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Abstract 

Most people who try psychoactive drugs never become addicted. Theoretically, hypersensitivity to 

drug rewards and hyposensitivity to non-drug rewards may contribute to the development of drug 

addiction. In chapter 1, I review this literature, focusing on the psychology and neuroscience of reward 

processing, in nicotine and cannabis addictions. In chapter 2, using a novel task (the DReaM-Choice), 

I demonstrate that dependent (n=20), compared with occasional smokers (n=20), had greater 

motivation for and liking of cigarettes, but displayed little evidence of a difference in non-drug reward 

processing. Surprisingly, I also show the effects of 12 hour abstinence on reward processing were 

similar in dependent and occasional smokers. I then report a functional magnetic-resonance-imaging 

(fMRI) experiment (chapter 3), in which dependent smokers (n=22) had greater behavioural 

motivation for cigarettes and a stronger neural response to winning cigarettes than occasional 

smokers (n=20). However, there were no differences between the groups in behavioural or neural 

processing of the non-drug reward (music). I attempted to lessen the motivation to smoke cigarettes 

in the study reported in chapter 4, by administering a dopamine D2/3 receptor agonist (0.5mg 

pramipexole) to both dependent (n=20) and occasional (n=20) smokers. Pramipexole had no impact 

on motivation to smoke cigarettes, though it did impair reward learning and effort-related decision-

making for monetary reward. In chapter 5, I found that, in non-dependent cannabis users (n=17), 

acutely administered cannabis reduced motivation for monetary reward; an effect which was 

moderated by the presence of cannabidiol in the cannabis. In a separate study, I demonstrate that 

dependent cannabis users (n=20) had impaired reward learning, but were not amotivated, relative to 

non-dependent, drug-using controls (n=20). Finally, in chapter 6, I summarise my findings, discuss 

their theoretical and clinical implications, consider their limitations and suggest future research 

directions for the field of reward processing in addiction.  
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Chapter 1: Drug and non-drug reward processing in addiction 

Use of licit and illicit drugs is common and widespread. In the U.K., 19% of adults currently smoke 

cigarettes (Health and Social Care Information Centre, 2014) and 69% of adults drink alcohol once per 

week or more (ONS, 2013). In the European Union, 23.3% of adults have tried cannabis and 4.6% have 

tried cocaine at least once in their lifetime (European Monitoring Centre for Drugs and Drug Addiction, 

2015). However, the majority of licit and illicit drug users will never become addicted. The percentages 

of those who have tried a drug and go on to become dependent are approximately: 32% for tobacco, 

23% for heroin, 17% for cocaine, 15% for alcohol and 9% for cannabis (Anthony, Warner, & Kessler, 

1994). One particularly eye-opening study, conducted after the Vietnam War, showed that only 5% of 

soldiers who regularly used heroin in Vietnam were addicted to the drug after returning to the U.S.A. 

(Robins, 1993). The reasons why most people are able to use drugs occasionally without becoming 

addicted while the minority end up in a decidedly difficult situation are mostly unknown, but they 

likely range from the sociological (Anthony et al., 1994) to the psychological (Lopez-Quintero et al., 

2011) and neurobiological (Dalley et al., 2007). Gaining a better understanding of these reasons will 

improve the development of effective prevention and treatment strategies. 

1.1 Introduction 

Most of this thesis will focus on nicotine dependence, which, according to the epidemiological 

statistics described above, is the most likely addiction experienced after initial use. Despite substantial 

reductions in tobacco smoking, from a peak of around 80% in men during the late 1940s, it still 

embodies the leading cause of preventable death in the U.K., with approximately 100,000 people 

dying each year as a result of tobacco (Action on Smoking and Health, 2014). Of those over 35 years 

of age, 17% of all deaths in England were estimated to be caused by smoking (Health and Social Care 

Information Centre, 2014). Therefore, helping dependent cigarette smokers quit and remain abstinent 

is one of the primary ways we can improve the public health of our nation and the world at large. 
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Given the demonstrably unpleasant consequences of chronic tobacco smoking, it is unsurprising that 

around 70% of smokers in Great Britain want to quit (Lader & Goddard, 2004). In spite of this common 

desire, of those making an unaided quit only 3-5% remain abstinent one year later (Hughes, Keely, & 

Naud, 2004). Currently, the best form of treatment for nicotine dependence is a combination of the 

partial nicotinic receptor agonist varenicline and specialised behavioural therapy, which leads to a 31% 

abstinence rate after one year (West & Owen, 2012). Even highly motivated dependent smokers are 

more likely to fail than succeed (Zhou et al., 2009).  

Cannabis dependence, although rare compared with nicotine dependence, is the most common illicit 

drug addiction: an estimated 13 million people are addicted worldwide (Degenhardt et al., 2013) 

including 1% of European adults (European Monitoring Centre for Drugs and Drug Addiction, 2015). 

Demand for treatment is increasing, especially among young people (Public Health England, 2013). 

However, current psychological treatments are limited (Cooper, Chatters, Kaltenthaler, & Wong, 

2015) and there are no pharmacological treatments yet available. 

Hence, important questions within the field of addiction include: what are the mechanisms that 

underlie the start, continuation and end of addictive behaviours? Research into what separates 

dependent drug users from non-dependent, occasional users should help us answer these questions. 

Such knowledge is hoped to help those dependent drug users who want to stop using drugs but find 

it difficult. One factor that is thought to drive addiction and relapse is the disruption of reward 

processing associated with chronic drug use (Goldstein & Volkow, 2011; Kelley & Berridge, 2002). 

In this chapter, I will first introduce the broad concept of reward processing, the underlying 

neurobiological and pharmacological systems, and how recreational drugs interact with these 

systems. Subsequently, I will review the literature concerning whether nicotine and cannabis 

dependence are associated with alterations to the reward system and, crucially, whether they are 

associated with a hypersensitivity to drug rewards and a hyposensitivity to non-drug rewards. I will 

argue that the results are inconclusive and more research must be carried out before concluding that 
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nicotine and cannabis dependence are associated with clear reward processing alterations. I will 

propose that research which investigates drug and non-drug reward processing concurrently and 

which measures different aspects of reward processing is needed. 

1.1.1 Addiction, dependence and substance use disorder 

In this thesis I will use the terms ‘drug dependence’ and ‘drug addiction’ interchangeably. These terms 

refer to harmful drug use that is driven by strong motivations (West & Brown, 2013). Specifically, 

addiction is defined as ‘a chronic condition involving a repeated powerful motivation to engage in a 

rewarding behaviour, acquired as a result of engaging in that behaviour, that has significant potential 

for unintended harm. Someone is addicted to something to the extent that they experience this 

repeated powerful motivation’ (West & Brown, 2013, page 18). 

Drug addiction/dependence/use disorders are often diagnosed using the diagnostic and statistical 

manual of mental disorders (DSM). In the previous edition (DSM-IV), diagnoses of either ‘drug abuse’ 

or ‘drug dependence’ were given, depending on the type and number of symptoms reported by the 

person (DSM-IV American Psychiatric Association, 2000). However, in the current edition (DSM-5), 

diagnoses are given, using similar symptoms to those used in DSM-IV, on a continuum of mild to severe 

‘substance use disorder’ (SUD) (DSM-5 American Psychiatric Association, 2013) (see table 1.1). A mild 

SUD requires two-three symptoms, a moderate SUD requires four-five symptoms and a severe SUD 

requires six or more symptoms, to be present with a 12 month period. Surprisingly, the words 

‘addiction’ and ‘dependence’ are never used to describe the disorder in DSM-5, although I believe the 

severity of the DSM-5 SUD can be approximated to the severity of drug addiction or dependence. 

A variety of other questionnaires and clinical tools are also available to determine dependence level, 

such as the severity of dependence scale (SDS) (Gossop et al., 1995), and addiction-specific 

assessments, such as the Fagerstrom Test for Nicotine Dependence (FTND) (Heatherton, Kozlowski, 

Frecker, & Fagerstrom, 1991). Although there are many tools to assess the level of drug dependence, 
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they all tap similar constructs. In essence, drug addiction is characterised by repeated, powerful 

motivations to take drugs despite the potential for harmful consequences.  

Table 1.1 The DSM-5 diagnostic criteria for substance use disorders. Severity of the disorder: 2-3 
symptoms = mild; 3-4 symptoms = moderate; 6+ symptoms = severe. 

Diagnostic Criteria 

1. The substance is often taken in larger amounts or over a longer period than was intended. 

2. There is a persistent desire or unsuccessful efforts to cut down or control use of the substance. 

3. A great deal of time is spent in activities necessary to obtain the substance, use the substance, 
or recover from its effects. 

4. Craving, or a strong desire or urge to use the substance. 

5. Recurrent use of the substance resulting in a failure to fulfil major role obligations at work, school 
or home. 

6. Continued use of the substance despite having persistent or recurrent social or interpersonal 
problems caused or exacerbated by the effects of its use. 

7. Important social, occupational or recreational activities are given up or reduced because of use 
of the substance. 

8. Recurrent use of the substance in situations in which it is physically hazardous. 

9. Use of the substance is continued despite knowledge of having a persistent or recurrent physical 
or psychological problem that is likely to have been caused or exacerbated by the substance. 

10. Tolerance, as defined by either of the following: a) A need for markedly increased amounts of 
the substance to achieve the desired effect b) A markedly diminished effect with continued use of 
the same amount of the substance. 

11. Withdrawal, as manifested by either of the following: a) The characteristic withdrawal syndrome 
for the substance b) The substance is taken to relieve or avoid withdrawal symptoms. 

 

1.2 Reward processing 

1.2.1 What is a reward and what is reward processing? 

In this thesis, I will define a ‘reward’ as an appetitive stimulus that reinforces behaviour (Skinner, 1938) 

and/or provides pleasure to the recipient. A reward can be something that, when received, increases 

the likelihood of the preceding behaviour, i.e. a reinforcer. However a reward can also be something 

that provokes pleasure in the recipient without necessarily reinforcing the preceding behaviour. Very 

often, though, these two features of a reward exist together. Primary rewards have rewarding 

properties without the need for learning, for example food, water and sex. Contrastingly, secondary 

rewards require learning, for example money (Sescousse, Redouté, & Dreher, 2010). Other rewards, 
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such as humour and music, are more difficult to categorise as primary or secondary; however they 

may be thought of as ‘higher level’, in that non-human animals may not find them rewarding. 

A reward process is therefore any distinct psychological process that involves engaging with a reward. 

Hence, there are many types of reward process, including motivation (e.g. being motivated to earn 

money) and pleasure (e.g. taking pleasure from eating a delicious slice of pizza). The processing of 

rewards is critical for the survival of all organisms. Salient, appetitive events must be successfully 

encoded so that animals learn about and are motivated to engage with stimuli which enhance the 

likelihood of effective gene transmission, such as the consumption of food and sexual reproduction. 

Furthermore, the experience of pleasure is important in our concept of human well-being (Deci & 

Ryan, 2008). Hence, reward processing is key to our continued existence and the quality of our 

existence. 

The overarching term ‘reward processing’ refers to many distinct psychological concepts. Berridge and 

Robinson (1998) described ‘wanting’, ‘learning’ and ‘liking’ as separate components. However, I would 

argue that many other psychological processes fall under the ‘reward processing’ umbrella. Decision-

making about rewards, including gambling, has become a burgeoning field (Bechara, Dolan, & Hindes, 

2002), as has the closely related topic of valuation (Kable & Glimcher, 2009). Furthermore, the 

pleasure associated with rewards has recently been split into anticipatory and consummatory 

pleasure (Gard, Gard, Kring, & John, 2006). Moreover, the concepts of conscious, self-reported liking 

and wanting appear, on the face of it, somewhat different from the behavioural assays which assess 

potentially less conscious liking and wanting (or motivation), which often use face movements and 

button-presses, respectively (Berridge & Robinson, 1998). 

I will introduce each relevant component of reward processing in more detail at appropriate stages in 

the thesis. However, in order to provide clear examples of what I mean by the different components 

of reward processing and to introduce four major components, which are frequently discussed in this 

thesis, I have briefly described: motivation, learning, liking and decision-making in table 1.2. 
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Furthermore, I have listed the ways in which these reward processes have been assessed in the work 

described in this thesis. This table is in no way exhaustive and should just be used to illustrate how 

reward processing can be broken up into distinct components.



 
  

Table 1.2 Four major reward processing components; descriptions of what they are; and ways that they are assessed within this thesis. 

Reward 
processing 
component 

Description Ways it is assessed in this thesis 

Motivational 
processing 

The way in which organisms regulate the proximity and availability of stimuli (Salamone & Correa, 2002). 
 
Motivation has a directional component, in that organisms are directed towards some stimuli and not 
others, e.g. towards a tasty chocolate bar but not an empty plate. Motivation also has an activational 
component, in that organisms can work for a reward with a large amount of vigor or a small amount of vigor. 
Therefore, to have strong motivation for a reward involves directing behaviour towards it and working with 
a large amount of vigor. It has been suggested that motivation can be split up into conscious wanting (i.e. 
explicit desire) and non-conscious motivation, which is more closely associated with the attribution of 
‘incentive salience’ to stimuli and rewards (Berridge & Robinson, 2003). 
 
At a more conceptual level, motivation has recently been considered a consequence of five interacting 
processes: plans, responses, impulses/inhibitory forces, motives and evaluations (West & Brown, 2013). This 
theory of motivation synthesises both complicated, conscious plans and simpler, potentially automatic 
impulses and responses, which provides a more comprehensive view of motivation.  

(1) the DReaM-Choice task 
 
(2) the adapted Monetary 
Incentive Delay task (Knutson et 
al., 2001) 
 
(3) the Effort Expenditure for 
Rewards Task (Treadway et al., 
2009) 
 
(4) self-reported wanting. 

Learning about 
rewards 

The formation of associations between two events, which can be between a neutral stimulus and a reward 
(in the case of Pavlovian learning) or between an action and a reward (in the case of instrumental learning). 
It is thought that some aspects of learning can happen implicitly, without conscious awareness, and 
explicitly, with conscious awareness (Destrebecqz & Cleeremans, 2001). Although most studies investigating 
implicit learning have focused on procedural, motor skills, it is feasible that reward learning could occur both 
explicitly and implicitly. 

(1) the Probabilistic Reward Task 
(Pizagalli et al., 2005) 

Liking (or 
hedonic 
processing) 

The pleasure which one experiences when engaging with certain stimuli. Researchers have postulated that 
liking can be both conscious, expressed via self-report, and non-conscious, sometimes expressed via facial 
movements (Berridge and Robinson, 1998). However, I suggest in section 1.5.2.2 that the only way to 
measure pleasure in humans may be to ask them about their experiences. 

(1) reward consumption 
followed by self-reported liking 

Decision-
making about 
rewards 

The series of steps which allow an organism to choose between two reward options, including valuation and 
action selection (Rangel, 2008). Often these decisions involve cost-benefit analyses, like pitting the 
magnitude of the reward against the amount of effort required to receive the reward. 

(1) the Effort Expenditure for 
Rewards Task (Treadway et al., 
2009) 
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Given rewards are so inherently critical to our survival, it isn’t surprising that there are many different 

ways we, and other animals, engage with them. The structure and taxonomy of reward processing, to 

my mind, is not yet clear. Some processes seem, by common sense, very related to one-another, for 

example valuation and decision-making, while others seem less closely related, for example learning 

about what predicts a reward and the pleasure taken from consuming a reward. The last few decades 

have seen a proliferation in the amount of research investigating this topic and the tasks used to assess 

different aspects of ‘reward processing’. Over 30,000 articles have been published about ‘reward’, 

with the numbers of articles increasing each year (PubMed search 14/10/15). Clearly, this is a 

blossoming research area and reward processing studies are being carried out in many sub-disciplines 

of psychology, from behavioural neuroscience to clinical psychology. However, I believe we are still 

some way off understanding how the different components of reward processing relate to one 

another. More research that investigates performance across a wide range of tasks and questionnaires 

within the same individuals will be required to more thoroughly understand the separate and related 

aspects of reward processing. 

In this thesis, I will argue that it is unhelpful to claim that clinical populations, such as ‘drug addicts’, 

are, in general, deficient in reward processing. Given the large number of reward processes, we must 

be specific about which components we are investigating and talking about. Examining various 

processes will allow us to determine which reward processes are disrupted within clinical populations, 

and even better, which of these can be targeted to help treat different clinical disorders. 

1.2.2 The emergence of reward processing neurobiology 

The demonstration that rats work for electrical stimulation in specific brain regions (Olds & Milner, 

1954), opened up a new field of research into the neurobiology of reward and reinforcement. The 

powerful behavioural effects of operant reinforcement had been established previously by B.F. 

Skinner (Skinner, 1938). However, the basic neurobiological underpinnings of this motivated 

behaviour were elucidated by the work in a wide range of animals (Olds, 1962) demonstrating that 
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intracranial self-stimulation (ICSS) occurred when electrodes were placed in only specific brain areas, 

such as the lateral hypothalamus, medial forebrain bundle and tegmentum, across different species. 

This was extended to humans, who also exhibited ICSS and reported great pleasure when stimulated 

in certain regions, such as the septal area (Heath, 1963). This research strongly suggested that there 

is a phylogenetically older network of brain regions which encode reinforcement learning, motivated 

behaviour and even the subjective feelings of pleasure. 

Subsequently, 6-hydroxydopamine lesion studies confirmed the role of mesocorticolimbic dopamine 

pathways, originating in the ventral tegmental area, in motivated responding for food and drugs of 

abuse (Fibiger, Zis, & McGeer, 1973; Roberts & Koob, 1982). Furthermore, the role of dopamine, while 

remaining controversial (Berridge & Robinson, 1998; Robbins & Everitt, 2007), became more strongly 

linked with reward processing, as electrophysiological (Di Chiara & Imperato, 1988; Hernandez & 

Hoebel, 1988) and positron emission tomography (PET) studies (Leyton et al., 2002; Small, Jones-

Gotman, & Dagher, 2003) demonstrated that both food and psychostimulant drugs trigger increases 

in extracellular dopamine levels at cell terminals. The role of dopamine is discussed in more detail in 

section 1.3.1. 

1.2.3 Neuroanatomy of reward processing (Figure 1.1) 

Over the past few decades, more focused animal and neuroimaging work has delineated the specific 

roles of different components of the reward circuitry. Several brain regions have appeared as critical 

units of the reward system, including the ventral and dorsal striatum, orbitofrontal cortex, amygdala 

and thalamus. 

The ventral striatum, including the nucleus accumbens, is thought to be involved with stimulus-

outcome learning, and therefore goal-directed behaviour (Everitt & Robbins, 2005). Functional 

magnetic resonance (fMRI) studies have demonstrated its importance in the anticipation of rewards 

(Knutson, Adams, Fong, & Hommer, 2001) and choices between reward options (Knutson & Greer, 

2008). The nucleus accumbens receives its dopaminergic input from the ventral tegmental area, 
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making up part of the mesocorticolimbic dopamine pathway (Haber & Knutson, 2010). Dopaminergic 

afferents from the ventral striatum innervate the ventral pallidum, where opioid transmission appears 

to be critical in hedonic processing (Peciña, Smith, & Berridge, 2006). 

The dorsal striatum appears to be important in preparing and guiding actions, which are informed by 

the anticipation of rewards (Hikosaka, Bromberg-Martin, Hong, & Matsumoto, 2008), as well as 

habitual, stimulus-response behaviour, which occurs after long periods of training with the same 

reward in the same context (Everitt & Robbins, 2005). The dorsal striatum receives most of its 

dopaminergic innervation from the substantia nigra (Haber & Knutson, 2010). 

The orbitofrontal cortex, which receives dopaminergic innervation and is reciprocally connected with 

the ventral and dorsal striatum, is thought to underlie the valuation of many kinds of reward (Chib, 

Rangel, Shimojo, & O'Doherty, 2009) and is important in decision-making. Moreover, its activation 

tracks the subjective pleasure assigned to rewards during consumption (Kringelbach, O’Doherty, Rolls, 

& Andrews, 2003) 

The amygdala and the thalamus have been implicated in the processing of reward outcomes 

(Sescousse, Caldú, Segura, & Dreher, 2013). Furthermore, the basolateral amygdala has been found 

to play a critical role in assigning value to rewarding options during goal-directed behaviour while the 

central amygdala is more strongly associated with simple Pavlovian conditioning (Parkinson, Robbins, 

& Everitt, 2000). 

Thus, the cortico-basal ganglia network, including the structures described above and the 

mesocorticolimbic and nigrostriatal dopamine pathways, is a reward-to-action interface (Haber & 

Knutson, 2010), which underpins various components of the overarching theme of reward processing. 

This network is shown diagrammatically in figure 1.1.  
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Figure 1.1 The neuroanatomy of the reward system (taken from Everitt & Robbins, 2005). a) The 
physical locations and connections of important reward processing regions, b) A diagrammatic 
representation of the functions and connections of important reward processing regions. Green/blue 
arrows, glutamatergic projections; orange arrows, dopaminergic projections; pink arrows, GABAergic 
projections; Acb, nucleus accumbens; AMG, amygdala; BLA, basolateral amygdala; CeN, central 
nucleus of the amygdala; VTA, ventral tegmental area; SNc, substantia nigra pars compacta. GP, 
globus pallidus (D, dorsal; V, ventral); Hipp, hippocampus; mPFC, medial prefrontal cortex; AC, anterior 
cingulate cortex; OFC, orbitofrontal cortex; VS, ventral striatum; DS, dorsal striatum; Thal, thalamus. 
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1.3 Dopamine 

1.3.1 Dopamine and reward processing 

Dopamine clearly plays a very important role in reward processing and this role has seen many 

interesting historical developments. In the 1970s and 80s, dopamine was viewed by researchers as a 

‘pleasure neurotransmitter’, which made people feel good and like things (Wise, 1980). However, later 

research demonstrated the specific importance of dopamine in anticipatory and motivation-related 

behaviour, rather than consummatory processes. Dopamine antagonists administered to rodents 

substantially reduced their motivated responses for both food and drugs of abuse (Woolverton & 

Virus, 1989), but did not affect the consumption of food (Berridge & Robinson, 1998). The pleasure 

hypothesis was further discredited by work showing that dopaminergic cell lesions and dopamine 

agonists do not alter hedonic reactions (measured by tongue protrusions and mouth gapes) to 

pleasant and unpleasant tastes in animals (Berridge & Robinson, 1998). Despite this, associations 

between dopaminergic release and subjective pleasure associated with rewards are frequently 

(Barrett, Boileau, Okker, Pihl, & Dagher, 2004; Small et al., 2003; Volkow et al., 1997), but not always 

(Stokes, Mehta, Curran, Breen, & Grasby, 2009), reported. Departing from pleasure, two major 

theories of dopamine’s role in reward processing are the incentive-salience theory (Berridge & 

Robinson, 1998) and the reinforcement learning theory (Schultz, Dayan, & Montague, 1997). 

The incentive-salience theory posits that mesocorticolimbic dopamine signals imbue stimuli with 

incentive-salience such that they are ‘wanted’ and become ‘motivational magnets’, driving approach 

and appetitive responses. Evidence for this theory includes observations that dopaminergic lesions of 

mesocorticolimbic brain regions do not affect learning about sucrose rewards, but they do affect 

motivated responding for rewards (Berridge & Robinson, 1998). Additionally, rats that attribute large 

amounts of incentive-salience and orient behaviour towards reward predictive cues, so called ‘sign-

trackers’, have stronger cue-induced dopaminergic responses in the nucleus accumbens compared 

with rats that orient behaviour towards reward outcomes, so called ‘goal-trackers’ (Flagel et al., 2011). 
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Furthermore, only the acquisition of sign-tracking, and not goal-tracking, is influenced by dopamine 

antagonism (Flagel et al., 2011). 

The reinforcement learning theory posits that phasic dopamine release, in neurons originating the 

ventral tegmental area and the substantia nigra, encode a prediction error between expected reward 

and experienced reward (Schultz et al., 1997). If an unforeseen reward is presented, dopamine 

neurons will fire in response, because the error between the prediction (zero) and the outcome (a 

reward) was positive (figure 1.2). If a stimulus repeatedly precedes the reward, the dopamine neurons 

will no longer fire in response to the reward because it is entirely predicted by the presence of the 

stimulus. Instead, the dopamine neurons will fire on presentation of the stimulus. Evidence for the 

role of dopamine in reinforcement learning comes from data such as this dovetailing with formal 

theories of reinforcement learning (Schultz et al., 1997). Furthermore, human neuroimaging 

experiments have shown that levo-dopa, a precursor to dopamine, enhances learning and the 

associated prediction error BOLD responses (Cools, Lewis, Clark, Barker, & Robbins, 2007; Pessiglione, 

Seymour, Flandin, Dolan, & Frith, 2006).  
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Figure 1.2 A diagrammatic representation of how phasic dopamine firing underpins prediction error 
learning. The unexpected delivery of a reward produces phasic dopamine release as there is a positive 
prediction error: the reward was not expected (top). After successfully learning that the cue predicts 
the reward, phasic dopamine release occurs on the presentation of the cue, but there is no change in 
firing on presentation of the reward, as there is no error in the prediction (middle). If the reward is not 
presented following the cue, a negative prediction error occurs and so phasic dopamine firing is 
reduced, relative to baseline (bottom).  

Two distinct mechanisms underlying dopamine release have been proposed: phasic and tonic (Grace, 

1991). Phasic dopamine release is caused by neuronal firing and leads to a large, fast burst of 

dopamine into the synapse, which is quickly removed by re-uptake systems. It is thought to be caused 

by salient, external events, such as an unpredicted reward or a highly novel stimulus and is therefore 

thought to be involved in reinforcement learning and the attribution of incentive-salience. On the 

other hand, the sustained, background dopamine level, referred to as ‘tonic’ dopamine, is thought to 

be controlled by prefrontal, glutamatergic afferents. This tonic dopamine level changes more slowly 

than the phasic bursts and plays a putatively different role in reward processing: underpinning 

behavioural vigour and protracted motivation (Niv, Daw, Joel, & Dayan, 2007; Salamone, Correa, 

Farrar, & Mingote, 2007). 

No reward 
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1.3.2 Cannabinoids and reward processing 

It should be noted that although dopamine is very closely related to many aspects of reward 

processing, other neurotransmitters are critically involved too. The endocannabinoid system is a 

neuromodulatory system comprising cannabinoid receptors, their endogenous ligands, including 

anandamide and 2-arachidonoylglycerol, and the enzymes that break these ligands down (Maldonado, 

Valverde, & Berrendero, 2006). The main psychoactive component of cannabis, Δ9-

tetrahydrocannabinol (THC), is a partial agonist of the cannabinoid 1 (CB1) receptor (Pertwee, 2008). 

Cannabinoid receptors act in a pre-synaptic, retrograde fashion, such that their stimulation reduces 

the likelihood of neurotransmitter release from the neuron they are bound to (Ohno-Shosaku, 

Maejima, & Kano, 2001). 

The endocannabinoid system is also closely connected to the mesocorticolimbic dopamine system 

(see figure 1.3) and other brain regions which are pivotal in reward processing, as described in section 

1.2.3. There are pre-synaptic CB1 receptors on both GABAergic and glutamatergic neurons that 

innervate the ventral tegmental area. These receptors play a critical role in tweaking the mesolimbic 

projections from the ventral tegmental area to the nucleus accumbens, which govern reward-seeking 

(Parsons & Hurd, 2015). Indeed, administration of anandamide (Solinas, Justinova, Goldberg, & Tanda, 

2006) and THC (Chen et al., 1990) in rodents can augment extracellular dopamine levels in the nucleus 

accumbens. Furthermore, there is a high density of CB1 receptors in the globus pallidus, hippocampus, 

dorsal striatum, prefrontal cortex and basolateral amygdala (Parsons & Hurd, 2015). Thus, the 

endocannabinoid system contributes importantly to the processing of natural rewards, including food 

(Mahler, Smith, & Berridge, 2007) and sex (Klein, Hill, Chang, Hillard, & Gorzalka, 2012). These 

contributions are thought to be made via interactions with the hypothalamus and opioid 

neurotransmission, as well as the mesocorticolimbic dopamine system (Parsons & Hurd, 2015). 

The role of the endocannabinoid system in reward processing has been further elucidated using 

experiments with rodents and a range of non-cannabinoid drugs of abuse. For instance, in rodents, 
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CB1 receptor agonists enhance self-administration of and conditioned place preference for alcohol, 

nicotine and opiates, while CB1 receptor antagonists do the opposite. Similarly, CB1 knockout mice 

have reduced self-administration of these drugs (Parsons & Hurd, 2015).  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Diagrammatic representation of the way that the endocannabinoid system is associated 
with the mesolimbic dopamine system and other neurotransmitters (taken from Maldonado et al., 
2006). In the ventral tegmental area (VTA), CB1 receptors are expressed on the pre-synaptic 
glutamatergic and GABAergic neurons. Activation of the CB1 receptors by endocannabinoids (EC; 
broken red arrows) inhibits GABA release, thus stimulating dopaminergic neuron activity. CB1 
receptors are also expressed on the axon terminals of glutamatergic and GABAergic neurons, which 
project to the nucleus accumbens (NAc), hippocampus (HIP), basolateral amygdala (BLA) and 
prefrontal cortex (PFC). 

1.3.3 Dopamine and recreational drugs  

Many recreational drugs acutely increase extracellular dopamine levels in the nucleus accumbens; this 

has been demonstrated in animals using in vivo microdialysis (Di Chiara & Imperato, 1988) and in 

humans using PET (Boileau et al., 2003; Brody et al., 2004; Leyton et al., 2002). This effect is, however, 

much more apparent in psychostimulant drugs than other classes of drugs, especially opiates and 
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cannabis (Nutt, Lingford-Hughes, Erritzoe, & Stokes, 2015). Despite some negative findings in the PET 

literature, including nicotine (Montgomery, Lingford-Hughes, Egerton, Nutt, & Grasby, 2007), and the 

importance of other neurotransmitter systems in addiction, the discovery that most recreational drugs 

can lead to increases in striatal dopamine release has been the foundation of a popular and unifying 

dopamine theory of addiction (Nutt et al., 2015). In essence, this theory argues that recreational drugs 

acutely increase dopamine release and chronic use leads to neuroadaptations in the 

mesocorticolimbic dopamine system, which underpins addiction.  

Natural rewards produce downstream effects on dopamine receptors through the processing of 

incentive-salience and reinforcement learning. In contrast, drugs enter the brain and 

pharmacologically act on dopamine neurons, either directly through the stimulation of dopamine 

receptors, as is the case with psychostimulants, or indirectly through the modulation of dopaminergic 

cell firing, as is the case with drugs such as alcohol and nicotine. This pharmacological action on the 

dopaminergic system is thought to explain the strongly reinforcing nature of drugs. The drugs ‘hijack’ 

the brain’s natural reward system (Redish, 2004), produce a much greater release of dopamine than 

normal and therefore provide an abnormally strong, positive teaching signal which encodes 

reinforcement. The systems that have evolved to encode learning, motivation and pleasure are 

powerfully stimulated by this artificially induced experience and so the likelihood of repeating this 

behaviour can be large. 

The major addictive substance in tobacco is thought to be nicotine (Stolerman & Jarvis, 1995), which 

binds to various nicotinic acetylcholine receptors. The acetylcholine pathways are closely related to 

the mesocorticolimbic dopamine system (figure 1.4). The ventral tegmental area receives cholinergic 

innervation from the pedunculopontine tegmental nucleus and the laterodorsal tegmental nucleus 

(Changeux, 2010). In rodents, nicotine enhances extracellular dopamine levels in the ventral striatum 

(Di Chiara & Imperato, 1988), which is thought to be produced by nicotine binding to α4β2 nicotinic 

acetylcholine receptors in the ventral tegmental area. This action appears to underlie the reinforcing 
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properties of nicotine as antagonism of these receptors in the ventral tegmental area eliminates 

nicotine self-administration in rats (Corrigall, Coen, & Adamson, 1994). However, the ability of nicotine 

to acutely provoke dopamine release in the human striatum is somewhat controversial (Nutt et al., 

2015), with some studies showing significant release (Brody et al., 2009; Brody et al., 2004) and others 

reporting null results (Barrett et al., 2004; Montgomery et al., 2007). Despite this, the latter two 

studies did show a relationship between striatal dopamine release and the pleasure taken from 

smoking. 

 

 

 

 

 

 

 

Figure 1.4 Nicotinic acetylcholine receptors involvement in the mesolimbic dopamine pathway (taken 
from Changeux, 2010). Dopaminergic neurons (red) in the ventral tegmental area (VTA) receive two 
main sources of excitatory input: from cholingergic neurons (blue) and from glutamatergic neurons 
(green). Dopaminergic neurons in the VTA also receive inhibitory input from GABAergic neurons 
(yellow). The VTA sends projections to the nucleus accumbens (NAc), which interact with inputs from 
cholinergic interneurons. 

As described in section 1.3.2, the endocannabinoid system interacts with the mesocorticolimbic 

dopamine system. The pre-synaptic CB1 receptors on GABAergic and glutamatergic neurons, which 

innervate the ventral tegmental area, can enhance or reduce cell firing by inhibiting GABAergic input 

or glutamatergic input, respectively (figure 1.4) (Maldonado et al., 2006). Human PET studies 

investigating the acute effects of cannabis on striatal dopamine release have found both enhancing 

(Bossong et al., 2009) and null (Stokes et al., 2009) effects. Interestingly, a combination of those 
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studies still showed a small but significant effect (Bossong et al., 2015). Importantly, in rodents, CB1 

receptor antagonists and knockout of the CB1 receptor gene lead to a reduction in nucleus accumbens 

dopamine release observed following alcohol and nicotine administration, as well as reduced self-

administration (Parsons & Hurd, 2015). These results demonstrate the critical relationships between 

the endocannabinoid system, the mesolimbic dopamine system and the rewarding effects of alcohol 

and nicotine.  

In summary, most drugs that are used recreationally by humans induce extracellular striatal dopamine 

release in rodents (Di Chiara & Imperato, 1988). However, these effects may be less pronounced in 

human PET studies and psychostimulants generally produce much greater dopamine release than 

other drugs, such as cannabis and heroin (Nutt et al., 2015). Having said that, the endocannabinoid 

system is closely connected with the mesocorticolimbic dopamine system and dopamine is 

demonstrably involved in numerous aspects of reward processing. Although the pharmacological 

effects of nicotine and cannabis are complex, and likely involve many interconnected 

neurotransmitter systems, the evidence described here suggests that they both affect dopamine 

levels to some extent. 

1.3.4 Chronic neurobiological changes associated with drug use  

Chronic use of recreational drugs may result in physiological changes to these aforementioned 

systems, which could then be associated with psychological changes. Addictions to various drugs, 

including alcohol (Volkow et al., 1996), opiates (Wang et al., 1997), methamphetamine (Volkow et al., 

2014), cocaine (Martinez et al., 2004) and cigarettes (Fehr et al., 2008), have been associated with a 

low striatal dopamine D2/3 receptor density. This may be a product of chronic drug use or a pre-

existing vulnerability factor that contributed to chronic drug use. Prolonged use of drugs which 

stimulate dopamine release putatively lead to downregulation of dopamine receptors. This is thought 

to play a contributory role to the maintenance of addiction and likelihood of future relapse, with low 

dopamine receptor levels requiring artificial stimulation from drugs to maintain hedonic homeostasis 
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(Koob & Le Moal, 1997). The low levels of dopamine receptors are also thought to lead to a 

concomitant reduction in natural reward processing (Volkow, Fowler, Wang, & Swanson, 2004). 

Although these findings appear robust in psychostimulant users, the reductions in D2/3 receptor 

density have sometimes not been found with dependent cigarette (Yang et al., 2006; Yang et al., 2008), 

opiate (Daglish et al., 2008) and cannabis (Albrecht et al., 2013; Sevy et al., 2008; Stokes et al., 2012; 

Urban et al., 2012) users. This questions the role of dopaminergic neuroadaptations in these 

addictions. 

However, various other dopaminergic changes have been observed in nicotine dependent individuals. 

Nicotine dependence has been associated with reduced striatal D1 receptor levels (Dagher et al., 

2001), reduced striatal dopamine transporter levels (Leroy et al., 2012) and increased utilization of L-

DOPA (Salokangas et al., 2000), although this was not replicated (Bloomfield, Pepper, et al., 2014). 

There is much less evidence to suggest that cannabis dependence is associated with changes to the 

dopaminergic systems. Four studies have failed to reveal a reduction in striatal D2/D3 receptor density 

in cannabis dependent people relative to matched controls (Albrecht et al., 2013; Sevy et al., 2008; 

Stokes et al., 2009; Urban et al., 2012). However, two of these demonstrated a relationship between 

the extent of cannabis use and reduced dopamine receptor density, within the cannabis group 

(Albrecht et al., 2013; Urban et al., 2012), and cannabis dependence has been associated with reduced 

dopamine synthesis (Bloomfield, Morgan, Egerton, et al., 2014). Furthermore, chronic cannabis use 

has been associated with reductions in volumetric size of the hippocampi and amygdalae (Batalla et 

al., 2013) and reductions in the number of CB1 receptors (D’Souza et al., 2015). 

In a more general sense, chronic drug use is thought to be associated with changes to pleasure and 

motivation processing because of the opponent processes that respond to drug use in these 

psychological systems (Solomon & Corbit, 1974). Any rapid increase in pleasure or motivation should 

theoretically be followed by a slower, but more substantial, decline in those processes, regardless of 

dopaminergic neuroadaptations. 
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To briefly conclude, there is strong evidence that dopamine is critical in various aspects of reward 

processing, although it’s specific role(s) is/are controversial. Striatal dopamine release and 

dopaminergic neuroadaptations are likely to be pivotal in psychostimulant addiction and are probably 

still important, but to a lesser degree, in nicotine and cannabis addiction. These neuroadaptations and 

opponent psychological processes are thought to underlie changes to reward processing which 

contribute to addictive behaviours. Importantly for this thesis, it has been hypothesised that these 

alterations lead to a hypersensitivity, or ‘enhanced processing’, of drug rewards and related stimuli 

(Robinson & Berridge, 1993) and a simultaneous hyposensitivity, or ‘reduced processing’, of non-drug 

rewards and related stimuli (Goldstein & Volkow, 2011; Koob & Le Moal, 2008; Volkow et al., 2004). I 

will now begin to review these theories, which propose alterations in drug and non-drug reward 

processing in addiction, and introduce the empirical work which supports and opposes these theories. 

1.4 Theories of addiction 

Positive reinforcement accounts of drug addiction suggest that drugs generate positive appetitive 

states that maintain drug-taking behaviour (Stewart, De Wit, & Eikelboom, 1984). According to the 

seminal incentive-sensitisation theory, long-term drug use leads to enhanced dopamine overflow in 

the nucleus accumbens on presentation of drugs and drug-related stimuli (Robinson & Berridge, 1993; 

Vezina, 2004). Subsequently this augments the likelihood of future drug-taking and underlies 

addiction.  

On the contrary, negative reinforcement accounts of drug addiction, through a variety of proposed 

mechanisms, suggest that drug-taking is caused by the alleviation of negative states, such as 

withdrawal (Wikler, 1973) or long-term, allostatic adaptations to reward and stress processing (Koob 

& Le Moal, 1997). One of the most developed of these theories (Koob, 2013) states that the basic 

circuitry of reward processing ends up in a degraded state and cannot recover, while the 

hypothalamus-pituitary-adrenal stress system ends up being overactive, and this results in a 

hyposensitivity to reward, amongst other things, which contributes to compulsive drug use. 
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Over the past few years, various researchers have suggested that addiction is associated with both a 

hypersensitivity to drug rewards and a hyposensitivity to non-drug rewards (Anselme, 2009; Goldstein 

& Volkow, 2011; Sweitzer, 2013; Volkow et al., 2004). In Goldstein and Volkow’s (2011) ‘impaired 

response inhibition and salience attribution’ (iRISA) theory, which informed many hypotheses in this 

thesis, drug addicts assign excessive salience to drugs and drug-related stimuli and are hyposensitive 

to non-drug rewards (figure 1.5). Furthermore, these issues are hypothesised to become accentuated 

during times of abstinence and craving. Recent studies have additionally suggested that it may not 

just be the absolute processing of drug and non-drug rewards that is important in addiction, but also 

the balance between them (Bühler et al., 2010; Versace et al., 2014; Versace et al., 2012). In other 

words, addiction may be more closely related to the difference in motivation for drug and non-drug 

rewards, rather than solely the motivation for drug rewards. This concept of reward processing 

balance will be investigated in this thesis using tasks that provide cigarette and non-drug rewards 

concurrently. 
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Figure 1.5 A diagrammatic representation of the ‘impaired response inhibition and salience attribution’ 
(iRISA) theory and the role of the prefrontal cortex (PFC) in addictive processes (taken from Goldstein 
& Volkow, 2011). In general, this diagram demonstrates that behaviour can be split into drug-related 
and non-drug related functions. When in a healthy state (a), the non-drug related functions (e.g. 
sustained motivation, pleasure from natural rewards) outweigh the drug-related functions (e.g. 
craving, attentional bias, drug-seeking). When in an unhealthy state like ‘craving and withdrawal’ or 
‘intoxication and bingeing’ (b or c), the non-drug related functions are similar to or outweighed by 
drug-related functions, respectively. During ‘craving and withdrawal’ decreased attention and/or value 
is assigned to non-drug rewards and stimuli, and this is associated with reduced self-control and 
anhedonia. During ‘intoxication and bingeing’ behaviour is focused almost exclusively on drugs and 
compulsive drug-taking ensues. The blue ovals represent dorsal PFC and dorsal anterior cingulate 
cortex functions, which are related to non-affective, control-based processes. The red ovals represent 
orbitofrontal cortex and ventromedial prefrontal cortex functions, which are related to affective 
processes. 

1.5 Changes to reward processing in addiction 

I will now review the literature concerning possible changes to drug and non-drug reward processing 

in nicotine and cannabis dependence, while drawing attention to the effect of short-term nicotine 

deprivation when appropriate. I will review research covering a wide range of reward processing 

components, ranging from animal ICSS experiments to human self-report data. Hence, hyper/hypo-

sensitivity to reward could come in the form of altered lever-pressing, self-reported craving, striatal 

BOLD response to certain cues, amongst others. This will demonstrate that general rules, such as 
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“addicts are hyposensitive to non-drug rewards”, are inaccurate, as there are many ways of assessing 

reward processing. There is a great diversity in the type of participants (animals or humans), the type 

of drug addiction, the stage of drug addiction, whether the participants are acutely abstinent from 

their drug and the reward process under investigation, so it is unsurprising that there is a large variety 

in the outcomes that researchers report. 

1.5.1 Hypersensitivity to drugs and drug-related stimuli 

In section 1.1.1, I described addiction as a state in which there are repeated, powerful motivations to 

take drugs despite the potential for harmful consequences (West & Brown, 2013). Furthermore, 

addiction is often viewed as a chronic, relapsing disorder characterised by compulsive use (Leshner, 

1997). Hence, an augmented motivation for the addict’s drug is almost by definition part of addiction. 

However empirical research in this area with nicotine/tobacco and cannabis has produced some 

surprisingly counterintuitive results. 

1.5.1.1 Animal research 

In animal models, the effects of previous chronic drug use (thought to model dependence) on 

motivation for future drug use are examined by providing one group of animals with ‘extended access’ 

to the drug and providing another group of animals with ‘limited access’ to the drug. Subsequently, 

motivation for the drug is tested in a self-administration paradigm. Interestingly, rats with extended 

access (6 hours/day for 30 days) to nicotine did not increase their later self-administration of nicotine 

relative to those with limited access (1 hour/day) (Paterson & Markou, 2004). Thus, the rats in the 

extended access group did show greater dependence symptoms and yet did not demonstrate greater 

motivation for nicotine; this opposes the hypothesis that nicotine dependence is associated with 

motivational hypersensitivity to nicotine reward. However, following this study, it was shown that rats 

given intermittent, extended access (21 hours/day, with 24 or 48 hour abstinence breaks, for 

approximately 40 days) did subsequently have greater motivation for nicotine than rats given normal 

extended access (21 hours/day) and limited access (1 hour/day) (Cohen, Koob, & George, 2012). 
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Hence, it appears that a specific schedule of nicotine self-administration is needed to produce the 

stronger motivation for nicotine that is expected. To my knowledge, these kinds of experiments have 

not been conducted in animals with cannabinoid administration. 

The incentive-sensitisation theory predicts that addicts should be hypersensitive to drug-related cues 

(Robinson & Berridge, 1993). One way of examining sensitivity to these cues in animals is with 

conditioned reinforcers, which are cues that have been presented alongside drug administration in 

the past, such that they become reinforcing in themselves. Nicotine-paired cues will elicit and maintain 

responding (Palmatier et al., 2007), however I could not find any research that investigated 

conditioned reinforcement by cannabis-paired cues. Furthermore, to my knowledge no studies have 

examined the relationship between previous drug use and the extent to which nicotine-paired cues 

can evoke conditioned reinforcement. Both nicotine (Risinger & Oakes, 1995) and THC (Lepore, Vorel, 

Lowinson, & Gardner, 1995), at appropriate doses, have been shown to elicit conditioned place 

preference. Furthermore, nicotine pre-treatment (7 days) increased the extent of subsequent 

nicotine-induced conditioned place preference in rats (Mohammed Shoaib, Stolerman, & Kumar, 

1994), which suggests that previous drug exposure enhanced either the formation of the nicotine-

place association or the motivation to return to that place. Thus, there was an increased sensitivity to 

this aspect of drug reward processing. Overall, there is good evidence that nicotine and THC are able 

to produce important addiction-related associations, but only some evidence that previous nicotine 

exposure enhances nicotine-related reward processes. 

So far I have considered the motivational and learning aspects of drug reward processing in animal 

research. Another important aspect is the actual effects of the drugs themselves and how these vary 

following previous drug use. It is not possible to ask an animal how much they like a drug’s effects. 

Rodent tongue protrusion has been used as a measurement of food ‘liking’ (Berridge & Robinson, 

1998), but this is not possible when investigating drugs. Tolerance to simple behavioural and 

physiological effects following previous drug exposure may help us understand how dependence 
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could be associated with changes in reward-related responses to the drug. For instance, repeated 

administration of nicotine led to diminished nicotine-induced depression of movement (I. Stolerman, 

Fink, & Jarvik, 1973) and body temperature (McCallum, Collins, Paylor, & Marks, 2006). Similarly, 

repeated administration of THC lessened the effects of acutely administered THC on activity, 

catalepsy, hypothermia and hypotension (Compton, Dewey, & Martin, 1990). 

As described above, dopamine release in the nucleus accumbens is putatively important in 

motivational processing and recreational drugs often stimulate dopamine release in this region. 

Previous chronic nicotine exposure appears to reduce the dopamine-releasing effects of acute 

nicotine when it is administered a few days after chronic nicotine administration has ceased, but it 

sensitizes the dopamine-releasing effects of acute nicotine when it is administered a few weeks after 

chronic administration has ceased (Vezina, McGehee, & Green, 2007). Hence, there is evidence of 

tolerance for some behavioural and physiological effects of nicotine and cannabis following previous 

chronic administration. However, the dopamine-releasing effects of acute nicotine, which 

theoretically contribute to its rewarding properties, seem to change depending on the time between 

chronic administration and the acute dose. 

1.5.1.2 Human research 

Human addicts self-administer nicotine (Harvey et al., 2004) and cannabis (Bedi, Lindquist, & Haney, 

2015) in the laboratory. To my knowledge, there are very few studies that have investigated the 

relationships between dependence level (or previous drug exposure) and actual self-administration of 

nicotine/tobacco and cannabis. Low dependent (Fagerstrom Test for Nicotine Dependence (FTND) ≤ 

2) and high dependent (FTND ≥ 5) smokers did not differ in terms of their motivation for their 

preferred brand of cigarettes on a progressive ratio task (Barrett, 2010). Similarly, there was a non-

significant difference between low dependent (FTND = 0) and high dependent (FTND > 5) smokers on 

a fixed ratio button-pressing task for cigarettes (Buhler et al., 2010). Occasional (1-3 cannabis 

cigarettes/month), intermittent (1-3 cannabis cigarettes/week) and heavy (1-3 cannabis 
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cigarettes/day) chose and worked similarly hard for cannabis (Mendelson & Mello, 1984). These 

results are highly surprising because they suggest that nicotine and cannabis dependence (or 

frequency of use) are not associated with motivation for that drug. Alternatively, the tasks utilised 

may not have been sensitive enough or the studies not well powered enough to detect group 

differences. The context of the laboratory-based experiment, such as being allocated a set time to 

smoke or a reduction in the number of environmental smoking-related cues, could blunt the expected 

relationships between dependence and self-administration. Thus drug-seeking behaviour in the 

laboratory may not be as closely related to real world behaviour as researchers may hope. Further 

research is warranted to examine these perplexing results. 

On the other hand, recent work using a hypothetical purchase task has demonstrated clear 

associations between nicotine and cannabis dependence and the willingness to buy cigarettes and 

cannabis at increasing prices (Aston, Metrik, & MacKillop, 2015; MacKillop et al., 2008; Murphy, 

MacKillop, Tidey, Brazil, & Colby, 2011). This discrepancy may result from the larger samples used in 

these studies, as they are much easier and cheaper to run, given no actual drugs are administered. 

However, this leaves open the question of: if the rewards were real rather than hypothetical, would 

the same results be observed? Evidence in favour of the validity of these hypothetical purchase tasks 

compared with real purchase tasks has been provided, at least for cigarettes (Amlung, Acker, Stojek, 

Murphy, & MacKillop, 2012). 

In terms of subjective effects in humans, there is some evidence of changes to the responses to 

nicotine and cannabis following long-term use. Chronic cigarette smoking is associated with lower 

subjective effects of nicotine, for example ‘head rush’ and ‘jittery’ (Perkins, Grobe, et al., 1994). And 

in a group of dependent smokers, cigarette-elicited pleasure was positively associated with years of 

smoking, although not level of dependence (Pomerleau & Pomerleau, 1992). In another large group 

of dependent smokers, dependence was not associated with pleasantness of cigarette smoking, using 

ecological momentary assessment (Shiffman & Kirchner, 2009). Furthermore, the enjoyment taken 
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from smoking a cigarette predicted whether a quit attempt was made in a six month period, but not 

whether the quit attempt was successful (Fidler & West, 2011). Thus, the relationship between 

nicotine dependence and the pleasure associated with smoking is quite unclear. Interestingly, the 

striatal dopamine release to nicotine has been positively associated with nicotine dependence 

(Takahashi et al., 2008), dovetailing with the finding that, in rodents, chronic nicotine can sensitize the 

dopamine-releasing effects of nicotine, under some circumstances (Vezina et al., 2007).  

Frequent cannabis users report ‘feeling’ THC more than infrequent users at a low dose (7.5mg) and 

also ‘liking’ THC more than infrequent users at a high dose (15mg), although that was due to infrequent 

users disliking it (Kirk & De Wit, 1999). Contrastingly, frequent cannabis users reported similar 

desirable effects of THC, such as ‘high’ and ‘relaxed’, compared with healthy controls, however the 

frequent users showed evidence of tolerance to negative effects of THC (D'Souza et al., 2008). 

Moreover, light and heavy cannabis users rated themselves similarly ‘stoned’ after a vaporized dose 

of THC (Hindocha, Freeman, Schafer, et al., 2015). This suggests that the subjective responses to drugs 

do vary with previous chronic use, but not necessarily in systematic ways. 

It is surprising that the hedonic aspect of drug reward processing has been somewhat overlooked. 

Hedonic responses to drugs are theoretically important in future goal-directed behaviour (Dayan & 

Balleine, 2002) and initial responses to drugs are important in future drug use (De Wit, Uhlenhuth, & 

Johanson, 1986; Eissenberg & Balster, 2000; Fergusson, Horwood, Lynskey, & Madden, 2003). 

Furthermore, it may be fair to say that the pleasure associated with drug-taking has been the elephant 

in the room for psychopharmacology and addiction research. While the unpleasant consequences of 

drug-taking have been emphasised, the short-term pleasures may have been neglected by the 

research community. It seems reasonable to claim that many drug users are motivated to take drugs 

because of the pleasure provided by them, rather than a desire to alleviate a negative state. 

Investigation of the hedonic aspects of drug-taking (including cigarette and cannabis smoking) may 

well improve our knowledge of why people continue to take drugs and why some of those end up 
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addicted. Moreover, in a pure academic sense, there may be inherent worth in learning about the 

ways in which drugs, and other rewards, elicit pleasure and positive feelings (Kringelbach & Berridge, 

2010). 

Other research has examined the processing of drug rewards without administering drugs themselves 

by utilising drug-associated stimuli. In human drug addicts, attentional bias has often been used to 

investigate increased sensitivity to visual cues and has generally shown that addicts are biased towards 

drug-related relative to neutral cues. However, this effect appears to be moderated by the type of 

task used, length of abstinence and type of addiction (Field & Cox, 2008). Perhaps surprisingly, more 

dependent smokers have shown a weaker attentional bias than less dependent smokers (Mogg, Field, 

& Bradley, 2005). On the other hand, current smokers have a greater attentional bias to cigarette cues 

than non-smokers, while former smokers lie in an intermediate spot (Ehrman et al., 2002). Moreover, 

there is some evidence in cigarette smokers that a stronger attentional bias to cigarette cues predicts 

future relapse (Waters et al., 2003). Dependent cannabis users have been shown to have an 

attentional bias to cannabis-related words, while non-dependent users did not (M. Field, 2005). 

The advent of neuroimaging produced another means of assessing sensitivity to drug-associated 

stimuli. Response to cigarette cues has been shown to activate a large range of reward-related brain 

regions in cigarette smokers (Engelmann et al., 2012). Greater nicotine dependence has been 

associated with greater orbitofrontal cortex and anterior cingulate BOLD response to cigarette cues 

(McClernon, Kozink, & Rose, 2008). This neural hypersensitivity to cigarette-cues predicted future 

cigarette smoking during a quit attempt (Janes et al., 2010). Furthermore, on presentation of cannabis 

cues, greater activation in reward-related brain regions has been shown in heavy cannabis users 

compared with less frequent and non-users (Cousijn et al., 2013).  

Short-term nicotine deprivation theoretically disrupts both drug and non-drug reward processing 

(Goldstein & Volkow, 2011). Researchers have proposed that acute nicotine abstinence leads to a 

hypofunctioning mesocorticolimbic dopamine system (Powell, Dawkins, & Davis, 2002). This claim has 
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been somewhat borne out empirically. Monkeys that had been previously exposed to nicotine utilised 

less L-DOPA after short-term nicotine abstinence (Domino, Tsukada, & Harada, 2009) and reduced 

homovanillic acid levels have been found in abstaining smokers’ cerebrospinal fluid (Geracioti Jr et al., 

1999). On the other hand, human PET studies have not shown an effect of overnight abstinence on 

raclopride binding potential with D1 (Dagher et al., 2001) or D2 (Fehr et al., 2008) receptors. 

Related to these possible changes in the mesocorticolimbic dopamine system, short-term nicotine 

deprivation theoretically disrupts both drug and non-drug reward processing (Goldstein & Volkow, 

2011). Hence, acute nicotine abstinence may moderate some of the results concerning cigarette 

reward processing described above. In terms of behavioural effects, there is good evidence that acute 

(overnight or approximately 12 hours) abstinence enhances craving and self-administration of 

cigarettes (Barrett, 2010; Epstein, Bulik, Perkins, Caggiula, & Rodefer, 1991; Kollins et al., 2013; 

Perkins, Grobe, et al., 1994). Nicotine abstinence appears to boost hypersensitivity to cigarette-related 

cues in terms of augmentation of attentional bias to (Field, Mogg, & Bradley, 2004) and 

overshadowing in favour of cigarette cues relative to neutral cues (Freeman, Morgan, Beesley, & 

Curran, 2012). Furthermore, one fMRI cue reactivity study demonstrated an increased BOLD response 

to cigarette cues (McClernon, Kozink, Lutz, & Rose, 2009). 

On the other hand, there is some surprising evidence for reduced cigarette reward processing during 

abstinence. Diminished cue-induced craving (Powell et al., 2002) and reduced fMRI cue reactivity to 

cigarette cues have been reported (David et al., 2005). Furthermore, motivation to work for cigarettes 

and the BOLD response during anticipation of cigarette points were not affected by 36 hours of 

abstinence in either occasional or dependent cigarette smokers (Bühler et al., 2010). These two sets 

of results appear contradictory and, to me, it is surprising to learn of reduced cigarette reward 

processing during acute abstinence. However, these studies demonstrate that it can be important to 

carefully examine relationships between drug use and reward processing that may, on the face of it, 

seem quite obvious. 
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In summary, the relationships between nicotine/cannabis dependence and cigarette/cannabis reward 

processing appear complex and poorly understood. In animals and humans there is good evidence 

that both drugs serve as reinforcers. However, there is mixed evidence concerning the relationships 

between previous drug use and subsequent self-administration of the drug, although positive 

associations between dependence and the willingness to buy cigarettes/cannabis have been shown in 

hypothetical purchase tasks. Furthermore, there is only a small amount of evidence to suggest that 

heavy cigarette or cannabis smoking is associated with the pleasure taken from acute administration 

of the respective drug, although this should be considered an under-researched area. Cigarette and 

cannabis users appear to have attentional biases towards their drug cues, but there may be a negative 

relationship between nicotine dependence and extent of attentional bias to cigarette images. There 

is better evidence for hypersensitivity to cigarette and cannabis images in respective addictions from 

fMRI studies. Finally, acute nicotine deprivation has frequently, but not always, been shown to 

augment various aspects of cigarette reward processing. Thus, in general, more work is warranted to 

clarify which aspects of drug reward processing are altered in nicotine and cannabis dependence. 

1.5.2 Hyposensitivity to non-drug rewards and related stimuli 

As described above, chronic drug use is associated with neuroadaptations to the mesocorticolimbic 

dopamine system and to opponent psychological processes in the reward system. These are 

hypothesised by some to contribute to a hyposensitivity to alternative, non-drug rewards (Blum et al., 

2000; Goldstein & Volkow, 2011; Koob, 2013). In contrast, others have suggested that addicted 

individuals are generally impulsive and this is a result of hypersensitivity to all rewards (Hommer, 

Bjork, & Gilman, 2011). Moreover, chronic drug abuse may sensitize the reward system to all rewards, 

leading to ‘spillover’ effects where addicts desire non-drug rewards more than healthy controls 

(Robinson & Berridge, 2008). Hence researchers make divergent predictions about how addiction is 

related to the processing of non-drug rewards and the related literature appears distinctly mixed. 

1.5.2.1 Animal research 
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Extended administration of nicotine has resulted in both a reduction (LeSage, Burroughs, & Pentel, 

2006) and null effects (Der-Avakian & Markou, 2010) on responding for sucrose reward on the first 

day of nicotine deprivation in rats. Interestingly, motivation for the sucrose reward increased in the 

days following cessation of nicotine administration such that it became larger than baseline levels 

(LeSage et al., 2006). Rhesus monkeys given cannabis smoke daily, or just on weekends, worked less 

hard for a food reinforcer compared with those given placebo smoke (Paule et al., 1992), while chronic 

THC treatment reduced copulatory behaviour in rats (Fattore, Melis, Fadda, Pistis, & Fratta, 2010).  

Another technique used to assess reward sensitivity in animals is the lowest electrical current that 

maintains ICSS. Nicotine, like other drugs of abuse (Ahmed, Kenny, Koob, & Markou, 2002), acutely 

lowers this threshold (Kenny & Markou, 2006), while short-term nicotine abstinence (up to 104 hours) 

substantially augments it (Epping-Jordan, Watkins, Koob, & Markou, 1998), demonstrating reduced 

reward circuitry sensitivity. Fascinatingly, and against all expectation, rats that self-administered 

nicotine for 20 consecutive days demonstrated reduced thresholds and therefore enhanced sensitivity 

for at least 36 days after administration ceased (Kenny & Markou, 2006), following the initial, short-

term reduction in sensitivity. This potentially dovetails with the finding that motivation for sucrose 

reward was originally reduced after one day of nicotine abstinence but was greater after five days 

(LeSage et al., 2006). There has been little research using ICSS and THC. An acute dose of 1mg/kg THC 

lowered the ICSS threshold while withdrawal from the same dose augmented the threshold (Tanda & 

Goldberg, 2003). To my knowledge, the chronic effects of THC on ICSS thresholds have not been 

investigated. 

In general, this line of research demonstrates the stimulating effects of acutely administered THC and 

nicotine on the reward circuitry, as well as the robust lowering of reward sensitivity during acute 

nicotine withdrawal. The long-term increase in sensitivity of the reward circuitry observed with 

nicotine is surprising and challenges the proposed allostatic reduction in hedonic set point (Koob & Le 

Moal, 1997), as does the reported increase in motivation for sucrose reward after five days of 
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abstinence (LeSage et al., 2006). These studies reveal several points: (1) in animal models, both chronic 

nicotine and THC/cannabis treatment have been, but are not always, associated with non-drug reward 

processing deficits; (2) different drugs of abuse can be associated with different effects on non-drug 

reward processing; (3) even with the same drug, different outcomes have been reported; (4) the 

length of abstinence post drug-administration is important; (5) the method in which non-drug reward 

processing is assessed is important. 

1.5.2.2 Human behavioural research 

There has been limited research investigating the behavioural aspects of non-drug reward processing 

in addicted individuals. This dearth potentially relates to the large amount of neuroimaging research 

in this area, which is introduced below. One notable exception is Powell’s and Dawkins’s research with 

the ‘card arranging reward responsivity objective test’ (CARROT), which has investigated motivation 

for monetary reward in smokers. In this task, participants sort cards into three different piles, 

depending on what numbers are shown on the card, as quickly as possible. In some rounds, 

participants receive no monetary reward for their sorting. In other rounds, participants receive 10 

pence for every five cards sorted. The difference in the sorting speed is taken as a measure of 

motivation for monetary reward. They have consistently demonstrated deficits in motivation for 

monetary reward in cigarette smokers after overnight (Dawkins, Powell, West, Powell, & Pickering, 

2006; Powell et al., 2002) and 10 days of nicotine abstinence (Al-Adawi & Powell, 1997). Furthermore, 

performance of the smokers only differed from non-smokers after abstinence (Al-Adawi & Powell, 

1997; Powell et al., 2002). The authors argue that these results are a consequence of a 

hypodopaminergic state being unmasked only when the chronic nicotine administration is transiently 

removed. Despite this evidence, nicotine abstinence was not found to have the expected effect on 

motivation for monetary reward using a modified version of this task (Kalamboka, Remington, & 

Glautier, 2009), thus questioning the previous findings. Moreover, the same research group reported 

lower motivation for monetary reward between high and low dependent smokers, regardless of 
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abstinence (Kalamboka, 2008), although this result was not replicated in other parts of the thesis in 

which this result was reported. Using a separate task, button-pressing for monetary reward in 

occasional and dependent smokers was not affected by 36 hours of smoking (Bühler et al., 2010). 

A recent series of studies has focused on the potential of acutely administered nicotine to enhance 

reinforcement by non-drug rewards (Perkins, Grottenthaler, & Wilson, 2009; Perkins & Karelitz, 2013a, 

2013b; Perkins, Karelitz, Jao, & Stratton, 2012). These studies have also indirectly investigated the 

effects of nicotine dependence and abstinence on non-drug reward processing. Acute nicotine did not 

enhance reinforced responding for money, music or the termination of an aversive sound in non-

smokers (Perkins et al., 2009). However, after overnight abstinence, in dependent and occasional 

smokers, nicotine enhanced reinforced responding for music reward (Perkins & Karelitz, 2013b). This 

suggests that motivation for music is greater during nicotine satiation compared with nicotine 

deprivation. However, dependent and occasional smokers did not differ from each other on 

motivation for any reward and the effect of abstinence/satiation was not moderated by dependence 

level. Importantly, responding was reinforced throughout the task, so one cannot determine if 

nicotine enhanced the pleasure associated with music reward and subsequently enhanced responding 

or if nicotine enhanced motivation for music reward without affecting the hedonic response to the 

reward. Overall, there is some evidence that dependent cigarette smokers differ from occasional 

smokers or healthy controls on motivation for non-drug reward, almost always following acute 

abstinence. However, other research has questioned the effects of nicotine deprivation on motivation 

for non-drug rewards. 

Research into the chronic effects of cannabis on behavioural aspects of reward processing is lacking, 

despite the enduring, anecdotally-based claim that chronic cannabis use causes an ‘amotivational 

syndrome’. Poorly controlled, older studies found no evidence of a difference between heavy cannabis 

users and light cannabis users on tasks which assessed motivation to earn money or tickets to 

exchange for goods (Mello & Mendelson, 1985; Mendelson, Kuehnle, Greenberg, & Mello, 1976). A 
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more recent study, however, reported that adolescent cannabis users, compared with non-users were 

less willing to exert effort for a monetary reward (Lane, Cherek, Pietras, & Steinberg, 2005). Similarly, 

cannabis acutely reduced motivation for money (Cherek, Lane, & Dougherty, 2002), although they 

only had a sample of five, which limits the conclusions that can be drawn. 

One task that has gained great popularity in assessing non-drug reward processing is the probabilistic 

reward task (PRT) (Pizzagalli, Jahn, & O’Shea, 2005) (figure 1.6). This task was used twice in the studies 

described in this thesis. The PRT involves two stimuli that are financially reinforced with an 

asymmetrical reinforcement schedule, such that a response bias towards the more reinforced 

stimulus usually develops. The stimuli are mouths of two lengths shown on a symbolic face; one mouth 

is defined as short and one mouth as long, though they only differ by approximately 1mm. These 

stimuli are shown for a very short amount of time (approximately 100ms). The participant is asked to 

identify which mouth is shown on a given trial and over the course of the task participants often start 

identifying the more reinforced mouth more frequently than the less reinforced mouth. The extent to 

which a participant forms a response bias towards the more reinforced mouth is termed ‘reward 

responsiveness’, which, in this task, is essentially reward learning. Reduced reward responsiveness 

has been shown to be associated with self-reported anhedonia (Pizzagalli et al., 2005) and depression 

(Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008) and is affected by dopamine agonist treatment 

(Pizzagalli, Evins, et al., 2008). The PRT theoretically captures two processes: sensitivity to the 

experience of reward, i.e. the internal value assigned to reward, and learning rate, i.e. the speed at 

which prediction error affects behaviour (Huys, Pizzagalli, Bogdan, & Dayan, 2013). 
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Figure 1.6 A diagrammatic representation of the Probabilistic Reward Task (taken from Pizzagalli et 
al., 2005). First a fixation cross is shown for 500ms, then a faceless mouth is shown for 500ms, then a 
long or short mouth (13mm and 11.5mm in the original version, respectively) is shown for 100ms, then 
the participant responds for either the long or the short mouth, then feedback is given for 1750ms. 
Unbeknownst to the participant, one of the mouths is reinforced three times more frequently than the 
other mouth, and so a response bias usually develops towards that mouth.  

Importantly for this thesis, the PRT has been used to investigate reward processing in nicotine 

dependent individuals. Response bias does not differ between dependent smokers, who have been 

abstinent for 4 hours, and non-smokers (Peechatka, Whitton, Farmer, Pizzagalli, & Janes, 2015). This 

suggests that even after a short period of deprivation, which can provoke withdrawal symptoms 

(Hendricks, Ditre, Drobes, & Brandon, 2006), there may be no difference in this aspect of non-drug 

reward processing between dependent smokers and non-smokers. Within dependent smokers, 24 

hours of abstinence produced marked reductions in response bias, while 9 hours did not (Audrain-

McGovern, Wileyto, Ashare, Cuevas, & Strasser, 2014; Pergadia et al., 2014), although a longer and 

more sensitive version of the task was used in the former experiment. Acute nicotine, however, 

enhanced response bias (Barr, Pizzagalli, Culhane, Goff, & Evins, 2008) and cigarette smoking appears 

to normalise the reward hyposensitivity in depression (Janes et al., 2015; Liverant et al., 2014). Hence, 

there is some evidence for the enhancing effects of acute nicotine and the diminishing effects of acute 
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nicotine abstinence on reward learning, although smokers and non-smokers may not differ after a 

short period (4 hours) of deprivation. 

One could argue that all of the reward processing studies I have described so far measure ‘anhedonia’. 

In fact, Treadway et al. (2009), creators of the ‘effort expenditure for rewards task’ (EEfRT), define 

anhedonia as ‘a decreased motivation for and sensitivity to rewarding experiences’.  However, I would 

argue that decreased motivation is better referred to as ‘amotivation’. Moreover, I believe that the 

PRT does not assess ‘anhedonia’, but a deficit in reward learning instead (Pizzagalli et al., 2005). In 

general, it seem as though it is now common to equate ‘anhedonia’ with ‘reward processing deficits’. 

Indeed, the American Psychiatric Association (APA) define anhedonia as the loss of pleasure or interest 

in previously enjoyed activities (DSM-5 American Psychiatric Association, 2013), which makes it a 

multifaceted construct. This may be important clinically, however for research purposes I believe it is 

desirable to use specific language and not conflate different terms. Hence, I would define anhedonia 

as a deficiency in hedonic or pleasure processing: a difficulty in taking pleasure from usually 

pleasurable things (Hatzigiakoumis, Martinotti, Di Giannantonio, & Janiri, 2011; Janiri et al., 2005). 

Anhedonia then represents the ability to subjectively take pleasure from, or feel positively about, 

enjoyable experiences. In my opinion, anhedonia is just one problematic element of ‘reward 

processing’ as a whole, rather than being synonymous with ‘impaired reward processing’. 

Therefore, to my mind, the best ways to assess anhedonia are to administer questionnaires which ask 

about the capacity to take pleasure from things or for participants to consume rewards which are then 

rated in terms of producing a positive, subjective state (such as ‘pleasure’, ‘liking’, ‘happiness’, etc…). 

Hence, despite others referring to reward learning (Pizzagalli et al., 2005) and effort-related decision-

making (Treadway, Buckholtz, Schwartzman, Lambert, & Zald, 2009) as ‘anhedonia’, and the APA 

emphasising the loss of pleasure and interest, I will keep to my definition of deficient subjective, 

pleasure processing. 
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Various anhedonia/pleasure scales have been developed (Chapman, Chapman, & Raulin, 1976; 

Fawcett, Clark, Scheftner, & Gibbons, 1983; Gard et al., 2006; Snaith et al., 1995). In the studies 

reported in this thesis, I frequently administered the temporal experiences of pleasure scale (TEPS) 

(Gard et al., 2006) and the Snaith-Hamilton pleasure scale (SHAPS) (Snaith et al., 1995). The TEPS 

assesses both consummatory (e.g. ‘I really enjoy the feeling of a good yawn’) and anticipatory (e.g. 

‘looking forward to a pleasurable experience is in itself pleasurable’) pleasure at a trait level. 

Traditionally, the SHAPS assesses pleasure processing ‘in the last few days’. However, based on 

previous research (Dawkins et al., 2006), I investigated state pleasure processing by asking participants 

how they felt ‘at this moment in time’. These two questionnaires are popular in current research as 

they are not thought to be culturally biased (Gard et al., 2006; Snaith et al., 1995) and the TEPS taps 

two aspects of pleasure processing which are theoretically dissociable, with anticipatory pleasure 

putatively more associated with motivation than consummatory pleasure (Sherdell, Waugh, & Gotlib, 

2012). 

In terms of previous findings in cigarette smokers, anhedonia levels were found to be similar in 

satiated dependent cigarette smokers and non-smokers but were greater in smokers after overnight 

abstinence (Powell et al., 2002). Similarly, overnight nicotine abstinence in dependent cigarette 

smokers led to reduced ‘happiness’ ratings in response to ‘positive’ film clips (Dawkins et al., 2006). 

Anhedonia, measured using ecological momentary assessment, also follows the temporal profile of a 

standard withdrawal symptom pre and post quit (Cook et al., 2015), which demonstrates its close link 

with smoking and abstinence. The importance of self-reported anhedonia in future smoking is clear, 

with higher anhedonia predicting relapse over and above other depressive symptoms (Cook, Spring, 

McChargue, & Doran, 2010; Leventhal, Piper, Japuntich, Baker, & Cook, 2014). Low hedonic capacity 

also predicts the strength of craving for cigarettes following 24 hours of nicotine deprivation (Cook, 

Spring, McChargue, & Hedeker, 2004). Furthermore, successfully quitting cigarette smoking has been 

associated with reduced anhedonia after one (Dawkins, Powell, Pickering, Powell, & West, 2009; 

Snuggs & Hajek, 2013) and four weeks (Snuggs & Hajek, 2013) 
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To my knowledge, there has been less research into anhedonia and cannabis use. One study 

demonstrated that baseline cannabis abuse predicted later anhedonia (Bovasso, 2001) and another 

showed dependent adolescent cannabis users had greater anhedonia than non-drug using controls 

(Dorard, Berthoz, Phan, Corcos, & Bungener, 2008). Moreover, five days of abstinence substantially 

reduced anhedonia in quitting cannabis users (Dawes, Sitharthan, Conigrave, Phung, & Weltman, 

2011). However, an additional study found no association between frequency of cannabis use and 

anhedonic symptoms within a sample of cannabis users (Johnson, Bonn-Miller, Leyro, & Zvolensky, 

2009). The relationships between substance use and anhedonia are quite complicated (Garfield, 

Lubman, & Yücel, 2014). It may not be that dependent uses are necessarily more anhedonic than 

controls, but that within some drug user populations (including cigarette smokers), anhedonia may 

predispose people to future drug use or failed quit attempts. Furthermore, abstinence appears to play 

an important role in anhedonia severity, while anhedonia can moderate the effects of abstinence on 

cigarette cravings. 

1.5.2.3 Neuroimaging research 

The sensitivity of the human reward system has been probed in recent years by allowing participants 

to win real rewards in the scanner. As described above, electrophysiological studies in animals have 

shown that mesocorticolimbic dopamine neurons exhibit phasic firing when they receive unpredicted 

rewards or when cues predict anticipated reward (Schultz et al., 1997). In humans, the neurobiology 

underlying anticipation and receipt of reward has often been investigated using the monetary 

incentive delay task (MIDT) (Knutson, Westdorp, Kaiser, & Hommer, 2000). In this task, cues are 

presented that predict monetary wins, losses and neutral outcomes. After a cue is presented, 

participants wait for a few seconds (usually 2-3s) and are required to press a button in order to win 

money, not lose money or receive nothing (figure 1.7). The BOLD response is usually measured in the 

waiting stage, while participants anticipate the opportunity to press the button. Similar to the role of 

mesocorticolimbic dopamine neurons in animals, anticipation of winning money recruits striatal and 
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medial forebrain structures, e.g. the nucleus accumbens, caudate, putamen, medial prefrontal cortex 

(Knutson et al., 2000). The BOLD response is also often recorded during the feedback stage, when 

participants find out whether they have won money or not. Receipt of monetary reward recruits 

similar reward-related regions, including the nucleus accumbens, caudate, putamen and amygdala 

(Knutson & Greer, 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 1.7 A diagrammatic representation of the monetary incentive delay task (MIDT) (taken from 
Wrase et al., 2007). In this traditional version of the task, a cue is first shown for 250ms which provides 
information about how much money can be won or lost, then there is a delay of 2.25-2.75s which is 
the anticipation phase, then a target is shown which must be responded to in a set time in order to win 
money or avoid losing money, finally feedback is presented for 1750ms. 

Importantly, dopaminergic function, as measured by raclopride displacement in a PET study, in the 

ventral striatum correlated with BOLD response in both the ventral tegmental area and ventral 

striatum during anticipation of monetary reward in the MIDT (Schott et al., 2008). This provides good 

evidence that the anticipatory BOLD response in the MIDT is associated with dopaminergic function, 

similar to that observed in animals when they see a cue predictive of reward. 
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Despite some researchers arguing for either reduced (Goldstein & Volkow, 2011) or enhanced non-

drug reward processing (Hommer et al., 2011) prevailing in addicted individuals, there is no simple 

pattern within the addiction MIDT literature (Bjork, Smith, & Hommer, 2008; Wrase et al., 2007). 

Differences in the stage of addiction, acute abstinence/drug effects, smoking status, comorbid 

disorders and task methodologies may account for some of these discrepancies (Balodis & Potenza, 

2015). 

There has been some research using the MIDT with cigarette smokers. Dependent smokers, who had 

smoked approximately 2 hours beforehand, showed reduced anticipatory BOLD responses to 

monetary gain and loss in the nucleus accumbens, compared with non-smokers (Rose et al., 2013). 

However, in the same study, it was shown that dependent smokers had enhanced sensitivity to 

changes in magnitude for anticipatory BOLD response and a greater response to positive feedback in 

the left cingulate (Rose et al., 2013). On the other hand, dependent smokers, compared with non-

smokers, showed weaker sensitivity to monetary magnitude changes, but they had similar overall 

anticipatory responses (Jansma et al., 2013). Furthermore, nicotine-satiated dependent smokers, 

compared with non-smokers, showed weaker anticipatory striatal activation to delayed monetary 

reward and marginally weaker anticipatory striatal activation to immediate monetary reward (Luo, 

Ainslie, Giragosian, & Monterosso, 2011). Adolescent smokers, relative to never-smokers, also showed 

reduced anticipatory striatal response (Peters et al., 2011). These results imply that there is a trend 

for smokers to show a weaker BOLD response while anticipating money in reward-related brain 

regions compared with non-smokers. Furthermore, the weaker the striatal response while anticipating 

monetary reward, the more likely a person is to choose to smoke during a period in which abstinence 

is reinforced with financial payment (Sweitzer, 2013; Wilson et al., 2014), which demonstrates a 

putative relationship between non-drug reward processing and future cigarette smoking. 

Research using radiolabelled water PET has found similar results. A visual discrimination task was used 

which provided monetary reinforcement for correct performance on some blocks but not others. In 
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one study, both smokers and non-smokers showed activation in various reward-related regions such 

as the orbitofrontal cortex and midbrain during the reinforced blocks, however no activation was seen 

in the striatum of smokers, but it was seen in non-smokers (Martin-Sölch et al., 2001). In a later study 

using the same task, there was a positive relationship between the amount of money available on 

each block and striatal activity in controls, but there was no such relationship in the smokers (Martin‐

Soelch, Missimer, Leenders, & Schultz, 2003). 

There has been less research into impaired neurobiology underlying reward anticipation in cannabis 

dependence. Individuals with cannabis dependence have shown both reduced (van Hell et al., 2010) 

and enhanced (Nestor, Hester, & Garavan, 2010) anticipatory BOLD response to monetary reward. 

1.5.3 The balance between drug and non-drug reward processing 

In line with the proposed hypersensitivity to drug rewards and hyposensitivity to non-drug rewards, 

the reduction or termination of enjoyable activities not related to drugs is one of the criteria for the 

diagnosis of substance use disorders (DSM-5 American Psychiatric Association, 2013). This concept of 

sacrificing alternative activities in favour of drugs has been operationalised in experiments using 

choice-based tasks. Lee Hogarth has consistently demonstrated that the choice of cigarettes over 

chocolate is associated with nicotine dependence (Hogarth & Chase, 2011, 2012). Furthermore, 

overnight nicotine deprivation has been shown to bias responding in favour of cigarettes over money 

and food (Epstein et al., 1991; Perkins, Epstein, Grobe, & Fonte, 1994). However, in these deprivation 

studies the rewards were consumed throughout the experiment, so, as described in section 1.5.2.2, 

one cannot tell what process has been altered: pleasure and therefore motivation or just motivation. 

Furthermore, as these rewards were available simultaneously, one cannot assign a motivational value 

to each separately. 

Interestingly, it has been shown in tobacco (Bisaga, Padilla, Garawi, Sullivan, & Haney, 2007) and 

cannabis addicts (Haney, Comer, Ward, Foltin, & Fischman, 1997) that the magnitude of an alternative 



56 
  

reinforcer affects drug-seeking. Drug addicted individuals reduce their drug-seeking when larger 

alternative reinforcers are available; however the extent to which their putative hyposensitivity to 

non-drug rewards alters the effect of alternative reinforcers on behaviour is not well understood. 

Behavioural economic research has reported both null and negative associations between elasticity 

of cigarette purchase and nicotine dependence (MacKillop et al., 2008; Murphy et al., 2011). These 

negative associations suggest that greater dependence may be associated with a weaker sensitivity to 

increases in cost, thus implying that nicotine dependent individuals may not alter their cigarette-

seeking behaviour in response to external factors as much as non-dependent individuals. 

Other experiments have investigated reward processing of cigarettes and non-drug rewards within 

the same paradigm without participants choosing between them. In an experiment which greatly 

informed this thesis, dependent and occasional smokers worked for both cigarettes and money on 

separate trials by pressing a button (Bühler et al., 2010). This experiment combined behavioural and 

fMRI outcomes. Occasional smokers worked harder for money than cigarettes, and had greater neural 

activity in reward-related brain regions while anticipating money compared with cigarettes. In 

contrast, within dependent smokers, there was no difference between the motivation for money and 

cigarettes or neural activity while they anticipated the rewards. This suggests that it may be the 

balance between cigarette and non-drug reward processing which is important in nicotine 

dependence, rather than one or the other. Surprisingly, 36 hours of nicotine abstinence had no effect 

on either the behavioural or fMRI outcomes in this experiment, which opposes the hypothesis that 

craving and abstinence should heighten differences in drug and non-drug reward processing 

(Goldstein & Volkow, 2011). However, a similar experiment which did not measure any behavioural 

response, found differential effects of acute abstinence on BOLD response during anticipation of 

cigarettes and money (Sweitzer et al., 2013). 

This balance between drug and non-drug reward processing was also found to be important in studies 

predicting future smoking in dependent smokers making a quit attempt (Versace et al., 2014; Versace 
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et al., 2012). Before ceasing smoking, participants viewed pleasant and cigarette-related images. They 

were then grouped into two categories: (1) blunted response to pleasant images relative to cigarette 

images or (2) similar response to pleasant images relative to cigarette images, based on the late 

positive potential (Versace et al., 2012) and BOLD response (Versace et al., 2014). On both occasions, 

the first group was more likely to relapse than the second group. 

In summary, tasks pitting a drug against an alternative, non-drug reward have good face validity (DSM-

5 American Psychiatric Association, 2013) and show close associations between performance and 

dependence, however they do not provide separate measures of reward processing for each type of 

reward. Tasks that allow both types of reward to be earned within the same paradigm but on separate 

trials (Bühler et al., 2010; Sweitzer et al., 2013) permit the comparison of reward processing on the 

same scale. Therefore, conclusions can be made about the comparative value of drug and non-drug 

rewards. Hence, for the purposes of this thesis I specifically designed a task which had both of these 

qualities: (1) a choice stage and (2) a separate motivational stage. 

1.5.4 Characteristics of reward 

Most of the studies described above used money as a non-drug reward (Bühler et al., 2010) or 

investigated responses to pleasant and drug-related images (Versace et al., 2014; Versace et al., 2012). 

Although these are well-validated and useful ways of probing reward processing, and I have used 

monetary reward in parts of this thesis, I believe they may not be ideal for investigating drug and non-

drug reward processing. In this work, I aimed to compare drug and non-drug reward processing while 

ensuring that: (1) the rewards were meaningful and tangible and (2) the nature of the drug and non-

drug rewards were as similar as possible. I reasoned that the optimal way of studying motivation to 

smoke a cigarette is to provide participants with the opportunity to win and smoke real cigarettes, 

rather than, for example, presenting cigarette-related images. 
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Furthermore, given that I wanted to compare drug with non-drug reward processing, I wished to 

choose non-drug rewards that were similar to cigarettes in various reward characteristics. Monetary 

reward may not be similar to a cigarette reward because it cannot be consumed; it can only be 

exchanged for other goods. Moreover, it can be exchanged for cigarettes, and so money could 

represent cigarette reward in some smokers’ minds. Whereas, music and chocolate, which have both 

been used as non-drug rewards in smoking research (Hogarth & Chase, 2011; Perkins & Karelitz, 

2013b), can be consumed and enjoyed, and can’t easily be exchanged for cigarettes. Hence, by using 

these non-drug rewards, I hopefully (1) kept the consummatory nature of the reward types similar; 

(2) allowed for an investigation into liking of reward consumption; and (3) did not provide participants 

with a reward that could later be exchanged for cigarettes. 

1.6 Summary 

Most people who try drugs do not go on to become addicted; reward processing may play a 

fundamental role in the development of drug dependence in those who do. The iRISA theory suggests 

addiction is associated with a hypersensitivity to drug rewards and a hyposensitivity to non-drug 

rewards. However, the existing research in favour of both of these claims is remarkably mixed for 

nicotine and cannabis dependence. For instance, self-administration of cigarettes and cannabis in the 

laboratory have not always been associated with the respective addictions. Furthermore, the 

relationship between the severity of dependence and the pleasure taken from drug consumption is 

unclear. The evidence in favour of a hyposensitivity to non-drug rewards is also contentious. For 

example, both animal studies and human studies have shown opposite effects of chronic nicotine and 

cannabis use on different aspects of non-drug reward processing. In terms of motivation for non-drug 

rewards specifically, both null and significant differences have been reported between cigarette 

smokers and controls, following acute nicotine deprivation and satiation. 

It is advantageous to investigate drug and non-drug reward processing within the same paradigm, so 

that clear comparisons on the same scale can be made and the balance between the two can be 
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examined. To my knowledge, only one study has compared cigarette and non-drug reward processing, 

within the same paradigm, in dependent and occasional smokers (Bühler et al., 2010). This study 

demonstrated a perturbed balance in cigarette and non-drug reward processing in dependent 

smokers, but there are two important points to make: (1) there was a surprising null effect of nicotine 

abstinence and (2) they used money as the alternative, non-drug reward.  

Therefore, the extent to which nicotine dependence is associated with concurrent changes in cigarette 

and non-drug reward processing, and whether this is moderated by acute nicotine abstinence, is 

unclear. It is critical to examine various components of reward processing to determine whether these 

changes occur across the reward processing spectrum or only in specific components. Furthermore, 

examining the neural and pharmacological underpinnings of these potential differences in drug and 

non-drug reward processing will hopefully contribute to knowledge about why differences exist, if 

they do.  

Finally, despite the burgeoning problem of cannabis dependence, there is an obvious gap in the 

literature concerning possible reward processing deficits that are associated with acute and chronic 

cannabis use. This is an especially topical and important research direction given the globally changing 

legal status of cannabis, the increasing use of the drug (Hasin et al., 2015) and the ‘amotivational 

syndrome’ which has been anecdotally associated with its use (McGlothlin & West, 1968). 

Furthermore, the endocannabinoid system putatively plays an important role in other drug addictions 

(Maldonado et al., 2006; Parsons & Hurd, 2015), including nicotine dependence. Therefore, acute and 

chronic manipulations of the endocannabinoid system, and their effects on reward processing, should 

aid our understanding of how this system is related to particular addictive behaviours. 

1.7 Research questions and hypotheses 

1) Do dependent cigarette smokers differ from occasional cigarette smokers on their 

processing of cigarette and non-drug rewards across a range of metrics? Is this moderated by 

acute nicotine abstinence? 
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Despite mixed evidence concerning reward processing differences between dependent and 

occasional/non-smokers, based on the iRISA theory (Goldstein & Volkow, 2011) I predicted that 

dependent smokers, relative to occasional smokers, would be hypersensitive to cigarette rewards and 

hyposensitive to non-drug rewards. Furthermore, I predicted that acute nicotine abstinence would 

further polarise these differences. 

2) Can an acute dopaminergic challenge beneficially disrupt cigarette smokers’ processing of 

cigarette and non-drug rewards? 

Based on the literature concerning dopaminergic adaptations in nicotine dependence (Dagher et al., 

2001; Fehr et al., 2008; Leroy et al., 2012) and the role of dopamine in drug and non-drug reward 

processing (Volkow et al., 2004), I predicted that a dopaminergic agonist challenge would disrupt 

cigarette and non-drug reward processing. Furthermore, based on previous work investigating 

dopamine agonists’ effects on smoking and reward processing (Freeman, Das, Kamboj, & Curran, 

2015; Freeman, Morgan, Brandner, Almahdi, & Curran, 2013; Jarvik et al., 2000), which is introduced 

fully in chapter 4, I specifically predicted that an acute dose of a dopamine D2/3 receptor agonist 

would reduce motivation for cigarettes and increase motivation for non-drug rewards. 

3) Is cannabis use associated with non-drug reward processing alterations?  

There is a lack of research in this area. However, based on two small studies showing amotivational 

effects of acute and chronic cannabis use (Cherek et al., 2002; Lane et al., 2005), I predicted that (1) 

acute cannabis administration would lead to, and (2) cannabis dependence would be associated with, 

non-drug reward processing deficits. 

1.8 Methodological approaches to these questions: a road map of this thesis 

The first question is addressed in chapters 2, 3 and 4. The second question is addressed in chapter 4. 

The third question is addressed in chapter 5. 
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The studies in this thesis employ a range of methodologies. For the study reported in chapter 2, I 

created a novel task named the Drug, Reward and Motivation – Choice (DReaM-Choice) Task, which 

allows participants to earn real rewards (cigarettes, music and chocolate, as well as a neutral 

commodity: paper) to consume later. This task measures (1) choices for each reward, which I term 

‘relative preference’ and (2) motivation for each reward. After the task, participants were allowed to 

consume the actual rewards they had won, thus allowing for an assessment of reward liking. 

Dependent and occasional smokers completed this procedure twice, once when in their 'normal' state 

and once after 12 hours of nicotine abstinence. 

This was followed up by an fMRI study which is reported in chapter 3. This study investigated the 

behavioural and neural processing of cigarette and music reward processing in dependent and 

occasional smokers, when they were in their ‘normal’ (non-deprived) states. In order to investigate 

the BOLD response during anticipation of and feedback about these rewards, I adapted a well-

validated task called the monetary incentive delay task (MIDT) (Knutson et al., 2000), which I described 

above. 

In the study reported in chapter 4, the effects of pramipexole, a dopamine D2/D3 receptor agonist, 

on cigarette and non-drug reward processing were tested. Concurrent cigarette and non-drug reward 

processing was assessed with a simplified version of the DReaM-Choice task. The behavioural 

economics of cigarette consumption were assessed with a cigarette purchase task (Mackillop et al., 

2008). Non-drug reward processing was more thoroughly investigated using an effort-related 

decision-making task (Treadway et al., 2009) and a reward learning task (Pizzagalli et al., 2005). Hence, 

I was able to investigate the effects of dopaminergic manipulation different aspects of cigarette and 

non-drug reward processing, while also comparing dependent and occasional smokers on these other 

measures. 

The relationships between cannabis use and reward processing deficits were examined in the studies 

reported in chapter 5. The chapter is split into two studies: the first examined the acute effects of two 
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types of cannabis (with and without cannabidiol) on effort-related decision-making (Treadway et al., 

2009) and the second examined the associations between cannabis dependence and possible deficits 

in effort-related decision-making and reward learning (Pizzagalli et al., 2005). 

Finally, in chapter 6, I bring these results together and discuss what they can tell us in terms of drug 

and non-drug reward processing in nicotine and cannabis dependence. I also discuss the limitations of 

my work and provide some thoughts about future research that should be conducted within this field. 
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Chapter 2: Cigarette and non-drug reward processing in dependent and occasional cigarette 

smokers during ad libitum smoking and acute nicotine abstinence 
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2.1 Introduction 

As described in chapter 1, drug addiction is theoretically associated with a hypersensitivity to drug 

rewards and a hyposensitivity to non-drug rewards (Goldstein & Volkow, 2011). There have been 

suggestions that it is the balance between drug and non-drug reward processing that is critical in the 

maintenance of addiction and relapse (Bühler et al., 2010; Versace et al., 2014; Versace et al., 2012). 

Furthermore, this imbalance is thought to become more polarised during acute abstinence and at 

times of craving (Goldstein & Volkow, 2011). Currently, the findings concerning the relationships 

between nicotine dependence, nicotine abstinence and cigarette and non-drug reward processing are 

somewhat unclear. A better understanding of which reward processing aspects are altered could 

contribute to more successful treatments of nicotine dependence. 

2.1.1 Processing of cigarette rewards 

In humans, nicotine dependence has been shown to be associated with motivation to earn cigarettes 

in behavioural economic tasks (MacKillop et al., 2008; Murphy et al., 2011) and choice tasks (Hogarth, 

2012; Hogarth & Chase, 2011). However, other fixed and progressive-ratio button-pressing tasks have 

failed to demonstrate significant relationships between nicotine dependence and motivation for 

cigarettes (Barrett, 2010; Bühler et al., 2010). These latter findings are surprising, and demand further 

investigation, as addiction is often defined in terms of powerful motivations for the drug (West & 

Brown, 2013). 

Studies that have investigated the relationship between nicotine dependence and hedonic responses 

to cigarette smoking within dependent smokers have found divergent results (Pomerleau & 

Pomerleau, 1992; Shiffman & Kirchner, 2009). To my knowledge, occasional, non-dependent smokers 

have not been compared with frequent, dependent smokers on their liking of cigarettes however. 

Unsurprisingly, nicotine abstinence usually (Barrett, 2010; Kollins et al., 2013), but not always (Bühler 

et al., 2010), leads to increased cigarette craving and self-administration; this indicates a heightened 



65 
  

incentive properties of cigarettes during deprivation. Thus, there is mixed evidence that nicotine 

dependence is associated with enhanced motivational processing of cigarette rewards in the 

laboratory and that acute abstinence augments this. The relationship between the pleasure taken 

from smoking cigarettes and nicotine dependence is even less clear. Hence, more laboratory studies 

are required to clarify these discrepancies. 

2.1.2 Processing of non-drug rewards 

Animal research suggests that nicotine acutely enhances, while short-term withdrawal lowers, reward 

sensitivity (Epping-Jordan et al., 1998; Kenny & Markou, 2006; LeSage et al., 2006). However, there is 

also evidence of long-term enhancement of reward sensitivity after extended nicotine self-

administration (Kenny & Markou, 2006). 

Human evidence concerning non-drug reward processing alterations in dependent smokers is mixed. 

Dependent smokers, compared with non-smokers, have been shown to have a reduced motivation 

for monetary reward using the CARROT and self-reported anhedonia only after overnight abstinence 

(Al-Adawi & Powell, 1997; Dawkins et al., 2006; Powell et al., 2002). However, a difference in 

motivation for monetary reward between high and low dependence smokers has been shown 

regardless of nicotine satiation or abstinence (Kalamboka, 2008), although this result was not 

replicated in later experiments reported in the same thesis. When investigating motivation for money 

and cigarettes concomitantly, Buhler et al. (2010) showed that dependent smokers had similar 

motivation for these rewards but occasional smokers worked harder for money compared with 

cigarettes; nicotine deprivation did not moderate this effect. No difference between smokers and non-

smokers on a reward learning task was found after 4 hours of abstinence (Peechatka et al., 2015) and 

neither was there a difference between dependent and occasional smokers on motivation for music 

or money, regardless of abstinence (Perkins & Karelitz, 2013b). Hence, there is mixed evidence for 

group differences in non-drug reward processing, with and without nicotine abstinence. 
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Whether or not acute abstinence affects non-drug reward processing is therefore also unclear. 

Reward learning was sensitive to 24 hours of abstinence, but not 9 hours, in dependent smokers 

(Audrain-McGovern et al., 2014; Pergadia et al., 2014); motivation for music, but not money, was 

affected by overnight abstinence in dependent and occasional smokers (Perkins & Karelitz, 2013b); 

and anticipatory BOLD response for money was sensitive to 24 hours of abstinence in dependent 

smokers (Sweitzer et al., 2013). However, both Buhler et al. (2010) and Kalamboka et al. (2009) found 

no evidence of acute nicotine abstinence on motivation for monetary reward. 

2.1.3 Use of consummatory rewards 

As described in chapter 1, it is important to examine drug and non-drug reward processing using the 

same paradigm so that direct comparisons within and between groups can be made. This allows for 

an investigation into the balance in reward processing, which may be disrupted in nicotine 

dependence, as observed by Buhler et al. (2010). However, as argued previously, money may not be 

the ideal comparison reward. Therefore, I chose to use two consummatory rewards that have 

previously been used in smoking research: chocolate (Hogarth & Chase, 2011) and music (Perkins & 

Karelitz, 2013b). Furthermore, it may be wise to examine a variety of reward processing components, 

so that any specific, rather than global, deficits can be elucidated. 

2.1.4 Drug, Reward and Motivation-Choice (DReaM-Choice) task 

In order to attempt to address the questions and ambiguities raised above, I employed the new Drug, 

Reward and Motivation-Choice (DReaM-Choice) task (briefly introduced in chapter 1 and described in 

detail in section 2.2.2.1). I aimed to combine paradigms which offer rewards concurrently (e.g. Bisaga 

et al., 2006; Hogarth & Chase, 2011) and those that assess motivation for individual rewards (e.g. 

Buhler et al., 2010). Hence, the task involved a series of two-option choices, in which two rewards 

were pitted against each other, this was followed by a button-pressing stage where participants could 

earn points for the chosen reward. The rewards (cigarettes, music and chocolate, and the neutral 
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commodity - paper) were available in two magnitudes (large and small) so that I could also explore 

the effect of magnitude on reward processing. This task produces two complementary outcome 

variables: (1) number of choices for each reward, assessing relative preference and (2) average 

number of button-presses for each reward, assessing motivation. During different points of the 

experiment, participants also rated their wanting of each reward. After the task, participants 

consumed and rated their liking of the rewards they won. Hence, I also collected data on self-reported 

wanting and self-reported liking. 

2.1.5 Summary and hypotheses 

In summary, there is a mixed literature concerning drug and non-drug reward processing alterations 

in nicotine dependence, and the moderating effects of acute abstinence. Furthermore, very few 

studies have investigated cigarette and non-drug reward processing concurrently or used 

consummatory non-drug rewards, which may have advantages over monetary reward. Finally, the 

examination of a wide range of reward process, including motivation and self-reported wanting and 

liking, has been limited. Therefore, in the current study, I investigated cigarette and non-drug reward 

processing in dependent and occasional smokers, using the newly developed DReaM-Choice task, 

following acute (12h) nicotine abstinence and ad libitum smoking. Based on the iRISA theory of 

addiction (Goldstein & Volkow, 2011), I predicted that: 

1. Dependent smokers, compared with occasional smokers, would be hypersensitive to cigarette 

rewards and hyposensitive to non-drug rewards, across a range of metrics. 

2. 12 hours of nicotine abstinence, compared with ad libitum smoking, would enhance cigarette 

and reduce non-drug reward processing in the dependent smokers but not the occasional 

smokers. 
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2.2 Methods 

2.2.1 Design and participants 

A fully factorial, crossover design with a between-subjects factor of group (dependent or occasional) 

and within-subjects factors of smoking-condition (ad libitum or abstinent), reward-type (cigarettes, 

music, chocolate or paper) and reward-magnitude (large or small) was used. 

Twenty dependent (10 females) and 20 occasional (12 females) smokers were recruited by 

advertisements at University College London and on Gumtree. Eligibility criteria for and sample size 

of the two groups were based on Buhler et al. (2009).  A sample size of 20 per group is sufficient to 

detect a between-within subject interaction of small (f=0.1) effect size in a 4x2x2x2 design, assuming 

a correlation of 0.5 between measures, an alpha of 0.05 and a beta of 0.8. Note: this power analysis 

was in error. With a sample of 20 per group, power of 0.8, an alpha of 0.05 and a correlation among 

repeated measures of 0.5, I would be able to detect an effect size of f=0.27, not an effect size of f=0.1. 

Inclusion criteria for dependent smokers were: age 18-50; reporting smoking ≥10 cigarettes per day; 

scoring ≥6 in the Fagerstrom Test for Nicotine Dependence (FTND) (Heatherton et al., 1991); and a 

current diagnosis of severe tobacco use disorder according to DSM-5. Inclusion criteria for occasional 

smokers were: age 18-50; reporting smoking 0.25-5 cigarettes per week; never having been a regular, 

daily smoker; an FTND score of 0; and no DSM-5 diagnosis of tobacco use disorder. Exclusion criteria 

for all participants were: use of nicotine replacement therapy or any other smoking cessation 

pharmacotherapy; addiction to another drug; not liking chocolate; a current mental health problem; 

and a learning impairment. 

Participants were reimbursed £7.50/hour and were informed they could also win cigarettes, 

chocolates, music, and pieces of lined paper (a neutral control commodity) during the experiment.  
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All participants provided written, informed consent. This study was approved by the University College 

London (UCL) Ethics Committee and was conducted in accordance with the Declaration of Helsinki. 
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2.2.2 Assessments 

2.2.2.1 Drug, Reward and Motivation – Choice (DReaM-Choice) Task (Figure 2.2) 

The DReaM-Choice task was programmed using Presentation (v. 16.5) software (NeuroBehavioural 

Systems, California). The task involved a series of two-option choices. During each choice, two cues 

were presented side by side, which represented the type and magnitude of the reward that could be 

worked for. Four different reward types (cigarette, music, chocolate and paper) and two different 

reward-magnitudes (large and small) were used. Figure 2.1 shows the cues that were used to 

represent the different rewards. Reward-magnitude was represented by presenting large or small 

versions of these cues.  

 

 

 

 

 

Figure 2.1 Cues that represented the different reward types. From left to right: cigarette, music, 
chocolate, paper. The size of the cue was either large or small to represent the two magnitudes of the 
reward. 

Figure 2.2 depicts an example trial in which either a small chocolate or a large cigarette reward could 

be chosen. First a choice was made between the two rewards, then the chosen reward was worked 

for in a fixed-ratio schedule: participants could press the spacebar as quickly as desired for seven 

seconds with the little finger on the non-dominant hand (as in Treadway et al., 2009). The more times 

the spacebar was pressed, the more points were won for the chosen reward, while no points were 

won for the foregone reward. Reward-magnitude (large, small) and baseline button-pressing speed 

(b), which was determined before the task, were used to calculate the number of points earned: 
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The number of points won on a single trial when a small reward was chosen was: 

𝑃𝑜𝑖𝑛𝑡𝑠 =  
100 × 𝑠𝑝𝑎𝑐𝑒𝑏𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟′ 𝑒𝑠𝑝𝑜𝑛𝑑 𝑠𝑡𝑎𝑔𝑒′

𝑏
 

The number of points won on a single trial when a large reward was chosen was: 

𝑃𝑜𝑖𝑛𝑡𝑠 =  
1000 × 𝑠𝑝𝑎𝑐𝑒𝑏𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟′ 𝑒𝑠𝑝𝑜𝑛𝑑 𝑠𝑡𝑎𝑔𝑒′

𝑏
 

There were 144 trials in total in the task, split into 3 separate blocks. The DreaM-Choice outputted 

two main dependent variables: number of choices for each reward and average number of button-

presses (BP) during the 7 second response stage, for each reward.1  

Malboro Gold cigarettes (tar: 6mg, nicotine: 0.5mg), Cadbury’s Dairy Milk chocolate, individually 

chosen music rated ≥75/100 in terms of ‘liking’ (Perkins and Karelitz, 2013), and pieces of lined paper 

were the real delivered-rewards awarded after the task. 4,000 points were required for one ‘unit’ of 

delivered-reward (1/4 of a cigarette, one chunk of chocolate, 30s of music and one piece of paper). All 

delivered-rewards were given to the participants after the DReaM-Choice task was completed. 

Previous studies have used two-option choices between two rewards without a neutral ‘non-reward’ 

option (Hogarth, 2012; Hogarth & Chase, 2011). Here I included paper as a control option, enabling 

me to examine whether cigarettes, chocolate and music were indeed motivating rewards for both 

dependent and occasional smokers relative to a ‘neutral commodity’.

                                                           
1 If one of the rewards was never selected, e.g. ‘paper small’, the BP for that outcome was set to 0. 



 
  

 

 

 

 

 

 

 

 

Figure 2.2 An example trial of the DReaM-Choice Task. During the ‘choice stage’, the cues were presented and a choice was made with button F (left option) 
or J (right option) (unlimited time); during the ‘anticipate stage’ the word ‘wait’ was shown and there was a pause of 1s; during the ‘respond stage’ the word 
‘respond’ was shown and the spacebar was pressed as many times as desired with the non-dominant little finger in 7s (as in Treadway et al., 2009), in order 
to win points for the chosen reward; during the ‘feedback stage’ feedback concerning the amount of points won was provided for 1s. Each of the 48 possible 
choices were presented in 3 blocks, making a total of 144 trials, with trial order pseudo-randomized and left/right cue position counterbalanced.

Choose 

Wait 

Respond 

100 cigarette points 

Feedback 

Stage 

Choice Stage 

Anticipate Stage 

Respond Stage 
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2.2.2.2 Self-rated assessments 

Trait measures 

Beck Depression Inventory (BDI-II) 

This scale of depression severity consisted of 21 items that were rated for their frequency between 0 

and 3 in the last week (Beck, Steer, Ball, & Ranieri, 1996). Higher scores reflected greater depression 

severity. 

Fagerstrom Test for Nicotine Dependence (FTND)  

This scale consisted of six items that were rated between 0 and 3, with total scores ranging from 0 

(low dependence) to 10 (high dependence) (Heatherton et al., 1991).  

Temporal Experience of Pleasure Scale (TEPS) 

This scale consisted of 18 items that were rated between 1 (very false for me) and 6 (very true for me) 

(Gard et al., 2006). There were two subscales: anticipatory and consummatory pleasure. Higher scores 

reflected greater ability to experience pleasure. 

State measures 

Minnesota Nicotine Withdrawal Scale (MNWS) 

This scale consisted of 9 items, including one that assessed craving, that were rated between 0 (none) 

and 4 (severe) for ‘right now’ (J. Hughes & Hatsukami, 2007). Higher scores reflected greater severity 

of nicotine withdrawal. 

Snaith-Hamilton Pleasure Scale (SHAPS) 
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This scale of consisted of 14 items that were rated between 0 (definitely agree) and 3 (definitely 

disagree) for ‘right now’ (Franken, Rassin, & Muris, 2007; Snaith et al., 1995). Higher scores reflected 

greater anhedonia. Both the TEPS and the SHAPS were used so that a trait and a state measurement 

of anhedonia were recorded, respectively. 

Wanting and Liking Likert Scales 

These consisted of a single item, which was rated between -10 (extremely don’t want/like) to 10 

(extremely want/like) for each reward available. 

2.2.2.3 Other assessments 

Carbon monoxide 

Expired carbon monoxide (CO) levels were determined with a Bedfont Micro Smokerlyzer (Bedfont 

Scientific, Harrietsham, UK). 

Spot-The-Word 

This test, which correlates highly with premorbid verbal intelligence, consisted of pairs of items, one 

a word and one a non-word; participants selected the item they thought was a real word (Baddeley, 

Emslie, & Nimmo‐Smith, 1993). Scores were calculated by summing the total number of correct 

answers. 

Tobacco use disorder (DSM-5 American Psychiatric Association, 2013) 

Participants were asked questions about whether various symptoms were present over the past 12 

months, including: (1) taking tobacco in larger amounts than intended, (2) unsuccessful efforts to cut 

down tobacco use, (3) a great deal of time smoking or acquiring tobacco, (4) cravings, (5) failure to 

fulfil obligations because of tobacco use, (6) continued tobacco use despite interpersonal problems, 

(7) alternative activities are given up or reduced because of tobacco use, (8) recurrent tobacco use 
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when it is physically dangerous, (9) continued tobacco use despite physical problems, (10) tolerance, 

(11) withdrawal symptoms. Two to three symptoms is considered a mild use disorder, four to five is 

considered a moderate use disorder, and six or more symptoms is considered a severe use disorder. 

2.2.3 Procedure 

Participants attended two 90 minute experimental sessions during both 12 hour nicotine abstinence 

and ad libitum smoking, which were separated by approximately one week (range: 5 to 14 days). 

Following Freeman et al. (2012), the experiment was conducted under single-blind conditions 

whereby the experimenter was blinded to smoking condition. An assistant provided participants with 

their instructions for smoking condition in a randomised order, and checked adherence to abstinence 

before the experiment began (≤10ppm CO was considered acceptable) (Benowitz et al., 2002)2. The 

SHAPS, MNWS and wanting scores were completed at time ‘pre-task’ and the DreaM-Choice was then 

administered. Consequently, the wanting scores were recorded again at time ‘pre-consumption’ and 

the amount of delivered-rewards was calculated. Participants were then allowed to ‘consume’ the 

delivered-rewards whenever they wanted during a 25 minute period. Their liking (-10 = ‘extremely 

don’t like’ to 10 = ‘extremely like’) of each delivered-reward was recorded; only the first liking rating 

for each reward was analysed so that satiation did not affect the results. The order in which rewards 

were consumed was recorded. After the 25 minute consummatory phase, participants completed the 

SHAPS, MNWS and wanting scores again, at time ‘post-consumption’. 

2.2.4 Statistical analyses 

All analyses were carried out using IBM Statistical Package for Social Sciences (IBM SPSS version 21). 

Data were checked for normality, homogeneity of variance and sphericity using inspection of 

histograms, Levene’s test and Mauchley’s test, respectively. Where residuals were not normally 

                                                           
2 Two participants did not complete the experiment due to having too high a CO reading on the abstinent 
session. 
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distributed or the group variances were not homogenous, non-parametric tests were used when 

available and appropriate. Where sphericity was violated, a Greenhouse-Geisser correction was 

applied. Adjusted values of degrees of freedom (df) and p are reported in these instances. Multiple 

comparisons were corrected using the Bonferroni correction via SPSS syntax. 

Group differences on trait measures were investigated using t-tests or Mann-Whitney U tests, 

depending on distributions. CO data were investigated via a mixed-design analysis of variance 

(ANOVA) with a between-subjects factor of group (dependent and occasional) and a within-subjects 

factor of smoking-condition (ad libitum and abstinent). The time since last smoked was analysed using 

non-parametric comparisons as the errors were non-normally distributed. MNWS, craving (from 

MNWS) and SHAPS scores were investigated via mixed-design ANOVAs with a between-subjects factor 

of group and within-subjects factors of smoking-condition and time.  

Choice and BP data were investigated using mixed-design ANOVAs with a between-subjects factor of 

group and within-subjects factors of reward-type (cigarette, music, chocolate and paper), reward-

magnitude (large and small) and smoking-condition. Given a priori hypotheses, I investigated the 

effects of acute nicotine abstinence on choices and BP for music, chocolate and cigarettes within the 

dependent group regardless of the significance of interactions. Wanting data were investigated using 

a mixed-design ANOVA with a between-subjects factor of group and within-subjects factors of reward-

type, smoking-condition and time (pre-task, pre-consumption and post-consumption). Liking data 

were investigated using a mixed-effects model approach due to missing data. Group, reward-type and 

smoking-condition were entered as fixed effects and the intercept was allowed to vary randomly, so 

that the mixed-effects model behaved like a repeated-measures ANOVA while dealing with the 

missing data appropriately. Between-subjects differences in order of first-reward-consumed were 

investigated using chi-square tests. 
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To assess whether order of testing (abstinent on day one or ad libitum on day one) had any main or 

interactive effects, the factor of order was added to the aforementioned ANOVAs. Order had no 

significant main effect or any interactive effect and therefore analyses continued without it. 

We also conducted an exploratory analysis into the time taken to choose each reward-type. This 

analysis was conducted in order to determine if certain rewards were chosen more quickly than others 

and therefore perhaps elicited a response with greater motivation. The time taken to choose each 

reward was averaged across all trials and a mixed ANOVA with a between-subjects factor of group and 

within-subjects factors of reward-type (cigarette, music and chocolate), reward-magnitude (large and 

small) and smoking-condition was carried out. Paper was not included in this analysis as 19 

participants never chose paper. 

Correlations were carried out, within each group separately. Both the number of choices and BP for 

each reward, collapsed across reward-magnitude, during both smoking-conditions were correlated 

with: number of cigarettes smoked per day, craving, SHAPS and TEPS-total. Change in choices and 

button-presses across smoking-conditions for each reward-type were correlated with change in SHAPS 

score. The alpha level was adjusted to 0.001 to account for multiple tests. 

2.3 Results 

2.3.1 Trait measures (Table 2.1) 

The dependent group had significantly higher FTND (U38=0.000, p<0.001), DSM-5 tobacco use disorder 

scores (U38=0.000, p<0.001) and average number of cigarettes smoked/day and /week (U38=0.000, 

p<0.001 for both) than the occasional group. The dependent group also listened to music more 

frequently than the occasional group (U37=114.000, p=0.033) and had lower spot-the-word scores 

(t35=2.445, p=0.020). All other demographic and trait measures did not differ between the groups.3 

                                                           
3 Data for BDI, BIS, TEPS and how many days per week participants listen to music and eat chocolate and liking 
ratings of these activities were missing for one participant in the dependent group.  
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Table 2.1 Group means (SD) for trait measures.  

 Dependent Occasional 

Current age 23.10 (6.98) 22.85 (3.80) 

FTND*** 6.35 (0.59) 0.00 (0.00) 

DSM*** 6.80 (0.95) 0.40 (0.50) 

Cigarettes/Day*** 16.70 (6.37) 0.47 (0.281) 

Cigarettes/Week*** 116.90 (44.57) 3.26 (1.97) 

Age started smoking (years) 15.29 (2.81) 17.22 (3.39) 

Years smoking more than 10/day 6.13 (7.34) NA 

Quit Attempts in Lifetime 3.60 (4.16) NA 

Most Successful Quit attempt (weeks) 7.65 (10.28) NA 

Years in formal education 15.47 (2.40) 16.33 (2.33) 

Days/week listen to music* 7.00 (0.00) 5.55 (2.19) 

Days/week eat chocolate 2.71 (1.77) 3.05 (1.86) 

Like music in general (-10 to 10) 8.52 (1.98) 7.90 (2.40) 

Like chocolate in general (-10 to 10) 6.37 (2.43) 7.13 (2.08) 

BDI 7.79 (7.01) 4.85 (5.49) 

TEPS (anticipatory) 44.32 (8.96) 44.60 (5.63) 

TEPS (consummatory) 36.21 (5.99) 37.90 (6.18) 

Spot the word* 45.33 (5.91) 49.58 (4.60) 

BDI: Beck Depression Inventory; BIS: Barratt Impulsiveness Scale; TEPS: Temporal Experience of 

Pleasure; NA: Not Applicable. *p<0.05; ***p<0.001.  

2.3.2 State measures 

Carbon monoxide (CO) and hours since last smoked (Table 2.2) 

The dependent group’s CO level was greater in the ad libitum condition compared with the abstinent 

condition (t18=7.915, p<0.001). The occasional group’s CO level did not differ between conditions. 

Dependent smokers had smoked more recently before the experiment during the ad libitum condition 

compared to during abstinence (W19=3.827, p<0.001) but, as expected, there was no difference for 

occasional smokers. 
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Table 2.2 Group means (SD) of CO and time since last smoked. 

CO = carbon monoxide. *p<0.05; ***p<0.001 within-subjects significance; o p<0.05, ooo p<0.001 
between-subjects significance 

Minnesota Nicotine Withdrawal Scale (MNWS), Craving (from MNWS) and SHAPS (Table 2.3) 

Group, smoking-condition and time all significantly affected overall MNWS and the craving item. The 

dependent group’s MNWS score was greater than the occasional group’s score only during pre-task 

on the abstinence condition (t38=3.905, p<0.001). The dependent group’s craving decreased between 

pre-task and post-consumption on the abstinence condition (t19=7.192, p<0.001) and, to a lesser 

extent, the ad libitum smoking condition (t19=2.667, p=0.011), whereas there were no changes 

between pre-task and post-consumption for the occasional smokers on either condition. 

SHAPS data were analysed with the updated scoring system (Franken et al., 2007). There were 

significant interactions between smoking-condition, time and group (F1,38=20.584, p<0.001) and 

smoking-condition and group (F1,38=7.216, p=0.011). Furthermore, there were main effects of time, 

with greater anhedonia at ‘pre-task’ than ‘post-consumption’ (F1, 38=9.281, p=0.004) and group, with 

greater anhedonia in the dependent compared with the occasional smokers (F1,38=7.958, p=0.008). 

The three-way interaction was driven by greater anhedonia following abstinence, compared with ad 

libitum smoking, at time ‘pre-task’ in the dependent smokers only (t19=4.284, p<0.001). Similarly, the 

two-way interaction was driven by greater anhedonia following abstinence, compared with ad libitum 

smoking, in the dependent smokers only (t19=3.012, p=0.005). 

2.3.3 DReaM-Choice  

Baseline button-presses 

 Dependent  Occasional  

 Abstinent Ad Libitum Abstinent Ad Libitum 

CO***, ooo 5.15 (2.13) 14.95 (6.75) 2.80 (1.06) 2.95 (1.50) 

Last Smoked 
(hours)***,ooo 

14.52 (3.38) 0.50 (0.54) 89.73 (77.20) 83.28 (102.65) 
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There were no significant group differences in average number of button-presses at baseline on either 

of the smoking-conditions or between either of the smoking-conditions for either of the groups. 

Hence, analysis continued without incorporating baseline button-pressing speed as a covariate. 

Choices (Figure 2.3a) 

There were interactions between group and reward-type (F2.435,92.513=10.112, p<0.001), reward-type 

and smoking-condition (F3,114=7.880, p<0.001) and reward-type and reward-magnitude (F3,114=64.322, 

p<0.001). There were main effects of reward-type (F2.435,92.513=97.966, p<0.001), with all non-paper 

rewards chosen more than paper, and reward-magnitude (F1,38=157.652, p<0.001), with large rewards 

chosen more than small rewards. 

Exploration of the group X reward-type interaction showed that, compared with the occasional group, 

the dependent group chose cigarettes more (t38=4.117, p<0.001) and chocolate less (t38=3.470, 

p=0.005). The dependent group chose cigarettes more than chocolate (t19=2.837, p=0.043) and music 

(t19=2.841, p=0.044), while the occasional group chose chocolate more than cigarettes (t19=3.762, 

p=0.003). Exploration of the reward-type X smoking-condition interaction showed that, across both 

groups, cigarettes were chosen more (t39=4.257, p<0.001) and music less (t39=2.692, p=0.042) during 

abstinence than ad libitum smoking. 

Given I had a priori hypotheses about the acute effects of abstinence on reward processing only in 

the dependent smokers I investigated these effects separately within each group, despite the null 

group by smoking-condition by reward interaction. 

Within the dependent group, there was an interaction between reward and smoking-condition (F3, 

57=7.854, p<0.001). There was an effect of abstinence on the number of cigarette choices with more 

cigarette choices during abstinence compared with ad libitum smoking (t19=3.853, p<0.001). There 

was also an effect of abstinence on the number of music choices with more music choices during ad 

libitum smoking compared with abstinence (t19=3.443, p=0.003). 
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When looking within the occasional group, there was no interaction between reward and smoking-

condition (F2.112, 40.119, p=0.267).  

 

 

 



 
  

Table 2.3 Group means (SDs) of state measures at pre-task and post-consumption.  

MNWS = Minnesota Nicotine Withdrawal Scale; SHAPS = Snaith-Hamilton Pleasure Scale.

 Dependent    Occasional    

 Abstinent  Ad 
Libitum 

 Abstinent  Ad 
Libitum 

 

 Pre-task Post-
consumption 

Pre-task Post-
consumption 

Pre-task Post-
consumption 

Pre-task Post-
consumption 

MNWS 13.55 
(7.75) 

3.85 (3.13) 4.55 
(4.38) 

2.55 (3.0) 5.65 (4.67) 4.55 (3.47) 4.65 
(3.28) 

3.55 (3.55) 

Craving (from 
MNWS) 

2.80 (1.40) 0.70 (0.80) 1.10 
(1.17) 

0.50 (0.61) 0.75 (0.91) 0.30 (0.47) 0.50 
(0.61) 

0.40 (0.75) 

SHAPS 29.10 
(7.13) 

24.85 (4.97) 24.25 
(5.46) 

24.35 (5.71) 21.25 
(4.99) 

21.25 (5.49) 23.35 
(4.17) 

20.55 (4.84) 
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Average number of button-presses (BP) (Figure 2.3b) 

There were interactions between group and reward-type (F2.042,77.610=3.821, p=0.025) and reward-type 

and reward-magnitude (F1.496,56.850=10.706, p<0.001), and main effects of reward-type 

(F2.042,114=100.167, p<0.001), with all non-paper rewards pressed for more than paper, and reward-

magnitude (F1,38=49.731, p<0.001), with large rewards pressed for more than small rewards. 

Exploration of the group X reward-type interaction showed that the dependent group pressed for 

cigarettes more than the occasional group (t38=2.655, p=0.046). There were no differences in BP for 

cigarettes, music and chocolate within the dependent group; whereas, within the occasional group, 

chocolate was pressed for more than cigarettes (t19=2.798, p=0.010).  

Given I had a priori hypotheses about the acute effects of abstinence on reward processing only in 

the dependent smokers I investigated these effects separately within each group, despite the null 

group by smoking-condition by reward interaction. 

Within the dependent group, there was no interaction between reward and smoking-condition 

(F2.191,4.637,p=0.162). Despite this null interaction, I investigated the effect of abstinence on each 

reward. There was a null effect of abstinence on cigarette button-pressing going in the direction of 

increased button-pressing during abstinence compared with ad libitum smoking (t19=1.625, p=0.121) 

and a null effect of abstinence on music button-pressing going in the direction of increased button-

pressing during ad libitum smoking compared with abstinence (t19=1.527, p=0.143). 

Within the occasional group, there was no interaction between reward and smoking-condition (F3, 

57=0.024, p=0.995). There were no discernible effects of abstinence on button-pressing for any of the 

rewards (ps>0.6). 

Furthermore, during abstinence the dependent smokers pressed for chocolate marginally more than 

the occasional smokers (t38=1.755, p=0.087). During ad libitum smoking there was no discernible 

difference between the groups (p>0.340). During both conditions the dependent smokers pressed 
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more for cigarettes than the occasional smokers (ps<0.027). And during both conditions there were 

no differences in terms of pressing for music (ps>0.6). 
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Figure 2.3 DReaM-Choice task performance showing (a) number of choices for paper, cigarettes, music 
and chocolate, collapsed across reward-magnitude; (b) average number of button presses in 7 seconds 
(BP) for paper, cigarettes, music and chocolate, collapsed across reward-magnitude. Error bars 
represent ± standard error. 
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Time to choose each reward (Figure 2.4) 

There was an interaction between group, reward-type and reward-magnitude (F1.664, 63.226, p=0.016) 

and a main effect of reward-magnitude, with larger rewards chosen faster than smaller rewards (F1, 

38=12.317, p=0.001). Exploration of the group X reward-type X reward-magnitude interaction showed 

that the dependent group were faster to choose large compared to small rewards for music (t19=2.940, 

p=0.006) and chocolate (t19=3.265, p=0.002), but not for cigarettes. On the other hand, the occasional 

group were faster to choose large compared to small rewards for cigarettes (t19=2.591, p=0.014) and 

music (t19=2.036, p=0.049), but not for chocolate.  

 

 

 

 

 

 

 

Fig 2.4 Average time taken (in seconds) to choose each reward type (cigarette small, cigarette large, 
music small, music large, chocolate small, chocolate large) in the DReaM-Choice task, collapsed across 
smoking-condition. Error bars represent ± standard error. 
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2.3.4 Self-reported wanting (Figure 2.5) 

There were interactions between group and reward-type (F2.473,93.988=5.004, p=0.005) and time and 

reward-type (F2.654,100.870=10.096, p<0.001), and main effects of time (F1.247,47.385=29.115, p<0.001) and 

reward-type (F2.473,93.988=119.107, p<0.001), with all non-paper rewards wanted more than paper.  

Exploration of the group X reward-type interaction showed that the dependent group wanted 

cigarettes more than occasional group (t38=3.376, p=0.007). Within the dependent group, music was 

wanted more than chocolate (t19=3.332, p=0.012), whereas, within the occasional group, music was 

wanted more than cigarettes (t19=5.052, p<0.001) and chocolate (t19=3.184, p=0.017). 

 

 

 

 

 

 

 

 

Figure 2.5 Wanting (-10 to +10) of paper, cigarettes, music and chocolate at time ‘pre-task’, ‘pre-
consumption’ and ‘post-consumption’ collapsed across smoking-conditions. Error bars represent ± 
standard error. 
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2.3.5 Self-reported liking (Figure 2.6) 

There was an interaction between group and reward-type (F2, 173.531=9.178, p<0.001) and main effects 

of group (F1,36.505=5.905, p=0.020) and reward-type (F2, 173.531=6.836, p=0.001).4 

Exploration of the group X reward-type interaction showed liking of cigarettes was greater for the 

dependent than the occasional smokers (t32=4.073, p<0.001). Within the dependent group, there were 

no differences in liking ratings for cigarettes, music and chocolate. Within the occasional group, 

cigarettes were liked less than music (t13=3.785, p=0.007). Overall, the dependent group gave higher 

liking ratings than the occasional group (t25=2.710, p=0.012). 

 

 

 

 

 

 

 

Figure 2.6 Liking (-10 to +10) of the first ‘unit’ of cigarettes, music and chocolate during consumption. 
Error bars represent ± standard error. 

2.3.6 Order of consumption 

During ad libitum smoking, in the dependent group 6 participants smoked first, 3 listened to music 

first and 11 ate chocolate first and in the occasional group 6 participants smoked first, 4 listened to 

                                                           
4 19 out of 140 data points were missing due to some participants not consuming all of their rewards. 
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music first and 10 ate chocolate first. This pattern of first-reward-consumed was not different from 

that expected by chance (χ2=0.190, p=0.909). 

During abstinence, in the dependent group 11 participants smoked first, 2 listened to music first and 

7 ate chocolate first and in the occasional group 4 smoked first, 7 listened to music first and 9 ate 

chocolate first. This pattern of first-reward-consumed was different from that expected by chance 

(χ2=6.294, p=0.043). During abstinence, the dependent group, compared to the occasional group, 

were more likely to smoke first (OR=4.889) and less likely to listen to music (OR=0.206) or eat 

chocolate (OR=0.658) first. 

2.3.7 Correlations 

No hypothesized correlations reached significance at the adjusted alpha level of <0.001. 

2.4 Discussion 

This study used a variety of indices to investigate the effects of nicotine dependence and abstinence 

on reward processing of cigarette and non-drug rewards. As hypothesised, I demonstrated that 

dependent smokers, compared with occasional smokers, were hypersensitive to cigarette reward 

across a variety of metrics. They made more choices for, pressed more for and reported more wanting 

and liking of a cigarette reward. However, there was not much evidence in favour of hyposensitivity 

to non-drug rewards in the nicotine dependence. The dependent smokers made significantly fewer 

choices for chocolate than occasional smokers but there were no significant group differences on 

button-pressing, wanting or liking for music or chocolate. Having said that, when investigating group 

differences despite a null interaction, occasional smokers pressed marginally harder than dependent 

smokers for chocolate during abstinence. 

Dependent smokers and occasional smokers also exhibited different profiles in terms of their choices, 

average number of button-presses (BP), wanting and liking. Occasional smokers always chose, pressed 



90 
  

for, wanted and liked one of the non-drug rewards more than cigarettes. Contrastingly, dependent 

smokers never chose, pressed for, wanted or liked either of the non-drug rewards more than 

cigarettes. This is indicative of a difference in the balance of cigarette and non-drug reward processing 

between the two groups.  

Twelve hour nicotine abstinence led to more cigarette choices and fewer music choices, when 

collapsed across groups. Contrary to my prediction, however, the effect of nicotine abstinence was 

not significantly moderated by group. Subsequent analyses showed that the interaction between 

smoking-condition and reward was only significant in the dependent group, but that should not be 

taken as evidence that the effect of abstinence was significantly different between the groups. 

Surprisingly, abstinence did not have a significant effect on dependent and occasional smokers’ BP, 

wanting or liking of any reward. However, dependent smokers did show a different pattern of first-

reward-consumed during abstinence compared with occasional smokers: dependent smokers were 

more likely to smoke first and less likely to listen to music first and eat chocolate first, however this 

was not the case in the ad libitum smoking condition. 

2.4.1 Group differences between dependent and occasional smokers in the processing of cigarette 

and non-drug rewards 

Many theories of addiction postulate that addicts are hypersensitive to drug rewards (Goldstein & 

Volkow, 2002, 2011; Robinson & Berridge, 1993, 2008). I found strong evidence for this in the 

comparison of dependent smokers with occasional, non-dependent smokers. Dependent smokers 

chose cigarettes significantly more than occasional smokers, despite the presence of alternative non-

drug rewards, i.e. dependent smokers’ relative preference for cigarettes was greater than that of the 

occasional smokers. This corroborates Hogarth’s work which has shown a link between dependence 

level and choice of tobacco over chocolate (Hogarth, 2012; Hogarth & Chase, 2011, 2012). However, 

both Hogarth’s data and my choice data could be explained by a concomitant hypersensitivity to drug 
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rewards and hyposensitivity to non-drug rewards, or alternatively just a hyposensitivity of non-drug 

rewards.  

The button-pressing part of the task speaks to this concern. It was intended as a ‘purer’ measure of 

motivation for each reward separately, as in similar reward-based studies which have used button-

pressing as a measure of motivation (Bühler et al., 2010; Perkins & Karelitz, 2013b). I observed a 

significant difference in BP for cigarettes between the groups, suggesting a group difference in the 

motivation to receive cigarettes. This putative difference in motivation to receive cigarettes could 

therefore potentially explain the group difference in the number of choices for chocolate. If the 

dependent smokers were more motivated for cigarettes than the occasional smokers, this would have 

led them to choose cigarettes more, and therefore choose the alternative options less. 

Group differences in the self-reported wanting and liking data also support the notion of stronger 

processing of cigarettes in the dependent group. Dependent smokers, compared to occasional 

smokers, reported more wanting of cigarettes overall and also reported more liking when they 

consumed the first ‘unit’ of the cigarette reward. Hence, motivation for and self-reported wanting and 

liking of cigarettes were greater in the dependent group, which is potentially at odds with Robinson 

and Berridge (1993) who predicted that addiction is associated with a marked increase in motivation 

for drugs but not a corresponding increase in liking. Although, it may have been that the dependent 

group simply always liked smoking cigarettes more than the occasional group. A within-subjects 

investigation of ‘wanting’ and ‘liking’ cigarettes while smokers progressed to dependence would be 

required to properly examine this relationship. 

This study provided much less evidence to suggest there were group differences in the way that 

dependent and occasional smokers process non-drug rewards. Occasional smokers did choose 

chocolate more times than dependent smokers; however this could more likely be explained by a 

group difference in the preference for the cigarettes, which would necessarily affect the number of 

choices for the other rewards. There were no significant group differences in BP or self-reported 
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wanting or liking for chocolate and music, which suggests that the dependent smokers were not 

hyposensitive to the non-drug rewards relative to occasional smokers. Furthermore, there were no 

differences in self-reported liking of music and chocolate between the groups in this study. This study 

therefore casts doubt upon the hypothesis that nicotine addiction is associated with problematic 

processing of non-drug rewards (Blum et al., 2000; Goldstein & Volkow, 2002, 2011; Koob & Le Moal, 

1997). On the other hand, the occasional smokers pressed marginally harder for chocolate than the 

dependent smokers during abstinence, which could suggest that dependent smokers had impaired 

motivational processing for non-drug reward during abstinence. The fact that I conducted the power 

analysis incorrectly and therefore underpowered my study (in order to detect a small effect (f=0.1)) 

may have contributed to this result: a difference that tended to go in the hypothesised direction but 

failed to reach the traditional significance level. 

Bühler et al. (2010) reported that their dependent smokers showed a different profile of reward 

processing for money and cigarettes compared to occasional smokers. Likewise, I found analogous 

differences in the smokers’ profiles of reward processing. The dependent smokers chose cigarettes 

more than the alternatives and worked for, wanted and liked all the rewards, similarly. Contrastingly, 

the occasional smokers chose, worked for, wanted and liked one of the alternatives more than 

cigarettes. These results support the hypothesis that addiction is associated with a disrupted balance 

in the processing of drug and non-drug rewards (Bühler et al., 2010), across a range of metrics. 

However, this disrupted balance appears to be driven mostly by differences in the processing of 

cigarettes, rather than non-drug rewards.  

Like Bühler et al. (2010), I investigated the effect of reward-magnitude on cigarette and non-drug 

reward processing. I found that large rewards were chosen and pressed for more than small rewards, 

thus demonstrating that the magnitude of the reward successfully affected behaviour. However, 

similar to Bühler et al. (2010), I did not find any interactions involving reward-magnitude for choice 

and BP data. Hence, nicotine dependence and abstinence did not moderate the effect of magnitude 
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on drug and non-drug reward processing on these metrics. However, the time taken to choose a 

reward did demonstrate an interactive effect of reward-magnitude with group and reward-type. 

While occasional smokers chose a large cigarette faster than a small cigarette this was not the case in 

the dependent smokers, perhaps suggesting a less value-based and more habitual process (Everitt and 

Robbins, 2005) when selecting a cigarette reward. However, given the null findings for choices and BP, 

this interpretation is highly speculative. 

One important consideration is the lack of a non-smoker control group. It could be argued that the 

reason there were no clear differences in non-drug reward processing between the groups was 

because both groups had impaired non-drug reward processing, rather than neither. If only a small 

amount of nicotine consumption, or some pre-disposing factors, are required to cause deficient non-

drug reward processing, then this could explain the potentially similar deficits. However, I believe this 

is extremely unlikely. The dependent smokers were smoking approximately 40 times as many 

cigarettes/day as the occasional smokers and the dependent smokers had been smoking 10 or more 

cigarettes/day for more than 6 years, so the disparity in nicotine consumption was huge. It is unlikely 

that a small amount of nicotine exposure could result in the same non-drug reward deficits as much 

greater nicotine exposure. Moreover, neither group really showed deficits, e.g. they both chose and 

worked for music and chocolate much more than paper. However, the only way to check these 

possibilities would have been to include a non-smoker control group. 

2.4.2 The effects of 12 hour nicotine abstinence on the processing of cigarette and non-drug rewards 

We found that at least 12 hours of nicotine abstinence led to more cigarette choices and fewer music 

choices, across both groups. My results suggest that abstinence increased relative preference for 

cigarettes and reduced relative preference for music. However, the reduction in choices for music 

could have been driven purely by an increase in the preference for cigarettes. Given there were no 

effects of abstinence on BP it is hard to conclude whether a change in motivation for cigarettes, music 

or both led to the change in choices observed here. Hence, the data cannot be interpreted as a 
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decrease in non-drug reward sensitivity during abstinence. However, what can be said is that the 

balance in the processing between cigarette and non-drug rewards was further perturbed by acute 

nicotine deprivation, across both groups. 

It is surprising that there was not a three-way interaction between group, smoking-condition and 

reward-type. I predicted that 12 hour nicotine abstinence would affect the dependent smokers 

significantly more than the occasional smokers because abstinence would unveil an impaired 

mesocorticolimbic dopamine system only in the dependent smokers (Dawkins et al., 2006). The 

occasional smokers smoked so infrequently that the smoking-condition did not significantly affect 

their time-since-last-smoked, hence it is unlikely that acute abstinence unveiled this impaired system. 

Notably, visual inspection of figure 2.3a also suggests the effects of abstinence on cigarette and music 

choices were larger in the dependent group than the occasional group. Furthermore, when 

investigating the reward by smoking-condition interaction within each group separately, it was only 

apparent in the dependent group. However, clearly the difference between these differences was not 

significant, so it should not be interpreted as such and I may have needed more power in order to 

detect the three-way interaction. 

Like Buhler et al. (2010), I did not find a significant increase in BP for cigarettes in either group during 

abstinence compared with ad libitum smoking. This is surprising given abstinence has been associated 

with increased cigarette self-administration (Barrett, 2010; Kollins et al., 2013). Visual inspection of 

figure 2.3b suggests that there was some increase in BP for cigarettes during abstinence in the 

dependent group, so it may have, again, been an issue of power and task sensitivity that I did not 

detect the effect.  

There is substantial evidence that nicotine abstinence can affect non-drug reward processing in 

dependent smokers, as described in sections 1.5.2 and 2.1.2. Nicotine deprivation has been associated 

with reduced motivation for (Al-Adawi & Powell, 1997; Dawkins et al., 2006; Powell et al., 2002) and 

learning about monetary reward (Pergadia et al., 2014), and reduced motivation for music reward 
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(Perkins & Karelitz, 2013b). It is therefore unexpected that there were no reductions in BP for music 

or chocolate during abstinence in the dependent group. However, my results are consistent with 

Kalamboka et al. (2009), who used an adaptation of the CARROT (Al-Adawi & Powell, 1997), and did 

not find a reduction in motivation during abstinence. Bühler et al. (2010) also found null effects of 

abstinence on BP and associated BOLD response to a monetary reward. The discrepancies between 

these studies may be due to a number of reasons. Firstly, Pergadia et al.’s (2014) task indexed reward 

learning while the others (including the DReaM-Choice) indexed incentive motivation via response 

vigour. Secondly, many of the tasks provided money as a reward, while ours and did not. Thirdly, given 

the effect of nicotine deprivation on cognition (Shiffman, Paty, Gnys, Kassel, & Elash, 1995), the 

different cognitive requirements of the tasks may have contributed to discrepancies. Fourthly, and 

perhaps most importantly, the studies differed in terms of sample size and thus power to detect an 

effect. However, these reasons do not cleanly differentiate which studies found an effect of nicotine 

abstinence on non-drug reward processing and those that did not. Given findings from previous 

research, visual inspection of figure 2.3a and b, and the, albeit null, results described in section 2.3.3 

which went in the expected direction, I suspect that with more power, I may have detected the three 

way interaction. 

However, the groups did behave differently in their reward consumption during abstinence, but not 

during ad libitum smoking. Abstinence led the dependent smokers, relative to the occasional smokers, 

to smoke first, in lieu of alternative rewards. Whereas, following ad libitum smoking, the two groups 

consumed a similar number of each reward first. This suggests that acute abstinence had a differential 

effect on the groups; it made only the dependent smokers more likely to consume cigarettes before 

other rewards. The natural consummatory phase was therefore able to detect the disrupted balance 

of reward consumption in the dependent group, relative to the occasional group, associated with 

acute nicotine abstinence. 
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2.4.3 Self-reported anhedonia, craving and withdrawal 

Previous research has found reliable increases in self-reported anhedonia during acute nicotine 

abstinence in dependent smokers (Dawkins et al., 2006; Powell et al., 2002) and my data sit well with 

these results. Dependent smokers had significantly higher anhedonia when abstinent compared to ad 

libitum smoking, before any rewards (including cigarettes) were consumed. Furthermore, the 

abstinence manipulation was successful in that it increased craving and withdrawal symptoms in the 

dependent smokers only. 

2.4.4 Strengths and limitations 

That both groups chose and worked for all the non-paper rewards significantly more than paper 

demonstrated both groups were motivated by cigarettes, chocolate and music. Moreover, the 

increased number of choices and larger BP for large rewards relative to small rewards confirmed 

cigarettes, chocolate and music worked well as rewards. The conjunction of choices and BP combined 

a more ecologically valid dependent variable tapping ‘relative preference’ with a variable that 

represented a ‘purer’ measure of motivation, respectively. Furthermore, the measurement of self-

reported wanting and self-reported liking, alongside choices and BP, provided a complementary set 

of reward processing metrics. The DReaM-Choice worked well in distinguishing dependent and 

occasional smokers and both the choice variable and first-reward-consumed were sensitive to an 

acute abstinence manipulation. 

However, this study has several limitations. Firstly, the power analysis was conducted incorrectly so I 

did not have adequate power to detect a small effect size (f=0.1). In relation to the BP data, I cannot 

be sure this was as independent a measure of motivation as I would have liked. Participants chose 

each reward a different number of times and therefore the number of data points contributing to BP 

data was different for each participant, which could be a problem if familiarity of the reward affected 

BP. Furthermore, BP may not have been a very sensitive measure of motivation, as even cigarette BP 
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was not affected by abstinence. In relation to the liking data, only one liking rating for each person 

was analysed for each reward type due to satiation effects. Furthermore, I did not constrain the order 

in which participants consumed their rewards. The effect of nicotine abstinence on the liking of non-

drug rewards would have been reduced in participants who consumed a cigarette before their music 

and chocolate; so this may have contributed to the non-significant effect of abstinence on liking. 

Finally, it is possible that the dependent smokers ‘puff’ harder on the cigarette and therefore get a 

larger dose of nicotine for each quarter of the cigarette smoked, which could bias the results. 

2.4.5 Conclusions 

This study set out to test the effects of nicotine dependence and acute abstinence on the processing 

of both cigarette and non-drug rewards. I developed a novel task to index various aspects of reward 

processing. I found evidence for a hypersensitivity to cigarettes but did not find any conclusive 

evidence for a hyposensitivity to non-drug rewards, across many components of reward processing. 

However, the dependent and occasional smokers had different cigarette and non-drug reward 

processing profiles consistent with a similar study (Bühler et al., 2010). Importantly, the results 

indicate that the DReaM-Choice task and subsequent consumption procedure worked well and 

successfully distinguished dependent from occasional smokers. 
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Chapter 3: The neural correlates of cigarette and non-drug reward anticipation and feedback in 

dependent and occasional smokers 
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3.1 Introduction 

Results from chapter 2 suggested that relative preference for, motivation for, and wanting and liking 

of cigarettes was greater in dependent compared with occasional smokers. There was little evidence 

for hyposensitivity to non-drug rewards in dependent relative to occasional smokers. Chocolate was 

chosen fewer times by dependent smokers compared with occasional smokers. However, this could 

have been driven simply by a greater motivation for cigarettes in the dependent smokers which 

necessarily reduced the number of choices for alternatives. On the other hand, there were consistent 

differences between the groups in their profiles of cigarette and non-drug reward processing. 

Surprisingly, the effect of abstinence that I found on choices for rewards was not moderated by group 

and I found a null effect of abstinence on BP. Hence, I decided to continue investigating differences 

between dependent and occasional smokers in their ‘normal states’, without any forced nicotine 

deprivation. 

Overall, results described in chapter 2 implied that dependent and occasional smokers differ 

behaviourally in their profiles of drug and non-drug reward processing and that this is likely due to 

differences in cigarette rather than non-drug reward processing. On the other hand, as described in 

chapters 1 and 2, previous research has suggested differences between smokers and non-smokers on 

non-drug reward processing. I aimed to extend my findings in chapter 2 by using a reward anticipation 

task which does not involve a choice stage and therefore measures motivation in a potentially ‘purer’ 

way. Furthermore, I aimed to investigate the neural substrates underpinning the anticipation of and 

feedback concerning cigarette and non-drug reward and examine group differences in these neural 

responses. 

3.1.1 Anticipation of reward 

Electrophysiological studies in animals have shown that mesocorticolimbic dopamine neurons exhibit 

phasic firing when they receive unpredicted rewards or when cues predict anticipated reward (Schultz, 
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2002). These signals are critical in indicating salient, appetitive events so that animals can survive 

through consumption of food and pass on their genes through sexual reproduction. 

As described in chapter 1, the neurobiology underlying anticipation of and feedback about reward in 

humans has frequently been investigated using the monetary incentive delay task (MIDT) (Knutson et 

al., 2000). The structure of the traditional MIDT is shown in figure 1.6. The MIDT has been used to 

investigate reward processing deficits in a number of clinical populations, including those diagnosed 

with depression (Knutson, Bhanji, Cooney, Atlas, & Gotlib, 2008), schizophrenia (Juckel et al., 2006) 

and attention-deficit-hyperactivity-disorder (Scheres, Milham, Knutson, & Castellanos, 2007). These 

results have been critical in informing theories concerning reward processing deficits in different 

disorders. In essence, the MIDT has become a gold standard for examining neural sensitivity to reward. 

The MIDT also provides behavioural measures of motivation for reward in terms of the reaction time 

to respond to the target. 

3.1.2 MIDT in addiction research 

In chapter 1 I described the studies utilising the MIDT with cigarette smokers which I am aware of. To 

briefly recap, there is some evidence which suggests that nicotine dependence is associated with 

reduced striatal anticipatory BOLD response to monetary reward (Luo et al., 2011; Peters et al., 2011; 

Rose et al., 2013), although one study reported no difference between smokers and non-smokers in 

this response (Jansma et al., 2013). One of these studies observed greater feedback BOLD response 

to monetary reward in the left cingulate in smokers relative to non-smokers (Rose et al., 2013), while 

another reported a null difference between adolescent smokers and non-smokers during feedback 

(Peters et al., 2011). Differences in the stage of addiction, acute abstinence/drug effects, comorbid 

disorders and task methodologies may account for some of these discrepancies (Balodis & Potenza, 

2015).  
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3.1.3 Anticipating cigarette rewards 

However, very few studies have investigated the neural correlates of cigarette anticipation. This is 

surprising given that reward processing of the actual drug involved in addiction is likely to play an 

important role in the maintenance of addiction. Understanding how nicotine dependence is 

associated with behavioural and neural processing of cigarette rewards, as well as non-drug rewards, 

will hopefully contribute to a better awareness of which processes to tackle therapeutically. 

As described in earlier chapters, Buhler et al. (2010) investigated behavioural and neural responses in 

relation to cigarette and monetary reward in dependent and occasional smokers. On each trial, 

participants were informed whether they could win cigarettes or money, they waited for 2s (i.e. 

anticipation), then they repeatedly pressed a button in order to earn that reward and were 

subsequently given feedback about whether they had won the reward or not. Behaviourally, 

dependent smokers exhibited similar motivation (number of button-presses) for cigarettes and 

money; occasional smokers exhibited greater motivation for money compared with cigarettes. There 

were no significant group differences in terms of motivation for either cigarettes or money; however, 

the differences were in the expected direction (with an effect size of d=0.29) and with larger samples 

they may have detected significant group differences. Mirroring the behavioural results, opposing 

profiles of anticipatory BOLD response were seen. Occasional smokers had greater anticipatory BOLD 

response to money compared with cigarettes in frontal and striatal regions, while dependent smokers 

had similar anticipatory BOLD responses to money and cigarettes. The only group difference observed 

was greater activation during anticipation of monetary reward in the occasional smokers compared 

with the dependent smokers, although the brain coordinates of this effect were not reported.  

Furthermore, they found that positive feedback about rewards recruited the anterior insula but there 

was no effect of group or reward type on this component of reward processing. Interestingly, these 

authors reported no effects of 36 hours of abstinence on anticipatory or feedback response to 

cigarette and monetary rewards. However, a more recent study did observe augmentation and 
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reduction of cigarette and monetary reward anticipatory BOLD responses, respectively, in the striatum 

following acute abstinence (Sweitzer et al., 2013). Overall, the results of Buhler et al. (2010) suggest 

that the processing of cigarette rewards may not significantly differ between dependent and 

occasional groups and that the balance between cigarette and non-drug reward processing within 

each population may be more important. 

3.1.4 Different types of reward 

These cigarette-based studies, along with others which have used social rewards in modified MIDTs 

(Izuma, Saito, & Sadato, 2008; Rademacher et al., 2010), have suggested that similar reward related 

regions are activated when anticipating money as well as other types of reward, particularly striatal 

regions (Knutson & Greer, 2008). The concept of striatal activation as a common currency for a 

reward’s motivational value was supported by a recent study that investigated anticipatory BOLD 

response to erotic and monetary reward (Sescousse, Li, & Dreher, 2014). They demonstrated that both 

rewards activated the same reward related brain regions and that behavioural motivation, as assessed 

by reaction time, correlated with striatal BOLD response for each reward type. Similarly, a recent 

meta-analysis investigating reward feedback showed that money, food and erotic rewards recruit a 

common set of brain structures: ventromedial prefrontal cortex, ventral striatum, amygdala, anterior 

insula and mediodorsal thalamus (Sescousse et al., 2013). However, there were some regions which 

were more robustly activated by certain rewards, e.g. erotic rewards recruiting the insula more than 

monetary and food rewards. 

These studies have demonstrated that anticipation of and feedback about various types of rewards 

recruit similar (although not necessarily identical) reward related brain regions. Knutson & Greer 

(2008) conducted a meta-analysis, using the many MIDT studies previously published, on which brain 

regions are usually activated by anticipation of and feedback about monetary reward (relative to no 

reward) (these regions are described in table 3.1). Given that money and other rewards activate 

similar brain regions within the MIDT framework, I used the regions from this meta-analysis as a prior 
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regions of interest (ROI). This allowed me to conduct more sensitive ROI analyses as well as more 

exploratory whole brain analyses. 

A potential problem with money as a comparator non-drug reward, as described in chapter 1, is that 

it is not a primary or consummatory reward, while cigarettes are. Hence money may not be the ideal 

comparison reward for cigarettes and any differences in reward processing could, theoretically, result 

from this discrepancy (Sescousse et al., 2010). Moreover, money can be exchanged for cigarettes, or 

other rewards, making its meaning ambiguous. Therefore, I aimed to compare reward processing of 

cigarettes with another consummatory reward, which was successfully used in chapter 2, music. 

3.1.5 Summary and hypotheses 

In summary, the MIDT is a well-validated task that provides a neural measure of reward sensitivity, as 

assessed by anticipatory and feedback BOLD responses in specific brain regions (Knutson & Greer, 

2008), and a behavioural measure of motivation, as assessed by reaction time. The results reported in 

chapter 2 suggested that dependent smokers, relative to occasional smokers, may have enhanced 

cigarette but unimpaired non-drug reward processing. Furthermore, dependent smokers appeared to 

have augmented cigarette reward processing relative to non-drug reward processing, and vice-versa 

for occasional smokers. However, my assessment of reward processing in chapter 2, using the DReaM-

Choice task, was purely behavioural and may not have provided as pure a measure of motivation as I 

would have liked, as described in section 2.4.4. Thus the impetus for this current study was that the 

MIDT may provide a more sensitive assay of reward processing in that: (1) it provides neural outcomes 

and (2) does not involve a choice stage, so the behavioural outcome variables may provide a ‘purer’ 

measure of motivation. 

Previous research has often shown reduced striatal activation during anticipation of monetary 

rewards in dependent smokers compared with controls, although this has not always been the case. 

Of the studies that reported feedback BOLD results, null differences were usually reported between 

smokers and controls. However, only a handful of studies have investigated the behavioural and 
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neural processing of cigarette and non-drug rewards concomitantly. Only one study has compared 

anticipatory behavioural and neural responses to cigarette and monetary reward in dependent and 

occasional smokers (Bühler et al., 2010). I wanted to extend this study to the MIDT framework, use 

only consummatory rewards and build on my results from chapter 2. Hence I used the MIDT but 

replaced monetary reward with cigarette and music rewards. 

I based my hypotheses on the findings from chapter 2, from previous MIDT research with cigarette 

smokers and from the iRISA theory of addiction (Goldstein & Volkow, 2011). Specifically, it was 

hypothesised that dependent smokers, compared with occasional smokers, after ad libitum smoking, 

would: 

1. Have greater behavioural motivation for cigarettes, but there would be no evidence for a 

group difference in behavioural motivation for music.  

2. Have stronger BOLD responses when anticipating and receiving feedback about cigarettes and 

weaker BOLD responses when anticipating and receiving feedback about music, in reward 

related brain regions (Knutson & Greer, 2008). 

3.2 Methods 

3.2.1 Participants 

A mixed factorial design was used with a between-subjects factor of group (dependent and occasional) 

and a within-subjects factor of reward (cigarettes, music and no reward). 22 dependent (3 women) 

and 20 occasional (6 women) cigarette smokers took part in the study. Power analyses are difficult to 

compute for fMRI studies so the number of participants was based on a similar previous study (Bühler 

et al., 2010). 

Inclusion and exclusion criteria were very similar to those in chapter 2 with some minor changes to 

increase the rate of recruitment and to meet MRI requirements. Inclusion criteria were: (1) smoke, on 

average, ≥10 cigarettes/day (for dependent smokers) or 0.5-5 cigarettes/week (for occasional 
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smokers5); (2) have an FTND score ≥5 (for dependent smokers6) or 0 (for occasional smokers); (3) aged 

18-50; (4) be right-handed; and (5) have normal vision or corrected-to-normal vision with contact 

lenses.  

Exclusion criteria were: (1) have been a regular, daily cigarette smoker in the past (for occasional 

smokers); (2) seeking treatment for a mental health problem; (3) using psychiatric medication; (4) use 

of an illicit drug once per week or more; (5) using a pharmacotherapy to quit smoking; and (6) any MRI 

contraindications (e.g. metal implants, claustrophobia). 

Participants were recruited through advertisements in the university, on Gumtree and in Exeter bus 

station. Participants were reimbursed £10/hour. The study was approved by the University of Exeter 

Ethics Committee. 

3.2.2 Assessments 

3.2.2.1 Adapted Incentive Delay Task (AIDT) (figure 3.1) 

We based the structure of the task on the MIDT (Knutson et al., 2000) but made several adaptations: 

there were two types of reward trial (cigarette and classical music), there was no variation in the 

magnitude of the rewards and there were no loss trials. The latter two adaptations were based on a 

previous study and done in order to increase the power of the task in a short space of time (van Hell 

et al., 2010). 

The task consisted of 99 trials, 33 were cigarette trials, 33 were music trials and 33 were no reward 

trials. Each trial lasted an average of 9s, ranging from approximately 6.5s to 11s; the length of each 

trial was partially determined by the participant’s reaction time in response to the target. The whole 

task took approximately 15 minutes. 

                                                           
5 Note, in chapter 2 this criterion was 0.25-5 cigarettes/week. 
6 Note, in chapter 2 this criterion was ≥6 and dependent smokers had to meet DSM-5 criteria for ‘severe’ 
tobacco use disorder 
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Figure 3.1 A diagrammatic representation of the adapted incentive delay task (AIDT). First, a cue was 
presented for 0.5s providing information about which reward is available, then there was an 
anticipation phase of 2.25-2.75s, then a target was presented and responded to, then feedback 
(dependent on the reward available and whether the previous response was quick enough) was given 
for 1.65s, and finally a 2-6s inter-trial-interval (ITI) = occurred. 

At the start of each trial, a cue signalling the opportunity for cigarette reward, music reward or no 

reward was shown for 0.5s. A triangle or circle with a line through it signalled either cigarette or music; 

these were counterbalanced across participants. An empty square signalled no reward. Subsequently, 

during ‘anticipation’, a fixation cross was presented for 2.25-2.75s. Then the star-shaped target 

appeared, which participants were instructed to respond to as quickly as possible, by pressing a button 

near their right thumb. If participants pressed the button within the target time limit, they would win 

a reward point (so long as it was a reward trial). Subsequently feedback (‘you win 1 music point’, ‘you 

win 1 cigarette point’ or ‘you win nothing’) was given for 1.65s. Finally an inter-trial-interval (ITI) of 2-

6s was presented before the next trial.  

Prior to scanning, participants completed a practice AIDT so that they understood how the task 

worked and so that target time limits could be created. Two thirds of the trials had a target time limit 

that was their mean practice reaction time plus 400ms (van Hell et al., 2010), so that these trials were 

easy. The other third of the trials had a target time limit that was 150ms or their mean practice time 
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minus 400ms, whichever was larger, so that these trials were very difficult. This meant that on 

approximately one third of the trials, participants failed to respond to the target in time, which it was 

hoped would increase task engagement. The main behavioural outcome variable of the AIDT was 

reaction time (time taken to press the target), which assessed motivation for the reward. 

The participants were told that the number of points they won determined how many cigarettes they 

could smoke and how much music they could listen to in a 20 minute period post-scanning. However, 

given the task was made so that all participants won approximately the same amount of points, all 

participants were given 1 cigarette and 8 minutes of music. In the first part of the 20 minute 

consumption period, participants listened to the music in the scanner and rated each 20s clip from 1 

(‘not at all pleasant’) to 7 (‘very pleasant’). Second, outside the scanner, participants had the option 

to smoke one cigarette and rated each quarter of a cigarette on the same scale. 

I chose a set of classical music clips as rewards that are rated as ‘pleasant’ and have been used in 

previous research (Menon & Levitin, 2005). I chose this music because I wanted to further equate the 

two rewards; cigarettes were always Marlboro Golds (Lights) and music was always specific classical 

music, e.g. Mozart’s Eine Kleine Nachtmusik. The presentation of the actual music always occurred 

approximately 20 minutes after the AIDT finished and no other music was heard in the scanner 

beforehand. 

3.2.2.2 Self-rated assessments 

Trait measures 

Temporal experiences of pleasure scale (TEPS)  

As described in section 2.2.2.2 

Barratt impulsiveness scale (BIS) (Patton & Stanford, 1995) 
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This scale of impulsivity consisted of 30 items rated from 1 (‘rarely/never’) to 4 (‘almost 

always/always’). There were three subscales: attentional, non-planning and motor. Higher scores 

reflected greater impulsivity. 

Beck depression inventory (BDI-II) (Beck et al., 1996) 

As described in section 2.2.2.2 

Behavioural activation/inhibition systems scale (BIS/BAS) (Carver & White, 1994) 

This scale activation and inhibition consisted of 24 items rated from 1 (‘very true for me’) to 4 (‘very 

false for me’). There were four subscales: drive, fun-seeking, reward responsiveness and inhibition. 

Higher scores reflected greater behavioural activation (for the first three subscales) or inhibition (the 

last subscale). 

Brief sensation seeking scale (BSSS) (Hoyle, Stephenson, Palmgreen, Lorch, & Donohew, 2002) 

This scale of sensation-seeking consisted of 8 items rated from 1 (‘strongly agree’) to 5 (‘strongly 

disagree’). Higher scores reflected greater sensation seeking. 

Cigarette dependence scale (CDS-5) (Etter, Le Houezec, & Perneger, 2003) 

This scale of cigarette dependence consisted of 5 items. Higher scores reflected greater cigarette 

dependence. 

Fagerstrom test for nicotine dependence (FTND) (Heatherton et al., 1991) 

As described in section 2.2.2.2 

DSM-5 Tobacco use disorder. 

As described in section 2.2.2.2 

State measures 

Snaith Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995) 
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As described in section 2.2.2.2 

Tobacco craving questionnaire - short form (TCQ-SF) (Heishman, Singleton, & Pickworth, 2008) 

This scale consisted of 12 items that were rated ‘right now’ from 1 (strongly disagree) to 7 (strongly 

agree). There were four subscales: emotionality, expectancy, compulsivity and purposefulness. Higher 

scores reflected greater tobacco craving. 

Minnesota Nicotine Withdrawal Scale (MNWS) (J. Hughes & Hatsukami, 2007) 

As described in section 2.2.2.2 

3.2.2.3 Other assessments 

Spot-the-word (Baddeley et al., 1993) 

As described in section 2.2.2.3 

Carbon monoxide  

As described in section 2.2.2.3 

3.2.3 Procedure 

Participants attended one 2 hour testing session. Participants were in their ‘normal’ state; they were 

allowed to smoke beforehand if they wished7. First, participants provided a carbon monoxide (CO) 

reading, in order to indirectly assess their recent tobacco consumption, and then completed half of 

the trait questionnaires (BIS/BAS, BSSS, TEPS) and all of the state questionnaires. They were shown 

both a Marlboro Gold cigarette and heard a small clip (5s) of the classical music, so that they knew 

what rewards they were earning. Participants were then trained on how to complete the AIDT, which 

also provided the target time limit for use in the scanner, as described above. Subsequently they 

completed the AIDT in the scanner. They then listened to the music that they had won in the scanner, 

                                                           
7 The time-since-last-smoked for each group is described in table 3.2 and section 3.3.2  
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left the scanner and, if they wished, smoked the cigarette they had won. Finally, they completed the 

other half of the trait questionnaires (spot-the-word, BDI, BIS). 

3.2.4 Image acquisition 

Neuroimaging data were collected on a Philips 1.5T scanner with an 8 channel sense head coil using 

echo-planar imaging. For functional scans, the following parameters were used: repetition time (TR) 

= 3s, echo time (TE) = 50ms, flip angle = 90o, voxel size = 3mm isotropic, slice thickness = 3mm, number 

of slices in a volume = 36, slice order = ascending, slice orientation = 30o tilt from the anterior 

commissure – posterior commissure line, field of view (FOV) = 240mm X 240 mm X 108mm. Slices 

were tilted in this way in an attempt to reduce drop out in the orbitofrontal cortex (Deichmann, 

Gottfried, Hutton, & Turner, 2003). This resulted in the whole brain not being scanned; small sections 

of the superior parietal and posterior frontal lobes were excluded. This was not considered 

problematic as I was specifically interested in reward-related brain regions (e.g. striatum and 

midbrain) (Knutson & Greer, 2008). 

3.2.5 fMRI data analyses 

fMRI data were taken from the scanner computer in PAR REC format. These were transformed into 

analyse format using MRI Cro (http://www.mccauslandcenter.sc.edu/mricro). Subsequently, all data 

were analysed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). The first five volumes of each 

functional scan were discarded due to T1 saturation effects; the task started 15s after the scanner 

started. 2nd degree B-Spline interpolation was used to realign all functional volumes to the mean 

volume. Each person’s structural image was co-registered to their mean functional volume. 

Subsequently, a slice timing correction was carried out on the functional volumes using SPM12’s 

default settings. Then, the co-registered structural image and the functional volumes were spatially 

normalised into Montreal Neurological Institute (MNI) space using the SPM standard template and 

affine regularisation. Note, tissue probability maps were not used to spatially normalise because I did 

http://www.mccauslandcenter.sc.edu/mricro
http://www.fil.ion.ucl.ac.uk/spm
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not have scans of the entire brain. Finally, the functional volumes were smoothed with an isotropic 

Gaussian kernel for group analysis (8mm full-width at half-maximum; voxel size = 3mm isotropic). 

Functional data were analysed using the general linear model. Data analysis was performed by 

modelling the different events using boxcar functions convolved with the haemodynamic response 

function. The events were modelled as follows: ‘cigarette cue + anticipate’; ‘music cue + anticipate’; 

‘no reward cue + anticipate’; ‘target’; ‘cigarette win feedback’; ‘cigarette do not win feedback’; ‘music 

win feedback’; ‘music do not win feedback’; and ‘no reward feedback’ (i.e. ‘do not win feedback’). This 

allowed me to investigate the effect of reward type on anticipatory and feedback processing. The cue 

and anticipate events were combined to increase the length of this event in order to enhance the 

BOLD response. I did not observe the expected anticipatory activation without combining the cue and 

anticipate events. Movement parameters were also included in the model, as regressors of no 

interest. 

At the first level, these contrasts were created: ‘cigarette anticipate > no reward anticipate’; ‘music 

anticipate > no reward anticipate’; ‘cigarette anticipate > music anticipate’; ‘music anticipate > 

cigarette anticipate’; ‘cigarette win feedback > no reward feedback’; ‘music win feedback > no reward 

feedback’; ‘cigarette win feedback > music win feedback’; and ‘music win feedback > cigarette win 

feedback’. All of the ‘anticipate’ contrasts used the ‘cue + anticipate’ event. 

Subsequently, second-level random-effects models were used to investigate significant results in the 

entire sample and differences between the dependent and occasional smoker groups. A one-sample 

t-test was used to examine whether cigarette and music anticipation, relative to no reward 

anticipation, produced reward-related BOLD responses, in the entire sample. Independent t-tests 

were used to test whether dependent and occasional smokers’ BOLD responses differed on cigarette 

or music anticipation, relative to no reward anticipation. One-sample t-tests were carried out, within 

each group, to examine whether cigarette or music anticipation produced greater activation, using 
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‘cigarette > music’ and ‘music > cigarette’ contrasts, in other words, these tests investigated the 

balance of drug and non-drug anticipatory reward processing within each group.  

Similarly, a one-sample t-test was used to examine whether cigarette and music win feedback, relative 

to no reward feedback, produced reward related BOLD responses, in the entire sample. Independent 

t-tests were used to test whether dependent and occasional smokers’ BOLD responses differed on 

cigarette or music win feedback, relative to no reward feedback. One-sample t-tests were carried out, 

within each group, to examine whether cigarette or music win feedback produced greater activation, 

using ‘cigarette > music’ and ‘music > cigarette’ contrasts, in other words these tests investigated the 

balance of drug and non-drug feedback reward processing within each group. 

These tests were first carried out in specific regions of interest (ROI) and then across the whole brain. 

The ROI analyses were informed by a meta-analysis concerning brain regions significantly activated 

during reward anticipation and feedback in the MIDT (Knutson & Greer, 2008). The eight ‘win vs. no 

win anticipation’ and seven ‘win vs. no win feedback’ regions were first transformed from Talairach to 

MNI coordinates (http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html). They are presented in 

table 3.1. The regions of interest were then defined using MarsBar (http://marsbar.sourceforge.net/) 

as spheres with these co-ordinates (table 3.1) as the centre and a radius of 4mm (Jia et al., 2011). The 

ROIs were combined into a single mask and included in the second level models in SPM. A family-wise-

error (FWE) correction was used across the whole mask with an alpha of 0.05. If there were any group 

differences, I expected them to be in regions that have previously been shown to be sensitive to 

reward anticipation or feedback. However, I also conducted whole brain analyses to examine if there 

were any activations which were not in the pre-defined ROIs. I used a FWE correction with an alpha 

of 0.05 for whole brain analyses. 

Correlations were conducted between the average BOLD response in each of the significant ROIs for 

cigarette or music anticipation and feedback and: (1) number of cigarettes smoked/day; (2) time-

since-last-smoked; (3) CO; (4) average response time on cigarette trials; and (5) average response 

http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html
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time on cigarette trials minus average response time on no reward trials, within each group. The 

alpha value was set to 0.005 to account for multiple tests. 

Table 3.1 Region of interests (ROI) taken from Knutson & Greer (2008). Each ROI was spherical with 

these central coordinates and a region of 4mm, as in Jia et al. (2011). 

Region x y z 

Anticipatory ROIs    

Right ventral striatum 11 11 -1 

Right thalamus 5 -9 10 

Right insula 34 22 -5 

Left ventral striatum -12 10 -2 

Left thalamus i -7 -22 6 

Left thalamus ii -3 -22 8 

Left medial frontal gyrus -1 -5 53 

Left culmen -1 -61 -13 

    

Feedback ROIs    

Right ventral striatum 13 13 -11 

Right caudate 9 19 0 

Right subcallosal gyrus 9 5 -13 

Right parahippocampal gyrus 23 -21 -10 

Left ventral striatum -8 9 -8 

Left amygdala -16 0 -16 

Left parahippocampal gyrus -19 -25 -10 

 

3.2.6 Behavioural statistical analyses 

All behavioural data were analysed using IBM Statistical Package for Social Sciences (IBM SPSS version 

21). The data were analysed using the general linear model. In order to explore significant interactions, 

a Bonferonni correction was applied to post hoc comparisons via the syntax in SPSS. 

Self-report data were analysed using independent t-tests and Mann-Whitney U-tests when the 

residuals were not normally distributed. 

Reward liking was analysed in the same way as in chapter 2. The liking of the first cigarette quarter 

and the liking of the first clip of music were analysed using a mixed effects model to account for 

missing data. Group and reward (and their interaction) were entered as fixed effects and the intercept 
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was allowed to vary randomly. This missing data was due to some occasional smokers not consuming 

the cigarette they won in the AIDT and a computer error that affected the presentation of music.  

For the AIDT, any reaction times that were below 100ms were excluded as they were likely produced 

by chance; any missing trials were not included in the RT analysis. The remaining RTs were then log10 

transformed so that their residuals were more normally distributed. The proportion of successful 

target hits for each reward type was calculated from the RT≥100ms trials. Both RT and proportion hit 

data were then analysed using mixed-design ANOVAs with a between-subjects factor of group 

(dependent and occasional) and a within-subjects factor of reward (cigarette, music and no reward). 

When sphericity was violated, the Greenhouse-Geisser correction was used and corrected degrees of 

freedom were reported.  

3.3 Results 

3.3.1 Demographics (Table 3.2)8 

Dependent smokers, compared with occasional smokers, had fewer years of education (t40=2.404, 

p=0.021), marginally greater BDI scores (U36=115.00, p=0.056), greater motor (t36=3.427, p=0.002) and 

non-planning (t36=3.059, p=0.003) impulsivity and lower inhibition on the BISBAS (t34=3.032, p=0.005). 

Other demographic differences were non-significant. 

Furthermore, the dependent smokers, compared with the occasional smokers, smoked more 

cigarettes/day (U40=0.00, p<0.001), had greater FTND (U40=0.00, p<0.001), CDS (U39=0.00, p<0.001) 

and DSM (U40=5.50, p<0.001) scores, started smoking at a younger age (t40=2.404, p=0.021) and had 

made more quit attempts (U39=72.50, p<0.001). 

  

                                                           
8 CDS, number of quit attempts, BISBAS, BSS and TEPS data were missing for 1 occasional smoker; BDI and BIS 
data were missing for 2 occasional smokers; Spot the word data were missing for 8 occasional smokers; Age 
started smoking 10 or more per day, spot the word, BSSS and TEPS data were missing for 1 dependent smoker; 
BIS data were missing for 2 dependent smokers; BISBAS data were missing for 5 dependent smokers. 
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3.3.2 State Measures (Table 3.3) 

All of the dependent smokers, apart from one, had smoked within the last 2 hours. The exception had 

smoked 13.75 hours ago. All of the occasional smokers, apart from one, had smoked 10 or more hours 

ago. The exception had smoked 7 minutes ago. The mean times-since-last-smoked for each group are 

shown in table 3.3. Regardless of whether these outliers were excluded (U=0.000, p<0.001) or not 

(U=16.000, p<0.001), dependent smokers had smoked much more recently than occasional smokers9. 

Dependent smokers also had a greater carbon monoxide reading (t39=7.203, p<0.001) than occasional 

smokers. 

Dependent smokers, compared with occasional smokers, had greater craving on all subscales of the 

TCQ (ps≤0.001), greater withdrawal symptoms on the MNWS (t28.147=2.930, p=0.007) and marginally 

greater anhedonia on the SHAPS (t36.129=2.868, p=0.092). 

3.3.3 AIDT behavioural outcomes 

Reaction time (Figure 3.2) 

There was an interaction between group and reward (F2, 80=3.992, p=0.022) and a main effect of 

reward (F2, 80=10.570, p<0.001). 

Dependent smokers, compared with occasional smokers, were faster to respond on cigarette trials 

(t40=2.27, p=0.027). There were no differences on music and no reward trials. 

Both the dependent smokers (t19=2.583, p=0.043) and the occasional smokers (t21=3.46, p=0.003) 

were faster to respond on music compared with no reward trials. The dependent smokers (t21=3.75, 

p=0.001), but not occasional smokers (t19=1.25, p=0.664), were faster to respond on cigarette 

compared with no reward trials. There was a trend for dependent smokers to be faster to respond on 

                                                           
9 Data for one dependent smoker’s time-since-last-smoked was lost. 
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cigarette compared with music trials (t21=2.23, p=0.088), while occasional smokers showed no 

difference (t19=1.92, p=0.206). 

Three participants were excluded from the fMRI analysis due to a missing structural scan and pre-

processing errors (see footnote 12). Therefore, the behavioural analyses were carried out again with 

these participants excluded (i.e. listwise). This made no difference to the pattern of results. 

Proportion of hits 

There were no interactions or main effects.  
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Table 3.2 Group means (SD) for demographic data for dependent and occasional smokers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTND Fagestrom test for nicotine dependence; CDS-5 Cigarette dependence scale; DSM-5 Diagnostic 

and statistical manual tobacco use disorder; BISBAS Behavioural activation/inhibition systems scale; 

TEPS Temporal experience of pleasure scale; BSSS brief sensation seeking scale; BIS Barratt 

impulsiveness scale. ***p<0.001, **p<0.01, *p<0.05, op<0.1 

  

 Dependent Occasional 

Age 28.45 (10.29) 23.10 (4.60) 

Gender (m/f) 19/3 14/6 

Years in education* 12.32 (2.75) 16.45 (2.74) 

Spot-the-word 46.24 (6.02) 48.58 (6.26) 

Cigarettes/day*** 19.32 (5.70) 0.49 (0.04) 

Cigarettes/week*** 135.23 (8.51) 3.40 (1.37) 

Age started smoking (years)* 15.45 (2.92) 17.55 (2.70) 

Age started smoking 10 or more per day 17.00 (2.10) NA 

Tried to quit smoking (y/n)*** 19/3 6/14 

Number of quit attempts*** 3.32 (4.24) 0.58 (1.17) 

Length of most successful quit attempt (days) 8.92 (11.06) 12.40 (8.29) 

FTND*** 6.36 (1.05) 0.00 

CDS-5*** 19.77 (2.46) 6.42 (1.30) 

DSM-5*** 6.50 (2.69) 0.75 (1.02) 

BDIo 10.35 (8.59) 5.33 (5.42) 

BISBAS drive 11.78 (2.73) 11.42 (1.89) 

BISBAS fun-seeking 13.24 (1.78) 12.42 (2.12) 

BISBAS reward responsiveness 17.00 (2.03) 16.95 (2.01) 

BISBAS inhibition 17.06 (4.38) 21.26 (3.73) 

TEPS anticipatory 39.11 (7.73) 39.81 (8.43) 

TEPS consummatory 34.71 (7.88) 36.89 (5.14) 

TEPS total 74.53 (12.84) 76.00 (2.73) 

BSSS 31.05 (4.52) 29.42 (4.56) 

BIS attentional 18.05 (4.48) 16.39 (2.81) 

BIS motor** 27.35 (3.94) 23.06 (3.77) 

BIS non-planning** 29.30 (4.79) 24.78 (4.26) 

BIS total** 74.70 (11.05) 64.22 (8.22) 

Like smoking one cigarette, in general (-10 to 10) 4.71 (1.18) 3.40 (0.47) 

Like listening to classical music, in general (-10 to 10) 2.05 (1.19) 3.58 (1.14) 

Days/week listen to classical music 1.33 (0.40) 1.55 (0.51) 
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Table 3.3 Group means (SD) for state-measure self-report data for dependent and occasional 

smokers. 

 Dependent  Occasional 

Time since last smoked, 
including outliers 
(minutes)*** 

61.43 (176.82) 7,220 (10,151) 

Time since last smoked, 
excluding outliers 
(minutes)*** 

23.25 (26.27) 7,599 (10,283) 

Carbon Monoxide*** 12.45 (6.72) 2.20 (1.70) 

TCQ emotionality** 10.59 (4.93) 5.70 (3.73) 

TCQ anticipation*** 16.55 (3.54) 10.15 (2.76) 

TCQ compulsivity*** 9.86 (4.80) 4.50 (2.21) 

TCQ intention*** 14.05 (4.16) 7.80 (2.65) 

TCQ total*** 51.05 (14.44) 28.15 (7.7) 

MNWS** 8.68 (7.20) 3.80 (2.89) 

SHAPS-original* 2.05 (1.73) 0.75 (1.16) 

SHAPS-new* 25.27 (1.21) 22.75 (0.81) 

***p<0.001, **p<0.01, *p<0.05, op<0.1 

TCQ Tobacco Craving Questionnaire; MNWS Minnesota Nicotine Withdrawal Scale; SHAPS Snaith 

Hamilton Pleasure Scale. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Group means of log10 transformed reaction times for music, cigarette and no reward trials. 

Error bars represent ±standard errors. 
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3.3.4 Self-reported liking of first reward unit consumed10 

There was a main effect of reward (F1, 60=17.031, p<0.001), with higher ratings for cigarettes compared 

with music. Despite the lack of a group by reward interaction, this main effect of reward was likely 

driven by the dependent smokers, who rated cigarettes more highly than music (t17=4.269, p=0.001), 

while occasional smokers did not. 

3.3.5 Functional imaging data11 

3.3.5.1 Movement 

All participants moved <5mm in all directions. 

3.3.5.2 ROI analyses 

Anticipation 

For the ‘cigarette > no reward anticipation’ one-sample t-test, which included both groups, there was 

significant activation in the left ventral striatum ROI, bilateral thalamus ROIs and left medial frontal 

gyrus ROI (see table 3.4 and figure 3.3). There were no group differences in any of the ROIs for 

‘cigarette > no reward anticipation’. 

For the ‘music > no reward anticipation’ one-sample t-test, which included both groups, there were 

no significant activations in any of the ROIs, nor were there group differences. 

Within the dependent group, the ‘cigarette > music anticipation’ one-sample t-test produced 

significant activation in the left medial frontal gyrus. Within the occasional group, the same one-

sample t-test produced no significant activations (see table 3.5). 

                                                           
10 Ratings of music liking were missing for 3 dependent smokers and 3 occasional smokers due to computer 
error. Ratings of cigarette liking were missing for 1 dependent smoker and 13 occasional smokers due to these 
participants choosing not to smoke. 
 
11 One dependent smoker was excluded from fMRI analyses because his structural scan was missing. Two 
occasional smokers were excluded from fMRI analyses because of errors with their functional scans; their data 
could not be pre-processed by SPM. 
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For the ‘music > cigarette anticipation’ one-sample t-test, there were no significant activations in any 

of the ROIs in either group. 

Table 3.4 ROI analysis: Peak and cluster-level BOLD responses for ‘cigarette > no reward anticipate’ 

contrast using a one-sample t-test with both groups included (MNI co-ordinates, t and FWE-corrected 

p values are shown). 

Region x y z Peak-level Cluster-level 

Dependent and 
occasional smokers 
together 

   t p (FWE 
corrected) 

cluster 
size 

p (FWE 
corrected) 

Right ventral striatum 12 8 -1 3.846 0.010 2 0.025 

Right thalamus 9 -10 8 3.476 0.012 4 0.017 

Left thalamus  -9 -22 5 3.871 0.003 6 0.012 

Left medial frontal 
gyrus 

0 -7 56 3.724 0.014 4 0.017 
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d)  

 

 

 

 

 

 

 

Figure 3.3 ROI analysis: Significant ‘cigarette > no reward anticipation’ clusters (FWE corrected for 
p<0.05) within a priori ROIs in both groups. Bar graphs show the lack of group differences within 
these ROIs. Error bars show standard error. a) Within the right ventral striatum (12, 8, -1) b) Within 
the left ventral striatum ROI (9, -10, 8) (c) Within the left thalamus ROI (-9, -22, 5) d) Within the left 
medial frontal gyrus (0, -7, 56). 

 

Table 3.5 ROI analysis: Peak and cluster-level BOLD responses for ‘cigarette > music anticipation’ 

contrast for the dependent group using a one-sample t-test (MNI co-ordinates, t and FWE-corrected 

p values are shown). The occasional group showed no significant activations for this contrast. 

Region x y z Peak-level Cluster-level 

Dependent smokers    t p (FWE 
corrected) 

cluster 
size 

p (FWE 
corrected) 

Left medial frontal 
gyrus 

-3 -7 53 3.762 0.0272 4 0.0145 

 

 

 

 

 

 

Figure 3.4 ROI analysis: Significant ‘cigarette > music anticipation’ cluster (FWE corrected for p<0.05) 

within a priori ROI: left medial frontal gyrus (-3, -7, 53), in the dependent group. 
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Feedback 

For the ‘cigarette win > no reward feedback’ one-sample t-test, which included both groups, there 

were significant activations in the right caudate, left amygdala and left parahippocampal region (see 

table 3.6 and figure 3.5). On this contrast, dependent smokers showed greater activation in the right 

caudate than occasional smokers (see table 3.6 and figure 3.5). 

For the ‘music win > no reward feedback’ one-sample t-test, which included both groups, there were 

no significant activations. There were also no group differences on this contrast. 

Within the dependent and occasional group, ‘cigarette > music feedback’ and ‘music > cigarette 

feedback’ produced no significant activations. 

Table 3.6 ROI analysis: Peak and cluster-level BOLD responses for ‘cigarette > no reward feedback’ 
contrast using a one-sample t-test with both groups included. The group difference in BOLD response 
for ‘cigarette > no reward feedback’ is also shown. (MNI co-ordinates, t and FWE-corrected p values 
are shown). 

Region x y z Peak-level Cluster-level 

Dependent and 
occasional smokers 
together 

   t p (FWE 
corrected) 

cluster 
size 

p (FWE 
corrected) 

Right caudate 6 20 2 3.847 0.009 2 0.0290 

Left amygdala -15 2 -16 3.373 0.014 2 0.0290 

Left parahippocampal 
region 

-18 -22 -13 3.575 0.007 4 0.0197 

Group difference 
between dependent 
and occasional 
smokers 

       

Right caudate 6 17 -1 3.225 0.045 1 0.034 
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Figure 3.5 ROI analysis: Significant ‘cigarette > no reward feedback’ clusters (FWE corrected for p<0.05) 
within a priori ROIs in both groups. Bar graphs show the group difference for activity in the right 
caudate but the lack of group differences within the other clusters. Error bars show standard error. a) 
Within the right caudate (6, 20, 2), b) within the left amygdala (-15, 2, -16), c) within the left 
parahippocampal region (-18, -22, -13). 
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3.3.5.3 Whole brain analysis 

Anticipation 

For the ‘cigarette > no reward anticipate’ one-sample t-test, which included both groups, there were 

significant activations in right extra striate region, left thalamus, right thalamus, left insula, left inferior 

frontal gyrus and left putamen (see appendix table 3.1). However, there were no group differences on 

this contrast. 

For the ‘music > no reward anticipate’ one-sample t-test, which included both groups, there were no 

significant activations. There were also no group differences on this contrast. 

Within the dependent group, the ‘cigarette > music anticipation’ one-sample t-test produced 

significant activation in the right caudate (see appendix table 3.2). Within the occasional group, the 

same one-sample t-test produced no significant activations. 

For the ‘music > cigarette anticipation’ one-sample t-test, there were no significant activations. 

Feedback 

For the ‘cigarette win > no reward feedback’ one-sample t-test, which included both groups, there 

was significant activation in the left anterior cerebellum (see appendix table 3.3). There were also no 

group differences on this contrast. 

For the ‘music win > no reward feedback’ one-sample t-test, which included both groups, there were 

no significant activations. There were also no group differences on this contrast. 

Within the dependent and occasional group, ‘cigarette > music feedback’ and ‘music > cigarette 

feedback’ produced no significant activations. 
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3.3.5.4 Correlations 

There were no significant correlations between number of cigs/day, time-since-last-smoked, CO, 

average response time on cigarette trials and the average BOLD signal in any of the significantly 

activated ROIs for cigarette anticipation or feedback. 

3.4 Discussion 

The current study examined behavioural and neural responses to the anticipation of and feedback 

about cigarette and music reward in dependent and occasional smokers. Consistent with my 

predictions, the dependent smokers were faster at responding on cigarette trials than the occasional 

smokers and there were no differences on music or no reward trials. Anticipation of cigarettes 

recruited reward related brain regions (left ventral striatum, bilateral thalamus, left medial frontal 

gyrus) in both groups; as did positive feedback about cigarette reward, which activated the right 

caudate, left amygdala and left parahippocampal region. Dependent smokers exhibited stronger 

activation in the right caudate during positive cigarette feedback than occasional smokers; however 

there were no significant group differences on cigarette anticipatory BOLD response. Surprisingly, 

anticipation of and feedback about music did not produce significant activation in any brain regions. 

3.4.1 Behavioural results 

Results from chapter 2 suggested that dependent and occasional smokers differed behaviourally on 

the processing of cigarettes but not non-drug rewards. I aimed to confirm this using a task that did 

not have a choice stage and therefore more purely assessed motivation for each reward: the adapted 

incentive delay task (AIDT). Using the reaction time to respond to a target on trials in which cigarette 

and music points were available as a measure of motivation, I demonstrated that dependent smokers, 

in a non-withdrawn, or ‘normal’ state, compared with occasional smokers, were more motivated to 

earn cigarettes but no less motivated to earn music. These results support my findings in chapter 2 

that nicotine-satiated dependent smokers do not suffer from motivational deficits for consummatory 
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non-drug rewards. This is consistent with previous findings demonstrating that dependent smokers 

do not differ from non-smokers in motivation to earn money on the CARROT, so long as the smokers 

have recently smoked a cigarette (Al-Adawi & Powell, 1997; Powell et al., 2002). Having said that, one 

previous study did report a difference between high and low dependence smokers on motivation for 

monetary reward, using a modified version of the CARROT, with no effect of abstinence (Kalamboka, 

2008). 

Importantly, my results in this chapter are conceptually very similar to those in chapter 2. This is 

despite minor changes to group inclusion criteria (in this study, dependent smokers scored ≥5 on the 

FTND, whereas in chapter 2 they scored ≥6 on the FTND) and minor sampling differences between the 

groups (in this study, the dependent smokers were non-significantly older, marginally more depressed 

and more impulsive than the occasional smokers). It should be noted, however, that the groups were 

remarkably similar to those described in chapter 2 in terms of number of cigarettes smoked per day 

and FTND scores. 

The hypersensitivity to cigarette rewards in dependent, compared with occasional smokers, seems to 

drive the difference in reward processing profiles, where dependent smokers showed marginally 

greater motivation for cigarettes relative to music, but occasional smokers had similar motivation for 

cigarettes and music. Although there was no significant group by reward interaction for self-reported 

reward liking, a priori t-tests demonstrated a similar difference in profile for their hedonic responses. 

Dependent smokers liked cigarettes more than music, while this was not the case in occasional 

smokers. However, all of the results concerning liking of cigarettes should be interpreted very 

cautiously because so many (n=13) of the occasional smokers chose not to consume any of the 

cigarette they earned. 

3.4.2 fMRI results 

As expected, anticipation of and feedback about cigarette reward produced activation in various 

reward related brain regions that are consistently activated by anticipation of monetary reward 
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(Knutson & Greer, 2008). This demonstrates that the task worked as I predicted it would for cigarette 

rewards. Contrary to my hypotheses, the dependent smokers did not show enhanced anticipatory 

neural responses on cigarette trials. However, dependent smokers did have a stronger response to 

positive cigarette reward feedback than occasional smokers, in a small section (one 3x3x3mm voxel) 

of the right caudate. Hence, I demonstrated both behavioural and neural hypersensitivity to cigarette 

reward in nicotine dependence. However, it is surprising that the dependent smokers did not show 

augmented anticipatory BOLD responses to cigarettes given this anticipatory processing is thought to 

be particularly important for motivation (Sescousse et al., 2014).  

That dependent smokers had a larger response to cigarette win feedback than occasional smokers 

extends my behavioural findings, from both chapter 2 and this current chapter, to show that nicotine 

dependence is also associated with a neural hypersensitivity to cigarette reward. Specifically, this 

study suggests that dependent smokers’ right caudates are more sensitive than occasional smokers’ 

right caudates to the experience of winning cigarette points. This result is novel because Buhler et al.’s 

(2010) study found no group difference in terms of BOLD response during cigarette feedback. Receipt 

of reward is thought to be a conceptually different process to the anticipation of reward, with the 

former being more related to consummatory responses and the latter more related to anticipatory 

responses (Sescousse et al., 2010). However, given neither the cigarettes nor the music were actually 

consumed when points were received, this interpretation may be over simplistic. Indeed, receiving 

cigarette points may well provoke some sort of anticipatory process given that the points will later be 

exchanged for real cigarettes. Therefore, comparisons between dependent and occasional smokers 

on their neural response to cigarette consumption should be carried out to truly investigate 

consummatory cigarette processing. 

It is noteworthy that it was the receipt of reward, rather than anticipation, which produced a group 

difference in BOLD response. This result questions the superior importance of anticipatory processing 

relative to feedback processing in nicotine dependence. The caudate is considered to be a component 
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of the dorsal striatum and a crucial part of the reward processing network (Haber & Knutson, 2010). 

Speculatively, the caudate may be more strongly recruited by dependent smokers during cigarette 

reward feedback as this brain region is thought to become more critical in drug-processing as users 

become habitual (Everitt & Robbins, 2005). However, in order to test this claim, the caudate response 

would have to be associated with performance on a task measuring habitual responding for cigarettes. 

One important cautionary note is that only one voxel in the right caudate ROI showed a significant 

group difference. Conclusions based on these findings should only be considered preliminary. A 

replication of this difference in feedback processing, which specifically focused on the caudate, would 

be useful in clarifying whether this finding is robust and meaningful. On the other hand, support for 

this group difference is the use of the conservative family-wise-error correction. 

My cigarette anticipatory results are consistent with Buhler et al.’s (2010), who also found no 

significant difference between dependent and occasional smokers on anticipatory BOLD response in 

any brain region. Having said that, they did find a significant interaction between group and reward-

type with the non-significant group differences going in the expected directions. If they had tested 

more participants, they may have found significant group differences. The question then becomes: 

why did I detect group differences on behavioural motivation for cigarettes and cigarette feedback 

BOLD response, but not cigarette anticipatory BOLD response? To conjecture, one possibility is simply 

chance. Perhaps if I had greater power, or if I repeated the experiment, the cigarette anticipatory 

response would have followed the same pattern as the other outcomes. Another possibility is that any 

kind of smoking, whether it is occasional or dependent, changes anticipatory processing similarly. Or, 

that neither occasional nor dependent cigarette smoking alters this aspect of reward processing. In 

order to test these hypotheses, I would need a control group of never smokers. Personally, I suspect 

the first option. Irrespective, these results may suggest that the anticipatory BOLD response to 

cigarette reward is not as important in nicotine dependence as one might expect. Other simpler 
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measures, such as behavioural motivation for cigarettes or self-reported craving, may be more 

sensitive in detecting differences between dependent and occasional smokers. 

Acute nicotine abstinence has been shown to enhance cigarette anticipatory BOLD response in one 

study (Sweitzer et al., 2013) but not another (Bühler et al., 2010). Perhaps if the smokers were in a 

nicotine deprived state, I would have observed group differences during anticipation and a larger 

difference during feedback. Given my null group by abstinence interaction in chapter 2, I wanted to 

focus my attention on reward processing during ‘normal’ life when nicotine dependence is not 

disturbed by nicotine deprivation. Moreover, some studies have found differences between smokers 

and non-smokers in BOLD response during reward anticipation, even after recent smoking (Luo et al., 

2011; Rose et al., 2013). However, forcing acute abstinence would have allowed an investigation into 

how a lack of nicotine affects the neural processing of cigarettes and non-drug reward in dependent 

compared with occasional smokers. On-board nicotine may simply have masked the expected effects. 

I did investigate the possibility that recent smoking was associated with responsiveness to cigarette 

reward by conducting correlations between time-since-last-smoked and CO, and average BOLD 

response in any significant ROIs within each group. However, neither of these correlational analyses 

suggested that there were relationships between brain activation and recent smoking. Given that all 

but one of the dependent smokers had smoked within the last two hours, there may not have been 

enough variance to detect these relationships, if they do exist. 

There were also no significant associations between the average BOLD responses in any of the 

activated ROIs during cigarette trials and the average reaction time to the target on cigarette trials. 

One might have expected negative associations to have emerged. The faster a participant responds to 

the target, the more motivated they should be to earn cigarettes, and, theoretically, the more strongly 

reward related brain regions (especially striatal regions) should be activated. However, this was not 

the case. Hence, this somewhat questions the validity of the AIDT for the assessment of motivation 
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for cigarettes. Again, this supports my claim that other simpler measurements may be more suitable 

for assessing motivation to earn rewards. 

I found no evidence that anticipation of or feedback about classical music elicits activation in reward 

related brain regions. This suggests that, in terms of neural anticipatory and feedback processing, the 

music trials were not more rewarding than the no reward trials. Hence, perhaps classical music was 

simply a poor choice of reward and it did not function as reward for these participants. As can be seen 

by comparing results described in chapters 2 and 3, participants did not ‘like listening to classical 

music, in general’ (chapter 3) as much as they liked ‘listening to music, in general’ (chapter 2). Indeed, 

the average score for general liking in this chapter was only just above zero and some participants 

reported not liking classical music (i.e. scores below zero). This could have contributed to the lack of 

effects seen in the fMRI data. However, that both groups responded more quickly on music compared 

with no reward trials, showing that they were behaviourally motivated by music, is strong evidence 

against this claim. Furthermore, the music has been rated as pleasant by previous research volunteers 

(Menon & Levitin, 2005). Again, it seems as though the BOLD response I measured may have been less 

sensitive than the behavioural measure, reaction time. 

When investigating the balance of reward processing within each group separately, I found that 

dependent smokers displayed stronger activation in the left medial frontal gyrus (ROI analysis) and 

right caudate (whole brain analysis) for cigarette anticipation compared with music anticipation. 

Whereas, in the occasional smokers, there were no regions which showed any difference between 

cigarette and music anticipation. These results, on the face of it, imply the groups have different 

patterns of anticipatory reward processing for cigarettes and music reward. This dovetails with 

findings in the previous chapter, which consistently demonstrated differences in the profiles of 

cigarette and non-drug reward processing. Furthermore, this supports Buhler et al.’s (2010) findings 

concerning the difference in the profiles of cigarette and monetary processing in dependent and 

occasional smokers. However, there are two caveats here. First, the music reward did not seem to 
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produce any significant reward related brain activation during anticipation or feedback, so using it to 

draw conclusions about the neural processing of drug vs. non-drug reward processing is not ideal. 

Hence, it would be premature to conclude that I have shown a true difference in the balance between 

drug and non-drug reward processing between dependent and occasional smokers. Second, I have 

not statistically tested the difference in the differences. In other words, although the difference within 

the dependent group is significant in two brain regions while there are no significant differences within 

the occasional group, that does not necessarily mean the difference in those profiles is significantly 

different. It can only tell us that there are qualitatively different patterns within the groups.  

If I had just conducted ROI analyses, one could suggest that the reason I did not observe music reward-

induced activations and anticipatory group differences was because the ROIs did not cover the regions 

where significant activations occurred. My whole brain analyses however show that nowhere in the 

brain showed anticipatory or feedback music-induced activations. The regions that were significantly 

activated in my ROI and whole brain analyses for cigarettes were not always the same. For instance, I 

observed activation in the left putamen during cigarette anticipation with the whole brain analysis but 

not the ROI analysis. The reason for this is that the ROI analyses provide greater statistical sensitivity 

such that smaller effects can be detected in certain regions, while at the same time not investigating 

the rest of the brain. Whole brain analyses test all voxels in the brain, but because of the much greater 

number of tests being carried out, only larger effects can be detected. 

An important note is that my ‘whole brain analyses’ did not always cover the whole brain. In order to 

get good coverage of the midbrain, striatal and prefrontal regions, the anterior parts of the parietal 

and frontal lobes were sometimes sacrificed. Hence, it is possible that I missed out some significant 

activations within these regions because I didn’t examine them. However, this seems unlikely as these 

areas do not contain brain regions that are traditionally considered to be important in reward related 

processes. One potential problem is that the orbitofrontal cortex is difficult to successfully image using 

fMRI because of signal dropout near the eyes (Deichmann et al., 2003). As orbitofrontal cortex regions 
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are frequently implicated in reward processing (Chib et al., 2009), I may have failed to detect 

anticipatory, or more likely, feedback induced responses here. 

Another potential criticism is that I combined the cue and anticipate stages to make a single event. 

This decision was made in order to improve the BOLD signal by extending the time of the event; when 

I modelled just the anticipate event, I did not observe the expected BOLD responses. In terms of what 

this might mean for the interpretation of the results, the BOLD response will be related to the 

experience of finding out which reward is on offer and anticipating the response for that reward, 

rather than just anticipating the response for that reward. This does not seem like a major change and 

clearly anticipation of cigarette reward produced the BOLD responses I expected from previous MIDTs 

using just the anticipation stage (Knutson & Greer, 2008). Hence, I do not think this alteration changes 

the interpretation substantially; it simply allowed for a stronger cue-invoked anticipatory BOLD 

response to be produced. 

3.4.3 State questionnaires and self-reported liking 

Predictably, the dependent smokers had greater craving scores than the occasional smokers. It is 

interesting that they also had a higher average withdrawal score, even though they were allowed to 

smoke approximately 15 minutes before completing this questionnaire. This may reflect generally 

increased negative affect in dependent smokers though (Kassel, Stroud, & Paronis, 2003). I also found 

higher anhedonia within the dependent smokers than the occasional smokers. In chapter 2 I did not 

find differences between the groups on this scale when participants were nicotine-satiated, only after 

acute abstinence. This current result, therefore, may simply reflect the marginally higher levels of 

depression in the dependent group compared with the occasional group, and the fact that anhedonia 

is a cardinal symptom of depression (DSM-5 American Psychiatric Association, 2013). 
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3.4.4 Strengths and limitations 

This study had various strengths. I used a well-validated paradigm and the extension to cigarette 

rewards was demonstrably successful. The fact that I actually gave participants the cigarettes and 

music that they won, as I did in chapter 2, should have increased face validity of the experiment. I 

recorded neuroimaging, as well as behavioural data; measuring two related, yet distinct, types of data 

provide a more comprehensive look into any reward processing alterations. Furthermore, I reported 

a novel finding in that dependent smokers had a neural hypersensitivity to the feedback of cigarette 

reward, relative to occasional smokers. 

In terms of limitations, the fact that anticipation on music trials, compared with no reward trials, did 

not elicit greater activation in reward related brain regions is obviously a problem. As described above, 

this could be because classical music was not rewarding enough to the participants and the BOLD 

response lacked sensitivity or because both groups were similarly hyposensitive to anticipation of 

music; the inclusion of a non-smoker control group is needed to address this issue. Finally, despite the 

null group by abstinence interaction in chapter 2, this experiment could have been improved by having 

an acute abstinence manipulation to determine if the BOLD responses change when participants are 

deprived of nicotine.  

3.4.5 Conclusions 

In summary, I extended my findings from chapter 2. I added further evidence to the claim that, on a 

behavioural level, nicotine-satiated dependent smokers, compared with occasional smokers, have a 

greater motivation for cigarette but not music reward. Furthermore, dependent smokers exhibited a 

stronger BOLD response than occasional smokers to positive cigarette reward feedback in the right 

caudate compared. Thus, I demonstrated both behavioural and neural hypersensitivity to drug reward 

in nicotine dependence. However, I did not find evidence for a group difference on cigarette or music 

anticipatory BOLD response. Future research should investigate which non-drug, consummatory 

rewards can be used to better probe the neurobiology of non-drug reward functioning in addicted 
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individuals and explore which reward-related BOLD response, if any, is most closely associated with 

disrupted motivational processing during addiction. 
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Chapter 4: The acute effects of pramipexole on cigarette and non-drug reward processing in 

dependent and occasional smokers: a double-blind, placebo-controlled experiment 
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4.1 Introduction 

Results reported in chapter 2 suggested that relative preference for, motivation for and liking of 

cigarettes was greater in dependent compared with occasional smokers. Although the processing of 

non-drug rewards was similar in each group, there was a consistent difference in the balance of drug 

and non-drug reward processing. Results reported in  chapter 3 partially supported these findings: 

dependent smokers, compared with occasional smokers, were more motivated to gain cigarettes but 

were similarly motivated to gain music, as measured by reaction time. Moreover, winning cigarettes 

elicited a greater BOLD response in the right caudate of dependent smokers than occasional smokers.  

Various components of non-drug reward processing have been shown to predict abstinence outcomes 

in cigarette smokers (Leventhal, Piper, et al., 2014; Leventhal, Waters, Kahler, Ray, & Sussman, 2009; 

Versace et al., 2014; Versace et al., 2012; Yoon et al., 2007), although null effects have been also been 

found (Powell, Dawkins, West, Powell, & Pickering, 2010). Unsurprisingly, metrics related to cigarette 

reward processing also predict cessation (Killen & Fortmann, 1997; Powell et al., 2010; Zhou et al., 

2009). Therefore, either a reduction in the processing of cigarettes or an enhancement in the 

processing of non-drug rewards, or both, may be therapeutically beneficial. Hence, in this study I 

aimed to pharmacologically challenge the imbalance in cigarette and non-drug reward processing in 

cigarette smokers. 

4.1.1 Dopamine, reward processing and addictive drugs 

As described in chapter 1, mesocorticolimbic dopaminergic functioning has been associated with a 

wide range of reward processes (Berridge & Robinson, 1998; Wise & Rompré, 1989). Phasic dopamine 

firing appears to encode temporal difference learning (Schultz et al., 1997) while nucleus accumbens 

dopamine levels are associated with motivation (Niv et al., 2007; Salamone et al., 2007). Furthermore, 

dopamine plays a key role in the acutely reinforcing properties of addictive drugs, including nicotine 

(Corrigall, Franklin, Coen, & Clarke, 1992; Di Chiara & Imperato, 1988), and appears critical in addictive 



138 
  

behaviour (Robinson & Berridge, 1993; Volkow et al., 2004). Additionally, mesolimbic dopaminergic 

functioning theoretically underlies the competition between drug and non-drug rewards for attention 

and motivation (Anselme, 2009). Hence, manipulation of the dopamine system is a promising avenue 

for the treatment of drug addictions (Hart, Haney, Vosburg, Rubin, & Foltin, 2008; Volkow et al., 2004). 

Indeed, bupropion, a dopamine and noradrenaline reuptake inhibitor (Dwoskin, Rauhut, King‐Pospisil, 

& Bardo, 2006), is efficacious in treating nicotine dependence (Jorenby et al., 1999). Although, its anti-

smoking properties may arise from its antagonism of nicotinic acetylcholine receptors rather than its 

action on dopamine reuptake (Dwoskin et al., 2006). 

Various attempts to disrupt cigarette smoking via manipulation of the dopamine system have been 

undertaken. Bromocriptine, a dopamine D2 receptor preferring agonist, has been shown to acutely 

reduce ad libitum cigarette consumption (Caskey, Jarvik, & Wirshing, 1999; Jarvik et al., 2000), while 

extended use of bromocriptine is also associated with reduced cigarette smoking (Murphy et al., 

2002). Acute tyrosine/phenylalanine depletion, which reduces dopamine synthesis, had differential 

effects: it increased demand for cigarettes and reduced an attentional bias towards cigarette images 

(Hitsman et al., 2008). Furthermore, selegiline, a monoamine-oxidase B inhibitor, originally showed 

promise as an aid to smoking cessation (George et al., 2003), however this was not replicated 

(Weinberger et al., 2010). The opportunity for a dopaminergic, smoking-cessation aid therefore 

remains. 

4.1.2 Pramipexole 

Pramipexole is a non-ergot derived dopamine agonist which binds to dopamine D2, D3 and D4 

receptors, with the greatest affinity to the D3 receptor (Mierau et al., 1995). Pramipexole is primarily 

used to treat Parkinson’s disease (Shannon, Bennett, Friedman, & Group, 1997) due to its activation 

of dopamine receptors in the degenerating basal ganglia.  
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Variation in extracellular, forebrain dopamine levels is thought to be determined by two processes: (i) 

fast-changing, phasic dopamine release caused by neuronal firing and (ii) slow-changing, tonic 

dopamine release regulated by prefrontal cortical afferents (Grace, 1991). A biphasic dose-response 

curve for pramipexole has been suggested (Samuels, Hou, Langley, Szabadi, & Bradshaw, 2006). At 

low doses, pramipexole is thought to preferentially act at presynaptic autoreceptors, leading to a 

reduction in phasic dopamine release; at high doses, pramipexole is thought to overcome these 

inhibitory effects and increase post-synaptic receptor activation (Maj, Rogóż, Skuza, & Kołodziejczyk, 

1997). Pramipexole may, however, concomitantly decrease phasic dopamine firing via autoreceptor 

activation and increase tonic dopamine levels via modulation of prefrontal-striatal glutamatergic 

projections (Ye, Hammer, Camara, & Münte, 2011). Thus, its action is somewhat unclear. 

Pramipexole has been shown to disrupt performance on standard reward processing tasks. In healthy 

controls, acutely administered low doses (0.25-0.5mg oral) of pramipexole resulted in riskier gambling 

behaviour (Riba, Krämer, Heldmann, Richter, & Münte, 2008), enhanced striatal BOLD response in 

anticipation of reward (Ye et al., 2011) but also reduced reward-related neural activation in response 

to both pleasant and aversive outcomes (McCabe, Harwood, Brouwer, Harmer, & Cowen, 2013). 

Moreover, in Parkinson’s patients, chronic administration of pramipexole remediated reward learning 

deficits (Bódi et al., 2009). 

Repeated administration of pramipexole also has also been found to produce antidepressant effects 

in people with major depressive disorder (Corrigan, Denahan, Wright, Ragual, & Evans, 2000; Szegedi 

et al., 1997), bipolar disorder (Zarate et al., 2004) and Parkinson’s disease (Barone et al., 2010; Lemke, 

Brecht, Koester, & Reichmann, 2006). Furthermore, in Parkinson’s patients, amotivation is partially 

ameliorated by pramipexole (Lemke et al., 2006). 

Given the importance of D3 receptors in the self-administration of drugs (Le Foll, Goldberg, & Sokoloff, 

2005) and its clear impacts on reward processing and mood, pramipexole has also been investigated 

for its possible anti-addictive properties. In cocaine dependent individuals, a single low dose of 
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pramipexole reduced attentional bias towards drug-related words (Ersche et al., 2010) and 

perseverative responding (Ersche et al., 2011). Similarly, in nicotine dependent individuals, the same 

dose reduced attentional bias to cigarette images (Freeman et al., 2015) while enhancing motivation 

for monetary reward in the CARROT (Freeman et al., 2013). Pramipexole’s potentially beneficial 

effects in smokers may arise through the reduction of phasic dopamine firing and subsequently craving 

(Franken, 2003; Freeman et al., 2015). Hence, pramipexole holds promise as a drug that may 

concurrently impair cigarette reward processing while enhancing motivation for alternative, non-drug 

rewards.  

4.1.3 Relative reinforcing efficacy of cigarettes 

As an additional measure related to the motivation to smoke cigarettes, I included a cigarette 

purchase task (MacKillop et al., 2008). This type of behavioural economics task aims to quantify the 

reinforcing efficacy of cigarettes relative to money by asking participants how many cigarettes they 

would be willing to buy for increasing amounts of money. A demand curve is plotted and measures of 

reinforcing efficacy, such as breakpoint (the price at which no more cigarettes are bought), are 

generated. These measures are often associated with dependence (MacKillop et al., 2008) and craving 

(Aston et al., 2015), and have been shown to be sensitive to dopaminergic manipulation in smokers 

(Hitsman et al., 2008). 

4.1.4 Reward learning and effort-related decision-making 

Throughout this thesis, I have argued that it is important to investigate specific reward processing 

deficits in specific drug addicted populations. It is unlikely that sweeping statements that claim all drug 

addicted individuals have globally deficient non-drug reward processing will be accurate. What will be 

helpful is to determine what precise impairments are found in specific drug addictions, and which 

treatments can rectify these potential impairments. Therefore, in this chapter, I have examined 

different components of reward processing. 
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In chapter 1, I introduced the key concept of reward learning that has received recent attention with 

the popular Probabilistic Reward Task (Pizzagalli et al., 2005). As previously described in section 

1.5.2.2, 24 hours of nicotine deprivation impaired (Pergadia et al., 2014), while acute nicotine 

administration improved (Barr et al., 2008), reward learning. Depressed people generally show weaker 

reward learning on this task (Pizzagalli, Iosifescu, et al., 2008), but tobacco smoking appears to 

ameliorate this (Janes et al., 2015; Liverant et al., 2014). Hence, anhedonic states such as depression 

and nicotine withdrawal seem to be associated with impoverished reward learning. The fact that 

nicotine restores this functioning may, at least in part, drive cigarette smoking (Janes et al., 2015). 

Furthermore, in healthy volunteers, pramipexole has been shown to impair reward learning (Pizzagalli, 

Evins, et al., 2008). However, this effect of pramipexole has not yet been investigated in a sample of 

cigarette smokers. Given that a weak response bias is associated with cigarette craving (Peechatka et 

al., 2015) and acute nicotine seems to enhance the response bias (Barr et al., 2008),  I was concerned 

that, although pramipexole may have anti-smoking properties, it may also result in reduced non-drug 

reward learning, which could indirectly reverse the desired effect.  

Another component of reward processing that has received recent attention, which is closely related 

to motivation, is effort-related decision-making: how one chooses between different options which 

require different amounts of effort. These kinds of decisions are faced by people regularly. For 

instance, the decision to look at inane websites rather than writing one’s thesis would be a low-effort, 

low-reward choice. Effort-related decision-making has been operationalised in the Effort Expenditure 

for Rewards Task (EEfRT) (Treadway et al., 2009) and has been shown to be related to self-reported 

anhedonia, depression (Treadway, Bossaller, Shelton, & Zald, 2012; Treadway et al., 2009) and 

dopaminergic functioning, evidenced both behaviourally using amphetamine challenge (Wardle, 

Treadway, Mayo, Zald, & de Wit, 2011) and neurobiologically using positron emission tomography 

(Treadway, Buckholtz, et al., 2012). However, neither the association between nicotine dependence 

and task performance nor pramipexole’s effects on this task have been investigated.  
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4.1.5 Differential effect of pramipexole in dependent and occasional smokers? 

Nicotine dependence has been associated with neurobiological adaptations to the mesocorticolimbic 

dopamine system (Dagher et al., 2001; Fehr et al., 2008; Leroy et al., 2012) and reward processing 

tasks, such as the EEfRT and PRT, are both theoretically and empirically related to dopaminergic 

functioning. Hence, the effects of dopaminergic drugs, including pramipexole, would be expected to 

have different effects on these tasks in dependent and occasional smokers, as they putatively have 

different dopamine systems. 

4.1.6 Summary and hypotheses 

In summary, dopaminergic functioning is critical in various aspects of reward processing, in the acutely 

reinforcing effects of various drugs and also in addiction. Manipulation of the dopamine system 

therefore represents a viable way to disrupt addictive behaviours. Previous work with pramipexole 

has demonstrated its ability to reduce an attentional bias to cigarette images (Freeman et al., 2015) 

while improving motivation for a non-drug reward (Freeman et al., 2013). Therefore, pramipexole 

appears to be a promising drug with the aim of disrupting the balance between cigarette and non-

drug reward processing. Results I reported in chapters 1 and 2 suggest that dependent smokers, 

compared with occasional smokers, have enhanced motivation for cigarette rewards but similar 

motivation for the non-drug rewards, music and chocolate. However, effort-related decision-making 

and reward learning have not yet been compared in occasional and dependent smokers. Moreover, 

the effects of pramipexole on performance of these tasks have not been investigated in smokers and 

they could be important when considering the therapeutic potential of pramipexole. Hence, this study 

assessed the effects of a single 0.5mg oral dose of pramipexole in dependent and occasional smokers 

on the motivation for cigarettes and non-drug rewards, reward learning and effort-related decision-

making. 
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Based on results reported in chapters 1 and 2, the iRISA theory of addiction (Goldstein & Volkow, 

2011), and previous research with pramipexole described above, it was hypothesised that: 

1. Dependent smokers would have a stronger motivation for cigarettes than occasional smokers 

and pramipexole would reduce motivation for cigarettes in favour of non-drug rewards.  

2. Dependent smokers would have impaired reward learning compared with occasional smokers 

and pramipexole would impair reward learning. 

3. Dependent smokers would have impaired effort-related decision-making (i.e. weaker 

motivation) for monetary reward than occasional smokers and pramipexole would improve 

effort-related decision-making (i.e. enhance motivation) for monetary reward. 

I also explored whether the effects of pramipexole were moderated by group because nicotine 

dependence has been associated with altered dopaminergic functioning, which could lead to a 

differential response to the drug. I did not make any specific hypotheses for the direction of this 

moderation however. 

4.2 Methods 

4.2.1 Design and Participants 

A double-blind, placebo-controlled, crossover design with a between-subjects factor of group 

(dependent and occasional) and a within-subjects factor of drug (placebo and pramipexole) was used. 

Other factors will be discussed in relation to each specific task. 

20 dependent (10 women) and 20 occasional (10 women) cigarette smokers took part in the study. 

Sample size was based on Buhler et al. (2010) and the study reported in chapter 2. Furthermore, a 

power analysis showed that a total sample size of 22 would be sufficient to detect a between-within 

interaction of medium effect size (f=0.25) and a correlation between repeated measures of 0.7 (based 

on Lawn et al., 2015), with an alpha of 0.05 and a power of 0.8. I proceeded with the larger total 

sample size of 40. 
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All participants passed eligibility criteria during telephone screening. Inclusion criteria were: (1) smoke 

on average ≥10 cigarettes/day (for dependent smokers) or smoke 0.5-5 cigarettes per week (for 

occasional smokers); (2) have an FTND score ≥5 (for dependent smokers) or 0 (for occasional smokers); 

(3) aged 18-50. Exclusion criteria were: (1) have been a regular, daily cigarette smoker in the past (for 

occasional smokers); (2) seeking treatment for a mental health problem; (3) using psychiatric 

medication; (4) use of an illicit drug once per week or more; (5) using a pharmacotherapy to quit 

smoking; (6) have a body mass index outside the range 18-30; (7) tumours of the adrenal or pituitary 

glands; (8) reduced functioning of the kidney or liver; (9) pregnant or breast-feeding; (10) 

hypersensitivity to pramipexole or domperidone; (11) current diagnosis of alcohol dependence; (12) 

not allergic to lactose; (13) be a vegan; (14) normal or corrected-to-normal vision. 

Despite passing screening, on later inspection of drug histories, 4 dependent smokers and 1 occasional 

smoker would have been considered ineligible. 1 dependent smoker claimed to have a past, but not a 

current, diagnosis of alcohol dependence, and yet also reported drinking 18 units/day. Furthermore, 

3 dependent smokers reported using cannabis regularly: 1 day/week, 2.5 days/week and 7 days/week. 

1 occasional smoker reported using cannabis 1.15 days/week. The dependent smoker who reported 

using cannabis 2.5 days/week also previously used other illicit drugs on a regular basis, which was a 

further concern. 

Analyses were carried out with all 40 participants to maintain power, but I also carried out each 

analysis without these 5 participants to test whether it altered the pattern of significant results. 

4.2.2 Assessments 

4.2.2.1 DReaM-Choice (figure 4.1) 

This task was very similar to that described in study 1 (section 2.2.2.1, figure 2.2) but the task was 

modified by removing the factor of magnitude and halving the amount of trials. Furthermore, abstract 

stimuli were used to represent each reward and they were matched for luminance and complexity 
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(figure 4.2). I was concerned that the real pictures used for the DReaM-Choice cues in chapter 2 could 

have affected behaviour, perhaps via Pavlovian-to-instrumental transfer, and that the differences in 

luminance and complexity could have affected attentional processing. Finally, the anticipate stage was 

extended. 

This version of the task was programmed with Experiment Builder (SR Research, Ontario, Canada). The 

basic structure of the task was the same, with some additions. On each trial participants: made a 

choice between two reward types (unlimited time), saw the word of the selected reward type (0.5s), 

anticipated working for the reward (4s), worked for the reward by pressing the spacebar with the non-

dominant little finger (7s) and received feedback about how many points were won (1s). See figure 

4.1 for a diagram of the task. Before completing the actual task, participants were asked to press a 

button as many times as they could in 7s with their dominant little finger on three occasions. The 

average of this was used as their baseline button-pressing speed. This was used for point calculation 

and to determine whether the groups differed or the drug affected general pressing speed. 

The number of points won on a single trial was calculated by: 

100 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑐𝑒𝑏𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑒𝑠

𝑏
 

where b was the average number of times the spacebar was pressed during the 3 baseline button-

pressing trials. As in chapter 2, this was to roughly equate the number of points each participant won. 

The delivered rewards were the same as in study 1 however the unit size of chocolate was halved 

because many participants in study 1 ended up with leftover chocolate that they didn’t want to 

consume. Thus 400 points were required for one unit of each reward: ¼ cigarette, 30s music, ½ chunk 

of chocolate, 1 piece of paper. 

There were 72 trials in total in this version of the DReaM-Choice task. The task produces two main 

behavioural outcome variables: (1) number of choices for each reward type, which assesses ‘relative 
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preference’; (2) average number of button-presses (BP) for each reward, which assess motivation. As 

in chapter 2, I also measured the average time taken to choose each reward type. 

After the task, participants received their delivered rewards and had 20 minutes to consume them. 

Every time they consumed one unit their subjective liking (rated from -10 ‘extremely dislike’ to +10 

‘extremely like’) were recorded. 

 



 
   

 

 

 

 

 

 

 

Figure 4.1 Diagrammatic representation of a single trial of the DReaM-Choice Task. During the ‘choice stage’ the cues were presented and a choice was made 
with button F (left option) or J (right option) (unlimited time); during the ‘anticipate stage 1’ the word of the reward, e.g. ‘cigarette’, was shown (0.5s); during 
the ‘anticipate stage 2’ a small version of the cue was shown (4s); during the ‘respond stage’ the spacebar was pressed as many times as desired with the non-
dominant little finger in 7s (Treadway et al., 2009), in order to win points for the chosen reward; during the ‘feedback stage’ feedback concerning the amount 
of points won was provided for 1s. Each of the 12 possible choices were presented twice in 2 blocks, making a total of 72 trials, with trial order pseudo-
randomized and left/right cue position counterbalanced. 
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Figure 4.2 The cues used in the DReaM-Choice task to represent each reward. From left to right: 
cigarette, chocolate, music, paper. 

4.2.2.2 Cigarette Purchase Task (CPT) 

The CPT assesses the value of cigarettes relative to money and is an analogue of progressive-ratio 

operant tasks as consumption is investigated under progressively increasing cost. It is an established 

and well-validated task to examine the behavioural economic concept of ‘demand’ relating to 

cigarettes (Chase, MacKillop, & Hogarth, 2013; MacKillop et al., 2008). In this version, participants 

were hypothetically asked how many cigarettes they would buy for the next 3 hours at increasing 

prices (Hitsman et al., 2008). The instructions were as follows: 

“Imagine that you could smoke RIGHT NOW AND FOR THE NEXT 3 HOURS. The following questions 

ask how many cigarettes you would consume if they cost various amounts of money. Assume the 

available cigarettes are your favourite brand. Assume that you have the same income/savings that 

you have now and NO ACCESS to any other cigarettes or nicotine products. In addition, assume that 

you cannot save or stockpile cigarettes for a later date after the 3 hours us up. Answer each question 

individually, i.e. the amount of cigarettes you would buy for price X should not affect the amount of 

cigarettes you would buy for price Y. remember it is asking you about how many cigarettes you would 

smoke RIGHT NOW AND FOR THE NEXT 3 HOURS.” 
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Participants were asked “How many cigarettes would you smoke if they were _____ each”. Prices 

included: £0 (free), 1p, 2p, 5p, 10p, 15p, 20p, 25p, 30p, 35p, 40p, 45p, 50p, 60p, 70p, 80p, 90p, £1, £2, 

£3, £4, £5, and were presented in that order. 

The CPT produces a demand curve and I investigated these outcome variables: (1) breakpoint, i.e. the 

price at which the number of cigarettes bought becomes zero; (2) intensity, i.e. the number of 

cigarettes bought at price £0; (3) Omax, i.e. maximum expenditure; and (4) Pmax, i.e. the price at 

which expenditure is maximum. 

4.2.2.3 Probabilistic Reward Task (Pizzagalli et al., 2005) (figure 4.3) 

As described in chapter 1, this task tapped responsiveness to reward, in terms of reward learning. The 

task involved two stimuli that were reinforced with an asymmetrical reinforcement schedule, such 

that a response bias towards the more reinforced stimulus was produced.  

The task used two different lengths of mouth as the stimuli. The short mouth was 8mm and the long 

mouth was 9mm. The participant’s aim was to quickly determine whether the mouth was short or 

long and they could win money if they responded correctly. 

The task comprised two blocks of 100 trials. The trials were pseudo-randomised such that a maximum 

of 3 long or short mouths appeared consecutively. At the start of each trial, a fixation-cross was 

presented for a jittered time (750ms, 800ms, 850ms, or 900ms). A mouthless face was then presented 

for 500ms followed by the appearance of the mouth in the face for 97ms. After the mouth 

disappeared, the mouthless face remained on the screen for 1500ms or until the participant 

responded with the ‘v’ or ‘m’ key. The participant pressed the ‘v’ key if they thought the mouth was 

short and pressed the ‘m’ key if they thought the mouth was long. Subsequently, feedback was 

provided for 1500ms, e.g. ‘Correct!!! You won 5p’ and then a blank screen was shown for 2000ms. 
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Not every correct response was reinforced. Critically, one of the stimuli (the ‘rich’ stimulus) was 

reinforced three times more frequently than the other stimulus (the ‘lean’ stimulus). Each block had 

50 rich stimuli and 50 lean stimuli; 30 of the rich stimuli had the opportunity for reinforcement while 

10 of the lean stimuli had the opportunity for reinforcement. If a stimulus with the opportunity for 

reinforcement was not correctly identified, the next stimulus of that type (rich or lean) that was not 

going to be reinforced became a stimulus with the opportunity for reinforcement. This was to ensure 

that participants had similar numbers of reinforced rich and lean stimuli (ideally 30 and 10, 

respectively). Before the task began, participants were told that only some of the correct responses 

would be reinforced but they were not told that one of the stimuli was more likely to be reinforced 

than the other. Half of participants had the long mouth as the rich stimulus first and half of the 

participants had the short mouth as the rich stimulus first. This was counterbalanced such that half of 

the first group had pramipexole first and half of the second group had pramipexole first. 

Previously, participants’ data have been excluded if they meet various criteria, e.g. more than 20 trials 

out of 100 in a single block had response times of <100ms (Janes et al., 2015) (see section 5.4.2.1 for 

exact details on exclusion criteria). However, in this study, because 23/40 of the participants did not 

meet these criteria, I included everyone to increase the power of the analysis. This is a clear limitation 

of this aspect of the experiment which is discussed in section 4.4.5. 

Response bias, which indexed a person’s bias towards the more frequently reinforced stimulus, was 

calculated using the following formula: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 =
1

2
∗ 𝑙𝑜𝑔

𝑅𝑖𝑐ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

𝐿𝑒𝑎𝑛_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝑅𝑖𝑐ℎ_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 

Discriminability, which indexed a person’s ability to differentiate the stimuli, was calculated using the 

following formula: 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
∗ 𝑙𝑜𝑔

𝑅𝑖𝑐ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

𝑅𝑖𝑐ℎ_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
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Rich_correct refers to the number of rich stimuli that were correctly identified. Lean_correct refers 

to the number of lean stimuli that were correctly identified. Rich_incorrect refers to the number of 

rich stimuli that were incorrectly identified. Lean_incorrect refers to the number of lean stimui that 

were incorrectly identified. 

The task therefore produces one main outcome: response bias, and three other important 

outcomes: discriminability, accuracy and reaction time. 

 

 

 

 

 

 

 

 

Figure 4.3 Diagrammatic representation of the Probabilistic Reward Task (Pizzagalli et al., 2005) used 
in this chapter. (1) A fixation cross is shown for a jittered time (750ms, 800ms, 850ms, or 900ms), (2) 
a mouthless face is shown for 500ms; (3) the mouth is added to the face for 97ms; (4) the mouthless 
face is shown for 1500ms or until the participant responds, stating they thought it is the long or short 
mouth; (5) feedback is given for 1500ms; (6) a blank screen is shown for 2000ms. 

4.2.2.4 Effort Expenditure for Rewards Task (EEfRT) (Treadway et al., 2009) 

This task tapped effort-related decision-making. Participants made a series of decisions between two 

different effort-options: a low-effort choice, in which a small amount of money was available to be 

won (50p), and a high-effort choice, in which a larger amount of money was available to be won (80p, 
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£1.00, £1.20, £1.40, £1.60, £1.80, £2.00). The low-effort choice required 30 spacebar presses with the 

little finger of the non-dominant hand in 7s. The high-effort choice required 100 spacebar presses with 

the little finger of the non-dominant hand in 21s. Participants were not guaranteed to win the money 

available if they completed the task; this was determined probabilistically. On one third of the trials 

there was a 12% chance (low probability), on another third there was a 50% chance (medium 

probability), and on another third there was an 88% (high probability) chance of winning the money if 

they completed the required number of spacebar presses in time. The probability level applied to both 

the low-effort and high-effort choice. 

The probability level and the amounts of money available to be won were presented on screen to the 

participant (see figure 4.4). Participants had 8s to make their choice; if they did not make a choice in 

that time the computer randomly selected one. Following a 0.5s fixation-cross and the spacebar-

pressing stage, 2s of feedback were given about whether the participant had successfully completed 

the spacebar-pressing in time, and if successful, 2s of feedback were given about whether money had 

been won or not. Participants completed 21 trials in total and the trial order was randomized. 

Participants kept the amounts of money won on two trials; these were randomly selected at the end 

of the task. 

Important predictor variables in this task are probability (chance of winning on each trial if the trial is 

completed), magnitude (the amount of money available on the high-effort choice) and expected value 

(i.e. the multiplication of probability and magnitude). Furthermore, trial number has previously been 

associated with more low-effort choices, as participants become more tired, and being male has been 

associated with more high-effort choices (Treadway et al., 2009). 

Trials were considered ‘incomplete’ if the participant did not finish the button-pressing in the 

allocated time. Participants were excluded from the analysis if they failed to complete 10 or more 

trials on any one session. This was because I wished to exclude participants who did not engage with 
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the task properly. The main outcome variable of the task was, on each trial, whether the participant 

made a low-effort or a high-effort choice. 

It is possible that the speed at which a participant tapped affected choice behaviour. Hence, before 

the actual task, they were asked to press as fast as they could with their little finger in order to 

complete 30 and 100 presses; the time taken to make that number of presses (baseline button-

pressing time) was recorded. This was to acquire a measurement of their baseline button-pressing 

speed. 

It is important to note that the EEfRT used here (as described above) was slightly different to the 

original EEfRT (Treadway et al., 2009) in a number of ways, the original version: (1) had more trials; 

(2) finished after a set amount of time, not a set amount of trials; (3) used the dominant index finger 

for the easy option; (4) had a continuous variation in money available to be won; and (5) gave 

participants 5s to choose which option. 
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Figure 4.4 Diagrammatic representation of a single trial from the EEfRT. (1) A fixation cross is shown 
for 0.5s; (2) A choice is made between an easy option and a hard option. The amount of money 
available to be won for both the easy option and the hard option is shown. The probability of winning 
the money if the subsequent button-pressing is completed is shown; (3) A fixation cross is shown for 
0.5s; (4) Button-pressing is completed for 7s, or until 30 presses are completed, (easy option) or 21s, 
or until 100 presses are completed, (hard option); (5) Feedback is given about whether the button-
pressing was completed in time; (6) Feedback is given about whether money has been won and, if so, 
how much. 

4.2.2.5 Self-rated assessments 

State measures 

Tobacco craving questionnaire - short form (TCQ-SF) (Heishman et al., 2008) 

As described in section 3.2.2.2 

Mood and physical symptoms scale (MPSS) (West & Hajek, 2004) 

As described in section 3.2.2.2 
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Snaith Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995) 

As described in section 2.2.2.2 

Drug Effects Questionnaire (DEQ) (Morean et al., 2013) 

This assessment comprised 5 visual-analogue-scales (VAS) rated according to how the participant feels 

‘right now’ from 0mm (‘not at all’) to 100mm (‘extremely’): (1) ‘do you feel a drug effect’; (2) ‘are you 

high’; (3) ‘do you dislike any of the effects’; (4) ‘do you like any of the effects’ and (5) ‘would you like 

more’. 

Subjective Effects 

‘Hungry’, ‘nauseous’, ‘euphoric’, ‘dizzy’, and ‘drowsy’ were rated according to how the participant felt 

‘right now’ from 0 (‘not at all’) to 10 (‘extremely’). 

Trait measures 

Apathy evaluation scale (AES) (Marin, Biedrzycki, & Firinciogullari, 1991) 

This scale of apathy, or ‘amotivation’, consisted of 18 items that were rated from 1 (not at all 

characteristic) to 4 (very characteristic). Higher scores reflected greater apathy. 

Barratt impulsiveness scale (BIS) (Patton & Stanford, 1995) 

As described in section 3.2.2.2 

Beck depression inventory (BDI-II) (Beck et al., 1996) 

As described in section 2.2.2.2 

Behavioural activation/inhibition systems scale (BIS/BAS) (Carver & White, 1994) 

As described in section 3.2.2.2 
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Brief sensation seeking scale (BSSS) (Hoyle et al., 2002) 

As described in section 3.2.2.2 

Cigarette dependence scale (CDS-5) (Etter et al., 2003) 

As described in section 3.2.2.2 

Drug history 

Participants were asked about: (1) lifetime use; (2) number of lifetime exposures; (3) if used in lifetime, 

how many days used per month now. 

DSM-5 Tobacco use disorder. 

As described in section 2.2.2.3 

Fagerstrom test for nicotine dependence (FTND) (Heatherton et al., 1991) 

As described in section 2.2.2.2 

Frequency and general liking of rewards 

Participants were asked how many days per week, on average, they smoked a cigarette, listened to 

some music or ate some chocolate. They were also asked how much they liked, in general, smoking a 

cigarette, listening to their favourite music and eating Diary Milk chocolate (from -10 ‘extremely 

dislike’ to +10 ‘extremely like’). 

Temporal experiences of pleasure scale (TEPS)  

As described in section 2.2.2.2 

4.2.2.6 Other assessments 
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Spot-the-word (Baddeley et al., 1993) 

As described in section 2.2.2.3 

Carbon monoxide  

As described in section 2.2.2.3 

4.2.3 Procedure 

Participants attended two 3.5 hour sessions separated by a washout period lasting between 7 and 25 

days (mean=9, SD=4.42). Participants were asked to fast for an hour beforehand and to avoid driving 

or operating heavy machinery on the day of testing. First, participants provided a carbon monoxide 

(CO) reading (Bedfont Micro Smokerlyzer, UK) and completed the state questionnaires (excluding the 

DEQ). 

The drug was then orally administered, which was 0.5mg pramipexole (peak plasma levels at 1-3h) 

(Wright, Sisson, Ichhpurani, & Peters, 1997) or matched placebo (lactose powder). Participants were 

given one of two capsules, which looked identical, and they swallowed the capsule with a cup of water. 

Blinding was maintained by a colleague (who never tested participants) designing the code that 

determined which participant received which drug on which session. This same colleague also made 

the drugs up. 

Based on previous research (Ersche et al., 2010; Freeman et al., 2013), 30mg of the peripheral 

dopamine D2 antagonist domperidone was orally administered on both sessions to reduce unwanted 

side effects such as nausea. Immediately after drug administration, participants completed trait 

questionnaires that were split across the two sessions. Testing began 90min post drug administration. 

Assessments were conducted in the following order: state questionnaires (90min), CPT (100min), 

EEfRT (105min), PRT (120min), DReaM-Choice (145min), consumption (175min), state questionnaires 
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(195min). Smoking was not permitted until the consumption stage of the experiment. Participants 

were reimbursed £7.50/hour and could earn extra money from the EEfRT and PRT. 

In terms of ethical considerations, participants were fully informed about the potential side effects of 

pramipexole; were advised not to drink alcohol, drive a vehicle or operate machinery afterwards; and 

a doctor was always available on the telephone. 

4.2.4 Statistical analyses 

All data were analysed using IBM Statistical Package for Social Sciences (IBM SPSS version 22). 

The majority of data were analysed using the general linear model. Where residuals were not normally 

distributed or the group variances were not homogenous, non-parametric tests were used when 

available and appropriate. In repeated-measures ANOVA, when sphericity was violated, the 

Greenhouse-Geisser correction was used and corrected degrees of freedom are reported. In order to 

explore significant interactions, a Bonferonni correction was applied to post hoc comparisons via the 

syntax in SPSS. 

Self-report data 

Subjective effects, DEQ, TCQ-SF, MPSS and SHAPS data were analysed using mixed-design ANOVAs 

with a between-subjects factor of group (dependent and occasional) and within-subjects factors of 

drug (placebo and pramipexole) and time (pre-drug, post-drug, post-consumption). Post-drug refers 

to approximately 90 mins after drug administration. Post-consumption refers to approximately 195 

mins after drug administration, and just after the 20 mins reward consumption period. 

DReaM-Choice 

Choices and BP data from the DReaM-Choice were analysed using mixed-design ANOVAs with a 

between-subjects factor of group and within-subjects factors of drug and reward (cigarette, music, 
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chocolate and paper).  As in chapter 2, when one reward type was never chosen, a BP score of 0 was 

assigned. Reaction time data were analysed in the same way but without paper included. 

Liking of the first unit of each reward data were analysed using a mixed effects model with group, drug 

and reward (and their interactions) as fixed factors and the intercept allowed to vary randomly. 

CPT 

Data from the cigarette purchase task (breakpoint, intensity, Omax and Pmax) were all log10 

transformed so that the residuals were more normally distributed. Mixed-design ANOVAs with a 

between-subjects factor of group and a within-subjects factor of drug were then carried out on each 

outcome. 

PRT 

Response bias (RB) and discriminability from the PRT were analysed using mixed-design ANOVAs with 

a between-subjects factor of group and a within-subjects factor of drug. Reaction time and accuracy 

were analysed in the same way with an extra within-subjects factor of stimulus (rich and lean). As 

many participants would have traditionally been excluded on this task for their performance, I also 

explored the consequences of changing the exclusion criteria on the pattern of results. 

EEfRT 

Generalized estimating equation (GEE) models were used to analyse the likelihood of participants 

making a high-effort choice. GEE models allow the outcome variable to be non-normally distributed 

with correlated residuals: a binary outcome in this case. GEE models allow parameters that vary on a 

trial-by-trial basis to be incorporated and they deal with missing data without excluding all of a 

participant’s data. Furthermore, these characteristics mean GEE models have more power to detect 

effects than general linear model approaches. The outcome measure was choice (high-effort or low-
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effort), modelled using a binary logistic distribution. I used an unstructured working correlation 

matrix. 

I tested whether pramipexole and group affected the likelihood of making a high-effort choice. Using 

the same approach as Treadway et al. (2009), I computed 8 separate models. Each model included the 

standard predictors according to Treadway et al. (2009) (magnitude, probability, expected value, trial 

number, gender) plus drug and group. Every model included these terms plus: no others (model 1), 

drug X magnitude (model 2), drug X probability (model 3), drug X expected value (model 4), group X 

magnitude (model 5), group X probability (model 6), group X expected value (model 7), group X drug 

(model 8). The reference categories were: drug = placebo, group = occasional, gender = female. 

Magnitude, probability, expected value and trial number were modelled as continuous predictors. 

SPSS uses dummy coding, so the coefficients for the main effects (e.g. drug) in models which have 

interactions including those same variables (e.g. drug*probability) only provide information on the 

main effect (e.g. drug) when the other variable (e.g. probability) is set to zero, i.e. its reference 

category (e.g. 12%). Hence, main effects are only useful in providing information about an overall 

effect when there is not an interaction between it and another variable included in the model. 

Correlations 

For the DReaM-Choice task, within each group separately, correlations were computed between both 

the number of cigarette choices and BP, collapsed across drug condition, and the following measures: 

number of cigarettes smoked/day, general liking of cigarettes and total TEPS score. 

Correlations were computed between total TEPS score and: PRT average response bias, PRT change in 

response bias, the total number of high-effort choices made in the EEfRT, average DReaM-Choice 

button-pressing for cigarettes and non-drug rewards, all collapsed across drug conditions. Finally, 

within each session and within each group, TCQ-SF total score post-drug was correlated with PRT 

response bias and the total number of high-effort choices made in the EEfRT. 



161 
   

The alpha level was adjusted to 0.005 to account for multiple tests. 

Participant exclusions 

Each analysis was carried out with all participants and with the 5 retrospectively ineligible participants 

removed to determine if these exclusions altered the pattern of significant results. Furthermore, drug 

order was added into the models for DReaM-Choice, PRT, CPT and EEfRT data to determine if this 

affected the pattern of results. If there were any differences after these changes were made, these 

are stated. 

Successful blinding 

A McNemar test was carried out to determine whether participants could guess whether they had 

been given placebo or pramipexole. 
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4.3 Results 

4.3.1 Demographics (Tables 4.1 and 4.2)12 

The groups were statistically similar on all non-smoking demographic variables. The dependent 

smokers had greater dependence than the occasional smokers on the FTND (U38=0.00, p<0.001), CDS-

5 (t37=11.923, p<0.001) and DSM (U38=1.00, p<0.001). The dependent smokers smoked more 

cigarettes per day and week (U38=0.00, p<0.001), started smoking at an earlier age (t38=2.504, p=0.017) 

and reported greater subjective liking, in general, of smoking a cigarette (t37=4.687, p<0.001) 

compared with the occasional smokers. The difference in BDI scores approached significance on both 

the placebo (t34=1.870, p=0.070) and pramipexole (t29.297=1.826, p=0.066) condition. Removing the 5 

participants did not change the pattern of results, except that the group differences in BDI were no 

longer at trend level (ps>0.1) 

  

                                                           
12 Annual income data was missing for 2 dependent smokers; CDS-5, AES, general liking of each reward, 
frequency of using each reward, BAS, BIS, TEPS and BSSS data was missing for 1 dependent smoker; STW data 
was missing for 1 occasional smoker; BDI data on the placebo session was missing for 3 dependent smokers and 
1 occasional smoker; and BDI data on the pramipexole session was missing for 1 dependent smoker. Means 
were calculated from the remaining participants. 
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Table 4.1 Group means (SD) for demographic data for dependent and occasional smokers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p<0.05, ***p<0.001. FTND Fagestrom test for nicotine dependence; CDS-5 Cigarette dependence 

scale; DSM-5 Diagnostic and statistical manual tobacco use disorder; BISBAS Behavioural 

activation/inhibition systems scale; TEPS Temporal experience of pleasure scale; BSSS brief sensation 

seeking scale; BIS Barratt impulsiveness scale 

  

 Dependent Occasional 

Age 24.35 (6.81) 22.60 (3.79) 

Gender (m/f) 10/10 10/10 

Body mass index 23.19 (3.24) 22.86 (2.91) 

Annual income (£) 12,682 (8,210) 13,111 (7,812) 

Years in education 15.83 (2.68) 16.35 (1.87) 

Spot-the-word 49.00 (4.10) 50.74 (3.55) 

Cigarettes/day*** 16.45 (5.80) 0.54 (0.12) 

Cigarettes/week*** 115.15 (40.62) 3.78 (0.83) 

Age started smoking (years)* 13.40 (2.44) 15.03 (1.58) 

Age started smoking 10 or more per day 16.85 (2.30) NA 

Tried to quit smoking (y/n) 15/5 9/11 

Number of quit attempts 2.00 (1.41) 11.11 (19.00) 

Length of most successful quit attempt (days) 101.87 (180.95) 333.11 (60.0) 

FTND*** 5.70 (1.03) 0 

CDS-5*** 18.53 (3.12) 7.75 (2.51) 

DSM-5*** 6.20 (1.85) 1.20 (1.00) 

BDI on placebo session 9.76 (7.16) 6.05 (4.60) 

BDI on pramipexole session 9.74 (7.64) 6.05 (3.46) 

Apathy evaluation scale 52.16 (6.13) 51.85 (5.16) 

BISBAS drive 11.11 (2.13) 12.10 (1.77) 

BISBAS fun-seeking 12.95 (1.65) 12.50 (1.96) 

BISBAS reward responsiveness 17.42 (1.64) 17.20 (1.74) 

BISBAS inhibition 21.74 (4.55) 21.20 (3.55) 

TEPS anticipatory 40.79 (6.55) 40.35 (5.95) 

TEPS consummatory 38.42 (6.34) 36.10 (5.81) 

TEPS total 79.53 (11.23) 76.45 (9.65) 

BSSS 31.05 (4.85) 30.55 (5.37) 

BIS attentional 17.79 (2.59) 16.55 (3.33) 

BIS motor 24.26 (4.62) 22.30 (4.37) 

BIS nonplanning 26.05 (4.62) 25.35 (5.28) 

BIS total 68.11 (10.51) 64.20 (10.76) 
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Table 4.2 Group means (SD) for the frequency and general liking of rewards for dependent and 

occasional smokers 

 

4.3.2 Drug use (Table 4.3) 

The groups did not differ on any measure of drug or alcohol use. 

4.3.3 Subjective effects 

Across both sessions, hunger increased throughout the experiment (F2,76=24.433, p<0.001). On the 

pramipexole session, but not the placebo session: nausea increased from pre-drug to post-drug 

(t39=3.420, p=0.004); dizziness increased from pre-drug to post-drug (t39=3.289, p=0.006) and to post-

consumption (t39=3.409, p=0.005); and euphoria decreased from pre-drug to post-drug (t39=3.340, 

p=0.006) and to post-consumption (t39=3.137, p=0.010). Furthermore, at post-consumption only, 

drowsiness was greater on the pramipexole session than the placebo session (t39=4.695, p<0.001). 

4.3.4 Drug effects questionnaire 

Across both sessions, ratings of ‘feel drug’ increased throughout the experiment (F1,38=4.669, 

p=0.037). Ratings of ‘feel drug’ (F1,38=6.477, p=0.015) and ‘dislike drug’ (F1,38=7.684, p=0.009) were 

greater and ratings of ‘want drug’ (F1,38=8.017, p=0.007) were smaller on the pramipexole session 

compared with the placebo session. On the pramipexole, but not the placebo session, ‘like drug’ 

scores decreased from post-drug to post-consumption (t39=2.900, p=0.006). 

 

 Dependent Occasional 

Like smoking one cigarette, in general (-10 to 10) 8.21 (1.58) 5.15 (2.39) 

Like listening to one song of favourite music, in general (-10 to 10) 8.26 (2.02) 7.20 (2.35) 

Like eating Diary Milk chocolate, in general (-10 to 10) 1.84 (5.93) 4.25 (2.73) 

Like receiving £1, in general (-10 to 10) 7.47 (2.27) 6.70 (2.25) 

Days/week smoke at least one cigarette 7.00 (0.00) 2.73 (1.50) 

Days/week listen to music 6.47 (1.17) 6.20 (1.54) 

Days/week eat chocolate 2.37 (1.61) 2.70 (1.63) 
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Table 4.3 Group means (SD) for drug taking in dependent and occasional smokers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Dependent Occasional 

Alcohol ever used (y/n) 20/0 20/0 

Alcohol days per week 2.43 (2.33) 2.03 (1.14) 

Amount in typical session (units) 8.65 (5.16) 7.73 (6.51) 

Alcohol life exposures 1,294 (2,580) 617 (521) 

Amphetamine ever used (y/n) 9/11 4/16 

Amphetamine days per month 0.54 (1.40) 0.15 (0.13) 

Amphetamine life exposures 17.07 (66.7) 0.60 (1.50) 

Benzodiazepines ever used (y/n) 8/12 4/16 

Benzodiazepines days per month 0.69 (1.47) 1.04 (1.97) 

Benzodiazepines life exposures 17.90 (39.95) 3.33 (7.33) 

Cannabis ever used (y/n) 19/1 19/1 

Cannabis days per month 3.07 (7.03) 0.92 (1.38) 

Cannabis life exposures 235 (318) 367 (919) 

Cocaine ever used (y/n) 11/9 10/10 

Cocaine days per month 0.34 (0.49) 0.18 (0.15) 

Cocaine life exposures 12.45 (23.56) 17.95 (55.66) 

Ketamine ever used (y/n) 7/13 6/14 

Ketamine days per month 0.37 (0.65) 0.19 (0.37) 

Ketamine life exposures 3.70 (9.64) 4.50 (9.84) 

LSD ever used (y/n) 7/13 6/14 

LSD days per month 0.19 (0.36) 0.05 (0.06) 

LSD life exposures 3.30 (11.10) 0.90 (1.94) 

Mushrooms ever used (y/n) 9/11 6/14 

Mushrooms days per month 0.17 (0.34) 0.03 (0.04) 

Mushrooms life exposures 1.50 (3.42) 0.68 (1.40) 

MDMA ever used (y/n) 13/7 14/6 

MDMA days per month 0.71 (0.84) 0.54 (0.55) 

MDMA life exposures 46.10 (92.11) 22.20 (47.34) 

Mephedrone ever used (y/n) 5/15 3/17 

Mephedrone days per month 0.08 (0.17) 0.03 (0.05) 

Mephedrone life exposures 4.85 (14.24) 1.75 (6.72) 
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4.3.5 Tobacco Craving Questionnaire (TCQ; Table 4.4) 

On each subscale and the total TCQ score, there was an interaction between group and time, and main 

effects of both group and time. Dependent smokers, compared with occasional smokers, had greater 

craving on each subscale. Craving scores increased from pre-drug to post-drug and decreased from 

post-drug to post-consumption. These changes were greater in dependent smokers than occasional 

smokers. There was a main effect of drug on the compulsivity and purposefulness subscales, with 

greater scores on the pramipexole session than the placebo session, however there was no interaction 

between drug and time on these subscales. 

4.3.6 Mood and Physical Symptoms Scale (Table 4.5) 

‘Depressed’ scores decreased as the experiment progressed while ‘hungry’, ‘poor concentration’ and 

‘time spent with urges’ increased as the experiment progressed. The dependent smokers, compared 

with the occasional smokers, reported greater ‘time spent with urges’ and ‘strength of urges to 

smoke’. There was a main effect of drug on ‘strength of urges to smoke’, with greater scores on the 

pramipexole session than the placebo session, however there was no interaction between drug and 

time on these subscales. 

 

 

 

 

 

 



 
   

Table 4.4 Group means (SD) for TCQ-SF pre-drug, post-drug and post-consumption for placebo and pramipexole sessions for dependent and occasional 

smokers 

  Dependent Occasional Group X 
Drug X Time 

Group  X 
Drug 

Group  X 
Time 

Drug X  
Time 

Group Drug Time 

  Placebo Pramipexole Placebo Pramipexole F2, 76 F1, 38 F2, 76 F2, 76 F1, 38 F1, 38 F2, 76 

TCQ 
emotionality 

Pre-drug 8.40 
(3.79) 

9.30 (4.99) 5.90 
(2.81) 

5.15 (2.68) 0.904 1.116 13.683*** 1.463 10.752*** 1.532 20.989*** 

 Post-drug 9.25 
(4.38) 

10.80 (4.65) 5.10 
(3.02) 

5.90 (3.31) 

 Post-
consumption 

6.20 
(3.19) 

5.65 (2.85) 5.05 
(3.41) 

5.15 (2.81) 

TCQ expectancy Pre-drug 13.25 
(4.13) 

14.65 (3.22) 10.10 
(4.14) 

9.75 (4.33) 0.286 3.035 14.170*** 0.353 28.847*** 0.217 49.825*** 

 Post-drug 16.40 
(3.97) 

16.85 (3.15) 9.70 
(4.24) 

8.75 (4.23) 

 Post-
consumption 

9.50 
(3.91) 

9.90 (3.26) 7.20 
(3.69) 

7.20 (2.98) 

TCQ compulsivity Pre-drug 9.05 
(4.19) 

10.25 (4.32) 4.30 
(1.98) 

4.25 (1.83) 2.782 1.638 17.425*** 0.979 31.812*** 4.912* 23.998*** 

 Post-drug 9.90 
(4.93) 

12.35 (5.24) 4.55 
(2.48) 

4.55 (2.37) 

 Post-
consumption 

7.50 
(4.19) 

6.65 (3.79) 3.80 
(1.79) 

4.60 (2.60) 

TCQ 
purposefulness 

Pre-drug 12.65 
(2.89) 

14.10 (3.19) 8.45 
(2.84) 

8.30 (3.31) 1.790 0.806 8.157 *** 0.427 48.088*** 5.349* 36.362*** 

 Post-drug 13.30 
(4.78) 

15.35 (3.86) 7.35 
(3.07) 

7.70 (2.72) 

 Post-
consumption 

9.80 
(4.62) 

9.25 (3.81) 5.55 
(2.66) 

6.65 (3.00) 

TCQ total Pre-drug 43.35 
(12.88) 

48.30 
(13.02) 

28.75 
(8.97) 

27.45 (9.53) 1.339 2.020 18.780*** 0.263 37.186*** 2.891 52.705*** 

 Post-drug 48.85 
(15.19) 

53.85 
(15.79) 

26.85 
(10.36) 

26.90 (9.66) 

 Post-
consumption 

33.00 
(14.60) 

31.45 
(10.95) 

21.60 
(10.18) 

23.60 (9.70) 

*p<0.05, ***p<0.001. TCQ Tobacco Craving Questionnaire 



 
   

Table 4.5 Group means (SD) for MPSS pre-drug, post-drug and post-consumption for placebo and pramipexole sessions for dependent and occasional 

smokers 

  Dependent Occasional Group X 
Drug X Time 

Group  X 
Drug 

Group  X 
Time 

Drug X  
Time 

Group Drug Time 

  Placebo Pramipexole Placebo Pramipexole F2, 76 F1, 38 F2, 76 F2, 76 F1, 38 F1, 38 F2, 76 

MPSS depressed Pre-drug 1.50 
(0.83) 

1.45 (0.69) 1.40 
(0.60) 

1.50 (0.76) 0.207 0.053 1.484 0.798 0.832 0.000 8.376*** 

 Post-drug 1.25 
(0.55) 

1.30 (0.57) 1.25 
(0.55) 
 

1.35 (0.67) 

 Post-
consumption 

1.20 
(0.70) 

1.25 (0.55) 1.25 
(0.55) 

1.20 (0.41) 

MPSS irritable Pre-drug 1.25 
(0.55) 

1.30 (0.66) 1.40 
(0.68) 
 

1.75 (0.72) 0.375 0.907 2.384 0.214 0.200 0.347 3.328* 

 Post-drug 1.55 
(0.76) 

1.65 (0.67) 1.45 
(0.69) 
 

1.50 (0.95) 

 Post-
consumption 

1.35 
(0.67) 

1.35 (0.59) 1.55 
(0.89) 

1.70 (1.03) 

MPSS restless Pre-drug 1.90 
(0.79) 

1.75 (0.85) 1.90 
(0.79) 

1.75 (0.72) 0.600 0.770 2.035 0.308 0.377 0.159 3.469* 
 

 Post-drug 1.85 
(1.09) 

1.75 (0.91) 1.75 
(0.85) 
 

1.65 (1.09) 

 Post-
consumption 

1.80 
(1.01) 

1.85 (0.88) 2.25 
(1.07) 

2.10 (1.17) 

MPSS hungry Pre-drug 1.95 
(1.15) 

1.70 (0.73) 2.15 
(0.93) 
 

1.70 (0.92) 0.054 0.139 0.389 1.079 0.006 1.468 36.516*** 

 Post-drug 2.85 
(1.09) 

2.65 (1.18) 2.90 
(1.21) 

2.55 (1.00) 

 Post-
consumption 

2.95 
(1.00) 

2.95 (1.15) 2.85 
(1.18) 

2.80 (1.44) 

MPSS poor 
concentration 

Pre-drug 1.95 
(0.94) 

1.80 (1.01) 1.60 
(0.82) 

1.70 (0.66) 1.098 0.270 0.358 0.850 0.394 1.591 6.801** 

 Post-drug 1.95 
(0.89) 

2.30 (1.08) 1.95 
(0.94) 

2.10 (0.85) 



 
   

 Post-
consumption 

1.95 
(1.00) 

2.35 (0.92) 2.10 
(0.91) 

2.10 (0.79) 

MPSS time spent with 
urges 

Pre-drug 2.35 
(0.82) 

2.35 (0.75) 0.40 
(0.50) 

0.70 (0.66) 1.375 0.033 0.220 0.867 100.103*** 1.619 3.415* 

 Post-drug 2.40 
(1.27) 

2.65 (0.88) 0.50 
(0.69) 

0.55 (0.69) 

 Post-
consumption 

2.60 
(0.75) 

2.75 (1.02) 0.70 
(0.80) 

0.65 (0.67) 

MPSS strength of 
urges to smoke 

Pre-drug 2.30 
(0.73) 

2.40 (0.94) 0.50 
(0.69) 

0.90 (0.79) 1.717 0.083 1.680 0.191 73.329*** 5.756* 0.288 

 Post-drug 2.30 
(1.26) 

2.60 (0.88) 0.45 
(0.60) 

0.60 (0.75) 

 Post-
consumption 

2.35 
(0.99) 

2.65 (0.99) 0.60 
(0.68) 

0.60 (0.60) 

*p<0.05, **p<0.01, ***p<0.001. MPSS Mood and physical symptoms scale 
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4.3.7 SHAPS  

There were no interactions or main effects. 

4.3.8 DReaM-Choice 

Choices (Figure 4.5a) 13 

There was an interaction between group and reward (F2.430, 89.927=21.009, p<0.001) and a main effect 

of reward (F2.430, 89.927=55.883, p<0.001).  

Exploration of the group X reward interaction showed that the dependent smokers chose cigarettes 

more (t37=7.259, p<0.001) and chocolate less (t37=4.702, p<0.001) than the occasional smokers. The 

dependent smokers chose cigarettes more than music (t19=6.463, p<0.001) and chocolate (t19=5.703, 

p<0.001), while the occasional smokers chose chocolate more than cigarettes (t18=4.616, p<0.001) and 

music (t18=4.189, p<0.001). 

Overall, all rewards were chosen more than paper (ps<0.001) and cigarettes and chocolate were 

chosen more than music (ps<0.006). 

Average number of button-presses (Figure 4.5b) 14 

There were no differences between the groups or sessions on baseline button-pressing speed. 

There was an interaction between group and reward (F3, 111=6.999, p<0.001) and a main effect of 

reward (F3, 111=35.373, p<0.001). All rewards were pressed for more than paper (ps<0.001). 

Exploration of the group X reward interaction showed that the dependent smokers pressed for 

cigarettes more (t37=3.663, p<0.001) than the occasional smokers. The dependent smokers pressed 

                                                           
13 One occasional smoker’s data was missing due to a computer error. 

14 One occasional smoker’s data was missing due to a computer error. 
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for all rewards similarly while the occasional smokers pressed for chocolate more than cigarettes 

(t18=3.707, p=0.004). 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

Figure 4.5 Group means for a) The number of choices for each reward type b) the average number of 
button-presses for each reward type, in the DReaM-Choice, for dependent and occasional smokers on 
the placebo and pramipexole sessions. Error bars show standard error. 

Time taken to choose reward (Figure 4.6)15 

There was an interaction between group and reward (F2, 64=13.069, p<0.001) and a main effect of 

reward (F2, 64=3.349, p=0.041). The dependent smokers chose cigarettes faster (t32=3.16, p=0.003) 

                                                           
15 Six participants were excluded due to never choosing one of the reward types. 
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than occasional smokers. Within the dependent smokers, cigarettes were chosen faster than music 

(t17=5.707, p<0.001) and chocolate (t17=3.853, p=0.002); whereas within the occasional smokers, 

chocolate was chosen marginally faster than cigarettes (t16=2.501, p=0.053). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Group means for the time taken to choose a cigarette, music or chocolate reward, in the 
DReaM-Choice, for dependent and occasional smokers on the placebo and pramipexole sessions. 
Error bars show standard error. 

Liking of first reward unit consumed (Figure 4.7) 

There was an interaction between group and reward (F2, 153=4.639, p=0.011) and a main effect of group 

(F1, 153=18.558, p<0.001), with overall liking higher in the dependent smokers than the occasional 

smokers. 

The group X reward interaction was explored by conducting mixed effects models within each reward 

separately. Dependent smokers liked cigarettes more (F1, 49=23.500, p<0.001) and chocolate less (F1, 

45=4.296, p=0.044) than occasional smokers. 
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Figure 4.7 Group means for liking of (-10 ‘extremely dislike’ to +10 ‘extremely like’) the first 

consumed unit of cigarette, music and chocolate reward, in the DReaM-Choice, for dependent and 

occasional smokers on the placebo and pramipexole sessions. Error bars show standard error. 

4.3.9 CPT (Figure 4.8) 

The logarithms of breakpoint, intensity, Omax and Pmax were all significantly larger in the dependent 

smokers compared with the occasional smokers (ps<0.021). There was never an interaction between 

group and drug or an effect of drug. 

4.3.10 PRT 

Excluded participants 

23 participants out of 40 would have been excluded if I had used the full exclusion criteria previously 

used for this task (Whitton, personal communication). Hence, I continued with analysis using all of the 

participants. 

Bias (Figure 4.9)16 

                                                           
16 3 dependent smokers were excluded because of a computer error. 
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There was a main effect of drug (F1, 35=4.566, p=0.040), with a smaller RB following pramipexole 

compared with placebo, and a trend effect of block (F1, 35=3.332, p=0.076), with a marginally larger 

mean RB in block 2 compared with block 1. 

When the original exclusion criteria were used (when 17 participants remained), the effect of drug 

was lost. However, there was an interaction between drug and group (F1, 14=5.035, p=0.042) and a 

main effect of block (F1, 14=6.808, p=0.021). 

I also used a more liberal set of exclusion criteria17, which used one of the traditional exclusion criteria 

but did not exclude people based on invalid trials, i.e. did not exclude people based on very fast 

reaction times, or low accuracy scores. A participant was excluded if they received reinforcement on 

<25 rich stimuli or received reinforcement on <6 lean stimuli on either block on either session. Using 

this method of exclusion, 20 participants remained (8 in the dependent group and 12 in the occasional 

group). The only significant effect was a drug by group interaction (F1, 18=6.339, p=0.021). 

Hence, it is clear that the nature of the exclusion criteria did affect the pattern of results.

                                                           

17 Note: reducing the reaction time which led to a trial being ‘invalid’ from 100ms to 75ms did not affect the 

exclusion of any participant, so this tactic of liberalising exclusion criteria did not affect results. 

 



 
   

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Cigarette demand curve from the CPT for dependent and occasional smokers on the placebo and pramipexole sessions. Error bars show standard 

error.
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Figure 4.9 Response bias on the Probabilistic Reward Task in blocks 1 and 2 following placebo and 
pramipexole, collapsed across group (no extra participants were excluded in the data shown here). 
Error bars show standard error.  

Discriminability (Figure 4.10)18 

There was an interaction between group, drug and block (F1, 35=5.199, p=0.029) and a main effect of 

drug (F1, 35=5.907, p=0.020). 

Exploration of the group X drug X bock interaction showed that discriminability on block 2 was worse 

on the pramipexole session compared with the placebo session in the dependent smokers (t16=2.696, 

p=0.010) but not the occasional smokers. Overall, discriminability was worse on the pramipexole 

session compared with the placebo session. 

Exclusion of the 5 retrospectively ineligible participants did not change the pattern of above results, 

apart from reducing the effect of drug to a trend (p=0.080). 

  

                                                           
18 3 dependent smokers were excluded because of a computer error. 
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Figure 4.10 Discriminability on the Probabilistic Reward Task in blocks 1 and 2 following placebo and 
pramipexole. Error bars show standard error. 

Accuracy19 

There was an interaction between drug and stimulus (F1, 36=4.448, p=0.042), and main effects of drug 

(F1, 36=5.812, p=0.021) and stimulus (F1, 36=37.601, p<0.001). 

Exploration of the drug X stimulus interaction showed that accuracy was greater for the rich, 

compared with the lean, stimulus on the placebo session (t37=5.880, p<0.001) and, to a lesser extent, 

on the pramipexole session (t37=2.444, p=0.019). Overall, accuracy was better on the placebo session 

compared with the pramipexole session. 

Exclusion of the 5 retrospectively ineligible participants did not change the pattern of above results, 

apart from reducing the effect of drug to a trend (p=0.085). 

Reaction Time20 

There was an interaction between drug and block (F1, 34=4.472, p=0.042) and a main effect of stimulus 

(F1, 34=4.472, p=0.042). 

                                                           
19 2 dependent smokers were excluded because of a computer error. 

 
20 4 dependent smokers were excluded because of a computer error. 
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Exploration of the drug X block interaction showed that reaction time was slower on block 2 compared 

with block 1 (t35=2.500, p=0.020). Reaction time was faster for the rich stimulus compared with the 

lean stimulus (F1, 34=15.576, p<0.001). 

4.3.11 EEfRT (Table 4.6 and Figure 4.11 a-c)21 

The task parameters probability, magnitude and expected value all increased the likelihood of making 

a high-effort choice. In model 1, which tested the overall effects of group and drug on the likelihood 

of making a high-effort, neither had a significant impact. In models 2, 3 and 4, pramipexole lowered 

sensitivity to the augmenting effect of magnitude (p=0.017), probability (p<0.001) and expected value 

(p<0.001) on likelihood of making a high-effort choice, respectively. In models 5, 6 and 7, dependent 

smokers, compared with occasional smokers, were less sensitive to magnitude (p=0.049), probability 

(p<0.001) and expected value (p<0.001). Finally, in model 8, there was evidence for pramipexole 

having a stronger effect on the likelihood of making a high-effort choice in the dependent smokers 

compared with the occasional smokers (p=0.045). The main effects of drug and group in models 2-8 

provide information about whether there was a main effect when the other variable in the interaction 

is set to its reference category, hence they should not be interpreted as main effects collapsed across 

all levels of all other variables. 

Follow-up analyses were carried out by computing the GEE models in specific levels of each parameter. 

There was not a significant difference in the likelihood of making a high-effort choice on low or 

medium probability trials but pramipexole reduced the likelihood on high probability trials (b=-0.129, 

SE=0.0559, p=0.021, OR=0.879, 95% CI: 0.788, 0.981). 

Similarly, trials were split up into equal categories of low, medium and high magnitude and low, 

medium and high expected value. The three categories were formed by grouping the smallest third of 

                                                           
21 Two dependent smokers were excluded because they did not complete 10 or more trials on either or both 
sessions. 
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expected values/magnitudes, the middle third of expected values/magnitudes and the largest third of 

expected values/magnitudes. The effects of drug were non-significant at each category of magnitude 

and expected value and the differences between the groups were non-significant at each probability, 

magnitude and expected value category. However, the direction of the non-significant differences 

changed from low to high categories, explaining why the interactions were significant. These patterns 

of results are shown visually in figure 4.11 with the number of high-effort choices split between 

different categories. 

Exclusion of the 5 retrospectively ineligible participants had these consequences: (1) removed the 

interaction between group and magnitude in model 5 (p=0.251) and (2) removed the interaction 

between group and drug (p=0.145). Inclusion of drug-order did not change the above results.  
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Table 4.6 GEE models for the EEfRT, showing beta coefficients for each predictor, their standard errors 
(S.E.), p values, odds ratios (OR) and 95% confidence intervals (CI). The reference categories were: 
gender – female, group – occasional, drug - placebo. The most important terms are in bold. 

Model 1 

 

 

 

 

 

 

Model 2 

 

 

 

 

 

 

Model 3 

 

 

 

 

 

 

  

 Beta S.E. p OR 95% CI 

Magnitude 0.133 0.0404 0.001 1.143 1.056, 1.273 

Probability 0.051 0.0289 0.076 1.053 0.995, 1.114 

Expected Value 0.443 0.704 <0.001 1.557 1.356, 1.787 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender 0.081 0.0634 0.203 1.084 0.957, 1.227 

Group 0.008 0.0668 0.900 1.008 0.885, 1.149 

Drug -0.002 0.0319 0.203 0.954 1.356, 1.787 

 Beta S.E. p OR 95% CI 

Magnitude 0.175 0.0395 <0.001 1.191 1.103, 1.287 

Probability 0.051 0.0289 0.076 1.053 0.995, 1.114 

Expected Value 0.442 0.0701 <0.001 1.556 1.357, 1.785 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender 0.081 0.0632 0.200 1.084 0.958, 1.228 

Group 0.008 0.0666 0.905 1.008 0.885, 1.149 

Drug 0.113 0.0585 0.053 1.120 0.998, 1.256 

Drug x Magnitude -0.083 0.0349 0.017 0.920 0.859, 0.958 

 Beta S.E. p OR 95% CI 

Magnitude 0.136 0.0402 0.019 1.146 1.059, 1.240 

Probability 0.103 0.0279 <0.001 1.1808 1.050, 1.171 

Expected Value 0.437 0.0701 <0.001 1.547 1.349, 1.775 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender 0.084 0.0402 0.019 1.099 1.015, 1.189 

Group 0.008 0.0668 0.899 1.008 0.885, 1.150 

Drug 0.094 0.0402 0.019 1.099 1.015, 1.189 

Drug x Probability -0.095 0.0222 <0.001 0.909 0.871, 0.950 
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Model 4 

 

 

 

 

 

 

Model 5 

 

 

 

 

 

 

Model 6 

 

 

 

 

 

 

Model 7 

 

 

 

 

 

 

 

 Beta S.E. p OR 95% CI 

Magnitude 0.135 0.0401 0.001 1.145 1.058, 1.238 

Probability 0.052 0.0293 0.075 1.054 0.995, 1.116 

Expected Value 0.547 0.0793 <0.001 1.728 1.479, 2.018 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender 0.085 0.0633 0.181 1.088 0.961, 1.232 

Group 0.007 0.0667 0.913 1.007 0.884, 1.148 

Drug 0.136 0.0417 <0.001 1.145 1.058, 1.238 

Drug x Expected Value -0.206 0.0391 <0.001 0.814 0.754, 0.879 

 Beta S.E. p OR 95% CI 

Magnitude 0.209 0.0613 0.001 1.232 1.093, 1.390 

Probability 0.051 0.0292 0.081 1.052 0.994, 1.114 

Expected Value 0.445 0.0707 <0.001 1.358 1.792, 1.792 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender 0.081 0.0631 0.197 1.085 0.959, 1.227 

Group 0.212 0.1268 0.095 1.236 0.964, 1.585 

Drug -0.002 0.0319 0.942 0.998 0.937, 1.062 

Group X Magnitude -0.148 0.0750 0.049 0.0863 0.745, 0.999 

 Beta S.E. p OR 95% CI 

Magnitude 0.130 0.0415 0.002 1.239 1.050, 1.456 

Probability 0.155 0.0426 <0.001 1.168 1.074, 1.269 

Expected Value 0.445 0.0726 <0.001 1.561 1.354, 1.800 

Trial Number -0.015 0.0020 <0.001 0.986 0.982, 0.989 

Gender -0.083 0.0631 0.187 0.920 0.813, 1.041 

Group 0.214 0.0824 0.009 1.239 1.054, 1.456 

Drug -0.005 0.0323 0.887 0.995 0.934, 1.061 

Group X Probability -0.203 0.0515 <0.001 0.817 0.738, 0.903 

 Beta S.E. p OR 95% CI 

Magnitude 0.124 0.0420 0.003 1.132 1.043, 1.229 

Probability 0.041 0.0310 0.190 1.041 0.980, 1.107 

Expected Value 0.704 0.0867 <0.001 2.021 1.706, 2.396 

Trial Number -0.014 0.0020 <0.001 0.986 0.982, 0.990 

Gender -0.083 0.0626 0.186 0.920 0.814, 1.041 

Group 0.314 0.0928 <0.001 1.369 1.141, 1.642 

Drug -0.006 0.0325 0.862 0.994 0.993, 1.060 

Group X Expected Value -0.456 0.0946 <0.001 0.634 0.526, 0.763 



182 
 

Model 8 

 

 

 

 

 

 

  

 Beta S.E. p OR 95% CI 

Magnitude 0.133 0.0402 0.001 1.143 1.056, 1.236 

Probability 0.052 0.0288 0.073 1.053 0.995, 1.114 

Expected Value 0.441 0.0707 <0.001 1.555 1.354, 1.786 

Trial Number -0.014 0.0019 <0.001 0.986 0.982, 0.990 

Gender -0.079 0.0634 0.213 0.924 0.816, 1.046 

Group -0.057 0.0701 0.420 0.945 0.824, 1.804 

Drug -0.067 0.0347 0.054 0.935 0.874, 1.001 

Group X Drug 0.128 0.0641 0.045 1.137 1.003, 1.289 
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c) 

 

Figure 4.11 Group means for the number of high-effort choices/probability of making a high-effort 
choice on the EEfRT a) for dependent and occasional smokers on the placebo and pramipexole 
sessions, b) for dependent and occasional smokers as expected value varied, collapsed across drug 
conditions and c) for pramipexole and placebo sessions as expected value varied, collapsed across 
group.  
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4.3.12 Correlations 

In the dependent group, none of the correlations with DReaM-Choice outcomes were significant. In 

the occasional group, there was a correlation between general liking of cigarettes and cigarette BP 

(r=0.741, p<0.001) and a marginal correlation between general liking of cigarettes and number of 

cigarette choices (r=0.557, p=0.010) (with the α set to 0.005). The correlations between general liking 

of cigarettes and cigarette BP and choices were significantly larger in the occasional group than the 

dependent group (ps≤0.02). 

Collapsed across drug condition, there were no associations between average PRT response bias, total 

number of high-effort choices in the EEfRT and DReaM-Choice BP for cigarettes and non-drug rewards. 

TEPS-total score correlated with the number of high-effort choices made in the EEfRT (r=0.459, 

p=0.003) but not with PRT response bias. 

Within each group, the number of cigarettes smoked did not correlate with average PRT response bias 

or number of high-effort choices. Neither of these outcomes were associated with craving. 

4.3.13 Success of the blinding 

The distribution of drug guesses (whether the participant was on placebo or pramipexole) was 

marginally different from that of chance as determined by the McNemar test (p=0.052). 60% of 

participants correctly guessed when they had been given placebo and 67.5% of participants correctly 

guessed when they had been given pramipexole. 

4.4 Discussion 

To my knowledge, this is the first study to examine whether pramipexole influences motivation to 

smoke cigarettes. In dependent and occasional smokers, a single oral 0.5mg dose of pramipexole had 

no discernible effects on relative preference for, motivation for and liking of cigarettes or the 

alternative, non-drug rewards music and chocolate. Furthermore, pramipexole had null effects on 
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demand for cigarettes or reduce craving for cigarettes. Following results from chapter 2, dependent 

smokers demonstrated a greater relative preference for, motivation for and liking of cigarettes than 

occasional smokers.  

Pramipexole significantly weakened reward learning on the PRT. However, these results are weak 

because many participants would have been traditionally excluded on this task – and when they were 

excluded the pattern of results changed. In terms of effort-related decision-making, both pramipexole 

administration and nicotine dependence were associated with reduced sensitivity to the pro-

motivational parameters of magnitude, probability and expected value.  

Our groups were well matched on demographic variables, with no significant differences on any non-

smoking measure. The dependent smokers smoked an average of 16 cigarettes/day while the 

occasional smokers smoked an average of 0.5 cigarettes/day. Across both groups, pramipexole 

increased ‘nausea’, ‘dizziness’, ‘feel drug’ and ‘dislike drug’ and reduced ‘euphoria’ and ‘want drug’ 

ratings. 

4.4.1 Pramipexole’s effects on the processing of cigarette rewards in the DReaM-Choice task 

Despite the strong associations between the mesocorticolimbic dopamine system, nicotine 

dependence (Benowitz, 2010; Dagher et al., 2001; Fehr et al., 2008) and motivation (Niv et al., 2007; 

Salamone et al., 2007), a single low dose of pramipexole did not affect reward processing of cigarettes 

in smokers. I predicted that pramipexole would reduce motivation for cigarettes because the same 

dose has been shown to reduce an attentional bias to cigarette images (Freeman et al., 2015) and to 

improve motivation for a non-drug reward (Freeman et al., 2013) in smokers who smoked a similar 

number of cigarettes/day as the dependent smokers in this study. Pramipexole is thought to reduce 

phasic dopamine firing via activation of presynaptic D3 autoreceptors (Pizzagalli, Evins, et al., 2008; 

Samuels et al., 2006). I predicted that a reduction in phasic dopamine firing might reduce craving 

(Franken, 2003; Freeman et al., 2015) and reduce the motivation to smoke. I found no evidence for 
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these effects, with: relative preference for, motivation for, liking of, consumption of, craving of and 

demand for cigarettes all unaffected by pramipexole. 

Our findings question the role of D3 receptors in the maintenance of nicotine dependence and 

motivation to smoke. Animal research suggests D3 receptors are important in nicotine-seeking (Le Foll 

et al., 2005). However, I found no effects of an acutely administered D3-preferring agonist on 

cigarette-seeking or liking. Given bromocripine reduced ad libitum smoking (Caskey et al., 1999; Jarvik 

et al., 2000), D2-preferring agonists may be superior in disrupting cigarette processing. However, their 

results may be partially due to large increases in nausea, rather than dopamine receptor agonism. If 

nausea simply reduces smoking, my co-administration of domperidone may have dampened the 

effects of pramipexole. Future research should investigate bromocriptine’s effects when domperidone 

is concurrently administered. 

It may be that chronic, rather than acute, administration of pramipexole is needed in order to 

manipulate the system such that motivation to smoke is lowered. Indeed, bupropion, an approved 

drug for aiding smoking cessation, can increase smoking when given acutely (Cousins, Stamat, & de 

Wit, 2001), but reduces smoking when given chronically (Jorenby et al., 1999). Alternatively, a larger 

dose of pramipexole may be needed to adequately affect the motivation to smoke. If larger doses 

produce postsynaptic D3 receptor activation (Samuels et al., 2006) then these doses may have a 

qualitatively different effect on reward processing than the small dose (0.5mg) that I used in this study. 

Pramipexole may impair phasic and enhance tonic dopaminergic functioning (Ye et al., 2011); a critical 

balance in these changes may be required to disrupt the motivation to smoke in the way I desired. 

Finally, pramipexole has been shown to reduce the strength of urges to smoke (Freeman et al., 2015). 

Contrastingly, in this study craving appeared to be larger (on two subscales of the TCQ-SF and the 

‘strength of urges’ subscale of the MPSS) during the pramipexole session compared with the placebo 

session. Yet, there was no drug X time interaction, and the effects appeared to be driven by baseline 

differences (see table 4.4). So, despite these main effects, there is little evidence that pramipexole 
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increased craving but also no evidence that pramipexole decreased craving. Hence, I certainly did not 

replicate Freeman et al. (2015). 

4.4.2 Pramipexole’s effects on the processing of non-drug rewards in the DReaM-Choice 

Pramipexole did not affect relative preference for, motivation for and liking of music or chocolate. I 

hypothesised that pramipexole would improve motivation for these non-drug rewards,  given its pro-

motivational acute (Freeman et al., 2013) and chronic effects (Lemke et al., 2006). I had hoped 

pramipexole would concomitantly enhance non-drug reward processing, while impairing cigarette 

reward processing (Freeman et al., 2015; Freeman et al., 2013); this potential profile of effects on drug 

and non-drug reward processing may have the most therapeutic benefits (Versace et al., 2014; 

Versace et al., 2012).  

Yet, I found no effect on non-drug motivation during the DReaM-Choice button-pressing stage, nor a 

swing towards non-drug rewards in the choice stage. The button-pressing stage may not be very 

sensitive, as demonstrated by the null effect of 12h abstinence reported in chapter 2 (and similarly in 

Buhler et al., 2010). This could have contributed to my inability to detect an effect of pramipexole. 

However, the choice stage is presumably more sensitive to manipulations given my findings in chapter 

2 (e.g. sensitive to abstinence) and a range of successful manipulations by Lee Hogarth (Hogarth, 2012; 

Hogarth & Chase, 2011). Therefore, it seems unlikely that my null results for both cigarette and non-

drug reward processing are due to insensitive measures. 

4.4.3 Group differences on the DReaM-Choice 

Confirming results reported in chapter 2, dependent smokers, compared with occasional smokers, had 

greater relative preference for, motivation for and liking of cigarettes.  These results corroborate my 

previous findings lending further support to the hypothesis that nicotine dependence is associated 

with a hypersensitivity to cigarettes across a wide range of reward processing metrics. My results are 
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remarkably similar to those reported in chapter 2, despite minor changes to the task design and group 

inclusion criteria. 

This is perhaps unsurprising; it is common sense that people who are dependent upon cigarettes want 

them more than smokers who are not dependent. More interesting is the finding that the dependent 

smokers reported greater liking of cigarettes than occasional smokers, which replicates the finding 

reported in chapter 2. Furthermore, because of this increased liking of cigarettes and similar liking of 

music reward (despite a lower liking of chocolate), the dependent smokers had an overall greater 

liking of all rewards. This is potentially at odds with the hypothesis that dependent smokers have 

reduced overall hedonic tone compared with non-smokers. However, in order to more 

comprehensively investigate general hedonic tone, it would be desirable to use ecological momentary 

assessment and measure enjoyment and liking of various activities across many days in dependent 

and occasional smokers. The fact that I observed increased motivation for and liking of cigarettes in 

dependent compared with occasional smokers could be interpreted as evidence against the 

dissociation between the wanting and liking of drugs in nicotine dependence (Berridge & Robinson, 

1998). Alternatively, as discussed in chapter 2, the dependent smokers may just have always liked 

smoking more than the occasional smokers. 

Contrastingly, my correlation analyses support the dissociation between the wanting and liking of 

drugs during dependence. Occasional smokers’ general liking of cigarette smoking was positively 

associated with button-pressing for cigarettes, while this was not the case for dependent smokers. 

Further, the correlations between task behaviour and general liking of cigarette smoking were 

different between the groups. This points toward a less goal-directed and potentially more model-

free behaviour pattern in dependent cigarette smokers, like in alcoholism (Sebold et al., 2014). This is 

in partial agreement with my earlier findings (chapter 2), that only occasional smokers modulated 

their choice time for cigarettes as a function of reward magnitude. On the other hand, these current 

results could be driven by a ceiling effect in general liking and task behaviour within the dependent 
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smokers. These three variables were negatively skewed in the dependent group, so there might not 

have been enough variance to detect the association. Unfortunately I did not collect data on general 

liking of smoking a cigarette in the study described in chapter 2, so I cannot compare results. More 

research into the separation of motivation and liking, and whether their behaviour is more model-

free, in dependent cigarette smokers is needed. 

Again replicating results presented in chapter 2, I found few group differences in terms of music and 

chocolate reward processing. In terms of button-pressing and the speed in which choices were made, 

there were similar non-drug reward processing in the groups. This goes against the general hypothesis 

that nicotine dependence is associated with a hyposensitivity to non-drug rewards, across a variety of 

metrics. However, dependent smokers did report a lower liking of the first chocolate unit consumed. 

This is the first piece of evidence in the thesis which suggests dependent smokers have specifically 

impaired non-drug hedonic processing relative to occasional smokers, so it should be interpreted 

cautiously. The samples were probably not representative of the general populations of dependent 

and occasional smokers, as they were recruited via university and gumtree adverts, and were 

relatively small. Hence, I may have simply recruited a few dependent smokers who didn’t like Diary 

Milk chocolate and this could have warped the result. The difference in general liking of Diary Milk 

chocolate, albeit non-significant, supports this claim. 

One important factor to consider is the small length of nicotine abstinence (between 1.5 and 2.5 hours 

while completing the tasks for the dependent smokers) that participants experienced. They were not 

forced to abstain from nicotine for a long period of time. Despite the results reported in chapter 2, 

which showed null group X smoking-condition X reward-type interactions, previous studies have 

demonstrated some important effects of acute abstinence on reward processing (Al-Adawi & Powell, 

1997; Dawkins, Acaster, & Powell, 2007; Dawkins et al., 2006; Pergadia et al., 2014; Perkins & Karelitz, 

2013b; Powell et al., 2002). Hence, my results may have been different if I had enforced acute nicotine 

abstinence (e.g. 12-24 hours). It is therefore important to note that my results, from this study, 
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strongly suggest that dependent smokers who have undergone a very short period of abstinence do 

not have motivational impairments related to music and chocolate reward, but this might have been 

different with longer periods of abstinence. The moderating role of abstinence on non-drug reward 

processing is discussed more thoroughly in chapter 6. 

Finally, again supporting results presented in chapter 2, there was a difference in the profile of reward 

processing between dependent and occasional smokers. The dependent smokers chose cigarettes 

more than the non-drug rewards, pressed for all rewards equally and chose cigarettes faster; in 

contrast, the occasional smokers chose chocolate more, pressed for it more and choose it faster than 

cigarettes. Hence, the balance in dependent smokers leans towards cigarettes while the balance in 

occasional smokers leans towards non-drug rewards, in this case chocolate. Given the putative 

importance of this balance in the prediction of relapse (Versace et al., 2014; Versace et al., 2012), it 

will be important to try and find better ways to disrupt this balance within dependent smokers.  

4.4.4 Cigarette Purchase Task 

Supporting the results from the DReaM-Choice task, and replicating earlier studies (MacKillop et al., 

2008; Murphy et al., 2011) I found a significant association between cigarette demand, as 

operationalised by breakpoint, intensity, Omax and Pmax, and nicotine dependence. This provides 

more evidence that dependence is associated with a hypersensitivity to cigarette reward. Similar to 

the DReaM-Choice task, pramipexole did not affect any metric of cigarette demand, suggesting it does 

not affect the reinforcing efficacy of cigarettes relative to money. 

4.4.5 Probabilistic Reward Task (PRT) 

Corroborating findings from a previous study with healthy controls (Pizzagalli, Evins, et al., 2008), I 

found that pramipexole weakened response bias in cigarette smokers, suggestive of impaired reward 

learning (when all participants were included in the analysis). This was hypothesised given 

pramipexole’s putative inhibitory effects on phasic dopamine firing and the importance of phasic 
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dopamine firing in reward learning (Schultz et al., 1997). An important factor to consider, however, is 

that pramipexole also reduced discriminability scores, meaning the simple discrimination between the 

short and long mouth, irrespective of reinforcement, became worse. This may have contributed to the 

reduction in response bias. Given the negative relationship between response bias and cigarette 

craving (Peechatka et al., 2015), any potential anti-smoking drug that reduces response bias may be 

problematic. However, I did not find an effect of pramipexole on either craving or motivation for 

cigarettes, despite pramipexole reducing response bias. 

I did not find a difference between dependent and occasional smokers in terms of reward learning, 

which is in agreement with a recent study comparing smokers and non-smokers after 4 hours of 

nicotine abstinence (Peechatka et al., 2015). Thus, it may be that a longer period of abstinence is 

required to unmask this reward processing dysfunction, which has been seen after 24 hours (Pergadia 

et al., 2014). 

One very important caveat is that participants were not excluded in the standard way (Alexis Whiton, 

personal communication). For instance, a participant who had over 20/100 trials with a reaction time 

of <100ms was included in my analyses. If I had excluded people as has previously been done, I would 

have been left with 17 out of 40 participants. This therefore means that the data quality is not as high 

as I would have liked and may have contained a large amount of noise. Indeed, when I re-ran the 

analyses with the original exclusion criteria and a set of less stringent exclusion criteria the effect of 

drug was lost, i.e. pramipexole did not reduce reward learning. Therefore, it is not clear whether the 

effect of pramipexole was simply a corollary of the inclusion of participants who did not complete the 

task correctly. When participants were excluded, the effect of pramipexole appeared to be moderated 

by group; however, with so few participants included in the analysis, interpretation is again difficult.  

The reasons behind this very high number of apparently ineligible participants are unclear. In the study 

reported in chapter 5, only 25% of participants had to be excluded from the analysis according to these 

criteria. That this study was a repeated measures design, meaning there was more chance of meeting 
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ineligibility criteria on one session, is probably a factor, as too is the fact they had taken a somewhat 

unpleasant drug on one of the sessions. Furthermore, the mouths I used were 8mm and 9mm rather 

than 11mm and 13.5mm (which were used in the original task), and this probably made the task 

harder. This means that all results from the PRT reported in this chapter should be viewed with 

caution. 

4.4.6 Effort expenditure for rewards task (EEfRT) 

Both group and drug affected effort-related decision-making. Pramipexole reduced sensitivity to the 

pro-motivational effects of magnitude, probability and expected value. As can be seen in figure 4.11c, 

pramipexole led to a lower likelihood of making a high-effort choice than placebo when expected 

value = 0.4 and when expected value was greater than 1, but at other expected values, the conditions 

appear more similar. It is difficult to conceptually understand this pattern, however it demonstrates 

that there was a complex relationship between drug, expected value and task behaviour. Although 

pramipexole did not, overall, alter motivation for monetary reward, it reduced the ability of other 

factors to influence motivation. This is consistent with the claim that D3 receptors have differential 

effects at low and high cost, and low and high reward, scenarios (Le Foll et al., 2005). It seems that the 

perturbation of D3 receptor functioning affects motivated responding more as the outcomes become 

better. In the real world this may mean that changes in the environment could have less of an effect 

on motivation, if one was under the effects of a D3 agonist like pramipexole. As a potential treatment 

for nicotine dependence, this may be an undesirable feature. 

Pramipexole’s reduction in phasic dopamine firing may have caused the decreased sensitivity to EEfRT 

parameters. One may have to learn during the task which response is optimal when the outcome has 

a certain probability and magnitude; impaired phasic dopamine firing may disturb this learning. This 

is concordant with my results on the PRT in which pramipexole led participants to have impaired 

reward learning (when all participants were included in the analysis). Furthermore, dopaminergic 

functioning is associated with cognitive and behavioural flexibility (Cools & D'Esposito, 2011; Floresco, 
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2013) and disruption to flexibility will leave people less able to modulate behaviour as task parameters 

change. However, it is important to note that dopamine’s role in cognitive and behavioural flexibility 

is thought to be an inverted ‘U’ shape and so the effects of pramipexole may have been different in 

people with different baseline dopamine levels. 

My results are quite different from two similar studies. Amphetamine, which stimulates the release 

and blocks the reuptake of monoamine neurotransmitters (including dopamine), increased motivation 

for monetary reward overall, especially on low probability and expected value trials (as assessed by 

the EEfRT). This is different to pramipexole in that I did not find an overall increase in motivation and, 

although there were increases at low probability and expected value with pramipexole, these were 

non-significant. Amphetamine has a diverse pharmacological effect profile, affecting dopaminergic, 

noradrenergic and serotonergic functioning, among others. In contrast, pramipexole has quite a 

specific action, binding to D2, D4 and, particularly D3, receptors (Mierau et al., 1995) and at low doses 

is thought to act primarily on autoreceptors, which reduce phasic dopamine firing (Samuels et al., 

2006). Furthermore, amphetamine is associated with increased wakefulness while pramipexole 

results in drowsiness. These differences may have contributed to the differential behavioural effects 

of pramipexole and amphetamine on effort-related decision-making.  

Previously, the same dose of pramipexole in smokers had been shown to enhance motivation to 

monetary reward on the CARROT (Freeman et al., 2013). It is unclear why these two experiments have 

given quite different results. It may be that the CARROT is more sensitive than the EEfRT at detecting 

differences in motivation or because the magnitude of potential reward was quite low (10p) in the 

CARROT, which here was associated with pramipexole non-significantly increasing motivation.  

The models which included group X task parameter interactions showed that dependent smokers, 

compared with occasional smokers, were less sensitive to magnitude, probability and expected value. 

Figure 4.11b shows that dependent smokers were generally more likely to make a high-effort choice 

when expected value was less than 0.4 but the opposite pattern was apparent when expected value 
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was greater than 0.4. This suggests that nicotine dependent individuals were less sensitive to changes 

in information concerning the reward when making effort-related decisions. This is similar to the effect 

seen in people with depression (Treadway, Bossaller, et al., 2012) and could suggest a common 

mechanism behind decreased reward sensitivity in the two groups. Importantly, this is the first piece 

of evidence for reduced sensitivity in the motivation for non-drug reward in this thesis. This potentially 

represents a specific impairment in non-drug reward processing in nicotine dependent individuals, 

while other non-drug reward processes remain operational. This finding should be replicated and its 

association with future tobacco use tested. 

I found some evidence for a differential effect of pramipexole on the two groups with the EEfRT. The 

drug appeared to boost the likelihood of making a high-effort choice more in the dependent group 

than in the occasional group; this can be seen visually in figure 4.11a, where pramipexole seems to 

reduce high-effort choices in the occasional group. As suggested in the introduction, this may be 

because the dependent smokers have altered dopaminergic functioning (Dagher et al., 2001; Fehr et 

al., 2008; Leroy et al., 2012). However, given this result wasn’t very significant (p=0.045) and it 

disappeared when the 5 retrospectively ineligible participants were removed, it should be interpreted 

carefully and demands replication. Furthermore, I did not find group X drug interactions in other tasks, 

implying this result might be a red herring, or perhaps that only effort-related decision-making is 

sensitive to the dopaminergic adaptations associated with nicotine dependence. 

Performance on the PRT, the EEfRT and the DReaM-Choice task were not correlated, which suggests 

they tap different aspects of reward processing. This was expected for the PRT and EEfRT, given the 

PRT putatively measures reward learning while the EEfRT putatively measures effort-related decision-

making, a component of motivation. However, as both the EEfRT and the DReaM-Choice tap 

motivational concepts it is perhaps surprising they did not correlate. These relationships are discussed 

more in chapter 6. 
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One possible reason why I detected an effect of pramipexole and a difference between the groups on 

the EEfRT but not on the DReaM-Choice task may be that I used a different statistical analysis approach 

to analyse each set of data. GEE models may provide greater sensitivity to detect effects compared 

with ANOVA because GEE models use every trial in the model whereas ANOVAs use only averages. 

This difference could have contributed to the different pattern of results in these two tasks, which 

both putatively assess motivation. 

4.4.7 Strengths and limitations 

Key strengths of this study include the placebo-controlled, double-blind, crossover design; the large 

overall sample size (n=40), compared with  other related  studies (Hamidovic, Kang, & de Wit, 2008; 

Riba et al., 2008; Samuels et al., 2006); the well matched groups; the wide variety of reward processing 

components measured; and the comparison of real cigarettes with real non-drug rewards, rather than 

images or hypothetical rewards. 

The inclusion of 5 participants who were retrospectively found to be ineligible is a limitation, although 

their exclusion had no or minimal effects on the task results. The inability to exclude participants on 

the PRT in the standard way due to so many participants not meeting the criteria is worrying. An 

improvement to the experiment would have been the costly measurement of biological variables, 

such as pramipexole plasma levels (Wright et al., 1997), so that the ability of the drug to enter the 

body could have been verified. The blinding of the participants wasn’t fully maintained because 

participants were able to guess which drug they had been given, at trend level. However, this is a 

problem with any experiment which administers a psychoactive drug and an inactive placebo. Ideally, 

the drug in question, an active placebo (e.g. a benzodiazepine) and an inactive placebo would be 

administered. Finally, although the total sample size was relatively large, the size of each smoker group 

was moderate, and so the power to detect group differences and drug by group interactions could 

have been improved. 
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4.4.8 Conclusions 

We found no evidence to suggest that an acute, low dose of pramipexole reduces motivation for 

cigarettes or redresses the imbalance of cigarette and non-drug reward processing in dependent 

cigarette smokers. Confirming results from chapter 2 and 3, dependent smokers appeared to be 

hypersensitive to cigarette rewards across a variety of metrics but there wasn’t evidence for 

hyposensitivity to music and chocolate rewards. However, dependent smokers were less sensitive to 

changes in probability, magnitude and expected value than occasional smokers in an effort-related 

decision-making task. Moreover, pramipexole impaired reward learning (but only when no 

participants were excluded from the dataset) and reduced sensitivity to these task parameters, 

indicative of reduced phasic dopamine release. My findings may question the role of D2 and D3 

receptors in cigarette-related reward processing. 
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Chapter 5: Non-drug reward processing in cannabis users: (1) acute effects of different strains of 

cannabis and (2) associations with cannabis dependence 
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5.1 Introduction 

Work described in the previous chapters suggests that, when assessed after ad libitum smoking, 

nicotine dependence is mostly not associated with non-drug reward processing deficits, although 

effort-related decision-making was impaired in dependent smokers compared with occasional 

smokers. However, I now move onto another drug: cannabis, the effects of which have been 

observationally linked with amotivation (McGlothlin & West, 1968). Moreover, there is currently an 

increasing demand for cannabis dependence treatment (Public Health England, 2013). Reward 

processing alterations may play a role in the development and maintenance of cannabis dependence. 

Furthermore, the endocannabinoid system is thought to play a role in the development of other drug 

addictions (Parsons & Hurd, 2015), including nicotine dependence, and in Europe cannabis is 

predominantly consumed with tobacco in ‘spliffs’ (Hindocha, Freeman, Winstock, & Lynskey, 2015). It 

appears there are important links between cannabis, the endocannabinoid system and nicotine 

dependence. In the research described in this chapter, I investigated the acute effects of different 

strains of cannabis on, and the associations of cannabis dependence with, effort-related decision-

making and reward learning, using the same tasks that I used in chapter 4. This allowed me to broadly 

compare the relationships of tobacco and cannabis use with these aspects of non-drug reward 

processing. 

5.1.1 Cannabis and the endocannabinoid system 

The endocannabinoid system, which includes the cannabinoid-1 (CB1) and cannabinoid-2 (CB2) 

receptors and their endogenous ligands, is putatively involved in reward processing and addiction 

(Maldonado et al., 2006). Δ-9-tetrahydrocannabinol (THC), the main active compound in cannabis, is 

a CB1 receptor partial agonist (Petitet, Jeantaud, Reibaud, Imperato, & Dubroeucq, 1998) which may 

(Bossong et al., 2015; Bossong et al., 2009) or may not (Stokes et al., 2009) increase dopamine release 

in the human striatum. Individuals who met DSM-IV criteria for cannabis dependence or abuse showed 

reduced striatal dopamine synthesis capacity relative to non-using matched controls (Bloomfield, 
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Morgan, Egerton, et al., 2014), which was negatively correlated with their apathy scores (Bloomfield, 

Morgan, Kapur, Curran, & Howes, 2014). Moreover, cannabis dependence was associated with 

reduced levels of CB1 receptors (D’Souza et al., 2015). However, other studies have shown no 

difference between cannabis users and non-users in terms of dopamine receptor density (Albrecht et 

al., 2013; Sevy et al., 2008; Stokes et al., 2009; Urban et al., 2012). 

Cannabis contains many cannabinoids, other than THC. Of particular interest is cannabidiol (CBD) 

which has a complex mode of action, including inhibition of the metabolism and reuptake of 

anandamide (Pertwee, 2008), inverse agonism at the CB1 receptor (Pertwee, 2008) and agonism at 

the GPR55 receptor (Ryberg et al., 2007). Acute THC has dose-related amnestic (Curran, Brignell, 

Fletcher, Middleton, & Henry, 2002), psychotic (Morrison et al., 2009) and anxiogenic (Morrison et al., 

2009) effects.  CBD has been shown to attenuate or block these negative effects (Bhattacharyya et al., 

2010; Englund et al., 2013; Morgan, Schafer, Freeman, & Curran, 2010). Furthermore, CBD may have 

some anti-addictive properties in animals and humans (Morgan, Das, Joye, Curran, & Kamboj, 2013; 

Morgan, Freeman, Schafer, & Curran, 2010; Ren, Whittard, Higuera-Matas, Morris, & Hurd, 2009) and 

use of high-THC/low-CBD cannabis was especially predictive of cannabis dependence, compared with 

other types of cannabis (Freeman & Winstock, 2015). Given these opposing pharmacological and 

psychological effects of THC and CBD, I hypothesised that CBD may buffer the effects of THC on reward 

processing. 

The endocannabinoid system is thought to contribute to other drug addictions (Maldonado et al., 

2006; Parsons & Hurd, 2015). Animal research has demonstrated that CB1 agonists enhance self-

administration of and conditioned place preference for alcohol, nicotine and opiates, while CB1 

antagonists have the reverse effects (Parsons & Hurd, 2015). Human research has demonstrated that 

rimonabant, a CB1 antagonist, improves cigarette smoking cessation attempts (Foll, Forget, Aubin, & 

Goldberg, 2008). There is also pilot data suggesting CBD may help people reduce cigarette smoking 

(Morgan et al., 2013). Furthermore, cigarette smoking mediates the relationship between cannabis 
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use and cannabis dependence (Hindocha, Shaban, et al., 2015). Hence, there appears to be important, 

bidirectional relationships between cannabis and nicotine use. Investigating the acute and chronic 

effects of cannabis on reward processing may improve our understanding of how the 

endocannabinoid system is related to other drug addictions. 

5.1.2 Acute effects of cannabis on motivation 

Historically, cannabis use has been associated with reduced motivation (McGlothlin & West, 1968). 

Early, poorly controlled, studies found both amotivational (Miles et al., 1974) and null (Mendelson et 

al., 1976) effects of acute cannabis. More recently both promotivational (Foltin et al., 1990) and 

amotivational (Cherek et al., 2002) effects have been demonstrated. In the latter study, participants 

were asked to choose between a button-pressing option that earned more money and a do-nothing 

option that earned less money; this study therefore assessed effort-related decision-making. 

However, they had a small sample size of five participants, so there is a need to replicate with a larger 

sample. Hence, the acute effects of THC or cannabis on motivation remain unclear and deserve further 

investigation. Interestingly, it has been reported that CBD can partially shield the response-reducing 

effect of THC on motivated responding for a food reward in rhesus monkeys (Brady & Balster, 1980), 

providing some evidence that CBD may protect against the amotivational effects of THC. However, no 

one has examined whether CBD buffers the potentially amotivational effects of THC in humans. 

5.1.3 Chronic effects of cannabis on non-drug reward processing 

Early studies of chronic effects found no difference when comparing heavy with light cannabis users 

on fixed ratio button-pressing tasks for rewards (Mello & Mendelson, 1985; Mendelson et al., 1976). 

Survey data have also failed to demonstrate a link between long-term cannabis use and amotivation 

(Barnwell, Earleywine, & Wilcox, 2006; Musty & Kaback, 1995), although it has been shown to predict 

anhedonia (Bovasso, 2001). Daily, adolescent cannabis users had a lower motivation for monetary 

reward than non-users, although comorbid depression and other drug use were not reported and may 
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have confounded group differences (Lane et al., 2005). Studies that compared cannabis users with 

controls on the anticipatory BOLD response for monetary reward, thought to be an indicator of intact 

reward processing, have found opposing results (van Hell et al., 2010; Nestor et al., 2010). Again, it 

appears that the literature concerning amotivational and other non-drug reward processing deficits 

associated with chronic cannabis use is mixed. 

5.1.4 Effort-related decision-making and reward learning 

Two key aspects of reward processing that have been described previously (see sections 4.2.2.3 and 

4.2.2.4) are effort-related decision-making (Treadway et al., 2009) and reward responsiveness, 

conceptualized in terms of reward learning (Pizzagalli et al., 2005). Neither the EEfRT nor the PRT have 

previously been examined in relation to either acute cannabinoid exposure or cannabis dependence. 

5.1.5 Summary and hypotheses 

Anecdotal reports suggest that cannabis use acutely and chronically results in amotivation, while 

reward processing deficits could theoretically play a role in cannabis dependence. However, there is 

a distinct lack of research in this area. Across two studies, I first tested the acute effects of cannabis 

without CBD (Cann-CBD) and cannabis with CBD (Cann+CBD) on effort-related decision-making. 

Second, I investigated associations between cannabis dependence, effort-related decision-making and 

reinforcement learning. 

Based on a study that showed acute cannabis reduced motivation for monetary reward (Cherek et al., 

2002) and studies demonstrating CBD can protect against some of THC’s negative effects 

(Bhattacharyya et al., 2010; Englund et al., 2013; Morgan, Schafer, et al., 2010), I hypothesised that: 

1. Cann-CBD would reduce motivation for monetary reward compared to placebo. 

2. This amotivational effect would be weaker following Cann+CBD compared to Cann-CBD.  
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Based on the iRISA theory of addiction (Goldstein & Volkow, 2011) and one study showing amotivation 

in daily-cannabis using adolescents (Lane et al., 2005), I hypothesised that: 

3. Cannabis dependence would be associated with reduced motivation and reinforcement 

learning. 

5.2 Study 1 methods 

5.2.1 Participants and design 

A repeated-measures, placebo-controlled, double-blind design was used to compare Cann-CBD, 

Cann+CBD and placebo. Participants were randomly allocated to one of three treatment order 

schedules, which were based on a Latin Square design. 17 participants22 (8 women) took part in the 

study; this sample size was adequately powered to detect drug X task interactions in a three-way 

crossover of d-amphetamine using the EEfRT (Wardle et al., 2011).  

Inclusion criteria were: aged between 18 and 70; smoke cannabis 3 times/ week or less; have smoked 

cannabis 4 or more times in the last year. Exclusion criteria were: regular negative experiences when 

smoking cannabis; alcohol use >5 times/week; other illicit drug use >2 times/month, current or history 

of psychosis; MRI contraindications. 

Participants were recruited through word-of-mouth and all provided written, informed consent. The 

study was approved by the University College London (UCL) Ethics Committee. They were reimbursed 

£7.50/hour and could win extra money via completion of various tasks. 

5.2.2 Assessments 

5.2.2.1 Effort Expenditure for Rewards Task (EEfRT) (Treadway et al., 2009) 

As described in section 4.2.2.4 

                                                           
22 As 17 is not divisible by 3, the Latin square was not completed with equal numbers of participants in each 
treatment order. 



204 
 

5.2.2.2 Self-report assessments 

Trait measures 

Beck depression inventory (BDI-II) (Beck et al., 1996) 

As described in section 2.2.2.2 

Drug history 

Lifetime use was recorded as ‘yes’ or ‘no’. Current use (≥once per month) was recorded as ‘yes’ or ‘no’ 

and days/month and amount/session were recorded for those who said ‘yes’ for current use. 

Severity of dependence scale (SDS) (Gossop et al., 1995) 

This standard scale of drug dependence consisted of 5 items that were rated between 0 and 4 in terms 

of frequency or difficulty with higher scores reflecting greater dependence severity.  

Temporal experiences of pleasure scale (TEPS) (Gard et al., 2006) 

As described in section 2.2.2.2 

State measures 

Snaith Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995) 

As described in section 2.2.2.2 

Subjective Effects: ‘stoned’ and ‘like drug’ 

Participants gave ratings for ‘stoned’ and ‘liked drug’, ‘right now’ from 0 (not at all) to 10 (extremely).  

5.2.2.3 Drug administration 

A Volcano Medic Vaporiser (figure 5.1) (Storz and Bickel, Tuttlingen, Germany) was used to vaporize 

Bedrocan cannabis (Veendan, Netherlands). Across the three sessions, I aimed to administer 8mg THC 
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(for the Cann-CBD condition), 8mg THC + 10mg CBD (for the Cann+CBD condition) and placebo, based 

on previous THC/CBD vaporizer protocols (Bossong et al., 2009; Hindocha, Freeman, Schafer, et al., 

2015) and Bedrocan product potencies (Brunt, van Genugten, Höner-Snoeken, van de Velde, & 

Niesink, 2014), see table 5.1. Drugs were stored at -20°C in foil-sealed pouches, then at ambient 

temperature prior to administration, and used within 6 months of purchase. Participants received two 

doses in each testing session. This was to maintain steady drug levels over time. Hence participants 

received one dose at the start of testing and then received a 50% top-up dose 90 minutes later. Each 

dose was vaporized in two sequentially administered balloons to minimise any cannabinoids 

remaining in the bag. Participants inhaled the drug at their own pace (each inhalation was held for 8 

seconds) until the balloon was empty.   

 

 

 

 

 

 

 

 

Figure 5.1 A picture of the Volcano Medic Vaporiser. Cannabis is put into the black filling chamber and 
this is placed on top of the hot air generator when it has reached the correct temperature (210oC). Hot 
air is then passed through the cannabis, vaporising it, and sending it into the balloon. Subsequently, 
the vaporised cannabis is inhaled from the balloon by the participant. 
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Table 5.1 THC dose and total weight were matched across sessions by adjusting the quantity of three 
cannabis varieties as shown below. All three cannabis types contained terpenoids, creating the 
distinctive smell of cannabis. 

 Cann-CBD Cann+CBD Placebo 

Target dose 8mg THC 8mg THC+10mg 
CBD 

N/A 

Total weight 133.4mg 133.4mg 133.4mg 

‘Bedrobinol’ (12% THC, <1% CBD) 66.7mg N/A N/A 

‘Bediol’ (6% THC, 7.5% CBD) N/A 133.4mg N/A 

Placebo (derived from ‘Bedrocan’; <0.3% 
THC, <1% CBD) 

66.7mg N/A 133.4mg 

 

5.2.3 Procedure 

Following telephone screening, participants attended a screening visit consisting of eligibility 

assessment, task training, drug history and trait questionnaires. Subsequently, they completed 3 

testing sessions, each lasting  approximately 3 hours, on which they received Cann-CBD, Cann+CBD or 

placebo separated by a wash-out period of >7 days. Participants were asked to abstain from alcohol 

and any illicit drugs for ≥24 hours before each testing session. 

Testing sessions began with a urine sample to screen for pregnancy and to verify their recent self-

reported drug use, assessed by 7 day Timeline Followback (Sobell & Sobell, 1992). After drug 

administration, participants underwent MRI scanning for 1 hour. Next, they received their top-up drug 

administration (approximately 90mins after the first) and began a 1.5h long battery of behavioural 

tasks. The EEfRT was completed approximately 1h into this battery. Participants completed ratings of 

‘stoned’ and ‘like drug’ at five time points: (1) immediately before 1st drug administration (≈0 mins); 

(2) immediately after 1st drug administration (≈5 mins); (3) immediately before 2nd drug administration 

(≈90 mins); (4) immediately after 2nd drug administration (≈95 mins); and (5) end of the session (≈180 

mins). Participants completed ratings of ‘like drug’ at time points 2-5. 

In terms of ethical considerations, all participants had at least moderate experience with cannabis and 

all reported not regularly experiencing negative effects when they smoked cannabis. They were all 
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informed of the potential effects cannabis could have on them before they consented. Therefore, 

every participant had their own personal experience and were appropriately informed about the 

experiment. Participants were able to withdraw from the study at any point and a doctor was available 

via the telephone at all times. 

5.2.4 Statistical analyses 

All analyses were carried out using IBM Statistical Package for Social Sciences (IBM SPSS version 22).  

‘Stoned’ and ‘like drug’ ratings were analysed using repeated-measures ANOVA with two within-

subjects factors: drug (placebo, Cann-CBD, Cann+CBD) and time (1,2,3,4,5 for ‘stoned’ and 2,3,4,5 for 

‘like drug’). Interactions were explored with Bonferroni corrected t-tests. Furthermore, an ANCOVA, 

with the same factors as above, and cannabis days/month as the covariate was used to determine if 

the extent of recreational use affected hedonic responses to the drug. 

A repeated-measures ANOVA with a within-subjects factor of drug was used to analyse SHAPS scores. 

As in chapter 4, I used Generalized Estimating Equation (GEE) models to analyse the likelihood of 

participants making a high-effort choice in the EEfRT. I tested the effects of drug condition on effort-

related decision-making across 4 models. Each model had standard predictors (see section 4.2.4) plus 

drug, with these additional predictors: no others (model 1), drug X magnitude (model 2), drug X 

probability (model 3), drug X expected value (EV; reflecting probability X magnitude) (model 4). Cann-

CBD was used as the reference category to evaluate my hypotheses comparing Cann-CBD with (1) 

placebo and (2) Cann+CBD.  
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5.3 Study 1 Results 

5.3.1 Demographics (Table 5.2)23 

Participants were aged 26.18 (SD=7.13) years. On average, they smoked cannabis 8.06 (5.48) days per 

month, took 25.88 (33.73) days to smoke an 8th ounce (3.5g) of cannabis and scored 1.13 (1.26) on the 

cannabis SDS. 

5.3.2 Drugs in urine 

During the placebo session, THC was detected in 8 and MDMA in one participants’ urine. During the 

Cann+CBD session, THC was detected in 9 and PCP in one participants’ urine. During the Cann-CBD 

session, THC was detected in 8 participants’ urine. No participants reported using any drugs within the 

last 24 hours. 

                                                           
23 Data was missing for one participant for BDI, TEPS and drugs history 
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Table 5.2 Means (S.D.) and frequencies for demographic data and drug use for participants in study 

1. Data were missing for one participant for BDI, TEPS and drugs history. 

 Participants 

Age 26.18 (7.13) 
Gender (m/f) 9/8 
BDI 3.38 (3.12) 
TEPS consummatory 43.50 (5.61) 
TEPS anticipatory 42.06 (4.85) 
TEPS total 86.56 (9.30) 
Cannabis SDS 1.13 (1.26) 
Alcohol ever used (y/n) 16/0 
Alcohol use now (y/n) 16/0 
Alcohol days per month 10.81 (4.86) 
Alcohol units/session 5.93 (2.08) 
Amphetamine ever used (y/n) 8/8 
Amphetamine use now (y/n) 0/16 
Amphetamine days per month NA 
Amphetamine grams/session NA 
Cannabis ever used (y/n) 16/0 
Cannabis use now (y/n) 16/0 
Cannabis days per month 8.06 (5.48) 
Cannabis days to smoke an 8th 25.88 (33.73) 
Cocaine ever used (y/n) 11/5 
Cocaine use now (y/n) 3/13 
Cocaine days per month 1.0 (0.0) 
Cocaine grams/session 0.5 (0.0) 
Heroin ever used (y/n) 0/16 
Heroin use now (y/n) 0/16 
Heroin days per month NA 
Heroin grams/session NA 
Ketamine ever used (y/n) 10/6 
Ketamine use now (y/n) 2/14 
Ketamine days per month 1.50 (0.71) 
Ketamine grams/session 0.75 (0.35) 
Mephedrone ever used (y/n) 7/9 
Mephedrone use now (y/n) 0/16 
Mephedrone days per month NA 
Mephedrone grams/session NA 
MDMA ever used (y/n) 14/2 
MDMA use now (y/n) 6/10 
MDMA days per month 1.50 (0.84) 
MDMA grams/session 0.31 (0.19) 
Tobacco ever used (y/n) 15/1 
Tobacco use now (y/n) 15/1 
Tobacco days per month 11.30 (10.27) 
Tobacco cigs/day (when smoking) 3.63 (3.62) 
Tobacco average cigs/day 2.16 (3.48) 
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5.3.3 ‘Stoned’ and ‘like drug’ ratings24 

Stoned (Figure 5.2a) 

There was an interaction between time and drug (F8,128=20.296, p<0.001), main effects of time 

(F4,64=82.443, p<0.001) and drug (F2,32=56.154, p<0.001). Ratings of ‘stoned’ were the same 

immediately before drug administration for all drug conditions. For every other time, both Cann-CBD 

and Cann+CBD conditions had greater ratings of ‘stoned’ compared with placebo (all ps<0.001) but 

did not differ from other. Stoned ratings did not differ after the 1st and 2nd doses for Cann-CBD or 

Cann+CBD (both ps=1.000), demonstrating equivalent intoxication from the original dose and the 50% 

top-up dose.  

Like drug (Figure 5.2b) 

There were main effects of drug (F2, 32=64.564, p<0.001) and time (F3, 48=14.170, p<0.001). Ratings 

were greatest at time 2 and time 4, after drug administrations. Ratings were greater for Cann-CBD and 

Cann+CBD than placebo (ps<0.001). There were never any differences between Cann-CBD and 

Cann+CBD. Cannabis days/month was not associated with liking ratings.  

  

                                                           
24 One participant missed a rating at time 3 on the Cann+CBD session; this was imputed with the group mean. 
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Figure 5.2 Mean (S.E.) scores for subjective ratings of a) ‘stoned’ and b) ‘like drug’ at five/four time 
points in study 1. Only 4 time points were used for ‘like drug’ because no drug had been consumed at 
time 1. Time 1 = immediately before 1st drug administration, time 2 = immediately after 1st drug 
administration, time 3 = immediately before 2nd drug administration, time 4 = immediately after 2nd 
drug administration, time 5 = end of the session. 
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5.3.4 EEfRT 

Baseline button-pressing time 

There were no differences in baseline button-pressing time between any of the sessions. 

GEE models (Table 5.3)25 

Reward magnitude and probability both positively and significantly predicted making a high-effort 

choice in all models (ps<0.01). The effect of EV approached significance in all models (ps<0.1). As 

shown in model 1, Cann-CBD led to a lower likelihood of making a high-effort choice than placebo 

(p=0.042) but there was no difference between Cann-CBD and Cann+CBD (figure 5.3). Model 3 found 

an interaction between drug and probability, such that Cann-CBD augmented the effect of probability 

on the likelihood of making a high-effort choice relative to placebo (p=0.029). Model 4 found an 

interaction between drug and EV, such that Cann-CBD augmented the effect of EV on the likelihood 

of making a high-effort choice relative to both placebo (p=0.014) and Cann+CBD (p=0.006).  

The drug by probability interaction in model 3 was explored by carrying out GEE models within each 

level of probability. At low probability, Cann-CBD led to a lower likelihood of making high-effort 

choice than placebo (b=0.188, SE=0.0718, OR=1.207, 95% CI: 1.049, 1.390). At medium and high 

probabilities, there were no significant differences on the likelihood of making a high-effort choice 

between Cann-CBD and placebo conditions. 

The drug by expected value interaction in model 4 was explored by carrying out GEE models within 

three levels of expected value (figure 5.4). The three levels were formed by grouping the smallest third 

of expected values, the middle third of expected values and the largest third of expected values. 

                                                           

25 I excluded one participant for failing to complete 13 and 14 trials on two of his sessions, thus he clearly did 
not complete the task as instructed.  
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At low expected value, Cann-CBD led to a lower likelihood of making a high-effort choice than placebo 

(b=0.188, SE=0.0718, OR=1.207, 95% CI: 1.049, 1.390)26. However, at low expected value, there was 

not a significant difference on the likelihood of making a high-effort choice between the Cann-CBD 

and Cann+CBD conditions. Furthermore, at medium and high probabilities, there were no significant 

differences on the likelihood of making a high-effort choice between the Cann-CBD and placebo 

conditions, or the the Cann-CBD and Cann+CBD conditions. 

Visual inspection of figure 5.4 shows that, overall, the differences between the drug conditions did 

not change a great deal between expected value levels. However, it does show that both cannabis 

types had lower likelihoods than placebo at each expected value level and that Cann+CBD had a 

greater likelihood than Cann-CBD at low and medium expected value levels, but not at the high 

expected value level. However, as the post-hoc GEE models showed, these differences between Cann-

CBD and Cann+CBD were not significant at any expected value level, despite the significant interaction 

in model 4. 

  

                                                           
26 This is the same as for probability because the low probability trials are exactly the same as the low 
expected value trials. The medium and high probability and expected value trials do differ, however. 
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Table 5.3 GEE Models for EEfRT from study 1. Beta coefficients for each predictor term, standard errors, 
p-values, odds ratios (OR) and 95% confidence intervals (CI) for these ORs are shown. The reference 
category for gender was female. The most important terms are in bold. 

Model 1 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.114 0.0315 <0.001 1.188 1.054, 1.193 

Probability 0.172 0.0352 <0.001 1.121 1.109, 1.272 

Expected value 0.134 0.0786 0.089 1.143 0.980, 1.333 

Trial number -0.008 0.0015 <0.001 0.992 0.989, 0.995 

Gender 0.220 0.0720 0.002 1.246 1.082, 1.435 

Placebo vs. Cann-CBD 0.050 0.0247 0.042 1.051 1.002, 1.103 

Cann+CBD vs. Cann-CBD -0.001 0.0280 0.976 0.999 0.946, 1.056 

 

Model 2 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.140 0.0405 0.001 1.151 1.063, 1.246 

Probability 0.173 0.0353 <0.001 1.189 1.110, 1.274 

Expected value 0.131 0.0786 0.095 1.140 0.978, 1.330 

Trial number -0.008 0.0015 <0.001 0.992 0.989, 0.995 

Gender 0.220 0.0721 0.002 1.246 1.082, 1.435 

Placebo vs. Cann-CBD 0.097 0.054 0.073 1.102 0.991, 1.224 

Cann+CBD vs. Cann-CBD 0.055 0.0590 0.347 1.057 0.942, 1.187 

(Placebo vs. Cann-CBD) X magnitude -0.033 0.0375 0.385 0.968 0.899, 1.042 

(Cann+CBD vs. Cann-CBD) X magnitude -0.039 0.0395 0.320 0.961 0.890, 1.039 

 

Model 3 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.115 0.0313 <0.001 1.122 1.055, 1.193 

Probability 0.206 0.0405 <0.001 1.229 1.135, 1.331 

Expected value 0.131 0.0783 0.094 1.140 0.978, 1.329 

Trial number -0.008 0.0015 <0.001 0.992 0.989, 0.995 

Gender 0.219 0.0716 0.002 1.245 1.082, 1.433 

Placebo vs. Cann-CBD 0.123 0.0342 <0.001 1.131 1.057, 1.209 

Cann+CBD vs. Cann-CBD 0.044 0.0356 0.212 1.045 0.975, 1.121 

(Placebo vs. Cann-CBD) X probability -0.060 0.0276 0.029 0.942 0.892, 0.994 

(Cann+CBD vs. Cann-CBD) X probability -0.036 0.0199 0.073 0.965 0.928, 1.003 
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Model 4 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.117 0.0313 <0.001 1.124 1.057, 1.195 

Probability 0.175 0.0352 <0.001 1.192 1.112, 1.277 

Expected value 0.201 0.0793 0.011 1.223 1.047, 1.428 

Trial number -0.008 0.0015 <0.001 0.993 0.990, 0.995 

Gender 0.219 0.0717 0.002 1.245 1.082, 1.433 

Placebo vs. Cann-CBD 0.149 0.0387 <0.001 1.161 1.076, 1.253 

Cann+CBD vs. Cann-CBD 0.078 0.0388 0.045 1.081 1.002, 1.166 

(Placebo vs. Cann-CBD) X EV -0.121 0.0494 0.014 0.886 0.804, 0.976 

(Cann+CBD vs. Cann-CBD) X EV -0.093 0.0337 0.006 0.911 0.853, 0.973 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Results from study 1. Mean (S.E.) numbers of high-effort choices made during each drug 
condition, collapsed across probability and magnitude, in study 1. Error bars show standard error. 
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Figure 5.4 Mean (S.E.) numbers of high-effort choices made during each drug condition at each of three 
expected value levels: low, medium and high. These levels were formed by grouping the third lowest 
expected values, the middle expected values and the largest expected values. There were 7 trials for 
within each of these expected value levels, so there were a maximum of 7 high-effort choices to be 
made. Error bars show standard error. 

5.3.5 SHAPS 

There was no effect of drug (F2, 32=0.248, p=0.782). 

5.4 Study 2 Methods 

5.4.1 Participants and design 

20 cannabis-dependent individuals were compared with 20 controls, with eligibility criteria based on 

Morgan et al. (2012). Inclusion criteria for the cannabis-dependent participants were: score ≥3 on the 

severity of dependence scale (SDS) for cannabis (indicative of dependence: Swift, Copeland, and Hall 

(1998)); smoke high-potency cannabis (‘skunk’) on 50% or more of the occasions that they smoke 

cannabis; score ≤2 on the SDS for all other drugs, except tobacco and alcohol. Participants in the 

control group were selected to match the cannabis-dependent group in terms of other (non-cannabis) 

drug use and had to score <3 on the SDS for all drugs, except tobacco and alcohol. Exclusion criteria 
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for either group were: currently seeking treatment for a mental health problem; current use of 

psychiatric medication or diagnosis of alcohol dependence. 

Participants were reimbursed £10/hour. The study was approved by the UCL Ethics Committee and all 

participants provided written informed consent. 

5.4.2 Assessments 

The following measures were used as described in study 1: EEfRT, BDI, TEPS, drug history, cannabis 

SDS. 

5.4.2.1 Probabilistic-Reward-Task (PRT) (Pizzagalli et al., 2005)  

As described in section 4.2.2.3 

Unlike in the experiment reported in chapter 4, I excluded participants based on task performance as 

only 11 out of 40 participants had to be excluded. Trials were excluded if the participant responded 

with an RT<100ms or an RT>1500ms. Participants were excluded if, on either block, they: had >20% 

excluded trials; received reinforcement on <25 rich stimuli; received reinforcement on <6 lean stimuli; 

had <55% accuracy for the rich stimulus; had <55% accuracy overall (Alexis Whitton, personal 

communication). 

5.4.2.2 Other assessments 

Spot-the-word (Baddeley et al., 1993) 

As described in 2.2.2.3 

5.4.3 Procedure 

Following telephone screening, participants completed one 2h testing session. Participants were 

instructed to abstain from all drugs (apart from nicotine and caffeine) for at least 12 hours before the 
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session. This meant that cannabis-dependent participants, if they followed the instructions, had not 

smoked cannabis for at least 12 hours. First, participants answered demographic and drug use 

questions, stated which drugs they had taken over the last 48 hours and completed the spot-the-word 

test. Subsequently, they completed the EEfRT, the BDI, the TEPS, the PRT and provided a urine sample. 

Participants also completed three other cognitive tasks and questionnaires concerning psychosis-like 

symptoms, which are not reported in this thesis. 

5.4.4 Statistical Analyses 

All analyses were carried out using IBM Statistical Package for Social Sciences (IBM SPSS version 22). 

Where appropriate, errors were checked for normality, unbiasedness and homoscedasticity using 

inspection of histograms and Levene’s test. Non-parametric tests were used when data did not meet 

the above assumptions and a suitable test was available. 

Analysis of the EEfRT was conducted in the same way as in study 1, using the standard predictors plus 

group, with the additional predictors: no others (model 1), group X magnitude (model 2), group X 

probability (model 3), group X expected value (model 4). Each model also included BDI, average 

number of cigarettes/day and baseline button-pressing time because of group differences. The models 

were also run without these three extra predictors to see if it affected results. 

For the PRT, response bias (RB) and discriminability were analysed with mixed ANOVAs with a 

between-subjects factor of group (controls, cannabis) and within-subjects factors of block (1, 2). 

Accuracy and RTs were analysed in the same way but with an extra within-subjects factor of stimulus 

(rich, lean). ANCOVAs were used to investigate whether inclusion of BDI and average number of 

cigarettes/day affected results. 

Correlations were computed for composite-RB (averaged across block 1 and 2) and ∆RB (change 

between block 1 and 2) with: BDI, average number of cigarettes/day (which includes those who don’t 

smoke and those who don’t smoke every day) and cannabis-SDS in each group separately.  
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5.5 Study 2 Results 

5.5.1 Demographics (Table 5.4) 

The groups did not differ in gender, age, highest level of education achieved or any measure of illicit 

drug use. However, compared with the controls, the cannabis group, on average, had a higher BDI 

score27 (t38=2.932, p=0.006), a lower spot-the-word score (t38=2.585, p=0.014) and smoked more 

cigarettes (t38=4.411, p<0.001). 

All but two of the cannabis group smoked cannabis every day; one participant smoked approximately 

22 days per month and another smoked approximately 12 days per month. The cannabis group 

smoked an average of 1.49 (1.41)g per session and had an average cannabis SDS score of 7.30 (3.39). 

Eight controls smoked cannabis at least once per month, with an average of 3.94 (1.78) days per month 

and an average of 0.31 (0.28)g per session. None of the controls scored >0 on the cannabis SDS. 

5.5.2 Recent drug use 

No participants reported using cannabis, alcohol or any other illicit drug within 12 hours of testing. 

In the control group, there were positive urine tests for: THC (n=4), benzodiazepines (n=2), 

buprenorphine (n=2), cocaine (n=1), PCP (n=1) and opioids (n=1)28. In the cannabis group, there were 

positive urine tests for: THC (n=19), cocaine (n=2) and opioids (n=2). 

  

                                                           
27 One control’s BDI score was missing so it was imputed from the group mean 
28 One control’s urine test results were missing 
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Table 5.4 Demographic details and drug history for non-dependent, drug-using controls and 
cannabis-dependent participants in study 2. *p<0.05, **p<0.01, ***p<0.001 

 Control Cannabis 

Age 27.25 (6.80) 27.75 (7.31) 
Gender (f/m) 6/14 7/13 
Highest education level (GCSE/NVQ-BTEC-
Diploma/A-Levels/Undergraduate 
Degree/Postgraduate Degree) 

2/2/5/9/2 5/3/1/10/1 

BDI** 5.32 (5.41) 12.20 (9.00) 
TEPS consummatory 39.25 (6.21) 35.80 (6.70) 
TEPS anticipatory 46.45 (6.69) 46.10 (7.45) 
TEPS total 86.10 (11.76) 81.90 (12.63) 
Spot-the-word* 48.30 (3.36) 45.35 (3.84) 
Cannabis SDS*** 0 7.30 (3.39) 
Alcohol ever used (y/n) 20/0 20/0 
Alcohol use now (y/n) 20/0 17/3 
Alcohol days per month 14.11 (7.49) 10.97 (8.64) 
Alcohol units/session 7.75 (4.61) 7.72 (4.26) 
Amphetamine ever used (y/n) 9/11 9/11 
Amphetamine use now (y/n) 0/20 1/19 
Amphetamine days per month NA 1 
Amphetamine grams/session NA 0.1 
Benzodiazepines ever used (y/n) 9/11 10/10 
Benzodiazepines use now (y/n) 1/19 3/17 
Benzodiazepines days per month 2 2.83 (1.04) 
Benzodiazepines tablets per session 1 1.25 (1.06) 
Cannabis ever used (y/n) 20/0 20/0 
Cannabis use now (y/n)*** 8/12 20/0 
Cannabis days per month*** 3.94 (1.78) 28.19 (4.74) 
Cannabis grams/session*** 0.31 (0.28) 1.49 (1.41) 
Cocaine ever used (y/n) 16/4 14/6 
Cocaine use now (y/n) 8/12 4/16 
Cocaine days per month 1.88 (0.84) 3.00 (1.41) 
Cocaine grams/session 0.59 (0.33) 0.75 (0.29) 
Hallucinogens use now (y/n) 1/19 1/19 
Hallucinogens days per month 1 1 
Heroin ever used (y/n) 2/18 3/17 
Heroin use now 0/20 0/20 
Heroin days per month NA NA 
MDMA ever used (y/n) 18/2 16/4 
MDMA use now (y/n) 7/13 5/15 
MDMA days per month 1.43 (0.787) 1.40 (0.548) 
MDMA grams/session 0.34 (0.33) 0.44 (0.13) 
Mephedrone ever used (y/n) 7/13 6/14 
Mephedrone use now (y/n) 0/20 0/20 
Mephedrone days per month NA NA 
Mephedrone grams/session NA NA 
Tobacco ever used (y/n) 18/2 20/0 
Tobacco use now (y/n)** 9/11 19/1 
Tobacco days per month* 18.39 (12.95) 29.26 (3.21) 
Tobacco cigs/day (when smoking)* 2.92 (3.14) 7.55 (5.19) 
Tobacco average cigs/day* 1.14 (2.54) 7.01 (5.38) 
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5.5.3 EEfRT 

Baseline button-pressing time 

The controls were faster than the cannabis-dependent participants to complete 30 and 100 button-

presses (t37=3.113, p=0.004). As a result, baseline button-pressing time was included in the GEE 

models. 

GEE models (Table 5.5)29 

Reward magnitude and probability positively predicted making a high-effort choice in all models 

(ps<0.05) and EV did so in all but one of the models (ps<0.05). Participants were less likely to make a 

high-effort choice as the task went on, as demonstrated by the negative effect of trial-number 

(ps<0.001). However, there was no overall difference in motivation between the groups and there 

were no interactions between group and magnitude, probability or EV. The pattern of these results 

did not change when I removed baseline button-pressing, BDI and average number of cigarettes/day. 

  

                                                           
29 One cannabis-dependent participant was excluded because they failed to complete 16 trials. 
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Table 5.5 GEE Models for EEfRT from study 2. Beta coefficients for each predictor term, their standard 
errors, associated p-values, odds ratios (OR) and 95% confidence intervals (CI) for these ORs are shown. 
Av-Cigs/Day = average number of cigarettes smoked per day. The most important terms are in bold. 

Model 1 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.236 0.0845 0.005 1.266 1.073, 1.494 
Probability 0.278 0.0814 0.001 1.320 1.126, 1.549 
Expected Value 0.278 0.1132 0.014 1.321 1.058, 1.649 
Trial Number -0.015 0.0028 <0.001 0.985 0.980, 0.990 
Gender 0.125 0.0909 0.169 1.133 0.948, 1.354 
BDI -0.006 0.0048 0.232 0.994 0.985, 1.004 
Av-Cigs/Day -0.007 0.0069 0.297 0.993 0.979, 1.006 

Baseline button-pressing time 0.011 0.0215 0.617 1.011 0.969, 1.054 
Cannabis vs. Controls 0.047 0.1369 0.731 1.048 0.802, 1.371 

 

Model 2 

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.218 0.0829 0.008 1.255 1.057, 1.463 
Probability 0.279 0.0816 0.001 1.322 1.127, 1.551 
Expected Value 0.276 0.1134 0.015 1.318 1.055, 1.646 
Trial Number -0.015 0.0027 <0.001 0.985 0.980, 0.990 
Gender 0.126 0.0910 0.167 1.134 0.949, 1.356 
BDI -0.006 0.0048 0.232 0.994 0.985,  1.004 
Av-Cigs/Day -0.007 0.0069 0.294 0.993 0.979, 1.006 
Baseline button-pressing time 0.011 0.0215 0.615 1.011 0.969, 1.054 
Cannabis vs. Controls -0.005 0.1819 0.980 0.995 0.697, 1.422 
Cannabis vs Controls*Magnitude 0.038 0.1053 0.715 1.039 0.845, 1.277 

 

Model 3  

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.237 0.0853 0.006 1.267 1.072, 1.497 
Probability 0.251 0.0904 0.005 1.285 1.077, 1.535 
Expected Value 0.280 0.1136 0.014 1.323 1.059, 1.653 
Trial Number -0.015 0.0028 <0.001 0.980 0.980, 0.990 
Gender 0.126 0.0910 0.1267 1.134 0.949, 1.356 
BDI -0.006 0.0048 0.237 0.994 0.985, 1.004 
Av-Cigs/Day -0.007 0.0069 0.294 0.993 0.979, 1.006 
Baseline button-pressing time 0.010 0.0215 0.635 1.010 0.969, 1.054 
Cannabis vs. Controls 0.004 0.1652 0.979 1.004 0.727, 1.389 
Cannabis vs. Controls*Probability 0.054 0.1059 0.607 1.056 0.858, 1.300 
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Model 4  

 Beta S.E. p Odds Ratio 95% CI OR 

Magnitude 0.237 0.0852 0.005 1.268 1.073, 1.498 
Probability 0.278 0.0817 0.001 1.321 1.125, 1.550 
Expected Value 0.215 0.1629 0.188 1.239 0.901, 1.705 
Trial Number -0.015 0.0028 <0.001 0.985 0.979, 1.006 
Gender 0.128 0.0910 0.161 1.136 0.951, 1.358 
BDI -0.006 0.0048 0.235 0.994 0.985, 1.004 
Av-Cigs/Day -0.007 0.0070 0.289 0.993 0.979, 1.006 

Baseline button-pressing time 0.010 0.0215 0.635 1.010 0.969, 1.054 
Cannabis vs. Controls -0.025 0.1727 0.885 0.975 0.695, 1.368 
Cannabis vs. Controls*EV 0.133 0.1769 0.451 1.142 0.808, 1.616 

 

5.5.4 PRT 

Response Bias (Figure 5.5)30 

Repeated measures ANOVA revealed a trend interaction between group and block (F1,27=3.579, 

p=0.069), a main effect of group, indicating lower RB in the cannabis group (F1,27=8.531, p=0.007) and 

a trend effect of block, reflecting increased RB from block 1 to 2 (F1,27=2.978, p=0.096). 

Exploration of the trend group by block interaction showed that RB increased from block 1 to 2 in 

controls (t19=2.604, p=0.015) but not cannabis users (t19=0.109, p=0.909). Furthermore, RB was 

significantly greater in controls than cannabis users during block 2 (t38=3.00, p=0.005) but only 

marginally so in block 1 (t38=1.831, p=0.082). 

All of these effects were lost when BDI and average number of cigs/day were included as covariates. 

There was a trend main effect of BDI (F1, 25=3.464, p=0.075) and no effect of cigs/day.  

The pattern of results did not change if all of the participants were included in the analysis. 

  

                                                           
30 11 out of 40 participants were excluded due to not meeting task criteria. 
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Figure 5.5 Means (S.E.) for response bias on the PRT for the control participants (control) and the 
cannabis-dependent (cannabis) participants, on blocks 1 and 2, in study 2. Error bars show standard 
error. 

Discriminability 

There was a trend towards an effect of block, with greater discriminability in block 2 compared with 

block 1 (F1,27=3.605, p=0.068), no effect of group nor an interaction between the two. The effect of 

block was lost when BDI and average number of cigs/day were included as covariates. 

Accuracy 

There was an interaction between group and stimulus (F1,27=8.723, p=0.006) and a main effect of 

stimulus, with greater accuracy for the rich stimulus (F1,27=28.109, p<0.001). No other effects or 

interactions were significant. The main effect of stimulus remained after including the covariates, but 

the interaction between group and stimulus was lost. 

Exploration of the interaction showed that the controls had greater accuracy for the rich stimulus 

compared with the lean stimulus (t14=5.941, p<0.001) while the cannabis group did not. 

RT 

There was a main effect of stimulus, with a faster response to the rich stimulus compared with the 

lean stimulus (F1,27=7.684 p=0.010). No other effects or interactions were significant. This effect was 

unchanged when including the covariates. 
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Correlations  

Within each group separately, none of the correlations examined reached significance. 

5.6 Discussion 

Historically, cannabis use has been linked to amotivation (McGlothlin & West, 1968) and dependence 

is theoretically associated with non-drug reward processing deficits (Goldstein & Volkow, 2011), 

although empirical evidence for this is lacking. To my knowledge, this report is the first to delineate 

the acute effects of different cannabinoids on effort-related decision-making and cannabis 

dependence’s associations with effort-related decision-making and reward learning. 

In study 1, acute administration of cannabis without CBD (Cann-CBD) reduced the overall likelihood of 

making high-effort choices for monetary reward compared with placebo. Contrary to my hypothesis, 

this effect was not, overall, attenuated by cannabis containing CBD (Cann+CBD). However, Cann-CBD 

increased sensitivity to expected value of the monetary outcomes, relative to both placebo and 

Cann+CBD, although these effects were not large enough to be detected in post-hoc GEE models 

within each level of expected value. These data therefore suggest that acute cannabis administration 

can lead to transient amotivation and they provide some evidence that CBD partially moderates the 

effects of THC on motivation, via altering the way THC interacts with expected value. In study 2, no 

relationship between cannabis dependence and effort-related decision-making emerged. However, 

cannabis-dependent participants, who were instructed to abstain from cannabis (and other drugs) for 

at least 12 hours, had overall weaker reward learning than the controls, and the cannabis-dependent 

participants also failed to improve their response bias between blocks. Due to confounding group 

differences and the nature of the study, it is hard to conclude whether these effects were driven by 

cannabis dependence or confounding variables. 
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5.6.1 Acute cannabis and effort-related decision-making 

Despite enduring beliefs that cannabis acutely reduces motivation, I could find only one controlled 

study which used a work-for-reward design (Cherek et al., 2002), and they had a sample of 5 

participants. Some older work had suggested null (Mello & Mendelson, 1985; Mendelson et al., 1976) 

or pro-motivational (Foltin et al., 1990) effects of acute cannabis, however these studies were not well 

controlled or did not provide a clear reward, respectively. Here, the results provide strong evidence 

to support this hypothesis using a task that has previously demonstrated sensitivity to anhedonia, 

major depressive disorder, and dopaminergic function (Treadway, Bossaller, et al., 2012; Treadway, 

Buckholtz, et al., 2012; Treadway et al., 2009; Wardle et al., 2011). In the first model, placebo, relative 

to Cann-CBD, was a significant, positive predictor of the likelihood of making a high-effort choice. 

Hence, the administration of Cann-CBD reduced motivation for monetary reward and this supports a 

transient amotivational effect. It is difficult to speculate on the pharmacology underlying this effect. 

THC may boost dopamine release (Bossong et al., 2009), which would be expected to enhance 

motivation, but I found the opposite. The endocannabinoid system’s role in motivation must be more 

clearly elucidated before attempting to explain in detail THC’s amotivational effects, but this result at 

least suggests that functioning of CB1 receptors is important in effort-related decision-making. 

Although CBD has been shown to shield individuals against some of the negative effects of THC 

(Englund et al., 2013; Hindocha, Freeman, Schafer, et al., 2015; Morgan, Freeman, et al., 2010), the 

overall difference between Cann-CBD and Cann+CBD was null in the first model. There is thus no 

evidence that cannabidiol reduced the overall amotivational effects of THC. It may be the case that a 

higher dose of cannabidiol or a different time of administration relative to THC is needed to produce 

a stronger pro-motivational effect. 

However, Cann-CBD influenced the effects of expected value on effort-related decision-making 

differently to Cann+CBD. Expected value refers to the multiplication of the outcome value with the 

probability of receiving the outcome, so it represents how good an option is and how much it is worth. 
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According to model 4, expected value increased the likelihood of making a high-effort choice more 

following administration of Cann-CBD than placebo and Cann+CBD. This implies that CBD affected the 

way people made decisions about different effortful outcomes. Furthermore, these results could 

suggest that the presence of CBD attenuated THC’s effects on the processing of expected value, such 

that Cann+CBD was more similar to placebo than Cann-CBD, in this regard. Alternatively, one could 

conclude that the presence of CBD made it less like placebo: Cann-CBD augmented the effect of 

expected value more than Cann+CBD and placebo, so this means that as expected value increased, 

participants who were given Cann-CBD somewhat recovered from the original amotivational effects, 

while participants who were given Cann+CBD did not. Moreover, when the interaction was explored 

using GEE models at three separate levels of expected value, no significant differences between Cann-

CBD and Cann+CBD emerged, which suggests that, although there clearly was a significant interaction 

in model 4, the differences between the cannabis types within each expected value level were not 

large. Therefore, CBD’s role in effort-related decision-making is slightly ambiguous. Replications of this 

study are needed before any conclusive remarks about CBD’s motivational qualities are made. 

Importantly, becoming stoned and liking the drug effects are major motivators for cannabis use and 

it is noteworthy that CBD did not compromise this desired effect of THC, consistent with previous 

findings (Hindocha, Freeman, Schafer, et al., 2015). The lack of CBD’s effect on stoned ratings may be 

important in harm reduction messages, if users wish to maintain the degree to which they feel 

subjective effects while potentially reducing some of the harmful consequences of THC (Englund et 

al., 2013; Morgan, Schafer, et al., 2010). It is also of note that the degree of recreational cannabis use, 

as measured by average number of days smoking cannabis/month, did not affect the hedonic 

response to the drug, as might have been expected from tolerance. However, none of the participants 

were particularly heavy users (all smoked <4 times per week, and most smoked much less), so 

tolerance may not have occurred. 
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As described above, the endocannabinoid system is thought to play a role in other drug addictions. 

The administration of cannabinoid drugs can alter drug-taking behaviour in animals and humans, and 

chronic alcohol and nicotine exposure is associated with changes to CB1 receptor density and 

functioning (Parsons & Hurd, 2015). My findings thus indicate that the endocannabinoid system is 

involved in effort-related decision-making. Much more human research is needed to elucidate the 

ways in which the endocannabinoid system contributes to other drug addictions, including basic 

studies which describe the physiological changes to the endocannabinoid system in different addicted 

populations. Given my results, one possible research direction would be to examine whether changes 

to effort-related decision-making link the endocannabinoid system and dependence severity. 

Furthermore, as most people in Europe smoke cannabis with tobacco (Hindocha, Freeman, Winstock, 

et al., 2015), and results in chapter 4 showed that dependent smokers had impaired effort-related 

decision-making, it would be interesting to test the effects of simultaneous administration of nicotine 

and cannabis on effort-related decision-making. 

5.6.2 Cannabis dependence and effort-related decision-making 

No association emerged between cannabis dependence and effort-related decision-making. The 

results are concordant with previous survey-based research which have failed to find a relationship 

between long-term cannabis use and self-reported motivation (Barnwell et al., 2006; Musty & Kaback, 

1995). Given the participants were instructed not to consume drugs (apart from nicotine and caffeine) 

for 12 hours before the session in study 2, the results from these two studies imply that cannabis 

acutely but not chronically alters effort-related decision-making. People who were dependent on 

cannabis but who were not currently intoxicated on cannabis had similar motivation to drug-using 

controls; whereas healthy controls given cannabis demonstrated transient amotivation. However, 

given the cross-sectional nature of study 2, the results should be interpreted cautiously. A large, 

longitudinal study that records frequency of cannabis use, type of cannabis used and different aspects 

of motivation is needed to more thoroughly address the question of how chronic use might relate to 
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amotivation. Furthermore, an investigation into the effects of cannabis withdrawal/recent cannabis 

consumption on motivational processing in cannabis dependent people is warranted. In general, the 

different effects of acute cannabis abstinence and acute nicotine abstinence in the respective 

dependent populations should be further examined. 

5.6.3 Cannabis dependence and reward learning 

Similar to the associations with depression (Pizzagalli, Iosifescu, et al., 2008) and nicotine withdrawal 

(Pergadia et al., 2014), I demonstrated that cannabis dependence (with >12 hours of abstinence) was 

associated with reduced reward learning compared with non-dependent, drug-using controls. Not 

only did the cannabis-dependent individuals have an overall reduced response bias, indicative of a 

generally lower reward responsiveness, but they did not improve their response bias between blocks, 

as is usually seen in healthy controls (Pizzagalli et al., 2005). 

Drug addiction has been associated with deficits in non-drug reward processing (Goldstein & Volkow, 

2002; Lubman et al., 2009) and anhedonia (Hatzigiakoumis et al., 2011; Leventhal et al., 2008). Given 

cannabis’s putative effects on reward circuitry (Bloomfield, Morgan, Egerton, et al., 2014; Maldonado 

et al., 2006), and the depressive effects of cannabis withdrawal (Budney & Hughes, 2006), this finding 

was expected. Whether this reward deficiency was a consequence of: chronic cannabis; a predisposing 

factor for cannabis use; caused by other factors; or a combination of these remains to be seen and 

will require longitudinal studies. Whatever the causal relationships, a reduced capacity to direct 

behaviour towards more reinforced stimuli is an important finding as it may contribute to reduced 

subjective wellbeing and could negatively impact treatment success, as seen in depression (Vrieze et 

al., 2013). 

Although the groups were very similar in terms of other illicit drug use, age, gender and educational 

achievement, they did differ significantly in depression levels and tobacco use. This is not surprising, 

given that depression and tobacco use are positively associated with cannabis dependence (Hindocha, 
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Shaban, et al., 2015). I found that when I included these factors as covariates the effects of group and 

block were lost. Given this result, and the strong relationship between depression and reward 

responsiveness on the PRT (Pizzagalli, Iosifescu, et al., 2008; Pizzagalli et al., 2005), as well as emerging 

evidence that tobacco use and nicotine withdrawal affect task behaviour (Janes et al., 2015; Liverant 

et al., 2014; Pergadia et al., 2014), drawing any conclusions about specific relationships between 

cannabis use, tobacco use, depression and reward learning is difficult. However, just because the 

effect of group was lost when depression and cigarette smoking were included as covariates does not 

mean cannabis dependence is not associated with reduced reward learning. As a relatively large 

amount of variance was shared between group and tobacco use (approximately 30%) and depression 

(approximately 20%), covarying for these variables could be considered statistically inappropriate 

(Miller & Chapman, 2001). Future case-control studies should therefore aim to match groups on 

depression and cigarette smoking. 

5.6.4 Strengths and Limitations 

Study 1 was a placebo-controlled, double-blind experiment, and so provides strong evidence for 

cannabis causing transient amotivation. To my knowledge, this is only the second time this has been 

shown (Cherek et al., 2002), and the first study had a sample size of five. Furthermore, the 

investigation of CBD was highly novel and builds on previous work showing it may moderate the 

effects of THC. The top-up dose of cannabis clearly worked well as ‘stoned’ ratings were similar 

immediately after the first and second doses. Although cannabis-dependent participants were more 

depressed and smoked more cigarettes than drug-using controls in study 2, they were well matched 

on all other demographic variables, including other drug use, which is a strength. 

While the two studies have addressed the acute effects of cannabis on and association of cannabis 

dependence with reward processing, I only employed one type of reward. As discussed in previous 

chapters, money may be considered a way of buying drugs, rather than being seen as a reward in 

itself, and cannot be consumed. Future studies should investigate reward processing of a variety of 
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rewards, including cannabis itself, so that comparisons between drug and non-drug reward processing 

can be made, as they have been in chapters 2-4 with cigarette smokers. Furthermore, although 

urinalysis was conducted in both experiments, I was not able to relate task performance to 

quantitative indices of cannabinoid metabolites, which could have improved my ability to infer acute 

and chronic effects of THC and CBD (C. Morgan et al., 2012). Finally, study 2 could obviously have been 

improved if depression and cigarette smoking were not different between the groups. 

5.6.5 Conclusions 

In conclusion, cannabis without CBD led to an overall reduction in motivation as evidenced by a lower 

likelihood of making a high-effort choice to earn monetary reward. Cannabis with CBD did not appear 

to reduce this effect, but did moderate THC’s effects on expected value. Cannabis dependence was 

associated with preserved motivation and impaired reward learning; however, given the observational 

nature of the data, the causal roles of cannabis dependence, depression and tobacco smoking cannot 

be determined. 
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Chapter 6: General discussion 

In this thesis, I set out to address the following questions: 

1. Do dependent cigarette smokers differ from occasional cigarette smokers on their processing 

of cigarette and non-drug rewards across a range of metrics? Is this moderated by acute 

nicotine abstinence? 

2. Can an acute dopaminergic challenge beneficially disrupt cigarette smokers’ processing of 

cigarette and non-drug rewards? 

3. Is cannabis use associated with non-drug reward processing alterations? 

I will discuss how my results help to answer these questions along with their theoretical and clinical 

implications. I will then suggest future directions for this field of research, discuss the limitations of 

my work and consider, with hindsight, what could have been improved.  

6.1 Summary of findings 

Many theoretical accounts of drug addiction centre on altered reward processing (Goldstein & 

Volkow, 2011; Koob & Le Moal, 1997; Robinson & Berridge, 1993). The work in this thesis was based 

on the general hypothesis that drug addiction is associated with a hypersensitivity to drug rewards 

and a hyposensitivity to non-drug rewards (Bühler et al., 2010; Goldstein & Volkow, 2011; Sweitzer et 

al., 2013). Despite strong theoretical predictions, the empirical literature concerning reward 

processing changes in tobacco and cannabis addictions is mixed. I therefore aimed to investigate 

associations between nicotine dependence and the processing of cigarette and non-drug rewards, 

across a range of metrics. Furthermore, I also aimed to examine non-drug reward processing 

alterations associated with acute cannabis use and cannabis dependence. 

In order to do this I designed a novel task named the Drug, Reward and Motivation – Choice (DReaM-

Choice) Task which provided participants with the opportunity to win both cigarettes and other 
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consummatory, non-drug rewards through choice and button-pressing. Subsequently, participants 

could consume and rate their subjective liking of these rewards. For my first three empirical chapters, 

I employed between-subjects designs to compare dependent cigarette smokers with non-dependent 

cigarette smokers (who were well-matched on the majority of demographic variables) on reward 

processing tasks. This allowed me to make comparisons between the groups on different drug and 

non-drug reward processing measures and comparisons within groups in terms of the balance of 

reward processing. Furthermore, I used two commonly used non-drug reward processing tasks to 

investigate effort-related decision-making (Treadway et al., 2009) and reward learning (Pizzagalli et 

al., 2005). 

In chapter 2, I found that dependent smokers, in comparison to occasional smokers, were 

hypersensitive to cigarette reward in terms of relative preference, motivation, and subjective wanting 

and liking, regardless of recent nicotine consumption (abstinent or ad libitum smoking). Furthermore, 

there was very little evidence of dependent smokers being hyposensitive to non-drug rewards 

compared with occasional smokers: dependent smokers made fewer choices for chocolate but that 

was probably driven by their greater number of choices for cigarettes. There was a consistent pattern 

of drug vs. non-drug reward processing within each group. Occasional smokers always chose, worked 

for and liked one or both of the non-drug rewards more than cigarettes, while dependent smokers 

usually chose, worked for and liked cigarettes more than the non-drug rewards. Surprisingly, I did not 

find an interaction between group, reward and smoking-condition; acute nicotine abstinence 

increased cigarette and decreased music choices across both groups (although this result may well 

have been a consequence of inappropriately low power). These results suggested that irrespective of 

12-hour nicotine abstinence, nicotine dependence was associated with a hypersensitivity to cigarette 

rewards but not a hyposensitivity to non-drug rewards. Therefore, my following studies investigated 

group differences after ad libitum smoking. 
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In chapter 3, using an adapted version of the Monetary Incentive Delay task (Knutson et al., 2000), I 

reported that dependent smokers, compared with occasional smokers, had greater behavioural 

motivation for cigarettes but not for music. Anticipation of and positive feedback about cigarettes 

triggered activation in reward-related brain regions in both groups. Furthermore, dependent smokers 

displayed greater right caudate activation when they received feedback about winning cigarette 

points than occasional smokers. However, there were no group differences during anticipation of 

cigarette reward. Moreover, anticipation of and feedback about music did not produce the expected 

pattern of activations. These results corroborated and extended findings from chapter 2, suggesting 

that nicotine dependence, at least following ad libitum smoking, is associated with a behavioural and 

neural hypersensitivity to cigarettes but not a hyposensitivity to a consummatory non-drug reward, 

music.  

In chapter 4, I examined the role of dopamine D2 and D3 receptors in cigarette and non-drug reward 

processing. Pramipexole (0.5mg oral) did not affect any component of reward processing in the 

DReaM-Choice. These results questioned the importance of D2 and D3 receptors in motivation for 

cigarettes and consummatory, non-drug rewards.  

However, pramipexole compromised both effort-related decision-making and reward learning across 

both groups. These results indicated that D2 and D3 receptor functioning may be specifically related 

to certain aspects of non-drug reward processing. In accordance with chapter 2, I found that 

dependent smokers, compared with occasional smokers (both of whom had been nicotine abstinent 

for at least 1.5 hours following ad libitum smoking), were hypersensitive to cigarette rewards, in terms 

of relative preference, motivation, choice time and subjective liking. As before, there was little 

evidence for a hyposensitivity to consummatory, non-drug rewards in the dependent group. However, 

nicotine dependence was associated with impaired effort-related decision-making for monetary 

reward. 
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Taking a different tack, in chapter 5 I found that acute cannabis administration led to a reduction in 

motivation to earn monetary reward and that cannabidiol (CBD) subtly altered the effects of THC on 

motivation. Moreover, I observed that cannabis dependence was associated with impaired reward 

learning but preserved effort-related decision-making. Hence, these results implied that cannabis use 

can disrupt non-drug reward processing in specific ways.  

Throughout this thesis I also recorded many secondary outcomes, including self-reported craving, 

anhedonia, withdrawal and drug effects. The results of these secondary outcomes have nearly always 

confirmed expectations. For instance, in chapter 2, there were three way interactions between group, 

smoking-condition and time for self-reported withdrawal and anhedonia scores. Similarly, in chapter 

4, I observed the expected effects of pramipexole on ‘feel drug’ and ‘nausea’, amongst others, while 

dependent smokers craved cigarettes more than occasional smokers. And, in chapter 5, I observed 

the expected effects of cannabis on ‘stoned’ and ‘like drug’. Thus, I was able to replicate many basic 

effects. This demonstrates that the important manipulations in my studies worked successfully. 

In summary, the research in this thesis has provided evidence for hypersensitivity to cigarette rewards 

across a range of reward processing metrics in nicotine dependence. However, I found much less 

evidence in favour of impaired non-drug reward processing in nicotine dependence, when assessed 

mostly after ad libitum smoking. This research also questioned the role of D2/3 receptors in nicotine 

dependence. Furthermore, contrasting with nicotine dependence, specific non-drug reward 

processing deficits associated with cannabis use were revealed. 

6.2 The iRISA theory of addiction 

Goldstein & Volkow (2011, page 652) state that addiction is: ‘a syndrome that is characterized by 

attributing excessive salience to the drug and drug-related cues, decreased sensitivity to non-drug 

reinforcers and decreased ability to inhibit maladaptive or disadvantageous behaviours’; this is their 

‘impaired response inhibition and salience attribution’ (iRISA) theory of addiction. Furthermore, they 
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claim that (page 654): during addiction ‘drug-related neuropsychological processes, including drug-

related anticipation (and other conditioned responses), suppress or eclipse non-drug related 

processes, such as anticipation of — or the motivation to — pursue non-drug related goals’. Their 

theory stems from neurobiological work investigating the role of the prefrontal cortex in addiction. 

However, their theory and predictions can and should be applied to behaviour, otherwise it should 

not be considered a theory of addiction, but rather a theory of brain changes associated with 

addiction. 

For my purposes, these statements can be condensed into three chief, theoretical claims: (1) addiction 

is associated with a hypersensitivity to drugs, (2) addiction is associated with a hyposensitivity to non-

drug rewards and (3) non-drug reward-related goals are suppressed or eclipsed by drug-related goals. 

Goldstein & Volkow (2011) are not specific about which aspects of reward processing should be 

particularly affected by addiction, although they consider motivation and salience as key processes. 

Therefore, I can assess each statement, relating to nicotine dependence, across a variety of reward 

processing metrics using the results reported in this thesis.  

6.2.1 Claim 1 - Addiction is associated with a hypersensitivity to drugs: hypersensitivity to cigarette 

reward in nicotine dependence 

In both chapters 2 and 4, dependent smokers chose, pressed for and liked cigarettes more than 

occasional smokers. Moreover, dependent smokers, compared with occasional smokers, reported 

greater wanting of cigarettes in chapter 2, reacted more quickly to the cigarette target in chapter 3 

and also chose cigarettes faster than occasional smokers in chapter 4. Therefore, on nearly every 

measure of cigarette reward processing that I recorded, ranging from the preference of one reward 

over another to the subjective liking associated with consuming cigarettes, nicotine dependence was 

associated with a hypersensitivity to cigarette reward. This provides strong support for the first 

theoretical claim (Goldstein & Volkow, 2011) and clearly answers one part of my first research 

question. 
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These results are unsurprising and some, to be cynical, are a little unexciting. It would be odd if 

addiction was not associated with perturbations in the motivation for the drug of choice. That is, by 

definition, part of what drug dependence is (DSM-5 American Psychiatric Association, 2013). Had the 

dependent smokers not worked harder for cigarettes than occasional smokers, I would have been very 

concerned that the tasks were invalid. Having said that, previous research, with both cigarette and 

cannabis users, has sometimes failed to demonstrate a significant association between dependence 

level and the motivation to earn cigarettes/cannabis (Barrett, 2010; Bühler et al., 2010; Mendelson & 

Mello, 1984). Hence, although it was an expected result, it is an encouraging validation of the DReaM-

Choice task that it was able to show a group difference in terms of motivation for cigarettes, when 

some other laboratory studies have failed to show this. 

Other results are perhaps more interesting. Firstly, dependent smokers chose cigarettes more than 

music and chocolate in both chapters 2 and 4, in situations where these rewards were directly pitted 

against each other. This demonstrates that when push comes to shove, dependent smokers are willing 

to sacrifice alternative rewards for cigarettes. Importantly, in chapter 2, one unit of chocolate (one 

chunk) was worth approximately the same amount of money as one unit of a cigarette (one quarter); 

they were both worth approximately 10p. Thus, it cannot be argued that the smokers were just 

choosing the most valuable option. This supports a lot of previous research showing a strong 

relationship between the level of nicotine dependence and the extent to which cigarettes are chosen 

over chocolate (Chase et al., 2013; Hogarth, 2012; Hogarth & Chase, 2011). These results are 

important because it shows that when faced with exclusive choices, cigarettes powerfully direct 

behaviour away from non-drug rewards, which supports the DSM’s criterion of reduction or 

termination of alternative activities (DSM-5 American Psychiatric Association, 2013). However, I 

believe that this reduction in non-drug reward choices is driven by a hypersensitivity to cigarette 

rewards rather than a change in the value of non-drug rewards. 
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My finding in chapter 3 that dependent smokers displayed greater activation in a small region of the 

right caudate while they earned points for cigarette reward compared with occasional smokers is also 

noteworthy. Firstly, this extends my findings in other chapters from behavioural hypersensitivity to 

cigarette reward in nicotine dependence to one aspect of neural cigarette reward processing. Thus, 

the pattern of hypersensitivity appears consistent across different metrics. Furthermore, this is a novel 

finding. Only one other study has investigated BOLD responses while cigarette smokers of varying 

levels of nicotine dependence earn points for real cigarettes (Bühler et al., 2010). They found no group 

differences on anticipatory or feedback BOLD responses. Hence, this enhanced activity in the right 

caudate, a structure putatively involved in habitual drug-seeking (Everitt & Robbins, 2005),  during 

positive cigarette feedback demonstrates an unreported form of hypersensitivity to cigarette reward 

in nicotine dependence. This result provides neural support for the first theoretical claim (Goldstein 

& Volkow, 2011). 

Another interesting aspect of the hypersensitivity to cigarettes was the greater self-reported liking of 

smoking a cigarette in the dependent compared with the occasional smokers. One previous study 

found that, in a group of dependent smokers, euphoria was associated with the number of years 

smoking but not level of dependence (Pomerleau & Pomerleau, 1992). While another found no 

relationship between dependence and the reported pleasantness of smoking (Shiffman & Kirchner, 

2009). My studies compared very occasional, non-dependent smokers with dependent smokers, 

which, to my knowledge, has not previously been done. My results suggest that nicotine dependence, 

despite tolerance, is associated with greater hedonic responses to cigarettes and this therefore 

supports the first theoretical claim described above (Goldstein & Volkow, 2011) and helps answer my 

first research question. Interestingly, and supporting these findings, survey data suggests that the 

greater the frequency of drug use, the greater the positive outcomes that the drug user reports (Lawn 

& Winstock, unpublished observations). 
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For most activities and commodities in the world, increased use or consumption is associated with 

greater pleasure. For example, people who enjoy playing football are likely to play football again, and 

people who eat a lot of chocolate are likely to enjoy eating it. These proposed associations say nothing 

about whether pleasure drives motivation or motivation drives pleasure, but they do highlight the 

reasonable claim that they frequently occur together. It is unsurprising to me that drugs, tobacco in 

this case, are no different. However, I feel it is fair to say that a lay assumption about an addict is that 

they no longer take as much pleasure from drug consumption as they used to, or even that they do 

not take any pleasure from it at all any more. This is also theoretically suggested in the incentive-

sensitization theory, which claims that, as addiction takes hold, ‘wanting’ increases while ‘liking’ falls, 

or at least remains stable (Robinson & Berridge, 1993). Furthermore, ‘wanting’ and ‘liking’ are thought 

to be distinct concepts and not necessarily related. 

My results imply that dependence is certainly not associated with a termination of cigarette-induced 

pleasure, and that nicotine-dependent people take more pleasure than non-dependent people. 

However, without longitudinal studies, it is impossible to determine whether the pleasure changes as 

the addictive state grows. It may have been that the dependent smokers in my studies always really 

liked smoking, even when they were only occasional smokers. However, given large numbers of highly 

dependent smokers still report great pleasure from smoking (Shiffman & Kirchner, 2009), I predict 

that pleasure increases, in the transition from occasional to frequent cigarette use. The pleasure 

associated with, and other short-term positive consequences of, drug use have rarely been 

investigated by the psychopharmacology community and may be considered to be the ‘elephant in 

the room’. A greater focus on the enjoyable aspects of drugs may provide greater insight into the 

experience of the many non-dependent drug users (Anthony et al., 1994), while at the same time 

improving our understanding of the transition to problematic use. Important caveats for my liking data 

in this thesis are: (1) that many occasional smokers chose not to smoke any cigarettes at all and (2) 

that I only reported data on the first quarter of the first cigarette consumed. 
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As discussed in chapter 4, I found some evidence for the dissociation of ‘liking’ and ‘wanting’. In the 

occasional smokers, the degree to which they generally ‘liked smoking a cigarette’ was associated with 

their button-pressing for cigarettes, but this was not the case in the dependent smokers. This might 

suggest that nicotine dependence is associated with a reduction of a liking-wanting relationship, which 

would support Robinson and Berridge’s (1993) theory. However, as this study used a cross-sectional 

design, it may have been that this relationship never existed in the dependent smokers. Alternatively, 

a ceiling effect in the dependent smokers’ general liking ratings and button-pressing for cigarettes may 

have negated any relationship between the two. 

6.2.2 Claim 2 - Addiction is associated with a hyposensitivity to non-drug rewards: hyposensitivity 

to non-drug rewards in nicotine dependence 

The second theoretical claim, that addiction is associated with a hyposensitivity to non-drug rewards 

(Goldstein & Volkow, 2011), received little support from my research. In the studies reported in 

chapters 2 and 4 there were no group differences between dependent and occasional smokers on the 

average number of button-presses for music or chocolate, the primary measure of motivation. 

Furthermore, there were no differences in the self-reported wanting of music or chocolate in chapter 

2, no differences in the time taken to choose music or chocolate in chapters 2 or 4, and no difference 

in the reaction time to respond to the music target in chapter 3. There was essentially no evidence to 

indicate any motivational differences for consummatory, non-drug rewards between the nicotine 

dependent and occasional smokers in the DReaM-Choice (chapters 2 and 4) and Adapted Incentive 

Delay (chapter 3) task.  

This is in direct opposition to the second statement described above (Goldstein & Volkow, 2011). 

Furthermore, it conflicts with a number of other theories that rely on non-drug reward processing 

deficits in addiction (Blum et al., 2000; Koob & Le Moal, 1997; Solomon & Corbit, 1974). The results 

described in this thesis indicate that non-drug reward processing deficits do not exist in dependent 

smokers compared with occasional during ad libitum smoking. Therefore, my results suggest that it is 
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inappropriate to claim that ‘addiction is associated with reduced motivation for alternative non-drug 

rewards’. This may be true for some addictions, it may also be true for nicotine dependence in certain 

circumstances, however it is demonstrably untrue for nicotine dependence during ad libitum smoking 

(which is the most common state to be in for a smoker). Therefore, sweeping statements in this area 

should be avoided so that readers and other researches do not assume that all addictions (including 

nicotine dependence), in all circumstances, are associated with non-drug reward processing deficits. 

My null findings concerning non-drug reward processing could be for two reasons: (1) nicotine 

dependence does not cause and is not associated with non-drug reward motivational deficits 

whatsoever; or (2) these non-drug reward processing deficits are only apparent during short-term 

nicotine deprivation. In other words, my results may have been substantially different if I had 

investigated acutely abstaining cigarette smokers in chapter 3 and 4.  

There is evidence that motivational deficits for monetary reward are only apparent when dependent 

smokers are deprived of nicotine (Al-Adawi & Powell, 1997; Powell et al., 2002). It is argued that 

dysregulation of the reward system is only revealed when the chronic administration of nicotine is 

stopped (Powell et al., 2002). These data are supported by other studies which have shown significant, 

impairing effects of acute nicotine abstinence on non-drug reward processing (Pergadia et al., 2014; 

Perkins & Karelitz, 2013b; Sweitzer et al., 2013), although a variety of other studies have not found 

these effects (Audrain-McGovern et al., 2014; Bühler et al., 2010; Kalamboka et al., 2009). It may be 

that neuroadaptations to the dopamine system, such as lower dopamine D2 receptor (Fehr et al., 

2008), D1 receptor (Dagher et al., 2001) and dopamine transporter (Leroy et al., 2012) densities, show 

their psychological effects only after chronic nicotine administration is stopped for a certain period of 

time. This idea is further supported by nicotine’s acutely enhancing capacities in reward learning (Barr 

et al., 2008) and motivation for non-drug reward (Perkins & Karelitz, 2013b), which could mask the 

underlying problems. 
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Therefore, although no group differences in motivation for consummatory, non-drug rewards were 

reported in chapters 2, 3 and 4, these results may have been different after 12-48 hours of abstinence. 

However, I had good reason not to include an acute nicotine abstinence condition in the studies 

described in chapter 3 and 4: I didn’t find the expected differential effect of acute nicotine abstinence 

on dependent and occasional smokers in chapter 2. Consequently, it made sense to continue 

investigating group differences in just one state – ad libitum smoking. My results, in the most part, 

therefore speak to the question concerning non-drug reward processing in cigarette smokers when 

they are smoking as usual. My study described in chapter 2 helps to answer the question of ‘how does 

acute nicotine abstinence affect reward processing’, however the rest of the work described in this 

thesis does not. My conclusions are therefore much more focused on reward processing alterations 

in dependent cigarette smokers during ad libitum smoking. However, I will now briefly discuss my 

thoughts on why I did not find the hypothesised effect of acute nicotine abstinence in chapter 2. 

Despite conducting a power analysis (with n=20 for both groups), I now suspect my null interaction in 

chapter 2 was driven by (1) random sampling effects, (2) the subtlety of the effect (especially after 

only 12 hours of nicotine abstinence, compared with 24-48 hours) and (3) my sample size. My reasons 

for suspecting this are: (1) a large amount of previous research has demonstrated an important effect 

of abstinence and (2) my results went in the predicted direction (see figure 2.3). In support of my 

second point, although I did not report this in section 2.3.3 (as the interaction was non-significant), 

button-pressing for chocolate reward was marginally greater in the occasional than the dependent 

smokers during abstinence (p=0.087) but not during ad libitum smoking (p=0.340). Furthermore, in 

the dependent smokers, the number of choices for music decreased during abstinence relative to ad 

libitum smoking (p=0.003), but this was not the case in the occasional smokers (p=0.515). However, 

the differences between these differences were not great enough to produce significant interactions. 

These results tentatively imply that some motivational impairments were developing in the 

dependent smokers during abstinence. Hence, it is difficult to know exactly what to make of my results 

concerning the effects of nicotine abstinence on reward processing in dependent and occasional 
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smokers. Future research should clarify and explore these effects with larger samples and variable 

lengths of nicotine deprivation. However, I will now concentrate on my findings concerning non-drug 

reward processing during ad libitum smoking, rather than speculating about why I failed to find the 

expected three-way interaction in chapter 2. 

My studies have demonstrated that, when dependent smokers have recently smoked, they do not 

have deficient motivation for the consummatory, non-drug rewards music and chocolate. 

Theoretically, this means that hyposensitivity to non-drug reward is not apparent in nicotine 

dependence, following ad libitum smoking, and so it does not support the second statement described 

above (Goldstein & Volkow, 2011). These results are important because they highlight the fact that 

impairments in non-drug reward processing in addicted individuals should not be taken for granted. 

They are likely to be moderated by factors such as short-term abstinence, individual differences and 

the component of reward processing under examination. Importantly, theories of addiction that rely 

on non-drug reward processing to explain addictive behaviours (Blum et al., 2000; Goldstein & Volkow, 

2011; Koob & Le Moal, 1997) may not be able to account for these findings, at least within the scope 

of nicotine dependence. 

An important point to consider is that there were fewer choices for the non-drug rewards in 

dependent compared with occasional smokers, but that is more likely explained by the increased 

number of cigarette choices. Enhanced motivation for cigarettes in the dependent compared with the 

occasional smokers was demonstrated by greater button-pressing for cigarettes. Hence, it seems very 

unlikely that the fewer chocolate choices actually reflected weaker motivation for chocolate reward 

in the dependent smokers, but rather a stronger desire for cigarettes, which necessarily affected the 

number of choices of alternatives. 

Given that dependent smokers were more motivated for cigarettes but similarly motivated for 

consummatory non-drug rewards compared with occasional smokers, it follows that, in absolute 

terms (drug + non-drug reward motivation), the dependent smokers expressed greater motivation for 
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reward overall. If a certain level of nicotine dependence, combined with ad libitum smoking, does not 

impair one’s motivation for non-drug rewards, then dependent smokers may be experiencing more 

overall reward than occasional or non-smokers. For some addicts, motivation for the drug may reduce 

the amount of non-drug reward consumed (through life choices and limited availability of non-drug 

reward or impaired motivation processing) and therefore it may reduce the absolute amount of 

reward. However, the ability to maintain motivation for and pleasure taken from non-drug rewards 

while simultaneously experiencing drug reward could be a driving force for drug (in this case tobacco) 

use. One way to examine whether dependent smokers have an overall greater motivation for reward 

(drug + non-drug) than occasional smokers would be to alter the DReaM-Choice slightly so that drug 

and non-drug rewards could be worked for simultaneously. 

Despite the lack of group differences in non-drug reward processing on the DReaM-Choice, there were 

group differences on the EEfRT. Namely, the dependent smokers were less sensitive to the pro-

motivational effects of magnitude, probability and expected value. This implies that nicotine 

dependence, even after recent smoking, is associated with a worse ability to use these factors in 

successful effort-related decision-making. It is interesting that I found no group differences on button-

pressing for non-drug rewards in the DReaM-Choice, which putatively measures motivation, but I did 

find group differences on the EEfRT. Importantly, I did not find an overall group difference in the 

likelihood of making a high-effort choice on the EEfRT, which should index overall motivation for 

money. The group difference concerned the sensitivity to task parameters. This may go some way to 

explain this potential discrepancy between the findings on these two tasks. Nicotine dependence may 

be associated with a specific impairment in using important variables in effort-related decision-

making, but not a global deficit in motivation. Moreover, the EEfRT provides monetary reward while 

the DReaM-Choice provides consummatory drug and non-drug rewards. This could feasibly contribute 

to the results if money is more sensitively affected by nicotine dependence.  
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I did not find a difference between the dependent and occasional smokers in terms of reward learning, 

as measured by the probabilistic reward task (Pizzagalli et al., 2005). This supports previous work 

which did not find a difference on this task between smokers (after 4 hours of abstinence) and non-

smokers (Peechatka et al., 2015). Hence, 24 hours of nicotine abstinence may be required to 

demonstrate differences on this task (Pergadia et al., 2014). 

There was a small amount of evidence that the dependent smokers liked chocolate less than the 

dependent smokers in the study reported in chapter 4. This was probably due to recruiting a few 

dependent smokers who, by chance, didn’t particularly like Dairy Milk chocolate. Hence, I cannot 

conclude that nicotine dependence is associated with reduced liking of chocolate, especially given that 

this result was not seen in chapter 2. More research investigating the pleasurable response to rewards, 

with much larger, representative samples, must be conducted with dependent smokers to determine 

if they suffer deficient hedonic processing of non-drug rewards. 

On a related note, my studies were not designed to carefully assess the effect of nicotine dependence 

and abstinence on hedonic processing with complete experimental control. I provided a naturalistic 

situation in which participants could consume their rewards at their leisure. Furthermore, each 

participant had a different amount of each reward. This was because I wanted to create a situation 

which (1) was ecologically valid, in the sense that consumption of rewards was not forced and 

participants could behave in a way that suited them and (2) was determined by the behaviour in the 

preceding DReaM-Choice task – hence the amount of each reward that participants received could 

not have been kept constant. These features, which I chose for good reason, meant that the 

manipulation of nicotine abstinence was disrupted for some participants in the study described in 

chapter 2. For instance, an ‘abstaining’ dependent smoker might smoke a cigarette before listening to 

music, and so they would no longer be deprived from nicotine. Moreover, it is possible that a 

participant who consumed a large amount of chocolate may then feel ill and subsequently rate the 

music they consumed afterwards poorly. Therefore, future research, which aims specifically at 
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investigating hedonic processing in nicotine dependence, should manipulate acute abstinence and 

control the order of consumption and amount of non-drug rewards. 

The research described in this thesis, as well as previously published research, suggests that the effects 

of nicotine dependence on non-drug reward processing are often quite subtle, may require nicotine 

abstinence, or are simply non-existent. Two reasons why the effects on non-drug reward processing 

might be quite subtle or only found during acute abstinence are that, unlike many other addictive 

drugs of abuse, nicotine putatively acts as a cognitive enhancer (Levin, McClernon, & Rezvani, 2006), 

and does not appear to negatively interfere with everyday tasks. Someone who smokes 20 

cigarettes/day can function perfectly well at work and at home, for most of their life, while someone 

who drinks 20 drinks/day usually cannot. Poor functioning in day-to-day life could then negatively 

feedback on the processing of everyday non-drug rewards. This speculative lack of disturbance to 

other activities in life, possibly due to cognitive enhancement, may contribute to my null findings 

concerning non-drug reward processing.  

Moreover, individual differences in the effects of nicotine dependence and acute abstinence likely 

play an important role. Despite not finding any associations between questionnaire measures or 

demographic variables and abstinence-induced changes in chapter 2, baseline anhedonia appears to 

moderate the effect of acute abstinence on various reward processing measures. Higher levels of 

anhedonia, following nicotine deprivation, have been associated with greater urges to smoke (Cook 

et al., 2004; Leventhal et al., 2009), greater willingness to pay for cigarettes (Leventhal, Trujillo, et al., 

2014) and weaker interference from happy faces (Leventhal et al., 2012). Similarly, depression-prone 

smokers have greater positive affect while smoking compared to during abstinence, whereas non-

prone smokers do not show this profile (Audrain-McGovern et al., 2014). This implies that people are 

likely to experience the effects of nicotine abstinence differently. Therefore, it may be simplifying the 

question to ask: do dependent smokers have non-drug reward processing deficits during nicotine 

satiation/deprivation? The answer to this question may depend on the kind of smokers who have 
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taken part in the experiment. Future research should aim to stratify smokers into those who do and 

do not experience reward processing deficits following nicotine deprivation and investigate why these 

smokers are more sensitive or vulnerable. 

6.2.3 Claim 3 – Non-drug reward-related goals are suppressed or eclipsed by drug-related goals: 

the balance of cigarette and non-drug reward processing in nicotine dependence 

One consistent finding throughout chapters 2-4 was that the dependent smokers generally processed 

(e.g. choices, button-pressing, liking etc…) cigarettes more positively than or similarly to non-drug 

rewards; on the other hand, occasional smokers generally processed non-drug rewards more 

positively than cigarettes. This was the case for choices, button-pressing and liking (in chapters 2 and 

4), for choice time (in chapter 4) and marginally so for reaction time (in chapter 3). This may be 

considered evidence to support the third theoretical claim described above (Goldstein & Volkow, 

2011) and perhaps adds weight to the hypothesis that the balance between cigarette and non-drug 

reward processing is particularly important in nicotine dependence (Bühler et al., 2010). 

In dependent smokers, there was often a stronger motivation to earn cigarettes than alternative, non-

drug rewards. This could be described as the drug-related goal ‘eclipsing’ non-drug related goals. In 

my opinion though, that is too strong a word to use. ‘Eclipsing’ of non-drug related goals implies that 

there is a substantial disruption of these non-drug related goals. However, compared with occasional 

smokers, dependent smokers did not have impoverished non-drug reward processing. Hence, there is 

a simpler way to interpret these consistent findings concerning the balance between cigarette and 

non-drug reward processing. Across most metrics, non-drug reward processing was similar between 

the groups and cigarette reward processing was greater in the dependent smokers; this leads to the 

difference in the balance described here, and essentially is nothing more than a difference in cigarette 

processing. There is thus little evidence that the pursuit of non-drug rewards was ‘eclipsed’ or 

‘suppressed’ as a consequence of enhanced cigarette reward processing, except from when cigarettes 
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and non-drug rewards were directly pitted off against each other in the choice stage of the DReaM-

Choice task. 

The question of whether or not this ‘balance’ is particularly important in nicotine dependence, more 

so than either cigarette or non-drug reward processing separately, is an interesting one. This can be 

partially assessed by some of the data I presented in this thesis. For instance, is nicotine dependence 

significantly more associated with the difference between the motivation for cigarettes and 

music/chocolate than the motivation for cigarettes, per se? Although I did not present these results 

in the previous chapters, the answer to this question (using the button-pressing metric in chapters 2 

and 4, and the reaction time metric in chapter 3) is no. There was not a significantly larger difference 

between dependent and occasional smokers when using the difference in the motivation for cigarette 

and non-drug rewards as the outcome variable, compared with using the motivation for cigarettes, 

per se, as the outcome variable. Hence, results in this thesis suggest that the balance in cigarette and 

non-drug motivation is no more associated with nicotine dependence than just motivation for 

cigarettes. However, this question could be more thoroughly answered using a longitudinal design in 

which maintenance of addiction in continuing smokers or cessation success in quitting smokers is 

predicted by: (1) cigarette processing; (2) non-drug reward processing; and (3) the balance between 

cigarette and non-drug reward processing. 

To summarise, in answer to my first research question, the data reported in this thesis suggests 

nicotine dependence, when assessed mostly during ad libitum smoking, is associated with a 

hypersensitivity to cigarette rewards but generally not a hyposensitivity to non-drug rewards. There 

is a consistent difference in the pattern of cigarette and non-drug reward processing between the 

groups, but that is driven simply by a difference in cigarette processing. There is very little evidence 

to suggest that there are substantial non-drug reward processing impairments in dependent smokers 

compared to occasional smokers, during ad libitum smoking. Finally, the results in this thesis do not 

provide enough data on the abstinence-induced moderation of reward processing to make strong 
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conclusions about its effects. Future research will have to be carried out to further elucidate the 

effects of acute nicotine abstinence on consummatory non-drug reward processing. With regards to 

Goldstein & Volkow’s (2011) theoretical claims within the remit of nicotine dependence, my research 

supports their first claim, does not support their second claim and may or may not support their third 

claim, depending on how ‘eclipsed’ and ‘suppressed’ are interpreted. 

6.3 Transition from occasional to dependent tobacco use 

I began my thesis by describing the statistics which show that most people who try a drug do not go 

on to become addicted to it. I proposed that changes to reward processing that occur following drug 

use, or perhaps existed beforehand, could play a role in the transition to and maintenance of 

dependence. Although cross-sectional, and therefore a weak form of evidence, I believe that my 

studies suggest that deficient non-drug reward processing is unlikely to substantially contribute to the 

development and maintenance of nicotine dependence. If these deficits do substantially contribute, 

and they are not masked by recent cigarette smoking, then they should have appeared in my 

experiments (chapters 2-4), but they did not. Even if they are masked by recent cigarette smoking, 

given a smoker who smokes 15 cigarettes/day is smoking approximately one cigarette/hour, if non-

drug reward processing deficits were playing a major role in the maintenance of addiction, they would 

likely reveal themselves following 1.5 hours of abstinence (as in chapter 4), as well as after 12 hours 

of abstinence (as in chapter 2). 

I have argued above that non-drug reward processing deficits in nicotine dependence are subtle, if 

they exist at all. I believe that if non-drug reward processing deficits were playing an important role in 

the maintenance of nicotine dependence, they would have been evident in my results. As described 

above, I always found the expected effects and group differences on craving and withdrawal 

symptoms, which demonstrates that my experiments were conducted successfully. It also 

demonstrates that variables which are known to be somewhat important in the maintenance of 

nicotine dependence (craving and withdrawal symptoms) (Killen & Fortmann, 1997; Zhou et al., 2009), 
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were robustly affected in the way that I expected in my studies. If non-drug reward processing deficits 

were similarly important in the development and maintenance of nicotine dependence as craving and 

withdrawal symptoms are, then I should have seen non-drug reward processing deficits appear 

similarly robustly. That is not to say that other aspects of non-drug rewards, like their availability and 

cost, do not play a role in nicotine dependence, as they demonstrably do (Audrain‐McGovern, 

Rodriguez, Rodgers, & Cuevas, 2011).  However, I think deficient processing of non-drug rewards, 

when they are available, is probably not hugely important in the development of nicotine dependence. 

Certainly, the current evidence suggests that if it plays a role at all, it will likely be a poor target for 

treatment compared to management of craving, for instance. 

Of course, longitudinal studies would be desirable to assess the importance of non-drug reward 

processing in the maintenance or development of addiction. It would be fascinating to determine 

whether aspects such as effort-related decision-making and reward learning predict future cigarette 

use, especially the transition to dependence. However, research has mostly focused on relapse in 

smokers attempting to quit. Recent evidence suggests motivation for monetary reward as assessed 

by the EEfRT is not associated with later relapse in smokers attempting to quit (Das, 2015). However, 

one consistent finding is that self-reported anhedonia predicts likelihood of relapse in real-life quit 

attempts (Cook et al., 2010; Leventhal, Piper, et al., 2014; Leventhal et al., 2009). Other studies have 

shown the importance in the balance of cigarette and non-drug reward image processing in future 

smoking (Versace et al., 2014; Versace et al., 2012), however, it is unclear whether the association 

would have remained if only the response to non-drug reward images were analysed. Furthermore, 

performance in the CARROT, which assesses motivation for monetary reward, did not predict relapse 

(Powell et al., 2010). Hence, the evidence in favour of various non-drug reward processes playing key 

roles in future tobacco use is mixed, with self-reported anhedonia seeming to be the most reliable 

predictor. 
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However, overall my studies do imply that sensitivity to cigarette rewards might be important in the 

development and maintenance of addiction. Dependent smokers were more motivated for and 

reported greater liking of cigarettes than occasional smokers; these results were very reliable. It makes 

logical sense that the more sensitive one is to the reinforcing actions of cigarettes, the more they will 

go back for more, and the higher the likelihood of developing dependence (DiFranza et al., 2004). In 

terms of cigarette reward processing, longitudinal studies should therefore focus on why it is that 

some people become more sensitive to cigarette rewards, in terms of motivation and pleasure, and 

how to weaken these processes in already dependent smokers. Of course, many other factors play 

extremely important roles in the development and maintenance of nicotine (and other drug) 

dependence, including socio-economic status (Anthony et al., 1994), comorbid mental health 

problems (Lopez-Quintero et al., 2011), concurrent drug dependencies (Lopez-Quintero et al., 2011), 

and partners who dislike smoking (West, McEwen, Bolling, & Owen, 2001), to name just a few. Hence, 

sensitivity to cigarette reward is likely to contribute to nicotine dependence alongside many other 

critical factors.  

I will now move onto a discussion of dopamine’s role in reward processing, which relates specifically 

to the study described in chapter 4. Following this section, I will discuss my findings concerning the 

acute and chronic effects of cannabis on non-drug reward processing, which were reported in chapter 

5. 

6.4 Dopaminergic disruption of reward processing 

Despite strong theoretical (Volkow et al., 2004) and empirical (Freeman et al., 2015; Freeman et al., 

2013) foundations, 0.5mg of oral pramipexole, a dopamine D2/3 receptor agonist, did not affect 

relative preference for, motivation for or liking of cigarettes, music or chocolate. Furthermore, it did 

not affect willingness to pay for cigarettes in the hypothetical cigarette purchase task. This could 

essentially mean one or more of three things: (1) D2/3 receptors are not important in these aspects 

of reward processing; (2) D2/3 receptors are important but the dose of pramipexole was not sufficient 
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to cause changes; and/or (3) D2/3 receptors are important but the task was not sensitive enough to 

detect changes. Given the evidence concerning dopamine in response vigour for rewards (Niv et al., 

2007), bromocriptine’s effects on ad libitum smoking (Jarvik et al., 2000), and a previous significant 

finding with the same dose of pramipexole boosting motivation to earn monetary reward (Freeman 

et al., 2013), I suggest that my results were due to a combination of (2) and (3). 

In order to test this hypothesis, one would have to examine various doses of pramipexole on different 

tasks with potentially greater sensitivities. Possibilities for such tasks would be a button-pressing 

progressive ratio task, which would provide breakpoints as measurements of motivation for individual 

rewards, or an ad libitum smoking/consumption task. As discussed in chapter 4, pramipexole 

putatively has a complex effect on dopaminergic functioning: at low doses, like the 0.5mg oral dose I 

used, it is thought to reduce phasic dopamine release due to pre-synaptic, auto-receptor activation 

and at high doses it is thought to overcome this effect and enhance post-synaptic receptor activation 

(Maj et al., 1997). Therefore, different doses of the drug may have markedly different effects on 

motivation for cigarette and non-drug rewards. All that can be concluded is that motivation for 

cigarettes, music and chocolate were not sensitive to an acute dose of 0.5mg pramipexole, and 

therefore this acute dose is probably not a useful treatment for nicotine dependence. However, other 

doses of pramipexole, chronic treatment or administration within treatment-seeking cigarette 

smokers may have substantially different effects on cigarette reward processing. One should not 

conclude that pramipexole will never be effective at reducing smoking from my results. Nor should 

one conclude that medicinal drugs which do not act directly on the receptors which the abused drug 

acts on will be poor treatments. Bupropion (for nicotine dependence) and naltrexone (for alcohol 

dependence) are good examples of why this is not necessarily the case. 

Interestingly, it has recently been argued that too much emphasis has been placed on dopamine as 

the final, common pathway to non-psychostimulant drug addiction (Nutt et al., 2015). They argue that 

dopamine functioning is critical in addiction to cocaine or amphetamine, but not addiction to cannabis, 
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opiates or nicotine. Evidence in favour of this hypothesis is that these latter drugs do not have such 

profound effects on dopamine levels in the striatum and D2 receptor density is often found to be 

unchanged in addicts of these drugs. Other neurotransmitters, including endocannabinoids and GABA, 

are suggested to be more heavily involved. My pramipexole data could, speculatively, support this 

claim, given that the dopaminergic manipulation had null effects on motivation to earn cigarettes, 

music and chocolate. Alternatively, dopaminergic manipulations may only disrupt very specific 

components of motivation (which were not tapped by the DReaM-Choice task); it may be unwise to 

lump many components of reward processing together and propose they are all underpinned by 

dopamine (Salamone & Correa, 2002). 

However, the roles of D2/3 receptors in effort-related decision-making and reward learning were 

supported. Pramipexole reduced sensitivity to the task parameters of probability, magnitude and 

expected value, such that as these values increased, the likelihood of high-effort choices did not 

increase as fast as in the placebo condition. Thus, D2/3 receptors appear to be important in effort-

related decision-making, in which reward value is pitted against effort cost. These results are 

consistent with the theory that nucleus accumbens dopamine is critical in this process (Salamone et 

al., 2007) and that phasic dopamine release is important in cognitive and behavioural flexibility 

(Floresco, 2013). The effects of pramipexole on reward learning were as expected, with a reduction in 

response bias, as shown previously in healthy controls (Pizzagalli, Evins, et al., 2008). This effect has 

also been attributed to impaired phasic dopamine release. However, as discussed in chapter 4, my 

results should be interpreted very cautiously because the effect of pramipexole reducing response 

bias was only apparent when all participants were included in the analysis (and not when participants 

who would traditionally be excluded were actually excluded). 
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6.5 Non-drug reward processing deficits associated with cannabis use 

My findings concerning cannabis can be summarised as follows: 

(1) Cannabis without cannabidiol (Cann-CBD; 8mg THC) acutely reduced motivation for monetary 

reward. 

(2) Cann-CBD acutely enhanced sensitivity to expected value and probability relative to placebo 

and enhanced sensitivity to expected value relative to cannabis with cannabidiol (Cann+CBD; 

8mg THC + 10mg CBD). 

(3) Cannabis dependent individuals did not have altered effort-related decision-making 

compared with non-dependent, drug-using controls. 

(4) Cannabis dependent individuals demonstrated worse reward learning than non-dependent, 

drug-using controls, although greater depression levels and tobacco smoking could have 

played a role in this difference. 

I demonstrated, in a carefully controlled cross-over design, that cannabis acutely reduced motivation 

for monetary reward. Importantly, this illuminates a role for the endocannabinoid system in effort-

related decision-making. Only one previous study had investigated the effects of acutely administered 

cannabis on the motivation for monetary reward in a double-blind, placebo-controlled way (Cherek 

et al., 2002). However, they had a sample of only five participants and so this demanded replication. 

Hence, this finding, from a much larger study, represents a major step forward in our understanding 

of whether cannabis can transiently produce amotivation. It is an important result because people 

have claimed for many years that cannabis reduces motivation (McGlothlin & West, 1968), but very 

little well-controlled experimental work has been conducted. I have demonstrated that being stoned 

on cannabis leads to a small, but significant, reduction in the amount of work people are willing to put 

in to earn monetary reward on a well validated task (Green, Horan, Barch, & Gold, 2015; Treadway, 

Bossaller, et al., 2012; Treadway et al., 2009; Wardle et al., 2011). This research finding should be 
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communicated to the public so that cannabis users are aware that there is now stronger evidence that 

acute intoxication on cannabis can result in lowered motivation. 

Moreover, Cann-CBD influenced the effects of expected value on effort-related decision-making 

differently from Cann+CBD. Expected value refers to the multiplication of the outcome value with the 

probability of receiving the outcome, so it represents how good an option is and how much it is worth. 

Expected value increased the likelihood of making a high-effort (with a larger reward) choice more 

following administration of Cann-CBD than placebo and Cann+CBD. This suggests that CBD affects the 

way people make decisions about different effortful outcomes. However, the interpretation of this 

result is unclear. One could argue that CBD made the cannabis more like placebo, and therefore it 

buffered a negative effect of the THC. Alternatively, one could argue that the absence of CBD had a 

positive effect on task performance. Cann-CBD enhanced the pro-motivational effects of expected 

value compared to both placebo and Cann+CBD. Future research must clarify this effect with 

replication in a larger sample and a longer version of the EEfRT, as the version I used in the studies 

described in this thesis was about half the length of the original task. 

CBD has a range of proposed pharmacological actions, including inhibition of the metabolism and 

reuptake of anandamide (Pertwee, 2008), inverse agonism of the CB1 receptor (Pertwee, 2008) and 

agonism of the GPR55 receptor (Ryberg et al., 2007), and the pharmacology of effort-related decision-

making is relatively unknown. Hence, it is difficult currently to pinpoint pharmacologically how CBD 

may diminish the effect of expected value on effort-related decision-making. Future experiments 

which test the effects of a wide range of dopaminergic and cannabinoid drugs on effort-related 

decision-making tasks will hopefully clarify the underlying pharmacology of this motivational process. 

Interestingly, and in accordance with previous research (Haney et al., 2015; Hindocha, Freeman, 

Schafer, et al., 2015), CBD did not affect participant’s ‘stoned’ or ‘like drug’ ratings. Thus, CBD may be 

a harm-reducing cannabinoid, in terms of memory (Morgan, Schafer, et al., 2010), psychotic effects 

(Morgan & Curran, 2008; Morgan, Schafer, et al., 2010), and addiction (Freeman & Winstock, 2015; 
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Morgan et al., 2013; Morgan, Freeman, et al., 2010), but its presence does not alter the desired 

subjective effects following acute administration. If CBD is indisputably proved to reduce the harms of 

THC acutely and chronically, this knowledge will be important in a harm reduction message for 

cannabis users: one can smoke cannabis without sacrificing the desired effects while also limiting the 

harms. 

Perhaps surprisingly, there was not a significant association between the frequency of recreational 

cannabis use and the self-reported ‘liking’ of the drug. This implies that previous cannabis exposure 

may not moderate the desirable effects of the drug. Previous research has reported greater (Kirk & 

De Wit, 1999) and similar (D'Souza et al., 2008; Hindocha, Freeman, Schafer, et al., 2015) effects of 

cannabis on the desirable effects of the drug in heavy compared with light cannabis users. These 

discrepancies may have been due to differences in how much cannabis the heavy and light user groups 

were smoking. For instance, in my study, no participant smoked more than 3 times per week, whereas 

in other studies, daily users have been recruited (Hindocha, Freeman, Schafer, et al., 2015). More 

research is needed to carefully examine the associations between chronic cannabis use and the 

rewarding experience of cannabis intoxication across a wide range of recreational cannabis use 

frequencies and quantities. 

As described in chapter 5, the endocannabinoid system is thought to be involved in the neurobiological 

underpinnings of various drug addictions, including nicotine dependence (Maldonado et al., 2006; 

Parsons & Hurd, 2015). That both THC and CBD appear to affect motivational processing of a non-drug 

reward (money) supports the endocannabinoid system’s role in reward processing and addiction. The 

cornucopia of cannabinoid drugs available has only recently been exploited by addiction researchers 

(Morgan et al., 2013) and this area represents a major opportunity for future research into 

psychopharmacological agents that may aid quit attempts. Experimental work should investigate 

whether different cannabinoid drugs can alter the motivation for addictive drugs in samples of 

addicted individuals, using tasks such as the DReaM-Choice task or more basic progressive ratio 
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(Comer, Collins, & Fischman, 2001) or purchase (Hart et al., 2008) tasks. Subsequently, clinical trials 

could be taken forward with cannabinoid drugs that showed promise in these experimental models of 

drug-seeking. 

I will now move onto the ramifications of my second cannabis study which compared dependent 

cannabis users with non-dependent, drug-using controls. People dependent on cannabis 

demonstrated an impaired ability to develop a response bias on the probabilistic reward task 

compared with drug-users who were not dependent on any drug (apart from nicotine). This therefore 

provides some tentative evidence for Goldstein & Volkow’s (2011) second claim that addiction is 

associated with a hyposensitivity to non-drug rewards, specifically that reward learning may be 

compromised in cannabis dependence. In contrast, reward learning did not appear to be impaired in 

the dependent cigarette smokers compared with the occasional cigarette smokers. This is a good 

demonstration of why it is important to be specific about which type of drug addiction and which 

aspect of reward processing when considering whether addiction is associated with hyposensitivity to 

non-drug rewards. In this case, cannabis dependence was, but nicotine dependence was not, 

associated with weakened reward learning. Hence, any general statement about ‘drug addiction’ and 

‘non-drug reward processing deficits’ will inevitably miss out important details.  

These results could indicate that chronic cannabis use is more damaging to reward learning than 

nicotine use. Potential reasons for this might be: the more generally life-disrupting effects associated 

with heavy cannabis use, compared with heavy tobacco use; the additive and interactive effects of 

tobacco and cannabis (given the vast majority of cannabis users smoke cannabis with tobacco and also 

normal cigarettes); and the different roles of the endocannabinoid and nicotinic acetylcholine systems 

in reward learning. Another important difference to note is that the cigarette smokers described in 

chapter 4 had only abstained from nicotine for about 2 hours before they completed the PRT; whereas, 

the cannabis users described in chapter 5 were instructed to not consume cannabis for at least 12 

hours beforehand. Hence, when comparing the pattern of results, it must be remembered that the 
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smokers were perhaps in a more ‘natural’ state than the cannabis group, which could have contributed 

to the difference in results. However, a potentially simpler explanation is that the cannabis dependent 

individuals were more depressed than the controls in that study, and the dependent smokers in 

chapter 4. Given depression is strongly linked with performance on this task (Pizzagalli, Iosifescu, et 

al., 2008), this probably contributed to my results. Unfortunately, it is very difficult to separate out the 

effects of cannabis dependence and depression (and other potentially important variables such as 

cigarette smoking) in cross-sectional studies such as this. Given cannabis dependence and depression 

were highly collinear, analysis of covariance (with depression as the covariate) could be considered 

inappropriate (Miller & Chapman, 2001). Future research could use samples that are better matched 

on depression and cigarette smoking. However, as most cannabis dependent individuals (in Europe) 

smoke tobacco (Hindocha, Freeman, Winstock, et al., 2015) and have greater depression than healthy 

controls (Degenhardt, Hall, & Lynskey, 2003), one might not be able to generalise the findings to the 

population of dependent cannabis users as a whole. 

Surprisingly, given anecdotal reports and a previous study with significant findings (Lane et al., 2005), 

cannabis dependence, in my participants, was not associated with altered effort-related decision-

making. This could be because cannabis’s amotivational effects are transient and as the participants 

had been asked to abstain for at least 12 hours, they were no different to controls. Alternatively, the 

task may not have had adequate data to detect effects. In chapter 4, where dependent cigarette 

smokers were found to be less sensitive to task parameters than occasional cigarette smokers, I had 

data from two sessions. Given I used generalised estimating equations to analyse the data, which 

incorporates every trial into the model, this repeated measures design may have afforded greater 

power to detect a group difference, which I did not have in chapter 5 with the dependent cannabis 

users. Clearly, much more objective research needs to be carried out in order to elucidate the 

relationship between chronic cannabis use and amotivation. 
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6.6 Different tasks assessing reward processing 

I have argued in this thesis that it is important to consider different components of reward processing 

rather than ‘reward processing’ in general because different clinical conditions are likely to have 

different profiles of reward processing deficits, with some components unaffected and others 

impaired. A good example of this is that dependent smokers, relative to occasional smokers, were 

somewhat impaired in effort-related decision-making, but they had preserved reward learning. Here 

I will discuss the different reward processing tasks that I used, their strengths and weaknesses, and 

their potential relationships.  

6.6.1 The DReaM-Choice Task 

I specifically designed the DReaM-Choice task and subsequent procedure so that it had certain 

characteristics:  

(1) It assessed cigarette and non-drug reward processing within the same paradigm. 

(2) It included a choice stage and a button-pressing stage. 

(3) It used consummatory rewards. 

(4) It included a subsequent consumption stage with real rewards. 

No previous task had these four characteristics and so its design and utilisation was necessary for my 

research, which aimed to investigate cigarette and non-drug reward processing using consummatory 

rewards. The successful use of the task (as demonstrated by the large group differences and the effect 

of abstinence on cigarette and music choices) represents a step forward in reward processing research 

within nicotine dependence. 

These four characteristics have both strengths and weaknesses. The first characteristic allowed direct 

comparisons between the processing of cigarette and non-drug rewards, such that the ‘balance’ in 

drug and non-drug reward processing could be assessed. This style of task has been recommended by 
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previous authors (Bühler et al., 2010; Versace et al., 2011) and the consistent difference in the balance 

of reward processing was an interesting aspect of this thesis. 

The second characteristic brought two styles of task design together: choice (Hogarth & Chase, 2011) 

and button-pressing (Bühler et al., 2010). This choice stage was useful because it is ecologically valid, 

in the sense that drug users regularly have to face decisions between their drug and alternative 

rewards, and because results from choice tasks show strong associations between task behaviour and 

dependence level (Hogarth & Chase, 2011, 2012). The button-pressing stage was useful because the 

choice stage cannot provide a direct, or ‘pure’, measure of motivation, as every decision is affected by 

the motivational value of both rewards available. Hence, together, they represent an efficient way of 

assessing both relative preference of and motivation for each reward. 

However, there is a downside to this design. As button-pressing only occurred after making a choice 

for a reward, the number of trials for each reward where motivation was measured inevitably differed. 

For example, the number of trials in which button-pressing for chocolate occurred was lower in 

dependent smokers than in occasional smokers, and the number of trials in which button-pressing 

occurred for paper was minimal for both groups. If the number of choices for each reward affected 

button-pressing, separate from the fact that they are highly related because they both tap motivation 

for that reward, then this would be problematic; my ‘purer’ measure of motivation would no longer 

be so ‘pure’. In other words, if I had simply provided participants with the opportunity to button-press 

for each reward on the same number of trials, my button-pressing results may have changed. Hence, 

it may have been better to use a progressive-ratio task for each reward separately, as has been used 

to examine the acute reinforcer enhancing effects of nicotine (Perkins et al., 2009; Perkins & Karelitz, 

2013b). However, I believe that this discrepancy is unlikely to be large and I doubt my results would 

have changed drastically. Moreover, I would have had to forgo my choice stage, which was one of the 

only measures to detect the effect of abstinence in chapter 2 (albeit not a group X smoking-status X 

reward-type interaction).  
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The third characteristic was used because I wanted to equate the comparison rewards with cigarettes 

as much as possible. Money is: (1) not consummatory and (2) can be exchanged for cigarettes at a 

later date. Hence, I chose to use music and chocolate instead because they had been used previously 

with smokers (Hogarth & Chase, 2011; Perkins & Karelitz, 2013b), albeit in different ways, and because 

they are both consummatory. However, these rewards have their problems too. Chocolate was not 

ideal because acute nicotine and nicotine abstinence (J. Hughes & Hatsukami, 2007; Spring, Pagoto, 

McChargue, Hedeker, & Werth, 2003) have effects on hunger, which may have confounded the 

primary effects of nicotine dependence and acute abstinence on motivation for chocolate. 

Furthermore, I used participants’ chosen music because previous studies did it this way (Perkins & 

Karelitz, 2013b) and I was concerned unchosen music might not be particularly motivating. Therefore, 

the cigarettes (Marlboro Gold) and chocolate (Dairy Milk) were not chosen but the music was chosen 

by the participants, which therefore makes the rewards less similar and potentially confounds results. 

Finally, the effects of nicotine abstinence have been shown in tasks using money as a reward (Al-Adawi 

& Powell, 1997; Pergadia et al., 2014; Powell et al., 2002). Reward processing may be more sensitive 

to the effects of nicotine dependence and abstinence when money is the reward compared to 

consummatory, non-drug rewards. Future research should therefore investigate motivation for 

cigarettes, consummatory non-drug rewards and money concomitantly to test this hypothesis. 

The fourth characteristic facilitated an examination of the ‘liking’ of rewards, the order of reward 

consumption (in chapter 2) and made the DReaM-Choice task ecologically meaningful, in that 

performance led to actual delivered rewards. This was useful because I believe it is important to 

investigate a range of reward processes. Furthermore, I feel that the actual hedonic experiences, 

associated with drug and non-drug reward consumption, have been somewhat neglected in the field 

of reward processing in addiction. To my knowledge, the DReaM-Choice consummatory phase, in 

which consumption of cigarettes and consummatory non-drug rewards took place following 

completion of the task, is unique. Previous experimental procedures have allowed participants to 

smoke cigarettes that they won after the task finished (Bühler et al., 2010; Sweitzer et al., 2013), but 
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they did not record the subjective pleasure, liking or enjoyment of these. Morevoer, they gave people 

money as the non-drug reward, which cannot be consumed. Lee Hogarth’s work has involved 

hypothetical rewards or deceiving participants that chocolate and cigarettes will be given following 

the task, but then simply paying participants with money (Hogarth, 2012; Hogarth & Chase, 2011, 

2012). Hence, my use of consummatory rewards, with the opportunity for participants to consume 

them, allowed for the combined investigation of motivation (wanting) and pleasure (liking). This is a 

strength of the procedure because various aspects of reward processing should be investigated before 

we draw conclusions about how reward processing is affected by nicotine dependence (and other 

drug addictions). Furthermore, we maintained ecological validity by allowing participants to consume 

the rewards they received at their leisure, which hopefully created a more realistic and rewarding 

scenario. 

However, because of this more ecologically valid setting, the ‘liking’ data were not collected in the 

most controlled fashion. Because the amount of each reward won had to be dependent upon the 

behaviour in the actual task, each participant had different quantities of each reward; this is one 

reason why only the liking of the first ‘unit’ of each reward was analysed. Furthermore, participants 

were not required to consume each reward, as it may have been unethical to require people to smoke 

a cigarette at a time when they didn’t want to. Finally, participants could consume their rewards in 

any order, at their own pace. This may have affected the relationships between experimental 

manipulations and hedonic responses because previous smoking would reduce abstinence effects and 

affect liking of subsequently consumed rewards. Hence, although the consumption stage was useful, 

it did not provide the best setting for examining hedonic responses to cigarette and non-drug rewards. 

That would have involved: (1) the same amount of reward consumed by each participant and (2) a 

consistent, or counterbalanced, order of reward consumption. 

Overall, the novel DReaM-Choice task functioned well. The cigarette choices and button-pressing were 

sensitive to dependence; cigarette and music choices were sensitive to abstinence (although not 
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differentially so between groups); all rewards were chosen and pressed for more than paper (the 

neutral commodity); large rewards were worked for harder than small rewards (in chapter 2); and 

different components of reward processing were assessed. Another strength of the task is that the 

findings in chapters 2 and 4 were highly consistent. This was the case even though various adaptations 

were made to the task and some of the inclusion criteria for the dependent smoker group were slightly 

changed. The characteristics described above, and the fact it worked successfully, make it an 

important addition to the experimenter’s toolkit for assessing reward processing in addiction. 

However, it could be further refined as I retain some concerns: (1) the sensitivity of the button-

pressing measure, given it was not significantly affected by acute abstinence; (2) the fact that the 

number of trials button-pressing occurred for on each reward was not the same; (3) the various 

problems associated with the way I collected the liking data. 

One final, conceptual point about the DReaM-Choice task is that it may have assessed much more of 

the goal-directed (‘model-based’) rather than the habitual (‘model-free’) nature of reward seeking 

behaviour. Goal-directed behaviour refers to the situation in which an organism uses an explicit value 

of the prospective outcome to guide behaviour (Balleine & Dickinson, 1998). Habitual behaviour refers 

to the situation in which an organism does not use an explicit value of the prospective outcome, but 

instead simply carries out behaviours that in the past have been associated with future reward. Given 

the DReaM-Choice never involved responses that were followed by temporally contiguous 

reinforcement (of the real reward), I believe it is unlikely that strong habitual associations would have 

formed. I would have thought that people’s behaviour was driven mostly by the explicit expectation 

of each reward’s value. If this is the case, then I examined goal-directed reward-seeking. Given 

addiction is putatively associated with enhanced habitual behaviour (Everitt & Robbins, 2005), my task 

may have missed out on some potential differences between dependent and occasional cigarette 

smokers. 
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6.6.2 The monetary incentive delay task 

The other reward processing tasks I used (monetary incentive delay task (MIDT), probabilistic reward 

task (PRT), effort expenditure for rewards task (EEfRT), cigarette purchase task (CPT)) are all well 

validated and used by researchers in many laboratories. I will now discuss the strengths and 

weaknesses of these tasks, as well as the success of my adaptations to these tasks. 

My adapted MIDT clearly worked, in terms of anticipatory and feedback BOLD responses for cigarette 

reward, but did not work for classical music reward. As discussed in chapter 3, this is strange given 

that music trials did produce faster reaction times than no reward trials, which indicates enhanced 

motivation. If a reward is a motivating outcome, then it should be associated with reward related 

activity during anticipation and feedback. Hence, explanations for this lack of BOLD response may be: 

(1) classical music was not a particularly motivating reward, combined with poor sensitivity of the 

BOLD response relative to reaction time, and/or (2) something went wrong with the fMRI aspect of 

the experiment. Given I observed the expected activations in reward-related regions for cigarette 

anticipation and detected a group difference during feedback of cigarettes, option 2 seems unlikely, 

and so I argue that the behavioural outcome of reaction time was more sensitive than the anticipatory 

and feedback BOLD response. Interestingly, I found no significant correlations between motivation to 

earn cigarettes (as indexed by reaction time to the target) and the BOLD response in any of the 

anticipatory or feedback ROIs. Future work will have to carefully examine whether, and under which 

conditions, behavioural or neuroimaging data are more closely associated with problematic drug use. 

In general, I think that the research field of reward processing in addiction would benefit from more 

attention being paid to specific, behavioural aspects of reward processing, with fewer studies simply 

repeating the MIDT in different addicted populations (I obviously recognise my hypocrisy here). I 

believe that any noticeable, behavioural drug or reward processing impairment will be more helpful 

in understanding how treatments can be improved than fMRI studies investigating somewhat 

abstracted components of reward processing. This is, of course, an empirical question, and only time 
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will tell whether behavioural or neuroimaging research provide greater improvements to treatment 

for drug addicts. 

6.6.3 The probabilistic reward task 

The PRT appeared to work well in chapter 5 and not so well in chapter 4. Both of the tasks I used 

differed from the original (Pizzagalli et al., 2005) in that I used shorter mouths (approximately 8 and 

9mm rather than 11.5 and 13mm) and fewer trials (200 rather than 300). The shorter mouths made 

the task harder, as evidenced by lower discriminability scores compared with previous research 

(Pizzagalli et al., 2005), and I believe this may have reduced engagement and led to the greater 

numbers of task-related exclusions in chapters 4 and 5, relative to other academics’ research (Alexis 

Whitton, personal communication). This problem was particularly apparent in chapter 4. I put this 

down to the repeated-measures element of the design, which approximately doubles the chance of 

exclusion, and the sometimes unpleasant feelings provoked by pramipexole administration. 

A recent computational analysis of the PRT suggests behaviour on the task is related to two distinct 

processes: reward sensitivity and learning rate (Huys et al., 2013). Reward sensitivity (ρ) refers to the 

extent to which the presentation of a reward (r) affects the associated prediction error (δ), computed 

by the difference between the expected reward value (q) and the experienced reward value: 

δ =  ρ. 𝑟 −  𝑞 

The learning rate (ε) refers to the extent to which the prediction error is used to update the 

subsequent expected reward value (Q) from the previous reward value (q): 

𝑄 =  𝑞 +  ε. δ 

Therefore, the PRT may evaluate too many aspects of reward processing simultaneously. As well as 

these two processes, participants’ behaviour will be related to: (1) their propensity to go with previous 

learning (i.e. the more reinforced mouth) vs. their propensity to go with the mouth they think was 
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actually presented on that trial and (2) the interaction between this and their ability to discriminate 

the mouths. It may therefore be advisable to remove one of these aspects by either presenting only 

one length of mouth or explicitly telling the participants before the task begins that one of the mouths 

is more frequently reinforced than the other (Liu et al., 2015). Clearly the PRT is good at elucidating 

reward learning impairments. However, it may have a problem in that it cannot easily reveal which of 

the above components are affected and therefore why reward learning, as it is operationalised in the 

PRT, is impaired. 

Interestingly, Huys et al. (2013) re-analysed the experimental data from Pizzagalli et al. (2008), where 

the effects of pramipexole on PRT task performance was investigated in healthy controls. Huys et al. 

(2013) conclude that pramipexole disrupted the learning rate rather than the reward sensitivity. 

Without carrying out Huys et al.’s (2013) analysis it is difficult to ascertain which factor was affected 

in my experiment. However, visual inspection of figure 4.9 suggests that response bias was low in 

block 1 and block 2, which implies that participants may have had lower sensitivity to the reward 

outcome from the beginning of the task. 

6.6.4 The effort expenditure for rewards task 

The EEfRT, although adapted in various ways (see section 4.2.2.4), worked well. In all three of its uses 

in this thesis, increases in the task parameters (probability, magnitude and expected value) increased 

the likelihood of making a high-effort choice, thus demonstrating it worked as it should have. The 

generalised estimating equations (GEE) models were sensitive in detecting the effects of pramipexole, 

cannabis and nicotine dependence. I am slightly concerned that the reason I didn’t detect an 

association between cannabis dependence and amotivation is because, compared with the other 

studies, I didn’t have as much data, as there was only one testing session. GEE models use all the trials 

available so having twice as much data should theoretically improve the power to detect an effect. 

Another concern, although not reported in the results sections, is that my results reported in the GEE 

models often do not replicate in the analogous ANOVAs. This is perhaps unsurprising given that the 
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data do not conform to parametric analysis assumptions and GEE models have greater sensitivity. 

However, previous studies using the EEfRT have found results using ANOVAs (Treadway, Peterman, 

Zald, & Park, 2015; Wardle et al., 2011), which makes me think that my effects cannot be particularly 

large. One final consideration is that the EEfRT high-effort choices take a longer time to complete than 

the low-effort choices. Hence, there is an element of temporal-discounting, as well as effort-

discounting, in the task (Green et al., 2015), which could confound results pertaining to effort-related 

decision-making. 

6.6.5 The cigarette purchase task 

The CPT worked as I expected it would. Participants were less willing to buy more cigarettes as the 

price of each cigarette increased. Furthermore, dependent smokers had much greater demand for 

cigarettes than occasional smokers across all metrics. Pramipexole did not affect behaviour on this 

task, and similarly did not affect cigarette reward processing in the DReaM-Choice task. This 

corroboration supports the null finding. Moreover, this task has been shown to be sensitive to 

manipulations of catecholamine levels (Hitsman et al., 2008) and drug cues (Acker & MacKillop, 2013; 

MacKillop et al., 2010), so it clearly has the sensitivity to be acutely manipulated. 

6.7 Clinical Implications 

My most consistent findings were enhanced motivation for and liking of cigarettes in dependent 

compared to occasional smokers, alongside mostly null differences in motivation for and liking of non-

drug reward. Hence, despite much recent work emphasising the potential importance of non-drug 

reward processing in cigarette smoking (Pergadia et al., 2014; Sweitzer et al., 2015; Versace et al., 

2014; Versace et al., 2012), my results suggest that nicotine dependence is much more strongly 

associated with perturbations in cigarette reward processing, and so this is probably the area where 

most gains can be made. Hence, a clear implication of my findings is that a drug that reduces 

motivation for cigarettes is probably much more likely to be successful in aiding a quit attempt than a 

drug that enhances motivation for alternative, non-drug rewards. Furthermore, a focus on weakening 
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the motivational value of drug rewards is likely to be critical in helping people reduce drug use. One 

promising avenue of research is via manipulating the reconsolidation of maladaptive memories (Das, 

Lawn, & Kamboj, 2015). That way, the very strong associations between drug-seeking/consumption 

and reward are weakened or even eliminated, such that motivational responses are likely to be 

reduced. 

Having said that, as my studies weren’t longitudinal, it is nigh on impossible to make conclusions about 

what factors lead to changes in cigarette use. There is good evidence that behavioural activation 

treatment reduces cigarette smoking more than treatment as usual (MacPherson et al., 2010), which 

implies that engagement with non-drug rewards does improve cessation. However, this study gave 

everyone nicotine replacement therapy as well, so it would be interesting to see how behavioural 

activation therapy faired on its own. I did find that dependent smokers were less sensitive to 

parameters such as expected value in the effort-related decision-making task, so perhaps behavioural 

activation remediates this aspect of non-reward processing. Along these lines, other treatments such 

as motivational interviewing may be improved by exploring the ways that dependent smokers use 

future outcomes and their expected values to make effort-related decisions. 

Other treatments for drug addictions, such as contingency management, require non-drug rewards to 

retain their value, or else they would not work. Contingency management involves the reinforcement 

of abstinence with money or vouchers and has been successful in helping smokers quit (Roll, Higgins, 

& Badger, 1996). That contingency management helps dependent cigarette smokers quit suggests, 

like my results, that nicotine dependence does not eradicate the motivation for alternative rewards. 

Having said that, non-drug reward processing may be substantially impaired in some cigarette 

smokers after a few days of nicotine deprivation, and these may be the people who are most likely to 

relapse despite the incentives provided via contingency management (Sweitzer et al., 2015).  

A clear ramification of my fourth chapter is that an acute dose of pramipexole (0.5mg) does not reduce 

motivation for cigarettes. This is an important piece of evidence given that previous research has 



269 
 

suggested that dopaminergic agonists can reduce ad libitum smoking (Jarvik et al., 2000) and that 

pramipexole can weaken an attentional bias to cigarette images (Freeman et al., 2015). As mentioned 

above, other doses and chronic treatment of pramipexole could still have therapeutic benefits, but 

this research does slightly dampen the hopes of pramipexole becoming an anti-smoking drug. 

Reward learning impairments are associated with depression (Pizzagalli, Iosifescu, et al., 2008), 

anhedonia (Pizzagalli et al., 2005) and stress (Bogdan & Pizzagalli, 2006), and they have predicted 

persistence of depression symptoms (Vrieze et al., 2013). Furthermore, in adolescents, worse reward-

related decision-making predicted anxiety and depression symptoms (Forbes, Shaw, & Dahl, 2007; 

Rawal, Collishaw, Thapar, & Rice, 2013). Hence, it is clear that impairments in some reward processes 

are predictive of future psychological problems. Given these relationships, it is potentially worrying 

that cannabis and nicotine dependent individuals showed compromised reward learning and effort-

related decision-making, respectively, as these could be mediating factors in later depression. 

However, this is highly speculative as there may well be a whole host of other causal relationships 

driving those associations, such as existing depressive symptoms leading to both cannabis use and 

reduced reward learning. However, if drug use has caused these non-drug reward processing deficits, 

then it may well be helpful to attempt to improve these psychological processes in order to stave off 

later psychological problems. Of course, tactics to improve reward learning and effort-related 

decision-making would have to be designed first. 

My acute cannabis study has important clinical implications, which were briefly described in section 

6.5. Notably, acutely administered cannabis reduced motivation for monetary reward. This indicates 

that when people are intoxicated on cannabis they are less willing to work hard for larger rewards. 

Despite many decades in which people claimed cannabis reduces motivation for rewards (McGlothlin 

& West, 1968), this is only the second empirical, placebo-controlled study which has examined this 

topic, and the first study had a sample of only five participants (Cherek et al., 2002). Hence, this is an 

important step forward in demonstrating that cannabis transiently produces amotivational effects. 
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Cannabis users should be informed of this important result. It will be of critical importance in the 

future to more conclusively determine whether chronic cannabis use leads to long-term and 

irreversible amotivational effects. My study with cannabis dependent individuals, and previous 

research survey data (Barnwell et al., 2006; Musty & Kaback, 1995), suggest that these effects may 

not exist. Therefore, amotivational effects observed in cannabis users may be a product of recent 

cannabis intoxication, rather than a long-term effect of chronic cannabis use. However, future 

research that uses large, longitudinal samples with objective, validated ways of assessing motivation 

should be conducted. 

6.8 Limitations and regrets 

The various limitations and regrets of my work have been mentioned frequently throughout my 

discussion. I will consolidate them here. Many of the problems could only have been avoided if I had 

had substantially more time and money to complete my research. However, it is still important to note 

what changes could have improved the work. 

Firstly, having a non-smoker control group in chapters 2-4 would have improved my ability to draw 

conclusions about the effect of tobacco exposure on both cigarette and non-drug reward processing. 

From my data I cannot conclude: (1) whether a relatively small amount of nicotine exposure 

(occasional smoking) is associated with cigarette or non-drug reward processing changes relative to 

no nicotine exposure (non-smoking) and, therefore (2) if the null group differences in non-drug reward 

processing are due to neither group being different from non-smokers or both groups being different 

from non-smokers. The obstacles to this improvement were ethical, in that it might be considered 

unethical to provide non-smokers with the opportunity to smoke cigarettes. Furthermore, this 

addition would have increased the cost of the study by one third. 

As described at length in section 6.2.2, my results in the studies reported in chapters 3 and 4 may have 

been quite different if I had included an abstinent as well as an ad libitium smoking condition. Various 
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studies have indicated that acute nicotine deprivation produces non-drug reward processing deficits 

(Al-Adawi & Powell, 1997; Dawkins et al., 2006; Pergadia et al., 2014; Perkins & Karelitz, 2013b; Powell 

et al., 2002). I may have uncovered more differences between dependent and occasional smokers if I 

had continued studying these groups during nicotine satiation and abstinence, as well as increasing 

the sample size. Having said that, there is also other research which has not found significant effects 

of acute nicotine abstinence on non-drug reward processing (Audrain-McGovern et al., 2014; Bühler 

et al., 2010; Kalamboka et al., 2009), including my own research described in chapter 2 (in terms of 

button-pressing for music and chocolate). Furthermore, if I had included an abstinence condition in 

each of those studies it would have increased the cost and workload by 100% and so I would have had 

to sacrifice other aspects of my thesis. When interpreting my findings it is important to remember that 

they mostly speak to the issue of reward processing alterations during nicotine satiation. Future 

research is certainly need to clarify under which conditions acute nicotine deprivation affects 

consummatory, non-drug reward processing and how this is associated with real-life cigarette 

smoking. 

The occasional smokers I recruited smoked 0.25-5 cigarettes/week (chapter 2) or 0.5-5 

cigarettes/week (chapters 3 and 4). The ≤5 cigarettes/week was based on a previous study (Bühler et 

al., 2010), however they provided no minimum cut-off. I increased the minimum from 0.25 to 

0.5/week because I thought smoking one cigarette/month was too little. Despite basing the criteria 

on this previous study, on retrospect, I think recruiting slightly heavier ‘occasional’ smokers might 

have been preferable. The main reason for this is that some of the occasional smokers chose not to 

smoke the cigarettes they won, thus limiting the conclusions about the pleasure associated with 

smoking in that group. Various definitions of light or intermittent smokes exist (Coggins, Murrelle, 

Carchman, & Heidbreder, 2009). One that might have been more useful may have been: a non-daily 

smoker who smokes at least 5 cigarettes per week. That may have increased the number of occasional 

smokers who smoked the cigarettes they won during the experiment while still ruling out dependent 

smokers. 
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Finally, as proposed in chapter 1, I believe it is important to consider drug and non-drug reward 

processing together, in order to investigate whether dependent individuals differ from controls on 

both measures, but also to examine the balance between them within the groups. Hence, although 

chapter 5 provided important new data on the acute effects of cannabis and the associations of 

cannabis dependence with non-drug reward processing deficits, it would have been desirable to 

provide a task in which participants could earn cannabis alongside other rewards, as is done in the 

DReaM-Choice task. 

The dependent and occasional cigarette smokers in chapters 2, 3 and 4 were well matched in terms 

of their smoking behaviour, which is a strength of my successive studies. For instance, in the 

dependent group, the average numbers of cigarettes smoked per day were: 16.7 (chapter 2), 19.3 

(chapter 3) and 16.5 (chapter 4); in the occasional group, the average numbers of cigarettes smoked 

per week were: 3.3 (chapter 2), 3.4 (chapter 3) and 3.8 (chapter 4). The FTND scores for the dependent 

smokers across the chapters were also similar, and each occasional smoker always scored zero on this 

questionnaire. There were no significant differences between studies for the dependent or occasional 

smokers on these measures. However, the dependent smokers reported in chapter 3 were older (and 

sometimes significantly so) than the dependent and occasional smokers reported in chapters 2 and 4. 

These dependent smokers reported in chapter 3 also had greater BDI scores than the other groups 

(and these differences sometimes reached significance). Furthermore, the studies reported in 

chapters 2 and 4 had similar and equivalent numbers of males and females, respectively; while the 

study in chapter 3 had many fewer females. Hence, it would have been desirable (although quite 

difficult) to have: (1) had no group differences between dependent and occasional smokers on any 

important, non-smoking demographic variable and (2) maintained similar scores on all demographic 

variables across the studies. 

The participants in the acute cannabis study and the drug-using controls in the cannabis dependence 

study, described in chapter 5, both had similar demographics to the occasional cigarette smokers. 
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Whereas the cannabis dependent participants had more similar demographics to the dependent 

cigarette smokers. This represents a more general problem that by separating people into groups 

determined by one behaviour (e.g. being nicotine or cannabis dependent), other variables, like 

depression, are often dissimilar between the groups. 

Cross-sectional studies that compare one group of people to another group of people frequently suffer 

the problems described above. This makes drawing conclusions about causation very difficult. Within 

the monetary and temporal limitations of PhD research, cross-sectional studies are useful in 

determining crude associations between two variables, which cannot be manipulated experimentally 

(e.g. nicotine dependence). However, in terms of refining progress in the field of reward processing in 

addiction research, I think it would be beneficial if large, longitudinal studies were conducted in place 

of small, cross-sectional studies. 

6.9 Future research 

I believe that this thesis provides a good example of how the use of various reward processing tasks 

can elucidate different profiles of impairments in different populations. For instance, cannabis 

dependence was associated with impaired reward learning but not alterations in effort-related 

decision-making, while nicotine dependence was associated with reduced sensitivity to various 

parameters during effort-related decision-making but was not associated with impaired reward 

learning. Irrespective of the reasons for these associations (e.g. covariate depression), these results 

demonstrate that different drug addictions manifest different reward deficits and that different 

reward processing tasks tap dissociable constructs. Support for this latter claim comes from the 

dissociations described above and the absence of any correlation between outcomes in either chapter 

4 or 5. 

It is interesting to note that the researchers who designed the PRT and the EEfRT both defined their 

tasks as objective measures of ‘anhedonia’ (Pizzagalli et al., 2005; Treadway et al., 2009). As discussed 
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in section 1.5.2.2, I feel the word ‘anhedonia’ should be saved for impaired hedonic processing, which 

these tasks may be associated with, but are certainly not measuring. Hence, I argue that it is helpful 

for the future of this field not to use the terms ‘anhedonia’ and ‘reward sensitivity’ in such a general 

way, but be specific about which reward processing component is being assessed and make the clear 

statement that any impairments in one component do not necessitate impairments in others, as has 

been demonstrated in this thesis. 

As mentioned already, I believe that another major step forward will be made by carrying out large, 

longitudinal studies. This thesis has given indications of important relationships, but they cannot be 

fully explored in cross-sectional designs. Many important questions rely on examining the temporal 

relationships between variables. Measuring outcome y and predictor x at various time points (ideally 

with x=0 at the first time point), allows the researcher to make stronger inferences about the causal 

relationships between x and y. For example, cross-sectional research has frequently demonstrated 

associations between cannabis use and cognitive deficits (Solowij & Battisti, 2008). However, that 

relationship could be driven by one or more of: (1) cannabis use causing cognitive deficits, (2) cognitive 

deficits causing cannabis use, (3) external variables (e.g. alcohol use) causing both. A longitudinal 

cohort study means the researcher can measure cognitive deficits both before any cannabis use has 

begun and then, in a subset of the cohort, after the onset of cannabis use. Therefore, the baseline 

cognitive deficits can be taken into account when investigating cannabis’s relationship with future 

cognitive deficits. Furthermore, external variables that can contribute to both the predicted cause and 

effect (e.g. alcohol use) can be more carefully recorded and modelled. Recent longitudinal research 

has now shown conflicting results about cannabis’s effects on cognitive ability (Meier et al., 2012; 

Mokrysz et al., 2014). Although these longitudinal designs do not provide extremely powerful causal 

knowledge, like randomised controlled trials do, they allow for a better possible understanding of 

causes than cross-sectional studies. Moreover, they are critical in the investigation of topics which 

cannot be ethically studied using randomised controlled trials, such as the effects of long-term 

nicotine and cannabis use. 
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In terms of how longitudinal designs should be employed more frequently in the field of reward 

processing in addiction, it would be fascinating to investigate how reward processing abnormalities 

predict the initiation of drug use, the transition to dependence and the ability to quit (and vice versa), 

as has been done in some cases already (Lubman et al., 2009; Powell et al., 2010; Sweitzer et al., 2015). 

Without longitudinal designs, it is impossible to investigate, for example, whether nicotine 

dependence causes an impairment in effort-related decision-making or vice versa. 

I believe an important step in this field will be to determine what components really make up reward 

processing and how they relate to one-another. In the same way that intelligence is a broad concept 

made up of various components, such as visuospatial processing and working memory, reward 

processing can and should be considered to consist of separable components. A study which 

investigated performance on many known aspects of reward processing, using reliable and valid tasks 

and questionnaires, in a very large sample could be carried out. One could examine how performance 

on all of the tasks are associated with each other and then carry out a factor analysis so that distinct 

components of reward processing were revealed. The tasks that best load onto each factor could then 

be used as exemplars for assessing that particular component, such that a battery of tasks could be 

created which fully captured all aspects of reward processing. This could be used to systematically 

investigate transdiagnostic reward processing deficiencies across a variety of clinical populations so 

that profiles of impairments were clearer. Furthermore, a more detailed understanding of the 

structure of reward processing would then allow much more precise, psychological mechanisms 

underpinning psychopathology to be illuminated. Ideally, longitudinal studies that predict disorder 

severity from pre-determined reward processing components would mean specific endophenotypes, 

e.g. impaired hedonic processing (but not other impairments), could be linked to disease aetiology 

and treatments improved with highly specific targets. 

My thesis produces nowhere near as clear a picture of the nature of reward processing in nicotine and 

cannabis dependence as could feasibly be produced with a battery of reward processing tasks that tap 
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components that are known to be distinct. However, it is a start in terms of attempting to be more 

specific and precise in profiling reward processing impairments in these addictions. Furthermore, I 

have provided evidence that the PRT, the EEfRT and my own DReaM-Choice task are not associated 

with one another, and that self-reported measures of anhedonia are not as clearly associated with 

PRT and EEfRT performance as previously reported. This provides support for my claim that 

researchers should not talk about ‘anhedonia’ or ‘reward sensitivity’ so generally. 

Therefore, questions following on from my findings, which I think are particularly pertinent, are: 

1. What are the distinct components of reward processing? 

2. Does cigarette use predict changes in cigarette and non-drug reward processing? And if so, in 

which components of reward processing?  

3. Do the processing of cigarette and non-drug rewards predict changes in cigarette use? And if 

so, from which components of reward processing? 

4. Is the balance between cigarette and non-drug reward processing a better predictor of 

changes in cigarette use than either of them on their own? 

5. Do changes in cannabis use predict changes in non-drug reward processing (particularly 

motivational processing)? 

For questions 2, 3, 4 and 5, I would be particularly interested in various stages of drug use, including: 

(1) the initiation of drug use; (2) the transition from occasional use to dependence; (3) the 

maintenance and hardening of dependence; and (4) the successful cessation of use following 

dependence. Although these would be all long, expensive and difficult studies to complete, they would 

provide a highly detailed picture of how changes in tobacco and cannabis use are associated with 

reward processing changes, to the point where one would be able to provide strong evidence in favour 

or against statements like: ‘cannabis use leads to amotivation’ or ‘nicotine dependence leads to an 

increase in motivation for but a decrease in liking of cigarettes’. Without these large, longitudinal 

studies, this field of research will forever be in a state of speculation. 
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6.10 My PhD journey: a truly rewarding process 

6.10.1 Changing ideas 

As described in the acknowledgments section, I feel so privileged to have been given the opportunity 

to study psychopharmacology and addiction. I have been genuinely fascinated by psychoactive drugs, 

their role in society, their underlying pharmacology, and their positive and negative effects, for many 

years – long before I first studied psychology at university. To be actively involved in researching these 

topics, and so developing my own (and hopefully other people’s) understanding, is extremely 

rewarding. 

Over the last three years, my ideas of what might drive addiction have changed a lot. Naively, I 

originally began my PhD thinking that neuroscience held all of the answers and that neuroimaging 

techniques were be the best way of getting these answers. It has been thoroughly enjoyable shattering 

these expectations, mostly by reading other people’s research, but also from my own research 

described in this thesis. For instance, I administered a drug (pramipexole) that is known to robustly 

alter dopaminergic functioning, and yet I found no effects on the motivation to seek drugs (cigarettes 

in this case). Given the critical importance many neurobiological theories of addiction place on 

dopamine (Volkow et al., 2004), this was an unexpected result. Furthermore, I conducted an fMRI 

experiment and my reaction time measurements appeared to be more sensitive than the BOLD 

responses. Furthermore, I have loved learning things which contradict well-held beliefs and theories, 

for instance: that most people who try drugs never become addicted (Anthony et al., 1994); that many 

people who are addicted recover without help (Heyman, 2009); that medicinal drugs, which show 

promise in treating addiction in experimental models, often do not translate successfully in human 

clinical trials (Kahn et al., 2009; M Shoaib, Swanner, Beyer, Goldberg, & Schindler, 1998).  

These findings have undoubtedly contributed to my general suspiciousness of theories which claim 

that the entirety of addictive behaviour is best explained exclusively through neurophysiological 
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changes in the brain. Obviously all behaviour is determined by neural signals and so addiction might 

one day be comprehensively explained by neuroscience alone. However, given our current 

rudimentary understanding of how biology is related to concepts like choice, compulsion and will-

power, I believe it is unwise to not explain parts of addictive behaviour through sociology and 

psychology. To make an analogy, trying to understand addiction entirely through neuroscience is like 

trying to understand tuberculosis entirely through basic chemistry and atomic physics; both of these 

phenomena can be logically reduced to more basic scientific levels, but our explanations of these 

phenomena are worse if we do reduce them to such an extent. I started my PhD thinking that 

neuroscience would answer all of the many questions I had about addiction. I still think neuroscience 

has a big and important role to play in understanding addiction. But I am pleased that I now 

understand a bit more about the wealth of other reasons why people might have drug problems, and 

therefore I think I am a little closer to answering some of my questions about addiction.  

6.10.2 Opportunities along the way 

I have had many fantastic opportunities during my PhD research which I am very thankful for. These 

opportunities contributed to the experiments I conducted and the thoughts I have about addiction 

research now. While working at the Clinical Psychopharmacology Unit (CPU), we conducted a study, 

as a group, into the effects of different strains of cannabis on a variety of psychological and neural 

outcomes. This was funded by Channel 4 and the results were broadcast on television. It was a 

thoroughly exciting project to be involved in and it was in this study that I conducted my experiment 

into the acute effects of cannabis on effort-related decision-making. I have learned so much by being 

part of a group that has such extensive experience of acute psychopharmacological experiments. I was 

very fortunate in being able to spend a few months at Exeter University with Professor Celia Morgan 

(my second supervisor), where I conducted the fMRI experiment, which I reported in chapter 3. I 

would never have been able to carry out this experiment here at University College London (UCL), and 

I was so pleased to learn about a contemporary, cognitive neuroscience methodology under the 
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guidance of Professor Celia Morgan and Dr Chris Dodds (despite my current thinking that addiction 

research should focus more on behaviour than neuroimaging!). 

Finally, I was also very lucky to receive a Bogue Scholarship, where I worked with Dr Gill Bedi at the 

New York Psychiatric Institute, on the neural correlates of drug purchase, in crack cocaine and 

cannabis users. Working directly with people who are often stigmatised (crack cocaine users) was a 

very informative experience: they were all kind and thoughtful people – not what one might expect 

from some descriptions of what addiction turns people into. It was there in New York where I was also 

able to meet Dr Carl Hart, whose book ‘High Price: A Neuroscientist’s Journey of Self-Discovery That 

Challenges Everything You Know About Drugs and Society’ inspired me to think about many aspects 

of addiction I had not before. 

Overall, the thing I am most appreciative of is the incredible company and support my friends, 

colleagues and supervisors at UCL. They been invaluable in so many ways. 

6.11 Final comments 

The research described in this thesis was informed by theories claiming that drug and non-drug reward 

processing alterations are critical in the aetiology of addition (Goldstein & Volkow, 2011; Koob & Le 

Moal, 1997; Robinson & Berridge, 1993). The previous empirical work concerning the relationships 

between nicotine and cannabis dependence and these alterations was mixed, however (Bühler et al., 

2010; Kalamboka et al., 2009; Lane et al., 2005; Powell et al., 2002). The major findings of this thesis 

include: 

 Across a wide range of metrics, nicotine dependence (assessed mostly after ad libitum 

smoking) was associated with a hypersensitivity to cigarette rewards and was not associated 

with a hyposensitivity to non-drug rewards, apart from disrupted effort-related decision-

making. 
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 In dependent and occasional smokers, an acute dose of pramipexole (0.5mg, oral) did not 

disrupt motivation for cigarettes but did impair reward learning and effort-related decision-

making. 

 Acute cannabis administration transiently reduced motivation for monetary reward and CBD 

influenced the way that cannabis affected effort-related decision-making. 

 Cannabis dependence was associated with perturbed reward learning but not amotivation for 

monetary reward, although confounding factors cannot be disregarded. 

Although my research has inevitably produced more questions than answers, I would like to think that 

it has made important theoretical contributions to the field. Firstly, after ad libitum smoking, nicotine 

dependent individuals appear to have very few non-drug reward processing deficits, questioning 

several theories of addiction. Further, researchers should beware of making claims such as ‘smokers 

have blunted responses to non-drug rewards’ (Wilson et al., 2014) as they are unhelpful, unless they 

are clarified by statements about the potentially moderating influences of nicotine deprivation. 

Secondly, I hope this work develops the appreciation that reward processing should be considered as 

a very broad construct and that potential impairments in clinical populations should be examined with 

different tasks that tap distinct components. In essence, I hope that researchers are careful in their 

choice of tasks and the subsequent description of their findings, so that precise reward processing 

alterations can be identified and the mechanisms underlying various psychopathologies better 

understood. 

Finally, many of my research hypothesises were based on Goldstein & Volkow’s (2011) iRISA theory of 

addiction. The findings described in this thesis can help determine whether this is a suitable theory for 

nicotine dependence during ad libitum smoking. My results can specifically address whether the 

motivational aspect of the theory is supported, but my results cannot address the response inhibition 

aspect of the theory. Figure 6.1a shows what the iRISA theory might predict in terms of motivation for 

cigarette, music and chocolate rewards for dependent and occasional cigarette smokers. However, 
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what I actually found is represented by figure 6.1b. After ad libitum smoking, dependent smokers had 

stronger motivation for cigarettes than occasional smokers, as the iRISA theory predicts, but 

dependent smokers did not have weaker motivation for non-drug rewards than occasional smokers, 

which the iRISA theory does not predict. This suggests that the iRISA theory of addiction does not 

explain cigarette smoking behaviour in nicotine dependent individuals when they are in their 

‘smoking-as-normal’ state. Thus, when considering nicotine dependence, during ad libitum smoking, 

the most accurate conclusion about cigarette and non-drug reward processing may be the simplest 

one: motivation for cigarettes is enhanced, but motivation for non-drug rewards remains intact. 
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a) 

 

 

 

b) 

 

 

 

Figure 6.1 a) What the iRISA theory of addiction would predict about dependent and occasional 
smokers’ motivation for cigarette, music and chocolate rewards. The dependent smokers would have 
stronger motivation for cigarettes than the occasional smokers. The occasional smokers would have 
stronger motivation for the non-drug rewards than the dependent smokers. The dependent smokers 
would have stronger motivation for cigarettes than the non-drug rewards. The occasional smokers 
would have stronger motivation for the non-drug rewards than cigarettes. b) What the data reported 
in this thesis actually suggests. The dependent smokers had stronger motivation for cigarettes than 
the occasional smokers. The occasional smokers did not have stronger motivation for the non-drug 
rewards than the dependent smokers. The dependent smokers had stronger (or similar) motivation 
for cigarettes than the non-drug rewards. The occasional smokers had stronger motivation for the 
non-drug rewards than cigarettes. These results suggest that the profiles of cigarette and non-drug 
reward processing in dependent and occasional smokers, when they are smoking normally, can be 
described simply by the fact that dependent smokers have a stronger motivation for cigarettes than 
occasional smokers. Hence, theories of addiction based on reward processing need not focus on the 
processing of non-drug rewards when considering nicotine dependence during ad libitum smoking. 
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Appendices 

Appendix 1: Appendix table 3.1 

Whole brain analysis: Peak and cluster-level BOLD responses for ‘cigarette > neutral anticipate’ 

contrast using a one-sample t-test with both groups included (MNI co-ordinates, t and FWE-corrected 

p values are shown). 

Region x y z Peak-level Cluster-level 

Dependent and 
occasional smokers 
together 

   t p (FWE corrected) cluster size p (FWE corrected) 

Right thalamus 12 -10 5 5.943738 0.015651 3 0.004824 

Right thalamus ii 9 -19 5 5.628245 0.039903 3 0.004824 

Right extrastriate cortex 30 -85 -10 7.078569 0.000443 3 0.004824 

Left putamen -27 11 5 5.545213 0.049439 1 0.016347 

Left thalamus i -12 -16 2 6.166336 0.007749 1 0.016347 

Left thalamus ii -12 -16 8 5.628245 0.039903 3 0.004824 

Left insula -30 26 -4 5.611048 0.04172 1 0.016347 

Left inferior frontal 
gyrus 

-30 17 14 5.591904 0.043837 1 0.016347 

 

Appendix 2: Appendix table 3.2 

Whole brain analysis: Peak and cluster-level BOLD responses for ‘cigarette > music anticipate’ 

contrast for the dependent group using a one-sample t-test (MNI co-ordinates, t and FWE-corrected 

p values are shown). The occasional group showed no significant activations for this contrast. 

Region x y z Peak-level Cluster-level 

Dependent smokers    t p (FWE 
corrected) 

cluster 
size 

p (FWE 
corrected) 

Right caudate 27 20 5 7.248217 0.012281 3 0.002951 

 

Appendix 3: Appendix table 3.3 

Whole brain analysis: Peak and cluster-level BOLD responses for ‘cigarette > neutral feedback’ 

contrast using a one-sample t-test with both groups included (MNI co-ordinates, t and FWE-corrected 

p values are shown).  

Region x y z Peak-level Cluster-level 

Dependent and 
occasional smokers 
together 

   t p (FWE corrected) cluster 
size 

p (FWE 
corrected) 

Left cerebellum -45 -61 -25 5.641772 
 

0.036016 
 

1 0.017406 
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Appendix 4: Ethical approval letter (study reported in chapter 2) 
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Appendix 5: Information sheet (study reported in chapter) 
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Appendix 6: Ethical approval (study reported in chapter 3) 
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Appendix 7: Information sheet (study reported in chapter 3) 
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Appendix 8: Ethics amendment approval – ethical approval for a similar, previous study had 

already been granted (study reported in chapter 4) 
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Appendix 9: Information sheet (study reported in chapter 4) 
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Appendix 10: Ethical approval (study 1 reported in chapter 5) 
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Appendix 11: Information sheet (study 1 reported in chapter 5) 
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Appendix 12: Ethical approval (study 2 reported in chapter 5) 
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Appendix 13: Information sheet (study reported in chapter 5) 
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