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Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central
nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of
confounding factors, this is often both incomplete and inadequate.The lack of supportive Schwann cells or their inability tomaintain
a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build
Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can
differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss
the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve
injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells
for future clinical application.

1. Introduction

Despite advances in microsurgical techniques and a pro-
gressive understanding of pathophysiological mechanisms,
peripheral nerve repair continues to be a major clinical
challenge. Peripheral nerve injury (PNI) is often accom-
panied by loss of sensation, partial or complete apraxia,
chronic pain, and occasionally permanent disability. Causes
of peripheral nerve damage include conditions such as dia-
betes [1], Guillain-Barré syndrome [2], and cancer [3] along
with iatrogenic injuries [4], but PNI prevails in the context of
trauma [5]. Estimates vary, but approximately 300,000 cases
of traumatic PNI present annually in Europe alone and in
the United States PNI accounts for approximately 3% of all
trauma cases and 5% if plexus and root avulsions are included
[6, 7].

Peripheral nerves can regenerate to some extent and this
ability is mainly attributable to intrinsic growth capacity of
peripheral neurons and the ability of Schwann cells to provide

a supportive growth environment [8]. Following a nerve
transection injury, denervated Schwann cells in the distal
part of the nerve adopt a regenerative phenotype and provide
support to regenerating axons from the proximal stump.
However, the degree of reinnervation is dependent on many
factors such as the severity of injury, interstump gap length,
alignment of nerve stumps, anatomical location of injury,
delay before surgical intervention, and type of repair proce-
dure applied [9]. In the case of chronic denervation, distal
Schwann cells can lose their regenerative capacity, which can
lead to incomplete regeneration [10, 11].

The clinical gold standard repair strategy for repairing
large gaps in transected peripheral nerves is the nerve
autograft.This offers a Schwann cell-rich autologousmaterial
to bridge the interstump gap and serves to guide regenerating
axons.Thismethod is not ideal because of donor site morbid-
ity, the requirement for additional surgery, and limited donor
tissue availability. The limitations of autografting have led to
the search for alternative therapies. In particular, the use of
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tissue engineering to construct artificial tissue that mimics
the nerve autograft provides a potentially innovative solution
for peripheral nerve repair. Various authors have reviewed
natural and synthetic materials for nerve tissue engineering
[12–15] so the aim of this review is to explore the cellular
components that could be used in an engineered tissue to
encourage nerve regeneration. Since the use of allogeneic
Schwann cells requires a source of nerve tissue, it is affected
by the same factors that limit the autograft. This has resulted
in the development of a range of approaches that use stem
cells as a source of therapeutic material.

The ability of stem cells to self-renew and to differentiate
towards a desired lineage makes them a popular choice as
the starting point for cell therapies. Nevertheless, there are
issues regarding host immune response after administration,
oncogenic properties that give rise to teratomas or terato-
carcinomas, in addition to various ethical concerns [16, 17].
This review discusses recent studies in which stem cells have
been used as sources of therapeutic cells to construct artificial
peripheral nerve tissue. It also considers the practicalities
associated with different sources of therapeutic cells in terms
of biological and commercial feasibility for translation to the
clinic.

2. Preclinical Studies Using Stem Cells for
Peripheral Nerve Repair

The inclusion criteria for the studies in Table 1 included (1)
in vivo experimental study in animals or humans, (2) use of a
nerve conduit or graft as a scaffold for stem cell delivery, and
(3) studies within the last 5 years (2010–2015). The exclusion
criteria included (1) in vitro experimental studies, (2) use of
injection as a mode of delivery of the stem cells, and (3)
models of crush injuries, that is, absence of a gap between the
proximal and distal stumps of the injured nerve.

3. Sources of Stem Cells Used in
Nerve Tissue Engineering

3.1. Embryonic Stem Cells (ESCs). In 1998, Thomson et al.
[18] described the isolation of a pluripotent cell line from the
human blastocyst. The use of ESCs to treat CNS disorders
is well-documented [19–21], while it seems their potential to
treat PNS injuries remains largely unexplored. Due to their
pluripotency, differentiation along a specific neural lineage is
challenging [22]. A study by Ziegler et al. [23] generated neu-
rospheres from hESC by coculture with stromal cells, grown
under conditions supportive of Schwann cell differentiation.
After 8 weeks, hESCs differentiated into cells with morpho-
logical andmolecular features characteristic of Schwann cells
and associated with neurites from chick, rat, and human
origin in vitro. Various other studies have shown that ESC
can differentiate along a neural lineage [24–27].

Cui et al. [28] injectedmouse ESCs into a sciatic nerve in a
rat axotomymodel (after the sciatic nerve was transected, the
surrounding epineurium was resutured). ESCs were neurally
induced and were transplanted 1 hour after removal of a

10mm segment of nerve. Three months following axotomy,
the ESCs survived and Fluoro-Gold (FG) retrograde staining
along with electrophysiology showed better regeneration
than controls.

Several groups have reported that ESCs share behavioural
characteristics similar to cancer cells and express markers
that are also found inmany human andmouse cancermodels
[29, 30]. Undifferentiated ESCs have been known to form ter-
atomas or teratocarcinomas [31]. In addition, there are risks
of immunogenicity and various ethical barriers presented by
this stem cell source [16].

3.2. Bone Marrow Stem Cells (BMSCs). Several in vitro stud-
ies have reported that BMSCs can be induced to differentiate
into neural lineages including neurons, astrocytes, oligoden-
drocytes, and Schwann-like cells [32]. Experimental studies
in rats [33, 34], rabbits [35], dogs [36, 37], and primates
[38, 39] have investigated the effectiveness of these cells in
improving functional outcomes following peripheral nerve
repair. Wang et al. [40] suggested that rat BMSCs can posi-
tively influence the regeneration of peripheral nerves not only
through the direct release of neurotrophic factors, but also
through indirect modulation of the behaviour of Schwann
cells.

Caddick et al. [41] demonstrated that rat BMSCs can be
differentiated into cells that are Schwann cell-like in both
phenotype and function. Following differentiation with all-
trans-retinoic acid (ATRA), platelet derived growth factor
(PDGF), basic fibroblast growth factor (BFGF), and forskolin,
BMSCs underwent morphological changes to resemble cul-
tured Schwann cells and stained positive for the Schwann cell
markers S100, P75, and glial fibrillary acidic protein (GFAP).
The differentiated BMSCs were also found to enhance neurite
outgrowth in coculture with sensory neurons to a level
equivalent or superior to that produced by Schwann cells.
Further reports indicating that differentiated BMSCs can
mimic the functions of Schwann cells in culture have since
been published [34, 42, 43].

Keilhoff et al. [44] showed that rat BMSCs can be differen-
tiated in vitro into Schwann-like cells using a combination of
cytokines.Themyelinating capacity of the transdifferentiated
cells was studied in coculture with PC12 cells and by grafting
into an autologousmuscle conduit bridging a 2 cmgap in a rat
model. In vitro, transdifferentiatedBMSCswere able tomyeli-
nate PC12 cells after 14 days while, in vivo, they increased
the numbers of newly myelinated fibres after 3 weeks.

Autologous transdifferentiated BMSCs were transplanted
into amonkeymodel of median nerve injury using a polymer
tube containing a collagen sponge [39]. This study showed
improvements in behaviour, electrophysiology, and histology
for up to one year. Further studies have shown that the
addition of BMSCs to conduits and acellular grafts results
in superior outcomes when compared with empty channels
[37, 38, 45, 46]. Furthermore, the nerve regeneration capacity
of BMSCs can be dose dependent, as indicated by Raheja et al.
[47], who reported better improvements in rats with a sciatic
nerve transection treated with a high dose of cells compared
to those treated with a low dose and controls.
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3.3. Skeletal Muscle Derived Stem Cells (SMDSCs). Tamaki et
al. [48] reported that skeletal muscle interstitium contained
multipotent stem cells. It was further established that these
were able to differentiate into mesodermal cells (including
skeletal muscle cells and endothelial cells) and ectodermal
cells such as Schwann cells and perineurial cells in vivo
[49]. In addition to multipotent differentiation, SMDSCs are
characterized by sustained self-renewal and long-term pro-
liferation [50]. Another potentially favourable characteristic
of these cells is their survival capability under conditions of
oxidative and hypoxic stresses [51].

In another study, Tamaki et al. [52] utilised a nerve crush
injury model in mice to examine the differentiation capac-
ity and contributions of undifferentiated murine SMDSCs
in peripheral nerve regeneration. After 4 weeks, engrafted
SMDSCs differentiated into Schwann cell-like cells which
myelinated the regenerated axons. Additionally, the SMDSCs
were reported to formperineurial/endoneurial cells and asso-
ciated blood vessels composed of donor-derived endothelial
cells, pericytes, and fibroblasts. Facilitated nerve regeneration
and improved walking function was also observed when
SMDSCs were applied to an acellular conduit to enhance
nerve gap bridging in the same study.

Lavasani et al. [53] used human SMDSCs to repair a
critical-sized sciatic nerve injury in a mouse model. Trans-
planted human SMDSCs surrounded the axonal growth cone,
while those infiltrating the regenerating nerve differentiated
intomyelinating Schwann cells. Engraftment of humanSMD-
SCs into the area of the damaged nerve promoted axonal
regeneration, which led to functional recovery as measured
by sustained gait improvement. Furthermore, no adverse
effects were reported in these animals up to 18 months after
transplantation. Following human SMDSC therapy, gastroc-
nemiusmuscles frommice exhibited substantially lessmuscle
atrophy, an increase in muscle mass after denervation, and
reorganization of motor endplates at the postsynaptic sites
compared with those from control mice.

3.4. Dental Pulp Stem Cells (DPSCs). The dental pulp con-
tains connective tissue, mesenchymal cells, neural fibres,
blood vessels, and lymphatics [54] as well as DPSCs that
can self-renew and undergo multidifferentiation [55]. Due
to their neural crest origin (in common with cells forming
the peripheral nervous system) [56], DPSCs may be more
amenable to neural and glial cell differentiation than other
stem cell sources [57]. In fact, even in an undifferentiated
state, human DPSCs in vitro expressed markers such as
S100 and nerve growth factor receptor p75 and were able to
produce and secrete a range of neurotropic factors including
vascular endothelial growth factor (VEGF), brain-derived
neurotrophic factor (BDNF), and glial-derived neurotrophic
factor (GDNF) [58]. This makes DPSCs an attractive candi-
date for the treatment of PNI [59].

Sasaki et al. [60] used a silicone tube containing a collagen
gel embedded with rat dental pulp cells to repair a gap in the
rat facial nerve. Twelve days after transplantation, defective
facial nerves connected with silicone tubes containing dental
pulp cells were able to support axonal growth to a greater

extent than with tubes containing the collagen gel alone.
The regenerated nerves contained myelinated fibres and ret-
rograde tracing demonstrated the presence of Fluoro-Gold-
positive motor neurons in the facial nucleus of the rat brain.
Although this work was undertaken with dental pulp cells as
a mixed population, rather than isolated DPSCs, it illustrates
the potential of DPSCs in peripheral nerve regeneration.

In a more recent study, Martens and colleagues [58] eval-
uated the potential of humanDPSCs to differentiate towards a
Schwann cell lineage. Schwann cell differentiation was exam-
ined at the morphological and ultrastructural level and the
differentiated human DPSCs showed glial marker expression
and secreted neurotrophic factors that promoted sensory
neuron survival and neurite outgrowth in vitro. In addi-
tion, neurites were myelinated by the differentiated human
DPSCs in an aligned 3-dimensional coculture system and an
engineered neural tissue construct containing aligned human
DPSCs in stabilised collagen hydrogels further supported and
guided neurite outgrowth.

3.5. Hair Follicle Stem Cells (HFSCs). Stem cells from hair
follicles are attractive candidates for use in cell therapy [61],
and different populations of HFSCs have been identified [62–
64].

Li et al. [62] reported nestin-expressing stem cells in the
bulge area of hair follicles which were subsequently shown to
be able to differentiate into various nonfollicle cell types and
are now known as hair follicle-associated pluripotent stem
cells [65]. Mouse green fluorescent protein positive HFSCs
were implanted into the gap region of a severed sciatic nerve
in a mouse model [66]. The HFSCs differentiated largely
into Schwann cells, which produced myelin sheaths around
the host axons. Function of the repaired sciatic nerve was
measured by contraction of the gastrocnemius muscle upon
electrical stimulation. Additionally, HFSCswere implanted in
the gap of a severed tibial nerve in amousemodel, resulting in
improved walking outcomemeasures. In a more recent study
by Amoh et al. [67], humanHFSCs were transplanted around
the impinged sciatic nerve in a mouse model, where they dif-
ferentiated into GFAP-positive cells that associated with host
axons. Eightweeks after the transplantation of humanHFSCs,
gastrocnemius muscle contraction was recorded upon elec-
trical stimulation of the repaired sciatic nerves. Lin et al. [68]
differentiated rat HFSCs into Schwann cells in vitro using
NRG1. These cells, together with neurons, were injected into
a decellularised scaffold and cultured in vitro. Survival and
proliferation of seeded cells as well as neuron-Schwann cell
contacts in the scaffolds were observed for at least eight
weeks.

Recently, Sakaue and Sieber-Blum isolated human epider-
mal neural crest stem cells from the hair follicle bulge and
showed they can be differentiated into functional Schwann
cells [69]. Manipulation of WNT, sonic hedgehog, and
tumour-growth-factor 𝛽 signalling pathways and exposing
the cells to growth factors led to the expression of Schwann
cell markers. Further gene expression profiling indicated the
expression of neurotropic and angiogenic transcripts,making
these cells promising candidates for nerve repair.



Stem Cells International 7

3.6. Skin Derived Precursors (SKPs). Toma et al. [70] reported
that multipotent adult stem cells isolated from mammalian
dermis can proliferate and differentiate in culture to produce
neurons, glia, smooth muscle cells, and adipocytes. SKPs
exhibit many similarities to embryonic neural crest stem cells
(NCSCs) [71]. McKenzie et al. [72] differentiated SKPs into
Schwann cells usingmedium containing forskolin andNRG1.
The Schwann cells were able to proliferate and to express
myelin proteins in coculture with sensory neurons. Following
transplantation into a mouse sciatic crush model, SKPs
associated with and myelinated the host axons within six
weeks.

Park et al. [73] investigated the in vivo peripheral nerve
regeneration potential of autologous porcine SKPs in fibrin
glue and collagen tubes following transplantation into a
femoral nerve defect miniature pig model. The transplanted
cells survived for at least four weeks and histologically
complete nerve bundles were observed in the regenerated
nerve tissues. Additionally, higher levels of S100 and p75 were
detected in the treated animals than in the controls. Khuong
et al. [74] studied the effects of SKPs on acute and chronic
nerve repair aswell as a nerve gap injury repairedwith a nerve
graft in rats. When used as an adjunct to standard micro-
surgical nerve repair, SKPs improved outcome in all three
scenarios.

A novel case report by Grimoldi et al. [75] used a collagen
tube filled with autologous skin derived stem cells to repair
the motor and sensory nerves of the left arm of a 23-year-old
female patient. Motor and sensory functions of the median
nerve demonstrated ongoing recovery after implantation dur-
ing the three-year follow-up period. Functional recovery of
injuredmedian and ulnar nerves was assessed by pinch gauge
test and static two-point discrimination and touch test with
monofilaments, along with electrophysiological and mag-
netic resonance imaging (MRI) examinations.

3.7. Neural Stem Cells (NSCs). NSCs have been isolated from
both the embryonic and the adult central nervous system
[76–78]. Liard et al. [79] transplanted adult pig subventricular
zone NSCs inside an autologous venous graft into a femoral
nerve gap in an adult pig model and reported improved
functional recovery at 6 months compared to controls.
Postmortem immunohistochemistry revealed neurosphere-
derived cells that survived inside the venous graft from 10 to
240 days and all displayed a neuronal phenotype. Moreover,
NSC transplantation increased 2󸀠,3󸀠-cyclic nucleotide 3󸀠-
phosphodiesterase (CNPase) expression, indicating activa-
tion of intrinsic Schwann cells.

Ni et al. [80] utilised poly(D, L-lactic acid) (PLA) conduits
with immobilized fibroblast growth factor 1 (FGF1) and
seeded with adult mouse NSCs to bridge a critical size sciatic
nerve gap in a rat model. Axon regeneration and functional
recovery were observed and evaluated by histology, walking
track analysis, and electrophysiology for up to 12 weeks after
implantation. In a recent study by Jenkins and colleagues [81],
human NSCs were induced from embryonic stem cells and
were cultured on an electrospun nerve guidance conduit to
evaluate its ability to promote neuronal growth and axonal

extension. NSCs survival, migration, and guided neurite
extension were observed.

Fu et al. [82] used two recombinant mammalian vec-
tors containing either rat GDNF gene or BDNF gene to
transfect adult mouse NSCs. The transfected NSCs showed
significantly enhanced expression ofGDNFor BDNFmRNA.
The transfected NSCs were seeded onto a PLA conduit and
implanted into a rat model of sciatic nerve transection.
Improved regeneration,myelination, and functional recovery
were associated with conduits seeded with the transfected
NSCs.

Johnson et al. [83] implanted C17.2 cells, an immortalized
mouse NSC line, into three different sciatic nerve injury rat
models. Twelve of the forty-five animals used in the study
developed large tumours resembling neuroblastomas at the
site of the NSC transplants, precluding meaningful interpre-
tation of functional outcome or muscle mass preservation in
either the sciatic nerve transection and repair or the crush
injury models. The tumour formation was thought to occur
as a result of the accumulation of growth factors secreted in
high concentrations by the C17.2 cells. Additionally, the trans-
planted NSCs themselves could have undergone excessive
proliferation without the desired differentiation. The authors
suggest that further characterization of the interaction of
these cells with surrounding tissues of the peripheral nervous
system has to be carried out before clinical translation of this
approach.

3.8. Induced Pluripotent Stem Cells (iPSCs). Takahashi and
Yamanaka [84] used four transcription factors, namely,
Oct3/4, Sox2, c-Myc, and Klf4, to generate pluripotent cells,
subsequently called iPSCs directly frommouse embryonic or
adult fibroblast cultures. Parameters such as factor stoichiom-
etry and culture medium and supplementation have been
demonstrated to affect the quality of the iPSCs produced [85].

Wang et al. [45] derived neural crest stem cells from
human iPSCs and embryonic stem cells.Theneural crest stem
cells were seeded into nanofibrous tubular scaffolds (electro-
spun poly(L-lactide-co-caprolactone)) and used as a bridge
for transected sciatic nerves in a rat model. Electrophysio-
logical analysis showed that neural crest stem cell-engrafted
nerve conduits resulted in an accelerated regeneration of
sciatic nerves at one month when compared with controls.
Histological analysis demonstrated that neural crest stem cell
transplantation resulted in differentiation into Schwann cells
that were able to myelinate the host axons. No teratoma
formation was observed for up to one year after neural crest
stemcell transplantation in vivo. Similar resultswere obtained
by Uemura et al. [86] who examined the long-term outcome
of transplanting iPSC-derived neurospheres within nerve
conduits for peripheral nerve repair in mice.They confirmed
that no teratoma formationwas observed up to 48 weeks after
transplantation, and axonal regeneration and myelination
were enhanced.

Ikeda et al. [87] attempted to repair a sciatic nerve
defect in a mouse model by using a bioabsorbable nerve
conduit containing both iPSC-derived neurospheres and a
basic fibroblast growth factor delivery system. The iPSCs
were cultured and differentiated into primary neurospheres
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containing neural stem cells then secondary neurospheres,
which according to Nori et al. [88] differentiated mainly into
glial lineage cells. Axon regeneration and functional recovery
in the mice were reported to be improved 12 weeks after
reconstruction when this combination approach was used.

The derivation of iPSCs from somatic cells providesmuch
potential for patient-specific cell therapies, which bypasses
immune rejection issues and ethical concerns associated
with using embryonic stem cells as a cell source. However,
many important issues need to be addressed in order to use
iPSCs in neural tissue engineering, such as differences among
iPSC populations in differentiation and expansion and the
appropriate differentiation stage of the cells for specific tissue
engineering applications [45].

3.9. Adipose Derived Stem Cells (ADSCs). Adipose tissue
is largely comprised of adipocytes as well as a smaller
stromal vascular fraction which includes ADSCs [89]. These
mesenchymal stem cells can be isolated and have been shown
to differentiate into cell types of all three germ layers in vitro
[90, 91]. ADSCs have been extensively studied as an adjunct to
nerve repair [92].

di Summa et al. [93] compared adult rat ADSCs and
BMSCs each differentiated to a Schwann cell-like phenotype
for the repair of a sciatic nerve injury in a rat model. The
mesenchymal stem cells were differentiated into Schwann
cell-like cells using a combination of PDGF, BFGF, forskolin,
and NRG1. The resulting Schwann cell-like cells from both
sources enhanced regeneration but, unlike BMSCs, ADSCs
can be harvested less invasively with a higher yield and can
be rapidly expanded in vitro and show low immunogenicity
[92].

Erba et al. [94] investigated the ability of undifferentiated
rat ADSCs in a poly-3-hydroxybutyrate nerve conduit to
enhance axonal growth as well as their ability to differentiate
in situ in a rat sciatic transection model (10mm gap, 2
weeks).The ADSCs increased regeneration and Schwann cell
proliferation compared to controls. However, 14 days after
transplantation, a lack of viable implanted cells was observed.
As a result, the authors were unable to detect any in situ
differentiation of ADSCs into neuronal or glial cell types.
Similar results were obtained by Santiago et al. [95], who
reported that while the transplantation of human ADSCs in
a rat sciatic nerve defect promoted nerve tissue regeneration
and a decrease in muscle atrophy, the ADSCs did not
differentiate to Schwann cell-like cells at the site of injury.This
suggests that the regenerative effect of transplanted ADSCs
is likely due to an initial boost of released growth factors as
well as an indirect effect on endogenous Schwann cell activity.
Further evidence for peripheral nerve regeneration through
the paracrine effects ofADSCs is presented byWidgerow et al.
[96] and Kingham et al. [97].

Tomita et al. [98] differentiated human ADSCs into
Schwann cell-like cells and transplanted them into a rat
model of tibial nerve crush, where they closely associated
with host axons. The presence of myelin basic protein was
detected 8 weeks after transplantation and improved myelin
formation was observed with the Schwann cell-like cells
compared with undifferentiated ADSCs. In a recent study,

Georgiou et al. [99] used differentiated rat adipose derived
stem cells to construct engineered neural tissue through a
combination of cellular self-alignment and plastic compres-
sion in a collagen hydrogel. The sheets of aligned cellular
collagen supported axon regeneration over a critical length
gap (15mm, 8 weeks) in rat sciatic nerves. Interestingly, the
phenotype of the differentiated ADSCs changed when they
were transferred to the three-dimensional collagen environ-
ment from cell culture flasks, with an apparent increase in
expression of key growth factors associated with the support
of regeneration.

3.10. Perinatal Stem Cells. Perinatal tissues are a potentially
useful source of stem cells for tissue engineering purposes
as they can be collected in great numbers without causing
harm to the donor. Multipotent stem cells have been derived
from the placenta, amniotic fluid, amniotic membrane, and
umbilical cord [100]. Foetal tissue age rarely exceeds 42weeks
and therefore, in comparison to adult sources, perinatal cells
can have less accumulated genetic damage [101].

Matsuse et al. [102] induced human umbilical cord
mesenchymal stem cells (UC-MSCs) to differentiate into
Schwann cell-like cells then seeded these in transpermeable
tubes and transplanted into transected sciatic nerves in adult
rats. The Schwann cell-like cells reportedly myelinated the
regenerated axons and promoted functional recovery for 21
days after transplantation. Similar results were also obtained
by Kuroda et al. [103] and Pereira et al. [104]. In addition to
differentiating to a Schwann cell phenotype and expressing
Schwann cell markers, Peng and colleagues [105] reported
that Schwann cell-like cells derived from human UC-MSCs
released BDNF, NGF, and neurotrophin-3 in vitro. When
these cells were coculturedwith PC12 cells, neurite outgrowth
was observed.

Pan et al. [106] evaluated the effects of neurotrophic
factors secreted by rat amniotic fluid mesenchymal stem cells
on regeneration of sciatic nerve after crush injury in a rat.
Rat amniotic fluidmesenchymal stem cells were embedded in
fibrin glue and wrapped around the injured nerve in woven
Surgicel®. High levels of expression of BDNF, GDNF, ciliary
neurotrophic factor, NGF, and neurotrophin-3 were demon-
strated in the amniotic fluid mesenchymal stem cells. Motor
function recovery, compound muscle action potential, and
nerve conduction latency showed significant improvement
in rats treated with amniotic fluid mesenchymal stem cells.
Additionally, a high level of expression of S100 andGFAPwas
observed at the crush site. Similar results were obtained by Li
et al. [107] who transplanted amniotic stem cells into amouse
model of a crushed sciatic nerve. Additionally they reported
that the stem cells augmented blood perfusion, increased
intraneural vascularity, and localised to the perineurium.

4. Clinical Translation of Stem Cells:
Insights for Peripheral Nerve Repair

4.1. Stem Cells Used in Active Clinical Trials. As of July 2015,
the clinical trials database (https://clinicaltrials.gov/) showed
117 clinical trials using human stem cells internationally and
11 of those trials had reached Phase III and Phase IV status
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Active clinical trials with stem
cells in Phases I–IV

Bone marrow derived stem cells
Neural stem cells
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Figure 1: Summary of active (nonrecruiting) clinical trials using stem cell sources internationally. The search was performed on the website
of ClinicalTrials.gov (https://clinicaltrials.gov/) on July 28, 2015, and results show there are 117 active studies (a) with 11 studies currently in
Phase III or Phase IV clinical trials. Keywords included “Bone marrow derived stem cells” (𝑛 = 26), “Adipose derived stem cells” (𝑛 = 20),
“Dental pulp stem cells” (𝑛 = 1), “Neural stem cells” (𝑛 = 9), “Skin derived stem cells” (𝑛 = 4), “Epithelial derived stem cells” (𝑛 = 8),
“Umbilical cord blood stem cells” (𝑛 = 39), “Embryonic stem cells” (𝑛 = 5), and “Induced pluripotent stem cells” (𝑛 = 5). With regard to the
Phase III and Phase IV trials (b) umbilical cord blood stem cells are the most common stem cells sources (𝑛 = 8) followed by adipose derived
stem cells (𝑛 = 1), neural stem cells (𝑛 = 1), and epithelial stem cells (𝑛 = 1).

(Figure 1). Of these 11, umbilical cord blood stem cells are the
most common source (8 trials) followed by adipose derived
stem cells, neural stem cells, and epithelial stem cells (1 trial
of each). Cogle et al. [108] and G. D. Fischbach and R. L.
Fischbach [109] have reviewed the underlying regulatory,
ethical and legal barriers to clinical translation of stem cells
and more specifically Walsh and Midha [110] have discussed
the practical considerations of using stem cells for peripheral
nerve repair.

4.2. Regulatory Considerations. Currently, there are no
licensed stem cell based artificial nerve tissues for peripheral
nerve repair. Using stem cells in clinical trials requires formal
approval by the relevant regulatory bodies that are respon-
sible for ensuring that therapies meet standards of safety
and quality without jeopardising public health and national
security. Berger et al. [111] have recently compared regulatory
frameworks with regard to stem cell-based therapies. Their
review shows that USA and Europe have the largest number
of clinical trials using stem cells followed by East Asia. More
notably, since the discovery of induced pluripotent stem cells
[84], Japan, which has a similar regulatory framework toUSA
and Europe, has refined its guidelines to push forward the
development of stem cell innovations and has led to the first-
ever clinical trial using iPSCs [112].

In Europe, the EuropeanMedicines Agency (EMA) regu-
lates stem cell-based therapies and related tissue-engineered

medicinal products such as those developed for peripheral
nerve repair. Such cellular constructs would be regulated as
AdvancedTherapyMedicinal Products (ATMPs) [113]. In the
UK, the Medicines Health and Regulatory Agency (MHRA)
is the competent authority responsible for ATMPs and related
clinical trials. For an ATMP to achieve regulatory approval
in Europe it would be subject to a centralized marketing
procedure whereby applications would be assessed by the
Committee for Advanced Therapies and the Committee for
Medicinal Products for HumanUse before a decision is made
by the EMA to grant or refuse marketing authorisation.

In the USA, stem cells and tissue-based devices are regu-
lated by the Food andDrug Administration (FDA) as Human
Cells and Tissue-Based Products (HCT/Ps). For peripheral
nerve repair application, cells are often combined with
natural or synthetic materials to form artificial nerve tissue
and are classified as “biological drugs.”These are regulated by
the Center for Biologics Evaluation and Research. Whether it
be for clinical trials or commercialising a product such as arti-
ficial nerve tissue constructs, authorisation must be sought
from the FDA through submission of a Biologics License
Application. The regulatory framework for Japan is similar
to that of Europe and USA [111] and guidelines governing the
translation of stem cell therapies were established by theMin-
istry of Health, Labor andWelfare (MHLW). Kawakami et al.
[114] discuss the regulatory impacts of stem cell research in
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Japan; however, currently a specific framework regulating
tissue-engineered products does not exist.

Japan has recently passed a Regenerative Medicine Pro-
motion Law, which provides the opportunity for patients to
be treated with regenerative therapies based on the latest
scientific knowledge, thus permitting earlier patient access.
Further details about the new regulatory system for stem
cell therapies in Japan have recently been reviewed by
Hara and colleagues [115]. The USA have also introduced
schemes to accelerate the delivery of stem cell-based therapies
such as “Fast Track,” “Breakthrough Therapy,” “Accelerated
Approval,” and “Priority Review” [116] and Knoepfler [117]
thoroughly reviews emerging regulatory trends for new stem
cell therapies in the USA. Another regulatory pathway for
earlier patient access has recently been proposed by Caplan
andWest [118]. Such schemes to provide earlier patient access
are also gaining traction in Europe via the adaptive pathway
approach. March of 2014 saw the EMA inviting companies to
participate in pilot project adaptive pathways aiming at well-
defined patient groups with serious conditions and unmet
medical needs [119].

4.3. Manufacture and Cell Processing. Obtaining formal
approval for a clinical trial from the aforementioned regula-
tory bodies requires aligningmanufacture and cell processing
with current Good Manufacturing Practice (GMP), Good
Tissue Practice, and Good Clinical Practice. The practice
guidelines encompass everything from procurement of stem
cells to assessing long-term feasibility and scalability.

A key regulatory issue to consider in the development of
stem cell-based therapies for peripheral nerve repair is the
term “minimal manipulation.” This is defined as “processing
that does not alter the biology of the cell” [120]; however, stem
cell therapies often require multistage processing especially
for nonhomologous use. From a tissue engineering perspec-
tive, the stem cells would often be differentiated in vitro prior
to being combined with a scaffolding material, for example,
collagen to form artificial tissue [99, 121], and therefore
the tissue-engineered device would be classed as more than
minimally manipulated. Unger et al. [122] reviewed the
pivotal role of GMP with regard to hESCs lines; however,
there are still challenges to develop a standard operating
procedure for their derivation. Reviews by Bieback et al. [123]
and more recently Sharma et al. review clinical scale manu-
facturing and translation ofmesenchymal stromal cells with a
focus on regulatory frameworks and GMP.

Several authors also comment on the lack of regulatory
harmonisation where subtle differences in GMP protocols
can prevent a certain therapy moving forward [124–126]. For
example, these differences have been noticed in sterilising
procedures, control of starting materials, and disparities in
definitions of quality, safety, and efficacy. The International
Society for Stem Cell Research (ISSCR) set out guidelines
describing how stem cell therapies can be responsibly trans-
lated [127]. Abiding by these international guidelines also
offers a certain degree of standardisation since all stem cells
will be manufactured in a reproducible manner to meet
present specifications that ensure efficacy and safety.

4.4. Stem Cell Extraction and Isolation. Stem cells can be
obtained from various sources, with each technique present-
ing different challenges. In light of this, the European com-
mission has issued directives to ensure cross-border harmon-
isaton in stem cell donation, procurement, processing and
preservation [128]. Here, some of the differences in obtaining
stem cells from various sources will be briefly discussed.

In the UK, the Human Fertilisation and Embryology
Authority (HFEA) is an independent regulator responsible
for the procurement of gametes and the associated processing
involved in the creation of an embryo and this includes
overseeing the derivation of embryonic stem cell lines [129].
Once the inner cell mass is disassociated from the embryo,
the originator is obliged to donate samples to the United
Kingdom Stem Cell Bank (UKSCB) and the stem cell line
is regulated by the Human Tissue Authority [130]. Isolation
of mesenchymal stem cells can involve multistage ex vivo
processing and numerous protocols are available [131–135].

Umbilical cord blood is commonly collected by inserting
a cannula into an umbilical vein and allowing the blood to
drain out; this is often known as gravity-assisted collection
[136]. More recent attention is beginning to focus on other
neonatal tissues that can be clinically translated, for example,
Wharton’s jelly of the umbilical cord, amniotic membrane,
and placenta [137–139].

Themost widely usedmethod of extracting bonemarrow
is through a bone marrow biopsy commonly from the
posterior superior iliac spine or crest usually under general
anesthetic [140, 141]. The BMSCs reside in the bone marrow
stroma in small quantities [142] and this number decreases
with age; hence, using this as an autologous source of stem
cells to treat an elderly populationwould be challenging [143].
The abundance and accessibility of adipose tissue make the
ADSCs a potentially more attractive mesenchymal stem cell
source [144]. Large quantities of subcutaneous adipose tissue
can be obtained through minimally invasive liposuction
surgery usually under local anesthetic with minimal donor
site morbidity.

Dental pulp stem cells can be isolated from discarded
wisdom or deciduous teeth therefore bypassing the need for
invasive tissue harvest associated with other stem cell sources
[145]. Teeth contain various different populations of stem
cells that can be isolated in different ways and stored in stem
cell banks.Martens and colleagues [146] have reviewed dental
stem cells and their potential role in neural regeneration.

While autologous adult neural stem cells can be harvested
and may be useful for peripheral nerve regeneration, their
extraction requires intricate surgery from either the dentate
gyrus of the hippocampus or the subventricular zone of the
lateral walls of the lateral ventricles of the brain [147]. The
invasiveness of the procedure together with the fact that they
are present in low numbers may limit their clinical applica-
tions [148]. Compared to adult NSCs, embryonic and foetal
NSCs are relatively easily cultured and grown [149], and the
majority ofNSC lines available today are of foetal origin [150].

Other stem cell sources being investigated for use in
peripheral nerve tissue engineering include the hair follicle
stem cells and skin derived stem cells [67, 71]. The use of
hair follicle stem cells in particular for nerve regeneration
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can potentially overcome problems associated with other
stem cell sources as they can be easily harvested and are not
associated with so many ethical issues [151].

4.5. Stem Cell Expansion. The addition of additives such as
growth factors can differentiate a stem cell towards a par-
ticular lineage [152] although the large-scale amplification of
stem cells also increases the mutation rate that could directly
impact treatment with these cells [152, 153]. Recent work
has also shown that long-term culture can alter the genetic
composition of the cells [154, 155].

Currently, there is no optimal basalmediumused for stem
cell expansion. Some studies use Iscove’sModifiedDulbecco’s
Media [36, 38], whereas others use Dulbeccos Modified
Eagle’s Media [52, 156] or alpha-minimum essential medium
[157]. Serumappears to be a key component for the expansion
of some cells; hence, many media are supplemented with
GMP grade Foetal Bovine Serum (FBS) to produce a for-
mulated cocktail of proteins, growth factors, and nutrients.
FBS is widely used throughout research and clinical studies
although its commercial use is undesirable due to several
inherent problems outlined in [158]. These include, but are
not limited to, cross-species contamination, high content
of xenogeneic proteins, and high batch-to-batch variation
which all increase the regulatory burden. Nevertheless, the
FDA has approved the use of GMP clinical grade FBS; how-
ever, [159, 160] show that immunogenicity against FBS pro-
teins reduces the therapeutic benefit. With a focus on clinical
translation, recent approaches have begun to explore defined
serum-free and nonxenogeneic media options for multiple
cell lineages [161–163]. Various bioprocessing approaches
have been developed to support the large-scale expansion
of therapeutic cells, including multilayer cell factories and
closed-system automated bioreactors in accordance with
GMP guidelines; these are detailed in [164].

4.6. Variability in Stem Cells. Recent literature describes the
importance of donor age and time in culture in determining
mesenchymal stem cell efficacy and quantity [165–167]. For
example, a study by Siegel et al. [168] isolated BMSCs from 53
donors, aged between 13 and 80 years, and found that age and
gender affect expression of certain makers and consequently
BMSC function. A study by Choudhery et al. [169] recently
described the negative effect of age on ADSCs whereby aged
MSCs displayed senescent features, reduced viability, and
proliferation and differentiation potential when compared to
ADSCs from young donors. Conversely, a study by Choi et al.
[170] used tonsil-derived mesenchymal stem cells and sug-
gested that donor age and long-term passage had little effect.

Emerging studies have begun to understand the limita-
tions of in vitro stem cell assays since it is becoming increas-
ingly apparent that in vitro data do not correlate with in vivo
results [171, 172].

There are also differences in the proliferation capacity of
stem cells; for example, to generate a culture that is confluent
in approximately 5–7 days, it is common to seed freshly iso-
lated bone marrow stem cells in the range of 20,000–400,000

cells/cm2 whereas ADSCs only require to be seeded at a den-
sity of 3500 cells/cm2 to achieve the same level of confluence
in the same time [144]. Considering this, Fossett and Khan
[173] have recently discussed methods to optimise hMSC
numbers for clinical application. A short communication by
Zhou et al. [174] describes that seeding density of mouse
embryonic stem cells and also quality of embryonic bodies
directly effect the neural differentiation of the cells.

4.7. Preservation. Following isolation of the desired stem
cells they can be either directly used for therapy or stored
frozen. The cryopreservation of stem cells including induced
pluripotent stem cells with consideration of GMP is reviewed
byHunt [175]. Currently, the gold standardmethod for cryop-
reservation involves suspending embryonic or mesenchymal
stem cells in a mixture of FBS, growth media, and usually
10% dimethylsulfoxide (DMSO). This solution undergoes a
slow-freeze protocol; however, thawing is rapid. Interestingly,
this protocol is effective formurine and embryonic stem cells;
however, storing human embryonic stem cells under these
conditions is plagued with poor cell survival [176]. Various
cryopreservation protocols for embryonic stem cells have
been reviewed by [177, 178]. Different research groups are
optimising preservation protocols with novel techniques to
ensure maximal cell viability after thaw [179, 180]. Similarly,
numerous studies investigated the effects of cryopreservation
conditions on MSCs and demonstrated that they can be
stored without loss of function [181]. In fact, a study by
Ginis et al. [182] showed that BMSCs can be successfully
preserved for the long term and delivered to the clinic in
protective hypothermic storage in the short term. There are
concerns about the toxicity of DMSO in humans; thus, there
is substantial interest in reducing or completely removing
DMSO from the preservation solution [183, 184].

5. Conclusion

PNI continues to be an area of unmet clinical need and
advances in tissue engineering would be a welcome thera-
peutic option. To this end, a number of studies have high-
lighted the ability of stem cells from a variety of sources to
differentiate into Schwann cells as starting material for these
constructs.This competitive environment is both healthy and
beneficial; each different type of stem cell will have its own
unique set of advantages and disadvantages and success may
ultimately lie in selecting the correct source for the desired
tissue engineering strategy. Although there is currently no
licensed stem cell based product for PNI, it is important
that we take these issues into account at an early stage in
development. It is highly encouraging that there is a clear
international effort to develop and characterize stem cells
for Schwann cell based engineered tissue for therapeutic
application within the PNI field.
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