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Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum
of applications, which range from nano-technology to pharmaceutical chemistry. However, these
calculations are affected by severe finite-size effects, such as the solution being depleted as the
chemical process proceeds, which influence the outcome of the simulations. To overcome these
limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus
sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed,
this still represents a key challenge in molecular simulations. In the present work, we propose the
Constant Chemical Potential Molecular Dynamics (CµMD) method, which introduces an external
force that controls the environment of the chemical process of interest. This external force, drawing
molecules from a finite reservoir, maintains the chemical potential constant in the region where the
process takes place. We have applied the CµMD method to the paradigmatic case of urea crystalli-
zation in aqueous solution. As a result, we have been able to study crystal growth dynamics under
constant supersaturation conditions and to extract growth rates and free-energy barriers. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4917200]

I. INTRODUCTION

Physical-chemical processes taking place in liquid solu-
tion are ubiquitous and are at the heart of a wide variety of
applications. Electro-chemical reactions, surfactants’ adsorp-
tion, self-assembly, crystal nucleation, and growth are just
a handful of such applications. However, in many cases, a
detailed description of the molecular mechanisms at play
during these processes is still lacking.

Molecular Dynamics (MD) represents a powerful method
for investigating such processes with atomistic detail. How-
ever, MD suffers from many limitations such as the relatively
small time and size scales that can be simulated. With the
presently available computational resources, classical MD
calculations, based on empirical potentials, can typically
study systems of size up to 104 ÷ 106 atoms. Such size
limitations are particularly dramatic in the simulation of
phase transformations, as in the paradigmatic case of crystal
growth from solution. In such a case, while the crystallization
proceeds, the solution is depleted, thus changing its chemical
potential and affecting the growth process itself. For this
reason, MD results require seizable finite-size corrections
before being compared with the experimental results, which
involve much larger system sizes.1–3

In general, the numerical approach to prevent such finite
size problems is that of sampling configurations in the
Grand-Canonical (GC) ensemble, namely simulating a system
in contact with an external reservoir, which maintains the
chemical potential constant. However, the classical methods
for GC sampling4–8 require on-the-fly insertion and removal
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of particles. This constitutes a crucial obstacle for chemical
processes in solution, since the probability of a successful
particle insertion in a dense fluid is extremely low,9 preventing
efficient numerical studies.

Recently, the development of adaptive resolution simula-
tion methods AdResS (see, e.g., Ref. 10 and references therein)
and H-AdResS11,12 has lead to an alternative path to MD
simulation in the GC ensemble. In these methods, the region
of primary interest is described with atomistic detail, while
its surroundings are treated through a lower resolution model.
It has been shown that the low resolution region can act as
an external molecule reservoir, enforcing the sampling of the
GC ensemble in the atomistically resolved region. Moreover,
in this low resolution region, particle-insertion or swapping
techniques can be applied more efficiently.13

Here, inspired by this approach, we use an analogous
volume subdivision and implement a method that addresses
the problem of solution depletion in MD simulations. To
be more definite, we focus our attention on the simulation
of crystal growth from solution, which lately has received
much attention14–18 and for which the pitfalls of limited size
numerical modeling have been underlined.19 Nonetheless, we
stress that the present method can be applied to many other
systems.

In our scheme the region containing the growing crystal
and its immediate surroundings is maintained at constant
solution concentration, while the remainder of the simulation
box acts as a molecular reservoir. In this way we are able to
study the crystal as it grows or dissolves in contact with a
solution at constant chemical potential.

The paper is organized as follows: first, in Sec. II, our
method is introduced and described in detail. After that we
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apply it to the crystallization of urea in aqueous solution. The
technical details of the calculations are presented in Sec. III.
Then, in Sec. IV, the simulation results are illustrated and
discussed. Finally, Sec. V is devoted to the conclusions and
possible perspectives of our work.

II. CONSTANT CHEMICAL POTENTIAL MD

In the present section, we describe in detail our new
method, named Constant Chemical Potential MD (CµMD),
which allows to perform MD of chemical processes in a
solution at constant chemical potential. In order to illustrate the
method, we focus on the problem of crystal growth in a binary
solution, while in principle any first order phase transition
can be considered. Moreover, for the sake of simplicity, we
consider a planar crystal-solution interface. Extension to other
geometries is possible, although rather more complicated.

In Fig. 1, we show a qualitative description of the local
solute density nu in the neighborhood of the crystal-solution
interface, located at zI. To the left of the interface, there is the
crystal region, characterized by the solid density nC. On the
other side of zI, we find a Transition Region (TR), of length ξ,
in which the growth process takes place. The extension of the
TR is such that for z > zI + ξ, the density reaches its bulk value
nB. The nu profile within the TR depends on the kinetics of
crystallization and on the diffusivity of the liquid, and cannot
be easily guessed a priori. Here, we are implicitly assuming
that the considered transition does not involve macroscopic
correlation lengths, so that ξ is finite.

During crystal growth or dissolution, the solid-liquid
interface moves together with the TR. In a macroscopic sys-
tem, nB remains unchanged and the density at the boundaries
of the TR is constant, leading to a stationary growth process.
This is in contrast with the behavior of a finite-size system, in
which nB varies due to the limited number of molecules.

Our method aims at restoring this stationarity condition,
enforcing a constant solution composition in a Control Region
(CR) in contact with the TR, while the rest of the solution
volume is used as a molecule reservoir, as shown in Fig. 2. To
control the solution density, an external force Fµ is applied at a
fixed distance DF from the moving crystal interface. Fµ acts as
a membrane, regulating the flux of molecules between the CR
and the reservoir, in order to maintain the former at a constant
concentration. If we assume that the effect of the external
force is felt in a region of size σF, the CR is located between
zI + ξ and zI + DF − σF/2. In order not to affect the growth

FIG. 1. Qualitative behavior of the solute local density in the vicinity of
a planar crystal surface. The blue, vertical line indicates the solid-liquid
interface position at z = zI. The light blue shaded area corresponds to the
TR, defined in the text. Within this region, the dashed line is explanatory and
non-representative of the realistic nu behavior.

FIG. 2. Same profile displayed in Fig. 1, with the addiction of an external
force F µ applied at z = zI+DF (green vertical line). The green shaded area
corresponds to the transition region connecting the CR and the reservoir. Also
in this case the dashed profiles are purely explanatory.

process, the CR should be larger than the typical correlation
lengths of the solution. We stress the fact that the force is
applied at a fixed distance from the solid-liquid interface, to
maintain a stationary solution environment in the proximity of
the growing crystal interface.

As the crystallization proceeds the reservoir is depleted,
so that the chemical potential can only be maintained for a
limited amount of time τF. In general, when applying the
CµMD technique to some molecular process, this time limit
must be taken into account, and the simulation box has to be
properly engineered so that Fµ is able to act efficiently during
the timescale of interest.

We write the external force Fµ as

Fµ
i (z) = ki(nCR

i − n0i)G (z, ZF) , (1)

where i labels the solute or solvent species, ki is a force
constant, n0i is a target density, and G is a bell-shaped
function which is nonzero in the vicinity of the force center
ZF = zI + DF. Equation (1) defines a harmonic-like force,
localized at a fixed distance DF from the solid, which acts
on the solution molecules to compensate the deviations of the
instantaneous CR density nCR

i from n0i.
If Ni is the total number of i-species molecules andVCR

the CR volume, we evaluate nCR
i as

nCR
i =

1
VCR

Ni
j=1

θ(z j), (2)

where

θ(z j) =



1 if z j ∈ CR
0 otherwise

(3)

is a function that selects the molecules inside the CR. In
the practice, we let θ(z) switch continuously to 0 at the CR
boundaries, in order to avoid sudden jumps in nCR

i .
We then define the function G(z, ZF), localizing the action

of Fµ close to the force center ZF, as

Gw(z − ZF) = 1
4w


1 + cosh

(
z − ZF

w

)−1

. (4)

Gw is nonzero only for z ∼ ZF, with an intensity peak
proportional to w−1 and a width proportional to w. We observe
that Fµ is non-conservative, since it is not possible to define a
potential function that leads to Eq. (1).

As a further remark, we note that Eq. (1) defines two
separate forces acting on the solute and solvent species.
In principle, the concentration of both species affects the
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FIG. 3. Typical simulation box for the study of urea
crystal growth in aqueous solution. The vertical lines
indicate the force center ZF, where F µ is applied (see
Eq. (1)), located at both sides of the slab, at distance
DF from the crystal interfaces. The gray-shaded areas
indicate the CR volume.

chemical potential of the solution20 and should be controlled.
However, we are mainly interested in constant pressure simu-
lations, where only a single population needs to be subject to
Fµ, because the action of the barostat algorithm21,22 guarantees
a prompt equilibration of the other species concentration. If
instead an NVT dynamics is considered, Fµ should act on
both solute and solvent species.

To conclude this section, let us summarize the CµMD
scheme in explicit algorithm steps:

1. the solid-liquid interface position zI is located on-the-fly
analyzing the solvent molecules distribution within the box,

2. the force center ZF, is updated maintaining a fixed distance
DF from zI, and the CR position is shifted accordingly,

3. the densities nCR
i are evaluated via Eq. (2),

4. the MD equations of motions, including the external forces
of Eq. (1), are integrated.

We recall once again that this method is effective for a finite
validity time τF, depending on the availability of molecules in
the reservoir.

III. TEST CASE AND SIMULATION SETUP

In the present section, we introduce the typical setup of
our calculations. We considered here the case of a urea crystal

growing in aqueous solution in slab geometry, as shown in
Fig. 3. The system is generated starting from an approximately
2.5 nm thick crystal slab, periodically repeated in the x and
y directions. Along z, the slab exposes either the {001} or
the {110} face, the two stable faces in urea crystal growth
from aqueous solution.23 Such a crystal is immersed in a
supersaturated solution, generated by means of the Packmol24

and genbox (GROMACS package) utilities. The typical size
of the simulation box is of 2.7 × 2.7 × 14 nm3. Periodic
Boundary Conditions (PBCs) are applied in the x, y , and
z directions. The number of urea and of water molecules for
each simulated system is reported in Table I. The initial solute
concentration has to be larger than the target concentration, to
allow a stationary growth regime for a timescale of 10–100 ns.

Following our previous work,18,19 we use the Generalized
Amber Force Field (GAFF)25,26 to model urea, and the TIP3P
model27 for water. The molecular bonds are constrained
through the LINCS algorithm28 and long range electrostatics
is handled by means of Particle Mesh Ewald (PME) method.29

The system is kept at a constant temperature of 300 K and
pressure of 1 bar by using the stochastic velocity rescaling
thermostat30 and the Parrinello-Rahman barostat.21 Because
of the planar symmetry, the barostat is applied in its semi-
isotropic version, so that the z-side of the box, parallel to
the growth direction, is rescaled separately from the x and y
sides. Since the system is rescaled during the dynamics, also

TABLE I. Simulation settings used for the different MD calculations presented in Sec. IV.

Run Face Nu Nw

DF

(nm)
ξ

(nm)
σ

(nm) u/w
n0i

(nm−3) ki

(
nm3 kJ

mol

)
Au1

{001} 679 1757 2.5 1.0 0.5 u
1.5

21.0Au2 2.4
Au3 3.3

Aw1

{001} 679 1757 2.5 1.0 0.5 w
30.25 2.5

Aw2 28.25 2.5
Aw3 26.25 3.5

NPT {001} 679 1757 Ordinary NPT

Bu j {110} 625 1533 3.2 1.0 0.2
u 1.7 7.8

Bw j w 29.0 1.95

NPT {110} 625 1533 Ordinary NPT
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the CµMD length parameters, as, e.g., DF, have to be rescaled
accordingly. Our implementation redefines the lengths on-the-
fly, following the fluctuations of the z-edge of the box. In
the considered simulations, Fµ does not affect the pressure
of the system by a significant amount, since it determines a
surface effect, small compared to the potential and kinetic bulk
contributions. For this reason in the presented results, we did
not couple the external force with the barostat equations.

After the initial equilibration phase, a 2 fs integration
step has been chosen for all the production runs. All the
calculations have been performed using the GROMACS
package31 equipped with a private version of the PLUMED
plug-in, Refs. 32 and 33 in which the external force Fµ has
been implemented.

The position zI of the two interfaces is located on-the-
fly by an algorithm which collects the instantaneous water
density distribution nw(z) in a histogram of bin-size δz. Since
nw(z) = 0 inside the crystal volume, we can choose a threshold
value nI that indicates the transition from the liquid phase to
the solid. The crystal interfaces are then located at nw(z) = nI.
Typical values used for these parameters are nI = 10 nm−3 and
δz = 0.75 Å.

As shown in Fig. 3, to comply with the PBCs, Fµ is
applied at both sides of the slab, and the CR consists of two
layers of liquid at fixed distance from the crystal interfaces. All
the CµMD parameters chosen for the presented simulations
are based on a preliminary tuning performed on a typical
system. During this process, the effective decoupling between

the reservoir region and the growing crystal is assessed by
testing different parameter configurations and observing the
resulting solution behavior. All the details of this tuning
procedure are reported in the supplementary material.34 The
relevant calculation settings are listed in Table I.

IV. CRYSTAL GROWTH AT CONSTANT
SUPERSATURATION

We now present the results of the application of the CµMD
method to the simulation of urea crystal growth in aqueous
solution. In our study, we have considered the growth of the
{001} and {110} faces. It is known that these two faces are
characterized by different growth mechanisms: the {001} face
undergoes a rough growth process, while the {110} face grows
through a birth-and-spread mechanism.14,18

First, we investigate the {001} face growth process. We
have performed 2 sets of three simulations, referred to as
Au j and Aw j. In the Au j type simulations, Fµ restrains urea
density, while in the Aw j is water to be controlled. As reported
in Table I, the index j = 1,2,3 runs over different target
densities. For comparison we have also performed an ordinary
NPT run of the same system. In each simulation, we have
evaluated the number of solid molecules Nc using the Degree
of Crystallinity (DOC) variable defined in Ref. 35.

In Fig. 4, we report the evolution of Nc and of the
mole fraction x measured in the CR for the Au j and NPT

FIG. 4. Au j simulations results compared to the ordinary NPT behavior. The green curves represent the increase of the crystal-like molecule number ∆N c as a
function of time. The blue curves represent the solution mole fraction x measured in the CR as a function of time. The instantaneous value of x is represented
in faded color, while the full-color curves are obtained via exponentially weighted moving average, with characteristic smoothing time of 0.5 ns. The red marks
indicate the validity time-window of the CµMD method, namely, τt < t < τF. The black dashed lines represent the linear fit of the ∆N c behavior, calculated
within the corresponding validity time range as explained in the text.
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simulations (an analogous plot for the Aw j runs is included in
the supplementary material34). Let us focus on the behavior of
the Au1 simulation (upper-left panel). After an initial transient
τt, the action of Fµ stabilizes the mole fraction around x = 0.05.
As the crystal grows, the reservoir region is gradually depleted
and, as a consequence, at τF = 53 ns, the CR mole fraction
starts drifting to lower values, meaning that the CµMD method
is no longer valid. Within the validity range (τt < t < τF), Nc

increases linearly, as expected for a rough growth process at
constant supersaturation. The Nc behavior during the validity
range can be fitted with a linear model, the slope of which is
the growth rate g{001} at this particular solution composition.
For t > τF, the crystal rate decreases, reflecting the change in
solution chemical potential. An analogous behavior is obtained
in the Au2 and Au3 simulations, where larger supersaturations
are enforced, determining a faster crystal growth. This results
in a more rapid depletion of the reservoir and, as a consequence,
in a shorter τF. In contrast with the CµMD runs, in the NPT
simulation the solution concentration varies throughout the
whole dynamics, interfering with crystal growth. In Fig. 5, we
report the growth rates obtained in the Au j and Aw j simulations,
corresponding to different values of x. Remarkably, g{001}
exhibits a linear dependence on x that is characteristic of a
rough growth mechanism (see, e.g., Ref. 36). It is rewarding
that the results are consistent, irrespective from the controlled
species.

In two further sets of simulations, we have applied CµMD
method to the {110} face growth, either restraining urea
(Bu run in Table I) or water density (Bw). For comparison we
have also performed an ordinary NPT simulation of the same
system. As mentioned before, the {110} face growth process
exhibits a birth-and-spread nature. Because of this mechanism,
Nc evolves in a step-wise behavior, each step corresponding
to the formation of a new crystalline layer. The dynamics of
Nc for the Bu and NPT cases is represented in Fig. 6. In
the figure we have also reported the mole fraction evolution,
showing that our method is able to maintain a stable solution
composition for a significant time. In both Bu and Bw runs, the
CR mole fraction is maintained at approximately x = 0.062
(all the Bu and Bw results are reported in the supplementary
material34).

We now estimate the {110} face growth rate at constant
supersaturation g{110}. Since the environment solution is not

FIG. 5. Growth rates measured in Au j and Aw j simulations versus the
average CR mole fraction (see Fig. 4). The red dashed line is a linear fit of the
growth rates.

FIG. 6. Bu1 simulations results compared to the ordinary NPT behavior. The
green curves represent the increase of the crystal-like molecule number ∆N c

as a function of time. The blue curves represent the solution mole fraction
x measured in the CR as a function of time. The instantaneous value of x
is represented in faded color, while the full-color curves are obtained via
exponentially weighted moving average, with characteristic smoothing time
of 0.5 ns. The red marks indicate the validity time-window of the CµMD
method.

changing, we can assume that after a layer growth event, the
system carries no memory of its past. Thus, the probability
that a new layer is created is independent from the growth
history, and the time interval between two successive events
follows an exponential distribution.37 However, in a single run,
only few layers are created before the solution starts depleting.
Thus, in order to collect sufficient statistics for the construction
of the time distribution, we have repeated each Bu and Bw
simulations five times. Of course we have considered only the
events occurring at τt < t < τF.

We have constructed the cumulative time distribution of
the observed events and fitted it with an exponential model, as
shown in Fig. 7. The statistical significance of this fit has been
assessed using the Kolmogorov-Smirnov test,38 obtaining a
p-value of 0.37. From the regression, we have extracted the

FIG. 7. Cumulative time distribution of the layer growth events at x = 0.062
(Bu and Bw simulations). The red curve is the fitted cumulative distribution
function, equal to y(t)= 1−exp(−t/τ{110}) for exponentially distributed time
intervals.
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characteristic occurrence time τ{110} = 18.3 ± 2.7 ns, which
corresponds to a growth rate g{110} = 1.73 ± 0.25 ns−1. This
result can be compared to our estimate of the {001} rate at
x = 0.062, that is, g{001} = 6.59 ± 0.97 ns−1, obtained from
the linear interpolation in Fig. 5.

In Ref. 19, we have proposed a model for the growth rate
of the {h jk} face of urea crystal, in which

g{h jk} = g0 exp
�
−β∆G{h jk}

�
, (5)

where g0 is a characteristic diffusion limited growth rate,
∆G{h jk} is the free-energy barrier associated to the creation
of an extra {h jk} layer and β−1 = kBT . The model has been
used in Ref. 19 to predict the urea crystal habits, by evaluating
the velocity ratio between different crystal faces,

g{h jk}/g{lmn} = exp(−β∆G{h jk} + β∆G{lmn}). (6)

We underline that this ratio depends only on the free-energy
barriers, which are static properties of the system. Using
the ∆G{001} and ∆G{110} evaluated via Well-Tempered (WT)
metadynamics39 in Ref. 19, Eq. (6) gives g{001}/g{110} = 3.61
at x = 0.062. This result is consistent with the ratio obtained
from our dynamical estimates, that is, g{001}/g{110} = 3.8
± 0.8.

The birth-and-spread nature of the {110} face growth
mechanism is determined by non-negligible free-energy bar-
riers ∆Gi associated to the incorporation of new solute
molecules in the growing crystal. In the following we shall
derive such free-energy barriers from the CµMD trajectories
obtained from the Bu and Bw simulations.

The growth dynamics, see, e.g., Fig. 6, shows that
the system evolves through a sequence of metastable states
i = 1 . . . n, each characterised by an average number of
molecules in the crystal state ⟨Nc⟩i. Therefore, the probability
distribution P(Nc), computed averaging over the ensemble of
Bu and Bw trajectories, will exhibit an alternation of minima
and maxima, the former representing the metastable states
at Nc

min, i = ⟨Nc⟩i, and the latter representing the faster layer
growth transitions. This is in agreement with Fig. 8, which
represents the behavior of

FIG. 8. Behavior of G(N c) (see Eq. (7)) evaluated using the probability
distribution P(N c), extracted from the Bu and Bw simulations’ sampling.
The red dashed line represents a sinusoidal fit of the numerical result.

G(Nc) ≡ − 1
β

ln P(Nc). (7)

From the function G(Nc), we can evaluate the free-energy
barriers associated to the layer growth transitions. Since the
lifetime of each metastable state is such that the sampling
in the vicinity of a minimum can be considered ergodic, the
relative free energy associated to the Nc fluctuations within
the ith basin can be written as

∆GNc
min, i→Nc = − 1

β
ln

P(Nc)
P(Nc

min, i)
= G(Nc) − G(Nc

min, i).
(8)

According to Eq. (8), the free-energy barrier associated
to the creation of a layer from a metastable state is
∆Gi = G(Nc

max, i) − G(Nc
min, i), as indicated in Fig. 8.

The barriers resulting from our CµMD simulations exhibit
very similar heights, showing that successive growth events
obtained in the molecular model are equivalent. This provides
further confirmation that the action of CµMD maintains the
growing crystal environment at a constant chemical potential.
As shown in Fig. 8, the data can be fitted using a sinusoid,
obtaining a remarkable agreement. The free-energy barrier
associated to the sampled growth events can be extracted
from the fitted curve, obtaining ∆G = 2.63 kBT , which is
in substantial agreement with the corresponding barrier
∆G = 2.0 ± 1.0 kBT , computed in the model proposed in
Ref. 19.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented the CµMD method, which
addresses the concentration depletion problems in the MD
study of finite systems. CµMD applies an external force that
controls the solution composition within a region of interest of
the system, while the remaining volume is used as a molecular
reservoir.

CµMD has been implemented and tested for the relevant
case of urea crystal growth in aqueous solution. For the
considered systems, the method is capable of maintaining
the solution environment of the growing crystal at constant
composition, up to times of the order of 10 ÷ 100 of ns. This
has allowed us to estimate the {001} and {110} faces’ growth
rates in a constant supersaturation environment. Such kind of
results are not accessible with ordinary NPT dynamics due to
the intrinsic coupling between the crystal size and the solution
composition. The retrieved results are also in remarkable
agreement with the predictions of Ref. 19, which are based
on the combination of a theoretical free energy model and WT
metadynamics calculations. The evaluation of the free-energy
barriers associated to the growth of consecutive {110} layers
has shown that the events are thermodynamically equivalent,
providing further support to the hypothesis that CµMD can
establish a stationary growth regime.

The proposed scheme can be applied to a variety of
MD problems, such as crystal nucleation, electro-chemistry,
surfactants’ adsorption. However, the external force has to be
properly re-defined to comply with the characteristic features
of these systems. The timescale of validity of CµMD is related
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to the fixed number of molecules involved in the simulation. A
possible future development can be the combination of CµMD
method with adaptive resolution10,11 or particle insertion
techniques,40 which would result in a considerable extension
of the validity range of the method.
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