeping gene Hypoxanthine Guanine Phosphoribosyl 

Transferase (HPRT) was used to allow template quantification. For each 

gene, the amplification was compared to a dilution series of cDNA prepared 

from embryo head RNA using the Absolutely RNA miniprep (Agilent, US) kit. 

QuantiTech Primers were purchased by Qiagen (Germany). Each reaction 

mixture contained: 1μl (1μg) cDNA, 2μl QuantiTech primers, 10μl iQ SYBR 

Green Supermix and 7μl DNAse/RNAse-free distilled water (Life 

Technologies, US). Quantitative Real Time PCR was performed under the 

conditions of the 2StepMelt Quantitect protocol, according to the 

manufacturer’s instructions. 

 

2.7 DNA extraction and genotyping of mutant mice by 

PCR 

DNA from mice was extracted from 2mm ear biopsies by digesting tissue in 

100μL lysis buffer containing 50 mM KCl, 1.5 mM MgCl2, 10 mM Tris-HCl (pH 

8.5), 0.01% gelatin, 0.45% Nonidet P-40, 0.45% Tween 20, and 0.5 µg/ml 

proteinase K (Sigma-Aldrich, US) in ultra-pure water (Invitrogen, US). The 

samples were incubated at 500rpm at 560C overnight for digestion. The 
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samples were then spun briefly and 1μL supernatant containing the DNA 

(~1μg) was used as template. Primers used for amplifying the PCR products 

are listed in Table 2.2. Each PCR reaction consisted of a 20μL mix composed 

of 10μl GreenTaq DNA Polymerase (Sigma-Aldrich, US) and 1μM of each 

relevant primer made in ultra pure water (Invitrogen, US). PCR was carried 

out on a Robocycler (Stratagene, US) or a Prime (Techne, UK) PCR machine 

as follows: 5 min at 940C followed by 30-40 cycles for 90 seconds at 940C, a 

primer-specific step (Table 2.3) and 60 seconds at 720C. The products were 

resolved on 2% agarose (Sigma-Aldrich, US) 1x TBE (Life Technologies, US), 

stained with 1% GelRed (Biotium, US). A 100bp ladder marker (Bioline, UK) 

was electrophorised to estimate band size. The gel was visualized under UV 

light (Herolab, Germany) and a photograph was taken. 
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Table 2.2: The forward (top) and reverse (bottom) primer used for       

genotyping of different mice strains 

 

Strain  

Ihh WT (St-Jacques, 
Hammerschmidt et al. 1999) 

AGGAGGCAGGGACATGGATAGGGTG 

AGGAACAGACAGAACCGCAGTCGGG 

Ihh KO (Outram, Hager-
Theodorides et al. 2009) 

AGGAGGCAGGGACATGGATAGGGTG 

TACCGGTGGATGTGGAATGTGTGCG 

Dhh WT (Lau, Outram et al. 
2012) 

ATCCACGTATCGGTCAAAGC 

GGTCCAGGAAGAGCAGCAC 

Dhh KO (Lau, Outram et al. 
2012) 

GGCATGCTGGGGATGCGGTG 

CCAGGAAGACGAGCACTGGCGTG 

Shh KO (Outram, Hager-
Theodorides et al. 2009) 

CTGTGCTCGACGTTGTACTG 

AAGCCCGAGACTTGTGTGGA 

Gli3 KO  (Hager-Theodorides, 
Dessens et al. 2005) 

GGCCCAAACATCTACCAACACAT 

GTTGGCTGCTGCATGAAGACTGAC 

KiF7 WT (He, Subramanian et 
al. 2014) 

CTGCCTTTCCCAGCCACCTGACAT 

GGGAGAGGACACTGGGCAAGA 

KiF7 KO (He, Subramanian et al. 
2014)  

CTGCCTTTCCCAGCCACCTGACAT 

GCAGCGCATCGCCTTCTATC 

HY-TCR (Kisielow, Teh et al. 
1988) 

CACATGGAGGCTGGTGCATCAG 

GTTTCTGCACTGTTATCACC 

Cre+ (Outram, Hager-
Theodorides et al. 2009) 

CGATGCAACGAGTGATGAGG 

GCATTGCTGTCACTTGGTCGT 

Shh Floxed (Zuklys, Gill et al. 
2009) 

ATGCTGGCTCGCCTGGCTGTGGAA 

GAAGAGATCAAGGCAAGCTCTGGC 

Ihh Floxed (St-Jacques, 
Hammerschmidt et al. 1999) 

AGCACCTTTTTTCTCGACTGCCTG 

TGTTAGGCCGAGAGGGATTTCGTG 

Lck-Gli2N2 / Gli2C2 
(Rowbotham, Hager-

Theodorides et al. 2007) 

CGAACCACTCAGGGTCCTGTG 

GGATTTCTGTTGTGTTTCCTC 

Rag WT (Mombaerts, Iacomini 
et al. 1992) 

TAGACACTTCTGCCGCATCTGTGG 

GGAGTCAACATCTGCCTTCACG 

Rag KO (Mombaerts, Iacomini 
et al. 1992) 

TAGACACTTCTGCCGCATCTGTGG 

TGACCGCTTCCTCGTGCTTTAC 
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   Table 2.3: Specific parameters for genotyping of mutant mice by PCR 

 

2.8 Lipopolysaccharide (LPS) injection 

Littermates of 6-8 weeks were injected intraperitoneally (ip) with a single 

dose of 10-100ng/gram of body weight LPS in 200μl of sterile PBS. The 

control group was injected ip with 200μl sterile PBS. Injections were 

performed with a 1ml syringe (Terumo, Philippines) and a 25G needle (BD 

Microlance, Ireland). Animals were sacrificed 4 days later and blood and 

tissues were collected for further analysis.  

Strain Annealing T Duration No of cycles 

Ihh WT 66 60 33 

Ihh KO 62 60 40 

Dhh WT 58 60 35 

Dhh KO 58 60 35 

Shh KO 58 60 34 

Gli3 KO 59 80 34 

KiF7 WT 59 45 30 

KiF7 KO 59 45 30 

HY-TCR 58 60 35 

Cre+ 61 90 32 

Shh floxed 58 60 35 

Ihh floxed 62 60 40 

Lck-Gli2N2 58 60 30 

Lck-Gli2C2 58 60 30 

Rag WT 58 60 35 

Rag KO 58 60 35 
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2.9 Hydrocortisone (HC) injection 

Ihh+/-, Ihhfl/fl-CD4Cre-HY-, Ihhfl/fl-CD4Cre-HY+ mice and WT littermates 

were injected with a single dose of 0.4mg/gram of body weight pure HC 

(water-soluble HC, Sigma, UK) dissolved in 250μl sterile and filtered PBS 

using a 0.22μm Millex filter (Millipore, Ireland). For each injection, a 1ml 

syringe (Terumo, Philippines) and 25G needle (BD Microlance, Ireland) was 

used. Animals were sacrificed 2, 4 and 6 days later and thymi were collected 

for further analysis. 

 

2.10 Human γδ analysis 

2.10.1 Human γδ selection 
Human thymi were collected at Great Ormond Street Hospital from donors 

undergoing cardiac surgery with informed consent. Thymocyte suspensions 

were obtained by meshing thymi using a 70μm nylon cell strainer (Corning, 

US) in RPMI. Peripheral blood mononuclear cells (PBMCs) were isolated 

from fresh blood donated by healthy donors via the NHS National Blood 

Service. Lymphocytes were isolated using Lymphoprep (Axis-Shield, 

Norway) density gradient separation according to manufacturer’s 

instructions. γδ T cells were isolated using the Anti-TCRγδ MicroBead Kit 

(Miltenyi Biotec, Germany) according to the manufacturer’s protocol. On 

average, starting from a suspension of 108 thymocytes, 5x105 – 106 cells 

were obtained with 95% purity for CD3+ / γδ+ cells, assessed by flow 

cytometry at C6 (BD Biosciences, US) flow cytometer. 
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2.10.2 Human γδ expansion culture 
γδ T cells were expanded from freshly isolated pure populations of γδ T cells 

obtained either from thymocytes or PBMCs (see 2.12.1). Cells were cultured 

at a concentration of 5x105 cells/ml in a 48-well flat bottom plate (Corning, 

US) in RPMI medium containing 10% FCS, 1% Penicillin/ Streptomycin (PS) 

(Sigma, UK), 100U/ml IL-2 (PeproTech, US) and 120U/ml IL-21 (PeproTech, 

US). Irradiated artificial Antigen Presenting Cells (aAPCs), a K562 cell line 

engineered to express CD86, CD137L and IL-15, were added in the medium 

every 7 days at a concentration of 1:2 γδTcell:aAPC, to boost expansion. 

aAPCs were kindly provided by Kenth Gustafsson, Molecular Immunology, 

ICH, UCL. Cells were transferred to a T-75 flask (Corning, US) after 16-21 

days and were harvested 2-3 days later with an average yield of 8x107 cells.  

 

2.10.3 Irradiation 
107cells/ml aAPCs in RPMI medium were given a single dose of 80 Gy from a 

60Co gamma-ray source at a dose rate of 0.28 Gy/min. Irradiated cells were 

stored at -80°C. 

 

2.10.4 Human γδ recombinant hedgehog (rΗh) cultures 
Expanded γδ T cells were transferred to 6-well plates (Corning, US) with a 

concentration of 2x106 cells/well. Each well contained 2ml RPMI 1640 

medium (Life technologies, US) supplemented with 10% FCS, 1% PS, 

100U/ml IL-2 (PeproTech, US) and 120U/ml IL-21 (PeproTech, US). In 

addition, 1μg rShh (R&D Systems, US) or 1μg rHhip (R&D Systems, US) was 

added in each well. An untreated control was included for each time point. 

Cells were collected and analysed in days 1, 2, 4 and 6 as follows: 

 RNA extraction - 106 cells 

 Flow Cytometry - 5 x 105 cells 

 PI stain - 2.5 x 105 cells 
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 Annexin V stain - 2.5 x 105 cells 

 

2.11 Cell Counts 

Single cell suspensions were diluted 1:1 in 0.1% w/v Trypan Blue (Sigma-

Aldrich, US) in PBS and non-blue cells were counted using a 

haemocytometer. For spleenocytes counts, erythrocytes were distinguished 

by their biconcave shape and excluded from the count. 

 

2.12 Experimental Data Analysis 

Statistical analysis using at least three independent experiments was 

performed using GraphPad Prism (GraphPad Inc, US) and Microsoft Excel 

2013 (Microsoft Inc, US). An unpaired two-tailed student’s t test was used to 

test the significance of differences observed in WT, Het and KO littermates, 

unless stated otherwise. Values of p<0.05 were considered to be significant. 
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3. Murine and human γδ cells can transduce Hh signals 

3.1. Introduction 
 

The effect of Hedgehog signalling pathway on the ontogeny, 

differentiation, development, survival, proliferation, localization, function 

and cytokine production of γδ T cells has not been investigated in depth. 

One publication has suggested that Hh signalling affects γδ thymocytes in 

two ways; the first is via Hh’s major role in the differentiation and survival 

of very early T cell progenitors in the thymus, which give rise to both αβ 

and γδ T cells, and the second involves Hh’s interaction with the Wnt 

signalling pathway, which is known to affect γδ thymocytes (El Andaloussi, 

Graves et al. 2006), (Melichar and Kang 2007). T-cell factor 1 (Tcf1) 

deficient mice, a key transcription factor required for Wnt signalling, 

showed impaired development of intestinal intraepithelial γδ lymphocytes 

(Ohteki, Wilson et al. 1996).  

 

In addition, our group published data on γδ cells in a paper that 

investigated the role of Hh signalling in TCR repertoire selection in the 

thymus, and reported that constitutive transgenic expression of Gli2A in 

all T-lineage cells resulted in reduced CD4-CD8-CD3+γδ+ cells in the lymph 

node compared to WT mice (Furmanski, Saldana et al. 2012). 

 

Here, we aim to test the hypothesis that Hh signalling regulates γδ T cell 

development and homeostasis in peripheral tissues. Investigation of γδ T 

cells is challenging because of the scarcity of these cells in different tissues. 

Another difficulty lies in the fact that γδ T cells are still not well 

characterised both in terms of ontogeny and function. In general, murine 

γδ T cells have been described in terms of a dichotomy between T-bet, 

IFNγ, CD27-expressing cells on the one hand and RORγt, IL-17, CCR6-
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expressing cells on the other hand, but our understanding of the ontogeny 

and plasticity of the different γδ T cell populations is incomplete. For 

example, it is unclear whether TH17 γδ cells are developed postnatally or 

arise as a result of extrathymic plasticity of adult γδ T cell populations.  

 

In this chapter we test if murine γδ T cells are capable of transducing Hh 

signals and if they do transduce Hh signals in vivo. We investigate 

expression of Hh pathway components in murine γδ T cell populations in 

the thymus and spleen, and use Hh-reporter mice to investigate the extent 

of Hh pathway activation in γδ T cell populations in different tissues in 

vivo. 
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3.2 Results 

 

3.2.1 Hh signalling components are expressed in thymic γδ T cells 
In order to investigate whether the Hh pathway plays a role in γδ Τ cells, 

we examined the expression of Hh components in γδ T cells from the 

thymus and spleen of 4 week old mice. In the case of the thymus, mRNA for 

qPCR was collected from FACS sorted CD3+γδTCR+ (γδ cells), CD4+CD8+ 

(DP cells), whole thymus and CD3-CD25+ cells (DN2/DN3 cells) (Figure 

3.1). This last population represents the DN2 and DN3 stages during 

thymocyte development and thus allows us to compare the expression of 

Hh components in γδ Τ cells with expression in thymocyte progenitors 

(DN2 and DN3 cells).  

 

We found that in the 4 week old murine thymus, several components of 

the Hh signalling pathway are expressed in γδ cells. We detected Ihh at 

levels higher than in the CD25+ DN population, at similar levels to the 

whole thymus. We failed to detect Shh or Dhh. We also detected 

expression of Gli1 and Gli3, as well as very low expression of Gli2, in all 

three cases.  However, expression was lower than that observed for the 

DN2/DN3 progenitor population (Figure 3.1). We detected expression of 

the Hedgehog pathway’s key receptors required for Hh signalling, Smo and 

Ptch. We also detected expression of Dispatched, which is required to 

secrete Hh proteins, suggesting that γδ Τ cells can secrete Ihh.  Rab23, an 

inhibitor of Hh signalling was also present. Sox13, a γδ-specific 

transcription factor, was used as a positive control, and was detected in 

the γδ+ thymocytes only  (Figure 3.2).  
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3.2.2 Hh signalling components are expressed in splenic γδ T cells 
We then sorted CD4+ T cells, CD8+ T cells and γδTCR+ cells from 4 week 

old WT spleen and made RNA for qPCR analysis (Figure 3.3). Expression of 

several Hh components were also present in the T cell populations in the 

spleen of WT mice.  We detected Ihh in splenic γδ T cells, as well as in 

CD3+γδTCR-CD4+ and CD3+γδTCR-CD8+ cells.  Ihh has previously been 

shown to be expressed in CD4 and CD8 single positive (SP) populations in 

the thymus, and in CD8+ spleen-derived cytotoxic T lymphocytes (Outram, 

Hager-Theodorides et al. 2009), (de la Roche, Ritter et al. 2013). Similarly 

to the thymus, we failed to detect Shh and Dhh.  Gli1, a Hh-target gene, was 

also detected, as was Gli2, but we did not detect Gli3. As found in the 

thymus, Smo, Ptch and Dispatched were expressed in all three populations 

(Figure 3.3). 

 

3.2.3 Hh-reporter mice show active Hh-mediated transcription in γδ 
T cell populations in vivo 
Our expression analysis showed that γδ Τ cells from the thymus and 

spleen express components of the Hh signalling pathway and so are 

capable of transducing Hh signals.  To examine Hh pathway activation 

status in γδ Τ cell populations in vivo, we used a transgenic (tg) Hh-

reporter mouse.  This Gli Binding Site-Green Fluorescent Protein (GBS-

GFP) transgene contains multiple Gli Binding Sites with a minimal 

promoter which drives GFP expression in cells in which Hh-mediated (Gli-

mediated) transcription is active.  Hh proteins are expressed in the spleen 

and thymus, and are also involved in regulating tissue homeostasis in non-

lymphoid organs such as the lung, skin and gut.  The extent of Hh pathway 

activation in a given γδ Τ cell will therefore depend on its localization, 

relative to the source of Hh.  We therefore used flow cytometry to measure 

GFP expression at the single cell level in γδ Τ cell populations from 

different tissues (Figure 3.4).  
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Approximately 6.5% of γδ thymocytes and 8.5% of γδ cells from the spleen 

were positive for GFP, indicating active Hh-dependent transcription. We 

gated on GFP(+) γδ cells and examined cell surface CD27 and CD44 

expression. In the thymus, all GFP(+) γδ cells were CD27+, whereas in the 

spleen the majority of GFP(+) γδ cells were in the CD44+CD27- population. 

When we examined CD24 expression, we found that in both thymus and 

spleen the γδ population that was undergoing active Hh pathway 

activation expressed cell surface CD24. 
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Figure 3.1: Expression of key Hh components in γδ Τ cells of murine WT 
thymus 

Dot plots show the sorting strategy for γδTCR+, DN2 and DN3 thymocytes. A live 
gate (A) was drawn and (B) doublets were excluded. CD3+ γδ T cells were sorted, 
shown in red. From CD3- cells (DN) cells, those who are CD25+ were sorted, 
named DN2 and DN3, here shown in green. Bar charts show relative 
transcription of Ihh, Gli1, Gli2, Gli3 in the FACS sorted thymocyte populations 
described above. We were unable to detect Shh and Dhh in any of the populations 
described above. The scale shows expression normalized to the levels of the 
housekeeping gene HPRT. Error bars represent ±SEM. 
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Figure 3.2: Expression of key Hh components and γδ-specific markers in γδ 
Τ cells of murine WT thymus 

Bar charts show relative transcription of Smo, Ptch, Disptch, Rab23 and the γδ-
specific marker SOX13, in the FACS sorted thymocyte populations described 
above. The scale shows expression normalized to the levels of the housekeeping 
gene HPRT. Error bars represent ±SEM. 
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Figure 3.3: Expression analysis of Hh signaling components in the murine 
spleen 

Dot plots show the sorting strategy of CD4, CD8 and γδTCR+ splenocytes. (A) A 
live gate was drawn and (B) doublets were excluded. CD3+ cells were sorted in 
relation to (D) CD4, (E) CD8 and (F) γδTCR+ cell surface expression. Bar charts 
show relative transcription of Ihh, Gli1, Gli2, Smo, Ptch and Disptch, in the FACS 
sorted splenocyte populations described above. We were unable to detect 
expression of Shh, Dhh and Gli3 in any of the above populations. The scale shows 
expression normalized to the levels of the housekeeping gene HPRT. Error bars 
represent ±SEM. 
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Figure 3.4: Gli Binding Site (GBS) GFP expression in the thymus and the 
spleen of 3 week old mice 

Histogram (A) shows the proportion of thymic and splenic live-gated 
CD3+γδTCR+ cells that are positive for GBS-GFP.  Dot plots (B) show CD27 and 
CD44 expression on GFP(+) γδ T cells from thymus and spleen. Dot plots (C) 
show CD24 staining plotted against GFP.  
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4. The function of the Hh family proteins in γδ T cell 

development in the thymus 

 

4.1 Introduction 
We showed that thymic γδ T cells express components of the Hh signalling 

pathway and transduce Hh signals in vivo.  In this Chapter we aim to 

investigate the specific contribution of each of the three Hh family 

members to γδ T cell development in the thymus. The three family 

members share a common signalling pathway, but have distinct, although 

partially overlapping functions. Their distinct functions in development 

and tissue homeostasis are the result of differences in their temporal and 

tissue restricted expression patterns, and may also reflect strength of 

signal induced by each family member.  All three Hh family members are 

expressed in the thymus. Shh is expressed by thymic epithelial cells (TEC), 

situated mostly at the cortico-medullary junction and subcapsular region 

(Outram, Varas et al. 2000), (Sacedon, Varas et al. 2003), (El Andaloussi, 

Graves et al. 2006, Saldana, Solanki et al. 2016). Ihh is expressed by 

thymocytes and some TEC scattered through out the cortex (Outram, 

Varas et al. 2000), (Sacedon, Varas et al. 2003), (Outram, Hager-

Theodorides et al. 2009)whereas Dhh is expressed by TEC (Sacedon, Varas 

et al. 2003).  Therefore, to investigate the function of each Hh family 

member in γδ T cell development in the thymus, we first analysed thymic 

γδ T cell populations in mice mutant in Shh, Ihh, and Dhh.  

 

4.2 Results 
 

4.2.1 The role of Shh in γδ T cell development in the thymus 
Shh can function as a morphogen, so that a concentration gradient 

specifies distinct cell fates according to concentration and duration of the 
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signal. Our laboratory has previously shown that Shh is an essential 

regulator of T cell development (Crompton, Outram et al. 2007). Shh is 

required for the DN1 to DN2 transition (Hager-Theodorides, Dessens et al. 

2005), (Shah, Hager-Theodorides et al. 2004) and regulates the DN to DP 

transition (Outram, Varas et al. 2000), (Rowbotham, Hager-Theodorides et 

al. 2009) and the DP to SP transition (Rowbotham, Hager-Theodorides et 

al. 2007), (Saldana, Solanki et al. 2016) whereas the function of Shh in γδ Τ 

cells remains unknown. 

 

Here, we used two different mice strains with impaired Shh production to 

test the hypothesis that Shh regulates γδ T cell development in the thymus. 

Shh KO is embryonically lethal, so we used Shh+/- mice and Shhfl/fl-

FoxN1Cre+ tg mice (ShhcoKO) in which Shh is conditionally knocked out in 

TEC. Comparison between these two systems can provide insight into the 

source of Shh affecting γδ cells.  

 

4.2.2 Adult γδ T cell populations in the Shh+/- thymus 
We did not observe any difference in γδ cell numbers in the Shh+/- thymus 

compared to WT (Figure 4.1A). However, in the adult Shh+/- thymus, CD27 

expression was modestly but significantly downregulated (Figure 4.1B). In 

addition, the percentage of the CD44+CD27- γδ population was increased 

(Figure 4.1E), whereas the CD27+CD44+ γδ subset was downregulated 

(Figure 4.1G), and the overall proportion of γδ thymocytes that expressed 

CD44 was decreased, although these changes were not significant.  

 

4.2.3 Shh+/- γδ thymocytes show reduced Hh-mediated transcription 
in vivo 
Our data show that Shh influences γδ cell development and differentiation 

in the thymus. Shh may be signalling directly to γδ cells or its effects may 

be indirect through another cell type. Therefore, to test the impact of Shh-

heterozygosity on Hh pathway activation in γδ thymocyte populations in 
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vivo, we crossed the Shh+/- mice with Hh-reporter mice (GBS-GFP-tg) mice 

and compared GFP expression by flow cytometry in defined γδ thymocyte 

populations from Shh+/+-GBS-GFP-tg and Shh+/--GBS-GFP-tg thymus 

(Figure 4.1H). We found that ~1.5% of γδ thymocytes expressed GFP in 

the Shh+/+ thymus, and this was reduced by approximately two-thirds in 

the Shh+/- mice.  

 

4.2.4 Conditional deletion of Shh from TEC  
Thymic epithelial cells are believed to be the main source of Shh in the 

mouse thymus, so we used Cre-loxP technology to conditionally delete Shh 

from all TEC using TEC-specific FoxN1-Cre (Saldana, Solanki et al. 2016). 

In the ShhcoKO adult thymus, the number of γδ thymocytes was reduced, 

compared to Cre- (WT) littermates (Figure 4.2A and B).  This reduction in 

γδ thymocyte numbers was not observed in the Shh+/- thymus, and 

suggests that TEC are the major source of Shh in the thymus.   

 

4.2.5 Shh-treatment of WT FTOC 
To investigate the impact of recombinant (r) Shh treatment on γδ 

thymocyte numbers and cell surface phenotype, we cultured E14.5 WT 

FTOC with rShh for 5 days.  Addition of rShh increased the proportion of 

γδ cells in the E14.5 + 5 day FTOC and significantly increased the 

proportion of γδ thymocytes that expressed cell surface CD44 (Figure 4.3). 

This was consistent with the observation that the CD44+ γδ thymocytes 

are undergoing active Hh signalling in the GBS-GFP-tg reporter 

experiments.  

 

As the increase in the proportion of γδ thymocytes in the rShh-treated 

cultures may have been the result of the action of rShh to inhibit 

differentiation from DN to DP thymocyte (Outram et al 2000), we also 

carried out FTOC with E16.5 WT thymic lobes in the presence of rShh or 
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rHhip (to neutralize endogenous Hh molecules in the cultures), and 

analysed them after 5 days. We did not find an influence of rShh treatment 

on the number of γδ cells in the E16.5 + 5 day FTOC (Figure 4.4A and B).  

Interestingly, rHhip-treatment of E16.5 WT FTOC led to a significant 

decrease in the number of γδ thymocytes, indicating that endogenous Hh 

proteins present in the fetal thymus are required for normal γδ thymocyte 

production (Figure 4.4C and D). This is consistent with the reduction in γδ 

cell numbers observed in the ShhcoKO adult thymus. We also observed a 

significant down-regulation of CD27 in rShh treated E16.5 + 5 day FTOC 

(Figure 4.4E). 

 

4.2.6 Ihh signalling in γδ T cell development in the thymus 
Ihh is expressed by DP and SP thymocyte populations (Outram, Hager-

Theodorides et al. 2009) and in sorted γδ thymocytes (Figure 4.7). Ihh-

mediated Hh signalling both promotes and restricts T cell development, as 

Ihh, secreted from DP cells, together with Shh, secreted by TEC, promote 

differentiation of DN1 cells to DN2. However, Ihh negatively regulates pre-

TCR-induced differentiation to DP stage. The role of Ihh on the 

development γδ Τ cells had not previously been investigated.  We 

therefore investigated the impact of Ihh-mutation on γδ thymocyte 

development.  

 

We measured γδ thymocyte population number and cell surface 

phenotype in Ihh+/- adult thymus, E14.5 and E15.5 Ihh-mutant thymi and 

CD4Cre+-Ihhf/fl (IhhcoKO) adult mice, in which Ihh is conditionally 

deleted from all cells that have expressed CD4.  

 

Of the three Hh ligands, Ihh affected γδ cells the least.  There was no 

difference in the proportion of γδ thymocytes in adult Ihh+/- thymus 

compared to WT (Figure 4.5A and B) or in E14.5 or E15.5 Ihh-mutant 
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thymus or adult IhhcoKO thymus compared to WT littermates (data not 

shown). We performed a detailed analysis by flow cytometry staining 

against NK1.1, CD4, CD122, CD27, CD44, CD24, CCR6, CCR7, IFNγ and IL-

17, and the only difference we observed was a increase in CD4-expressing 

γδ cells in the adult Ihh+/- thymus, compared to WT (Figure 4.5C). 

 

4.2.7 The role of Dhh in γδ T cell development 
Although not expressed by thymocytes, Dhh is expressed by thymic 

epithelial cells (Sacedon, Varas et al. 2003). The function of Dhh in γδ T 

cells is unknown.  Unlike mutant Ihh and Shh mice, Dhh-/- mice are born 

healthy and viable. Therefore, in order to examine the role of Dhh on γδ T 

cells, we compared WT to Dhh-/- mice.  

 

4.2.8 The adult Dhh-deficient thymus 
The Dhh-/- thymus showed a small and non-significant reduction in γδ T 

cell count and percentage compared to WT (Figure 4.6A,B). The Dhh-/- 

thymus showed a significant reduction in the proportion of CD27+CD44+ γδ 

cells. Virtually all WT γδ thymocytes are CCR7- and only around 3% 

stained positive for CCR6. Deletion of Dhh increased CCR6 expression 

compared to WT (Figure 4.6G). In addition, CD4 expression decreased on 

Dhh KO γδ thymocytes compared to WT (Figure 4.H). 

 

4.2.9 γδ thymocytes in the fetal Dhh-deficient thymus  
We analysed γδ thymocyte populations in E17.5 Dhh-/- thymi. Due to the 

small size of the fetal tissues and the scarcity of γδ cells, our analysis was 

restricted to a few γδ markers. As seen in the adult, we found no overall 

difference in the number of γδ thymocytes (Figure 4.7A) but deletion of 

Dhh resulted in a higher percentage of CD44+CD27- γδ cells and 

downregulation of CD24 expression (Figure 4.7B,C). However, as these 

data were obtained from only one litter, more embryos need to be 
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examined to confirm our findings.  Interestingly, in the fetal spleen Dhh-

deficiency also appeared to decrease cell surface expression of CD27 on γδ 

cells compared to WT, and this observation will also be confirmed when 

more embryos are available.  

 

4.2.10 Treatment of WT FTOC with rDhh and rHHip 
We showed that treatment of WT FTOC with rShh increased the 

proportion of γδ cells recovered, whereas treatment with rHhip (which 

binds to Hh proteins and neutralizes them) decreased γδ cells in FTOC. As 

Dhh and Shh have been suggested to have different binding affinities, we 

also tested the impact of rDhh treatment on γδ cell numbers in FTOC.  We 

treated E17.5 FTOCs with rDhh or rHhip and analysed them after 6 days in 

culture. We retrieved more γδ cells from the rDhh-treated culture than 

control untreated cultures, whereas the rHhip treatment reduced γδ cells, 

as seen in Figure 4.7D.  

 

4.2.11 The effect of Shh and Dhh double deficiency on γδ T cells 
We have investigated the role of the Shh KO and the Dhh KO on γδ T cells 

in the thymus, but as both Shh and Dhh are expressed by TEC, we tested 

the impact of double deficiency.  We crossed Dhh KO with ShhcoKO 

(Shhfl/fl-FoxN1Cre+) mice to generate animals in which both Dhh and Shh 

are knocked out from TEC in the thymus.  

The double KO mice had significantly fewer γδ thymocytes than WT 

littermates (Figure 4.8A,B).  This suggested an additive effect of double 

deficiency, as neither the DhhKO or the ShhcoKO showed significantly 

fewer γδ cells in the thymus. Some small and not significant changes were 

observed on CD27 and CD44 expression (Figure 4.8E).  No change was 

observed in terms of Vγ chain usage (data not shown). In the double KO, 

we also observed ~30% reduction of CD122+NK1.1+ cells, and this change 

was reversed in the DhhKO Shh+/+ littermates (Figure 4.8F). 
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Figure 4.1: Development of γδ T cell subtypes in the adult Shh+/- thymus  

Bar chart (A) shows the proportion of live-gated thymocytes that are CD3+γδTCR+. 
Bar charts show expression of (B) CD27 and (D) CD44 in γδ T cells; (C) shows 
percentage of γδ cells that are CD27+CD44- and (E) CD44+CD27-. (F) shows the ratio 
of CD27+CD44- to CD27-CD44+ γδ T cells. Error bars represent ±SEM. (G) 
Representative dot plots show cell surface expression of CD27 and CD44 on γδ T cells 
from WT and Shh+/- thymus. Bar chart (H) shows expression of GBS-GFP in 
CD27+CD44+, CD27+CD44- and CD44+CD27- γδ T cell populations in the thymus of 
young adult Shh+/- and Shh+/--GBS-GFP+ mice. *p<0.05, n=11 
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Figure 4.2: Percentages of γδ T cells in Shhfl/fl FoxN1-Cre thymus, spleen and 
lymph nodes 

Representative dot plots (A) show percentage of CD3+γδTCR+ thymocytes isolated 
from WT and Shh FoxN1 KO mice. Bar chart (B) show the percentages of γδTCR+ cells 
in thymus of WT and Shh FoxN1 KO mice. n=6 
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Figure 4.3: Numbers of γδ T cells and surface expression of key markers in 
E14.5 fetal thymus organ cultures (FTOC) 

For each experiment, one E14.5 WT thymic lobe was cultured untreated and the other 
thymic lobe of the same thymus was cultured in the presence of rShh for 5 days. 
Histogram (A) shows the percentage of γδ T cells in WT and rShh-treated thymi as 
analysed by flow cytometry, after 5 days of culture.  Histograms show CD27 (B) and 
CD44 (C) expression of γδ T cells, as well as percentage of CD44+CD27- γδ T cells (D). 
Error bars represent ±SEM. *p<0.05, n=14  
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Figure 4.4: Numbers of γδ T cells and surface expression of key markers in 
E16.5 FTOC 

Fetal thymic cells were analysed by flow cytometer to identify the major γδ T 
cells subtypes based on cell surface expression of CD27 and CD44. For each 
experiment, one E16.5 WT thymic lobe was cultured for 5 days untreated and 
the other thymic lobe of the same thymus was cultured for 5 days in the 
presence of rShh. Scatter graphs show the cell number of each individual WT 
untreated and (B) rShh-treated or (D) Hhip-treated E16.5 FTOC cultured for 5 
days. The mean of each group is indicated by a line. Bar charts show γδ T cell 
percentages in WT untreated and WT + rShh (A) or WT + rHhip (C) E16.5 thymic 
lobes, analysed after 5 days in FTOCs. (E) Expression of CD27 in WT and rShh-
treated thymic lobes in 5 days FTOCs. Error bars represent ±SEM. *p<0.05, n=12 

5 days FTOCs + rShh

W
T

rS
hh

0.0

0.5

1.0

1.5
%

 o
f 
γ
δ

 T
 c

e
lls

5 days FTOCs + rHhip

W
T

rH
hi
p

0.0

0.5

1.0

1.5

2.0

*

%
 o

f 
γ
δ

 T
 c

e
lls

CD27 expression

W
T

rS
hh

0

20

40

60

80

100 *

%
 o

f 
C

D
2

7
+
 γ
δ

 T
 c

e
lls

rHhip

W
T

H
hi
p

0

1000

2000

3000 *

N
u

m
b

e
r 

o
f 
γ
δ

 T
 c

e
lls

 p
e

r 
th

y
m

ic
 lo

b
e

rShh

W
T

rS
hh

0

1000

2000

3000

4000

N
u

m
b

e
r 

o
f 
γ
δ

 T
 c

e
ll
s

 p
e

r 
th

y
m

ic
 l
o

b
e

A

E

DC

B



87 
 

 
Figure 4.5: The role of Ihh in thymic γδ T cells 

Bar charts (A) and (B) show the percentage and cell count of γδ cells in the 
thymus. (C) shows a small upregulation of CD4 in the thymus of Ihh+/- mice No 
differences were observed for NK1.1, CD122, CCR6, CCR7, Vγ chains and subtype 
populations as well as IFNγ and IL-17 production (data not shown). n=10 
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Figure 4.6:  The effect of Dhh in γδ T thymocytes 

Bar charts (A) and (B) show the percentage and cell count of CD3+ γδ Τ cells in 
WT and Dhh-/- mice. Bar chartS (C), (D) and (E) show the percentages of the Vγ1, 
CD27+CD44+ and CD44+CD27- populations, respectively. Representative overlaid 
histograms (WT / KO) (F) show that deletion of Dhh increases the CCR6 and 
CCR7 cell surface expression. (G) (WT / KO) shows CD4 expression in WT and 
Dhh KO mice. Dot plots (H) show CD27 and CD44 expression on WT and Dhh-/- 
mice. *p<0.05, n=4 
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Figure 4.7: The effect of Dhh in E17.5 γδ T cell development in the thymus 
and the spleen 

Scatter plot (A) shows the percentage of γδ T thymocytes on WT, Dhh+/- and  
Dhh-/-E17.5 mice. Scatter plots (B) and (C) show percentage of the CD44+CD27- 

γδ subset and expression of CD24, respectively; n=19. Bar chart (D) shows 
percentage of γδ thymocytes in FTOCs after 6 days of culture with rDhh or 
rHhip1, relative to WT. n=6 
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Figure 4.8: The effect of double KO (Dhh-/-Shhfl/fl FoxN1Cre+) on γδ 
thymocytes 

Bar charts show (A) the percentage and (B) cell count of γδ T cells in WT and 
double KO thymocytes from 3 weeks old mice. (C) shows CD24 expression and 
(D) shows CD122+NK1.1+. Representative dot plots (E) show CD27 and CD44 
expression on γδ Τ cells from WT, double KO and Dhh-/- ShhWT (Cre-) 
littermates. Dot plots (F) show CD122 and NK1.1 expression on γδ T cells from 
WT, double KO and Dhh-/- Shh WT (Cre-) littermates. *p<0.05 **p<0.005, n=5 
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4.3 Discussion 
 

We analysed γδ thymocyte populations in fetal and adult Ihh+/-, IhhcoKO 

(CD4Cre), Shh+/-, ShhcoKO (FoxN1Cre), Dhh-/- and Dhh-/-ShhcoKO thymus.  

We detected no impact of Ihh on γδ cells in the thymus.  Both Shh-

heterozygosity and Dhh-deficiency resulted in changes in expression of 

cell surface markers. The Shh+/- thymus showed a significant decrease in 

CD27 expression.  The CD27- γδ T cell population in the thymus is believed 

to give rise to an IL17-producing population, which express high levels of 

the transcription factor RORγt in addition to high levels of the γδ-lineage 

transription factor SOX13. It will therefore be important to investigate this 

population in peripheral tissues in these mice. 

 

The Dhh-/- thymus showed a significant decrease in the CD27+CD44+ 

population, which are the population of γδ cells that express the 

transcription factor T-bet, in addition to lower levels of SOX13, and 

produce IFNγ. In WT FTOC neutralization of endogenous Hh proteins by 

treatment with recombinant Hhip reduced γδ cell numbers, whereas 

treatment with recombinant Shh or recombinant Dhh protein increased 

the proportion of γδ cells. These experiments suggest that Hh signalling 

promotes the production of γδ thymocytes, but we did not detect 

statistically significant differences in γδ cell number in the Shh+/- or Dhh-/- 

thymus, but only in the double knock out Dhh-/- ShhcoKO.  
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5. Modulation of Hh signalling during γδ T cell 

development in the thymus 

 

5.1 Introduction 
 

We showed that the development of thymic γδ T cells is influenced by Shh 

and Dhh signalling in the fetal and adult thymus.  In this Chapter, we test 

the impact of mutation of negative regulators of Hh pathway activation 

(Gli3 and Kif7) on γδ T cell development in the thymus.  In addition, to test 

the hypothesis that Hh proteins signal directly to thymic γδ cells, we 

investigate the impact of transgenic expression of activator or repressor 

forms of Gli2 in γδ cells.  

 

5.2 Results 

 

5.2.1 The role of Gli3 in γδ T cell development in the thymus 
Gli3 can be modified to function as a transcriptional repressor or as a 

transcriptional activator.  In the absence of Hh signalling, a truncated form 

of Gli3 binds Gli binding sites and represses transcription, thereby 

preventing transcription of Hh target genes. In the presence of Hh 

signalling, Gli3 functions as a transcriptional activator (Sasaki, Nishizaki et 

al. 1999). It has been shown that, in some tissues, Gli3 represses 

transcription of Shh and Gli3 deficient mice show an opposing phenotype 

to Shh deficient mice in many tissues, indicating that Gli3 acts mainly as a 

transcriptional repressor in vivo (te Welscher, Zuniga et al. 2002).  In the 

fetus, the Gli3-mutant thymus shows the opposing phenotype to the Shh-

deficient thymus, and the Gli3-mutant thymus stroma has increased Hh 

pathway activation, indicating that Gli3 functions to limit Hh signalling in 
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the thymic stroma (Hager-Theodorides, Dessens et al. 2005), (Saldana, 

Solanki et al. 2016).  

 

Gli3-/- mice die before birth and exhibit severe developmental defects 

whereas Gli3+/- mice appear normal, although they form an extra digit in 

the interior side of the limb, allowing for easy genotyping, and are known 

as the ‘extra toe’ mutant (Schimmang, Lemaistre et al. 1992). To test the 

impact of Gli3 mutation on γδ cell development and differentiation, we 

analysed the γδ cell population in the adult Gli3+/- thymus. Deletion of one 

copy of Gli3 resulted in increased numbers of γδ cells in the thymus of 

young adult mice, but this effect was not statistically significant (Figure 

5.1A, B), and we also observed a decrease in CD24 expression on 

CD44+CD27- γδ cells (Figure 5.1D, E). 

 

5.2.2 The role of Kif7 in γδ thymocyte development 
It is believed that the kinesin protein Kif7 is a critical regulator of Hh 

signalling (Cheung, Zhang et al. 2009). Kif7, a mammalian equivalent of 

costal2 (Cos2), acts downstream of Smo and physically interacts with Glli 

transcription factors. It acts as a processing hub that recruits multiple 

protein kinases which negatively control Gli’s stability, hence supressing 

Hh activity, although in some tissues it has also been described to be 

required for Hh signal transduction (Zhao, Tong et al. 2007). Of note, mice 

lacking Kif7 display a Gli3-like skeletal phenotype, but with greater 

disorganisation, and Kif7 deficiency has been described to both increase or 

decrease Hh pathway activity, dependent on context (Cheung, Zhang et al. 

2009). Here, we analysed γδ cells in the Kif7+/- thymus, in order to 

investigate the role of Kif7 in γδ T cell development. 

 



94 
 

5.2.3 The adult Kif7+/- thymus 
Kif7-/- mice die before birth and therefore in the adult thymus our 

experiments were restricted to Kif7+/- young adults, which look normal 

and are fertile. Deletion of one copy of Kif7 increased the percentage of γδ 

T cells in the adult thymus (Figure 5.2A, B), but γδ T cell subtypes based on 

CD27 and CD44 expression were not affected by Kif7 heterozygosity 

(Figure 5.2C, D, E and F) and no difference was observed in CD4 

expression (data not shown).  

 

5.2.4 The fetal Kif7-mutant thymus 
In order to investigate the role of Kif7 in early γδ T cell development in the 

thymus and to test the impact of Kif7 deficiency, we time-mated Kif7+/- and 

analysed the embryonic thymus on E17.5. No difference was observed 

between WT and Kif7+/- thymus, although Kif7-/- thymi contained 

significantly more γδ cells than WT littermates, as the thymus contained 

more cells (Figure 5.3A and B). We detected a significant reduction in 

CD44+CD27- γδ thymocyte numbers and an increase in CD27+CD44- γδ 

cells in the Kif7-/-, compared to WT and Kif+/-(Figure 5.3A-D).  

 

The increase in γδ cell numbers in the Kif7-/- fetal thymus are consistent 

with Kif7 functioning as a negative regulator of Hh signalling, as Hh-

neutralisation by Hhip-treatment decreased γδ cell numbers in FTOC and 

the double mutant Dhh-/-ShhcoKO thymus contained fewer γδ cells.  

 

5.2.5 Inhibition of Hh-mediated transcription in γδ thymocytes 
We found a modest impact of mutation of Shh and Dhh, expressed by TEC 

on γδ thymocyte development and in addition, that deletion of Kif7 (which 

is expressed in thymocytes and TEC) significantly increased overall γδ 

cells in the thymus, and increased the CD27+CD44- population. To ask if 

Shh and Dhh signal directly to developing γδ thymocytes, or if the impact 

of Hh signalling on γδ cells is indirect through another cell type, we used 
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the lck-driven Gli2C2-transgenic (Rowbotham, Furmanski et al. 2008). In 

this transgenic a truncated form of Gli2, which acts as a repressor of Hh-

dependent transcription only, is expressed in all T-lineage cells, including 

γδ cells.  

 

In the Gli2C2 transgenic thymus of young adult mice the number of γδ Τ 

cells was reduced compared to WT (Figure 5.4A, B). The CD44+CD27- γδ 

population was increased (Figure 5.4C) and CD24, CD122 and CD4 were 

upregulated (Figure 5.4D-G). Thus, inhibition of physiological Hh-

mediated transcription in γδ thymocytes showed that the Hh signalling 

pathway is active during normal γδ cell development and that it regulates 

subset distribution and cell surface phenotype. 

 

5.2.6 Constitutive activation of Hh-mediated transcription in γδ 
thymocytes  
We then carried out the reciprocal experiment, and investigated the 

impact of transgenic expression of the activator form of Gli2 (Gli2N2) to 

constitutively activate Hh-mediated transcription in γδ thymocytes. 

(Rowbotham, Hager-Theodorides et al. 2009).  

The Gli2N2 transgenic thymus contained significantly more γδ cells than 

WT (Figure 5.5A, B). Gli2N2-tg mice showed a significant upregulation of 

CD44 on γδ thymocytes compared to WT, with a significant decrease in the 

proportion of the CD27+CD44- γδ subset and increase in the CD27+CD44+ 

γδ subset (Figure 5.5D-G). In the Gli2N2-tg thymus we found increased 

CD122 expression on the expanded CD27+CD44+ γδ subset (Figure 5.6F-

H).  In addition, the Gli2N2-tg CD27+CD44+ γδ thymocyte subset expressed 

lower CD24 than their WT counterparts (Figure 5.6A,). 

 

 



96 
 

 
Figure 5.1: The effect of Gli3+/- on the expression of CD24 in γδ T cells 

Bar charts show (A) percentages and (B) cell count of thymic γδTCR+ cells. 
Representative dot plots (C) show percentage of γδTCR+ thymocytes isolated from 
WT and Gli3+/- mice. Bar chart (D) shows CD24 expression of the thymic CD44+CD27- 
γδ population. Representative overlaid histogram (E) (WT / Het) of CD44+CD27- γδ 
subtypes that express CD24 in the thymus of WT and Gli3+/- young adult mice.  n=6 
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Figure 5.2: The effect of Kif7+/- on γδ T cells from the thymus  

Bar chart (A) shows percentages of γδTCR+ cells in WT and Kif7+/- in the thymus. 
Representative dot plots (B) show the proportion of live-gated thymocytes that are 
γδTCR+ in WT and Kif7+/- mice. Representative density plots (C) show expression of 
CD27 and CD44 in WT and Kif7+/- mouse thymus. Bar charts (D, E, F) show the 
percentage of three major γδ+ populations based on CD27 and CD44 expression. 
Error bars represent ±SEM. n=6 
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Figure 5.3 The effect of Kif7 on γδ T cells from the thymus of E17.5 
littermates 

Scatter plots (A) and (B) show the percentage and number of γδ Τ cells in WT, 
Kif7+/- and Kif7-/- E17.5 thymi. (C) and (D) show the percentage of γδ T cells that 
are CD44+CD27- and CD27+CD44- respectively. The mean of each group is 
represented with a line. *p<0.05 **p<0.005, n=21 
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Figure 5.4: The effect of Gli2C2 on the γδ Τ cell expression of CD4, CD24, 
CD27, CD44 and CD122 

Bar chart (A) and (B) show the percentage and cell count respectively of γδ T 
cells in the thymus of WT and Gli2C2 mice. (C) shows the thymic CD44+CD27-. Bar 
charts show the percentage of CD44+CD27- γδ T cells that express (D) CD24, (E) 
CD122 and (F) CD4 in the thymus of young adult mice. Representative overlaid 
histograms (G) (WT / Tg) show expression of CD4, CD24 and CD122 in WT and 
Gli2C2 thymus of CD44+CD27- γδ T cells. Representative dot plots (H) show CD27 
and CD44 expression of WT and Gli2C2 γδ T cells from the thymus. Error bars 
represent ±SEM. *p<0.05, n=8 
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Figure 5.5: The effect of Gli2N2 on CD27 and CD44 expression on γδTCR+ 

thymocytes 

Bar charts (A) and (B) show percentage and cell count, respectively, of WT and 
Gli2N2 thymocytes. Bar charts (C) and (E) show expression of CD27 and CD44 
and the percentage of the CD27+CD44- (D) and CD27+CD44+ (F) populations in γδ 
cells from WT and Gli2N2 thymocytes. Error bars represent ±SEM. 
Representative dot plots (G) show CD27 and CD44 on γδ cells (gated on 
CD3+γδ+) in WT and Gli2N2 mouse thymus. *p<0.05, **p<0.005, n=4 
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Figure 5.6: The effect of Gli2N2 on CD24 and CD122 expression on thymic 
γδTCR+ cells. 

Bar charts (A), (C) and (D) show the percentage of thymic γδ T cells that express 
CD24 in each of the three populations: CD27+CD44+, CD44+CD27- and 
CD27+CD44-. Representative overlaid histograms (WT / Tg) (B) show the 
difference between WT and Gli2N2 littermates in CD24 expression on 
CD27+CD44+ γδ thymocytes. Representative overlaid histograms (E) (WT / Tg) 
show the difference in CD122 expression on γδ cells in the thymus of young adult 
WT and Gli2N2 littermate mice, whereas density plots (H) show the CD27 and 
CD44 phenotype of the same CD122+ γδ T cells. Bar charts (G) show the cell 
count of the CD122+ γδTCR+ population. Error bars represent ±SEM. **p<0.005 
***p<0.0001 
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5.3 Discussion 
 
In summary, constitutive Hh-mediated transcription in thymocytes 

promoted γδ thymocyte numbers and increased CD44 expression and the 

CD27+CD44+ γδ subset, whereas inhibition of physiological Hh-mediated 

transcription had the opposite effect, and γδ cell numbers and CD44 

expression were downregulated.  Likewise, cell surface expression of CD24 

(HSA), which is highly expressed in immature cells and down-regulated 

wih maturity, was increased when Hh signalling was inhibited and 

decreased when the Hh pathway was constitutively active in the Gli2N2-tg 

thymus.   

 

Taken together, these experiments show that the Hh proteins positively 

regulate γδ cell development in the thymus, and signal directly to γδ 

thymocytes to promote differentiation of the CD44+CD27+ subset.  It will 

therefore be important to investigate the influence the Hh signalling on the 

homeostasis and subset distribution of peripheral γδ T cells. 
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6. Modulation of Hh signalling influences the 

homeostasis of γδ T cell populations in the periphery 

 

6.1 Introduction 
 
We showed that the development of thymic γδ T cells is influenced by Shh 

and Dhh signalling in the fetal and adult thymus, and that manipulation of 

Hh-mediated transcription in γδ thymocytes also affects their 

development.  In this Chapter we test the impact of mutations in 

components of the Hh signaling pathway on the homeostasis of peripheral 

γδ T cell populations. The mouse models that we will investigate fall into 

three groups:  in some models the Hh pathway will be affected in the same 

way in both the thymic and peripheral γδ T cells (Gli2Ν2 tg and Gli2C2 tg), 

whereas in the mice in which the Hh ligands, or pathway regulators are 

constitutively mutated (Shh+/-, Dhh-/-, Ihh+/-, Gli3+/-, Kif7+/-) the extent of 

impact of the mutation will depend on the pattern of expression of the 

molecule in the different tissues. In the ShhcoKO animals, however, the 

developing γδ thymocytes are exposed to a reduced Hh signal in the 

thymus, but normal levels of Hh signalling in peripheral tissues.  

 

6.2 Results 
 

6.2.1 The influence of the Gli2N2 transgene on peripheral γδ T cell 
biology 
We first examined the impact of constitutive activation of Hh-mediated 

transcription on γδ T cell populations in the spleen and lymph nodes. The 

number of γδ cells was not influenced by the Gli2N2 transgene in the 

spleen and lymph nodes (Figures 6.1A, B and 6.3). However, in contrast to 

the thymus, in the spleen CD44 expression was downregulated in the 

Gli2Ν2 tg γδ T cells, and the CD44+CD27- γδ population was significantly 
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decreased by ~10-fold compared to WT, indicating that Hh-mediated 

transcription negatively regulates the splenic CD44+CD27- γδ population 

(Figure 6.1C-E). Interestingly, CD4 was significantly upregulated in splenic 

transgenic γδ cells compared to their WT counterparts (Figure 6.2A, B). 

We also observed a reduction in intensity of CD44 staining on the 

CD44+CD27- population in the lymph nodes, and an increase in the 

CD27+CD44+ γδ population compared to WT (Figure 6.3A-D). Gli2N2 tg 

expression also decreased CD122 expression on γδ cells in the spleen and 

lymph nodes compared to WT (Figure 6.2C and 6.4E). This was in contrast 

to our previous observation in the thymus, in which the transgene 

expression increased cell surface CD122 expression on the CD27+CD44+ γδ 

thymocytes.  In the lymph nodes, the Gli2N2 transgene increased cell 

surface CD24 expression significantly on all γδ subtypes, independently of 

CD27 and CD44 expression (Figure 6.4A-D), whereas we did not detect an 

influence of the transgene on CD24 expression in the spleen (data not 

shown). As CD24 is downregulated during T cell maturation, the increase 

in CD24 expression suggests that the γδ cells undergoing active Hh-

mediated signalling were more immature. 

 

6.2.2 Inhibition of physiological Hh-mediated transcription in 
peripheral γδ T cells 
We then carried out the reciprocal experiment and tested the impact of 

inhibition of physiological Hh-mediated transcription on peripheral γδ T 

cell subsets, by analysis of the Gli2C2 transgenic. We did not detect any 

difference in γδ cell numbers compared to WT litter mates in either the 

spleen or lymph nodes (Figure 6.5A-D). No major difference was observed 

in the population distribution in the spleen, but the CD44+CD27- γδ 

population was affected in the lymph nodes, with an increase in the 

proportion of CD122+ cells (Figure 6.5F), the opposing affect on CD122 

expression to that observed in the Gli2N2 tg peripheral γδ T cells. 
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6.2.3 Dhh signalling in peripheral γδ T cells 
Dhh is expressed by epithelial cells distributed throughout the thymus 

(Sacedon, Varas et al. 2003), and it is also expressed by stromal cells in the 

spleen, indicating that it could have a role in T cell activation or peripheral 

maintenance of T cells (Lau, Outram et al. 2012). Dhh expression has not 

been detected in the lymph nodes (our unpublished data). The role of Dhh 

in peripheral γδ T cells is unknown. 

 

As Dhh-deficient mice are viable and appear healthy, we investigated the 

peripheral γδ T cell populations in Dhh KO mice, compared to their WT 

littermates. In the LN, we did not observe significant differences in the 

number, subset distribution or phenotype of the γδ T cell population 

between DhhKO and WT (Figure 6.6A, B), consistent with the fact that we 

have not detected Dhh expression in the LN.  

 

In the spleen, Dhh KO mice had fewer γδ cells and significantly fewer NK-

like γδ cells than their WT littermates (Figure 6.7A, B). We did not observe 

a significant difference in the distribution of the γδ subsets defined by 

CD44 and CD27 (Figure 6.7E, G), and cell surface expression of CCR6 was 

not affected (Figure 6.7F).  

 

In order to investigate if Dhh signals directly to splenic γδ cells, we crossed 

the Dhh-mutant mice with the Hh-reporter transgenic (GBS-GFP-tg), and 

compared GFP expression in the γδ subsets in DhhKO and WT littermates. 

We found that Dhh-deficiency significantly decreased the proportion of 

GFP+ cells in the CD44+CD27- γδ population, indicating that Hh pathway 

activation is reduced in these cells, and therefore that Dhh signals directly 

to this population in the WT spleen (Figure 6.7H, J). Interestingly, 

however, we found that Dhh-deficiency significantly increased the 
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proportion of GFP+ cells in the CD27+CD44+ γδ subset, indicating 

increased Hh pathway activation in these cells in the absence of Dhh 

(Figure 6.7I). This finding is puzzling, and suggests that Dhh functions 

either to repress another Hh family member that signals directly to these 

cells, or that Dhh functions to increase expression of a repressor of the 

pathway in these cells. 

 

We then tested the ability of spleen γδ cells to produce IFNγ and IL17 ex 

vivo, by intracellular cytokine staining following a short activation. IL17 is 

made predominantly by the CD44+CD27- population, whereas IFNγ is 

made predominantly by the CD27+CD44+ population that express NK1.1. 

Dhh did not appear to affect ability of γδ splenocytes to produce IFNγ after 

4h of activation with PMA and ionomycin and subsequent intracellular 

staining, despite the reduction in NK1.1 expression in the DhhKO (Figure 

6.8A). However, production of IL17 was reduced by half in the DhhKO 

compared to WT (Figure 6.8B).  

 

We then investigated the impact of Dhh deficiency on the recovery of the 

splenic γδ subsets following irradiation. Dhh has previously been shown to 

accelerate the recovery of the erythroid lineage in the spleen after non-

lethal irradiation (Lau et al 2012). We irradiated three 3 week old pairs of 

Dhh KO and WT mice and analysed them 14 days after irradiation. Overall, 

the proportion of CD3+ cells was lower in the Dhh KO compared to WT 

(Figure 6.9C), but the proportion of γδ cells was not affected (Figure 6.9D). 

Interestingly, we observed a significant increase in the proportion of the 

CD44+CD27- γδ subset in the Dhh KO compared to WT (Figure 6.9E-G) and 

this was the population that showed increased Hh pathway activation in 

the absence of Dhh in the steady-state spleen. 
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6.2.4 Peripheral γδ T cell populations in Shh+/- mice 
Shh is expressed in the thymus and spleen (Outram et al 2000, Varas et al 

2005) but has not been detected in the lymph node. The Shh+/- spleen had 

fewer γδ cells than WT, whereas the lymph nodes had more (Figure 6.10A, 

B). This finding may be the result of Shh affecting either proliferation of 

tissue-specific γδ cells, or apoptosis or migration of peripheral γδ cells.  

 

In the adult spleen, Shh+/- caused an increase in the CD44+CD27- γδ 

population (Figure 6.11D, F) and a small decrease in overall CD27 

expression compared to WT (Figure 6.11A). Cell surface expression of 

CD24 was also higher in the Shh+/- γδ cells in all subsets, compared to WT 

(Figure 6.11 G-I).  

 

In order to test if Shh is signaling directly to γδ cells in the spleen we 

crossed the Shh+/- mice with the GBS-GFP-tg and compared GFP 

expression in the different γδ subsets between GBS-GFP-tg-Shh+/- and GBS-

GFP-tg-Shh+/+. Deletion of one copy of Shh decreased GFP expression in all 

tissues and subsets of γδ cells, consistent with the idea that Shh signals 

directly to γδ cells (Figure 6.12A). The greatest difference in Hh pathway 

activity in the spleen was observed in the CD27+CD44+ population (Figure 

6.12B). However, the CD44+CD27- γδ population is the most responsive to 

Hh as manifested by the highest proportion of GFP+ cells.  When we gated 

on γδ cells and analysed anti-CD24 staining against GFP-expression, we 

found that all GFP+ γδ cells were CD24+ in both WT and Shh+/-, suggesting 

that it is the more immature cells that are Hh-responsive (Figure 6.12C). 

 

We then tested the ability of spleen and lymph nodes to produce IFNγ and 

IL17 ex vivo, by intracellular cytokine staining following a short activation. 

Shh heterozygosity increased the ability of γδ splenocytes and lymph 

nodes to produce IFNγ and IL-17 after 4h of activation with PMA and 

ionomycin and subsequent intracellular staining (Figure 6.13A-C).  
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6.2.5 Peripheral γδ T cell populations in ShhkoCO mice  
To investigate if deletion of Shh from the thymus only, in our ShhkoCO 

model (Shhfl/fl-FoxN1-Cre-tg), would influence γδ populations in the 

periphery, we analysed ShhcoKO and WT littermate spleen and lymph 

nodes.  No differences were observed in the spleen whereas in the lymph 

nodes, more γδ cells are seen (Figure 6.14A), confirming the findings in the 

Shh+/- mice, and suggesting that the increase is due to reduced Shh 

signaling during γδ cell development in the thymus. No significant 

differences were detected in subset distribution in the ShhFoxN1 KO 

spleen. In lymph nodes, however, both the CD44+CD27- and the 

CD27+CD44+ γδ populations were increased in the ShhcoKO compared to 

WT (Figure 6.14B).  

 

6.2.6 Peripheral γδ T cell populations in ShhcoKODhhKO double 
knockout mice 
In the spleen we found an increase in γδ cells in the double knockout mice, 

although this change was not significant (Figures 5.15A, B). This finding 

was of interest because deletion of neither Shh or Dhh alone influenced the 

percentage of γδ cells in the spleen, and therefore it will be important to 

analyse more ShhcoKO-DhhKO spleens in the future. In terms of the γδ 

subsets, however, the double KO reduced both the CD27+CD44+ and the 

CD44+CD27- population, relative to WT, with an overall reduction in CD44 

expression (Figure 6.15C). The effect was similar to that observed in Dhh 

KO littermates. The CD122+NK1.1- population was increased in the double 

KO spleen (Figure 6.15D), but variation between samples in the 

percentages of CD122+NK1.1+ and NK1.1+CD122- populations do not allow 

us to draw concrete conclusions on these two subsets, indicating that 

analysis of more mice will be important. 

 

In the lymph nodes, the double KO mice had fewer γδ cells both in terms of 

cell count and as a percentage (Figures 6.16A and B). In Shh WT Dhh KO 
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littermates, the number of γδ cells was even lower, a finding consistent 

with our finding that Shh mutant mice have more γδ cells in the lymph 

nodes. Double KO mice also showed a significant reduction in CD27+CD44+ 

cells with further decrease in Shh WT Dhh KO littermates (Figures 6.16C 

and D). Finally, consistent with our findings in the thymus and spleen, 

double KO mice had fewer NK-like γδ cells in the lymph nodes (Figure 

6.16E). 

 

6.2.7: Peripheral γδ T cells in Kif7+/- mice 
Deletion of one copy of Kif7 increased the percentage of γδ T cells in the 

spleen and lymph nodes of young mice, with the greatest difference 

observed in the spleen where the proportion of γδ Τ cells was doubled 

(Figure 6.17B). In the spleen we also observed an expansion of the 

CD27+CD44+ γδ population and a decrease in the numbers of the 

CD44+CD27- population (Figure 6.17A, C, D). Cell surface CD24 expression 

was decreased in all γδ populations in the Kif7+/- compared to WT, 

although the only significant difference was on CD44+CD27- γδ splenocytes 

(Figure 6.17F).  

 

To test the impact of Kif7 heterozygosity on Hh pathway activation in γδ T 

cell populations, we crossed the Kif7+/- with the GBS-GFP-transgenic mice 

and measured GFP expression. The proportion of GFP+ cells was increased 

in all γδ populations, with the greatest difference seen in the CD44+CD27- 

spleen γδ T cells (Figure 6.17E).  The increase in proportion of GFP+ cells 

indicates that Hh pathway activation is increased in the Kif7+/- 

heterozygote, and that therefore Kif7 is acting as a negative regulator of 

the pathway.  
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Thus, taken together these experiments show that increased Hh signaling 

to peripheral γδ T cells promotes the splenic γδ population and 

particularly increases the CD27+CD44+ subset. 

 

6.2.8: Impact of Gli3-heterozygosity on peripheral γδ T cells  
In the absence of Hh signalling, a truncated form of Gli3 binds GBS 

preventing transcription of Hh target genes. In the presence of Hh 

signalling, Gli3 functions as a transcriptional activator (Sasaki, Nishizaki et 

al. 1999).  

 

Deletion of one copy of Gli3 resulted in increased numbers of γδ cells in 

the spleen and lymph nodes of young adult mice with the effect being 

significant only in the lymph nodes (Figures 6.18A, B). However, it will be 

important to analyse more Gli3+/- spleens to determine if the results in the 

spleen become significant. In the spleen, we observed a significant 

decrease in the percentage of CD44+CD27- γδ cells in the Gli3+/- compared 

to WT (Figures 6.18C and D), similar to that observed in the Kif7+/-. 

Interestingly, the CD27+ CD44+ γδ cell population was not affected by Gli3 

heterozygosity (Figure 6.18D). Furthermore, similarly to Kif7+/- deletion of 

one copy of Gli3 reduced CD4 expression on γδ splenocytes (Figures 6.18E, 

G). Finally, we observed that CD24 expression decreased in the 

CD44+CD27- γδ population (Figures 6.18F, I). 

 

The percentage of NK cells remained constant in the spleens of WT and 

Gli3+/- mice, but the number and percentage of NK-like γδ cells, which are 

positive for both γδTCR and NK1.1 markers, increased significantly, and 

the increase was greater than that of the γδ cells that are negative for 

NK1.1 (Figures 6.20A, B). 
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We then investigated Hh pathway activation by crossing the Gli3+/- mice 

with the GBS-GFP-transgenic Hh-reporter mice. Surprisingly, the 

proportion of cells that expressed GFP decreased in Gli3+/- γδ splenocytes 

compared to WT, although the decrease was significant only in the NK-like 

γδ population (Figures 6.21B). The mean fluorescence intensity of GFP 

fluorescence, which is a measure of the extent of Gli activity in individual 

cells, was also decreased in the Gli3+/- γδ splenocytes compared to WT, and 

this difference was greatest in the NK-like γδ cells (Figure 6.21C). Our data 

thus show that NK-like γδ cells are more sensitive to Hh activity than 

NK1.1- γδ cells.  Although, the Kif7+/- and Gli3+/- γδ populations show 

similar phenotypes in terms of cell number and cell surface markers, the 

Hh-reporter experiments show that in the Kif7+/- γδ splenocytes Hh 

signaling is increased, whereas in the Gli3+/- γδ splenocytes Hh signaling is 

decreased.  It is possible that in Gli3 acts as a transcriptional activator in 

peripheral γδ cells, so that Hh pathway activation is decreased when it is 

decreased.  However, this would presumably give rise to a different 

phenotype from Kif7+/- in which Hh pathway activation is increased, as 

expected.  It would also be interesting in the future to have data on NK-like 

γδ cells from Kif7+/- in order to confirm the resemblance between Gli3 and 

Kif7 mutant’s phenotype. However, when we analysed Kif7+/- mice, NK1.1 

was not included in our analysis. 

 

We activated splenocytes with PMA and Ionomycin ex vivo and 

investigated the effect of Gli3-heterozygosity on key γδ cytokines after 4h 

of activation.  We found that partial deletion of Gli3 decreased intracellular 

IFNγ and IL-17, and the change was significant in the case of IL-17-

producing CD44+CD27- γδ cells (Figures 6.21C, E). 

 

In the peritoneal cavity, the percentage of peritoneal CD44+CD27- γδ cells 

was decreased more than three-fold (Figures 6.19A, B) in the Gli3+/- 
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compared to WT, whereas the number of CD27+CD44+ γδ cells almost 

doubled (Figures 6.19A, B). The number of CD44+CD27+ γδ cells was also 

increased in the lungs of the same littermates (Figures 6.19A, C). 
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Figure 6.1: The effect of Gli2N2 on γδ T cell splenocytes 

Bar charts show (A) the proportion and (B) cell count of γδ T cells in the spleen 
of Gli2Ν2 young mice. Representative dot plots (C) show CD27 and CD44 on 
CD3+γδ+ cells. Bar chart (D) shows CD44 expression and (E) the proportion of 
CD44+CD27- γδ cells in WT and Gli2N2 mouse spleens. *p<0.05, ***p<0.0001, n=4 
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Figure 6.2: The effect of Gli2N2 on CD4 and CD122 expression of γδ T cell 
splenocytes 

Bar chart (A) and representative overlaid histogram (B) (WT / Gli2N2) show the 
proportion of γδ splenocytes that are positive for CD4 in WT and Gli2N2 mice. 
Representative overlaid histogram (C) (WT / Gli2N2) shows CD122 expression 
on γδ splenocytes and density plots (D) show CD27 and CD44 expression of the 
CD122+ γδ splenocytes. **p<0.001, n=4 
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Figure 6.3: The effect of Gli2N2 on γδ T lymphocytes 

Representative dot plots (A) show CD27 and CD44 on CD3+γδ+ cells from WT and 
Gli2N2 LN cells. Bar chart (B, C and D) show proportion of γδ cells that are 
CD27+CD44+, CD44+CD27-, CD27+CD44-, respectively, in WT and Gli2N2 mice.  
n=6 
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Figure 6.4: The effect of Gli2N2 on CD24 and CD122 expression of γδ T cell 
lymphocytes 

Bar chart (A-C) and representative overlaid histogram (D) (WT / Gli2N2) show 
the proportion of CD44+CD27-, CD27+CD44+ and CD27+CD44- γδ splenocytes, 
respectively, that are positive for CD24 in WT and Gli2N2 mice. Representative 
overlaid histogram (E) (WT / Gli2N2) shows CD122 expression on LN γδ cells 
and density plots (D) show CD27 and CD44 expression of the CD122+ γδ LN cells. 
*p<0.005, **p<0.001, n=6 
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Figure 6.5: The effect of Gli2C2 on γδ T lymphocytes  

Bar charts (A-D) show the proportion and cell number of γδ T cells in the spleen 
and lymph nodes of WT and Gli2C2 young mice. Representative dot plots (C) 
show the CD27 and CD44 expression on γδ T cells from the lymph nodes of WT 
and Gli2C2 young mice. Representative overlaid histogram (F) (WT / Gli2C2) 
shows the proportion of γδ lymphocytes that are positive for CD122. n=8 

Spleen

W
T

C
2

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f 
γ
δ

 T
 c

e
lls

Lymph nodes

W
T

C
2

0.0

0.5

1.0

1.5

%
 o

f 
γ
δ

 T
 c

e
lls

Spleen

W
T

C
2

0

500

1000

1500

2000

2500

N
o

 o
f 
γ
δ

 T
 c

e
ll
s

 p
e

r 
1

0
6
 c

e
lls

Lymph nodes

W
T

C
2

0

2000

4000

6000

8000

10000

N
o

 o
f 
γ
δ

 T
 c

e
ll
s

 p
e

r 
1

0
6
 c

e
ll
s

C
o

u
n

t

CD122

CD44+CD27-

C
D

2
7

CD44

WT C2

A

F

E

DCB



118 
 

Figure 6.6:  The role of Dhh in γδ T cells from the LN 

Bar charts (A) and (B) show the percentage and cell count of CD3+ γδ Τ cells n 
WT and Dhh-/- mice. Bar chart (C) shows the percentage of CD27+CD44+ γδ T 
cells. Dot plots (D) show CD27 and CD44 expression on γδ cells from LN WT and 
Dhh-/- mice. n=4 
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Figure 6.7:  The role of Dhh in γδ T splenocytes 

Bar charts (A) and (B) show the percentage and cell count of CD3+ γδ Τ cells in 
WT and Dhh-/- spleen. Bar chart (C) shows the percentage of γδ NKT cells and 
(D), (E) and show the percentages of the Vγ1 and CD44+CD27+ populations, 
respectively. Representative overlaid histogram (WT / KO) (F) show that 
deletion of Dhh decreases CCR6 cell surface expression. Dot plots (G) show CD27 
and CD44 expression on  γδ cells from WT and Dhh-/- spleen. Bar charts (H) and 
(I) show GBS-GFP expression of the CD44+CD27- and CD27+CD44+ populations, 
relative to the WT. Representative overlaid histogram (WT / KO) (J) shows GFP 
expression of CD44+CD27- γδ T splenocytes *p<0.05, **p<0.001, n=8 
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Figure 6.8: The effect of Dhh on γδ T cell production of IFNγ and IL-17 in 
the lymph nodes and the spleen of 4 week old mice. 

Representative overlaid histograms (A) show IL-17 and IFNγ expression from 
CD44+CD27- and CD27+CD44+ γδ T cells from the spleen (SP) and the lymph 
nodes (LN) of young mice. Representative density plots (B) show extracellular 
expression of CD44 versus intracellular IL-17 on WT and Dhh-/- γδ splenocytes.  
n=2 
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 Figure 6.9: Reconstitution of γδ T cell populations in the spleen of 3 week 
old mice, 14 days after irradiation in WT and Dhh-/- littermates. 

Bar chart (A) shows the total cell count of WT and Dhh-/- spleens, 14 days after 
irradiation. (B) shows the percentage of CD3+ T cells and (C) and (D) show the 
percentage and cell count of γδ T cells. Density plots (E) show CD27 and CD44 
expression of WT and Dhh-/- spleens, 14 days after irradiation. Bar charts (F) and 
(G) show the percentage and cell count of CD44+CD27- γδ Τ cells. *p<0.05, 
**p<0.0005, n=8 
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Figure 6.10: γδ T cell subtypes in adult lymph nodes of Shh+/- and WT mice 

Bar charts (A and B) show the percentage and cell count of LN γδ T cells in WT and 
Shh+/- mice. Bar charts (B and C) show percentage of CD27+CD44- and CD27+CD44+ 
γδ T cells, respectively. Overall, CD27 expression is reduced in the Shh+/-, whereas 
overall expression of CD44 is unchanged. Representative dot plots (E) show T cell 
populations in relation to cell surface expression of CD27 and CD44 from WT and 
Shh+/- mice. n=6 
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Figure 6.11: Development of γδ T cell subtypes in the adult spleen Shh+/- 
and WT mice 

Bar charts show (A) expression of CD27 and (C) CD44 in γδ T cells, (B) shows 
percentage of the CD27+CD44+ γδ population and (D) the percentage of 
CD44+CD27- γδ population. (E) shows the ratio of CD27+CD44- to CD44+CD27- γδ 
T cells. Representative dot plots (F) show cell surface expression of CD27 and 
CD44 on γδ T cells from WT and Shh+/- mice. Bar charts (G-I) show the 
proportion of three γδ populations that are CD24+. Error bars represent  ±SEM. 
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Figure 6.12: Expression of GBS-GFP in Shh+/- and WT spleen on major γδ T 
cell populations according to CD27 and CD44 cell surface expression 

Bar chart (A) shows expression of GBS-GFP in CD27+CD44+, CD27+CD44- and 
CD44+CD27- γδ T cell populations in the spleen of young adult Shh+/- and Shh+/--
GBS-GFP+ mice. Overlaid histogram (B) (WT / Het) shows GFP expression in 
CD27+CD44+ γδ populations. Dot plots (C) show CD24 and GFP expression in γδ T 
cells of WT and Shh+/- splenocytes. n=2 
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Figure 6.13: The effect of Shh in the production of key cytokines IFNγ and 
IL-17 in γδ T cells 

Bar charts show the percentage of CD27+CD44+ cells that produce IFNγ in the 
spleen (A), the percentage of CD44+CD27- γδ T cells that produce IL-17 in the 
spleen (B) and lymph nodes (C). Error bars represent  ±SEM. n=11 
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Figure 6.14: The effect of conditional deletion of Shh on peripheral γδ Τ 
cells 

Dot plots (A) show CD3 and γδTCR expression of live-gated splenocytes and 
lymphocytes of young mice from WT and ShhFoxN1-Cre+ young mice. 
Representative dot plots (B) show CD27 and CD44 expression on LN CD3+ γδ 
cells from the same mice. n=2 
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Figure 6.15: The effect of double Shh and Dhh KO on γδ splenocytes 

Bar charts show (A) the percentage and (B) cell count of γδ T cells in WT and 
double KO splenocytes from 3 weeks old mice. (C) shows the percentage of 
CD27+CD44+ and CD44+CD27- γδ subsets relative to the WT and (D) shows 
CD122 expression. Representative dot plots (E) show CD27 and CD44 expression 
on γδ Τ cells from WT, double KO and Dhh-/- ShhWT (Cre-) littermates. Dot plots 
(F) show CD122 and NK1.1 expression on splenic γδ T cells from WT and double 
KO young littermates. n=6 
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Figure 6.16: The effect of double Shh and Dhh KO on LN γδ  

Bar charts show (A) the percentage and (B) cell count of γδ T cells in WT and 
double KO splenocytes from 3 weeks old mice. (C) shows the percentage of 
CD27+CD44+ and CD44+CD27- γδ subsets relative to the WT. Representative dot 
plots (E) show CD27 and CD44 expression on γδ Τ cells from WT, double KO and 
Dhh-/- ShhWT (Cre-) littermates. Dot plots (F) show CD122 and NK1.1 expression 
on γδ T cells from WT and double KO young littermates. n=4 
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Figure 6.17: Development of γδ T cell subtypes in the adult Kif7+/- spleen 

Representative dot plots (A) show expression of CD27 and CD44 in WT and 
Kif7+/- mouse spleen. Bar charts (B) show percentages of splenic γδTCR+ cells in 
WT and Kif7+/-. Bar charts (C) shows the percentage of CD27+CD44-, CD27+CD44+ 
and (D) CD44+CD27- populations in WT and Kif7+/- spleens. Representative 
overlaid histograms (E) show GBS-GFP expression (WT / Het) in CD44+CD27- 
and CD27+CD44- γδ populations in the spleen of 4 weeks mice. Bar charts (F) 
show the percentage of CD44+CD27- splenic γδ Τ cells that express CD24 and (G) 
shows the percentage of γδTCR+ cells relative to WT in three tissues of Kif7+/- 

mice. Error bars represent ±SEM. *p<0.05 **p<0.01, n=11  
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Figure 6.18: The influence of Gli3 on peripheral γδ populations of young 
adult mice 

Bar charts (A and B) show the number and proportion of γδ cells from the spleen 
of WT and Gli3+/- mice. Representative density plots (D) show CD27 and CD44 
cell surface expression in WT and Gli3+/- γδ splenocytes. Bar chart (C) shows 
percentage of CD44+CD27 γδ cells. Bar charts (E and F) show percentage of γδ T 
cells that express CD4 and CD24 in the spleen of WT and Gli3+/- mice, 
respectively. Representative overlaid histograms (G and I) (WT / Het) show CD4 
and CD24 expression in γδ T cells, respectively. Error bars represent ±SEM. 
*p<0.05, ***p<0.0001, n=6 
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Figure 6.19: The effect of Gli3 on γδ populations in the peritoneal cavity and the 
lungs of young adult mice 

Density plots (A) show CD27 and CD44 expression on WT and Gli3+/- γδ T cells from the 
peritoneal cavity and lungs of young littermates. Bar charts (B) show the γδ cell count 
per million events collected by flow cytometry. n=2
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Figure 6.20: Hedgehog reporter transgenic (GBS-GFP-Tg) show reduced Hh 
pathway activation in γδ cells from Gli3+/- mice.  

Dot plots (A) show the gating strategy from CD3+ thymocytes in order to identify three T 
cell populations: NK cells, NK-like γδ Τ cells and γδ T cells. Bar chart (B) shows 
percentage and GBS-GFP activity of γδ and NK-like γδ T cells, relative to WT and (C) 
shows mean fluorescent intensity (MFI) of γδ, NK-like γδ T cells and the Vγ1 chain, 
relative to WT. Error bars represent ±SEM. *p<0.005, **p<0.0005, n=4 
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Figure 6.21: The role of Gli3 in the production of key γδ T cell cytokines 

Bar charts show the percentage of IL-17-producing CD44+CD27- γδ T cells in the 
(A) spleen and (B) lymph nodes of 4 weeks old mice, upon 4h T cell activation 
with PMA and Ionomycin. (C) shows the difference in splenic γδ IL-17 
production, relative to WT. Bar charts (D) show production of IFNγ in 
CD27+CD44- γδ T cells. Representative overlaid histogram (E) (WT / Tg) shows 
reduction in IL-17 production in splenic Gli3+/- CD44+CD27- γδ T cells compared 
to WT. *p<0.05, n=6 
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7. The effect of Hedgehog signalling on γδ T cells in an 

LPS mouse model 

 

7.1 Introduction 
 

We have investigated the role of Hh signalling in the development and 

differentiation of murine γδ T cells in the thymus and the periphery. 

However, the impact of Hh signalling in the activation and cytokine 

secretion of γδ T cells has been explored only through short PMA / 

Ionomycin activation assays. Therefore, we used a mouse disease model of 

experimental sepsis by injecting Lipopolysaccharide (LPS) 

intraperitoneally (ic) in order to investigate γδ-mediated immune 

responses upon infection and inflammation in more detail. 

 

Toll-like receptors (TLR) are pattern recognition receptors (PRR) that 

recognize various structurally conserved molecules derived from 

microbes and they often lead to indirect activation of the adaptive immune 

responses (Wesch, Peters et al. 2011). LPS consists of a hydrophobic lipid 

A component, a hydrophilic core oligosaccharide and an O-antigen. It is 

believed that murine γδ cells recognize LPS via TLR2 whose ligand is the 

lipid A component of LPS. Murine Vγ6 CCR6+ IL-17-producing γδ T cells 

respond directly to TLR2 resulting in enhanced proliferation and cytokine 

secretion in a TCR-independent manner (Martin, Hirota et al. 2009). In 

humans, γδ T cells respond indirectly to TLR4 (via monocyte-derived 

dendritic cells) in a CD1c/CD1d-restricted manner.  

 

We decided to focus our analysis on the two strains that gave the strongest 

phenotype in previous experiments; the Gli2N2 tg and the Shh deficient 

strains (either Shh+/- or conditional FoxN1 Shh deletion). Since the set of 
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experiments in this chapter followed the ones shown on previous 

chapters, our flow cytometry analysis is expanded further to include more 

makers and can therefore offer better insight into murine γδ T cell biology. 

 

7.2 Results 
 

7.2.1 The effect of Gli2N2 on γδ cells from LPS-injected young adult 
mice 
For our experiment, we used three sex-matched pairs (WT and Gli2N2) of 

6 week old littermate mice. We injected intraperitoneally with a single 

dose of 100ng/gram of body weight LPS in 200μl of sterile PBS. The 

control group was injected ip with 200μl sterile PBS. Mice were sacrificed 

four days later and analysed by flow cytometry. 

 

In the Gli2N2 thymus, we observed a significant increase in the numbers of 

CD27+CD44+ cells (Figure 7.1A,B,D) compared to WT. We also observed a 

significant increase in the number of γδ cells bearing a Vγ1 chain (Figure 

7.1F). This CD27+CD44+ population is negative for CCR6 (Figure 7.1H). A 

more detailed analysis of the phenotype of various Vγ chains revealed that 

the expanding CD27+CD44+ population includes Vγ1 cells (Figure 7.2A), 

most of which were positive for NK1.1 (Figure 7.2B). It also very 

interesting that a shift takes place between Vγ2 and other Vγ chains in 

relation to CD44+CD27- cells. In the Gli2N2 mice, Vγ2-bearing CD44+CD27- 

cells disappear completely, whereas the same subset bearing other Vγ 

chains, shows a 10fold expansion (Figure 7.2A). 

 

In the spleen, we also observed a significant increase in CD27+CD44+ Vγ1 

cells, CCR6- γδ cells (Figures 7.3A, B, D, E) in the Gli2N2 compared to WT. 

Similarly to the thymus, the Vγ2 CD44+CD27- γδ subset virtually 

disappears (Figure 7.3D). A similar effect was observed in γδ cells of the 
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lymph nodes (Figures 7.3), although the γδ cells in the lymph nodes did 

not increase in numbers significantly in the Gli2N2 compared to WT. 

 

Interestingly, when we performed the same analysis in the peripheral 

blood of our samples, we found a massive reduction in CD27-expressing γδ 

cells as well as a great increase in CD44-expressing cells (Figure 7.4C, D) in 

the transgenic compared to WT. Collectively, our data suggest that it is 

likely that in the Gli2N2 mice, CD27+CD44+ Vγ1 cells fail to exit the thymus 

and therefore accumulate in the thymus. Analysis of skin showed a 

reduction in γδ cells (Figure 7.4E, F). Upon activation with PMA and 

ionomycin for 4h, γδ splenocytes from LPS-treated Gli2N2 mice, showed a 

large reduction in both IL-17 and IFNγ expression (Figure 7.5A). IFNγ 

reduction is attributed mostly to Vγ2-bearing cells (Figure 7.5B). 
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Figure 7.1: The effect of transgenic expression of Gli2N2 in LPS-treated γδ 
thymocytes 

Bar chart (A) show the percentage of γδ T cells in the thymus of WT and Gli2N2 
littermates, 4 days after LPS treatment and (B) shows the thymic γδ cell count. 
Overlaid histogram (C) shows CD3 expression in the live gate of WT (untreated / 
LPS-treated WT) littermates. Dot plots (D) show CD27 and CD44 expression on 
untreated and LPS-treated γδ T cells from WT and Gli2N2 littermates. Bar charts 
show (E) the percentage of CD27+CD44+, (F) Vγ1 and (G) Vγ2 γδ thymocytes. Dot 
plots (H) show expression of CD44 and CCR6 in γδ thymocytes. n=5 
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Figure 7.2: The effect of transgenic expression of Gli2N2 on LPS-injected γδ 
subsets 

Dot plots (A) show CD27 and CD44 expression on γδ cells gated on Vγ1, Vγ2 and 
other Vγ chains from untreated and LPS-treated γδ T cells from WT and Gli2N2 
littermates. Overlaid histograms (B) (untreated / WT / Gli2N2) show CCR6, 
NK1.1 and CD5 expression on γδ T cells. n=5 

Untreated WT Gli2N2

CD44

C
D

2
7

O
th

e
r V
γ

  c
h

a
in

s
V
γ

1
V
γ

2

C
o

u
n

t

CCR6 NK1.1 CD5

A

B



140 
 

 
Figure 7.3: The effect of transgenic expression of Gli2 on LPS-treated γδ 
splenocytes 

Bar chart (A) show the percentage (from the CD3+ gate) of γδ T cells in the 
spleen of WT and Gli2N2 littermates and (B) shows the γδ cell count per million 
splenocytes, 4 days after LPS treatment. Overlaid histogram (C) (untreated / 
LPS-treated WT) shows live-gated CD3 expression. Dot plots (D) show CD27 and 
CD44 expression on untreated and LPS-treated γδ T cells and Vγ2 bearing γδ Τ 
cells from WT and Gli2N2 littermates. Overlaid histogram (E) (untreated / WT / 
Gli2N2) shows the expression of CCR6 on γδ T cells and dot plots (F) show 
expression of CCR6 and CD44 on γδ T cells. n=5 
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Figure 7.4: The effect of transgenic expression of Gli2 on LPS-treated γδ 
cells in lymph nodes 

Overlaid histogram (A) (untreated / WT / Gli2N2) shows CD3 expression in the 
live gate of 6 weeks old littermates. Bar chart (B) show the percentage (from the 
CD3+ gate) of γδ T cells in the lymph nodes of WT and Gli2N2 littermates and (C) 
shows the percentage of Vγ2+ γδ cells. Density plots (D) show CD27 and CD44 
expression on untreated and LPS-treated γδ T cells and Vγ2 bearing γδ Τ cells 
from WT and Gli2N2 littermates. **p<0.005, n=5 
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Figure 7.5: The effect of transgenic expression of Gli2 on LPS-treated γδ T 
cells from the blood and the skin of young mice. 

Overlaid histogram (A) (untreated / WT /Gli2N2) shows CD3 expression in the 
live gate of young littermates. Bar chart (B) shows the percentage of γδ T cells in 
the blood of WT and Gli2N2 littermates, 4 days after LPS treatment. Bar chart (C) 
shows the percentage of γδ subtype populations, based on CD27 and CD44 cell 
surface expression, in relation to the WT. Dot plots (D) show CD27 and CD44 
expression on untreated and LPS-treated γδ T cells from the blood of WT and 
Gli2N2 littermates. Dot plots (E) show the percentage of CD3+ γδ T cells in the 
skin of WT and Gli2N2 littermates, 4 days after LPS treatment. Bar chart (F) 
shows the cell count of γδ T cells per 106 CD3+ skin cells. **p<0.005, n=5 
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Figure 7.6: The effect of transgenic expression of Gli2 on LPS-treated γδ 
thymocytes 

Density plots show (A) intracellular IL-17 and IFN-γ, (B) Vγ2 and IFN-γ and (C) 
CD44 and Vγ2 expression on untreated and LPS-treated γδ T cells from WT and 
Gli2N2 splenocytes. n=5 
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7.2.2 The effect of Shh on γδ cells from LPS-infected young adult mice 
For this experiment, we used three sex-matched pairs (WT and Shhfl/fl 

FoxN1-Cre+) of 6 week old littermate mice. We injected intraperitoneally with 

a single dose of 100ng/gram of body weight LPS in 200μl of sterile PBS. The 

control group was injected ip with 200μl sterile PBS. Mice were sacrificed four 

days later and analysed by flow cytometry. 

 

In LPS-injected Shh-FoxN1 coKO mice, we observed a reduction in the 

percentage and number of γδ cells compared to WT in all tissues examined 

and most notably in the thymus (Figure 7.7A, B). We also observed a 

reduction in the percentage and number of CD27+CD44+ as well as 

CD44+CD27- γδ cells (Figure 7.7D). A more detailed analysis of γδ cells bearing 

various Vγ chains revealed that the decrease in both subsets is irrelevant to 

Vγ chain (Figure 7.8A, B, C). CD24 expression was not affected (Figure 7.8D).  

 

In the spleen and lymph nodes, we observed only minor changes. Of note, the 

dissapearing thymic Vγ2 CD44+CD27- γδ subset is only slightly decreaed in the 

spleen (Figure 7.9E) and, surprisngly, it is upregulated in the Shh coKO lymph 

nodes (Figure 7.9D), suggesting that the subset is indeed developed in the 

thymus but perhaps leaves the thymus quicker, thus decreasing its thymic 

presence. 

 

In the spleen of LPS-injected mice with conditional deletion of Shh, Vγ2 γδ 

cells showed a reduction in IL-17-producing capacity, upon 4h activation with 

PMA and ionomycin compared to WT (Figure 7.10A) although MFI for IL-17 

for the Vγ2 subset did not change Figure 7.10B). 
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Figure 7.7: Activation of murine γδ T cells with LPS causes important changes 
in the percentage, cell count and surface expression of key γδ markers in the 
thymus of Shh FoxN1 KO mice after 4 days of LPS treatment. 

Bar charts (A) show the percentage of γδ T cells in the thymus, spleen and lymph 
nodes of WT and Shh FoxN1 Cre+ littermates, as measured by flow cytometry from 
the CD3+ gate. Bar chart (B) shows the γδ cell count from the same organs. Overlaid 
histogram (C) shows CD3 expression in WT (untreated / LPS-treated WT) 
littermates Dot plots (D) show CD27 and CD44 expression on untreated and LPS-
treated γδ T cells from WT and conditional Shh KO littermates. n=4 
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Figure 7.8: The effect of Shh FoxN1 coKO on subtype populations of γδ 
thymocytes after 4 days of LPS treatment. 

Dot plots show the effect of conditional Shh KO on untreated and LPS-treated γδ 
thymocytes bearing different Vγ chains; (A) Vγ chains other than Vγ1 and Vγ2 (named 
‘’Other Vγs”), (B) Vγ1 chain and (C) Vγ2 chain. Overlaid histogram (D) (WT/Gli2N2) 
shows that conditional Shh KO does not have an impact on CD24 surface expression. 
n=4 
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Figure 7.9: The effect of Shh FoxN1 KO on several subsets of γδ T cells in the 
spleen and lymph nodes after 4 days of LPS treatment. 

Overlaid histogram (A) shows CD3 expression from the live gate of spleen of WT 
(untreated / LPS-treated WT) littermates. Dot plots (B) show CD27 and CD44 
expression on LPS-treated splenic γδ T cells from WT and conditional Shh KO 
littermates. Dot plots show the effect on CD27 and CD44 of conditional Shh KO on 
untreated and LPS-treated γδ cells in the lymph nodes (C) and Vγ2 γδ cells in the 
lymph nodes (D) and spleen (E). n=4 
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Figure 7.10: The effect of conditional Shh KO on IL-17 secretion on LPS-
treated spleens. 

Density plots (A) show that conditional deletion of Shh reduces IL-17 secretion. 
Bar chart (B) shows the MFI of IL-17+ γδ cells. n=4 
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8. The role of Hh signalling in human γδ T cells 

 

8.1 Introduction 
 

There are three reasons why we decided to study the effect of Hh 

signalling on human γδ T cells. Firstly, the role of Hh signalling in human 

γδ T cell biology has not been investigated yet. Secondly, our detailed 

analysis of murine γδ cells made us question what parallels could be 

drawn between murine and human γδ T cells in relation to Hh signalling. 

Last, our team collaborates with clinicians at Great Ormond Street Hospital 

who provide us with whole fresh human thymi obtained from young 

children who undergo corrective heart surgery.  Therefore, we are given 

the unique opportunity to study human γδ T cell thymopoiesis using fresh 

human tissues. 

 

Due to this collaboration, I decided to try to expand fresh human γδ 

thymocytes using artificial antigen presenting cells (aAPCs) loaded with 

anti-γδTCR antibodies, a method that allows the expansion of the complete 

γδ T cell repertoire from human blood, without bias towards specific TCRs 

(Fisher, Yan et al. 2014). All samples were processed immediately upon 

arrival and approximately three weeks after setting up the expansion 

cultures, 107 γδ cells were washed in RPMI and transferred to new culture 

plates. The cultures were supplemented with either rHhip or rShh. We 

followed their development for 6 days by Annexin V-including 

immunophenotyping, PI stain and qPCR for crucial components of the Hh 

pathway. Here, we report the results of one experiment, although three 

additional expansion cultures using different samples had been previously 

set up while optimizing the expansion protocol for fresh γδ thymocytes.  Of 

note, expansion of thymic samples seem to be more efficient than PBMC-

derived γδ cells as addition of aAPCs at the beginning of the expansion 
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cultures suffices to expand them to the desired level whereas addition of 

aAPC every approximately two weeks is required in the case of peripheral 

γδ cells. 

 

8.2 Results 
 

8.2.1 γδ expansion cultures from human thymocytes 
In order to set up the expansion cultures, we meshed the human thymus 

and stained 107 thymocytes for CD3, γδTCR, Vδ1 and Vδ2 chains (Figure 

1A, B). Flow cytometry analysis showed that approximately half of all 

γδTCR+ cells were stained bright for CD3 (Figure 8.1C). All CD3- γδTCR+ 

cells were also negative for Vδ1 and Vδ2 chains (Figure 8.1D), suggesting 

that some of these cells are not ‘’real’’ γδ cells. Around 85% of the CD3+ 

γδTCR+ cells were also bearing a delta chain other than Vδ1 and Vδ2. 

(Figure 1D).  

 

We then collected 109 thymocytes for positive selection using the Milltenyi 

kit. Selection resulted in the acquisition of around 2x105 cells. A small 

fraction was taken to analyse by flow cytometry using the same panel and 

parameter as we did in the whole thymus. After selection, 98% of the live 

gate consisted of γδTCR+ cells (Figure 8.1F) that were all positive for CD3 

(Figure 8.1I). Only a quarter now expressed a delta chain other than Vδ1 

or Vδ2, while the majority of γδ cells expressed a Vδ1 chain (Figure 8.1G). 

 

8.2.2 The effect of Hh signalling on cell surface markers 
In Figure 8.2, we see the immunophenotypic analysis of the untreated 

sample on day 2. Our culture contained approximately 72% live cells, all of 

which were expanded CD3+ γδ cells (Figure 8.1A, B). In further analysis, 

we separated γδ cells according to Vδ-bearing chain and then plotted 

CD62L versus CD45RA in order to identify the activation state of those 
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cells (Figure 8.2C). Figure 8.3 shows the complete immuophenotypic 

profile of our samples over the course of a week. Left column (Figures 

8.3A, C and E) shows the proportion of naive γδ cells  in relation to their 

Vδ chain, whereas the right column (Figures 8.3B, D and F) shows the 

proportion of terminally differentiated γδ cells  Overall, we observed that 

γδ cells treated with rHhip differentiated slightly quicker to the Td state, 

independently of Vδ chain expressed. 

 

8.2.3 The effect of Hh signalling on proliferation of human γδ T cells 
In order to assess the effect of Hh signalling on human thymic γδ T cell 

proliferation and apoptosis, we performed cell count (Figure 4A), Annevin 

V stain (Figure 4B) as well as PI stain which revealed the cell cycle status 

of the expanded human γδ cells (Figure 4C, D) over the course of a week. 

Although results on the cell count are inconclusive, inhibition of the Hh 

pathway using rHhip resulted in reduced programmed cell death. A 

representative example of the PI and Annexin V analysis is also given 

(Figures 4E, F, G, I).  

 

8.2.4 Expression analysis of key Hh components 
For each condition and time point, we continued our analysis by extracting 

mRNA from 2,5 x105 cultured cells in order to perfrom qPCR and 

expression analysis for basic components of the Hh pathway. Cells treated 

with rHhip immediately decreased Gli1 expression, indicating γδ cells 

responded to the Hh inhibitor (Figure 8.5A, B). In rShh-treated γδ cells, 

Gli1, Gli2 as well as Shh expression were higher than the untreated or the 

Hhip-treated γδ cells for the first 2 days of culture, a trend that reverses on 

later time points, when rHhip-treated γδ cells show higher expression for 

the same genes. 
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Figure 8.1: Positive selection of γδTCR+ cells prior to expansion culture 

Dot plot (A) shows the live gate and (B) the γδTCR+ cells from the live gate 
of a fresh human thymus. (C) shows that approximately half of all γδ cells 
are CD3low and (D) shows the Vδ1 and Vδ2 phenotype of the CD3low and 
CD3+ γδ populations. The rest of the figures shows the γδ cells collected 
after one round of positive selection. (E) and (F) show the live gate and the 
γδTCR cells, respectively that are (I) all CD3+. Dot plot (G) displays the Vδ1 
and Vδ2 phenotype. 
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Figure 8.2: Hh signalling and the effector fate of expanded human γδ 
thymocytes  

Dot plot (A) shows a representative example of the live gate of the 
expanded cells and (B) the proportion of CD3+ γδTCR+ cells, exhibiting the 
characteristic two populations, commonly observed in expanded γδ cells. 
Representative dot plots (C) show CD62L and CD45RA expression of CD3+ 
γδTCR+ cells. 
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Figure 8.3: Hh signalling and the effector fate of expanded human γδ 
thymocytes 

Plots (A, C, E) and (B, D, F) show the proportion of naïve and terminally 
differentiated γδ cells, respectively, gated on Vδ1, Vδ2 and other Vδ chains 
over the course of a week of treatment with rShh or rHhip1 compared 
with control untreated culture. 
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Figure 8.4: The effect of Hh signalling on the cell cycle and apoptosis of 
human expanded γδ thymocytes 

Plots (A) and (B) show the cell count and apoptosis of expanded human γδ 
cells over the course of 6 days after treatment with either rHhip or rShh. 
(C) and (D) show synthesis and G2/Mitosis in the same cells and under the 
same conditions.  Representative dot plot (E) shows the untreated live 
gate on day 2 and the subsequent strategy for (F) aggregate exclusion, (G) 
PI stain and (I) Annexin V stain in order to assess apoptosis. 
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Figure 8.5:  The effect of Hh signalling on the transcription of several 
components of the Hh pathway as assessed by mRNA expression analysis 
from expanded human γδ cells, treated with rHhip or rShh over the course 
of 6 days. 

Plots (A, C and E) show the relative expression of Gli1, Gli2 and Shh, 
respectively, for rHhip and rShh-treated expanded γδ thymocytes, relative 
to the untreated sample, over the course of 6 days. Bar charts (B, D and F) 
show the expression of the same genes in arbitrary units at four different 
time points. 
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8.3. Discussion 
 

The purpose of this chapter is two-fold. First, to demonstrate the 

successful expansion of fresh human γδ thymocytes using aAPCs. Secondly, 

it displays a template for future work. We anticipate that our strategy to 

identify any potential impact of Hh signalling in these cells, based on deep 

immunophenotyping (Vδ chains and memory phenotype according to 

CD62L and CD45RA expression), together with cell cycle and apoptosis 

assessment and mRNA expression analysis for several Hh components, is a 

strategy that we aim to apply in future experiments. 

 

Using this experimental methodology, we intend to continue analyzing 

human thymi using aAPCs as well as other expansion protocols with 

skewed Vδ outcomes, such as IL-2 plus Zoledronate-based expansion 

(Kondo, Izumi et al. 2011), which, as a nonpeptide phosphoantigen, shows 

a preference for Vδ2+ γδ cells.  

 

We observed that by day 2, the last naïve cells had become Ttd cells, 

minimizing the chance of being responsive to Hh signalling. This is a 

problem that cannot be overcome using our current technologies for 

sorting or positively selecting γδ cells. There are, therefore, two ways to 

overcome this problem. The first involves using kits that enrich γδ cell 

populations by negative selection, keeping the γδTCR intact and hence 

inactivated. The second option relies on culture of small fresh thymic 

chunks on filters and then identifying γδ cells by flow cytometry, therefore 

avoiding any selection. The first option is expensive and unreliable, as 

commercially available kits use for their exclusion, markers that are 

present in some γδ cells (such as CD56 in the case of Milltenyi’s γδTCR 

negative selection kit), and γδ cells would anyway be activated during 

consequent expansion culture in the presence of aAPCs. The second option 
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would only allow us to carry out immunophenotyping as the number of γδ 

cells extracted from our filter cultures would not suffice to sort γδ cells for 

expression analysis or even carry out PI and Annexin V stains.  

 

This particular experiment that we present here puzzled us as we would 

expect to find many γδ cells showing an effector memory or central 

memory phenotype, similar to γδ cells derived from PBMCs after positive 

selection using the same kit and same protocol (Fisher, Yan et al. 2014). 

Nevertheless, I found virtually no CD45RA- γδ cells, manifesting that γδ 

thymocytes could either potentially ‘’jump’’ from a naïve phenotype to a 

terminally differentiated one, without upregulation of CD45RA or naïve 

cells simply died and Td cells acquired their terminal phenotype during 

the 3 weeks of expansion. Future replications of this experiment will shed 

light on the mechanism. 

 

In terms of cell cycle, we found that untreated and rShh-treated cultures 

results were always remarkably identical whereas γδ cells treated with 

rHhip were slightly different. The major change was observed in Vδ1 cells, 

followed by Vδ2, suggesting that Vδ1 are potentially more highly 

responsive to Hh signalling. rHhip-treated γδ cells also showed reduced 

apoptosis but no definite conclusion could be drawn about Hh’s impact on 

cell cycle progression or cell count until the experiment is repeated at least 

twice. Overall, the final rHhip and rShh treatment cultures seemed to have 

worked well, as manifested by the sharp downregulation in Gli1 

expression in Hhip-treated γδ cells.  

 

Overall, there has been increasing interest in human γδ T cells over the 

last 5 – 10 years, primarily due to their potent antitumor cytotoxic 

properties. γδ T cells can exhibit IFNγ-mediated antitumor responses 

whereas IL17-producing γδ cells have shown unanticipated tumor-
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promoting functions  (Silva-Santos, Serre et al. 2015). We believe that 

further elucidation of the role of the Hh signalling pathway in γδ cells will 

provide a better insight into this developmentally and functionally 

complex subtype of T cells and could also be translationally useful as it 

could potentially improve in vitro methods for the production of γδ T cells 

for therapeutic applications.  
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9. The Investigation of an Ihh-mediated feedback loop 

that controls thymus size 

 

9.1 Introduction 
 

Hh signalling plays an important role in regulating several stages of 

survival, proliferation and differentiation during T cell development. Here, 

based on published findings from our laboratory, we aim to further 

investigate the role of Ihh ιn T cell development.  

 

In 2009, our lab showed that Ihh both promotes and restricts T cell 

development (Outram, Hager-Theodorides et al. 2009). Hh signalling is 

known to affect DN1 to DN2 transition and Shh, Gli3 and Smo have been 

shown to play a role in this transition. Analysis of Ihh-/- (and Shh+/-) thymi 

on days E13.5 and E14.5, when the transition from DN1 to DN2 first 

happens, did not reveal a significantly smaller thymus, whereas in Shh-/- 

and Shh+/-Ihh-/- mutants mice, the proportion of DN2 cells was significantly 

reduced, indicating that Ihh plays a positive regulatory role at the DN1 to 

DN2 transition that, in the absence of Ihh, can be compensated by Shh. 

 

In later stages of T cell development, Ihh seems to both negatively and 

positively regulate the transition from DN to DP cells. Analysis of E16.5 

Ihh-/- thymi, when the transition first occurs, revealed a reduction in 

thymus size by half, however, the Ihh+/- thymus was 1.4 times larger, 

containing 2.4 times more DP cells. 

 

Moreover, treatment with exogenous rHh protein promoted thymocyte 

development in Ihh-/- FTOCs but inhibited thymocyte development in 

Ihh+/- FTOCs. The data suggest that Ihh promotes DN thymocyte 
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development before pre-TCR signal transduction but becomes a negative 

regulator after pre-TCR signalling. This finding was also confirmed with 

anti-CD3 treatment of of Rag-/-Ihh+/- FTOCs. 

 

As Ihh is produced at low levels in DN populations, we believe that Ihh is 

secreted from DP cells, which are known to produce more Ihh, and feeds 

back to DN progenitors in order to regulate differentiation and control cell 

number. This hypothesis is important because very little is known about 

the intrinsic thymic processes that control thymus size. The control of the 

thymus has been assumed to rely on competition between thymocyte 

precursors for limiting concentrations of mitogenic or survival factors. Our 

lab has suggested that Ihh restricts thymus size by providing a negative 

regulatory feedback from the Ihh-producing DP cells to their DN 

progenitors.  

 

This project aims to investigate the proposed negative feedback loop in 

greater detail as well as to test if Ihh also regulates differentiation from DP 

to SP cell. For this purpose, in addition to the Ihh mutant mice, we also 

used Ihhfl/fl-CD4Cre+ tg mice to specifically delete Ihh from all thymocytes 

that have expressed CD4 (hence CD4SP, CD8SP and DP cells), thereby 

losing the potential negative regulatory feedback. This will test the 

hypothesis directly that Ihh secreted by DP and SP cells regulates the rate 

of differentiation of their DN progenitors.  
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9.2 Results 
 

9.2.1 Conditional deletion of Ihh from thymocytes 
In order to investigate in more detail the proposed negative regulatory 

effect of Ihh on the DN to DP transition, we analysed 3 week old mice with 

conditional deletion of Ihh from all CD4+ thymocytes (Ihhfl/fl-CD4Cre+, Ihh 

coKO) and compared them to WT littermates. The Ihh coKO thymus was 

marginally smaller (Figure 9.1C) but no other difference was observed in 

the CD4SP, CD8SP, DP or DN populations (Figure 9.1B, D, E, F). DP cells 

expressed less CD3 but this was not significant (Figure 9.1G) and there 

was no difference in CD5 expression. Finally, we did not detect differences 

in HSA and B220 expression (Figure 9.1H). Analysis of the DN population 

revealed that the coKO thymus showed more DN3 and less DN4 cells than 

WT (Figure 9.2A). 

 

We also investigated the effect of conditional deletion of Ihh in T cells from 

the spleen and lymph nodes of young mice. In both tissues, we observed a 

small increase in the proportion of CD4SP and CD8SP cells (Figures 9.3A, 

4A). which were positive for CD3 (Figures 9.3C, D, 4B, C).Ihh coKO spleens 

and lymph nodes showed higher MFI for CD5 on both CD4 and CD8 T cells 

(Figure 9.3F, 4D). Surprisingly, the coHet spleen contained significantly 

less and the coKO significantly more T cells than the WT (Figure 9.3B).  

 

To assess the role of Ihh in TCR-β rearrangement and expression, we 

analysed DN3 and DN4 thymocytes for intracellular (ic) expression of the 

TCRβ chain. We found that conditional deletion of Ihh led to an increase in 

the proportion of TCRβ cells in both DN3 and DN4 thymocytes. This 

increase in ic TCRβ expression could be a result of increased TCRβ 

rearrangement or because cells that have rearranged their TCRβ chain are 

arrested at the DN stage. This is consistent with the published observation 
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that the proportion of TCRβ+ cells was increased in the DN3 population of 

Ihh-/- fetal thymus compared to WT (Outram et al 2009). 

 

9.2.2 Introduction of a transgenic TCR 
We then crossed the Ihhfl/fl-CD4-Cre+ tg to the male specific antigen HY in 

order to test if the transgenic TCR influenced differentiation from DN to 

DP and to assess the effect of Ihh on negative selection. As HY is a male 

specific antigen, analysis by flow cytometry was performed in a gender 

specific manner. Contrary to the HY- mice, analysis of Ihh coKO HY+ male 

mice revealed a larger thymus and the Ihhfl/WT-Cre+ thymus (coHet) was 

larger than the WT and the coKO (Figure 9.6A). We also observed a small 

decrease in the proportion of CD8SP and CD4SP cells (Figure 9.6D, E, F, G) 

as well as the DN population (Figure 9.6B), which also contained more CD3 

and Vβ8.1/8.2 (Figure 9.6H). The coKO also exhibited higher T3.70 

expression on DP, CD4SP and CD8SP cells (Figure 9.7A, B).  

 

Peripheral T cell analysis revealed significantly higher CD3 expression in 

splenic CD4SP cells (Figure 9.8A) but no other difference was detected in 

the spleen or the lymph nodes (Figure 9.8). 

 

We have only had the opportunity to analyse a single female pair of 

Ihhfl/fl-CD4-Cre+-HY+ and WT-HY mice due to problems with re-

derivation and more analysis will be carried out as soon as we have more 

pairs available. Further investigation of these mice is crucial as it can 

elucidate Ihh’s effect on positive selection. 

 

The IhhcoKO-HY thymus was smaller than the WT (Figure 9.9A) and it also 

showed more DN and fewer DP cells (Figures 9.9C, D), whereas no change 

was observed in the DN populations or CD3 expression (Figures 9.9D, E).  
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The Ihh coKO-HY spleen was smaller with a smaller live gate (Figure 

9.10A) and there was no difference in CD3 or CD5 expression (Figure 

9.10B, C). We observed less CD3+ CD4SP and more CD3+ CD8SP cells but 

more pairs need to be analysed to draw firm conclusion.  

 

9.2.3 The impact of Ihh deficiency on thymocyte differentiation in the 
fetal thymus 
We analysed E16.5 Ihh mutant thymi after 6 days in FTOCs. As DP cells 

first appear in E16.5, we expect our analysis to reveal the rate of 

progression from DN to DP and DP to SP cells. We found that IhhHet mice 

showed a significant increase in thymus size (Figure 9.11A). Interestingly, 

WT thymi were on average slightly smaller than the KO. Previous analysis 

from our lab has shown that E16.5 Ihh+/- thymi contained on average 1.4 

more thymocytes than WT thymi, a difference that is increased further 

after 6 days in culture. We also discovered that IhhKO thymi contained 

more CD4SP and DN cells than WT thymi (Figure 9.11C, D) whereas the 

proportion of CD8SP cells was not affected (Figure 9.11E). The difference 

in CD4SP cells increased dramatically in CD3+-only thymocytes, indicating 

that deletion of Ihh results in a much faster rate of differentiation from the 

DP to SP stage of development (Figure 9.11I). Conditional KO DP cells 

showed reduced CD3 expression (Figure 9.11H). 

 

We then time-mated Ihh coKO HY+ mice and analysed E18.5 male 

littermates. The Ihhfl/fl-CD4-Cre+ HY+ thymus was 50% smaller than the 

WT (Figure 9.12B), a result attributed to the remarkable decrease in the 

live gate (Figure 9.12A). We also observed a reduction in the proportion of 

DN cells coupled with an increase in the DP in the conditional null thymus 

(Figure 9.12B). Conditional deletion of Ihh resulted in a higher expression 

of T3.70 (Figures 9.13B, 14A) and HSA (Figure 9.14C) on DN cells and 

CD8SP cells (Figure 9.14C). However, HSA expression on CD4SP cells was 
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not affected. We also detected lower Vβ6 expression on CD4SP cells in the 

coKO compared to WT (Figure 9.14B).  

 

9.2.4 Recovery of DP and SP populations following Hydrocortisone 
(HC) treatment in Ihh deficient thymus 
In order to assess the developmental progression of Ihh+/- thymocytes in a 

synchronized wave in adults, we injected intraperitoneal HC and observed 

the recovery of the thymocyte populations during the week after the 

injection. Four days after the injection, we observed that the Ihh+/- thymus 

was larger (Figure 9.15A). CD4SP and CD8SP proportions were increased 

with a decreased proportion of DP cells (Figure 9.15F). We also detected 

increased thymic CD5 expression (Figure 9.15D). There was an increase in 

Qa2 and CD3 expression for the CD4SP population (Figure 9.17B, C), 

whereas expression of CD24 was decreased for the same population 

(Figure 9.15F). Thus, the CD4SP population seemed more mature in the 

Ihh+/- compared to WT. Analysis of the DN population revealed that the 

Ihh+/- thymi contained overall more DN cells than WT but the distribution 

of subsets was quite similar between Ihh+/- and WT (Figure 9.16A). 

Moreover, we observed higher Qa-2 expression in Ihh+/- DN cells 

compared to WT (Figure 9.16B, C).   

 

Six days after ip HC treatment, the Ihh+/- thymus was still larger than the 

WT (Figure 9.17A) and showed higher CD5 expression (Figure 9.17B). 

Furthermore, the Ihh+/- thymus contains fewer DN and more DP cells, 

whereas CD4SP and CD8SP cells do not show any difference in proportion 

between mutants and WT littermates and the DN subset distribution was 

similar in both genotypes (Figure 9.17D).  

 

Overall, we observed a faster thymic recovery in the Ihh+/- thymus (Figure 

9.18A). CD8SP cells showed reduced CD3 expression four days after 

injection and the effect disappeared two days later (Figure 9.18C). We also 
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analysed a triplet (WT, coHet, coKO) of HY+ 4 week old female mice, four 

days after ip HC injection. Remarkably, the coKO thymus displayed a 

thymus size that was about ten times larger than the WT and coHet 

littermates (Figure 9.18B) but it was nevertheless smaller than its HY- 

counterparts. The DP population showed decreased CD3 and the DN 

decreased CD25 expression (Figure 9.18D).  

 

9.2.5 Reconstitution of DP and SP populations following anti-CD3 
treatment in Ihh deficient Rag-/- thymus 
To determine the regulatory effect of Ihh after pre-TCR signalling, we 

generated a Ihhfl/fl-CD4-Cre+ Rag-/- mouse strain and set up anti-CD3-

treated FTOCs that mimic pre-TCR signalling. We analysed the FTOCs 

seven days after treatment. The coKO thymus showed a 5fold increase in 

size compared to WT (Figure 9.19A). It also contained a higher proportion 

of DN cells (Figure 9.19B), which displayed higher HSA expression (Figure 

9.19D). We also observed an increased in the proportion of CD8SP cells 

(Figure 9.19F). 
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Figure 9.1: The effect of conditional Ihh deletion (CD4Cre+) on thymocytes 
of young adult mice 

Dot plots (A) show the live gate and (B) the CD4 and CD8 expression of WT, 
Ihhfl/WT and Ihhfl/fl Cre+ thymocytes. Bar charts (C) shows the cell count and (D), 
(E) and (F) show the percentage of CD4SP, DP and CD8SP thymocyte 
populations, respectively. Bar charts (G) shows the CD3 expression of DP cells. 
Dot plots (H) shows HSA and B220 expression of live-gated WT, Ihhfl/WT and 
Ihhfl/fl thymocytes and overlaid histograms (I) (WT / coHet / coKO) shows CD5 
expression on DP cells. n=12 
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Figure 9.2: The effect of conditional Ihh deletion (CD4-Cre+) on DN 
thymocytes of young adult mice 

Dot plots (A) show CD44 and CD25 expression of WT, Ihhfl/WT and Ihhfl/fl DN 
thymocytes. Bar charts (B) show the proportion of DN cells and overlaid 
histogram (C) (WT / coHet / coKO) shows CD5 expression in DN cells.  n=11 
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Figure 9.3: The effect of conditional Ihh deletion (CD4-Cre+) on T 
splenocytes of young adult mice  

Dot plots (A) show the live gate and CD4 and CD8 expression of WT, Ihhfl/WT and 
Ihhfl/fl  Cre+ T splenocytes. Bar charts (B) shows the T cell count, (C) and (F) show 
the proportion of CD4SP and CD8SP populations that express CD3, respectively. 
Overlaid histogram (E) (WT / coHet / coKO) shows B220 expression of live gate 
and (F) shows MFI of CD5 of WT, Ihhfl/WT and Ihhfl/fl CD4SP and CD8SP 
splenocytes. n=6 
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Figure 9.4: The effect of conditional Ihh deletion (CD4-Cre+) on T cells from 
the lymph nodes of young adult mice  

Dot plots (A) show the CD4 and CD8 expression of WT, Ihhfl/WT and Ihhfl/fl T 
lymphocytes. Bar charts (B) and (C) show the proportion of CD4SP and CD8SP 
cells. Bar charts (D) and (E) show that conditional deletion of Ihh does not affect 
CD3 expression of CD4SP and CD8SP populations, respectively. Table (F) shows 
MFI of CD5 of WT, Ihhfl/WT and Ihhfl/fl CD4SP and CD8SP lymphocytes. 
Overlaid histogram (G) (WT / coHet / coKO) shows B220 expression of the live 
gate. n=6 
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Figure 9.5: The effect of conditional Ihh deletion on intracellular TCRβ 
expression in DN cells 

Dot plots show the gating strategy for intracellular detection of TCRβ on WT, 
Ihhfl/WT and Ihhfl/fl Cre+ mice. (Α) shows selection of thymocytes negative for CD3, 
CD4, CD8, CD44 and NK1.1 cells, so that DN3 and DN4 cells are represented in 
the negative gate. (B) shows density plots for CD25, thus allowing the distinction 
between DN3 and DN4 cells and histograms (C) show the percentage of DN4 and 
DN3 thymocytes that are positive for TCRβ.  n=3 
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Figure 9.6: The effect of conditional Ihh deletion on thymocytes of young 
adult male mice crossed with the male-specific HY TCR. 

Bar chart (A) shows the cell count of WT-HY, CD4-Cre+ Ihhfl/WT-HY and CD4-Cre+ 

Ihhfl/fl-HY thymocytes. Bar charts (B), (C), (D) and (E) show the percentage of 
DN, DP, CD4SP and CD8SP, thymocytes, respectively. Bar chart (F) shows coKO-
HY CD4SP and CD8SP proportions relative to WT. Representative dot plots (H) 
show Vβ8.1/8.2 and CD3 expression of DN CD4-Cre+ Ihhfl/fl-HY cells compared to 
WT-HY. *p<0.05, **p<0.005, ***p<0.0001, n=10 
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Figure 9.7: The effect of conditional Ihh deletion on thymic T3.70 
expression in young adult male mice crossed with the male-specific HY 
TCR. 

Dot plots (A) show Qa-2 and T3.70 expression of WT-HY and coKO-HY DN, DP, 
CD4SP and CD8SP populations. Dot plots (B) show the proportion of WT-HY and 
coKO-HY thymocytes in the live gate that express T3.70. Expresion of CD4 and 
CD8 from T3.70+ and T3.70- thymocytes is also shown.  
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Figure 9.8: The effect of conditional Ihh deletion on T cells from the spleen 
and lymph nodes of young adult male mice crossed with the male-specific 
HY TCR. 

Bar charts (A) and (B) show the proportion of CD4SP and CD8SP splenocytes, 
respectively and expression of Vβ8.1/8.2 and CD3 for the same populations. Dot 
plots (C) and (D) show CD4 and CD8 expression from the spleen and lymph 
nodes of WT-HY, coHet-HY and coKO-HY live gates, respectively. Bar charts (E) 
and (F) show the proportion of CD4SP and CD8SP lymphocytes, respectively and 
expression of Vβ8.1/8.2 and CD3 for the same populations. **p<0.005, 
***p<0.0001

0

5

10

15

%
 o

f 
S

P
 C

D
4

  c
e

lls

0

5

10

15

%
 o

f 
S

P
 C

D
8

  c
e

ll
s

0

20

40

60

80

100

%
 o

f 
V
β

8
.1

/8
.2

  
c

e
ll
s

0

50

100

150

%
 o

f 
V
β

8
.1

/8
.2

  
c

e
lls

0

10

20

30

40

%
 o

f 
S

P
 C

D
4

  c
e

lls

0

5

10

15

20

%
 o

f 
S

P
 C

D
8

  
c

e
ll
s

0

20

40

60

80

100

%
 o

f 
V
β

8
.1

/8
.2

  c
e

lls

0

50

100

150

%
 o

f 
V
β

8
.1

/8
.2

  c
e

lls

0

20

40

60

80

100

%
 o

f 
C

D
3

+
 c

e
ll
s

***

**

0

50

100

150

%
 o

f 
C

D
3

+
 c

e
ll
s

0

20

40

60

80

100

%
 o

f 
C

D
3

+
 c

e
ll
s

0

50

100

150

%
 o

f 
C

D
3

+
 c

e
lls

C
D

4

CD8

WT Ihhfl/WT Ihhfl/fl

A

F

E

D

C

B
S

p
le

e
n

L
y
m

p
h

 n
o

d
e

s



 175 

 Figure 9.9: The effect of conditional Ihh deletion on thymocytes of young 
adult female mice crossed with the male-specific HY TCR. 

Table (A) shows the cell count of WT-HY and CD4-Cre+ Ihhfl/fl-HY thymocytes in 
the thymus, spleen and lymph node. Dot plots (B) show the live gate and (C) 
shows CD4 and CD8 expression of WT-HY and Ihh coKO-HY littermates. (D) 
shows CD44 and CD25 expresison of DN cells. Overlaid histogram (E) shows live-
gated CD3 expression.  n=2 
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Figure 9.10: The effect of conditional Ihh deletion on T cells from the 
spleen of young adult female mice crossed with the male-specific antigen 
HY. 

Dot plots (A) show live gate of WT-HY and CD4-Cre+ Ihhfl/fl-HY thymocytes in the 
spleen of 6 week old female littermates. Overlaid histograms (B and C) show CD3 
and CD3-gated CD5 expression, respectively. n=2 
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Figure 9.11:  The effect of Ihh on E16.5 FTOC + 6 days in culture 

Bar chart (A) shows the cell count of WT, Ihh+/- and Ihh-/- E16.5 thymus after 6 
days in culture. Dot plots (B) show the live gate. Scatter graphs show the 
percentage of (C) DN, (D) CD4SP and (E) CD8SP cells. The percentage of CD25+ 
SP CD4 and SP CD8 cells is shown in scatter plots (F) and (G) respectively and 
plot H shows the proportion of DP cells that are positive for CD3. Dot plots (I) 
show CD4 and CD8 expression of thymocytes from the live gate and the CD3hi 
compartment. n=10 
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Figure 9.12:  The effect of conditional Ihh deletion on HY+ E18.5 thymocytes 
in male mice 

Dot plots show (A) the live gate and (B) CD4 and CD8 expression. Bar chart (C) 
shows the cell count of WT, Ihhfl/WT and Ihhfl/fl E18.5 thymus.  n=3 
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Figure 9.13:  The effect of conditional Ihh deletion on HY+ E18.5 thymocytes 
in male mice 

Dot plots (A) show T3.70 expression from the live gate of WT, Ihhfl/WT and Ihhfl/fl 

E18.5 thymus and (B) shows CD4 and CD8 expression of the T3.70-, T3.70low and 
T3.70high gates. n=3
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Figure 9.14:  The effect of conditional Ihh HY+ on E18.5 thymocytes in male 
mice 

Dot plots (A) show Qa-2 and HY expression on DN cells. Histograms (B) show 
Vβ6 expression on CD4 SP cells. Overlaid histogram (C) shows HSA expression 
on (WT / het / KO) DN, CD4SP and CD8SP cells.  
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Figure 9.15: Thymocyte recovery of DP and SP populations 4 days after HC 
injection on Ihh+/- 4 weeks old mice 

Bar chart (A) shows the cell count on live-gated thymocytes, 4 days after HC 
injection. Bar charts (B) and (C) show Qa-2 and CD3 expression on CD4SP cells. 
(D) shows CD5 expression in the thymus. Representative dot plots (E) show CD4 
and CD8 expression and histogram (F) (WT / het) shows CD24 expression on 
CD4 SP cells. *p<0.05, n=6 
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Figure 9.16: Thymocyte recovery of DN populations 4 days after HC 
injection on Ihh+/- 4 weeks old mice 

Representative dot plots (A) show the gating strategy for the DN thymic 
populations. Bar chart (B) shows Qa2 expression on DN cells and histogram (C) 
(WT / het) shows CD3 expression on the same population. *p<0.05, n=6 
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Figure 9.17: Thymocyte recovery 6 days after HC injection on Ihh+/- 4 weeks 
old mice 

Bar chart (A) shows the cell count of thymocytes, 6 days after HC injection. (B) 
shows CD5 expression on live-gated thymocytes and (C) shows CD25 expression 
on CD4SP. Representative dot plots (D) show CD4 and CD8 expression and (E) 
shows the gating strategy for the (F) DN thymic populations. *p<0.05, n=4 
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Figure 9.18: Thymocyte recovery in HC-injected Ihh+/- and conditional Ihh 
KO mice. 

Graph (A) shows thymus size post HC injection in WT and Ihh+/- mice. Chart (B) 
shows cell count of HY-crossed WT, Ihhfl/WT CD4Cre+ and Ihhfl/fl CD4Cre+ 3 
weeks old mice, 4 days after HC injection. Overlaid histogram (C) shows CD3 
expression on WT CD4SP, WT CD8SP and Ihh+/- CD8SP cells, 4 and 6 days after 
HC injection. (D) shows CD25 expression on DN and CD3 expression on DP cells 
on HY-crossed WT, coHet and coKO young mice 4 days after HC injection.
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Figure 9.19: Thymocyte populations 7 days after α-CD3 stimulation on   
Rag-/- conditional Ihh KO FTOCs. 

Bar chart (A) shows the cell count of thymocytes per thymic lobe, 7 days after α-
CD3 treatment on FTOCs. Bar charts (B), (C), (E) show the percentage of DN, DP, 
CD8SP cells. Bar chart (D) shows the percentage of DN cells positive for HSA. 
Representative dot plots (F) show CD4 and CD8 expression of live-gated 
thymocytes. n=4 
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9.3 Discussion 
 

9.3.1 Transition from DN to DP stage of development 
Our hypothesis predicted that Ihh, secreted by DP cells, feeds back to DN 

progenitors and restricts their development, providing a negative 

feedback loop that controls the size of the thymus. According to this 

hypothesis, we expected that conditional deletion of Ihh from DP cells 

would result in loss of negative feedback and a significant expansion in 

thymus growth and size, accompanied with an expansion of the DP 

population. Nevertheless, our data revealed that the adult conditional null 

mice display a smaller thymus and unchanged proportions of DP cells 

compared to the WT. However, male conditional mice that were HY+, 

displayed an enlarged thymus that contained a higher proportion of DP 

cells. We also observed larger thymi in HC experiments as well as Ihhfl/fl-

CD4Cre+Rag-/- FTOCs treated with anti-CD3. It seemed, however, that 

although we could clearly observe the negative impact that Ihh has on 

thymus size, we could not understand why this was not manifested on the 

conditional null HY- mice due to what seems to be an arrest on the DN3 

stage. As ic TCRβ expression is higher in the Ihh coKO, this arrest is not 

caused by decreased rearrangement. Nevertheless, the reason for this 

increased TCRβ expression is not clear as it could be a result of thymocytes 

being arrested on the DN stage or it can be a manifestation of genuine 

higher capacity for rearrangement.  

 

Analysis of male IhhcoKO-HY+ mice revealed that male coKO mice showed 

less deletion and higher T3.70 DN cells in the thymus, suggesting that 

deletion of Ihh results in partial reduction in negative selection. We plan to 

carry out TCR sequencing on these mice, which will test if Ihh is 

influencing extent of endogenous TCR rearrangement.  

 



 187 

We report several signs that collectively suggest that conditional deletion 

of Ihh results in a quicker transition from DN to DP stage. In a number of 

experiments, we observed higher CD5 expression on DN populations as 

well as the whole thymus. Another piece of evidence arises from HSA 

expression, which is downregulated as thymocytes mature. HSA levels are 

high on DN cells and gradually decrease in DP cells until they become 

undetectable in SP cells. High HSA expression of thymocytes results in 

pronounced reduction in DP and SP cell numbers, suggesting that 

downregulation of HSA is a critical event in thymocyte development that 

can act as an indicator of progression to the DP stage (Hough, Takei et al. 

1994). In the absence of Ihh, DN cells seem to downregulate HSA quicker, 

as seen on the E18.5 Ihh coKO HY+ experiment, consistent with accelerated 

maturation.  

 

Furthermore, we detected much higher HY-TCR expression on DN cells in 

E18.5 IhhcoKO male mice as well as weaker CD3 expression on DP cells on 

E16.5 thymocytes after 6 days in FTOCs as well as during reconstitution of 

the DP population in HC-treated Ihh coKO HY+ male mice. The narrowed 

time period that DN cells have to express CD3 during an accelerated 

progression from the DN to DP stage could explain the above finding. Our 

hypothesis is also backed by our observation that commonly in our Ihh KO 

or Ihh coKO experiments, where the thymus size is reduced, the live gate is 

also significantly smaller, suggesting increased apoptosis. 

 

Overall, we believe that deletion of Ihh causes a significant acceleration of 

thymocyte development after the pre-TCR signal transduction. It is 

possible that this quick transition from DN to DP cells does not give 

thymocytes the necessary time to undergo normal TCR rearrangement, 

resulting in elimination of these faulty thymocytes during selection 

processes in later steps of T cell development and overall reduction in 
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thymus size. Despite the quicker transition, having an already rearranged 

TCR, the HY+ thymocytes can pass selection successfully, which allows us 

to observe a larger thymus. 

 

In order to test the expected higher apoptotic rate of DP cells in the 

absence of Ihh and a rearranged TCR, we are planning to use Annexin V 

stain on DP populations from WT and Ihhfl/fl-CD4Cre+HY- mice. We are 

also planning to carry out TCR sequencing on sorted DP, CD4SP and CD8SP 

from WT and Ihhfl/fl-CD4Cre+HY- mice. As T cells progress faster in the 

absence of Ihh, we expect to find a limited diversity of TCRs on the 

conditional null mice. Finally, we will carry out RNA sequencing on DN3, 

DN4, as well as DP cells on the same strain, in order to identify sets of 

genes which could provide an explanation for the accelerated transition 

from DN to DP cells and the increased thymic growth triggered by Ihh’s 

deletion.   

 

9.3.2 Transition from DP to SP stage of development 
Our lab has previously shown that Shh and Gli2 affect later stages of T cell 

development, affecting TCR signal strength, positive and negative selection 

as well as CD4 versus CD8 lineage commitment (Crompton, Outram et al. 

2007). However, the role of Ihh on later stages of T cell development has 

not been investigated yet. Here, we showed that Ihh is a negative regulator 

of the latest stages of thymic T cell development. In our experiments (eg. 

E16.5 and mutant Ihh 6 days FTOCs, anti-CD3-treated Ihh coKO   Rag-/-), 

we observed an increase in the proportions of CD4SP and CD8SP cell 

populations. The phenotype was even stronger in analysis of CD3+ 

thymocytes. 

 

Interestingly, this increase in the CD4SP and CD8SP populations was not 

clear in adult IhhcoKO and IhhcoKOHY+ experiments. We believe that 

development of thymocytes in the adult thymus has reached a steady state 
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which limits the observation of events that need a synchronized 

progression to be manifested. We are planning to investigate the way Ihh 

regulates DP to SP progression further and we also intend to perform RNA 

sequencing on DP, CD4SP and CD8SP cells from WT and Ihhfl/fl-CD4Cre+ 

mice to elucidate those genes downstream Ihh which influence the DP to 

SP transition. 

 

Overall, our research has revealed some interesting findings and even 

more interesting ideas that we can test in the near future. However, mice 

with conditional deletion of Ihh are very bad breeders and the subsequent 

lack of a constant supply of litters hindered our project. We will need to 

analyse more animals from these strains to confirm our results. 

 

9.3.3 Effect of Ihh in periphery 
Delaroche et al recently proposed that peripheral CD8 cells produce and 

secrete Ihh. Therefore, changes in peripheral T cells can be a result of 

either intrathymic processes that take place before T cell migration and 

persist in the periphery or a direct consequence of Ihh’s absence in the 

periphery. 

 

Interestingly, the conditional KO spleen contained more T cells than the 

WT, which is the opposite of what we saw in the thymus but no other 

difference was observed. Introduction of the HY antigen caused a 

significant upregulation of CD3 in the male spleen, consistent with the 

thymus. Finally, conditional deletion of Ihh did not affect B cell numbers, 

as shown by B220 analysis. 
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10.1 Μurine γδ T cells 
 

10.1.1 Effect of Hh signalling on γδ cell numbers 
We believe that Hh signalling positively regulates γδ Τ cells in the thymus 

during early developmental stages. Our lab has previously shown that Gli3 

deletion blocks DN1 to DN2 transition, therefore we hypothesize that this 

finding is γδ-exclusive. In mutant strains in which inhibition of Hh activity 

is lifted and so overall Hh signalling is increased, such as Gli3 and Kif7, we 

detected a significant increase in the numbers of γδ T cells. We showed a 

similar effect in Gli2N2-tg mice in which Hh-mediated transcription is 

increased in T lineage cells. Our results were confirmed by double Dhh and 

Shh mutants as well as E16.5 FTOCs + 5 days in the presence of Hhip.  

 

Interestingly, E17.5 Kif7 KO spleens have more γδ cells, although this is 

not the case in the E17.5 KO thymus. Furthermore, Kif7 mice show their 

highest increase in γδ count in the spleen and Gli3 in the lymph nodes. 

Overall, our data indicate that the rise in γδ cell numbers must be 

attributed to either an increased intrathymic turnover or to increased 

peripheral proliferation. In addition, the fact that in Kif7 and Gli3 mutant 

mice all γδ populations increase, suggests that the effect mediated by these 

mutant mice occurs early in γδ T cell development and affects γδ cells 

independently of subtype and effector fate. 

 

Both Dhh KO and Shh+/- thymi show a small reduction in the numbers of γδ 

cells, which are not comparable to the phenotype observed in Kif7 or Gli3 

heterozygotes. However, in the double Shh and Dhh KO, the reduction in 

total thymic γδ cell numbers becomes significant, indicating that, at least 

in terms of cell numbers, loss of Shh is largely compensated by Dhh and 

vice versa.  
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10.1.2 The effect of Hh signalling on the CD27+CD44+ γδ subset 
In the thymus, constitutive Gli2 activity causes an increase in the number 

of CD27+CD44+ γδ cells, although we have not yet concluded whether this 

effect is the result of expansion of the existing CD27+CD44+ population or a 

biased differentiation towards this lineage, neither have we investigated 

yet the exact nature of this subtype and its cytokine secretion capacity. We 

found that Kif7 and Gli3 do not influence this phenotype, as differences 

between WT and mutant littermates were not significant. Nevertheless, 

mutant Shh and Dhh mice show a significant downregulation of this 

population, indicating that these two ligands directly control the size of the 

thymic CD27+CD44+ γδ population. We have little doubt that Hh signalling 

is a key positive regulator of this γδ subtype, which is known to be skewed 

for the Vγ1 chain, overall indicating that increased Hh activity supports the 

development of CD27+CD44+ cells. There are three possible explanations 

for the increase in CD27+CD44+ γδ subset. 

 

Firstly, this population may appear by upregulating CD44 on Vγ1-biased 

CD27+CD44- γδ cells. This naïve CD27+CD44- (and CD122-) γδ population is 

associated with an absence of TCR ligation during development (Ribot, 

Chaves-Ferreira et al. 2010). CD44 plays a role in adhesion and is known 

as an indicator for Ag-experienced cells and acquisition of a effector 

memory phenotype (Baaten, Tinoco et al. 2012). Details about the role of 

CD44 on γδ T cells remain unclear but it is possible that increased Hh 

activity leads to increased CD44 expression on the otherwise CD27+CD44- 

γδ population. 

 

Secondly, this population may represent an expansion in the NK-like γδ 

population. We observed a strong upregulation on LPS-infected GliN2 

mice. Our data point towards the idea that increased Hh activity promotes 

the development of ΝΚ-like γδ thymocytes. Several experiments support 

this hypothesis. For example, Gli3+/- mice showed a small increase in the 
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thymic numbers of NK-like γδ cells. Similarly, in double conditional Shh 

and Dhh, the percentage of NK-like γδ cells decreased, overall signifying 

that Hh signalling is likely to be a positive regulator of NK1.1-expressing 

γδ cells in the thymus. It will be important to add this marker when we 

carry out further analysis of the Gli2N2 tg strain, although in LPS-injected 

Gli2N2 tg mice, NK1.1 was sharply upregulated and in non-LPS-injected 

Gli2N2 tg mice, CD122, a marker strongly associated with NK-like γδ cells, 

increased significantly. Upregulation of CD122 expression suggests 

dependence on IL-15 (Sumaria, Roediger et al. 2011). The fact that NK-like 

γδ cells are Vγ1(Vδ6.3/6.4)-biased supports our hypothesis as we have 

shown that Hh signalling is a positive regulator of Vγ1 cells. However, 

most NK-like T cells residue in the murine liver and bone marrow (Lees, 

Ferrero et al. 2001), tissues which are beyond the scope of this project but 

which will investigate in the future. It is possible that differentiation of 

γδTCR-expressing cells towards an NK-like cell fate requires a specific 

extent, in terms of duration and strength, of TCR signalling. It is therefore 

possible that upregulation of the Hh pathway as exhibited by constitutive 

Gli2 activity or deletion of one copy of Gli3 promotes stronger or longer 

TCR signals which result in an upregulation of Vγ1-skewed, CD27+CD44+ 

NK-like γδ cells, which would have become naïve CD44- γδ cells in the 

absence of the increased TCR signals. In addition, Vγ1+CD27+CD44+ NK-

like γδ cells are one of the few γδ subtypes that require a γδTCR-ligand 

binding during their generation from thymic progenitors (Azuara, Levraud 

et al. 1997), and it is, alternatively possible, that Hh signalling increases 

the proliferation of this small pre-existing NK-like γδ population. Based on 

the above indirect evidence and published data from our lab that showed 

that Hh signalling affects TCR signal strength in αβ T cells, our next step 

will test this hypothesis and the implication of TCR signal strength in γδ T 

cells and more specifically in the upregulation of NK1.1+ γδ cells in Gli2N2 

and Shh mutant mice.  
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A third hypothesis implicates δ/αβ T cells, a newly identified and very 

enigmatic γδ T subset in humans, expressing TCRs comprised of a TCR-δ 

variable gene (Vδ1) fused to Joining α and Constant α domains, paired 

with an array of TCRβ chains (Pellicci, Uldrich et al. 2014). Within the Vδ1+ 

population, the ratio of δ/αβ to γδ T cells varied widely with a mean of 

about 45%. Since this population is abundant in human PBMCs, we would 

not be surprised if we identify a murine population with similar 

characteristics. Currently, the focus on human δ/αβ cells lies on revealing 

the function of its TCR and recognising its antigens and therefore little is 

known about its ontogeny. A stronger TCR signal during β-selection can 

induce the production of δ chains which can then join the rearranging 

αβTCR, creating a surrogate δ/αβ TCR. 

 

In LPS experiments that we performed on Gli2N2 tg mice and included 

NK1.1, the expanding population was NK1.1 positive, strongly suggesting 

that the expansion involves NK-like γδ cells. In the near future, we will 

explore the exact phenotype of this subtype using various readily available 

experimental ways. We have already shown that this population is unable 

to produce IL-17 and has a limited capacity for IFNγ production but we 

suspect that more key γδ cytokines are implicated which will help us 

identify the nature of this subset. Hence, we will test its cytokine 

production capacity for IL-4, IL-10 and IL-15 upon short PMA/Ionomycin 

activation. Furthermore, we will dissect and analyse the thymus and the 

periphery, including the liver and bone marrow, for NK-like γδ Τ cells. 

Additionally, co-staining with γδTCR and αβTCR antibodies will elucidate 

whether δ/αβ surrogate TCR T cells are present in the murine thymus. If 

we find this to be the case, we will sort this population from the adult 

thymus and sequence its TCR in order to identify its exact TCR 

configuration and its clonal diversity. We will perform RNAseq on sorted 
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CD27+CD44+ γδ cells from Gli2N2 tg and Shhfl/fl-FoxN1Cre+ tg mice in 

order to reveal the Hh target genes and molecular pathways implicated in 

this phenotype.  

 

10.1.3 The effect of Hh signalling on the CD44+ CD27- γδ subset 
IL-17-producing γδ cells derive directly from DN2 cells  (DN3 cells give 

rise to IFNγ-producing γδ cells exclusively) (Shibata, Yamada et al. 2014), 

relying on ligand-independent TCR signals in the thymus (Jensen, Su et al. 

2008) and their ontogeny is restricted in embryonic development (Haas, 

Ravens et al. 2012, Michel, Pang et al. 2012) so that adult mice rely on 

lifelong peripheral maintenance for this γδ subtype.  

 

In the fetal thymus, E14.5 FTOCs + rShh for 5 days showed an increase in 

the CD44+CD27- γδ subset. This contradicts all other relevant experiments 

that showed that Hh activity negatively regulates this population in the 

thymus. Adult Shh mutant mice show an increase in the percentage of this 

population and Kif7 and Gli3 mutant mice, which are expected to enhance 

Hh-mediated signals, show a strong downregulation of this population. 

The same applies in Kif7 fetal thymus, indicating that Hh signalling 

regulates γδ development already from the DN2 stage in around E15-E16, 

when IL-17-producing γδ cells first appear. 

 

Shh-mediated Hh activity causes a downregulation of CD27 expression, 

together with an upregulation of CD44 expression as shown in adult and 

fetal thymi, spleens and lymph nodes. The upregulation of CD44 should be 

attributed to an expansion of the CD27+CD44+ γδ subset. The CD44+CD27- 

population is actually reduced significantly, despite the overall 

upregulation of CD44.  
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In the Gli2N2 mice, CD44 expression increased dramatically but this is 

attributed exclusively to a remarkable upregulation of the CD27+CD44+ 

population and the CD44+CD27- is not affected, indicating that Gli2 is not 

directly implicated to this thymic subset. 

 

10.1.4 The effect of Hh signalling on splenic γδ T cells 
In the spleen, Hh signalling causes a dramatic decrease in the CD44+CD27- 

γδ cell population, as exhibited by Gli3, Kif7, Shh, Dhh and Gli2N2 

experiments, indicating that Ηh strongly suppresses this population, most 

likely directly via Gli2 signalling.  

 

Concerning the CD27+CD44+ subtype, Ihh, Shh, Gli3 and Gli2 have no 

impact whereas Kif7+/- mice show a significant increase on the same 

population, suggesting that Kif7 acts independently of Gli2 and Gli3.  

 

10.1.5 The effect of Hh signalling on cytokine production of splenic γδ 
cells 
Hh activity also shows to weaken IL-17-secreting capacity as displayed on 

Gli3 and Shh mutant mice, upon 4h of PMA and Ionomycin activation. 

Interestingly, Dhh shows the opposite effect as we showed Dhh to be a 

positive regulator of IL-17 production on γδ splenic cells. Again, this 

constitutes another indication that Dhh may influence γδ T cells by acting 

as a suppressor of overall Hh activity in the spleen. 

 

10.1.6 The effect of Hh signalling on CD24 expression of γδ cells 
CD24 is considered to be a maturity marker for γδ thymocytes, with 

mature cells downregulating CD24 before entering the periphery. We 

discovered that Hh activity reduces significantly the percentage of CD24+ 

γδ thymocytes, as exhibited by our Gli2N2 and Gli3 mice strains. Of note, 

according to our GBS-GFP data, CD24- γδ thymocytes are not responsive to 
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Hh signalling. Around 90% of CD27-expressing and 50% of CD44-

expressing γδ thymocytes are positive for CD24 (Li, Zheng et al. 2004). We 

hypothesize that Hh activity promotes γδ cell maturation and a faster 

turnout rate, downregulating thymic CD24. Similarly, data on Shh, 

consistently with Gli3, Kif7 and Gli2N2 experiments in the spleen, suggest 

that increased Hh activity reduces percentage of peripheral γδ T cells that 

are positive for CD24.  

 

CD24 has been implicated in homeostatic proliferation in αβ Τ cells. We 

noticed that there is a correlation between CD24 expression and cytokine-

secreting capacity in the spleen as increased Hh signalling downregulates 

both CD24 and IL-17 production. However, we need further investigation 

to understand if and how the two observations affect each other. It is 

possible that strong Hh activity results in a stronger TCR signal which 

downregulates CD24 and favors an IFNγ-secreting capacity. In fact, a 

recent publication that elegantly tested the effect of TCR signal strength on 

the DN lineage commitment in a Rag2-/- mouse model in which both TCR-β 

and γδ-TCR are simultaneously expressed via retroviral transduction, 

showed that a strong TCR signal favored differentiation towards a γδ Τ cell 

lineage with a significant decrease in CD24 expression (Zarin, Wong et al. 

2014). 

 

Alternatively, we also hypothesize that Hh’s negative effect on IL-17-

producing cells can be CD24-mediated in a direct manner. The connection 

between CD24 and IL-17 production could be explain If Hh signalling 

causes a reduction in CD24 expression on CD44+CD27- γδ cells which rely 

on CD24 for their peripheral proliferation and postnatal maintenance. 
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10.1.7 The effect of Hh signalling on γδ cells residing in the murine 
lymph nodes 
The lymph nodes do not show GBS-GFP activity, however, Hh signalling 

influences γδ cell numbers in the lymph nodes. More specifically, Gli3 and 

Kif7 positively regulate γδ cells as mutant mice of both strains show 

increased γδ cell numbers. Interestingly, Gli3 displays a very strong 

phenotype, doubling the number of γδ cells.  

 

Dhh seems to slightly promote γδ cells in the lymph nodes and Shh clearly 

suppresses it as Shh+/- and ShhcoKO show an increase in the numbers of 

γδ cells. The mechanism is not elucidated although we believe that the 

observed phenotype relies on events that occur prior to γδ cells homing to 

the lymph nodes. In any case, the opposing effects of Dhh and Shh on the 

LN γδ cells can be seen at the double Shh and Dhh KO experiments where 

rescue of Shh partly reverses the phenotype seen on the double KO (data 

not shown).  

 

10.2 The effect of Hh signalling on γδ cells upon LPS infection 
 
In the GliN2 mice, we saw an expansion of the CD27+CD44+ thymic 

population, which becomes NK1.1+, CCR6- and Vγ1-biased, thus displaying 

all the typical characteristics of the NK-like γδ cells. We could not 

determine the peripheral destination of this subtype, as the thymic cell 

count increase was not reflected in the spleen, lymph nodes, blood or skin. 

It is believed that tissue localization of NK-like γδ cells relies on properties 

intrinsic to NKT cells, independently of the nature of TCR, hence we may 

find the expanding population occupying mainly the liver and bone 

marrow, in a way similar to NKT cells (Lees, Ferrero et al. 2001). In 

ShhcoKO LPS-injected mice, this population is downregulated, strongly 

suggesting that observed expansion of this population upon T cell 

activation is controlled by Shh upstream of Gli2. Interestingly, half of 
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splenic WT CD27+CD44+ γδ cells produce IFNγ upon PMA and ionomycin 

activation, whereas in the tg mice, the ratio drops to 3:1, indicating that 

the expanded cell population is not capable of IFNγ production.  It has 

been shown that NK-like γδ cells can also secrete IL-4 or IL-15 upon 

activation (Vicari, Mocci et al. 1996), so we aim to investigate this in the 

near future.  

 

In the Gli2 tg mice, the Vγ2-bearing CD44+CD27- population disappears 

whereas CD44+CD27- γδ cells bearing a Vγ chain other than Vγ1 and Vγ2 

expand massively, overall increasing the number of CD44+CD27- γδ cells. 

We are unable to explain this Gli2-induced substitution from Vγ2 to other 

Vγ-bearing CD44+CD27- γδ cells, a finding which is also reflected in the 

spleen and lymph nodes, where the number of Vγ2+ CD44+CD27- γδ cells 

decreases dramatically. We found that Gli2 triggers the CD44+CD27- γδ 

subtype to remain in the peripheral blood, suggesting that LPS treatment 

changes cell migration. It has been shown that splenic murine γδ T cells 

recognize a B cell antigen called phycoerythrin, which triggers expansion 

of the IL17-producing CD44+CD27- γδ subtype, together with reduction in 

CCR7 and upregulation of CCR2 expression (Zeng, Wei et al. 2012). This 

pattern is commonly associated with the acquisition of a new cell 

migration pattern in antigen-activated naïve αβ T cells (Meneghin and 

Hogaboam 2007). We are therefore interested to investigate whether a 

similar mechanism exists in γδ cells and how Gli2 activity can affect 

expression of the chemokine receptors, allowing CD44+CD27- γδ cells to 

remain in blood circulation. Finally, Shh promotes IL-17 production, 

overall indicating that in LPS infection, despite the outstanding 

CD27+CD44+ NK-like γδ expansion, Hh signalling is likely to favor a TH17 

response. This hypothesis, if proven correct, is translationally important as 

γδ T cells are the major IL-17 producers for a large number of infectious 

disease models, including E.coli infection.  
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Summary 

 

This thesis focused on the role of Hh signalling and its mediators in the 

development and function of two distinct T cell subtype populations, γδ 

and αβ T cells. Here, we provided evidence that underline the importance 

of Hh signalling in these populations. 

 

In terms of γδ T cells, we showed that Hh signalling both positively and 

negatively regulates distinct populations in the fetal and adult thymus, 

depending on numerous factors including functional capacity and tissue 

localization (Figure 10.1). Using an array of mutant mouse strains (Gli3+/-, 

Kif7+/-, Gli2N2, Shh+/- and Dhh-/-) we showed that increased Hh signalling 

increased the proportion of γδ T cells in all tissues examined, both fetal 

and adult. In the adult thymus, Hh signalling, mediated directly via Shh and 

Gli2, promoted the intrathymic proliferation of Vγ1-biased NK-like γδ T 

lineage, possibly by providing a strong TCR signal that is required for the 

development of this subtype. Interestingly, loss of Shh significantly 

increased the numbers of γδ cells in the lymph nodes. Depending on tissue 

and γδ subtype population, Shh and Dhh showed overlapping or opposing 

effects, highlighting the diverse plasticity and fluidity of Hh-mediated 

signals and Hh ligands. In LPS treatment experiments, increased Hh 

activity as mediated by Gli2N2-tg, caused Vγ2+ IL-17-producing cells to 

remain in peripheral blood.  

 

We are the first to expand human γδ T thymocytes in a Vδ-unbiased way 

using an expansion protocol based on co-culturing with irradiated 

artificial antigen presenting cells (aAPCs). However, expanded γδ cells 

were activated en masse during expansion, becoming unresponsive to Hh 

signalling. Therefore, our subsequent preliminary analysis failed to 
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provide insight into the function of Hh signalling in human γδ T cell 

development. 

 

DP αβ thymocytes produce Ihh that feeds back to DN progenitors to 

restrict their development, overall controlling thymus size. Despite 

published evidence on the existence of this negative feedback loop, little is 

known about its exact mode of action. Our investigation revealed that, 

contrary to our hypothesis, conditional deletion of Ihh from all CD4-

expressing cells did not result in a larger thymus. Further investigation 

using the male specific HY TCR revealed that deletion of Ihh negatively 

affects negative selection whereas HC and Rag KO experiments showed 

that the feedback loop is manifested when requirement for TCR 

rearrangement is overcome in developing thymocytes and when 

developing thymocytes progress in a synchronized way. Overall, we 

hypothesize that deletion of Ihh accelerates differentiation so that 

thymocytes progress without a correct TCR rearrangement, followed by 

apoptosis of these cells, resulting in a small thymus.  

 

Mice with conditional deletion of Ihh are bad breeders and the lack of 

samples delays the progress of this research and many details remained to 

be elucidated. 

 

We also discovered that Ihh plays a role in DP to SP transition. 

Experiments where progression from DP to SP stage of development has 

not reached a steady state (analysis of fetal thymi as well as HC and RagKO 

experiments) showed that deletion of Ihh increased the proportion of 

mature CD4SP and CD8SP populations. 
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Figure 10.1: The effect of Hh signalling on murine γδ T cell biology 

 
The figure summarizes the effect or Hh signalling on murine γδ subtypes in the 
fetal and adult thymus and periphery.  Red arrows symbolize promotion and 
dashed arrows symbolize inhibition. Mouse strains on top of red arrows indicate 
experiments where the effect was observed. 
 
DN – Double negative, DP – double positive, γδ – γδTCR, Hh – Hedgehog 
signalling, IL – Interleukin, IFNγ – Interferon gamma.
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Future directions 

 

In the near future, we will analyse the liver and bone marrow of untreated 

and LPS-injected Gli2N2 and Shhfl/fl-FoxN1Cre adult mice for proportions 

of γδ cells and capacity for IL-10 and IL-4 production, in order to 

investigate the role of Hh signalling on NK-like γδ cells directly in the 

tissue where this subtype resides. Furthermore, we will investigate the 

strength of TCR signalling on developing γδ cells from the same mouse 

strains in order to understand whether Hh signalling promotes the NK-like 

γδ phenotype by directly influencing TCR signal strength. In order to 

identify the Hh target genes and molecular pathways which promote the 

NK-like γδ phenotype, we will carry out RNA sequencing on sorted NK-like 

γδ cells.  

 

We will also investigate further the inability of Vγ2-biased IL-17-

producing CD44+CD27- γδ cells to harbor in secondary lymphoid organs as 

observed in LPS experiments. Using a flow cytometry-based technique, we 

aim to perform an extensive analysis of chemokine receptors, hoping to 

identify what triggers this γδ subtype to remain in blood circulation in 

Gli2N2 mice. 

 

Finally, we showed that IL-17-producing CD44+CD24+CD27- γδ cells are 

particularly responsive to Hh signalling but their response varies 

according to tissue localization and other parameters which are not clear. 

As this population is abundant and important in the protection of skin and 

peritoneal cavity, we aim to explore the effect of Gli2C2 and Gli2N2-

mediated altered Hh signalling by immunofluorescent staining on skin γδ 

cells and flow cytometry on peritoneal γδ cells. 
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We hope that our research will provide the evidence for new insights on 

Hh signalling and murine γδ T cell biology and identify novel factors which 

affect γδ lineage determination, tissue localization and functional capacity. 

 

In terms of the role of Ihh on the development of αβ T cells, there is much 

to be done in order to test our hypothesis and confirm that deletion of Ihh 

causes increased apoptosis due to inability of developing thymocytes to 

successfully rearrange a functional TCR. 

  

First of all, we need to continue analyzing E16.5/E18.5 and E16.5/E18.5 + 

6 days FTOCs conditional Ihh embryos for markers that can indicate faster 

TCR rearrangement and DN to DP transition as well as apoptosis. Similar 

analysis must be performed on HC and additional anti-CD3-treated RagKO 

experiments. In order to confirm the dramatic increase in thymus size in 

HC-treated Ihh coKo HY+ mice, we aim to inject HC to more pairs of Ihh 

coKo HY+ and WT littermates. 

 

Finally, we predict to detect oligoclonal diversity of TCRs in the conditional 

Ihh thymi because we expect that death of developing thymocytes in these 

transgenics correlates with time taken to successfully rearrange their TCR, 

controlling the size of TCR of surviving cells. Therefore, we aim to carry 

out TCR sequencing expecting to identify a restricted TCR repertoire 

consisting of long TCR chains. 
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