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ABSTRACT

Motivation: High-throughput sequencing platforms are increasingly

used to screen patients with genetic disease for pathogenic

mutations, but prediction of the effects of mutations remains

challenging. Previously we developed SAAPdap (Single Amino Acid

Polymorphism Data Analysis Pipeline) and SAAPpred (Single Amino

Acid Polymorphism Predictor) that use a combination of rule-based

structural measures to predict whether a missense genetic variant is

pathogenic. Here we investigate whether the same methodology can

be used to develop a differential phenotype predictor, which, once

a mutation has been predicted as pathogenic, is able to distinguish

between phenotypes — in this case the two major clinical phenotypes

(hypertrophic cardiomyopathy, HCM, and dilated cardiomyopathy,

DCM) associated with mutations in the beta-myosin heavy chain

(MYH7) gene product (Myosin-7).

Results: A random forest predictor trained on rule-based structural

analyses together with structural clustering data gave a Matthews’

correlation coefficient (MCC) of 0.53 (accuracy, 75%). A post hoc

removal of machine learning models that performed particularly badly,

increased the performance (MCC=0.61, Acc=79%). This proof of

concept suggests that methods used for pathogenicity prediction can

be extended for use in differential phenotype prediction.

Contact: andrew@bioinf.org.uk –or– andrew.martin@ucl.ac.uk

Supplementary Information: supfigtab.pdf;

SupplementaryFile1.xls; SupplementaryFile2.txt;

SupplementaryFile3.pdf.

1 INTRODUCTION

Mutations in proteins generally result in loss of function, but in

some cases can lead to a gain of function. Generally this is not

gain of a novel function, but an increased activity, often through

loss of some type of control mechanism. In general, predictors of

pathogenicity do not try to distinguish between loss-of-function and

gain-of-function mutations, but simply predict whether or not there

will be some effect on function leading to a pathogenic state.

∗to whom correspondence should be addressed

In some cases however, the situation is more complex, with

mutations in a single protein leading to a number of distinct

phenotypes. For example, inherited heart muscle diseases, or

cardiomyopathies, which are a major cause of sudden cardiac death

in the young and an important cause of heart failure at all ages

(Hughes and McKenna, 2005) are, as a group, very heterogeneous in

genotype and phenotype. Radically different phenotypes can result

from mutations in the same gene (Arad et al., 2002).

The widespread application of Single Nucleotide Polymorphism

(SNP) chips and high-throughput sequencing has generated an

urgent need for informatics tools that can help predict the effects

of the many sequence variants that these platforms identify. More

than 20 groups have devised methods to predict whether a given

mutation will have a deleterious effect (Yue et al., 2006; Uzun

et al., 2007; Yip et al., 2004; Dantzer et al., 2005; Karchin et al.,

2005; Stitziel et al., 2004; Reumers et al., 2005; Bao et al., 2005;

Reva et al., 2011; Schwarz et al., 2010; Bromberg and Rost, 2007;

Bromberg et al., 2008; González-Pérez and López-Bigas, 2011;

Shihab et al., 2013; Al-Numair and Martin, 2013; Li et al., 2009;

Kircher et al., 2014; Calabrese et al., 2009; Worth et al., 2011; Yates

et al., 2014), the best known methods being SIFT (Ng and Henikoff,

2003), an evolutionary method which calculates a sophisticated

residue conservation score from multiple alignment, and PolyPhen-

2 (Adzhubei et al., 2010, 2013), which uses machine learning on a

set of eight sequence- and three structure-based features. A more

complete list of methods is provided on our web site at http:

//www.bioinf.org.uk/saap/methods/. However, these

tools are generally not validated for individual diseases where

most available datasets are too small to train machine-learning

methods and tend to be heavily unbalanced. An additional problem

is that it is often very difficult to obtain reliable validated data

on neutral mutations. One of the few cases where a predictor has

been produced for an individual class of proteins is the work on

voltage-gated potassium channels by Stead et al. (2011).

Attempting to distinguish between mutations in a single

protein that result in different pathogenic phenotypes is a

difficult problem that, unlike pathogenicity prediction, has not

been widely addressed. There have been a small number of
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attempts to distinguish loss-of-function and gain-of-function

mutations at a molecular level, but (as stated above) typically

gain-of-function mutations result from loss of regulation

making the protein constitutively active. For example,

mutations that cause the VAB-1 tyrosine kinase to become

constitutively active cause severe axon defects (Mohamed and

Chin-Sang, 2006). Some of the challenges in the ‘Comparative

Assessment of Genome Interpretation’ (CAGI) experiment have

required the prediction of the level of enzyme activity (e.g.

genomeinterpretation.org/content/4-NAGLU)

and some have been related to familial

combined hyperlipidemia or channelopathies

(genomeinterpretation.org/content/FCH,

genomeinterpretation.org/content/scn5a), but, to

our knowledge, there have been no clear cases where predictions

have focused on mutations in the same protein resulting in

different phenotypes other than through loss of function vs. loss of

regulation.

Initially our own focus was on trying to understand the effects

that mutations have on protein structure and then to use this

information to compare the effects of non-pathogenic mutations

and pathogenic deviations (Hurst et al., 2009). Our approach has

been to map mutations onto protein structure and to perform a rule-

based analysis of the likely structural effects of these mutations

in order to ‘explain’ the known functional effect (if any) of the

mutation. Since we map mutations to structure, we only consider

mutations in proteins for which a structure has been solved. With the

recent growth in the amount of mutation data, we have moved from

updating a database of analysis of mutations, to providing a server

(SAAPdap — Single Amino Acid Polymorphism Data Analysis

Pipeline) for analysis of the effects of mutations (http://www.

bioinf.org.uk/saap/dap/) (Al-Numair and Martin, 2013).

The approach has been used to study structural differences between

disease-causing mutations and neutral polymorphisms (Hurst et al.,

2009; Al-Numair and Martin, 2013), and to analyse mutations in

glucose-6-phosphate dehydrogenase (Kwok et al., 2002) and in the

tumour suppressor P53 (Martin et al., 2002).

While SAAPdap uses a combination of rule-based structural

measures to assess whether a mutation is likely to alter the local

structural environment, we have also developed SAAPpred (Single

Amino Acid Polymorphism Predictor) which exploits the results of

the structural analysis and uses a Random Forest machine-learning

method to predict whether mutations are pathogenic (Al-Numair

and Martin, 2013). SAAPpred is restricted to analyzing mutations

in proteins for which a native structure is available, but appears

to outperform methods such as SIFT (Ng and Henikoff, 2003),

PolyPhen-2 (Adzhubei et al., 2010, 2013) and FATHMM (Shihab

et al., 2013).

In this paper we investigate whether having predicted a mutation

as being pathogenic, the approach that we developed for SAAPdap

and SAAPpred can be used for differential phenotype prediction,

specifically for mutations in the beta-myosin heavy chain (Myosin-

7, UniProtKB/SwissProt accession P12883, http://www.

uniprot.org/uniprot/P12883), encoded by the MYH7

gene (OMIM *160760). Mutations in MYH7 lead to a number of

phenotypes, the most common being hypertrophic cardiomyopathy

(HCM, OMIM #192600) and dilated cardiomyopathy (DCM,

OMIM #613426). The numbers of mutations available for other

phenotypes are very small and consequently, for this proof-of-

concept paper, we have attempted to distinguish just between HCM

and DCM.

Myosin-7 is part of the force-generating molecular motor of the

sarcomere and parts of the structure have been solved. It is divided

into three main domains as shown in Figure S1: a globular ‘head’,

which includes the ATP-binding site and the actin-binding site; the

‘neck’ which is composed of an α-helical domain to which the

myosin light chains bind and which is further subdivided into a

converter region and a lever arm involved in the amplification of

mechanical energy; and the ‘tail’ or ‘rod’ region. Together with

MYBPC3 (the gene encoding myosin binding protein C), mutations

in MYH7 are the major cause of HCM as well as being a cause

of DCM and left ventricular non-compaction (LVNC) (Haas et al.,

2014). In contrast to MYBPC3, where most pathogenic variants

cause mRNA and protein truncation, the large majority of MYH7

variants are missense (Carrier et al., 1997; Richard et al., 2003)

which often makes prediction of pathogenicity problematic (Walsh

et al., 2010; Kumar et al., 2013).

2 MATERIALS AND METHODS

2.1 Dataset of variants

A dataset of MYH7 variants was built from a) disease-causing or

likely-pathogenic variants for which phenotypic data are available

in the Human Genome Mutation Database (HGMD) (Stenson

et al., 2002); b) variants found in a curated dataset extracted

from the literature and used for commercial gene testing reports

(Health in Code SL); and c) variants detected in a cohort of

consecutively evaluated unrelated HCM/DCM patients at the UCLH

Heart Hospital. Genetic analysis was approved by the UCLH

review board (IRB) and informed written consent was obtained

from all subjects (Lopes et al., 2013). Although there are no

co-segregation data or functional studies that can ‘prove’ the

causality of mutations, selected variants from all three datasets

were rare as defined by a minor allele frequency (MAF) < 0.5%

in the ESP6500 NIH Heart, Lung and Blood Institute (NHLBI)

exome sequencing project database (Pan et al., 2012; Andreasen

et al., 2013). Consequently as it is not possible to know whether

variants are truly pathogenic, we treat mutations associated with an

HCM or DCM cardiomyopathy phenotype in the above-mentioned

databases, or in the literature, as actual positives. This dataset is

larger and more comprehensive than the data available from other

sources and contains approximately twice the number of Myosin-

7 mutations available in Swissvar/Humsavar. The complete dataset

has been provided as SupplementaryFile1.xls. Proprietary

data from HGMD, where the mutations are not available in other

datasets, have been indicated solely by their HGMD accession code.

The numbers of mutations for each phenotype are summarized in

Table S2.

A total of 395 unique mutations (i.e. distinct mutations, different

from one another at the protein level) were identified in the MYH7

gene. More than two-thirds of them have previously been published

in the literature as being associated with disease and the others are

novel variants. Since we map mutations to protein structure and

therefore require a structure to be solved of the protein of interest,

we are not able to analyse all mutations. Of the 395 mutations,

157 (39.7%) did not map to structure and therefore could not be

2



Differential Phenotype Prediction in Myosin-7

analysed (see Table S2). This situation should improve as further

structures become available. 382 of the 395 unique mutations had a

recorded phenotype and of these 228 mapped to at least one Protein

DataBank (PDB) chain. Table S3 lists the PDB structures that were

identified for human Myosin-7. When preparing the dataset in 2014,

five structures were available and three (PDB IDs: 2fxm, 2fxo and

4db1) were used in this work. The two other structures (IDs: 1ik2

and 3dtp) were eliminated since 1ik2 is a theoretical model and

3dtp is a human-chicken fusion protein. Preliminary experiments

that included this fusion protein, which covers the same region as

2fxm and 2fxo, degraded the results. Since this dataset was built,

a number of other structures have become available in the PDB

— some very recently — all but one of which map to the myosin

tail (see Figure S1), but all are also chimeric fusion proteins (see

Table S3). Consequently none of these structures has been included

at this stage.

Most mutations were associated with HCM (n = 290), whereas

all other phenotypes were associated with fewer than 50 mutations

each, including DCM with the next highest number of mutations

(n = 46). Of the unique HCM and DCM mutations, 190 and 21

respectively mapped to structure (see Table S2). Since mutations

related to these phenotypes were the most abundant, for this proof

of concept, further analyses were restricted to HCM and DCM,

grouping the remaining phenotypes as ‘other’.

2.2 SAAPdap structural analysis and SAAPpred

Our previous software, SAAPdap (Al-Numair and Martin, 2013)

performs a set of 14 structural analyses (using software written

in Perl and C), plus the calculation of solvent accessibility (Lee

and Richards, 1971). SAAPdap provides cutoffs for each of the

analyses to suggest whether these are likely to be damaging

(Hurst et al., 2009; Al-Numair and Martin, 2013). To predict

pathogenicity, a total of 47 features are derived from these analyses

(Table S1) and are used as input to SAAPpred, a machine learning

method that uses Random Forests to predict whether a mutation is

pathogenic (Al-Numair and Martin, 2013). In this paper, the same

methodology is used but, rather than using a dataset of pathogenic

and phenotypically silent mutations, a dataset of HCM and DCM

mutations in Myosin-7 is used.

2.3 A machine-learning approach for MYH7

differential phenotype prediction

As described above, for machine learning, all mutations associated

with multiple phenotypes, or causing phenotypes other than HCM

or DCM were discarded leaving 190 unique HCM and 21 unique

DCM mutations which map to structure (Table S2).

Using the results of the SAAPdap structural analysis described

above, of the 47 features used to describe the mutations, 14

were found to be redundant (i.e. they had the same value for all

examples in the dataset: the 13 UniProtKB/SwissProt features and

the disulphide (SSGeom) analysis), thus reducing the number of

informative features to 33.

Since multiple structures have been solved for MYH7, for a

given mutation, the numeric values of the features derived for

each version of the structure can be slightly different. Although a

single structure was used with SAAPpred, because of the limited

size of the available dataset for differential phenotype prediction,

it was desirable to exploit the variability in multiple structures to

expand and enrich the dataset. PDB files 4db1 and 2fxm contain

two copies of the protein while 2fxo contains four copies. For

each mutation, the feature vectors, defined from analysis of the

structure, were described using the Weka Attribute-Relation File

Format (ARFF). These data were then used to train Random Forest

predictors implemented in WEKA version 3.6.7 (Witten et al.,

2011).

The Weka Random Forest gives a classification based on a jury

vote from the trees and produces a confidence score which is the

fraction of trees that gave that prediction. Thus the confidence score

is always between 0.5 and 1.0. In the prediction phase, the scores

for the two classes are averaged separately and the higher average

score is selected as the prediction. The confidence scores were then

rescaled to run from −1.0 (DCM) to +1.0 (HCM).

The parameter space described by the number of features used

in each tree decision point (mtry) and the number of trees (T ) was

explored to find the best parameters for machine learning.

2.4 Cross-validation

A given mutation has multiple feature vectors describing the

mutation in different copies of the structure. From the machine-

learning perspective, each is a separate data point. Thus the use

of multiple structures for each mutation meant that cross-validation

could not be performed within WEKA since it is possible that

WEKA could select the same mutation (in a different structure) to

be in both training and testing sets.

To address the cross-validation problem and to deal with the

severe imbalance of the dataset (there being many more HCM

mutations than DCM), Perl code was written to limit the size of each

class by selecting examples at random and to divide the 190 HCM

and 21 DCM unique mutations with available PDB structures into

sets of approximately the same size. For example, if the data were

split into 21 sets, each of these 21 sets in turn (each containing one

DCM mutation) was chosen as a test set and the remaining 20 sets

(each containing the remaining 20 DCMs) were used for training.

In each case, the data sets were enlarged with all the available PDB

chain structures and balanced training datasets were generated by

retaining all the DCM mutations and randomly drawing the same

number of mutations from the HCM dataset. The random draws

from the HCM dataset were taken 10 times over to provide a

representative sample of the HCM class and the results from the

trained predictors were averaged.

2.5 Structural clustering of mutations

Anecdotal evidence suggested that HCM- and DCM-associated

mutations tend to be distributed differently across the Myosin-

7 structure. This observation was exploited to provide additional

features for the machine learning.

PDB files 2fxm and 2fxo, which represent the C-terminal

region, contain only two DCM mutations compared with 35 HCM,

indicating that DCM mutations are very rare in this domain. For

the N-terminal domain (PDB file 4db1), the Cα positions of the

mutated residues were clustered using single linkage hierarchical

clustering. For each of 2. . . 10 clusters, a χ2 test was performed to

see how well the clustering separated HCM from DCM mutations.

As described in the Results, three clusters have the best significance

for the clustering.
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To use this information in machine learning, the centroid of each

cluster was calculated and the feature vector for each mutation was

expanded by the addition of the three distances from the C-alpha

of the mutated residue to each of the three centroids. Mutations

that were in the C-terminal domain (and mapped to PDB files

2fxm and 2fxo rather than 4db1) were given distances of 100.0Å,

100.0Å, 100.0Å from the three clusters. To use this information in

the Random Forests, these three additional features were added to

the feature vectors in the ARFF files.

2.6 Optimizing the machine learning: feature selection

As well as using the full set of 33 non-redundant features from

SAAPdap (the ‘All’ set) with or without the three clustering

features, five reduced feature sets were explored. The first two of

these were chosen to change the way that voids are treated, while

the remaining sets were generated using feature selection to identify

the most informative features.

• All is the full set of 33 informative features (47 from

SAAPdap, but with the 14 redundant features, which were

identical for all mutations, removed): BuriedCharge, Binding,

CorePhilic, CisPro, Clash, Glycine, HBond, ImPACT,

Interface, MutantLargestVoid1. . . MutantLargestVoid10,

NativeLargestVoid1. . . NativeLargestVoid10, Proline,

RelAccess, SurfacePhobic, Void. (See Table S1 for

explanation of the feature names.)

• Top 5 voids uses the top five largest voids (before and after

mutation) instead of the standard top 10: BuriedCharge,

Binding, CorePhilic, CisPro, Clash, Glycine, HBond, ImPACT,

Interface, MutantLargestVoid1. . . MutantLargestVoid5,

NativeLargestVoid1. . . NativeLargestVoid5, Proline,

RelAccess, SurfacePhobic, Void.

• Delta Voids uses the differences in the sizes of the

top 10 voids in native and mutant structures rather

than absolute values: BuriedCharge, Binding, CorePhilic,

CisPro, Clash, Glycine, HBond, ImPACT, Interface,

DeltaLargestVoid1. . . DeltaLargestVoid10, Proline, RelAccess,

SurfacePhobic, Void.

• Set1 uses the three features from the ‘All’ set found,

individually, to be most discriminatory together with the

relative solvent accessibility. A χ2 test was performed applying

the default ‘damaging’ threshold (Al-Numair and Martin,

2013) to each feature to determine how well the feature

could separate mutations associated with HCM and DCM.

See Table S4. The three most informative features were

found to be residue conservation, mutations affecting glycine

residues and those affecting residues involved in specific

binding interactions. Accessibility was also included since our

observations of the clustering of HCM and DCM residues

showed clear differences in accessibility within the clusters.

Thus the feature set used was: Binding, RelAccess, ImPACT

and Glycine.

• Set2 was generated using the ‘BestFirst’ feature selection

method within Weka. The ‘BestFirst’ algorthm searches the

space of attribute subsets by greedy hillclimbing augmented

with backtracking. The feature set based on feature selecting

from the ‘All’ set was: Binding, RelAccess, SurfacePhobic,

CorePhilic, TotalVoidVolume, MutantLargestVoid,

NativeLargestVoid, Clash, Proline, CisPro.

• Set3 was also generated using the ‘BestFirst’ feature selection

but on the ‘Delta Voids’ set. Selected features were: Binding,

Interface, RelAccess, ImPACT, Hbond, BuriedCharge,

DeltaVoidTotal, DeltaVoidLargest1. . . DeltaVoidLargest5,

Clash, Glycine.

Initially, the number of machine-learning models was tested using

the full feature set (‘All’), plus those feature sets that reduced the

amount of void data (‘Top 5 voids’ and ‘Delta voids’), with and

without the clustering features. Having established that 11 models

was the most effective, the reduced feature sets were explored using

a smaller value of mtry owing to the much reduced number of

features.

2.7 Control experiments

Three control experiments were performed to ensure that the use

of structural information in addition to sequence information or

clustering was worthwhile.

First, to demonstrate improved prediction over a simple sequence-

based predictor, a set of control experiments was run using

only features derived from sequence data. These experiments are

described in detail in SupplementaryFile3.pdf. Briefly,

two different amino acid encodings were used, with and without

conservation score, residue number (since position in the sequence

can be regarded as a proxy for domain information, given that it is

known that some phenotypes correlate with certain domains) and

contextual information (one, three or five amino acids either side of

the mutated residue). In total, 10 feature sets were considered and

for each, four experiments were performed using different machine

learning approaches.

Second, to ensure that the performance of the predictor does

not come only from the structural clustering, we also tested the

performance using the structural clusters alone. Using the 2–10

structural clusters described above, each cluster was assigned as

a DCM or HCM cluster based on that phenotype having a higher

observed/expected ratio in that cluster. An additional cluster was

created to represent the mutations that map to the C-terminal domain

(PDB code 2fxm or 2fxo) which has a very small number of DCM

mutations. Each mutation was then predicted as DCM or HCM

based on its cluster membership. For a real prediction problem,

cluster membership would need to be assigned based on the distance

to the closest cluster centre (average linkage) or closest cluster

member (single linkage). Performance was then calculated for each

level of clustering.

Finally, as a control on the overall prediction, the testing was

repeated using two of the test sets, but the labels were randomly

shuffled five times over.

3 RESULTS

3.1 MYH7 mutation data analysis and prediction of

pathogenicity

The distribution of the variants amongst the structural and

functionally-annotated domains of the beta-myosin heavy

chain protein was analysed. Figure S1 shows the regions
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SAAPdap Structural Analysis Number of mutations

Individual significant structural effect 55

At least one significant structural effect 175

• HBond 42

• BuriedCharge 31

• SProtFT 2

• Interface 48

• Clash 14

• Proline 2

• ImPACT 138

• Binding 20

• Void 0

• SurfacePhobic 15

• Glycine 8

• CisPro 1

• CorePhilic 26

• SSGeom 0

Table 1. SAAPdap Structural Analysis for the 228 unique Myosin-7

mutations with a recorded phenotype which mapped to structure (see

Table S2).

for which structures are known and the distribution of

observed mutations together with the domains of the Myosin-7

sequence as annotated by UniProtKB/SwissProt (UniProt

Consortium, 2014) (http://www.uniprot.org/

uniprot/P12883#section_features), Pfam (Finn et al.,

2014) (http://pfam.xfam.org/protein/P12883),

SMART (Letunic et al., 2012) (http://smart.embl.

de/smart/show_motifs.pl?ID=P12883),

and InterPro (Hunter et al., 2012) (http:

//www.ebi.ac.uk/interpro/protein/P12883). All

of the 238 unique variants that mapped to structure were located

in the myosin globular ‘head’ domain or the ‘neck’ region with

no mutations seen in the ‘tail’ or ‘IQ motif’ regions. 99.1% of

mutations were in annotated domains or regions, while just two

mutations (0.9%, at positions 82 and 838) were in un-annotated

parts of the sequence. The numbers of HCM and DCM mutations

seen in each of the annotated domains are shown in Table S5.

The individual structural effects for the 228 unique mutations

which mapped to structure and for which a phenotype was also

recorded (see Table S2) were analyzed using SAAPdap. 175 variants

(76.8%) had one or more individual structural effects classified

as likely to be damaging by the individual SAAPdap analyses

while, for 55 variants, no significant individual structural effect

was detected (see Table 1). The features affected most frequently

were: mutation of a highly conserved residue (ImPACT) occurring

in 138 variants; mutation of an interface amino acid occurring in 48

variants; and disruption of hydrogen-bonds occurring in 42 variants.

Other significant mutation effects occurred less frequently, with no

observed mutations causing voids.

Before attempting to perform differential phenotype prediction,

it would be necessary to predict that a mutation is pathogenic. The

output from SAAPdap for the 228 unique mutations that mapped to

structure was fed into SAAPpred (Al-Numair and Martin, 2013) and

93.0% of mutations were predicted as pathogenic (i.e. Sn=0.930).

This compares with 69.51% predicted to be pathogenic using SIFT

Number of

folds / models T mtry Acc MCC

10 1000 10 0.6229 0.2463

10 1000 15 0.6750 0.3590

10 1000 20 0.7000 0.4103

10 1000 25 0.6916 0.3851

10 50 20 0.6833 0.3681

10 100 20 0.6916 0.3872

10 500 20 0.6937 0.4023

10 1000 20 0.7000 0.4103

10 2000 20 0.6812 0.3686

10 5000 20 0.7000 0.4005

Table 2. Exploring the number of features and number of trees in HCM vs.

DCM prediction. T is the number of trees; mtry is the number of randomly

chosen attributes in every split. Initially mtry was explored using T =

1000 and an optimum value of 20 was identified (shown in bold). T was

then explored retaining the optimum value of 1000. Performance measures:

accuracy (Acc) and Matthews’ correlation coefficient (MCC). All scores are

averaged over 10-folds of ‘manual’ (non-WEKA) cross-validation.

and 90% predicted to be pathogenic using PolyPhen-2. Other

metrics such as specificity (Sp), accuracy (Acc), the F1-score

and the Matthews’ Correlation Coefficient (MCC) could not be

calculated since no set of validated non-pathogenic single amino

acid mutations is available — even in the ESP 5K and 1000

Genomes data there are very few missense variants in MYH7 with

a frequency > 5% that could comfortably be classified as benign.

3.2 Initial machine learning results for differential

phenotype prediction

As described in the Materials and Methods, machine learning

was performed using random forests implemented in Weka with

the 33 non-redundant features from SAAPdap structural analysis

(Table S1). Since each mutation mapped to multiple structures,

cross-validation was performed outside Weka to ensure that the

same mutation was not included in the training and testing sets (but

mapped to different structures). The parameter space described by

the number of features used in each tree decision point (mtry) and

the number of trees (T ) was explored and, as shown in Table 2,

the best results were obtained using 1000 trees with 20 features

(accuracy of 70% and MCC=0.41).

3.3 Structural clustering of mutations

As described in the Materials and Methods, the Cα positions of the

mutated residues were clustered using single linkage hierarchical

clustering and a χ2 test was performed for each of 2. . . 10 clusters, to

see how well the clustering separated HCM from DCM mutations.

Results are shown in Table 3. Apart from two clusters, these are all

clearly significant at the p < 0.05 level. However, as the number

of clusters gets larger, one needs to take care with the significance

levels, because no more than 20% of expected values should be < 5

and none < 1 (significance will be over-estimated if either of these

is true). For ≥ 4 clusters, the first of these fails and for ≥ 6 clusters

the second also fails. However, between three and six clusters the
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Number Percentage of

of clusters Significance Expecteds < 5

2 p < 0.4384 0

3 p < 0.0003755 16.7%

4 p < 0.001256 37.5%

5 p < 0.002577 50%

6 p < 0.005057 50%

7 p < 0.01013 50%

8 p < 0.01778 56.25%

9 p < 0.03044 55.56%

10 p < 0.03116 60%

Table 3. Significance calculated from χ2 tests on the ability of 3D clustering

to separate HCM from DCM mutations. The highest significance result is

shown in bold. For the p-value to be reliable, there must be no more than

20% of expected counts less than five. Consequently the p-values for ≥ 4

clusters will be over-estimated.

Fig. 1. Clustering Myosin-7 mutations in the N-terminal region using PDB

file 4db1. For the three clusters, HCM mutations are shown in 1: red, 2:

green and 3: blue, while DCM mutations are shown in 1: orange, 2: yellow

and 3: cyan. DCM mutations are over-represented in cluster 3 (cyan); when

they appear in clusters 1 and 2, (orange and yellow) they are mostly buried.

significance is so good, that (while it will be over-estimated for 4–

6 clusters) it is clearly still better than p < 0.05 with 3 clusters

passing both of the validity criteria and giving a highly significant

result even if a Bonferroni correction is made for multiple testing.

Consequently we clearly have clusters of residues in the N-terminal

region that are over/under populated with DCM and HCM mutations

compared with what is expected.

Figure 1 illustrates the three clusters in the N-terminal domain

contained in PDB file 4db1. Cluster members are listed in

SupplementaryFile2.txt and shown on the sequence in

Figure S2. In particular, DCM is highly over-represented in the third

(blue/cyan) cluster. DCM mutations in clusters 1 and 2 (orange and

yellow) are hardly visible and therefore mostly buried. On the other

hand, the DCM mutations in cluster 3 (cyan) are largely on the

surface.

As a control, to ensure that the significance of the clustering was

not a random effect, we also permuted the labels randomly for the

three clusters 1000 times over and calculated the average random p-

value (p = 0.5133, σn−1 = 0.2859) from a χ2 test. This is clearly

not significant and compares with the true labels which gave a p <

0.0003755. This p-value is 1.794 standard deviations away from the

mean on the distribution of random p-values which is significant at

the p < 0.05 level.

3.4 Optimizing the machine learning

Initial training to explore the number of trees and features

considered per decision point was performed as described in

the materials and methods using 10 machine-learning models

(equivalent to cross-validation folds, each with a random selection

of the HCM data) with the prediction results averaged across the

10. After determining the optimum number of features considered

per descision point and number of trees, the different feature subsets

were explored together with different numbers of machine-learning

models (5, 11 and 21 models). Addition of the ‘clustering’ feature

described above was also explored.

As shown in Table 4, the best performance was obtained using 11

machine-learning models with ‘Set2’ plus the clustering features.

Cross-validation with 11 models used 19 of the 21 DCMs in each

training set with 2 held back for testing. This gave an accuracy of

75% and MCC=0.531. By removing two machine-learning models

that performed particularly badly and did not predict any DCM

mutations (whether correct or incorrect), this increased to an

accuracy of 79% and MCC=0.61. It appears that these particularly

bad machine-learning models have failed to learn the characteristics

of DCM mutations. To apply the method to novel mutations, we

would remove these two bad machine-learning models and use the

remaining nine to make predictions.

3.5 Control Experiments

First, a set of 40 control experiments were performed to demonstrate

improved prediction over a simple sequence-based predictor.

Only five of the 40 experiments showed a mean MCC>0.1

with the best performance being a mean MCC=0.167 which is

clearly considerably worse than our full predictor (MCC=0.53, or

MCC=0.61 with the worst machine-learning models removed) —

See SupplementaryFile3.pdf.

Second, a control experiment was performed to ensure that

the performance of the predictor does not come only from the

structural clustering, by assigning a prediction of DCM or HCM

based purely on cluster membership. The best performance was

achieved with three clusters (plus the C-terminal domain cluster):

MCC=0.33, ACC=0.89, SnHCM=0.95, SnDCM=0.33. Clearly this

performance is considerably worse than our full predictor as judged

by MCC (full predictor MCC=0.53, or MCC=0.61 with the worst

machine-learning models removed).

This is also a good example to illustrate the well-known

problem in machine learning that accuracy is a poor indicator of

performance with unbalanced datasets (the cluster-only prediction

gives ACC=0.89 while the full predictor gives ACC=0.75, or

ACC=0.79 with the worst models machine-learning removed).

However, simply predicting everything as HCM would give

ACC=0.90 and, by definition, SnHCM=1.00 and SnDCM=0.00,

while the MCC would be a much better indicator of overall

performance giving a value of MCC=0.12 (adding 1 to TP,FP,TN,FN

since TN=FN=0 results in a divide-by-zero error and treating HCM

as positive and DCM as negative.).

Finally, the overall prediction control experiment, shuffling the

labels on two of the test sets randomly, as expected, gave essentially
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Number

of folds Features

/ models used T mtry SnHCM SnDCM F1 Acc MCC

5 All 1000 20 0.572 0.611 0.576 0.576 0.152

5 All + Clustering 1000 20 0.755 0.481 0.679 0.648 0.311

5 Top 5 voids + Clustering 1000 20 0.735 0.611 0.688 0.681 0.368

5 10 delta void + Clustering 1000 20 0.785 0.407 0.676 0.608 0.205

11 All 1000 20 0.705 0.648 0.673 0.682 0.429

11 All + Clustering 1000 20 0.739 0.463 0.662 0.608 0.220

11 Top 5 voids + Clustering 1000 20 0.830 0.481 0.741 0.699 0.427

11 10 delta voids + Clustering 1000 20 0.830 0.519 0.730 0.676 0.521

21 All 1000 20 0.619 0.648 0.585 0.631 0.357

21 All + Clustering 1000 20 0.746 0.463 0.684 0.623 0.293

21 Top 5 voids + Clustering 1000 20 0.690 0.463 0.610 0.627 0.374

21 10 delta voids + Clustering 1000 20 0.619 0.426 0.584 0.560 0.133

11 Set1 + Clustering 1000 5 0.659 0.593 0.603 0.625 0.314

11 Set2 + Clustering 1000 5 0.795 0.574 0.737 0.750 0.531

11 Set3 + Clustering 1000 5 0.852 0.519 0.746 0.699 0.520

Table 4. Summary results of machine learning performance using different features of HCM/DCM dataset and using different numbers of folds of cross-

validation. The best performing predictor is shown in bold. (T : the number of trees; mtry : the number of randomly chosen attributes in every split; SnHCM :

Sensitivity for HCM mutations; SnDCM : Sensitivity for DCM mutations; F1: The F1-score; Acc: Accuracy; MCC: Matthews’ Correlation Coefficient)

random prediction performance with an MCC=−0.123 for the first

test set and MCC=−0.115 for the second test set.

4 DISCUSSION

It is logical to assume that the functional consequences of mutations

in the same gene depend on the specific domain or region where

the variant is localized (Woo et al., 2003), but the hypothesis that

the structural impact of a missense variant influences differential

pathogenic phenotype or outcome has not previously been tested.

In practice, a novel mutation would be tested for predicted

pathogenicity before an HCM/DCM prediction was performed. We

confirmed that the SAAPpred approach performs well in identifying

pathogenic mutations in MYH7 and went on to test a machine-

learning method that discriminated between pathogenic variants

associated with an HCM or DCM phenotype (accuracy of 75% and

MCC=0.531). This was achieved by averaging 11 machine-learning

models using feature Set2 (Binding, RelAccess, SurfacePhobic,

CorePhilic, Voids, MutantLargestVoid1, NativeLargestVoid1,

Clash, Proline, CisPro and Clustering) and using 1000 trees

with 5 features. These differential phenotype prediction results

are surprisingly good considering the limited size of the dataset

used in training. Indeed the results are as good as the overall

performance of some methods used for general pathogenicity

prediction — for example, our assessment (Al-Numair and Martin,

2013) of MutationAssessor showed an overall accuracy of 69.8%

and MCC=0.453, while SIFT showed an overall accuracy of 76.3%

and MCC=0.528. Clearly these results are comparable with what we

are able to achieve for HCM/DCM differential phenotype prediction

which is a more difficult problem owing to the small unbalanced

dataset. By removing two machine-learning models that performed

particularly badly, the performance was increased to an accuracy of

79% and MCC=0.61.

Because the SAAPdap structural analysis relies on having a

crystal structure of the protein in question, our predictions are

limited to mutations in regions of the protein for which a structure

has been solved. Consequently, we are only able to look at 190

of 290 unique mutations leading to HCM and 21 of 46 mutations

leading to DCM. As structures become available for more of the

protein, then this situation will improve and some new structures

have become available since our dataset was built. However,

for mutations that are present in disordered regions of structure,

different methods of prediction will be required. It is also possible

that the performance of the method may be further improved by

taking into account missing parts of the structure. However, since all

the structural parameters included in the prediction are the results of

local interactions, this is unlikely to have a significant effect.

Our analysis of the structural distribution of HCM- and DCM-

associated mutations showed that there was a highly statistically

significant difference in the locations of these mutations. Referring

to Figures 1 and S2 , DCM is highly over-represented in the

blue/cyan cluster and largely on the surface, while DCM mutations

present in the remaining clusters are mostly buried. The functional

consequences of this distribution warrant further in vitro studies.

4.1 Conclusions and future directions

Missense single nucleotide variants in MYH7 lead to a dominant

negative effect in which the mutated protein is not degraded

but rather integrates into the sarcomere, leading to the disease

phenotype. The various effects of individual variants on fibre

contractile velocity, force and calcium sensitivity have been

proposed as an explanation for the existence of dramatically
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different phenotypes arising from genetic variation in the same

molecule. A paradigm has been proposed whereby mutations that

increase motor activity and power output lead to HCM, while those

that diminish motor function and decrease power output lead to

DCM (Spudich, 2014).

Our SAAPpred predictor currently relies on having a structure

available for the protein in question, but planned enhancements

include the use of modelled structures where no experimental

structure is available and exploitation of structural information from

homologues. In the same way, we plan to expand the data points for

our differential phenotype predictor by including information from

homologous proteins. In future work, we will also explore the newly

available chimeric structures to see if they can be used for prediction

of additional mutations.

As more mutation data become available, we also intend to

integrate a validated pathogenicity predictor with a three-class

differential phenotype predictor (HCM vs. DCM vs. other) although

there is no a priori reason to believe that all ‘other’ mutations will

have shared properties, or indeed that they will have properties that

are very different from HCM or DCM. As a preliminary experiment,

we selected 10 ‘other’ mutations (some collected after the main

dataset was built) at random and found that nine of them were

predicted as pathogenic using SAAPpred. If the properties of these

mutations are significantly different from HCM and DCM we might

expect the confidence scores provided by the differential phenotype

predictor to be very low. We analyzed all 10 mutations and found

that eight were predicted as HCM and two as DCM. For two

of the HCM predictions (including the one predicted as SNP by

SAAPpred), the confidence score was indeed very low (<0.05), but

for the others, the confidence was >0.3, typical of other predictions

(see Table S6). Nonetheless, we intend to explore this further.

This work confirms the hypothesis that structural data can be

used with machine learning to create a differential phenotype

predictor, in this case able to distinguish between HCM and DCM

mutations in MYH7. The performance exceeds that of the well-

known SIFT program in the problem of predicting pathogenic vs.

neutral mutations. Differential phenotype prediction has all the

challenges of pathogenicity prediction with the added complications

of having a small unbalanced dataset. This work provides the basis

for differential phenotype prediction and with further work could be

used to guide clinical genetic testing strategies and further clinical

investigations.
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