
SMASH: Data-driven Reconstruction of Physically Valid Collisions

Aron Monszpart
University College London

Nils Thuerey
TU Munich

Niloy J. Mitra
University College London

Abstract

Collision sequences are commonly used in games and entertain-
ment to add drama and excitement. Authoring even two body col-
lisions in real world can be difficult as one has to get timing and
the object trajectories to be correctly synchronized. After trial-and-
error iterations, when objects can actually be made to collide, then
they are difficult to acquire in 3D. In contrast, synthetically generat-
ing plausible collisions is difficult as it requires adjusting different
collision parameters (e.g., object mass ratio, coefficient of restitu-
tion, etc.) and appropriate initial parameters. We present SMASH
to directly ‘read off’ appropriate collision parameters simply based
on input video recordings. Specifically, we describe how to use
laws of rigid body collision to regularize the problem of lifting 2D
annotated poses to 3D reconstruction of collision sequences. The
reconstructed sequences can then be modified and combined to eas-
ily author novel and plausible collision sequences. We demonstrate
the system on various complex collision sequences.

1 Introduction

Collisions capture suspense, build anticipation, and pack drama.
Naturally, they remain an integral part of movies, games, and enter-
tainment. Creating a good real-world collision sequence involving
multiple objects, however, is difficult. While the act of smashing
objects into each other so that they collide in a certain way is al-
ready non-trivial, the setup quickly becomes unmanageable when
additional colliding objects are to be collided, or adjustments are
required to object trajectories. Such changes can easily require
many further iterations and recordings, and become a tedious trail-
and-error process. Moreover, trying out multiple collision iterations
with expensive or fragile objects may not even be a realistic option.

Accurately capturing real-world collision sequences poses further
challenges. On one hand, such sequences necessitate high to very
high framerate capture, thus making state-of-the-art methods like
Kinect Fusion, etc. unsuitable candidates for 3D acquisition. On the
other hand, high-framerate video data only provides partial 2D in-
formation, both in space and in time (see Figure 2). A more funda-
mental problem arises due to unavoidable occlusions near collision
instances, which hinder direct observation of the actual collision
processes in any acquisition setup.

While the physics of object collisions is a challenging problem in it-
self, well-developed high-level models exist to reduce its complex-
ity. One widely used assumption is that of infinite object stiffness,
i.e., ideally rigid motions. Whereas such rigid body simulations are
widely used in games and movies, the task of setting up a collision
with the right initial conditions remains tough: many parameters,
such as velocities, mass ratios, and coefficient of resitiution, have
to be correctly guessed and adjusted. Given the nonlinear nature of
the underlying physics, such a rigging up a desirable sequence is
problematic and typically requires extensive prior experience. Fur-
ther, physical parameters (e.g., coefficient of restitution) may not
be readily available for the objects at hand.

In this work, we propose to marry the benefits of the above setups.
The user records collisions between pairs of objects simply using a
smartphone. The video data, however, lacks depth information and
is noisy. We expect the user to roughly annotate object poses in a
few keyframes away from the collision time. Then, we use laws of

Figure 1: Starting from a smartphone video recording of a collision
sequence behind a curtain (top), we 3D reconstruct a physically
valid collision (bottom) using laws of rigid body collisions. Note
the reconstructed spin (i.e., angular velocity) of the objects. The
algorithm also estimates mass ratio and coefficient of restitution.

physics to regularize the reconstruction problem to produce space-
time recording of the collision sequence. This step utilizes the orig-
inal 3D models of the colliding objects, assumed to be captured in
a pre-collision stage. As output, we can directly read off physi-
cal collision parameters from the reconstruction that can readily be
incorporated into existing physics engines to recreate and reauthor
modifications of the recorded collisions. For example, in Figure 1,
we show the replay of the reconstructed collision sequence happen-
ing behind the curtain.

We evaluate our method on a range of complex examples, and gen-
erate new collision sequences using an easy authoring workflow. In
summary, we propose an algorithm to reconstruct physically valid
collisions from sparse input poses from raw video footage, and per-
form collision analysis without access to exact object geometry.

ar
X

iv
:1

60
3.

08
98

4v
1

 [
cs

.G
R

]
 2

9
M

ar
 2

01
6

Figure 2: Accurate acquisition of collision sequences is difficult as
objects move fast and are typically occluded around collision time:
(left) video captured by a smartphone showing motion blur, while
(right) RGBD scan using Kinect is noisy and partial.

The estimated collision parameters can then be used to author new
collisions by mixing reconstructed collisions with synthetic ones.

2 Related work

Rigid body simulation has a long and successful history
within Computer Graphics. Starting with the seminal work of
Baraff [2001], they are now widely used in all forms of computer
animation. A good overview can be found, e.g., in the book by
Eberly [2010]. While the forward simulation problem is far from
trivial, it is well studied. We are targeting an inverse problem, and
in the following we restrict discussion to the relevant works.

First methods to edit or modify simulations proposed space-
time methods to compute optimal motions in constrained systems
[Witkin and Kass 1988; Liu et al. 1994]. Variants with neural net-
works [Grzeszczuk et al. 1998], and genetic algorithms were pro-
posed [Tang et al. 1995] to reduce the complexity or synthesize di-
rectable motions. A randomized approach to re-construct motions
for target configurations of rigid bodies was proposed by Chenney
et al. [2000], and an interactive variant was developed by Popović
et al. [2000]. While these algorithms offer varying levels of control
and parameter estimation for rigid bodies, they focus on virtual sit-
uations in a simulator. In contrast, we propose a method that works
robustly with only sparse, unreliable data from a real world source.

Areas that would be highly interesting, but which we have currently
not taken into account are deformable objects [James and Pai 1999;
Debunne et al. 2001], and fracture [Müller et al. 2001; Su et al.
2009]. A closely related challenge is editing deformable simula-
tions [Barbic et al. 2012]. In the following, we assumed that the
observed objects do not deform or change topology.

Others have used the complexity of collision events to randomize
the solution space, in this way giving control over the outcome of a
simulation. [Twigg and James 2007]. Recently, Smith et al. [2012]
investigated the even tougher case of multiple, simultaneous colli-
sions. While we focus on the two body case, these papers highlight
the complexities of collisions, which are amplified for imperfect
real-world objects. A good general survey of collision modeling is
the report by Gilardi and Sharf [2002].

An interesting general direction of research investigates the re-
trieval of modeling equations from data, by employing learning
techniques [Bongard and Lipson 2007]. While our method is not di-
rectly using machine learning, it represents a data-driven approach
to recover complex real-world phenomena. In this context, will
demonstrate that suitable physical models are powerful regularizers
for underdetermined problems.

Geometry acquisition has been simplified with affordable and
portable scanning options. Hence, in the recent years, significant
efforts have gone towards capturing and parsing 3D scenes. Ap-
proaches include using classifiers on scene objects [Schlecht and
Barnard 2009; Xiong and Huber 2010; Anand et al. 2011; Koppula

et al. 2011; Silberman et al. 2012], interactive 3D modeling from
raw RGBD scans [Shao et al. 2012], interleaving segmentation and
classification [Nan et al. 2012], unsupervised algorithms to iden-
tify and consolidate scans [Mattausch et al. 2014], proxy geometry
based scene understanding [Lafarge and Alliez 2013], or studying
spatial layout of scenes [Gupta et al. 2010; Lee et al. 2010; Hart-
ley et al. 2012]. Physical constraints have also been used for scene
understanding: for example, [Jia et al. 2013; Jiang and Xiao 2013;
Zheng et al. 2013; Shao et al. 2014] consider local and global phys-
ical stability to predict occluded geometry in scenes. These meth-
ods, however, primarily focus on static scenes. In case of dynamic
scenes, even state-of-the-art systems like Kinect Fusion [Izadi et al.
2011] mainly capture the static parts of the scenes. Capturing 3D
geometry of dynamic scenes remain very challenging. While im-
pressive results have been demonstrated in case of template-based
solution for human faces, hair, body, etc., they focus on applica-
tion specific contexts where object behavior and dynamics can be
captured and learned in a training phase. In contrast, we focus on
reconstructing 3D geometry of collisions directly from raw videos.
Note that due to the nature of the problem, collisions happen fast
and cannot be slowed down for recording.

3 Formulation

Our goal is to acquire the parameters of object collisions based on
a roughly annotated video input, and reconstruct a physically valid
motion. This yields a space-time recording of the collision event
that can be re-used in a variety of ways: to set up new collisions
that behave faithfully to the original recording, to introduce new ob-
jects, or even to author complex interactions between objects from
multiple recordings.

We first briefly review rigid body motion in Section 3.1, as the
equations provide important building blocks for our optimization
problem. We will then explain how we state the problem Sec-
tion 3.2, and introduce the conservation laws to constrain solu-
tions to the space of physically-plausible ones (Section 3.3 to 3.5).
Based on these components, we will formulate the energy we min-
imize. Below, we will use bold lower-case letters for three- and
four-dimensional vectors (e.g., p), and reserve upper case letters
for matrices (such as R). We typically run our calculations with
world space units, but will omit them for most equations.

3.1 Rigid Bodies

By using a rigid body model we represent an object by its motion
around its center of mass p. In addition to p, each body has a pose
that captures its orientation w.r.t. global directions, represented as
a quaternion q. Due to rigidity, we only need to consider linear
and angular velocity (v and w). A body further has a mass, and
a moment of inertia (calculated for a reference pose), denoted by
m and I0, respectively. While p,q,v, and w are changing over
time, m and I0 are assumed to be constant. We will omit the time
dependence, e.g. p(t), as much as possible for brevity, and write p
instead.

Collisions between two objects are typically modelled with a scalar
impulse j acting along a collision normal n. We now have two
bodies a and b, and we will denote their variables with a subscript,
e.g., pa is the center of mass of object a. The impulse changes
pre-collision velocities into a set of post-collision velocities (de-
noted with superscript post) such that the scalar relative velocity
vr = vr · n at the point of collision satisfies vpost

r /vr = −c. Here,
c is the coefficient of restitution, which is related to the amount
of energy that is transferred into a reversal of the object’s motion.
The remainder is “lost” for the simulation, and dissipated into heat,
sound, or work to deform the internal structure of the objects. We

can compute the velocity at the collision point on body a with xac
(relative to the center of mass for body a) as va + xac ×wa. This
velocity will be important later on to compute the coefficient of
restitution.

In rigid body solvers we typically know the pre-collision state, and
use a chosen value for c to compute the impulse j, in turn giving
the post-collision velocities of both objects. As linear and angular
momentum are conserved upon impact, the impulse must act sym-
metrically upon both objects. The impulse acts upon a and b with
opposite signs:

vpost,a = va + jn/ma (1)

vpost,b = vb − jn/mb (2)

Correspondingly, the instantaneous change of angular momentum
k = Iw is given by:

kpost,a = ka + (xac × jn) (3)

kpost,b = kb −
(
xbc × jn

)
(4)

Regular rigid body solver then continue to integrate the motion for
both objects with the post collision state.

3.2 Problem Statement

In contrast to the typical procedure above, our goal is to retrieve
the physical parameters from a real collision of objects. This would
normally involve a large amount of tedious manual work or com-
plicated capturing setups. Thus, we will now explain our inverse
approach to retrieve the physical parameters based on observations
of the objects’ trajectories. It should be pointed out here that com-
puting absolute quantities is not possible based on a single video.
We will not to able to compute an absolute position of the objects
on earth from a single video input, and, correspondingly, we can-
not compute their absolute masses. However, we can retrieve rel-
ative quantities, i.e., the relative positions, and the relative mass
of the objects. We assume that there are no external forces at
work, except for a known gravitational acceleration with magnitude
g = 9.81m/s2.

Interestingly, the actual shape of the objects does not play a direct
role. Only a related quantity, the distribution of mass is important
in the form of the moment of inertia. We approximate the moment
of inertia of the objects with three diagonal entries, and zero off-
diagonals. We will demonstrate in Section 5 that this simplification
is general enough to solve a variety of complex cases for more ir-
regular object shapes (see Figure 8).

As input we use a sparse set of cuboid poses for a and b, at arbitrary
points before and after the collision. These come from the recorded
video, and we use Blender to place approximate bounding boxes
around the objects. Thus, at n points in time tobs

0 , ..., tobs
n−1 we have

input i with position pobs,a
i and pose qobs,a

i for object a, and pobs,b
i

and qobs,b
i for object b. We will use superscripts a and b for variables

related to each of the two objects, and c for variables related to
the collision event. We additionally use the frame rate of the input
video ffps to determine the acceleration from gravity over time.

Given this set of positions and poses, our goal is to compute: a
parametrization of the trajectories of two bodies a and b, their rel-
ative mass, the pre- and post-collision velocities (linear as well as
angular), the time of collision, the collision impulse, and the coef-
ficient of restitution. We will describe our approach to incorporate
these unknowns in our solve in this order. As our input annotations
are potentially inaccurate and sparse, we do not rely purely on the
corresponding data-terms in our calculations, but use the physical
laws as regularizers.

3.3 Center of Mass Trajectories

The center of mass of an object experiencing a constant acceleration
is given by a parabola. This description becomes invalid at the time
of the collision, but it is an excellent model for the trajectories be-
fore and after, as long as effects such as air drag are negligible. For
the two objects, with pre- and post-collision trajectories, we thus
need to parametrize and extract four 3D parabolas from the inputs.
We parametrize each parabola in 3D space with

p(t) = R

 b3t
b1/2 t

2 + b2t
0

+ b4 , (5)

where b1, b2, b3 parametrize the curve over time, the vector b4 de-
termines its offset, and the rotation matrix R its orientation. To-
gether we can significantly reduce the total number of unknowns as
we know that all parabolas where caused by the same acceleration.

A first consequence is that the magnitude of the acceleration is
shared by all objects. For the 3D gravity vector g, we use the fol-
lowing constant:

||g|| = 9.81 = b1f
2
fps (6)

This means that the coefficient b1 is the same for all four parabolas.

In addition, the different parabolas can only rotate about the axis of
gravity, which, as follows from Equation 5, is the y-axis in our for-
mulation. We thus have a global rotation with two degrees of free-
dom shared by all four parabolas, and individual rotations around
the gravity direction. As a consequence we construct the R matrix
as a sequence of Euler angle rotations. We chose the proper Eu-
ler angle representation Y,X,Y, the angles of which we denote with
βy0, βx, and βy1, respectively. βy0 is different for every parabola,
while the other two are shared.

Additionally the two parabolas for an object share the position at
the time of collision. This means we can express both parabolas
uniquely with a single b4 offset. In total, that leaves us with two
global angles, four individual angles, two offsets, one global factor
b1, and four times b2, b3 as unknowns. The geometric setup of the
four parabolas is illustrated in Figure 3.

We can directly estimate the linear velocity from these curves with
the temporal derivative of Equation 5. The most important velocity
in our setting is the velocity at collision time tc:

v(tc) = (v0 + b1t
c)ffps , with v0 = R

b2b3
0

 (7)

We will outline how we compute the collision time from the trajec-
tories in more detail below.

3.4 Pose and Angular Momentum

It is a well studied fact that the angular velocity of a rigid body can
change without external forces, but its angular momentum remains
constant [Kleppner and Kolenkow 2013]. Thus, for each of the
four trajectories, we calculate an angular momentum k that best
explains the poses observed over time. Angular momentum and
velocity relate to each other with:

k(t) = q(t)I0q(t)−1w(t) (8)

w(t) = q(t)I−1
0 q−1(t)k(t) (9)

Once we know the angular momentum at time t, we can compute
the corresponding angular velocity w, and use it to integrate a pose

(pobs,a
i ,qobs,a

i)
(pobs,b,qobs,b)

(ppost,a,qpost,a)

(ppost,b,qpost,b)

ka

kb

kpost,a kpost,b

tobs
i

Figure 3: Modeling two body collisions. The annotated observations from a few time instances tobs
i are linked together with laws of physics:

the individual trajectories should be parabolas as we assume them to be bodies in ballistic motion and they get coupled around (unknown)
collision point based on linear/angular momentum conservation.

forward in time. With w as the imaginary part of a quaternion, an
Euler step is given by:

q(t+ ∆t) = q(t) +
∆t

2

(
0
w

)
⊗ q(t) , (10)

where ⊗ denotes the quaternion dot product.

Similar to the shared offset of the parabolas, we introduce a pose
qc for each body at collision time that is shared by the two parabola
segments. Our goal is not to use one of the input poses directly, due
to their potential unreliability. Instead we find an improved pose
that, together with an angular momentum k, explains the observed
poses as good as possible. Starting with qc at collision time tc we
can integrate this pose backward or forward to time t with explicit
integration. We perform a series of integration steps with Equa-
tion 10 from tc to a given time t. This yields the pose of body a
or b at any instance in time based on the estimated pose at collision
time. We will later on use this step to calculate the estimated object
pose at different times, based on our current estimate for the colli-
sion pose and object motion. Thus it will later on serve to guide the
optimization towards the annotated poses.

3.5 Conservation of Momentum

Throughout the objects’ trajectories, angular momentum is con-
served in the absence of external torques. Linear momentum is not
exactly conserved in our case, as gravity acts on all bodies. Instan-
taneous rigid body collisions, however, fully preserve linear and an-
gular momentum of the objects involved [Kleppner and Kolenkow
2013]. As such, the equations for an impulse-based collision are
ideal to couple the four separate trajectories at the time of collision.
We have already exploited the fact the two parabolas for each object
have to connect in the collision point, but the conservation laws for
momentum provide a much tighter coupling.

Conservation of linear momentum means that the sum of linear mo-
menta before and after collision has to be equal. Since we cannot
recover the absolute mass, we set the mass of body a to one, and
introduce a mass ratiomb,a = mb/ma, (we will revisit the case of a
potentially infinitely heavy object in Section 5.1). Formulating the
equations in terms of mb,a yields

va(tc) + vb(tc)mb,a = vpost,a(tc) + vpost,b(tc)mb,a . (11)

As the velocities are determined from the parabolas, this equation
ensures that these curves do not create or lose linear momentum,
and effectively couple the planes of the four parabolas.

We can similarly ensure that the angular momentum we compute
does not violate conservation of angular momentum. For the angu-
lar momenta, we have to consider their sum, and additionally the
instantaneous angular momentum around the origin:

pa×va + ka +mb,apb×vb + kb = (12)

pa×vpost,a + kpost,a +mb,apb×vpost,b + kpost,b

Note that all quantities in Equation 12 are evaluated at collision
time tc, this is omitted for brevity. The two equations Equation 11
and Equation 12 constrain our solution space to a physically plau-
sible ones, and provide a first coupling between objects a and b.
We can improve this coupling by using the impulse equations from
Section 3.1. With the equation for linear impulse (Equation 1) we
can introduce a relationship between pre- and post-collision veloci-
ties that takes into account the exchange of momentum between the
two bodies relative to their mass:

vpost,a(tc) = va(tc) +
jn

1
(13)

vpost,b(tc) = vb(tc)− jn

mb,a

This equation turned out to be crucial for retrieving the mass ratio
mb,a during the combined optimization, which we will detail below.

The angular impulse equations allow us to enforce a shared colli-
sion point xc. Equation 3 connects the angular momenta of the two
bodies via the relative offset of the collision point:

kpost,a(tc) = ka(tc) + ((xc − ba4)× jn) (14)

kpost,b(tc) = kb(tc)−
(

(xc − bb4)× jn
)

Deduced from relative velocities at collision point and the collision
normal: We can complete the set of necessary equations by com-
puting the relative velocities at the collision point to compute the
coefficient of restitution. We only need consider the velocity com-

ponents along the collision normal direction:

c =

(
v̂post,b − v̂post,a) · n

(v̂a − v̂b) · n with (15)

v̂ = v(tc) + w(tc)× xc

w(tc) = I−1(tc)k(tc)

With these equations at hand we can formulate an optimization
problem to compute the unknown quantities.

4 Method

The terms of the previous section can be divided into those related
to the input data, and those related to the underlying physics. In
terms of unknowns, we can distinguish the parameters of the four
trajectory segments of the two objects, which determine position
and velocities, and the unknowns of the collision event. We will
use a superscript (∗) to distinguish the four trajectories, i.e. ∗ ∈
(a, b, post-a, post-b).

Per trajectory we have the unknowns of each parabola.They are
b
(∗)
2 , b

(∗)
3 , β

(∗)
y0 , while b

(a,b)
4 exist once for each body. Finally, we

have a single b1, and the global angles βx, βy1. Unknowns for an-
gular momentum exist for each segment: k(∗). Additionally, we
have the unknowns for the collision: orientation for both objects
at collision time qc (a,b), location xc, impulse jn and the mass ratio
mb,a, as well as the coefficient of restitution c and the time of the
collision tc.

As input we typically have nine tuples of position and orientation
for both bodies: pobs

i ,qobs
i with i ∈ (1, ..., 9), at times tobs

i . Ad-
ditionally, we require a bounding box estimate for each body sa,b,
and earth’s gravity constant. Summing these numbers up we have
47 unknowns, and 115 inputs, i.e. equations from the input data.
Finally, we have a set of additional equations from the conserva-
tion laws, namely equations (11) to (15), and (6) to tie the observa-
tions together according to the physical model. They represent our
physics-based regularization encoded as 7 additional equations.

122 equations with 47 unknowns mean that our problem is over-
determined. As the equations are highly non-linear, we compute a
solution using non-linear least-squares. We summarize the 47 un-
knowns in the vector x for this least-squares solve, and re-formulate
the equations to take the form

argmin
x

1

2

∑
i

wi‖fi(x)‖2 , (16)

where wi is an weighting factor for the corresponding energy term
fi.

Physics. We can directly turn the physics constraints (Eq.s 6,11-15)
into energy terms by defining the least squares energy to be their
residual. We combine the equations for momentum conservation
(11,12) into fmom, and the impulse equations (13,14) into f imp.

Instead of imposing Equation 6 directly, we re-formulate it to align
the gravity direction with the y-axis, but allow for slight deviations.
We found this to work more robustly in the presence of not fully
aligned data, e.g., the phone being held slightly at an angle. Thus,
we formulate fg as

fg = 9.81−R0,βx,βy1

 0
b1f

2
fps

0

 ·
0

1
0

 . (17)

Note that βy0 is zero here, as this value represents rotation around
the axis of gravity. Including the gravity term Equation 17, our
physical regularizers can be summarized as fmom + f imp + f g.

Observations. Next, we formulate the data terms. Based on Equa-
tion 5 we add terms for position fidelity. For each input position
pobs
i at time tobs

i we add an energy term penalizing its deviation
from the corresponding parabola:

f pos
i = Rβ∗

y0,βx,βy1

 b∗3(tobs
i − tc)

b1/2(tobs
i − tc)2 + b∗2(tobs

i − tc)
0

+ b∗
4 − pobs

i

(18)

where ∗ ∈ (a, b, post-a, post-b) depending on the input i. Note that
b4 is shared among pre- and post-collision parabolas. We likewise
add energy terms for the poses with Equation 10:

f ori
i = q∗(tobs

i)− qobs
i , (19)

where q∗(tobs
i) is expressed as a series of explicit integration steps

starting from qc,*. We also calculate the moment of inertia of the
objects based on the bounding boxes of the annotations. We use the
analytic equations for a solid cuboid, and scale the resulting mo-
ment of inertia with the masses of the objects, i.e., one and mb,a.
For a specific instance in time, I0 is transformed with the orienta-
tion at this time according to Equation 9.

Combining all the pieces, our least-squares energy for Equation 16
has the physics terms fmom, f imp, and f g, in addition to one data
term f pos

i and f ori
i for every input pose. We additionally have

weights for these terms, e.g., wpos for the position terms f pos
i , the

values for which we will give below.

4.1 Optimization Phases

As our optimization has to navigate a highly non-linear energy land-
scape, a good initialization is crucial. Additionally, we found that
our optimization profits from an alternation scheme, that keeps dif-
ferent sets of unknowns constant for three different solving phases.
In this way, each step provides an improved initial guess for the
next step of the alternation. We work with three phases, from large,
geometric properties in phase 1, towards the details of the collision
in phase 3. For the different terms of our formulation, we use the
following weights throughout all of our examples: wmom = wimp =
10−1, wg = 1, and wpos

i = wori
i = 4.

We start with mb,a = 1, and compute velocities and momenta from
a picked segment pobs

i to pobs
i+1 of the input poses. How to choose

this segment will be detailed below. We set tc = (tobs
i + tobs

i+1)/2,
and compute collision pose and angular momentum with a spher-
ical linear interpolation for the segment at tc. We found that the
initialization of the parabola parameters did not play a significant
role. We simply initialize default parabolas with b2 = −0.05,
b3 = 1/ffps, βy0 = 20◦ (slightly facing away from the camera
for our setup), and βx = βy1 = 0◦. b1 is a constant (Equation 6).
Initialization of jn is likewise uncritical, we use random values
around 0.1.

Phase 1: We first solve for the trajectories in combination with the
time of collision tc. For this step, we include fmom and f g, but dis-
card the impulse term f imp. We define tc to be the point in time
where the connection points ba4 and bb4 of the parabolas have their
closest distance. We do not add an energy term for the optimization
here, but instead iterate over the different segments of our input
poses, until we find the closest value (in the worst case, this will
take eight iterations). We re-initialize the optimization as described

above for each segment, and once we have established the minimal
distance configuration for the parabolas, tc is fixed for the subse-
quent phases.

Interestingly, the collision point xc forms a zero set in solution
space. Thus, there is a whole set of collision points which explain
a set of inputs, and lead to the same minima, meaning identical re-
sults for the unknowns. Closed form solutions for this set turned
out to be too complicated to be useful. For restricted cases, the set
consists of a polynomial curve in the velocities and the collision
normal. Even without knowing the exact form of this zero set, it
means that we can retrieve the correct solution without having to
know the exact point of collision. The only thing to prevent is a
collision point very far away from the objects, which would lead
to potentially large angular velocities, where small deviations from
the correct angular velocity lead to suboptimal solutions. Thus, for
phase 2, we set the collision point to be located at the midpoint of
the objects’ centers at the time of collision, i.e. xc = (ba4 + bb4)/2
for phase 2. In this phase, we start solving for collision proper-
ties by including f imp in the optimization. Removing the degrees
of freedom of the point of collision increases robustness, especially
for cases with lower quality annotations.

In the last step, phase 3, we remove the hard constraint for collision
point, and let the optimization refine its position and the remainder
of the solution based on the initialization from phase 2. This phase
yields our final values for the collision. While mass ratio, velocities
etc. have been computed during the solve, we evaluate Equation 15
to compute our final estimate for the coefficient of restitution c.

4.2 Implementation

We use the Ceres library for our implementation, as it provides
an efficient solver for non-linear least squares problems. More
specifically, we use its sparse-Cholesky variant with a Jacobian pre-
conditioner. In addition, Ceres provides a set of tools for quaternion
parametrizations, which helps to compute stable derivatives.

Due to the non-linearity of the angular motion in Equation 10 we
restrict the integration step to ∆t/4. Note that the sequence of in-
tegration steps is taken into account during the auto differentiation
performed in the solver. Thus more sub-steps lead to an increased
difficulty computing derivatives for the Jacobian. While higher-
order integrators or even closed-form Poinsot solutions would be
available to express a rigid body pose over time, we found that the
explicit integration yields stable solutions in practice, and leave the
other alternatives for future work.

In our formulation above, we took care to minimize the number of
free variables and energy terms. It turned out to be crucial for a
good solution to use a formulation with shared variables, instead
of enforcing equalities with highly weighted penalty terms. E.g.,
instead of adding a term ba4 − bpost,a

4 , we formulate the parabolas
with a shared variable, which inherently enforces the equality of
the offsets. Likewise, shared angles and poses are implemented
with shared variables instead of additional penalty terms.

5 Results

We will first show a series of evaluation examples to illustrate the
accuracy of our method. We then move to more complex exam-
ples, and authored collisions. For all of the following examples,
we captured 1280x720 video with 120fps or 240fps using a regu-
lar iPhone6. The videos were typically downsampled to 60fps for
annotation. These were done in Blender, using a set of camera in-
trinsics for the iPhone camera.

5.1 Evaluation and Validation

Below we compare our calculations to different setups with known
quantities. In each case, the measured or estimated real-world quan-
tity is denoted with anm subscript, e.g., cm for an estimated coeffi-
cient of restitution, to be compared with our calculated results, e.g.
c.

Potential Energy Comparison One way to measure the co-
efficient of restitution is to measure the ratio of energy lost
during a collision. This can be performed in a very con-
trolled setting, where where we can measure the change of en-
ergy using only the objects’ potential energy, i.e. when they
have zero kinetic energy. We use different balls dropped from
a controlled height h, measuring the apex of their trajectories
after they bounce off the floor. When no energy is trans-

ferred into an angular motion, we can compute c =
√

hafter
hbefore

.
We performed this experiment
for the three types of balls
shown on the right (from left to
right: rugby, tennis, and ping-
pong), and computed the result-
ing c values. We then annotated
the scenes, to compare the c es-
timates computed with our al-
gorithm. As this setup involves
one static object (the floor), we
remove all unknowns of the sec-
ond object from our solve. In to-
tal we have 3,4, and 3 versions
for rugby, tennis, and ping-pong ball respectively. In this order, our
computed c values have an error of only 1%, 5%, and 4%. All
measured and computed values can be found in Table 1. Given the
rough annotations, we believe these are very good results.

Name cours cm
Ping Pong 0.857, 0.846 , 0.868 0.812
Tennis 0.76, 0.816, 0.787, 0.745 0.750
Rugby 0.697, 0.684, 0.767 0.711

Table 1: Results of the c estimation.

We can consistently measure c (see Table 1), even, when some en-
ergy is stored/converted to kinetic energy throughout the recording,
i.e., the ball is or starts spinning (Figure 4). The simple estimation
with potential energy is not valid for this case, while our formu-
lation is still able to compute an estimate very close to the non-
spinning case (with an error of ca. 6%).

Figure 4: Rotating rugby ball: Estimated c= 0.767, matching ear-
lier measurements around 0.711.

Mass Ratio While we cannot measure c for more complicated
collisions of two bodies in mid air, we can measure a ground truth
for the mass ratio of the objects. We did this experiment for two
sets of boxes a small (S) and medium size one (M).

Figure 5: A direct interpolation in Blender (left), versus our recon-
structed result (right). The interpolated result is far away from the
right position (shown in the background).

Finite mass. While most of the estimated mass ratios are very close

Name mb,a
ours mb,a

m

S & S 1.062, 0.98, 1.155 1.0
S & M 2.275, 2.3336, 1.967, 1.577 2.223

Table 2: Results of the mass ratio estimation.

to the measured one (usually within 10%), the last measurement of
the small-medium cases stands out as a negative example. This
example illustrates a possible, but rare, failure case for which the
relative depths of the objects was inaccurate. This leads to a shifted
parabola reconstruction, which in turn typically leads to noticeable
under- or over-estimations of the mass ratios.

Our annotations are very coarse, and not sufficient for a play-back
of the collision event. To illustrate this, Figure 5 shows a compari-
son of a direct interpolation in Blender, and our reconstructed result.
The video is shown in the background, and the direct interpolation
gives obviously non-physical, and unexpected behavior, especially
around the time of collision.

Synthetic Data For our last evaluation we used inputs for a for-
ward simulation to test our method across a broad range of inputs.
We used the Bullet physics engine in Blender to evaluate the robust-
ness of our algorithm with respect to the interval between annotated
poses. We created a scene with two colliding cuboids under gravity.
We carefully turned off friction and all artificial damping parame-
ters (linear, angular per object, and global minimum thresholds) in
order to achieve the most plausible setup. We then exported the
state of both cuboids at every time step, and sub-sampled this data
when using it as input for our solver. which we then subsampled
with regular intervals starting from the collision time to mimic an-
notated input.

We measured, how our algorithm is capable of estimating mb,a

and c with increasing distances between the annotations. Figure 6
shows of our estimations for growing intervals. Note that there is
a gap of twice the interval size around the time of collision. The
consistency of our estimates for both parameters is illustrated with
the blue dots in Figure 6. As the sequence is 90 frames long in total,
an interval of 19 frames means only four annotated poses per ob-
ject are available to our solver. Up to this extreme case, our solver
retrieves excellent estimates.

To test robustness, we added uniform random noise (5 and 10 per-
cent) to each 3D and quaternion coordinate to simulate inaccurate
annotations. This is noticeable in the growing spread of the mea-
surements around the ground truth, but our method is still able
to recover reasonable estimates for most cases. Considering the
roughness and sparsity of the data, we believe this still represents
an impressive result. We noticed that failure cases can be detected

by inspecting the mass ratio being set to its minimum or maximum
bound (10−5, 10), or the condition 0 ≤ c ≤ 1 being violated.

Figure 6: Synthetic evaluation of robustness towards elapsed time
to first annotation. We added uniform noise coefficient-wise to the
simulated input annotations.

5.2 Real-world Cases

Figure 7 shows one of several experiments, where we successfully
reconstructed the collision of box shaped objects. Given only 3
poses before and after collision, the shape of the fitted parabolas al-
low an accurate estimation of the objects’ mass ratios. These boxes
have different shape, but are made of the same material, hence we
see similar c values in the reconstructions. Our calculated relative
mass is mb,a = 2.275, while we measured a close agreement of
mb,a
m = 2.223. We calculate a c = 0.303 for this case. Some devia-

tion is caused by the fact, that the smaller packages were less rigid.
In these cases, more energy is absorbed due to the deformation of
the bodies, so we expect lower c values, which is exactly how our
optimization explained the collision happening over a longer period
of time.

Figure 7: Reconstruction of colliding cuboid shapes from sparsely
annotated poses. Top half shows the video at collision time, while
the bottom half shows our reconstructed trajectories and selected
frames.

In Figure 8 we demonstrate, how we can reconstruct collisions
with arbitrarily shaped objects. The optimization is capable of ap-
proximating the observed motion with the motion of a box shape,
and reconstructs the input collision from the annotations. Bound-
ing boxes can be used to annotate the input, or for higher accu-
racy, one can use scans to create semi-transparent models, that then
are used for annotation in Blender (and for the renderings shown).

Our calculated relative mass is mb,a = 1.924, while we measured
mb,a
m = 1.996, and we computed c = 0.407.

Figure 8: A reconstruction (right) of collision of complex shapes
from sparsely annotated poses (5+8) from video recorded with a
smartphone (left).

5.3 Authoring

To show the how to author complex new collision situations with
our solutions, we developed a Blender plug-in (Figure 9), that al-
lows the import of our reconstruction. This way a user has the pos-
sibility of combining several observed collisions, and time them to
co-incide, or later interact. For the first collisions, we use the highly
accurate reconstructions of the collisions. For later collisions, we
switch to Bullet to predict the object trajectories as accurately as
possible. Pairs of objects (’collisions’) can be moved around, and
rotated around the gravity vector. The position of the objects at the
current frame is shown by the coloured spheres. To time extra col-
lisions, one can offset an observed collision in time. The timing
can be done manually, or automatically (closest point on parabolas,
later collision adjusted to the position of the earlier).

In Figure 10 we construct a complex case of three pairs of rigid bod-
ies colliding in mid air, and two of them colliding again afterwards
on their downward trajectories. Based on our reconstructed solu-
tions, the new simulations behaves naturally, and the object collide
as we would expect them to do from their real-world counterparts.

Limitations. A key limitation of our method is that it applied to
rigid body collisions. In case of deformable bodies, the physics pri-
ors we use are not valid. Empirically we observed that our estimates
are still reasonable for near rigid collisions (see Figure 11). Our
method assumes access to initial scans of participating 3D mod-
els. Finally, the user is expected to annotate a few poses of the two
objects. In case the object is feature less or symmetric such anno-
tations can easily miss object rotations. For example, if the rugby
ball was featureless, it will be nearly impossible to disambiguate
the pose estimates. An optical tracking based approach may help
here, but the motion blur in the inputs pose challenges.

6 Conclusions

We presented SMASH a data-driven framework for capturing, re-
constructing, and authoring collision sequences. The key idea is
regularize the problem of reconstructing raw videos of collision of
object pairs using laws of physics dealing with rigid body colli-
sions. We demonstrate how to reconstruct (in 3D) plausible col-
lision sequences just by observing objects in motion away from
the collision instant, while assuming access to static version of the
models and some annotations. The method allows us to directly
‘read off’ collision parameters like mass ratio, coefficient of resti-
tution, and initial condition for the colliding objects. The infor-
mation can then be readily used to author new collision sequences,

Figure 9: Our Blender plugin to author and synchronize collisions
using the recovered parameters from our reconstruction. Object
trajectories, mass ratios and c values are read in from the opti-
mization automatically.

Figure 10: Result of authoring process. 5 collisions were created
using the retrieved information from two reconstructions.

Figure 11: Collision reconstruction for near-rigid objects using
our framework. Even if the rigid body physics priors are not theo-
retically valid, for near-rigid colliding objects we found our method
to give (visually) plausible reconstructions. However, just around
collision time, the reconstructed poses inter-penetrated (see video).

thus allowing users to combine recordings and synthetic collision
sequences to create non-trivial collision effects.

While we presented a first workflow for reconstructing collision
sequences, many avenues for improvements remain. Our current
implementation expects the author to annotate a few of the object
poses. An interesting next step will be to allow the optimization
to progressively refine initial annotations based on the current re-
construction. Further, the annotations can be pushed forward (or
backward) in time using a physics-guided optical frame using RGB
information for similarity. We anticipate motion blur in the record-
ings to limit the extent of such interpolation. Finally, it will be
valuable to generalize our method to handle non-rigid body colli-
sions [Müller et al. 2005; Barbic et al. 2012]. While this is going to
be very challenging, we are hopeful as the initial results even with
rigid body assumptions are promising (see Figure 11).

References

ANAND, A., KOPPULA, H. S., JOACHIMS, T., AND SAXENA, A.
2011. Contextually guided semantic labeling and search for 3d
point clouds. CoRR abs/1111.5358.

BARAFF, D. 2001. Physically based modeling: Rigid body simu-
lation. SIGGRAPH Course Notes, ACM SIGGRAPH 2, 1, 2–1.

BARBIC, J., SIN, F., AND GRINSPUN, E. 2012. Interactive edit-
ing of deformable simulations. ACM Trans. on Graphics (SIG-
GRAPH 2012) 31, 4.

BONGARD, J., AND LIPSON, H. 2007. Automated reverse en-
gineering of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences 104, 24, 9943–9948.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausi-
ble solutions to multi-body constraint problems. In Proceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
219–228.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM, 31–36.

EBERLY, D. H. 2010. Game physics. Taylor and Francis.

GILARDI, G., AND SHARF, I. 2002. Literature survey of contact
dynamics modelling. Mechanism and machine theory 37, 10,
1213–1239.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998.
Neuroanimator: Fast neural network emulation and control of
physics-based models. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM,
9–20.

GUPTA, A., EFROS, A. A., AND HEBERT, M. 2010. Blocks world
revisited: Image understanding using qualitative geometry and
mechanics. In ECCV.

HARTLEY, E., KERMGARD, B., FRIED, D., BOWDISH, J., PERO,
L. D., AND BARNARD, K. 2012. Bayesian geometric modeling
of indoor scenes. IEEE CVPR, 2719–2726.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREE-
MAN, D., DAVISON, A., AND FITZGIBBON, A. 2011. Kinect-
fusion: Real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proc. UIST, 559–568.

JAMES, D. L., AND PAI, D. K. 1999. Artdefo: accurate real
time deformable objects. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 65–72.

JIA, Z., GALLAGHER, A., SAXENA, A., AND CHEN, T. 2013.
3d-based reasoning with blocks, support, and stability. In IEEE
CVPR, 1–8.

JIANG, H., AND XIAO, J. 2013. A linear approach to matching
cuboids in rgbd images. In IEEE CVPR.

KLEPPNER, D., AND KOLENKOW, R. 2013. Introduction to Me-
chanics, 2nd Ed. Cambridge University Press.

KOPPULA, H., ANAND, A., JOACHIMS, T., AND SAXENA, A.
2011. Semantic labeling of 3d point clouds for indoor scenes. In
NIPS.

LAFARGE, F., AND ALLIEZ, P. 2013. Surface reconstruction
through point set structuring. CGF.

LEE, D. C., GUPTA, A., HEBERT, M., AND KANADE, T. 2010.
Estimating spatial layout of rooms using volumetric reasoning
about objects and surfaces. In NIPS, vol. 24.

LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical
spacetime control. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, ACM, 35–42.

MATTAUSCH, O., PANOZZO, D., MURA, C., SORKINE-
HORNUNG, O., AND PAJAROLA, R. 2014. Object detection
and classification from large-scale cluttered indoor scans. CGF
Eurographics.

MÜLLER, M., MCMILLAN, L., DORSEY, J., AND JAGNOW, R.
2001. Real-time simulation of deformation and fracture of stiff
materials. In Proceedings of the Eurographic Workshop on Com-
puter Animation and Simulation, Springer-Verlag New York,
Inc., New York, NY, USA, 113–124.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05,
471–478.

NAN, L., XIE, K., AND SHARF, A. 2012. A search-classify
approach for cluttered indoor scene understanding. ACM SIG-
GRAPH Asia 31, 6, 137:1–137:10.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body sim-
ulations. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 209–217.

SCHLECHT, J., AND BARNARD, K. 2009. Learning models of
object structure. In NIPS.

SHAO, T., XU, W., ZHOU, K., WANG, J., LI, D., AND GUO,
B. 2012. An interactive approach to semantic modeling of in-
door scenes with an rgbd camera. ACM SIGGRAPH Asia 31, 6,
136:1–136:11.

SHAO, T., MONSZPART, A., ZHENG, Y., KOO, B., XU, W.,
ZHOU, K., AND MITRA, N. J. 2014. Imagining the unseen:
Stability-based cuboid arrangements for scene understanding.
ACM SIGGRAPH Asia.

SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. 2012.
Indoor segmentation and support inference from rgbd images. In
ECCV.

SMITH, B., KAUFMAN, D. M., VOUGA, E., TAMSTORF, R., AND
GRINSPUN, E. 2012. Reflections on simultaneous impact. ACM
Trans. Graph. 31, 4 (July), 106:1–106:12.

SU, J., SCHROEDER, C., AND FEDKIW, R. 2009. Energy stability
and fracture for frame rate rigid body simulations. In Proceed-
ings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ACM, 155–164.

TANG, D., NGO, J. T., AND MARKS, J. 1995. N-body spacetime
constraints. The Journal of Visualization and Computer Anima-
tion 6, 3, 143–154.

TWIGG, C. D., AND JAMES, D. L. 2007. Many-worlds browsing
for control of multibody dynamics. In ACM Transactions on
Graphics (TOG), vol. 26, ACM, 14.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In
ACM Siggraph Computer Graphics, vol. 22, ACM, 159–168.

XIONG, X., AND HUBER, D. 2010. Using context to create se-
mantic 3d models of indoor environments. In BMVC, 1–11.

ZHENG, B., ZHAO, Y., YU, J. C., IKEUCHI, K., AND ZHU, S.-C.
2013. Beyond point clouds: Scene understanding by reasoning
geometry and physics. In IEEE CVPR.

