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Abstract 

To what extent genetic variability influences gene expression in human 

primary tissues is a critical question in molecular genetics. Work investigating 

this phenomenon is not only interesting biologically, but also has the potential 

to provide mechanistic insight into traits, including disease. The past decade 

has seen tremendous progress in this field, and this thesis includes a 

description of work that spanned from the relatively early stages of this type of 

work, to current, more refined efforts.  

This work sought to ask three questions: first, are eQTL detectable in brain 

tissues using whole genome methods; second, are eQTL measurably different 

in different parts of the brain; and third, does the investigation of eQTL in a 

particular neuronal cell type offer significant advantages over similar studies in 

tissue with a mixed cellular composition. 

In the first part of this work, I present a pilot study aimed at assessing the 

feasibility of eQTL detection in brain tissue. This study showed that the use of 

genome wide genotyping and expression arrays revealed a number of 

significant eQTL, and that in general, when genetic variability was associated 

with expression, the genetic locus and the expressed transcript were 

physically close. This work was then expanded to assess eQTL in multiple 

brain regions, with an attempt to assess whether eQTL were measurably 

different between distinct brain regions. In this work, tissue from cerebral 

frontal cortex, cerebral temporal cortex, caudal pons, and cerebellum was 

used. The analysis showed that there are region-specific eQTL, but that many 

of the strongest eQTL were present in multiple tissues. Lastly, I show using 



	
   4	
  

data from laser capture microdissected Purkinje cells that additional cell-type 

specific eQTL may be found that are not revealed when performing eQTL in 

heterogeneous tissue containing this cell type.  

In summary this work initially revealed the feasibility of eQTL work in human 

brain, showed that eQTL were measurably different, but generally similar 

across varied brain tissues, and showed that there are likely several 

advantages in pursuing single cell type work in tandem with whole tissue 

efforts.  
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1:  Introduction 

An essential challenge in the post-genome era is to understand the effects of 

genetic variation found within the genome. With the widespread application of 

highly parallel SNP (single nucleotide polymorphism) genotyping arrays much 

of the recent effort in human genetics has focused on defining the role of 

genetic variation in disease and physical traits. A smaller subset of work, 

however, has attempted to examine the more proximal effects of genetic 

variation, particularly their effects on mRNA (messenger ribonucleic acid) and 

protein levels. This has the potential to inform on several levels: first, it is a 

critical step toward understanding the pathobiological consequences of 

genetic variants linked to clinical phenotypes; second, it affords the 

opportunity to form inferences regarding relationships between genes based 

on patterns of co-regulation; and third, it provides a more complete view of 

multiple levels of regulation of gene expression than that provided by the 

traditional reductionist method. 

 

The genetic code is largely fixed across human populations and, with rare 

exceptions, absolutely fixed within an individual. However, there is substantial 

variability in gene expression between individuals and across tissues. Much of 

the inter-individual differences will be embedded in genetic variation at the 

sequence level. However, changes in expression at the individual and tissue 

level will also reflect responses to external stimuli and this is likely to be 

mediated in part through epigenetic variation. Previously the relationship 

between genetic and epigenetic influences on gene expression is one that 

has been largely and necessarily confined to observations at single loci and 
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transcripts in individual cell systems or tissues. The advent of genome-scale 

technologies provides unprecedented opportunities to expand upon these 

experiments. The integration of genetic and expression data promises to 

provide general observations regarding the relationship between genetic 

variation and expression. Beyond these observations, these data can be 

readily mined to unravel the network of effects associated with genomic 

variants. This may reveal some of the rather cryptic intermediate events that 

occur between DNA (deoxyribonucleic acid) variant and phenotype. 

 

1.1: Research Aims 

With the arrival of high-density SNP chips combined with the maturation of 

expression microarray platforms it is now feasible to capture most of the 

known common genetic variation as well as the expression profiles for well-

known mRNA transcripts in the human genome for a large number of 

individuals. The mapping of these effects where genetic variation in a 

particular region of the genome is linked or associated with a change in the 

expression of a particular mRNA transcript is commonly referred to as an 

expression quantitative trait locus or eQTL. The study of expression 

quantitative traits is very similar to other quantitative traits, such as clinical 

measures, but here the trait or phenotype of interest is the expression of 

mRNA transcripts. These expression traits may also be referred to as 

molecular, intermediate, or endo-phenotypes as they are internal phenotypes 

that may lead to an external phenotype. The study of eQTL is the integration 

of genetic variation and gene expression variation by correlation, where the 
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abundance of an mRNA transcript increases or decreases in relation to 

genotype (Figure 1.1). 
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Figure 1.1: Example plot of the linear relationship between genotype and gene 
expression for an eQTL. The plot depicts this linear relationship, where the abundance 
of an mRNA transcript increases with the dosage of the B allele. In this example, the 
correlation is positive, but a negative correlation is also possible where mRNA’s 
transcript abundance decreases with the dosage of the B allele. 

 

The expectation of identifying eQTL is that we can begin to provide an 

additional layer of functional information onto genetic variation within the 

human genome as well as to understand the general characteristics of eQTL. 

The utility of such a resource is that many of the expression quantitative trait 

loci may overlap with regions of the genome associated with clinical traits or 

disease phenotypes. In recent years, hundreds (and now thousands) of 

genome wide association studies have been published many with robust and 

replicated findings (Hindorff et al. 2009). What is apparent from these many 
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genome wide association studies is that large effect disease loci that tag 

protein-coding changes such as complement factor H for age related macular 

degeneration (Klein et al. 2005) and APOE for Alzheimer's disease (Rogaeva 

2002) will not be the norm. Many of these disease-associated loci may confer 

moderate to small risk through changes in gene expression. 

 

Towards this end, my thesis focuses on eQTL studies within brain tissues 

using whole-genome SNP genotyping and mRNA expression microarray data. 

The first study was conceptually a ‘pilot’ project for the detection of eQTL 

within a mix of cortical tissues from elderly neurologically normal individuals. 

The second study expands upon the ‘pilot‘ study, again using neurologically 

normal individuals but with improved analysis techniques and multiple brain 

tissues from each individual. The third study describes eQTL in a single 

neuronal cell type from human brain, using a subset of the second study’s 

subject cohort and makes use of additionally refined analysis methods. My 

thesis also includes a chapter describing the integration of eQTL and disease 

risk loci identified by genome-wide association studies (GWAS). The bulk of 

my thesis and central project is within the second cohort focusing on 

identifying eQTL within distinct human brain regions. However, the first ‘pilot’ 

cohort is seminal in my understanding of how to do this kind of work in a 

primary human tissue and was the first study, using whole genome and 

transcriptome data, to show that it is possible to see such effects in human 

brain tissue. The third study, of eQTL in a single neuronal cell type, is critical 

to beginning to understand eQTL in the context of a specific cell type and 

within heterogeneous tissues. 
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1.2: Human Genome  

1.2.1: Human Genome and Genetic Variation 

After the completion of the Human Genome Project, much research has 

focused on understanding variation within the human genome, among 

individuals, and among populations. A primary goal of this work is to 

understand how the patterns of variation can be applied towards localizing loci 

associated with complex traits, such as disease, within humans. The work to 

begin to achieve this understanding has accelerated rapidly since the draft 

human genome was sequenced. This effort requires not only cataloguing 

variation within the human genome but also the development of methods to 

assay and analyse this catalogue in order to better understand patterns within 

the variation. Of course, much of this work has also centred on how to 

maximize the efficiency and effectiveness of the data for generation and 

analysis.  

 

Early studies of genetic variation between individuals and populations had 

shown that much of this variation is between individuals and to a lesser extent 

between populations. One of these very early studies was based on allele 

frequencies at 15 protein loci and found that 85% of genetic diversity is 

between subjects from within the same population (R C Lewontin 1972). This 

estimate was re-affirmed more than twenty years later in a much larger cohort 

using DNA markers. In this later study, 1,109 subjects were genotyped at 109 

DNA markers, where the markers included microsatellites and restriction 
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fragment length polymorphisms (RFLP). Microsatellites are short tandem 

repeats, containing two to six base pairs of repeating sequence. RFLPs are 

genetic markers captured by segmenting DNA using restriction enzymes and 

then separated according to their length by gel electrophoresis. The results 

showed that the within population differences accounted for 84.4% of the 

genetic variation and approximately 10% of the variation is accounted for by 

continental population differences (Barbujani et al. 1997). Additionally, when 

studying a larger more diverse set of populations the majority of genetic 

variation was again found to be primarily between individuals and not between 

populations (Rosenberg et al. 2002). In the Rosenberg study, which was 

based on microsatellites genotyped in 52 populations, it was found that ~94% 

of the genetic variation is among individuals within a population and ~4% of 

the variation is between major population groups. 

 

The rate of introduction and the change in frequency of new combinations of 

alleles in a genome is determined by recombination. Recombination results in 

the selection for or against new haplotypes and this in turn may also lead to 

the selection of alleles that modify recombination rates (Otto and Lenormand 

2002; Coop and Przeworski 2007). Two roles of recombination in mammals 

and other organisms are that it helps in homology recognition resulting in 

synapsis early in meiosis and then later provides the tension required for the 

correct chromatids to be pulled together binding through crossing over of the 

non-sister chromatids (Roeder 1997; Coop and Przeworski 2007). Synapsis is 

the pairing of two homologous chromosomes. A chromatid is a new copy of a 

replicated chromosome. Meiotic pairing, synapsis, and recombination occur 

during prophase I of meiosis. In prophase I, sister chromatids are brought into 
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close reach with one another and sister chromatid cohesion is imparted by a 

meiosis-specific cohesion complex (Zickler and Kleckner 1999; Petronczki, 

Siomos and Nasmyth 2003). Double-strand breaks initiate meiotic 

recombination and Holliday junctions are formed during repair. These 

junctions are resolved as a gene conversion with or without a crossover. 

Where in non-crossover conversions the resolution does not include the 

exchange of flanking variants as opposed to a crossover conversion where 

flanking variants are exchanged (Allers and Lichten 2001; de Massy 2003; 

Coop and Przeworski 2007). Large crossover rates increase the genetic 

diversity within humans and divergence with other species (Hellmann et al. 

2003, 2005). Recombination rates vary within in humans and there are 

differences between humans and other species (Lynn, Ashley and Hassold 

2004). Recombination ensures the proper segregation of chromosomes 

during meiosis and breaks up genetic linkage between loci resulting in 

increased diversity. 

 

Recombination can be measured indirectly using genotypes within families to 

create maps inferring the recombination events from the parents. These 

recombination maps are referred to as genetic maps, which consider the 

polymorphic loci in a linear fashion along a chromosome and their interlocus 

interval lengths. Previously, restriction fragment length polymorphisms 

(RFLPs) were used as the genomic variants for construction of these genetic 

maps (Botstein et al. 1980) and later microsatellites (Litt and Luty 1989; 

Weber and May 1989). A Morgan is a unit of length used to denote the linear 

distance in genomic maps of recombination fractions and measures the 

relationship between pairs of “marker” loci or variants in the genome. These 
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genetic maps estimate the segregation of the alleles for a pair of markers 

determining if the pair is linked together forming a linkage group. For mapping 

purposes, Morgans are typically denoted as centiMorgans. The closer 

together two loci are the more unlikely it is that a double recombination event 

exists between them so the loci are linked. As the distance between loci 

increases, the possibility of a recombination event occurring between them 

increases as well. The Centre d’Etude du Polymorphisme humain (CEPH) 

was established to maintain a collection of a common set of pedigrees 

containing enough families to help facilitate the construction of linkage maps. 

This collection of samples allowed laboratories developing genotyping 

markers to work with the same samples and return this information to a public 

repository so that genome-wide linkage maps could be constructed (Dausset 

et al. 1990).  

 

The larger chromosomes have more meiotic exchange and thus more 

recombination events. Variation in recombination can be driven by specific 

factors for specific chromosomes (Laurie and Hultén 1985; Lynn, Ashley and 

Hassold 2004). Recombination rates have also been found to be significantly 

correlated with GC content in the human genome (Kong et al. 2002; Lynn, 

Ashley and Hassold 2004). Recombination hotspots occur in small regions 

typically less than 1 to 2 Kb (kilobases) and separate long regions of cold 

spots typically 200 Kb; recombination hotspots are not randomly distributed in 

the genome (Jeffreys, Kauppi and Neumann 2001; May et al. 2002; Lynn, 

Ashley and Hassold 2004). There is an inverse relationship between linkage 

disequilibrium (LD) and recombination rates (Nordborg and Tavaré 2002). In 

2004, McVean et al. published a study estimating recombination rates based 
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on genotypes. They used European and African population genotypes and 

found variation in local recombination rates. They found that 50% of 

recombination events occur in less than 10% of the genome and occur on 

average every 200 Kb or less. These results suggested that recombination 

hotspots are a common feature of the human genome and typically occur 

outside of genes (McVean et al. 2004). In a similar study using LD patterns 

based on genome-wide genotyping, it was suggested that there are likely 

more the 25,000 hotspots in the human genome. The use of genome-wide 

genotyping allowed for fine-scale estimates of recombination. Additionally, it 

was found that these hotspots occur approximately every 50 Kb and that 80% 

of crossover events happen in 10 to 20% of the human genome (Myers et al. 

2005). In 2005, Hellman et al. published a study examining diversity in the 

human genome and divergence with chimpanzees under the hypothesis that 

variation has two main drivers, mutation rates and natural selection. This 

study was undertaken based on previous observations that both within 

species diversity and between species divergence increase with 

recombination rates. The observation that both diversity and divergence 

increases with recombination rate suggests that there is a link with 

recombination and mutation directly or through another factor. By studying the 

human and chimpanzee genomes, they found that GC and CpG content, 

simple-repeats, and chromosomal distance from centromeres and telomeres 

also predict diversity and divergence. They suggest that changes in 

recombination rates since the split with our common chimpanzee ancestor are 

a better explanation for diversity within species. Their basis for this conclusion 

was the observation that recombination rates appear to have rapidly changed 

during human evolution (Hellmann et al. 2005). An earlier study of diversity 
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and divergence in humans, also from Hellmann et al., was undertaken to 

examine previous findings that regions with low recombination often have 

lower diversity within species but not lower divergence between species. They 

regenerated maps of recombination within related species and found that, 

between chimpanzees and baboons, regions with low recombination have 

less divergence and diversity for the two non-human primates (Hellmann et al. 

2003). In 2011, Wegmann et al. published a study based on admixed human 

subjects to generate a recombination map of relative rates, which allowed for 

observing ancestry switch points. They used genotypes from African-

American and African-Caribbean subjects, and found several thousand 

recombination events when compared to maps from non-admixed 

populations. Their results showed a fine-scale difference in recombination 

between populations suggesting that admixture does not have a large effect 

on recombination rates in humans (Wegmann et al. 2011). 

 

The Hill-Robertson (H-R) effect suggests that in finite populations for two 

linked loci that selection at one locus reduces the effectiveness of selection at 

the other one (Hill and Robertson 1966; Felsenstein 1974). Intragenic H-R 

effects may be reduced advantageously by introns and may predict selection 

effectiveness differences between genes with different exon-intron structures 

(Comeron, Williford and Kliman 2008). Populations without recombination will 

accumulate deleterious mutations more rapidly, this is known as Mueller’s 

Ratchet (Muller 1964). Both the H-R effect and Mueller’s Ratchet suggest that 

the advantage of recombination is that it increases the rate of adaptation in a 

species by breaking up negative linkage disequilibrium (LD) that may result 

from selection and genetic drift (Felsenstein 1974; Barton and Otto 2005; 
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Keightley and Otto 2006; Comeron, Williford and Kliman 2008). Negative 

linkage disequilibrium is the association between beneficial and deleterious 

alleles at different loci occurring more often than expected by chance 

(Keightley and Otto 2006). In 2011, Udeba and Wilkins put forth a model to 

account for observed recombination mechanisms. Their model results 

suggested a Red Queen dynamic based on an intragenomic conflict model. 

The Red Queen hypothesis, put forth by van Valen in 1973, suggested that 

organisms must constantly adapt, evolve, and proliferate not just for 

reproductive advantage but also to survive against other evolving organism in 

environments that are also changing. The Udeba and Wilkins model accounts 

for evolutionary dynamics of hotspot turnover and the non-random targeting of 

recombination mechanisms. Chromosomal regions where crossover events 

occur more often are recombination hotspots and these regions are often 

small. Double-strand breaks (DSB) initiate recombination and requires 

involvement of the DSB repair mechanism, which may result in homologous 

chromosome exchange (crossover). This exchange would then result in a 

biased gene conversion. However, a biased gene conversion results in a 

transmission advantage preventing recombination and therefore the hotspot 

becomes transient. The persistence of hotspots over time when they should 

be self-destructive is known as the recombination hotspot paradox. They 

suggest that their intragenomic conflict model accounts for this. In their model 

fertility selection drives trans (distal) modifiers to maintain crossover rates 

which is in conflict with cis-acting (proximal) targets promoting their own 

transmission, thus the intragenomic conflict, leading to the Red Queen 

dynamics (Ubeda and Wilkins 2011). More recently, Lesecque et al. published 

a study of the evolution of human recombination hotspots and PR domain 
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containing 9 (PRDM9) DNA-binding domain target motifs in the human 

genome. The PRDM9 protein is a zinc finger protein with a sequence-specific 

DNA binding domain that determines the location of recombination hotspots in 

humans (Baudat et al. 2010; Myers et al. 2010). The Lesecque et al. study 

examined the evolution of hotspots and PRDM9 target motifs by comparing 

the genomes of modern human and Denisovan to identify hotspot turnover in 

recent human evolution. This study found that even though Denisovans and 

modern humans share similar PRDM9 target motifs their recombination 

hotspots did not overlap. They also found that modern human hotspots are 

young, becoming active shortly before the split with Denisovans but long after 

divergence from chimpanzee ancestor. Their findings suggest that the loss of 

existing human hotspots, through biased gene conversion, should occur in the 

next three million years and this depletion would decrease fitness thereby 

favouring new PRDM9 alleles binding different motifs which supports the Red 

Queen hypothesis of recombination hotspot evolution (Lesecque et al. 2014). 

 

As technologies and understanding continually improved, it became possible 

to start increasing the density of variation being genotyped, and to better 

comprehend the characteristics and patterns of variation in the human 

genome. Single Nucleotide Polymorphisms (SNPs) are the most common 

form of sequence variation in the human genome and thus it was a necessity 

to densely map these genetic variants. At the time, it was infeasible to whole 

genome sequence large cohorts of subjects in multiple populations, which 

would allow direct identification of most of the genetic variation within and 

across populations. Consequently, an alternative was pursued to catalogue 

common variants in the genome. This set of common genome variants could 
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then be genotyped in any cohort of interest with the benefit of knowledge of 

population allele frequency and linkage disequilibrium. The underlying 

hypothesis behind this work was that based on the genotypes of common 

variants it should be possible to detect trait association signal at a genome-

wide level and then proceed to search for causative variants within the 

localized region (Collins, Guyer and Charkravarti 1997). This approach also 

allows for a genome-wide search space so that researchers do not have to 

know putative functional information of all variants beforehand. Thus, 

candidate gene or region selections were not required a priori. This type of 

resource would provide a haplotype map of the human genome. Two of the 

key and related characteristics of genomic variation making this type of map 

possible are linkage disequilibrium (LD) and haplotypes. LD is the non-

random association between markers of genetic variation in a genome and a 

haplotype is a set of co-segregating alleles on a chromosome. By contrast, 

when markers of genetic variation are independent of each other, such that no 

association exists between their alleles (i.e. no LD), these markers are 

considered to be in linkage equilibrium. Recombination, as discussed earlier, 

is the pairing of homologous chromosomes during meiosis where by sections 

of genetic material are copied from one chromosome to the other by breakage 

and re-joining; LD arises because of a lack of recombination between sites. 

Basing the catalogue on common SNPs the patterns of LD within this map 

should primarily reflect historical recombination and demographic events 

because the common SNPs will typically be older than rare SNPs 

(Chakravarti 1999). In 1999, Kruglyak published a study describing population 

simulations involving LD to guide the design of dense genotyping platforms. 

The designs of these platforms were based on using whole-genome LD to 



	
   37	
  

map common disease loci. In this study, LD between common variants was 

considered based on simulations of both general and isolated human 

populations. The results showed that the useful LD for mapping is not likely to 

extend beyond 3 Kb in the general population. These simulations suggested 

that approximately 500,000 SNPs would be required. This finding also held for 

isolated populations unless there was a significant founder bottleneck or the 

disease risk variant was not common (minor allele frequency less than 5%) 

(Kruglyak 1999). Another study was performed to find empirical evidence 

about the extent of LD in the human genome and whether it fits with the 

theory that was driving the design of possible whole-genome association 

studies based and SNP genotyping. This analysis was based on 38 variants 

with an allele frequency greater than 10%, under the assumption that these 

should be comparable to disease risk variants. These variants were from 

three regions on three different chromosomes, where previous variant 

mapping had already been performed. They genotyped these 38 variants in 

1,600 subjects from four European populations. They found that the LD and 

allele frequencies among these populations were very similar and that there 

was an inverse relationship between LD and distance in general. Based on 

these finding they suggested that whole-genome genotyping scans for 

association studies would need variants spaced less than or equal to 5 Kb 

apart (Dunning et al. 2000). 

 

Early cataloguing of common variation resulted in a map of 1.42 million single 

nucleotide polymorphisms released from multiple consortia, representing the 

most comprehensive map of human genome sequence variation at the time. 

The average density was one SNP every 1.9 kilobases (Kb) and 85% of 
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exons were within 5 Kb of a SNP. This map was based on ethnically diverse 

populations (Sachidanandam et al. 2001). Using these denser maps of SNPs, 

a study was performed by Reich et al., to further characterize the size of LD 

blocks in three diverse populations. This study found that LD for Northern 

Europeans, around common SNPs, typically extended to 60 Kb but within an 

African population the typical size was reduced to 5 Kb. The authors 

suggested that these results may reflect a demographic event that occurred 

between 27-53 thousand years ago (Reich et al. 2001). LD is the correlation 

among proximal variants reflecting haplotypes descended from single, 

ancestral chromosomes. LD between genetic variants emerges as a result of 

selection or population history (population size, genetic drift, and population 

mixture), and decays because of recombination breaking up the ancestral 

haplotypes. Decay in LD is proportional to the number of generations since 

the ancestral haplotype formed. The presumed and simplest reason for the 

existence of long-range LD in a population is that a population under went a 

bottleneck, severe founder effect, or because of a lack of recombination. Such 

an effect can occur if a population is reduced so drastically in size that only a 

few ancestral haplotypes remained from which today’s haplotype originated. 

LD in Europeans typically extends 60 Kb from common alleles whereas the 

Yoruban blocks are much smaller but primarily a subset of the blocks seen in 

Europeans. The smaller Yoruban haplotypes are within the longer European 

ones with very few specific to the Yorubans. This large difference in LD sizes 

while still being a subset suggests a population history event that occurred in 

Europeans after the divergence from ancestral Africans, likely a bottleneck or 

founder effect (Reich et al. 2001). Several other early studies demonstrated 

how LD and haplotypes confirm the feasibility of these cataloguing efforts 
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based on variation from isolated regions of the human genome. Based on 

genotypes from a European population at 103 SNPs within 500 Kb on 

chromosome 5 it was observed that discrete haplotype blocks with limited 

diversity could be identified. These haplotype blocks were up to 100 Kb in size 

and typically contained between 2 and 4 haplotypes representing more than 

90% of the genetic variation within the block, each block was flanked by sites 

of apparent recombination (Daly et al. 2001). In a similar study, based on 

common genetic variation from chromosome 21, it was also shown that 

haplotypes have a block like structure of limited diversity and suggested that 

80% of the global human population can be characterized by three common 

haplotypes (Patil et al. 2001). It was also shown in another study that it was 

practical and possible to identify these common haplotypes based on fewer 

representative SNPs. These representative SNPs capture the pattern of LD 

for the adjacent markers in the haplotype, thereby tagging the haplotype 

(Figure 1.2). Thus, these representative SNPs were termed haplotype tag 

SNPs, ‘tag’ SNPs or htSNPs. This study of tag SNPs was based on 122 SNPs 

from nine genes covering 135 Kb of the genome in 384 European subjects. In 

identifying the htSNPs that capture the common haplotypes, it was found that 

the number of SNPs required to provide fine mapping in regions of high LD 

could be greatly reduced. Within this study the 122 SNPs could be reduced to 

34 informative htSNPs (Johnson et al. 2001).  
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Figure 1.2: Schematic of the relationship between SNPs, haplotypes, and haplotype 
tagging SNPs. a) SNPs present in DNA from four versions of the same small 
chromosomal region from different individuals. The majority of the DNA sequence in 
the region is identical; however, single nucleotide polymorphisms are present at three 
of the bases. Each of these SNPs is biallelic, where the first SNP’s alleles are C and T 
and the 2nd and 3rd SNPs have G and A alleles. b) A haplotype is a set of co-segregating 
alleles in a chromosomal region. The three SNPs are within a larger region of variation, 
in this example the region has 20 SNPs, and four haplotypes are present in the 
population for this region. c) From the SNPs present, it is possible to identify a subset 
of three SNPs that tag (identify) these four haplotypes. In this example, for the three 
tag SNPs identified, if the combination A-T-C is present on a particular chromosome 
this pattern would match haplotype 1. This figure is reproduced from (International 
HapMap Consortium 2003). 

Similar characteristics of haplotypes were also observed in another study over 

a larger portion of the genome and including subjects from different 

populations (Gabriel et al. 2002). This study also found that these regions 

could be parsed into haplotype blocks over large regions and containing only 

a few common haplotypes. This study was based on an analysis of 13 

megabases (Mb) from 51 autosomal regions of the human genome and 

included subjects from Europe, Asia, and Africa that were successfully 

genotyped at 3,738 SNPs. These haplotypes also show some evidence of 

historical recombination events, with recombination events more frequent in 

African populations than in the European or Asian populations. There was 

also evidence that recombination rises more rapidly over a shorter genomic 

interval in African populations than European and Asian populations. The 
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African haplotype blocks averaged 9 Kb in size whereas European and Asian 

blocks were 18 Kb in size. The range of block sizes was also different 

between the populations, 1 - 94 Kb in the African population and 1 - 173 Kb 

for European and Asian populations. As seen in the previous studies, low 

haplotype diversity was observed with typically 3 to 5 common haplotypes that 

capture the majority of haplotypes in any region. These haplotypes could be 

identified based on 6 to 8 randomly chosen markers and additional common 

markers did not increase the identification of common haplotypes in regions 

with a low rate of historical recombination. The African population also had 

higher haplotype diversity averaging five haplotypes whereas the European 

and Asian populations averaged 4.2 and 3.5 respectively. Like the previous 

studies, these few common haplotypes still captured more than 90% of the 

diversity (Gabriel et al. 2002). The Gabriel et al. study found large regions 

containing both low and high rates of variation, as long as 100 Kb. They 

suggest that this arrangement is primarily driven by genealogical history with 

less than 25% being due to local mutation rate. This study provided a 

genome-wide estimate on the average correlation of variants (LD) as well as 

providing evidence that recombination hotspots are a general feature of the 

human genome and have a role in shaping genetic variation. Chromosomal 

regions inherited from shared ancestry and without recombination locks 

specific allele combinations in the population forming a haplotype. SNPs 

within a region of low recombination will track together in the population 

(Gabriel et al. 2002). In 2002, Dawson et al. published a study of LD patterns 

based on Centre d'Etude du Polymorphisme Humain (CEPH) families with 

replication in unrelated individuals from the United Kingdom. They found that 

the patterns of LD are highly variable across the genome. This study, based 
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on 1,504 SNPs spaced on average every 15 Kb along chromosome 22 found 

large regions of almost complete LD interspersed with regions containing little 

to no LD. It was also observed that while LD decays with distance there is 

considerable variation in the size of each block. Some regions in almost 

complete LD spanned over 800 Kb while others regions smaller than 5 Kb 

contained almost no discernable LD.  This study also observed a strong 

correlation between high LD and low recombination suggesting that 

recombination in humans is not random, that there are recombination 

hotspots, and that historical and contemporary recombination rates are similar 

(Dawson et al. 2002). In some rare instances LD can be quite strong over 

very large regions such as the ~2 megabase region on chromosome 17 

flanking MAPT (Pittman et al. 2004). The MAPT region appears to completely 

lack recombination between the two major haplotypes present in the region. 

This large block of LD and considerable divergence between the haplotypes is 

apparently the result of a large inversion, ~900 Kb in size. The inversion 

impedes recombination between the haplotypes, with the inversion haplotype 

(H2) and the non-inversion haplotype (H1) showing no evidence for 

recombination within their study (Stefansson et al. 2005). This region is of 

particular interest as it is associated with several neurodegenerative diseases 

and is investigated throughout this thesis. 

 

To formalize and facilitate the cataloguing of common genetic variation in the 

human genome the HapMap Project was formed. This created a public 

resource that characterizes common sequence variants (initially more than a 

million), their allele frequencies and the associations between them (i.e. their 

LD structure) based on four populations from Europe, Asia, and Africa 
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(International HapMap Consortium 2003, 2005). This resource has had three 

primary releases termed Phase 1, 2 and 3 since inception. Phase 1 was the 

initial release based on subjects from four populations and included 1.1 million 

common SNPs. The Phase 2 release expanded the density of genetic 

variants to 3.1 million SNPs common within the four HapMap Project 

populations (International HapMap Consortium et al. 2007). The Phase 3 

release of the HapMap project expanded the number of populations surveyed 

from four populations to 11 global populations (Altshuler et al. 2010). In 

addition to expanding the number of populations genotyped for common 

SNPs, the Phase 3 release included copy number polymorphisms as well as 

rare variants identified by sequencing in select regions of the human genome. 

Copy number polymorphisms, more commonly referred to as copy number 

variants (CNVs), are structural variants where the number of copies of a 

portion of the genome is aberrant. The regions selected for sequencing are 

from the ENCyclopedia Of DNA Elements (ENCODE) regions. The ENCODE 

project was established to identify the functional elements within the human 

genome. The pilot phase of the ENCODE project focused on ~1% (30 

megabases) of the human genome to specifically target functional elements 

including; genes, promoters, enhancers, transcription factor binding sites, 

DNase I hypersensitive sites, methylation sites, chromatin modifications, and 

multi-species conserved sequences (ENCODE Project Consortium 2004). 

The public release of these resources allowed for the rapid and continually 

improved design of assays which could genotype hundreds of thousands of 

informative tag SNPs allowing for effective genotyping in genome-wide 

association studies (GWAS) to be performed. 
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Inferring membership in a population based on genetic variability, resulting 

from the ability to densely genotype large sample cohorts, has allowed the 

study of populations based on genetics to move from theory to empirically 

driven findings (Pool et al. 2010). The method most commonly used to study 

population genetics is principal component analysis (PCA), which was 

proposed decades ago (Menozzi, Piazza and Cavalli-Sforza 1978) and 

renewed for use with studies based on high-density genotyping (Patterson, 

Price and Reich 2006; Price et al. 2006). The study from Monizzi et al. used 

multi-dimensional scaling (MDS) and PCA to spatially condense and show 

population structure based on genetic variation. They did so using 38 alleles 

from 10 loci in Europeans and Asian populations and found that the results 

map matched expectations from the hypothesis that early farming in Europe 

was a result of new migration rather than a technology diffusion into the 

population (Menozzi, Piazza and Cavalli-Sforza 1978). MDS is a method for 

information visualization, particularly for distance metrics, which aims to place 

each item in N-dimensional space such that the between-object distances are 

preserved as well as possible. PCA is a transformation that converts possibly 

correlated variables into linearly uncorrelated components, where the 1st 

component accounts for largest variance, 2nd the second most, etc. In a later 

study of spatial variation using PCA, it was found that the use of PCA with 

spatial data results in gradients that are a general sinusoidal mathematical 

artefact and therefore may not necessarily reflect specific migrations. 

However, the authors did find that using PCA does help correct for population 

structure in association studies (Novembre and Stephens 2008). Studies have 

also shown that beyond recent migration that linkage patterns can show 

additional historic information (Davison, Pritchard and Coop 2009), such as 
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haplotype frequency and haplotype number with changes in population sizes 

(Lohmueller, Bustamante and Clark 2009). Additionally, it has been shown 

that using clusters of linked mutations can detect archaic population 

structures (Plagnol and Wall 2006). These studies suggested that in addition 

to haplotype patterns reflecting recent migration that small haplotype patterns 

reveal older gene flow and demographic events (Pool et al. 2010). Dense 

whole-genome genotyping also allows for further analysis of natural selection 

both negative and positive. Negative selection reduces genomic variation by 

removing variants, maintaining low frequencies for variants or by removing 

variants linked to damaging alleles (background selection) (Charlesworth, 

Morgan and Charlesworth 1993). Positive selection results in local reductions 

in diversity by “genetic hitchhiking”. Hitchhiking is when an advantageous 

variant’s frequency increases in population and neutral variants linked to the 

positive variant will be lost or become fixed along with the variant in the 

population, known as a “selective sweep”. The size of the selective sweep is 

affected by recombination rate and selection strength (Smith and Haigh 1974; 

Hudson and Kaplan 1988; Stephan, Song and Langley 2006). Spatial patterns 

of LD are produced by selective sweeps and represent hitchhiking signals that 

differ from stochastic patterns resulting from bottlenecks (Stephan, Song and 

Langley 2006; Jensen et al. 2007). These specific LD patterns may also 

reveal partial selective sweeps detected by the imbalance of haplotype 

homozygosity. Comparing haplotype homozygosity can also be used to detect 

selective sweeps that are population-specific (Sabeti et al. 2002, 2007; Voight 

et al. 2006). 
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The study of genetic variation in world populations has continued to increase 

in the number of populations considered and the amount of genetic variation 

that is assayable with expanding throughput and types of assays. Such a 

study of genetic variation in world populations was performed by Jakobsson et 

al., and examined SNP, haplotype, and copy-number variation (CNV). This 

study was based on the genotyping of ~500,000 SNPs in 29 world 

populations. The analysis found that dense SNP genotypes allow for fine-

scale inferences of population structure and that using haplotype analysis 

methods also revealed these same fine-scale inferences. The analysis of 

CNVs showed that they could also be used for detecting population structure 

but to a lesser degree. The results from the SNP, haplotype, and CNV 

analyses showed that increased LD patterns matched increases in 

geographic distance from Africa. The authors suggest that this LD increase 

may be expected based on serial founder effects of the out of Africa spread of 

human populations (Jakobsson et al. 2008). Another study, based on the 

dense genotyping of a large number of samples from multiple European 

populations, found that patterns of genetic variation also exist within spatially 

close populations. In this study, the authors considered variation from 3,000 

Europeans based on genotypes at ~500,000 variants. They found that even 

though there are low levels of differentiation, within European populations, 

they did find correlation between genetic and geographic distances. These 

genetic correlations within European populations also aligned geographically 

to reveal a picture of European genetic diversity that matches European 

geographic maps when projected as a two dimension summary plot. Their 

results reinforce the idea that fine-scale population structure, based on 

genetic distances, needs to be accounted for when doing analysis for disease 
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traits even within a population determined by genetic ancestry. Their results 

revealed a south-east to north-west axis within European populations based 

on genetic distance where haplotype diversity decreases from south to north 

(Novembre et al. 2008). 

 

More recently it has become possible and feasible to directly sequence large 

cohorts of subjects using high-throughput short-read sequencing. It is now 

feasible to directly identify most of the genetic variation in a large number of 

subjects and this has been done in large public consortia such as the 1000 

Genomes projects (1000 Genomes Project Consortium et al. 2010, 2012). 

These denser maps of genetic variation, in multiple populations, have also 

greatly improved our ability to impute genotypes, using the refined population 

haplotypes generated from these data. The ability to determine which 

haplotype an individual belongs to over short intervals, using a reference 

population(s) haplotypes, also makes it is possible to predict the genotypes 

within the interval, with a given probability, for variants that were not directly 

genotyped in the individual. This statistical inference of variants not originally 

genotyped from variants that were genotyped is an imputation of those 

unobserved genotypes through estimating the individual’s haplotype and 

using LD to predict these genotypes. A study based on a cohort of ~72,000 

parent-offspring pairs from Iceland (using imputation from whole-genome 

sequencing of 2,200 subjects), was undertaken to identify variants associated 

with recombination rate. Meiotic recombination yields new combinations of 

alleles contributing to genetic diversity and an individual’s recombination 

counts vary in their gametes. They found 13 variants from eight regions 

associated with genome-wide recombination rate. Eight of 13 variants were 
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previously unknown; three of these variants were male only, seven were 

female only, and three were for both. Two of these variants are low-frequency 

with large effects on recombination rates, with one of these increasing the 

male genetic map by 111 cM and the female map by 416 cM and is located in 

an intron (Kong et al. 2014). Another recent paper estimated the ages of rare 

variants, based on whole-genome sequencing of subjects in the 1000 

Genomes Project. They found that the ages of rare variants are related to 

population histories and can be estimated by haplotype sharing patterns. 

Their analysis allows for estimating the age of each haplotype. Notably in 

considering haplotypes shared within and between populations, the ages of 

these haplotypes are consistent with known historical relationships among the 

populations. Their findings suggest that the age of haplotypes carrying 

variants that occur twice in populations, based on the populations represented 

in the 1000 Genomes Project, is 50 to 160 generations in Europe and Asia 

and 170 to 320 generations in Africa. They also note that haplotypes shared 

between continents (Europe and Asia) are much older, from 320 to 670 

generations. When they considered the distribution of haplotypes containing 

these twice-occurring variants they suggest this pattern shows demography, 

recent bottlenecks, ancient splits, and modern mixture of populations. They 

also found that functional variants are younger than non-functional variants of 

the same frequency suggesting this is an effect of selection (Mathieson and 

McVean 2014). 

 

A recent study of human population size and separation of populations was 

performed based on human genome sequences. The authors developed a 

method to analyse population separations that occurred less than 20,000 
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years ago. Their results suggested that genetic separation between non-

African and African populations started long before 50,000 years ago. The 

analysis was also informative for more recent events including: population 

separations within Africa, Asia, and Europe; and bottlenecks in the early 

Americas (Schiffels and Durbin 2014). Another recent study considered 

whether selection is less effective at removing damaging mutations in 

Europeans than in Africans. They undertook the study to examine the 

hypothesis that since European populations have undergone size reductions 

since the split from West Africans that the removal of weakly deleterious 

mutations by natural selection would be less effective. Based on per-genome 

accumulations of nonsynonymous variants they found no evidence of higher 

amount in non-Africans. However, looking at more divergent populations they 

found that Denisovans did accumulate nonsynonymous mutations faster than 

both Neanderthals and modern humans (Do et al. 2015). Another study was 

recently performed considering recombination and its effects on the 

accumulation of damaging and disease associated mutations in humans. In 

non-recombining species, damaging mutations can accumulate potentially 

leading to the extinction of many asexual species. This study examined the 

accumulation of damaging mutations within chromosomes that have variable 

crossovers rates, based on 1,400 subjects. They found that recombination 

rates affect the distribution of damaging variants across the genome. Their 

results showed that exons in regions with low recombination rates are 

enriched for damaging variants, but this varies across populations with 

different demographic histories. Their results also suggest that new damaging 

mutations occurring in regions with higher recombination rates will more 

efficiently be removed by natural selection than mutations in regions with 
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lower recombination rates. Regions of the human genome with lower 

recombination rates are enriched for conserved genes with essential functions 

such as cell cycle progression, mRNA processing, and DNA repair. The 

authors conclude that this co-enrichment of damaging variants and conserved 

genes with essential function likely affect human disease susceptibility 

(Hussin et al. 2015). 

 

1.2.2: Gene Expression 

The expressed human genome is also variable and this variation is likely to 

contribute to health related phenotypes, where variation of expression is likely 

to be an intermediate phenotype. With the ability to profile the relative mRNA 

transcript abundance (i.e. gene expression) for most of the known and 

predicted transcriptome in parallel, in a high throughput manner, we can begin 

to understand the patterns of expression variation. Understanding gene 

expression variation in multiple contexts is of importance and relevant to our 

understanding of molecular biology in general, and as it relates to health. The 

context of the variation is also important; gene expression varies not only in 

whether or not a gene is expressed in a particular cell or tissue type, but how 

much is expressed, how variable is this level of expression temporally and in 

relation to stimuli as well as to which particular transcripts and alternate splice 

forms are expressed. The last two decades have seen a great maturation in 

the technologies, assays, and methods that allow for the reproducible 

measurements of mRNA transcripts. These developments have allowed the 

field to begin to catalogue and better understand gene expression.  
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1.2.2.1: Regulation of Gene Expression 

In eukaryotes, the basal or core promoter is required for transcription but by 

itself cannot result in high levels of expression (Wray et al. 2003). The core 

promoter is the genomic region near the transcription start site (TSS), typically 

+/- 40 base pairs, and is the site where the transcription machinery assembles 

(Figure 1.3A) (Yáñez-Cuna, Kvon and Stark 2013). This assembly includes 

transcription factors that are bound to sites they have affinity for in the 

promoter region, which may affect the specificity and frequency of 

transcription (Kuras and Struhl 1999; Lee and Young 2000; Lemon and Tjian 

2000; Wray et al. 2003). The rate of transcription initiation is considered to be 

the primary point of control for regulation of gene expression in eukaryotes but 

other important mechanisms are also involved including: chromatin 

accessibility, DNA methylation, pre-mRNA splicing, mRNA stability, 

translation, post-translation modification, and degradation (Lemon and Tjian 

2000; Wray et al. 2003). As transcription initiation is the primary control point 

of gene expression I will focus almost exclusively on transcription within my 

thesis. The assembly that initiates transcription is the RNA polymerase II 

holoenzyme complex (RNA Pol II). This complex is made up of approximately 

12 proteins and is responsible for the transcription of genes in eukaryotes 

(Orphanides, Lagrange and Reinberg 1996; Lee and Young 2000; Wray et al. 

2003). The RNA Pol II complex assembles at the core promoter, which is a 

sequence region in close proximity (5’) to the transcription start site (TSS). 

While core promoter sequences differ for genes, common DNA elements that 

can be found in human core promoters include: CpG islands, the initiator 

element (Inr), the TATA-box, the TFIIB recognition element (BRE), and the 

downstream promoter element (DPE) (Sandelin et al. 2007; Yang et al. 2007). 
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CpG (5’-cytosine-phosphodiester bond-guanine-3’) islands are genomic 

regions enriched with CG dinucleotide content compared to the rest of the 

genome. CpG island promoters are most often associated with ubiquitously 

expressed genes, although they are also associated with tissue-specific 

genes including brain-specific genes (Schug et al. 2005; Gustincich et al. 

2006). Promoters with CpG islands are the most common in the human 

genome, it is estimated that 72% to 76% of human promoters contain CpG 

islands (Saxonov, Berg and Brutlag 2006; Yang et al. 2007). Promoters with a 

TATA-box sequence motif are bound by the TATA-binding protein (TBP), 

which in combination with other TBP-associated factors brings the RNA Pol II 

complex to the DNA (Figure 1.3B) (Reinberg et al. 1998; Lee and Young 

2000; Wray et al. 2003). TATA-box promoters are typically associated with 

genes that have tissue- or context-specific expression and only represent 

~10% of human promoters, although ~24% of human promoters have TATA-

like elements (Carninci et al. 2006; Ponjavic et al. 2006; Yang et al. 2007). 

Promoters with an initiator element (Inr) contain a consensus sequence motif 

that is distinct from the TATA-box motif, but both the Inr and TATA-box 

elements can be found together in some promoters and work together to 

recruit the transcription intiation complex. It has been estimated that ~46% of 

human promoters contain the mammalian consesus sequence Inr and that 

~30% of promoters with an Inr element are TATA-less (Yang et al. 2007). The 

BRE (Transcription Factor II B) is a consensus sequence motif located 

upstream of the TATA-box and is present in 12% to 25% of human promoters 

and typically acts to increase or decrease transcription rates (Lagrange et al. 

1998; Yang et al. 2007). The DPE is a consensus sequence motif found 

downstream of the TSS (typically 30 bases) in promoters that also have an Inr 
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and are present in 12% to 25% of human promoters (Yang et al. 2007). 

Genes may have multiple core promoters and each of these promoters may 

initiate transcription at a different TSS. CpG islands are associated with 

promoters that have a broader distribution of TSSs while TATA-box promoters 

are associated with only one or a few consecutive nucleotides as TSSs 

(Carninci et al. 2005; Sandelin et al. 2007). The TSS does not have a specific 

sequence motif, as the translation start site does, but instead is determined by 

the second DNA contact point for the RNA Pol II complex and is 

approximately 30 bp downstream of the first RNA Pol II contact point (Wray et 

al. 2003). Many of the proteins that bind into the core promoter are 

ubiquitously expressed and known as general transcription factors; while 

others are known to have isoforms that are tissue-specific (Holstege et al. 

1998; Wray et al. 2003). TATA-box promoters are bound by the TATA-binding 

protein (TBP) transcription factor while CpG island promoters are enriched for 

transcription factor or transcription factor family binding motifs including: E 

twenty-six (ETS), E2F, nuclear respiratory factor 1 (NRF-1), specificity protein 

1 (SP1), cAMP response elements (CRE), and E-box (Rozenberg et al. 2008; 

Landolin et al. 2010). 
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Figure 1.3: Simplified general schematic of the cis-regulatory region of a gene and a 
cartoon of this region at transcription initiation. A) General linear organization of a 
gene and its promoter region. The cis-regulatory region is located proximal (region of 
the left in this simplified schematic) to the transcription start site (TSS; black arrow in 
the centre) and the transcriptional unit is on the right. The core promoter is located 
near the TSS and transcript factor binding sites are interspersed within the regulatory 
region (indicated by vertical bars) and typically found in modular units (enhancers), 
which can be located both up and downstream of the TSS. B) Cartoon of a gene’s 
promoter region during transcript initiation, for a gene with a TATA-box in the 
promoter. The chromatin is open so that the promoter region is available for 
interaction with regulatory proteins. RNA Pol II has assembled at the core promoter. 
Transcription factors are bound to binding sites and looping factors have brought 
some of these factors into proximity of the core promoter so they may interact with 
other regulatory factors. This figure is reproduced from (Wray et al. 2003). 

 

Achieving increased levels of transcription beyond the low level possible with 

the complex forming at the core promoter typically requires other transcription 

factors bound to sites outside the core promoter. The presence of these other 

transcription factors and other cofactors in the nucleus can be temporal and 

differ among cell types (Lemon and Tjian 2000; Wray et al. 2003). For 

example, paired box 6 (PAX6) is a regulatory protein with temporal and 

abundance variation and is important during the development of neural 

tissues and the eye (Kammandel et al. 1999; Wray et al. 2003). Regulatory 

proteins affect transcription by influencing how often the RNA Pol II complex 

assembles onto the core promoter. This influence can be through protein-
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protein interactions, where a transcription factor may interact to increase or 

decrease transcription rates by activation and repression domains (Torchia, 

Glass and Rosenfeld 1998; Wray et al. 2003). Studies of eukaryotic promoters 

suggest that there may typically be 10 to 50 binding sites for 5 to 15 different 

transcription factors in a typical promoter (Arnone and Davidson 1997; Wray 

et al. 2003). Most binding sites for transcription factors are 5 to 8 base pairs in 

length, but the “footprint” of the bound transcription factor on a segment of 

DNA is typically 10 to 20 base pairs. The 5 to 8 base pair binding motif may 

tolerate some polymorphic changes without losing functionality but the binding 

site motifs that a transcription factor binds can change in the presence of 

different binding partners (Wray et al. 2003). Transcription factors can also 

affect the binding of other factors by binding to sites such that they block the 

binding of another transcription factor at an adjacent site. The binding of other 

transcript factors at proximal sites can modulate the process, which allows 

gene regulation to be a dynamic and tuneable process (Jackson-Fisher et al. 

1999; Kuras and Struhl 1999; Lee and Young 2000; Lemon and Tjian 2000; 

Wray et al. 2003). Transcription factors typically contain several functional 

domains including: DNA-binding, protein-protein interaction, intracellular 

trafficking, and ligand-binding domains (Abu-Shaar, Ryoo and Mann 1999; 

Carrión et al. 1999; Wray et al. 2003). The DNA-binding domains for most 

transcription factors are short motifs, typically five bp, and transcription factors 

may contain multiple DNA-binding domains. For these short motifs, a single 

amino acid change in the domain can alter its binding specificity (Treisman et 

al. 1989; Wray et al. 2003). The small size of these binding motifs also means 

the binding target motifs can occur often in the genome resulting in a lack of 

sequence specificity and many potential target sites. Because transcription 
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factors may bind to multiple motifs and these sites may occur often in the 

genome, this means that many copies of the factor must be present in the 

nucleus for binding to occur at specific sites (Wray et al. 2003). Additionally, a 

transcription factor’s specificity can be strongly modulated through cofactors 

or by post-translational modifications such as phosphorylation (Knoepfler and 

Kamps 1995; Berthelsen et al. 1998; Dröge and Müller-Hill 2001; Wray et al. 

2003). Regulation of transcription can also be influenced by bound 

transcription factor(s) altering the chromatin structure through DNA 

methylation and histone modifications such as acetylation, where this 

remodelling can take place in a small timescales and in small regions such as 

a promoter or even within a promoter (Kadosh and Struhl 1998; Jones and 

Takai 2001; Richards and Elgin 2002; Wray et al. 2003). Before transcription 

the chromatin surrounding the core promoter and some of the transcript must 

be decondensed so that transcription factors can bind and recruit RNA Pol II 

to the core promoter (Reinberg et al. 1998; Wray et al. 2003). There are 

regulatory proteins, referred to as pioneer transcription factors that can initiate 

regulatory events in chromatin. These factors may bind cooperatively or 

sequentially, and open up local chromatin so that other factors can bind (Zaret 

and Carroll 2011). The forkhead box (FOX) proteins are an example of 

pioneer transcript factors. The FOX proteins mediate fine-tuning of spatial and 

temporal expression of genes during development and in adult tissue (Lam et 

al. 2013).  

 

The size of cis-regulatory regions may vary from a few hundred bases to more 

than 100 kilobases (Kb). In some instances, the cis-regulatory region can be 

much further from the TSS. Such is the case for Shh locus in humans and 
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mice where the cis-regulatory region is ~800 Kb from the TSS (Lettice et al. 

2002; Wray et al. 2003). The position of cis-regulatory transcription factor 

binding sites may also vary relative to the TSS. These binding sites are 

typically within a few Kb upstream (5’) of the core promoter, but they can also 

be found much further upstream as well, or in other instances within the 5’ 

untranslated region (UTR), in introns, or downstream (3’) of the gene and in 

rare instances in exons (Wray et al. 2003). A promoter’s transcriptional yield is 

not simply based on which binding sites are present but also involves the 

sequence, relative position and orientation of the binding site as well as the 

expression of other transcription factors and cofactors. Thus interactions are 

complex and context dependent. Groups of transcription factor binding sites 

can operate as a unit or a functional module to yield a distinct aspect of a 

transcript’s expression profile (Dynan 1989; Arnone & Davidson 1997; Wray 

et al. 2003). These functional modules may initiate transcription, increase 

transcription, mediate transcription signals, repress transcription, or modulate 

other functional modules; these modules are referred to as enhancers 

(Atchison 1988; Wray et al. 2003). These enhancers can be functionally 

related to the regulation of a transcript by way of DNA looping (Figure 1.3B). 

Regulatory proteins bound to DNA can affect the bending or looping of DNA, 

allowing other factors bound distally to be near each other for interaction, and 

this function may be necessary for the transcription factor to act as an 

activator or repressor (Fry and Farnham 1999; Scaffidi and Bianchi 2001; 

Wray et al. 2003). The looping of DNA allows for the interaction of these 

binding proteins even at distal sites (Simon et al. 1990; Neznanov, Umezawa 

and Oshima 1997; DiLeone, Russell and Kingsley 1998; Nielsen et al. 1998; 

Kammandel et al. 1999; Bamshad et al. 2002; Calhoun, Stathopoulos and 
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Levine 2002; Yuh et al. 2002; Wray et al. 2003). Binding sites that are not 

near the core promoter may interact with the preinitiation complex at the 

promoter through DNA looping or bending and as a result their distance and 

orientation is relatively independent of the target TSS (Wray et al. 2003; 

Yáñez-Cuna, Kvon and Stark 2013; Core et al. 2014; Shlyueva, Stampfel and 

Stark 2014). In general regulatory cis-architecture, the promoter is in the 

immediate proximity of the TSS and binds the preinitiation complex. 

Enhancers are typically less constrained in their genomic context and may act 

in a more cell-specific manner and help to bring specific transcription factors 

to the preinitiation complex at the promoter (Yáñez-Cuna, Kvon and Stark 

2013; Shlyueva, Stampfel and Stark 2014). The interaction of transcription 

factors bound at distant sites through looping potentially allows for 

transcription at multiple genes to be affected. These distal interactions can be 

spatially restricted through insulators or bound elements likely involving 

chromatin modifications (Wolffe 1994; Bell and Felsenfeld 1999; Dillon and 

Sabbattini 2000; Wray et al. 2003). Typically, binding sites effect the 

expression of one gene, but instances of shared regulation also occur. 

Additionally, there are instances where genetic variation in shared regulatory 

regions affect the expression of multiple genes, for example: beta and 

gamma-globin (Metherall, Gillespie and Forget 1988; Grosveld et al. 1993); 

insulin and insulin-like growth factor 2 (IGF2) (Paquette et al. 1998); and 

apolipoprotein A-I (APOA1) and apolipoprotein C-III (APOCIII). In APOA1 and 

APOCII the effect of variation in the shared regulatory region is tissue-

specific; down-regulation of APOA1 in colon and up-regulation of APOCIII in 

liver (Li et al. 1995; Naganawa et al. 1997; Wray et al. 2003).  
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Enhancers and repressors may be in introns and cis-regulatory elements may 

extend long distances both up and downstream of the transcribed sequence. 

Some evidence for this is that many noncoding regions show strong 

conservation and functional studies of these regions suggest they are 

regulatory elements generally containing sites for tissue-specific DNA-binding 

proteins (Kleinjan and van Heyningen 2005). In 2003, Nobrega et al. 

published a study where gene deserts were searched for conserved 

enhancers that modulate expression. In this study, the authors found 

conserved elements for human dachshund family transcription factor (DACH), 

which is flanked by two large gene deserts. They considered a 2.6 megabase 

(Mb) region where they found and validated enhancer elements for DACH in a 

1.5 Mb region. These conserved elements were estimated be to 

approximately 1 billion years old. Based on mouse reporter assays they 

showed that these conserved elements were long-range enhancers driving 

expression. DACH is expressed in many tissues and involved in development 

of brain, limbs and sensory organs (Nobrega et al. 2003). Conversely, in a 

recent study, by Jacques et al., considering the possible origins of primate-

specific regulatory elements, it was found that transposable elements (TEs) 

appear to have contributed to many primate-specific regulatory elements. 

Transposable elements are DNA sequences that are mobile within a genome, 

where the location of the sequence can change or be duplicated to another 

location in a genome. This study used ENCODE DNase I hypersensitivity site 

(DHS) data from multiple cell types and found that 44% of these TEs were in 

open chromatin and this number increased to 63% when considering TEs in 

primate-specific regions. They also found that 80% of endogenous 

retroviruses (ERV), a specific subfamily of TEs, were also in open chromatin 
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and that their derived sequences were activated in a cell-specific manner and 

were associated with nearby genes (Jacques, Jeyakani and Bourque 2013). 

In a recent study, from Heidari et al., interaction maps of regulatory elements 

were constructed based on ENCODE data from human cells for 80% of 

DHSs, which included 99.7% of TSSs and 98% of enhancers. They found that 

cohesin, CCCTC-binding factor (CTCF), and zinc finger protein 143  

(ZNF143) are proteins that are key contributors to the three-dimensional (3D) 

structure of chromatin and how distal chromatin state can affect transcription. 

When analysing these structural interactions, between cell types, they found 

that many enhancer-promoter interactions were cell-type specific. Additionally, 

they found that housekeeping genes are enriched for proximal events 

whereas distal events included genes involved in dynamic biological 

processes (Heidari et al. 2014). The 3D structure of chromatin that organizes 

the genome into functional regulatory compartments at a megabase scale, 

where regulatory elements such as promoters and enhancers can interact, 

are referred to as topologically associating domains (TADs). In 2012, Dixon et 

al. published a study of 3D genome organization and chromatin interaction. 

This study examined the 3D organization of genomes in human and mouse 

embryonic stem cells and differentiated cell types. They found that these 

megabase-sized local chromatin interacting domains were a pervasive 

structural feature of genome organization stable across different cell types 

and conserved across species. Additionally, they found that the boundaries of 

these domains were enriched for insulator binding protein CTCF, 

housekeeping genes, transfer RNAs and short interspersed element (SINE) 

retrotransposons (Dixon et al. 2012). In another recent study, from Vierstra et 

al., considering more than 1.3 million DHSs from 45 mouse tissue and cell 
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lines, a comparison to human orthologous DHSs was performed. The authors 

found extensive cis-regulatory changes that appear to be mediated by 

turnover of transcription factor recognition elements during evolution. 

However, despite these pervasive changes to individual cis-regulatory regions 

within DHSs shared between mouse and human, 58.7% of transcription factor 

binding sites were conserved (Vierstra et al. 2014). In 2013, Sheffield et al. 

published a study considering how regulatory elements and transcription 

factors affect gene expression across cell types. The authors were able to 

develop a classifier based on 43 DHSs that could predict cell-type lineage. 

This study was based on 112 human samples for 72 cell types to analyse 

DHSs, promoters, CpG islands, and transcription factor motifs (Sheffield et al. 

2013). In 2013, Xie et al. published a study of DNA methylation of TEs in 

human embryonic and adult tissues. TEs comprise a very large portion of the 

human genome and it is assumed that many of them are hypermethylated 

and inactive. They found that ~ 10% of TE families are hypomethylated in a 

tissue-specific manner. The regions containing hypomethylated TEs were 

proximal to genes that shared function important to the tissue and many 

showed enhancer activity. These findings suggest that TEs are responsible 

for setting up tissue-specific regulation and have tissue-specific epigenetic 

regulation (Xie et al. 2013).  

 

The genetic basis of many adaptations are likely a result of variation in cis-

regulatory sequences, cis-regulatory variants are more likely to affect certain 

kinds of traits than coding variants (Wray 2007). That cis-regulatory variation 

may intrinsically be able to affect certain traits centres on the flexibility that 

regulation is afforded as a dynamic process (Wray 2007). This flexibility 
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allows for more context-dependent effects, whereas a coding variant would 

likely have a more static effect without context (Jacob and Monod 1961; Stern 

2000; Wray 2007). It has been proposed that natural selection may be more 

efficient for cis-regulatory variants than coding variants (Stern 2000; Wray et 

al. 2003). The basis of this hypothesis has two parts: cis-regulatory variants 

are often co-dominant and cis-regulatory regions are modular (Wray 2007). In 

diploid organisms each allele is transcribed independently, based on allele-

specific measures of transcript abundance (Ruvkun et al. 1991; Pastinen et al. 

2004; Wittkopp, Haerum and Clark 2004; Ronald et al. 2005; Wray 2007). The 

independence of allele transcription allows for cis-regulatory variants to be co-

dominant. Under co-dominance, heterozygote variants have fitness costs 

making these variants visible to selection before the allele frequencies reach a 

point were homozygotes emerge in the population. Therefore, if cis-regulatory 

variants are more co-dominant than coding variants, then natural selection will 

be more efficient in functional non-coding regions than coding regions 

(Ruvkun et al. 1991; Wray 2007). Additionally the modular nature that is often 

present in cis-regulatory regions suggests that a variant can occur in a portion 

of the region and possibly have some effect on a certain aspect of a 

transcript’s expression profile but not likely a total effect on overall expression 

(Force et al. 1999; Stern 2000; Wray 2007). Conversely a nonsynonymous 

coding variant would very likely have an affect on protein function regardless 

of its expression context. This allows selection to operate more efficiently 

through a reduction in functional trade-offs especially in the context of gene 

expression in different tissues and cell types (Force et al. 1999; Stern 2000; 

Wray 2007). Sequence comparisons studies have shown that the number of 

conserved intergenic and coding nucleotides is similar. This similarity may 
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suggest that the number of functional noncoding and protein-coding 

nucleotides is roughly equal, and much of this noncoding sequence may be 

phenotypically penetrant (Onyango et al. 2000; Frazer et al. 2001; Shabalina 

et al. 2001; Wray 2007). Conservation of promoter sequence would suggest 

that gene expression is modulated through stabilizing selection (Cavener 

1992; Stone and Wray 2001; Wray 2007). It is also known that promoter 

sequences can rapidly diverge. For instance in a study of 20 regulatory 

regions between humans and rodents, it was found that a third of the binding 

sites that are functional in humans are probably not functional in rodents 

(Dermitzakis and Clark 2002; Wray 2007). Known cis-regulatory variants 

contribute to phenotypes that differ between closely related species such as 

the ability of human adults to digest lactose (lactose persistence), which is not 

present in other great apes. This human dietary adaption is thought to have 

evolved in the past 2,000 to 20,000 years (Swallow 2003; Bersaglieri et al. 

2004; Wray 2007). Lactose persistence is linked to cis-regulatory genetic 

variation that increases the transcription of lactase (LCT). This cis-regulatory 

genetic variation for LCT is different between European and East African 

populations, but confers lactose persistence in both through the same 

regulatory landscape, which is located in an intron of maintenance deficient 6 

homologue (MCM6) just upstream of LCT (Olds and Sibley 2003; Bersaglieri 

et al. 2004; Tishkoff et al. 2007; Wray 2007). A recent study of transcription 

factor binding in human and chimpanzees suggest that natural selection 

through regulatory genetic variation greatly affected transcription factor (TF) 

binding sites between the species 4 to 6 million years ago. This study found 

that on average transcription factor binding sites show weaker selection than 

protein coding nucleotides, but binding sites of several transcription factors 
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show evidence of adaptation (Arbiza et al. 2013). In 2010, Kasowski et al. 

published a study of speciation and phenotypic diversity based on gene 

expression. This study considered transcription factor binding in humans and 

chimpanzees based on LCLs. They specifically looked at RNA Pol II and 

nuclear factor kappa B (NFkB) based on ChIP-seq data. ChIP-seq is a 

method that combines chromatin immunoprecipitation (ChIP) with DNA 

sequencing to identify binding sites of protein-DNA interactions. They found 

that within humans between 7% and 25% of binding regions for NFkB and 

RNA Pol II differed, and these differences were associated with SNPs or 

structural variants that were often correlated with changes in gene expression. 

Additionally, when comparing RNA Pol II binding they found extensive 

divergence in transcription factor binding between humans and chimpanzees 

for 32% of the binding regions (Kasowski et al. 2010). An example of a gene 

that shows expression differences between humans and chimpanzees as a 

result of regulatory variation is prodynorphin (PDYN). This gene is involved in 

the release of a neuropeptide linked with memory, emotional status, and pain 

perceptions. For PDYN there are functional cis-regulatory variants present in 

humans that are not present in chimpanzees that are linked to changes in 

gene expression (Wray 2007). Additionally, PDYN has been linked through 

expression analysis and genetic association to schizophrenia, bipolar 

disorder, and temporal lobe epilepsy; and show signs of positive selection in 

human evolution and balancing selection between populations (Peckys and 

Hurd 2001; Hurd 2002; Stögmann et al. 2002; Ventriglia et al. 2002; Rockman 

et al. 2005; Wray 2007). Other human behavioural and cognitive  traits have 

also been linked to cis-regulatory variants, for the genes encoding: arginine 

vasopressin receptor 1A (AVPR1A) (Bachner-Melman et al. 2005; Hammock 
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and Young 2005), 5-hydroxytryptamine (serotonin) receptor 2A, G protein-

coupled (HTR2A) (Enoch et al. 1998), monoamine oxidase A (MAOA) (Caspi 

et al. 2002; Kim-Cohen et al. 2006), and solute carrier family 6 

(neurotransmitter transporter), member 4 (SLC6A4) (Trefilov et al. 2000; Hariri 

et al. 2002; Bachner-Melman et al. 2005). 

 

Genetic variants can affect regulatory binding sites in multiple ways; by 

creating or eliminating the site, modifying the site such that it becomes the 

target of a different transcription factor, or changing the spacing between sites 

(Belting, Shashikant and Ruddle 1998; Segal, Barnett and Crawford 1999; 

Trefilov et al. 2000; Rockman and Wray 2002; Wray 2007). Additionally, 

variants may have a trans effect. Trans effects could be through a cis effect 

on a transcription factor’s expression levels. A trans variant may affect the 

DNA-binding domain of a transcription factor. A trans variant may also affect a 

protein-protein interaction domain of the transcription factor. These trans 

effects may impact the expression of many genes in many tissues (Dawson, 

Morris and Latchman 1996; Manzanares et al. 2000; Brickman et al. 2001; 

D’Elia et al. 2001; Wray 2007). Variants in cis-regulatory regions may alter 

transcription, but this alteration may not be carried through to the protein 

abundance as the regulation of gene and protein expression is a network of 

interacting genes and this network can modulate protein abundance typically 

through feedback loops (von Dassow et al. 2000; Milo et al. 2002; Wray 

2007). In a study of translational control of messenger RNA (mRNA) by 

microRNAs (miRNA), it was shown that a single miRNA can repress the levels 

of hundreds of proteins. The repression effect is typically mild, and in addition 

to down regulation of mRNA may also affect its translation. Regulation of 
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mRNAs by miRNAs may inhibit translation by inducing degradation. This 

study measured protein synthesis (pulsed stable isotope labelling with amino 

acids in cell culture, pSILAC) and mRNA expression (microarray) changes in 

response to transfecting in miRNA or lowering levels of endogenous miRNAs 

(Selbach et al. 2008). Another study of the impact of miRNA on expression 

was performed using quantitative mass spectrometry for protein measures. 

MicroRNA are an endogenous species of RNA typically 23 nucleotides in 

length that bind to target sites in mRNA and down regulate these targeted 

mRNAs. The authors perturbed their systems by adding miRNAs to cultured 

cells after deleting mir-223 in mouse neutrophils. Their data suggested that 

targeted binding sites are typically located in 3’ UTRs and that hundreds of 

genes are repressed by individual miRNAs but to a relatively mild level. The 

down-regulated genes with the highest translational repression also displayed 

increased destabilization. They suggest miRNAs confer mild adjustments and 

act as a tuning of protein synthesis (Baek et al. 2008). In a study considering 

expression activity including: transcription, translation, and turnover, the 

authors used mRNA and protein levels from mammalian cells to study the 

correlations within these. They found better mRNA and protein level 

correlation than expected but the half-lives of the molecules were not 

correlated. Their findings may suggest that protein abundance is controlled 

during translation (Schwanhäusser et al. 2011). In a follow up to the above 

study, of the correlation of mRNA and protein abundance, it was found that 

systematic errors may underlie a substantial underestimate in the abundance 

of protein present per cell which suggested that 10% to 40% of protein 

variation is from mRNA expression. A re-analysis of the study estimated 10 

fold more protein molecules per cell. Based on the corrected protein 
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abundance levels mRNA expression accounted for 56% of the protein levels 

and that translation is 12% lower than previously estimated. This new study 

suggested that mRNA expression explained ~84% of protein level variation. 

These results suggest that transcription is the main driver in protein level 

variation and that translation, RNA degradation, and protein degradation are 

smaller contributors of the variation (Li, Bickel and Biggin 2014). In another 

recent study of protein levels, the regulation of protein expression during 

cellular differentiation was considered. Protein levels depend on transcription, 

translation, and degradation to determine steady-state level but less is known 

about how system-level perturbations impact on these levels. This study 

found that during differentiation that synthesis rate was the main determinant 

and that degradation rates were constant. They also found that synthesis and 

degradation rates are the reason that transcript and protein expression levels 

typically have poor correlation (Kristensen, Gsponer and Foster 2013). It has 

previously been shown that the average rate of transcription in mammalian 

cells is between 1.3 Kb and 4.3 Kb per minute and that the largest gene in the 

human genome, dystrophin (DMD; Duchenne muscular dystrophy), takes 16 

hours for transcription (Tennyson, Klamut and Worton 1995; Ben-Ari et al. 

2010; Maiuri et al. 2011). The median estimated half-life of mRNA is between 

7 and 9 hours while the median half-life of proteins is estimated to be between 

22 and 46 hours but can be as short as 45 minutes (Sharova et al. 2009; 

Eden et al. 2011; Schwanhäusser et al. 2011). In a study of orthologous 

protein and mRNA expression correlations across seven different species, it 

was found that even across diverse taxa protein abundances show higher 

correlation than the corresponding mRNAs. This study included mRNA and 

protein measures from: two bacteria, yeast, nematode, fly, human, and rice. 
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The authors were interested in this because while nematode and fly 

orthologous proteins were well correlated the corresponding mRNA was not. 

So while it is thought that mRNA transcription primarily determines protein 

levels and that post-transcription, translation and degradation play a lesser 

role these data suggest, there is likely strong selective pressure to maintain 

protein abundances even when mRNA abundances diverge (Laurent et al. 

2010). 

 

Regulatory adaptations are a significant part of phenotypic evolution (Wray 

2007). There are phenotypic consequences to changes in the regulation of 

transcription. Sequence variants that result in a protein coding change may 

have multiple phenotypic effects (pleiotropy). For example a protein coding 

change in a transcription factor may alter its function or expression affecting 

its interaction with other regulatory proteins or binding site specificity and may 

have a regulatory effect on many genes. The modular organization of 

enhancers and promoters in cis-regulatory regions allows for discrete effects 

on expression that restricts the pleiotropy and permits these discrete effects to 

be modified by selection. Selection has increased efficiency in cis-regulatory 

regions allowing beneficial alleles to be fixed and eliminating deleterious ones 

because alleles in the cis-regulatory regions are likely to be codominant and 

visible to selection immediately as these variants may have fitness 

consequences as heterozygotes (Arnone and Davidson 1997; Stern 2000; 

Wray 2007). Altering the gene expression of functionally conserved proteins 

may largely account for evolution of form and these alterations in gene 

expression occur through cis-regulatory variation (Carroll 2008). Selection is 

active in promoter sequences, like it is for coding sequences, through 
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negative or purifying selection, positive selection, overdominant selection, 

balancing selection, stabilizing selection, and compensatory selection 

(Guardiola et al. 1996; Cowell et al. 1998; Crawford, Segal and Barnett 1999; 

Romey et al. 1999, 2000; Hamblin and Di Rienzo 2000; Trefilov et al. 2000; 

Bamshad et al. 2002; Wray 2007). An example of compensatory selection in a 

promoter with an effect on expression and relevant to disease is at the cystic 

fibrosis transmembrane conductance regulator (CFTR) locus. A hypomorphic 

allele in the CFTR coding sequence causes cystic fibrosis but there are 

haplotypes where a second cis-variant modulates disease prognosis. This 

second cis-variant adds an additional binding site for the Sp1 transcription 

factor resulting in increased transcription and improved disease prognosis. 

The non-disease causing haplotypes never carry this second variant and 

therefore do not have the additional Sp1 binding site, suggesting a 

compensatory effect under positive selection (Romey et al. 1999, 2000; Wray 

2007). 

 

1.2.2.2: Variation in Gene Expression 

Many early studies using parallel gene expression profiling arrays focused on 

the task of identifying which genes were expressed in which tissue. In 2000, 

Warrington et al. published a study looking at gene expression in 11 different 

human tissues (Warrington et al. 2000). These different tissues included both 

adult and fetal tissues assayed to capture expression levels for ~7,000 mRNA 

transcripts. In this study, they identified which transcripts are expressed in 

which tissue. To minimize individual variation, and presumably reduce costs, 

they used a pooling strategy. One of their research aims was to identify genes 
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that are expressed in all tissues, as these would be likely candidates as 

‘housekeeping’ genes. Their basis for this being that since these genes are 

expressed in all tested tissues from early fetal development through to 

adulthood these are likely required for cellular maintenance or ‘housekeeping’. 

The tissues included in this study were: adult and fetal brain, adult and fetal 

kidney, adult and fetal lung, fetal liver, adult heart, adult pancreas, adult 

uterus, and adult testis. They identified 535 genes that are expressed in all 11 

tissues, which they suggest are candidate housekeeping genes. Additionally, 

they found 400 genes that were expressed in fetal tissues but were absent 

from any adult tissue; 767 genes that were expressed in all four fetal tissues; 

and 695 that were expressed in all 7 adult tissues (Warrington et al. 2000). In 

a similar study of gene expression in multiple human tissues, Hsiao et al. 

surveyed 19 distinct tissue types from 59 samples. In addition to detecting 

which transcripts were expressed in which tissues they also considered the 

variation in expression levels between the tissues. They found 451 genes that 

were detected in all tissues. However, the variation in the expression levels of 

these genes between the tissues was such that they were able to detect 

tissue-specific signatures. Of the 451 ubiquitously expressed genes, which 

they also labelled ‘housekeeping’, 358 overlapped with the previous study. 

Here the tissue-specific signature of expression was based on statistical tests 

to identify highly expressed genes within a specific tissue. They identified 

genes that showed a tissue-specific signature: 618 in brain, 91 in kidney, 277 

in liver, 75 in lung, 317 in muscle, 46 in prostate, and 101 in vulva. They also 

attempted to identify which genes were most variable within a tissue between 

individual subjects. There were some limitations based on their cohort and 

tissue sampling but the investigators were able to identify a small set of genes 
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that appear variable within specific tissues. Their results suggest that kidney 

contained the highest variation in expression, but that brain, liver, lung, 

muscle, and, vulva also showed considerable gene expression variation 

between individuals (Hsiao et al. 2001). The recent functional annotation of 

the mammalian genome 5 (FANTOM5) study which mapped transcription 

start sites in 975 human and 399 mouse tissue and cell lines found that 

‘housekeeping’ genes may be fewer than previously believed. Their findings 

suggest that many mammalian promoters include multiple TSSs with cell-type 

specific expression patterns. These cell-specific TSSs appear to have evolved 

at different rates, where as the promoters of broadly expressed genes show 

the most conservation (FANTOM Consortium and the RIKEN PMI and CLST 

(DGT) et al. 2014). 

 

 Additional studies continued surveying expression in human tissues. In 2002, 

Saito-Hisaminato et al. analysed gene expression in 25 adult and four fetal 

tissues. They found that many genes were highly expressed in only one or a 

few tissues and very few are exclusively expressed in a single tissue. They 

also found, based on gene profiles, that the tissues not only cluster well by 

distinct tissue but also by general tissue category such as: nerve, lymphoid, 

muscle, and adipose (Saito-Hisaminato et al. 2002). In 2003, Evans et al. 

investigated differences in distinct regions of the brain and similar brain 

tissues based on 13 normal human subjects in three regions. The cerebellar 

cortex and the cerebral cortex were highly divergent, and the anterior 

cingulate cortex and the dorsolateral prefrontal cortex were highly similar. This 

group found ~1,000 genes differentially expressed between cerebellum and 

cerebral cortex but very few between neocortical regions. Clustering revealed 
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a 1st order branch between cerebellum and the neocortical regions, a 2nd 

order branch was between the replicating labs (3 total labs), and the 3rd order 

branch between individual subjects. The authors were unable to separate 

neocortical tissues based on their clustering approach. These data also 

revealed an important confound to consider when analysing microarray 

expression data, namely experimental batch and site effects. Of the reliably 

detected probes, 30% were detected in the cerebral cortices and 22% in 

cerebellum. They were unable to identify any differences in genes that were 

expressed in the cerebral cortices but 74 transcripts were specific to the 

cerebral cortical regions and 15 transcripts were specific to cerebellum (Evans 

et al. 2003).  

 

As technology improved and costs began to decline, the feasibility of running 

more samples per tissue was reflected in a couple of the published studies. In 

2005, Son et al. published a survey of human expression based on 30 

subjects in 19 organs (158 total tissue samples). One particularly interesting 

aspect of this study from a methodological point of view was the inclusion 

within the analysis of their known covariates. They found that the covariate 

effects for age, sex, ethnicity, and post-mortem interval were smaller than that 

of tissue type. They also found that randomly sub-setting with as few as 100 

genes can reproduce distinct tissue clustering: suggesting that differential 

expression of more than 90% of the genes is of biological origin. This study 

observed that tissues of a similar cellular composition and function cluster 

more closely together, but still clearly separate. They also observed a great 

deal of variation in transcript abundance levels in different tissues. Based on 

this heterogeneity of transcript expression they were able to identify a subset 
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of tissues that were distinctive based on a set of characteristics. These 

characteristics included: higher expression variation, cluster categorization 

when considering the Gene Ontology term for high level energy consumption, 

and the number of tissue-specific genes expressed. The two brain tissues 

included in the study, cerebellum and cerebrum, were present in this subset of 

distinctive tissues based on these categories (Son et al. 2005). In addition, in 

2005, Shyamsundar et al. published what at the time was a very large 

expression series surveying normal human tissue from 115 subjects in 35 

different tissue types. This study again reaffirmed previous results showing 

tissue-specific gene expression and transcript abundance. This work 

reaffirmed that tissues cluster separately but also cluster in large part based 

on anatomical location, cellular composition and physiological function 

(Shyamsundar et al. 2005).  

 

There were also some critical early studies that made use of highly parallel 

gene expression assays to survey gene expression variation using model 

organisms. In 2001, Jin et al. published a study in Drosophila melanogaster. 

Within this fly model, they found that gene expression was strongly affected 

by gender and very little by age. They also found that interactions between 

gender and genotype were present and affected up to 10% of the fly’s 

expressed genome. This work concluded that there are genotypic 

contributions to transcriptional variation (Jin et al. 2001). In 2002, Oleksiak 

and colleagues surveyed population differences in teleost fish. In this study 

they found expression variation between populations of teleost fish but also 

variation in 18% of expressed genes between fish from the same population 

(Oleksiak, Churchill and Crawford 2002). A study of four natural population 
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isolates in wine Yeast also identified that the genetic variation in these natural 

populations affected variation in gene expression on a genomic scale 

(Townsend, Cavalieri and Hartl 2003). 

 

Early surveys of gene expression were also performed in mammalian model 

organisms and compared to gene expression in humans. In 2002, Su et al. 

published a study comparing gene expression in human and mouse tissues. 

This study used 46 human and 45 mouse tissues. Similar to the Warrington 

study of 2000 and the Hsiao work of 2001 they found that 6% of genes were 

expressed across all tissues again re-enforcing the possibility that these 

genes are housekeeping genes (Warrington et al. 2000; Hsiao et al. 2001; Su 

et al. 2002). Each individual tissue expressed 30-40% of the assayed genes, 

and 90% were expressed in at least one tissue. Based on an analysis of 

variance (ANOVA) they found that 78% of genes are differentially expressed 

in mice and 82% are differentially expressed in humans (Su et al. 2002). A 

study, in 2002, by Enard et al. compared the differences between human and 

non-human primates for gene and protein expression, as well as three mouse 

species (Enard et al. 2002). In primates they looked at both gene and protein 

expression in blood, liver, and brain from humans, chimpanzees, orangutans, 

and macaques. They found substantial variation between subjects of the 

same species and showed that for blood and liver that human and 

chimpanzee were more similar than chimpanzee and macaque. However, the 

chimpanzee brain cortex was more similar to that of the macaque than the 

human brain samples. Their data suggest an accelerated rate of change in 

gene expression in brain presumably associated with human evolution. This 

result was also supported in their protein work where they identified many 
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species-specific expression patterns in both gene and protein expression, with 

this pattern being particularly pronounced in human brain (Enard et al. 2002). 

Additional studies have also compared gene expression of cell populations for 

human and other primates and found greater divergence in brain than in liver 

suggesting that approximately 10% of genes differed in expression. These 

studies also suggested the differential expression they detected is likely an 

underestimate based on the regions studied, assays used, and analysis 

methodologies that were based on large differences in expression (Enard et 

al. 2002; Cáceres et al. 2003; Khaitovich et al. 2004, 2005). In 2011, Cain et 

al. published a study of histone modifications, specifically H3K4me3, and 

gene expression between human and non-human primates in LCLs. They 

found that many H3K4me3 localizations are conserved in primates and 

enriched near transcript start sites. H3K4me3 is an epigenetic mark thought to 

promote expression. As expected, highly expressed genes are more likely to 

have histone modifications near TSSs than genes with lower expression 

levels. They also found that genes that are differentially expressed between 

primates also had differences in H3K4me3 marks near the TSS. Their 

estimates suggest that up to 7% of expression differences between primates 

are in some part related to H3K4me3 histone modifications (Cain et al. 2011). 

In a study of DNA methylation and gene expression between humans and 

chimpanzees in liver, heart, and kidney tissues it was found that methylation 

patterns between tissues are often conserved between these species. 

However, the authors also found a large number of gene expression 

differences between humans and chimpanzees that had corresponding 

differences in DNA methylation at the promoters of these genes. Based on 

their findings they estimate that 12-18% of gene expression differences 
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between human and chimpanzees may be because of differences in DNA 

methylations in gene promoters (Pai et al. 2011).  

 

In a study published, in 2007, by Storey et al. it was shown that variation in 

gene expression, like genetic variation, is also primarily between individuals 

within a population, and to a smaller degree between populations. Their study 

included individuals of European and African ancestry and analysed 5,194 

genes expressed in lymphoblastoid cell lines (LCL). This study’s results 

suggest that 83% of genes are differentially expressed between individuals 

and 17% between human populations (Storey et al. 2007). A recent study was 

undertaken to consider if local adaptations between human populations are 

driven by gene expression changes and not protein-coding changes. This 

study found that these local adaptations are 10 fold more likely to affect gene 

expression than amino acid changes. Additionally, they found that polygenic 

local adaptations show recent positive selection for (ultra-violet) UV radiation 

response, immune cell proliferation, and diabetes pathways. These results 

support the idea that gene expression changes have driven human adaptation 

(Fraser 2013). 

 

Beyond which genes are expressed in which tissues and at what abundance, 

there are characteristics of these tissue-specific patterns that have also been 

identified. In 2004, Plotkin et al. reported a study considering synonymous 

codon usage in genes that are selectively expressed by tissue. For genes that 

have tissue-specific expression in humans, the authors determined how much 

these genes differ in their encoding of amino acids. The authors describe this 
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difference as the distance between synonymous codon usage. They 

calculated this distance by computing the codon frequency per gene and 

using the frequencies for synonymous codons to compute how the genes 

differ in the encoding of each amino acid. They hypothesize that tissue-

specific codon usage may be a mechanism of protein regulation and tissue 

differentiation through translation rate, modulation based on relative tRNA 

abundance, mRNA folding, and RNA transport. The investigators found that 

the codon usage distinguishes genes expressed in a tissue from those in 

another tissue, and that this codon usage in brains is selectively preserved 

throughout mammalian evolution based on human and mouse data (Plotkin, 

Robins and Levine 2004). In 2004, Yeo et al. published a study that examined 

splicing events in different human tissues. They found that splicing events 

were more prevalent in certain tissues than in others. These alternative 

splicing events were identified in human tissues based on the mining of cDNA 

sequences from Genbank and expressed sequence tags from dbEST from 16 

human tissues. The largest splicing differences found were in brain, testis, 

and liver (Figure 1.4). The brain and testis had the highest level of exon 

skipping, while liver had the highest alternate 3’ and 5’ splice site usage (Yeo 

et al. 2004). In 2012, Barbosa-Morais et al. published a study comparing the 

transcriptomes of vertebrates, spanning 350 million years, considering 

splicing between vertebrate lineages. They found significant differences in 

splicing complexity with the highest complexity found within primates. The 

splicing profiles were more strongly related to species than to organ type, and 

that separation in the profiles occurred within the last six million years. They 

state that species-specific splicing in vertebrates is cis directed; although, 
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there is a subset of pronounced splicing predicted to occur in trans (Barbosa-

Morais et al. 2012). 

 

 
Figure 1.4: These plots show the proportion of alternative splicing (AS) present in 16 
human tissues. The horizontal bars show the proportion of alternatively spliced genes 
(with estimated standard deviation) based on a random sampling of 20 expressed 
sequence tags (EST) from each gene, derived from a human tissue. The four plots 
represent different alternative splice type categories, with the splice types 
schematically represented in the plots. (a) Proportion of AS genes with skipped exons, 
alternative 3’ exon splice sites, or alternative 5’ exon splice sites. (b) Proportion of AS 
genes with skipped exons. (c) Proportion of AS genes with alternative 3’ exon splice 
sites. (d) Proportion of AS genes with alternative 3’ exon splice sites. This figure is 
reproduced from (Yeo et al. 2004). 

 

In 2008, Wang et al. published a RNA-sequencing (RNAseq) based study on 

15 human tissues examining mRNA isoform expression. The authors found 
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that 92-94% of human genes undergo alternative splicing. Their analysis 

found that isoform variation of alternative splicing, cleavage, and 

polyadenylation occurred more often between tissues rather than between 

individuals. They also found that the more tissue-specific isoforms are 

correlated with conserved regulatory regions (Wang et al. 2008). In 2008, Pan 

et al. also published an RNAseq based study examining alternative splicing in 

human tissues. They identified novel splice junctions for 20% of genes, that 

have multiple exons, and that 95% of multi-exon genes have alternative 

splicing events in human tissues. Based on their results and previous studies 

results they estimate that between 6,000 and 10,000 genes are expressed in 

most tissues. Their results also found, as previously reported by Yeo et al., 

that both brain and liver show the highest levels of alternative splicing (Pan et 

al. 2008). Based on the previous findings that splicing appears to be more 

prevalent in brain and testis, de la Grange et al. performed a study of splicing 

in 11 human tissues. They found that cerebellum, testis, and spleen showed 

the largest amount of differentially expressed alternative exons among the 

tissues tested. They also found that this variation was correlated with a larger 

number of splicing factors expressed at higher levels in these three tissues. 

For these three tissues they also found that a larger number of genes had 

higher expression as well (de la Grange et al. 2010). In 2014, Braunschwig et 

al. published a study exploring intron retention as a specific form of alternative 

splicing in mammals. While intron retention is thought to be less prevalent in 

mammals, it is the most common form of alternative splicing in plants and 

unicellular eukaryotes. This study found that intron retention is more frequent 

than previously thought, and serves as a mechanism for the suppression of 

inappropriately expressed transcripts as a form of transcriptome tuning. They 
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formed this conclusion based on finding that as many as 75% of multi-exon 

genes show evidence of intron retention. This retention is correlated to cis 

features, but the retained intron leads to a reduction in expression of the 

transcript through nonsense-mediated decay, nuclear sequestration, turnover, 

local stalling of RNA Pol II, and reduced splicesomal components 

(Braunschweig et al. 2014). 

 

These studies highlight that mRNA expression is often tissue-specific and 

variable across species, populations, and individuals. This variability includes 

not only where genes are expressed but at what abundance and in what form. 

In many of these studies, which considered the variability of expression within 

the same tissue and species, variation between individuals was consistently 

well supported. It is also important to note that even with very similar species 

and tissues of a similar cellular composition there is substantial variation. The 

expressed splice forms, mRNA transcripts, of genes also vary substantially 

between tissues in the same species. Several of the studies that included 

human brain tissues typically found that these tissues often stood out or are in 

the subset of outlier tissues when examining profiling metrics and 

characteristics. The divergence of expression in human brain tissues from that 

of other tissues may be a result of the complexity of the organ and the 

heterogeneity of its cellular composition, but this also likely reflects the biology 

underlying the evolution of the human brain and that gene expression may 

have driven many of the adaptations in this organ. 
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1.3:  Foundations of Expression Quantitative Loci (eQTL) 

Similar to the study of clinical traits and disease phenotypes prior to the 

HapMap Project (International HapMap Consortium 2005), and the arrival of 

high-density SNP chips, the study of eQTL was typically executed by linkage 

based studies in families and then afterwards using association studies in 

populations. Large-scale assessments of the role of genetic variability in the 

control of gene expression have also undergone rapid growth during the last 

decade. The bulk of this earlier work included: linkage based analysis of gene 

expression in CEPH (Centre d'Etude du Polymorphisme Humain; Utah 

residents with ancestry from northern and western Europe) lymphoblastoid 

cell lines and multiple tissues from rat and mouse crosses, and association 

based expression analyses in human lymphoblastoid cell lines (LCLs).  

 

An initial proposal for combining genetic markers and gene expression data 

was from the field of plant biology and termed ‘genetical genomics’ (Jansen 

and Nap 2001). However, much earlier work already existed in understanding 

gene expression difference linked to genetic variants in complex organisms 

and resulting in a morphological phenotype. In fruit flies, it has been show that 

cis-regulatory variation can result in morphological phenotypes such as those 

related to abdominal pigmentation (Simpson, Woehl and Usui 1999; Wittkopp, 

True and Carroll 2002), wing pigmentation (Gompel et al. 2005; Prud’homme 

et al. 2006), the distribution of bristles (Simpson, Woehl and Usui 1999; Skaer 

and Simpson 2000; Sucena and Stern 2000), and larval denticle bands 

(Sucena and Stern 2000; Sucena et al. 2003). While specific phenotypes 

have shown strong association to genetic variation in gene expression, LD 

often confounds the ability to determine the precise region of sequence 
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variation for these specific phenotypes (Karp et al. 2000; Beldade, Brakefield 

and Long 2002). More recently, Bickel et al. undertook a study in fly to identify 

causative genetic variants for cuticular pigmentation in flies. The fly genome 

contains high sequence variation and low LD, which lends itself to finding 

causative variants within a QTL. The authors focused on alleles segregating 

within the bric-a-brac locus, which has a large effect on cuticular 

pigmentation. They found that cis-regulation modulates transcription at the 

locus and that the variation has a cumulative effect through three functional 

regions: promoter, tissue-specific enhancer, and polycomb response element 

(Bickel, Kopp and Nuzhdin 2011). In stickleback fish, changes in skeletal 

morphology result from cis-regulatory variation. These genetic variations 

result in changes to the dorsal spines and pelvic girdle resulting in a loss or 

reduction in skeletal armour between different species of sticklebacks (Shang, 

Luo and Clayton 1997; Marcil et al. 2003; Cresko et al. 2004; Shapiro et al. 

2004; Shapiro, Bell and Kingsley 2006). 

 

Human phenotypic traits had also previously been linked to genetic variation 

in cis-regulation as well. Resistance to malaria results from cell-specific 

expression linked to cis-regulatory variants near Duffy blood group chemokine 

receptor (DARC), which is a receptor that binds interleukin 8 (IL8) (Horuk et 

al. 1993; Chaudhuri et al. 1994; Tournamille et al. 2004). DARC is expressed 

in multiple cell and tissue types. The expression of DARC in erythrocytes is 

the entry point of the malarial parasite Plasmodium vivax (Pogo and 

Chaudhuri 2000). However, there are DARC haplotypes that segregate 

between human populations that are resistant to infection from this parasite. 

This resistance results from the Duffy protein not being expressed in 
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erythrocytes while still being expressed in other tissues. The cell-specific lack 

of expression in erythrocytes, for the infection-resistant haplotype, is the result 

of disrupting of a binding site for the transcription factor GATA binding protein 

1 (GATA1) (Miller et al. 1976; Chaudhuri et al. 1995; Peiper et al. 1995; 

Tournamille et al. 1995; Iwamoto et al. 1996; Hadley and Peiper 1997). This 

example shows how a single cis-regulatory variant results in a phenotype with 

restricted pleiotropy and a significant fitness gain. It has also been shown in a 

studies of variation near DARC that this locus shows strong positive selection 

in geographic populations where malaria is prevalent (Hamblin and Di Rienzo 

2000; Hamblin, Thompson and Di Rienzo 2002).  

 

An early application of integrating genetics and gene expression in humans 

was published by Rockman and Wray in 2002. In this study, they published a 

survey of experimentally validated functional cis-regulatory variants. They 

carried out the study to understand if cis-regulatory variants may represent 

evolutionary changes in phenotypes. They authors looked at 140 

polymorphisms possibly involved in the regulation of 107 genes in humans.  

They suggested that genetic variation contributes to variation in transcription 

rates and therefore to phenotypic variation. This conclusion was based on the 

observation that variation in functional cis-regulatory regions is widespread, 

can lead to large gene expression difference for 63% of the genes they 

assayed, and that on average humans are more heterozygous at cis-

regulatory sites than at protein coding bases. This difference in heterozygosity 

suggests that cis-regulatory regions may store more heritable phenotypic 

variation and have higher substitution rates (Rockman and Wray 2002). A 

similar study, by Yan et al., also found evidence of variation in gene 
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expression in humans. In this study, it was observed that the difference in the 

expression of alleles from heterozygous individuals was more than 20%. This 

study examined allelic expression in 13 genes using 96 individuals from 

CEPH families. Allelic variation in mRNA expression was observed in 6 of the 

13 genes. Three of the families, which were informative in displaying allelic 

variation, were fully consistent with Mendelian inheritance. Thus they 

concluded that cis-acting variation in gene expression is relatively common 

among normal individuals (Yan et al. 2002). In 2003, Bray et al. published a 

similar study of allele-specific expression. This study was based on 

expression in brain tissue from 60 subjects. The alleles selected for study 

were from common heterozygotes in 15 genes expressed in human brain. 

The brain tissues were frontal, parietal, and temporal cortex. Allele-specific 

expression differences were detected in 7 of the 15 genes examined. The 

detection of allele-specific expression was based on a difference of at least 

20% in allele representation in at least one individual. The gene DTNBP1, 

encoding dystrobrevin binding protein 1, showed allele expression differences 

in multiple individuals, which exceeded 50% on average (Bray et al. 2003).  

 

An early implementation of an eQTL study, on a genome-wide scale, was 

published by Schadt et al. in 2003. This study was performed with small 

sample sizes but for multiple species using microsatellite markers and 

expression data to perform linkage based analysis to identify eQTL in maize, 

murine, and human samples. Additionally, the authors were able to show, in 

the murine samples, an example of a clinical quantitative trait locus (cQTL) for 

obesity localizing together with an eQTL (Schadt et al. 2003). A 2003 study, 

from Cheung et al., using human LCLs, was a key step in determining that 
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genetics contributes to variation in gene expression in humans. This study 

used early arrays with pooled samples from 35 CEPH subjects to identify 

genes expressed with high variation. To validate their results they ran RT-

PCR on five of the genes, with the highest variation, in 49 unrelated CEPH 

subjects; children from 5 CEPH families, and 10 pairs of monozygotic twins. 

These authors found that expression variation was higher in unrelated 

individuals than in siblings and that the expression variation was lowest in the 

monozygotic twins. Expression variation in the unrelated subjects was 3 to 11 

times higher than in twins, while in siblings this variation was 2 to 5 times 

higher than in twins. This suggested that a component of expression variation 

is genetic and provided critical evidence for heritability in gene expression 

(Cheung et al. 2003). Linkage-based studies in additional CEPH families 

continued, making use of SNPs instead of microsatellite marker panels to 

capture genetic variation, and using regression methods to associate genetic 

variation with gene expression in addition to linkage analysis methods (Monks 

et al. 2004; Morley et al. 2004). The Monks et al. study, from 2004, showed 

expression heritability results in a cohort of 167 CEPH subjects. They found 

that 31% of genes were heritable (Figure 1.5). They also found that for genes 

with a linkage-based eQTL, that 75% of these had high heritability. 

Additionally, later studies suggest that the heritability of gene expression 

appears to affect 40-90% of genes, with median estimates of 15-35% (Monks 

et al. 2004; Dixon et al. 2007; Göring et al. 2007; Emilsson et al. 2008; Price 

et al. 2011; Grundberg et al. 2012).  
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Figure 1.5: Histogram of heritability estimates for genes that are differentially 
expression and significantly heritable, based on a false-discovery rate of 5%. This 
figure is reproduced from (Monks et al. 2004). 

 

After the early eQTL studies, which were typically family based, more 

population-oriented studies of eQTL began to be performed. In 2005, Stranger 

et al. published a seminal eQTL study based on expression in LCLs from 60 

unrelated CEPH individuals from HapMap. Three hundred and seventy four of 

the 630 genes assayed, from ENCODE regions on chromosomes 20 and 21, 

were reliably detected and used for eQTL analysis. They ran cis- and trans-

eQTL analysis making use of multiple association methods for comparison 

purposes. For this study, the authors considered a cis region as all variants 

that are 1 Mb proximal to the gene being tested, and trans as all variants 

outside (distal) of the cis region. This study also performed comparisons of 

different methods of multiple test correction techniques for their cis and trans 

results. In cis, they found between 10 and 40 significant eQTL depending on 

the test and correction method used, and very little evidence for reliable trans-



	
   87	
  

eQTL. This study also showed early methods for correcting for polymorphisms 

within the expression probe (Stranger et al. 2005). The polymorphism within 

expression probe is a critical assay artefact to correct for when performing 

eQTL analysis, when the expression levels are measured using a microarray. 

The artefact arises based on how the typical microarray chip works, and how 

the probes on the chips are designed. Typically, the probes are designed 

based on an N-mer sequence such that the unique transcript to be measured 

by the probe will hybridize to the matching unique transcript’s sequence, when 

the transcript is present in the sample. The expression abundance, for the 

transcripts hybridized to the chip, can then be quantitatively measured based 

on the probe’s relative intensity. However, the N-mer probe is typically 

designed from a transcript’s sequence based on a reference genome and 

therefore variation from the reference sequence is not accounted for. This 

polymorphism within the probe can affect the hybridization of the transcript 

fragment to the chip resulting in a biased measurement of the transcript’s 

abundance, usually a decrease in expression. This artefact can bias cis-eQTL 

analysis, as the variant within the assay probe may be in LD with the variant 

being tested against the transcript’s expression level resulting in a false 

positive result. Cheung et al. also published a regional and genome-wide 

population based eQTL study in 2005. This study was performed using 57 

unrelated CEU (CEPH; Utah residents with ancestry from northern and 

western Europe) individuals from the HapMap Project. The study used a 

regression based method and a dense SNP marker set, composed of 770,000 

SNPs, to associate genetic variation with variation in gene expression for 

genes that had previously been found to have an eQTL in their earlier study 

using a linkage based analysis method (Cheung et al. 2005). 
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These early studies leveraged new technologies, and a growing base of 

reference genetic information to build the foundation for eQTL work. In 

combination, they showed the feasibility of this approach, and revealed critical 

insights into the genetic regulation of gene expression.  

 

1.4: Rapid Expansion of the eQTL field of study 

Continuing with a population-based association approach to eQTL, a study 

was conducted in all unrelated HapMap individuals, totalling 210 individuals 

from the four Phase II HapMap populations: CEU, YRI (Yoruba in Ibadan, 

Nigeria), JPT (Japanese in Tokyo, Japan) and CHB (Han Chinese in Beijing, 

China). Within this study, the genetic variation included both SNPs as well as 

CNVs (copy number variants) and the expression phenotypes of 

approximately 14,000 mRNA transcripts, from LCLs, were analysed. Based 

on an analysis of cis-eQTL, the authors identified 1061 genes with an eQTL 

where 86.3% were correlated with SNPs, 17.7% with CNVs, and 1.3% with 

both variant types (Stranger et al. 2007). Moffet et al. published a disease 

relevant study of eQTL in a genomic region associated with childhood 

asthma. A genome-wide association study (GWAS) was performed using the 

SNPs and transcripts within this region resulting in the finding that an eQTL 

for ORMDL3 may contribute to the risk of childhood asthma (Moffatt et al. 

2007). In a large linkage-based eQTL study, which included lymphocyte 

samples from 1240 subjects, the authors found that 85% of detected 

autosomal transcripts were heritable. Heritability is an estimate how much 

variation in a phenotype or trait is due to genetic variation between individuals 

in a population. The subjects included in this study were recruited as part of a 
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heart study, which allowed the authors to integrate their eQTL results with 

linkage based QTL analysis of high-density lipoprotein cholesterol levels, in 

these subjects. Based on the integrated results they found that cis-regulatory 

variants for vanin 1 (VNN1) affect high-density lipoprotein cholesterol 

concentrations (Göring et al. 2007). In 2007, Libioulle et al. published a 

GWAS study for Crohn’s disease, with replication, and identified two 

previously known loci and a novel locus associated with the disease. The 

novel locus was located within a 1.25 Mb gene desert on chromosome 5. 

They found that the Crohn’s disease associated variants within this locus 

were also part of an eQTL for prostaglandin E receptor 4 (PTGER4), the gene 

most proximal to the GWAS locus (Libioulle et al. 2007). These studies and 

approaches have all demonstrated that genetic variability can be correlated 

with changes in gene expression (Gilad, Rifkin and Pritchard 2008; Cookson 

et al. 2009). However, most of these studies thus far have primarily used 

human LCL (lymphoblastoid cell lines) as the tissue to assay for gene 

expression phenotypes or have used non-human mammalian tissue (Hovatta 

et al. 2005, 2007; McClurg et al. 2007).  

 

It is in the context of this described work that I began my doctoral research. 

During the period of time I have been working on my thesis, investigating 

eQTL in human brain tissues, the eQTL field has progressed a great deal, 

moving from an area of relatively sparse activity, to one that is central to our 

understanding of the biologic consequences of genetic variability and the 

interpretation of non-coding genetic variability associated with disease. This 

thesis describes the contributions I have made to the study of eQTL during 

this time and reflects the progress of this growing field, describing maturing 
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methodological and analytical approaches. These contributions focus on the 

study of eQTL in human brain tissues following the progression from using a 

mix of brain tissues, four distinct brain tissue regions, and finally to a specific 

neuronal cell type in the brain, as well as a progression in the methods used 

to identify eQTL. 
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2: Identifying eQTL in Human Cortical Tissue  
(Myers, Gibbs et al. 2007a) 

Statement of Contribution to this Research: 

I was involved in the conception and design of this study, including choice of 

expression platform, and selection of tissue. I performed data quality control, 

data analysis, and data interpretation. I co-drafted and edited the manuscript. 

Myers AJ and Hardy J were also involved in the conception, design, choice of 

platform, and tissue selection. Myers AJ, Hardy J, Webster JA and Holmans P 

and I drafted and edited the manuscript. Webster JA and Holmans P were 

also involved in the multiple test correction portion of the data analysis. I was 

not involved in the collection of the tissue samples or the generation of the 

genotype and mRNA expression data. Coordination of tissue collection was 

performed by Myers AJ and Hardy J. Genotyping of the samples was 

coordinated or performed by; Webster JA, Craig DW, Pearson JV, Zismann 

VL, Joshipura K, Huentelman MJ, Hu-Lince D, and Coon KD. Generation of 

mRNA expression data was coordinated or performed by; Myers AJ, Rohrer 

K, Zhao A, Marlowe L, Kaleem M, Leung D, Bryden L, and Nath P. 

 

2.1:  Introduction 

We initiated an eQTL analysis in human cortical tissue using whole-genome 

genotyping and gene expression data. This study was one of the first whole-

genome eQTL studies performed in human neurological tissues and one of 

the few early eQTL studies published based on a human tissue that was not 

LCL-based.  
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Our selection of brain tissue for this work was based on several factors. First, 

and primary of them was that our laboratory studies the genetic and etiologic 

basis of neurological disease; thus, this is our tissue of interest. Second, it has 

previously been shown that mRNA from post-mortem human brain can be 

utilized for the study of gene expression (Gilbert et al. 1981). Third, it has 

previously been shown that disease associated loci, including those related to 

neurological disease such as APOE and MAPT, are subject to distortions in 

allelic expression (Lambert et al. 1997; Bray et al. 2004; Myers et al. 2007b). 

At the time of inception of this work, we had begun investing considerable 

resources in identifying the genetic basis of complex disease using genome-

wide genotyping. It was clear from early work that the disease-linked variants 

identified would not be amenable to traditional cell biology and modelling 

approaches, and likely that much of the immediate biologic effect of these 

alleles would be mediated through changes in expression. It has previously 

been shown that heritability of gene expression appears to affect between 40 

and 90% of genes, with median estimates of between 15 and 35% (Monks et 

al. 2004; Dixon et al. 2007; Göring et al. 2007). Thus, we thought it was 

critical to produce a dataset that would allow us to mine the effects of genetic 

risk variants in a disease-relevant tissue.  

 

Based on these priorities and rationale we embarked on the initial work 

described in this chapter. Using human brain samples from approximately 200 

neuropathologically normal individuals, we assayed each sample at 

approximately 500,000 SNPs and 24,000 mRNA transcripts and carried out 

an association-based analysis between genotype and gene expression to 

determine if eQTL could be detected within human cortical tissue.  
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2.2:  Materials and Methods 

2.2.1:  Subjects, National Cell Repository for Alzheimer’s Disease 

(NCRAD) cohort 

(Coordination of tissue collection was performed by Myers AJ and Hardy J.) 

 

We wrote to all the National Institute on Aging Alzheimer Centres and the 

Miami Brain Bank requesting samples. We requested 1 gram of frozen human 

cortex, from neurologically-normal brain, and the following sample 

information: gender, race, age at death, consensus diagnosis, 

neuropathological diagnosis, Consortium to Establish a Registry for 

Alzheimer's Disease (CERAD) scores (Mack et al. 1992; Galasko et al. 1995: 

199), Braak and Braak staging (Braak and Braak 1991), and cortical tissue 

region. We received 279 samples, which met the following criteria: first, they 

were self-defined as ethnically of European descent; second, they had no 

clinical history of stroke, cerebrovascular disease, Lewy bodies, or co-

morbidity with any other known neurological disease; third, the donor had 

been assessed by a board certified neurologist and where available had a 

Braak and Braak score < 3 (43% of controls used for this study assessed) or 

a CERAD score indicating either sparse or no neuritic plaques (34% of the 

controls used for this study assessed); and fourth, they had an age at death 

greater than 65 years. Of the received samples, 201 were successfully 

assayed for genotype and expression data. After excluding samples that were 



	
   94	
  

ethnic outliers and samples that were possibly related 193, samples were 

used for analysis.  

 

2.2.2: Assays 

2.2.2.1: Genotyping 

(Genotyping of the samples was coordinated or performed by: Webster JA, 

Craig DW, Pearson JV, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince 

D, and Coon KD. As this cohort is made up of controls used as part of a 

genome-wide association study of Alzheimer’s Disease, the genotypes were 

assayed as described in that GWAS study (Coon et al. 2007).) 

 

Sample DNA isolated from brain tissue was hybridized to the Affymetrix 

GeneChip Human Mapping 500K Array Set according to the manufacturer’s 

protocols. Allele calls were determined using Affymetrix BRLMM Analysis 

Tool. The BRLMM algorithm is a modification, from Affymetrix, of the robust 

linear model of Mahalanobis distance (RLMM) algorithm developed for calling 

genotypes assayed on the Affymetrix array set. The BRLMM method includes 

a Bayesian step, which improves the estimates of clusters and variances for 

calling genotypes, and was developed for use with the Affymetrix 100K and 

500K chips. The algorithm makes use of data from multiple chips and SNPs to 

train a classifier for calling genotypes. This RLMM algorithm was proposed to 

replace Affymetrix’s initial Dynamic Model calling algorithm. For evaluation of 

the RLMM algorithm, the authors applied it to Affymetrix 100K SNP array data 

and compared the results to the existing Affymetrix Dynamic Model algorithm 
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using genotypes from The HapMap Project for comparison (Di et al. 2005; 

Rabbee and Speed 2006).  

 

The Affymetrix GeneChip 500K set is composed of two arrays each capturing 

approximately 250,000 SNPs. One array uses the Nsp I restriction enzyme 

and the other uses Sty1 to capture 262,000 and 238,000 SNPs respectively. 

Each SNP is represented on the array by a set of 24 or 40 different 25-mer 

oligonucleotides. Each SNP is interrogated by a 6- or 10-probe quartet, and 

each probe quartet is made up of a perfect match and mismatch probe per 

allele. Based on the array’s design and optimization criteria the arrays include 

a SNP every 5.8 kilobases, on average, providing ~65% coverage of genetic 

variation within the HapMap II CEU population, the SNP selection was not 

based on haplotype tagging variants (Barrett and Cardon 2006). The 

Affymetrix GeneChip genotyping arrays are a microarray-based platform for 

assaying genotypes based on hybridization (Figure 2.1). Matsuzaki et al., 

described the chip platform in 2004, based on the 100K array set. The 100K 

array simultaneously assays approximately 116,000 SNP on an 

oligonucleotide array. They achieved call rates of 99% and reproducibility 

rates of 99.97%. Based on an analysis of trios, from the HapMap Project, the 

authors claim an accuracy of 99.7% in the resulting genotypes. The 100K 

array’s design is based on including a marker approximately every 24 Kb in 

the genome, and almost 105,000 markers were common SNPs with a minor 

allele frequency greater than 5% (Matsuzaki et al. 2004).  
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Figure 2.1: Cartoon of the Affymetrix GeneChip protocol. Total genomic DNA from a 
sample is digested with a restriction enzyme (Nsp I or Sty I; Nsp I is shown). The 
digested fragments are ligated to adaptors. The adaptor-ligated DNA fragments are 
then amplified, fragmented, labelled, and hybridized to the chip. This figure is 
reproduced from Affymetrix product literature. 

 

2.2.2.2: mRNA Expression 

(Generation of mRNA expression data was coordinated or performed by; 

Myers AJ, Rohrer K, Zhao A, Marlowe L, Kaleem M, Leung D, Bryden L, and 

Nath P.) 

 

Sample RNA was reverse transcribed into complementary RNA (cRNA) and 

biotin-UTP labelled using the Illumina® TotalPrep™ RNA Amplification Kit 

from Ambion, Inc. (catalogue # L-1755), based on the Eberwine technique 

(Van Gelder et al. 1990). The cRNA was quantified by three replicate 

measurements using a Nanodrop spectrophotometer (Thermo Scientific, 

Wilmington, Delaware, USA). The cRNA was then hybridized to Illumina 

HumanRef-8 version 1 Expression BeadChips using standard protocols. Six 

to eight chips (24-32 control samples) were run in parallel for each 

 

 

 

Figure removed. 

Third party copyright permission could not be obtained. 
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hybridization batch. Average detection scores across each expression chip 

were greater than 0.99.  

 

The Illumina Sentrix HumanRef-8 v1.0 Expression BeadChip assays the 

expression levels of approximately 24,000 human Refseq transcripts. The 

Illumina Sentrix BeadChip arrays use 50-mer sequence probes designed to 

capture, through hybridization, specific transcripts based on the transcript’s 

Refseq sequence. The Illumina expression arrays are a single colour system 

where hybridized transcripts are stained with streptavidin-Cy3 and 

quantitatively detected fluorescence emission. Each gene-specific probe 

contains an additional 29-mer address sequence for probe identification 

purposes and is then attached to a bead, this combination of bead and gene-

specific oligonucleotide is refered to as a bead-type (Figure 2.2). Each bead 

on the array will have hundreds of thousands of these gene-specific probe 

and address oligomers attached and then the beads are assembled onto the 

array platform. The beads assemble spontaneously into more than 1.6 million 

etched microwell pits, allowing each bead-type to have more than 30-fold 

redundancy on the array on average. After the beads are assembled onto the 

array, a hybridization procedure is performed to map the array using the 

address portion of the bead-type, which also validates the hybridization 

performance of every bead on the array. Each Illumina BeadChip includes 

multiple separate arrays on the chip, where an individual sample is hybridized 

to an array and multiple samples are run per BeadChip, one per array. The 

Illumina HumanRef-8 BeadChip contains eight arrays allowing eight samples 

to be assayed per chip. Based on Illumina’s technical documentation the 

arrays have a less than 0.017% false positive rate for differential expression 
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between technical replicates. Illumina also suggests that the BeadChip 

expression measures correlate well with gene expression measured by 

quantitative real-time PCR. For comparison with quantitative real-time PCR 

measures, Illumina measured ratios of 20 genes from two human tissues and 

found a strong correlation (R2 = 0.9328) between the measures from the 

Illumina BeadChip and quantitative PCR. 

Figure 2.2: Cartoon of an Illumina expression bead-type. Each transcript is captured by 
a transcript-specific probe; this probe is a 50-mer sequence designed to match a 
unique portion of the transcript’s reference sequence. The 50-mer probe is attached to 
a 29-mer address sequence so the probe can be identified. The probe and address 
oligonucleotide is then covalently attached to a bead. While this cartoon shows a 
single oligonucleotide attached to the bead, for simplicity, actually each bead has 
hundreds of thousands of these same gene-specific oligonucleotides attached. This 
figure is reproduced from Illumina product literature. 

 

2.2.3: Data Analysis 

2.2.3.1: Genotype Data 

The following minimum genotype cut-off values were used during analysis: 

per sample call rate of at least 90%, per SNP call rate of at least 90%, per 

SNP minor allele frequency of at least 1% and non-significant (p-value > 0.05) 

for Hardy Weinberg Equilibrium test. The resulting sample genotyping call-

rate had a mean of 97% and range 90%- 99%. Prior to analysis of the 

 

 

 

Figure removed. 

Third party copyright permission could not be obtained. 
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366,140 SNPs the chromosome physical positions for each SNP were re-

annotated from National Center for Biotechnology Information (NCBI) dbSNP 

based on Genome Build 36. Information about the ethnic structure of our 

cohort was obtained using the program Structure (Pritchard, Stephens and 

Donnelly 2000; Falush, Stephens and Pritchard 2003), and three ethnic 

outliers were removed (Figure 2.3). Structure was run using genotype data 

based on seven cohorts to examine ethnic bias within our series. The cohorts 

consisted of the control subjects used in this study, US Alzheimer’s cases, US 

controls from the Coriell Cell Line Repository and samples from the four 

HapMap populations. All of these cohorts were run on either the Affymetrix 

500K or the Illumina 550K genotyping platforms. Of the SNPs that overlapped 

between the Affymetrix and Illumina platforms, 2,035 were used in the 

analysis, where these variants were greater than 1 megabase apart, had a 

call rate greater than 98%, and a minor allele frequency greater than 10%. 

The SNPs were filtered on this basis to break up any LD that may exist 

between the remaining variants so the results would not be biased. The 

linkage model that Structure uses to detect population structure can be biased 

to overestimate divergence between ancestral populations and infer artificial 

admixture if SNPs in strong LD are included in the analysis (Falush, Stephens 

and Pritchard 2003). There were three ethnic outliers within the population 

used for this study. Two were of possible Asian descent (WGACON-185 and 

WGACON-194) and one of likely African descent (WGACON-66). We next 

examined the degree of relatedness among the samples within our cohort by 

using the pairwise identity-by-state (IBS) and identity-by-descent (IBD) 

analysis available in the PLINK analysis toolset (Purcell et al. 2007). The 

IBS/IBD analysis, using PLINK, estimates a genome-wide IBD measure 
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between each pair of samples. This estimate, based on the sharing of alleles 

between each pair of samples, can identify individuals that appear more 

similar to each other than expected by chance (i.e. relatedness). Five samples 

were excluded based on having a high degree of relatedness to another 

subject in the cohort, likely subjects from the same family. Subjects removed 

based on being likely related to another subject with the cohort were: 

WGACON-2, WGACON-107, WGACON-149, WGACON-216 and WGACON-

101. 
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2.2.3.2: mRNA expression data 

All expression profiles were extracted and rank-invariant normalized (Schadt 

et al. 2001; Tseng et al. 2001; Workman et al. 2002) using the Illumina 

BeadStudio software. In rank invariant normalization, a subset of gene probes 

are identified and used to set the parameters for normalization. This subset of 

gene probes is selected based on whether or not the probe’s rank changes 

across the samples, i.e. rank invariant. A gene’s probe is rank invariant if the 

probe’s expression intensity relative to other genes (rank) within a sample 

maintains the same relation across all samples. Prior to analysis of the mRNA 

transcripts, chromosome physical positions for each transcript’s probes were 

re-annotated from NCBI’s Entrez Gene based on Genome Build 36. Rank-

invariant normalized expression data were log10 transformed and missing 

data was encoded as missing, not as a zero level of expression.  

 

2.2.3.3: Selection of traits for analysis 

Transcripts that were detected in less than 5% of the sample series were 

excluded from analysis, based on subjects that passed all genotype-based 

quality filters. Based on this detection criterion 14,078 mRNA transcripts were 

selected for expression quantitative trait loci analysis. 

 

2.2.3.4: Expression Quantitative Trait Loci Analysis 

For the eQTL analysis, the PLINK analysis toolset was used to perform a 1 

degree of freedom allelic test of association. Briefly, the expression level of 

each transcript per sample was regressed on the number of minor alleles (0, 1 
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or 2) for the 366,140 SNPs that met the cut-off criteria to compute the effects 

of allele dosage on expression level. The analysis results were then 

separated into cis and trans associated SNP/transcript pair sets based on 

annotations. Cis SNPs were defined as those located within the genomic 

region that includes the gene encoding the transcript. The boundaries of the 

cis-genomic region were defined as 1 megabase (Mb) from the 5’ end of the 

transcript and 1 Mb from the 3’ end of the transcript. To account for missing 

expression data, results where there were not at least three expression data 

points for the minor homozygotes (BB genotype) were removed. 

 

2.2.3.5: Corrections for multiple tests 

(Webster JA and Holmans P were involved in the design and execution of the 

multiple test correction.) 

 

The frequentist significance testing approach is one of the most common 

employed in genetics and most genetic researchers use p-values to show 

statistical significance within their results (Sham and Purcell 2014). Many 

variants are typically tested in genetic analyses leading to a higher test 

burden, especially under a genome-wide study. A significance threshold of a 

p-value less than 0.05 is typically used, resulting in a 5% chance of a false-

positive result. However, with many tests being performed, assuming 

independence of tests, each test using this threshold still carries this 5% 

chance of a false positives so performing many tests increases the number of 

possible false positives. The traditional approach to correct for the multiple 

tests being performed is a Bonferroni correction. The Bonferroni correction 
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adjusts the threshold of significance based on the number of independent 

tests being performed while maintaining a target family-wise error rate, 

typically 5%. However, for tests performed based on genetic variants many of 

these variants do not represent independent tests, as many of the variants are 

correlated through linkage disequilibrium. Another common approach for 

multiple test correction is to computationally generate an empirical distribution 

of smallest p-values based on repeated random swaps of the data. Random 

swapping breaks the trait and genotype relationship and then by comparing 

the p-value from the real data to the generated distribution an empirically 

adjusted p-value can be calculated (North, Curtis and Sham 2002).  

 

To correct for the multiple tests performed in this study, an empirical 

distribution was created by randomly permuting the subject identifiers within 

the transcript expression data. One thousand of these permuted datasets 

were generated, the subject identifiers where swapped simultaneously for all 

transcripts within the dataset. These permuted dataset were then analysed in 

the same way as the actual data. For each dataset, the minimum p-value for 

each transcript/SNP association was recorded. A transcript-specific genome-

wide empirical p-value was obtained for each transcript/SNP association by 

counting the number of simulated minimum p-values for that transcript, which 

were lower than the observed p-value and dividing by 1000. Transcript-

specific genome-wide empirical p-values < 0.05 were considered significant 

for the transcript/SNP association. This provides an estimate of genome-wide 

significance that is robust to non-normality of transcript expression data and 

inter-SNP linkage disequilibrium because the repeated random swapping 
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generates an empirical distribution as well as breaking the trait and genotype 

relationship.  

 

Additionally, a study-wide correction for the number of transcripts tested in 

addition to the number of SNPs tested per transcript was performed. This 

additional correction was performed in two steps for those transcripts where 

an empirical transcript-specific genome-wide significant eQTL was identified. 

This correction was performed in two steps and only for a subset of the 

potentially significant eQTL because of the computational burden of running 

the increasing number of simulations. An additional round of the permutation 

procedure was repeated using 100,000 replicates, in order to obtain a more 

accurate estimate of the empirical p-value. Then one million permutations 

were performed to achieve a distribution sufficient to apply a Sidak correction 

to the transcript-specific genome-wide corrected empirical p-values. The 

Sidak single step p-value adjustment is given by the formula αcorr = 1 - (1 - 

α)C where α corr is the corrected p-value, α is the uncorrected p-value and C 

is the number of tests. This test is slightly less conservative than the 

commonly used Bonferroni correction. In our analysis the number of transcript 

tests was 14,078 such that a αcorr = 0.05 is approximately α = 3.64x10-6. 

Because of computational limitations, transcripts were selected for this test by 

the following criteria: significant transcript-specific empirical p-values less than 

0.00001 and more than 15 associated SNPs. The four transcripts that met 

these criteria were: KIF1B (19 SNPs with transcript specific empirical p-values 

=0), ZNF266 (18 SNPs), RPL14 (17 SNPs), and IPP (27 SNPs). 
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2.2.3.6: Filtering for known Biological and Methodological 

Covariates 

SNP and transcript-associated pairs that had a methodological covariate or 

biological covariate effect were removed from the result set. The 

methodological covariates included: day of expression hybridization, institute 

source of sample, post-mortem interval, and a covariate based on the total 

number of transcripts detected in each sample. The biological covariates 

included: gender, age at death, and cortical region. For the assessment of 

covariate effects we used a conservative approach. In the regression model, if 

any covariate term had an uncorrected p-value of less than 0.05 for a SNP-

transcript pair, that SNP-transcript pair was excluded. This filtering step 

removed 52.2% and 23% of the cis and trans results respectively. 

 

2.2.3.7: Polymorphism(s) in Assay Probes 

To account for any potential confounding effect of SNPs located within the 

transcript hybridization probes on the expression chips, any significant result 

where there was a variant in the transcript probe was removed. In order to do 

this we needed to determine whether known SNPs mapped to the transcript 

probes, thus creating a possible false positive through non-biologically 

relevant differential hybridization. We used the Hapmap II CEU genotyped 

data for this purpose. Hapmap II SNPs that were polymorphic in the CEU 

population were mapped with respect to the transcript probes. R-squared 

values between the significant SNP, within our screen, and the SNP within the 

probe from the HapMap II CEU dataset were then annotated within our 

results. For the transcript probes with a SNP located within the 50-mer 
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hybridization probe it is presumed that a significant correlation between the 

probe’s expression level and a cis-SNP is a false positive as a result of 

hybridization bias when the correlated SNP and the SNP in the probe are in 

LD. This filtering step removed 12.8% of the cis results. The potential 

confounds of polymorphisms within assay probe designs had previously been 

brought to light and we implemented a scan to remove the potential false 

positives from the study. In the concurrent period of this work, Alberts et al. 

published a study of this confound and its potential impact on eQTL studies. 

Their study showed that many mapped local eQTL in genetical genomics 

experiments do not reflect actual expression differences caused by sequence 

polymorphisms in cis-acting factors changing mRNA levels. Instead, they 

indicate hybridization differences caused by sequence polymorphisms in the 

mRNA region that is targeted by the microarray probes. Many such 

polymorphisms can be detected by a sensitive and novel statistical approach 

that takes the individual probe signals into account. Applying this approach to 

mouse and human eQTL data, they found that many local eQTL are falsely 

reported as "cis-acting" or "cis" and can be successfully detected and 

eliminated with this approach (Alberts et al. 2007). 

 

2.2.4: Data and Biomaterial Access 

Expression data and sample information have been deposited in NCBIs Gene 

Expression Omnibus (Edgar, Domrachev and Lash 2002) and are accessible 

through GEO Series accession number GSE8919 (Figures 9.1, Appendix). 

DNA from the samples, employed in this screen, is available upon request 
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through the National Cell Repository for Alzheimer’s Disease (NCRAD), 

Indiana University, USA. 

 

2.3:  Results 

After quality control filtering 193 samples, 366,140 SNPs, and 14,078 mRNA 

transcripts were selected for the eQTL analysis. The analysis was performed 

by treating the expression profile of each transcript as the phenotype, i.e. a 

quantitative trait. A quantitative trait analysis was then performed on the 

genotype and expression data by linear regression to correlate allele dosage 

with expression. In addition, we corrected, by filtering, for several biological 

covariates and methodological covariates (Table 2.1).  

 

Table 2.1: Summary of sample characteristics, which were used as covariates in the 
eQTL analysis. Table adapted from (Myers et al. 2007a). 

 

Correlations between 366,140 SNPs and the expression of the 14,078 

detected transcripts were assessed. In this analysis, after using a permutation 
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based test correction and excluding results with a possible covariate effect, 

852 transcripts were significantly correlated with genetic variation. An 

empirical p-value < 0.05, based on 1000 permutations, was used as a cut-off 

for a per trait significance of the SNP and transcript correlations, an eQTL. 

These significant association results were divided into cis-eQTL and trans-

eQTL based on updated annotations. For this study, cis was defined as those 

associations that involved SNPs that are within the gene or within 1Mb 

flanking either the 5’ or 3’ end of the gene. The trans set are all the correlated 

SNP and transcript pairs that did not meet the cis criteria. Trans results are 

correlated pairs where the SNP and transcript were on different chromosomes 

or the SNP was greater than 1Mb from the transcript on the same 

chromosome. Of the 852 transcripts significantly correlated with genetic 

variants, 73 of these were correlated with one or more cis SNPs and 791 were 

correlated with one or more trans SNPs. While the total number of transcripts 

correlated in trans was greater than those in cis, calculating the proportions of 

significant possible cis and trans ratios revealed a significant enrichment for 

cis associations, with peak enrichment at approximately 20 Kb. The average 

distance, for cis-eQTL, between the SNP and the transcript is 55.4 Kb. On 

average the genetic variation accounts for 18.5% (cis mean is 22% and trans 

mean is 18.1%) of the expression variation for these 852 transcripts. Table 

2.2 shows the results for the top eight transcripts with a cis eQTL.  
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An analysis of the distances of SNPs correlated in cis with transcripts relative 

to the transcription start site (TSS) revealed a relatively symmetric distribution 

(Figure 2.4). This symmetry about the TSS is consistent with results shown for 

cis-eQTL in the HapMap lymphoblastoid cell line (LCL) samples (Stranger et 

al. 2007).  
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Figure 2.4: Distribution of cis-eQTL SNPs relative to the transcription start site (TSS). 

 

It has previously been shown that MAPT expression is affected by the MAPT 

haplotype (Myers et al. 2007b). The cis-eQTL for MAPT in our results is 

consistent with this previous finding, alleles that occur on the major haplotype 

of MAPT (H1) are associated with higher MAPT transcript expression. It 

should be noted that a subset of the subjects included in our eQTL study were 

also used in the MAPT expression haplotype study. This provided an internal 

positive control that based on a genome- and transcriptome-wide analysis we 

can find effects that were previously seen in a candidate gene analysis of 

these samples, where that study was based on real-time PCR expression 
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measures. It has also been shown that the tau (MAPT) protein expression 

levels in cerebrospinal fluid (CSF) vary with genetic variation at this locus 

(Figure 2.5) (Laws et al. 2007). In the Laws et al. study, their approach was to 

attempt to fine map the association of genetic variation on the H1c haplotype 

in the MAPT region with Alzheimer’s disease (AD). Their approach made use 

of associating variants in this region with changes in tau protein levels in CSF, 

in subjects from Germany. Neurofibrillary tangles are present in AD pathology, 

which suggests a role for microtubule-associated protein tau (MAPT) in AD. 

Their analysis suggested that the AD locus could be narrowed to a region in 

close proximity of the SNP, rs242557, as this variant is correlated with CSF 

tau levels. The SNP, rs242557, is a haplotype tagging SNP for the H1/H2 

haplotypes in the MAPT region and more specifically can be used to tag a 

sub-haplotype in the region, H1c, associated with AD (Laws et al. 2007). 

 

Figure 2.5: Plot showing the linear relationship between the genotypes of rs252557 and 
protein levels of tau in CSF. CSF levels per individual are shown according to the 
individual’s genotype. Mean CSF levels and standard deviation of show next to the 
genotype groups. Linear regression of the allele dose with CSF levels results in a 
significant positive correlation with the A allele. Figure reproduced from (Laws et al. 
2007). 
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While the MAPT locus did not contain the strongest eQTL found in this 

analysis, it is of importance because of its link to many neurodegenerative 

diseases, including tauopathies and Parkinson’s disease (Simón-Sánchez et 

al. 2009; Höglinger et al. 2011). Also, as discussed in the introduction to my 

thesis, this region of the genome contains a large block of LD resulting from 

the presence of a genomic inversion that limits the recombination between the 

H1 and H2 haplotypes in the region. As such, we should see many cis SNPs 

correlated with the MAPT transcript; however, our initial analysis did not 

reveal this expected pattern of association. Upon further investigation of the 

cis signal it is apparent that there is association signal for the eQTL over the 

extended region of LD; however, much of the signal is just below the p-value 

cut-off threshold used and thus excluded from our significant results set 

(Figure 2.6). 
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Figure 2.6: Manhattan plot showing this region’s eQTL p-values for an mRNA transcript 
for the gene MAPT. Each point represents the p-value for a specific SNP along 
chromosome 17 that is cis to the MAPT transcript. Also included in the plot are the 
recombination rates (right axis) as a dark grey continuous line based on HapMap data. 
Threshold for significance is denoted by horizontal dashed line. The relative position 
of the gene is the labelled arrow centred near the bottom of the plot. The direction of 
the arrow is the gene’s strand. 

 

Another gene with an eQTL, that has been previously reported in population 

based eQTL studies in human lymphoblastoid cell lines, is ribosomal protein 

S26 (RPS26) (Cheung et al. 2005; Stranger et al. 2005). This gene is also 

found to have an eQTL in our analysis (Figure 2.7). 
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Figure 2.7: Shown is an eQTL for RPS26 present in brain and also previously identified 
in eQTL analyses in LCLs. (a,b) Cheung et al. reported a significant association with 
the variant, rs2271194, which is in complete LD with two out of the six associated 
SNPs from our eQTL analysis in brain, including rs11171739, which was the SNP that 
gave the strongest association in brain. (a). Boxplot shows the linear relationship 
between genotype (x-axis is genotype allele dose), for rs11171739, and RPS26 
expression (y-axis is log10 normalized expression intensity) in brain. The boxplot 
shows expression summaries for the three genotype groups where top bar is 
maximum observation, lower bar is minimum observation, top of box is upper or third 
quartile, bottom of box is lower or first quartile, middle bar is median value. (b) LD plot, 
using the CEPH HapMap data, shows that the variants, significantly correlated with 
RPS26 expression, rs11171739 in brain and rs2271194 (circled) in LCLs, are in 
complete LD. Complete LD between the two variants suggests it is likely that both 
screens are picking up the same association for RPS26 expression. Haplotype block 
plots were created using Haploview (Barrett et al. 2005). Black boxes with no numbers 
indicate r2 = 1. For r2 values < 1, the r2 value is shown as a percentage in white text in 
the box. Figure reproduced from (Myers et al. 2007a). 

 

2.4: Discussion 

In this study, we found that eQTL are detectable on a genome-wide scale in 

human brain tissues. Of cortically-expressed transcripts, the eQTL analysis 

performed suggests that 6% may have expression profiles that correlate with 

genotype. On average, genetic variation accounted for 18.5% of a gene 

expression variation for transcripts with a significant eQTL in brain. In 2007, 

Dixon et al. also published a large, for the time, eQTL study based on LCLs 

from 400 subjects. Their eQTL analysis included genotypes for 408,273 SNPs 

and 54,675 transcripts (from 20,599 genes). They first estimated the 
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heritability of expression and found that 15,084 (28%) of the transcripts 

showed narrow-sense heritability. For these heritable transcripts, they 

performed an eQTL analysis and found that the peak SNP for each heritable 

expression trait on average accounted for 18% of the heritability. However, 

the more heritable the expression trait the more of the heritability was 

accounted for by the peak SNP from the eQTL analysis (Dixon et al. 2007). 

For the significant cis-eQTL identified, in our study of brain, on average the 

variant was located 55.4 Kb from the transcript. While these types of eQTL 

analysis have previously been performed in LCLs and for select genes in 

primary tissues, including brain, this was one of the first whole-genome eQTL 

studies in a human primary tissue. We found that while numerically more 

trans were detected in the analysis that the eQTL results are enriched for cis. 

Like previous studies, the cis-eQTL we identified are distributed symmetrically 

about the transcription start sites and the eQTL signals are generally larger 

closer to transcript start sites. This pattern likely reflects the LD present 

proximal to the gene and its regulatory regions and the decrease in LD with 

distance. In 2007, Stranger et al. published a study considering eQTL within 

and between populations from The HapMap Project. Their study was done 

using expression from LCLs including all 270 subjects from the HapMap 

Consortium. Their analysis included 2.2 million common SNPs, where 

variants were considered common if the MAF was at least 5% per population. 

They found 1,348 genes with a cis-eQTL and 180 with a trans-eQTL. 

Replication between at least two populations was found for 37% of the cis 

associations and 15% of the trans associations. Their results support an 

enrichment of functional cis-regulatory variants in the human genome 

(Stranger et al. 2007). In 2007, Bergen et al. published an eQTL study for 
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genes commonly studied in cancer research in LCLs. They attempted to 

estimate how many genes may be affected by cis-variation using three 

separate analysis approaches. Their gene expression set included 697 genes 

from 30 LCLs combined with resequencing data from 552 genes, which 

resulted in 30 candidate genes with appropriate variation for a cis-eQTL 

analysis. They found significant cis-eQTL for eight of the genes tested. When 

they compared their results for 14 genes both with and without cis-eQTL 

signal to other literature sources they found 80% of genes with a cis-eQTL 

and 85% of genes without a cis-eQTL were concordant with previous studies. 

Based on their results and previous studies, they estimated that 

approximately 25% of genes have a significant cis-eQTL and that the eQTL 

signal accounts for approximately 30% of the gene’s expression variation 

(Bergen et al. 2007). Based on these studies, there are some similarities in 

their findings when compared to the results from our study of eQTL in brain. 

The similarities include: distribution of cis-eQTL around the transcription start 

site, enrichment for cis- over trans-eQTL, and the average amount of 

expression variation, for transcripts with a significant eQTL, accounted for by 

the associated genetic variation. However, there are also some dissimilarities 

related to the proportion of genes identified with an eQTL and the rate of 

replication with other studies for the eQTL identified. For these dissimilarities, 

in our study of brain, we identified fewer transcripts proportionally than these 

other studies and fewer eQTL that have also been identified by other studies. 

These differences are likely related to the conservative approach we took in 

regards to excluding any result where a covariate had any indication of an 

effect on expression, and this study was one of the first to be performed 

genome-wide in a human primary tissue as opposed to LCLs. 
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This study does replicate an eQTL previously seen in gene specific studies on 

the expression of MAPT, a gene central to several neurodegenerative 

diseases. One of these studies, showing an eQTL for MAPT was performed in 

a subset of the samples included in this cohort (Myers et al. 2007b). This 

eQTL has also been seen previously for MAPT in a study related to 

progressive supranuclear palsy (Rademakers et al. 2005). Protein level 

changes of tau (MAPT) in relation to genotype, a protein QTL (pQTL), have 

also been previously reported in cerebrospinal fluid (Laws et al. 2007). 

Additionally the gene, RPS26, for which we have identified an eQTL, has also 

been reported in two other eQTL studies based on HapMap LCLs (Cheung et 

al. 2005; Stranger et al. 2005).  

 

There are inherent limitations of this study. First, we used more than one brain 

region for the source of tissue; this means that the eQTL detected here may 

well be generalizable across brain tissues, and indeed across cell types, but 

that we may be missing other cell- or region-specific eQTL. Additionally, it is 

unlikely that including multiple brain tissues created false positives related to 

known variation in gene expression between brain tissues, given our 

conservative handling of covariates. It is instead likely that the approach taken 

to deal with covariate effects, and including the tissue region as a covariate, 

resulted in an increase of false negatives. For example, if a transcript did have 

a significant eQTL, where the genetic variation accounted for large amount of 

the expression variation, but at the same time the tissue region covariate had 

a very small but detectable effect for this eQTL, it would be excluded from our 
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significant result set. In 2007, Hovatta et al. published an eQTL study based in 

inbred mice for region-specific brain expression. Their study design was to 

focus on specific brain regions whereas previous studies in mice typically 

used whole brain homogenates of large regions. However, the brain is 

heterogeneous and expression profiles do differ between regions. Their study 

included five brain regions from six inbred mouse strains. They did not find a 

large number of strain-specific genes based on gene expression but did find a 

large number of genes that showed region-specific expression profiles. 

However, for genes showing strain-specific expression profiles these were 

constant across brain regions. Based on an eQTL analysis, they found an 

enrichment of cis-regulators for strain-specific genes but for region-specific 

genes the enrichment was for trans elements. Their results suggest that many 

regulatory networks are tissue-specific and that this suggests that it is 

important to perform eQTL studies in tissues that are relevant to the 

phenotype of interest (Hovatta et al. 2007). A second limitation in our study 

was that the genotyping assay used was an early technology, and while it 

represented a significant advance over previous methods, the coverage of 

known common genetic variation was low compared to more recent 

genotyping platforms. More recent genotyping platforms typically base their 

design on variants that tag HapMap haplotypes thereby increasing the 

coverage of known genetic variability in the human genome captured during 

genotyping. Thirdly, this type of work captures expression in a cross-sectional 

manner, in post-mortem tissue; therefore, it is difficult to address other types 

of expression that may be influenced by genotype, such as (for example) 

induced expression, or sub-cellular localization of transcripts. Another 

limitation was the detection threshold selected in determining whether a 
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transcript was well detected in our study and therefore suitable for eQTL 

analysis. In this study we defined a transcript as well detected if it was present 

in at least 5% of the samples. However, at the same time as part of the 

analysis, in identifying significant eQTL, a filter was applied post hoc requiring 

that all significant eQTL have at least three expression measurements for the 

minor homozygote to ensure that the allele dosage regression was not based 

on incomplete data. This means that many transcripts with a low detection 

rate were tested for an eQTL that would never be considered significant in our 

analysis design. This resulted in an unnecessary increase in our multiple test 

burden as well as computation time. Lastly, as with other eQTL methods of 

the time, this work relies on array-based expression analysis, and this method 

does not capture splicing events as effectively as (for example) sequence-

based methods. These limitations notwithstanding, we believe this study 

provides an initial resource of eQTL in human cortical tissues that is of use for 

researchers investigating loci and gene models related to neurological 

disease. It is likely that further study of eQTL in primary tissues will add to our 

functional understanding of the effect of genetic variation in the human 

genome and serve as a resource in the study of complex traits associated 

with this variation.  
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3:  Identifying eQTL in Distinct Human Brain Regions 
(Gibbs et al. 2010) 

Statement of Contribution to this Research: 

I was involved in the conception and design of this study, including choice of 

genotyping platform, expression platform, and selection of tissue. I performed 

data quality control, data analysis, and data interpretation. I co-drafted and 

edited the manuscript. Cookson MR, Singleton AB, van der Brug MP, 

Hernandez DG, Traynor BJ, and Longo DL were also involved in the 

conception, design, choice of platform, and tissue selection. Cookson MR, 

Singleton AB, and I drafted and edited the manuscript. Nalls MA and 

Singleton AB contributed to the data analysis. I was not involved in the 

collection of the tissue samples or the generation of the genotype and mRNA 

expression data. Coordination and collection of the tissue was performed by: 

Traynor BJ, Troncoso J, Johnson R, Zielke HR, Lai SL, and Ferrucci L. 

Genotyping of the samples was coordinated or performed by: Hernandez DG, 

Traynor BJ, Arepalli S, Rafferty IP, and Lai SL. Generation of mRNA 

expression data was coordinated or performed by: van der Brug MP, Dillman 

A, and Cookson MR. 

 

3.1:  Introduction 

Because of our interest in genomic regulation of expression and neurological 

disorders we embarked upon a series of experiments to provide a brain 

region-specific contextual framework for genetic regulation of gene 

expression. Based on the previous work (Chapter 2) it was apparent that a 

systematic analysis of eQTL in brain tissue was feasible. We embarked upon 
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a set of integrated experiments designed to extend this previous work. 

  

We obtained frozen brain tissue from the cerebellum (CRBLM), cerebral 

frontal cortex (FCTX), caudal pons (PONS), and cerebral temporal cortex 

(TCTX) from 150 subjects (a total of 600 tissue samples). We undertook two 

separate assays across this series, genome-wide genotyping more than 

500,000 SNPs and mRNA expression profiling more than 24,000 transcripts in 

all four brain regions. Here I will discuss the results of these experiments, 

particularly in the context of integrated datasets to define expression 

quantitative trait loci (eQTL) and detailing differences and similarities across 

brain regions.  

 

Based on the successful completion and publication of the preceding, ‘pilot’, 

study (Chapter 2) we were able to initiate a second study of eQTL within 

human brain tissues with an expanded study and refined analysis design. The 

expanded study design included collecting and assaying multiple brain tissues 

from each individual, making use of newer and improved assay types and 

applying lessons learned in the ‘pilot’ study to improve analysis design and 

efficiencies. We employed dense tagging-based, whole-genome, SNP 

genotyping thereby improving coverage of genetic variability, within the 

human genome, for cohorts of central European descent. Additionally, we 

used newer versions of gene expression arrays that capture mRNA 

transcripts for known human transcripts based on more recent RefSeq 

information. Improved analysis design and efficiency over the previous work 

were attained in three primary areas: improved covariates, the implementation 

of imputation, and exclusion of inappropriate tests. For covariates we had 
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previously established that biological and technical covariates could have 

significant effects, and thus adjusted expression profiles for covariate 

information prior to eQTL analysis instead of filtering out possible significant 

eQTL where a covariate effect also exists. Using imputation to increase the 

density of genetic markers that are available for testing increases the power 

and ability to fine map the associations. Excluding transcripts that are not 

appropriate for inclusion, prior to eQTL analysis instead of after, reduced both 

the computational and multiple test burden. 

 

This chapter describes this effort and the observations we made relating to 

improved analytical approaches, the improvement in results imparted by 

denser genotype coverage, and the comparison across distinct brain tissues 

from the same individuals. 

 

3.2:  Materials and Methods 

3.2.1:  Subjects, North American Brain Expression Consortium 

(NABEC) 

(Coordination and collection of the tissue was performed by: Traynor BJ, 

Troncoso J, Johnson R, Zielke HR, Lai SL, and Ferrucci L.) 

 

Frozen tissue samples from the cerebral frontal cortex, cerebral temporal 

cortex, cerebellum, and caudal pons were obtained from 150 subjects who 

had donated their brains for medical research. Approximately 100-200 mg 

aliquots of frozen tissue were sub-dissected from each of the 600 samples 
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(150 brains x four regions) resting on dry ice to avoid thawing. Separate 

pieces were cut for DNA extraction to be used in SNP genotyping assays and 

RNA extraction for expression assays. Genomic DNA for genotyping was 

extracted using the DNeasy Blood and Tissue Kit as per the manufacturer’s 

instructions (Qiagen Inc., Valencia, California, USA). Total RNA was prepared 

using TRIzol (Invitrogen, Carlsbad, California, USA). 

 

3.2.1.1:  Subject Characteristics  

One hundred and fourteen brains were sampled from the University of 

Maryland Brain Bank, Baltimore, Maryland, USA. Thirty-six brains were 

sampled from the Department of Neuropathology, Johns Hopkins University, 

Baltimore, either as routine autopsy cases (n = 10), or as part of the National 

Institute on Aging-sponsored Baltimore Longitudinal Study of Aging (BLSA, n 

= 26). All individuals were of non-Hispanic, Caucasian ethnicity, and none had 

a clinical history of neurological or cerebrovascular disease, or a diagnosis of 

cognitive impairment during life.  

 

Summary statistics of the sample characteristics are shown in Table 3.1. The 

most common cause of death was accidental injury (n = 55 cases), followed 

by cardiovascular disease (n = 31), drug intoxication (n = 12), and pulmonary 

embolism (n = 3). Other causes of death included drowning (n = 3), 

respiratory disease (n = 2), compressional asphyxia (n = 1), suicide by 

hanging (n = 1), choking (n = 1), lightning strike (n = 1), liver disease (n = 1), 

mitral valve prolapse (n = 1), myocarditis (n = 1) and diabetic coma (n = 1). 

Cause of death was not available for the remaining 36 autopsies.  
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Table 3.1: Summary statistics of the subject characteristics 

	
  

3.2.1.2:  Sample Preparation  

(Sample preparation from the tissue was performed by: Traynor BJ, Lai SL, 

Hernandez DG, and van der Brug MP.) 

 

For each of the six hundred samples (150 brains x four regions), 

approximately 5 grams of frozen tissue was sub-dissected at either the 

University of Maryland Brain Bank or at the Department of Neuropathology, 

Johns Hopkins University, and sent on dry ice to the Laboratory of 

Neurogenetics (LNG), NIA. At LNG, 100-200mg aliquots of frozen tissue were 

sub-dissected from each sample. Samples were kept on dry ice to avoid 

thawing. Separate pieces were cut for DNA extraction to be used in SNP 

genotyping assays and RNA extraction for expression assays. Each tissue 

aliquot was stored at -80°C until use.  

 

Genomic DNA extraction for genotyping was performed using the DNeasy 

Blood and Tissue Kit as per the manufacturer’s instructions (Qiagen Inc., 
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Valencia, California). DNA concentration was determined using a Nanodrop 

ND-1000 spectrophotometer (Thermo Scientific, Wilmington, Delaware), and 

DNA extraction was repeated using a new tissue aliquot for samples with 

DNA concentration less than 50 ng/uL, or for samples where the 

260nm/280nm wavelength absorption ratio was less than 1.7, indicative of 

significant protein contamination of the DNA sample.  

 

For each of the 600 brain samples, total RNA was prepared from 

approximately 100 mg of tissue using a glass-Teflon homogenizer and 1 mL 

TRIzol (Invitrogen, Carlsbad, California, USA) according to the manufacturer’s 

instructions. RNA samples were re-suspended in RNAse free water to a final 

concentration of > 500 ng/uL.  

  

3.2.2:  Assays 

3.2.2.1:  SNP Genotyping  

(Genotyping of the samples was coordinated or performed by: Hernandez 

DG, Traynor BJ, Arepalli S, Rafferty IP, and Lai SL.) 

 

Genotyping was performed using DNA extracted from cerebellar tissue. SNP 

genotypes were assayed using Illumina Infinium HumanHap550 version 3 

BeadChips (Illumina Inc., San Diego, California, USA) according to the 

manufacturer’s instructions. Genotype data was analysed using the 

Genotyping Analysis Module 3.2.32 within the BeadStudio software version 

3.1.4 (Illumina Inc.). All 150 brain samples had an average call rate of 99.86% 

(range 97.72% - 99.95%).  
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The Illumina HumanHap550 chip assays genotypes for 561,466 SNPs across 

the genome. The Illumina Infinium genotyping platforms are based on the 

Sentrix bead arrays. The Sentrix arrays are a single base-resolution platform, 

which helps avoid some of the sequence complexity that may arise from 

calling genotypes based on oligonucleotide probe arrays. This system is 

based on allele-specific primer extension and includes a two-colour readout, 

one colour for each allele tested (Figure 3.1). Based on the manufacturer’s 

comparisons to PCR-based genotyping assays the Illumina arrays had a call 

rate of 99.7%, reproducibility of 99.96%, and concordance rate of 99.97% 

(Gunderson et al. 2005). In a follow on paper describing the efficiency, 

accuracy and scalability of the Illumina whole-genome genotyping platform 

the authors compared the genotype reproducibility rates based on HapMap 

samples and found that concordance was above 99% (Steemers et al. 2006). 

This array is based on haplotype tagging SNPs and provides 87% coverage 

of known genetic variation in HapMap II CEU population (Li, Li and Guan 

2008).  
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Figure 3.1:  Cartoon of genotyping 
using the Illumina Infinium Sentrix 
arrays. A) Each variant is represented 
by a bead-type where fragmented 
sample DNA binds to a 
complementary probe sequence 
stopping one base before the allele 
being assay. B) Single-base extension 
incorporates one of four labelled 
nucleotides conferring allele-
specificity, extending the probe with 
the correct base. C) Probes are laser 
excited causing the nucleotide label 
emits a colour signal for detection. 
Figure adapted from Illumina 
promotional material. 

 

3.2.2.2:  RNA Expression  

(Generation of mRNA expression data was coordinated or performed by: van 

der Brug MP, Dillman A, and Cookson MR.) 

 

Profiling of 22,184 mRNA transcripts was performed using HumanRef-8 

version 2 Expression BeadChips (Illumina Inc.) in accordance with the 

manufacturer’s protocol. Raw intensity values for each probe were 

transformed using the rank invariant normalization method (Workman et al., 

2002; Schadt et al., 2001; Tseng et al., 2001) using the Gene Expression 

Module 3.2.7 within Illumina’s BeadStudio software. The Illumina Sentrix 

 

 

 

Figure removed. 

Third party copyright permission 
could not be obtained. 
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HumanRef-8 v2.0 Expression BeadChip assays the expression levels of 

approximately 24,000 human Refseq transcripts using 50-mer probes. 

 

3.2.3:  Data analysis 

For each of the four brain regions, a regression analysis was performed on 

the expression intensities generated for mRNA transcript probes. Gender, 

age, post-mortem interval (PMI), tissue source, and hybridization batch were 

included as covariates in each of these analyses. Residuals from the 

regression analysis for each probe were then used as the quantitative trait for 

that probe in a genome-wide association analysis to identify quantitative trait 

loci. These analyses were performed using the assoc function within PLINK, 

which correlates allele dosage with change in the trait (Purcell et al., 2007). 

Each of the four tissue regions were analysed separately, and independent 

genome-wide association analyses were performed looking for quantitative 

trait loci associated with mRNA expression levels (expression QTL; eQTL). 

To correct for the large number of SNPs tested per trait, a genome-wide 

empirical p-value was computed for the asymptotic p-value for each SNP 

using 1,000 permutations of sample-label swapping. To correct for the 

number of traits being tested per tissue region, a false discovery rate (FDR) 

threshold was determined based on the empirical p-values using the fweR2fdr 

function of the multtest package in R (Pollard, Dudoit and van der Laan 2005). 

Empirical p-values were allowed to exceed this threshold if the linkage 

disequilibrium R2 was greater than or equal to 0.7 with a SNP with empirical 

values within the FDR threshold. Keeping SNPs with a sub-significant 

empirical p-value, if they are in strong LD with a SNP significantly correlated 
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with a transcript’s expression, does not alter whether or not a significant eQTL 

is detected for a transcript, but does allow for a broader detection of the edges 

of the locus. The sequences of transcript probes with significant eQTL were 

examined for the presence of polymorphisms, with a MAF > 1%, using CEU 

HapMap data, and if present that eQTL was removed from the result set. 

  

3.2.3.1:  Genotyping data  

The threshold call rate for inclusion of a sample in the analysis was 95%. Two 

samples initially had a call rate below this threshold, but were successfully re-

genotyped using fresh DNA aliquots. Thus, all 150 brain samples had a call 

rate greater than 95%, and were included in the subsequent analyses for 

quality control of the subjects based on their genotypes (average call rate was 

99.86%; range 97.72% - 99.95%, based on the missing procedure within the 

PLINK v1.04 software toolset (Purcell et al. 2007)). 

 

The gender of the samples reported by the brain banks was compared 

against their genotypic gender using PLINK 's check-sex algorithm. The 

check-sex function determines a sample’s genotypic gender based on 

heterozygosity across the X chromosome. Two samples with gender 

discrepancies were detected. One of these arose from a clerical error at the 

brain bank and was included in the analysis after correction of the clinical 

information, whereas the other sample (UMARY1496) was removed from 

subsequent analysis.  

 

To confirm the ethnicity of the samples, Identity-By-State (IBS) clustering, 

principal components (PCA), and multidimensional scaling (MDS) analyses 
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(Price et al. 2006) were performed within PLINK using the genotypes from the 

brain samples that had been merged with data from the four HapMap I 

(International HapMap Consortium 2005) populations (n = 32 Caucasian 

(CEU), 12 Han Chinese, 16 Japanese and 24 Yoruban non-trio samples 

previously genotyped by Illumina and assayed on the Infinium HumanHap500 

version genotyping chips). Outlier detection was based on a sample’s 

distance, for the first and second principal components, being more than three 

standard deviations (S.D.) from the mean of the reported population group for 

those components. Two samples were outliers based on population and were 

excluded from further analysis (UMARY4545, UMARY927) (Figure 3.2). MDS 

is a method for information visualization, particularly for distance metrics. 

MDS aims to place each item in N-dimensional space such that the between-

object distances are preserved as well as possible. PCA is a data 

transformation that converts possibly correlated variables into linearly 

uncorrelated components; where the first component accounts for largest 

variance, the second component the second most variance, and the Nth 

component the least amount of variance. Genotype data of the samples was 

compared to identify cryptic relatedness using the Identity-By-Descent (IBD) 

procedure within PLINK. No samples were found to be from related 

individuals. The IBS/IBD analysis, using PLINK, estimates a genome-wide 

IBD measure between each pair of samples. This estimate, based on the 

sharing of alleles between each pair of samples, can identify individuals that 

appear more similar, to each other, than expected by chance. 
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Figure 3.2: Population MDS plot based on genotype, from genome-wide IBS pairwise 
distances between the 150 samples used in this study (LNG, black circles) and 
HapMap samples (CEU, red diamonds; CHB, greens x’s; JPT, blue +’s, and YRI, purple 
triangles). The plot shows that of the 150 samples, from the study, reported to be 
Caucasian individuals from the United States, two samples are ethnic outliers relative 
to the rest of the study cohort and the CEU population from HapMap (indicated by 
Removed labels). Outlier detection was based on 3 S.D. from the mean for the reported 
population group. Figure reproduced from (Gibbs et al. 2010). 

 

Mach software version 1.0.16 (Li et al. 2009, 2010) and HapMap 2 CEU 

phase data (release 22) were used to impute genotypes for ~2.5 million 

SNPs. Imputed SNPs were excluded if the linkage disequilibrium r2 values 

between imputed and known genotypes were less than 0.3, and if their 

posterior probability averages were less than 0.8 for the most likely imputed 

genotype. For each of the four tissue regions, SNPs were also excluded if: (a) 
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the call rate was less than 95%, (b) Hardy-Weinberg equilibrium (HWE) p-

value was less than 0.001, and (c) the SNP had less than 3 minor 

homozygotes present. On average, for the four tissues groups, ~1.6 million 

SNPs passed these quality threshold checks and were appropriate for use in 

the eQTL analyses. The exact numbers of SNPs used per tissue group are 

shown in Table 3.2. 

 

 

Table 3.2 Summary counts of total subjects, mRNA transcript probes, and SNPs that 
were included for analysis per tissue region. Each column represents a tissue region: 
cerebellum (CRBLM), cerebral frontal cortex (FCTX), caudal pons (PONS), and cerebral 
temporal cortex (TCTX). Table adapted from (Gibbs et al. 2010). 

	
  

3.2.3.2:  RNA expression data  

Raw intensity values for each probe were transformed using the rank invariant 

normalization method (Schadt et al. 2001; Tseng et al. 2001; Workman et al. 

2002) for mRNA analysis. Individual samples that had an average detection 

score less than 0.99 were either discarded or re-run from a separate 

preparation. The following mRNA samples were excluded based on this 

metric: UMARY1668 (CRBLM), UMARY1909 (FCTX), UMARY4543 (PONS) 

and UMARY4782 (PONS). The following individuals were not run on mRNA 

expression arrays for any tissue region: BLSA1672, JHU1344 and JHU1361.  

 



	
   134	
  

3.2.3.3:  Clustering of Samples by Brain Region 

Performing a Hierarchical Clustering (HCL) (Eisen et al. 1998) of the sample 

expression profiles using the TM4 MeV version 4.1.01 tool (Saeed et al. 

2003), ‘Average Linkage clustering’ resulted in the samples separating by 

brain tissue region. Separation of samples into four distinct clusters matching 

the brain tissue region was clear (Figure 3.6A). For clustering all detected 

transcripts were used. The HCL samples trees were saved as Newick tree 

files and plotted again using the HyperTree tool 

(http://hypertree.sourceforge.net/). The Newick format is a standard format for 

representing visual data trees in a computer-readable format. 

 

3.2.3.4:  Selection of traits for analysis 

Traits were excluded from analysis if they were detected in less than 95% of 

samples for each tissue region. For each tissue region and trait type the 95% 

threshold was determined using total number of analysable samples, for this 

pairing of region and trait. Only probes that were detected in 95% of all 

samples within a tissue type were used for further analysis. In total, 10,326 

mRNA transcripts were analysed within at least one brain tissue region; 8,076 

(78%) mRNA transcripts were analysed within all four brain tissue regions 

(Figure 3.3).  
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Figure 3.3: Stylized Venn diagrams showing the frequency overlap, between the four 
brain tissues, of the number of transcript probes that were detected in 95% of samples. 
The rectangles with different orientations and border, shown on the left legend 
represent the different tissue and the different squares represent overlapping 
frequencies between different tissues. The colour coded squares represent the number 
of tissues overlapping, where the central blue square in the diagram represent the 
number of probes reliably detected in all four tissues. Hence, the blue square in the 
diagram indicates that 78.2% of transcript probes were detected in all four tissue 
regions. Figure adapted from (Gibbs et al. 2010). 

	
  

Using a 95% detection threshold, in the tissue sample series, is a more 

appropriate cut-off for inclusion in the eQTL analysis as it makes more 

appropriate use of the power of the series and reduces the number of traits 

analysed, which will then likely be discarded by multiple test correction and 

other trait selection criteria. In my previous thesis study, many initially 

suggestive trans-eQTL and some cis were false positives related to low 

detection rate of the transcript (Figure 3.4). These, in most instances, were 
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filtered from the published result sets with additional test correction and 

filtering steps. 
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Figure 3.4: Plot showing transcript detection rate based on all subjects and suggestive 
or better eQTL signal from the mix cortical tissue eQTL analysis study (Chapter 2). In 
that study a transcript had to be detected in 5% of subjects to be included for analysis. 
In the later two studies this was increased to 95%. As the plot clearly demonstrates 
much of the trans signal (red) and some of the cis signal (blue) were for transcripts 
that were not well detected in the series. Even though many of these were removed by 
other corrections and filters, prior to publication for that study, it still dramatically 
increased computation time and test burden for transcripts that should not have been 
included for analysis.	
  

 

3.2.3.5:  Polymorphism(s) in Assay Probes 

Sequence variants within the sequence of the probe used to assay individual 

traits may cause differential hybridization and inaccurate expression 

measurements. To exclude this confound, the sequences of probes with 

significant correlation to a trait were examined for the presence of known 
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polymorphisms, with a MAF > 1%, using CEU HapMap data, and if present, 

that QTL was removed from the result set. Removal of eQTL, where the 

transcript’s probe sequence contained a known polymorphism excluded 36 

(10.1%) of transcripts from the CRBLM, 35 (9.5%) from FCTX, 30 (9.7%) from 

PONS, and 44 (10.1%) from TCTX. Of the above set of transcripts, excluded 

from the analysis results, seven were present in all four tissue regions results. 

 

3.2.3.6:  Correction for known Biological and Methodological 

Covariates 

Prior to quantitative trait loci analysis, each trait was adjusted using the 

available biological and methodological covariates in an attempt to remove 

the influence of these potentially confounding affects.  In R, each trait was 

regressed using the following model: 

Y=β0 + β1X1+… βnXn + ε 

 

In this model, Y is the trait profile (log2 normalized mRNA expression 

intensities) and X1 … Xn represent the biological covariates Age and Gender 

and the methodological covariates post-mortem interval (PMI), which Brain 

Bank the samples was from, and which preparation / hybridization batch the 

sample was processed in. Within this model gender, tissue bank, and batch 

were treated as categorical covariates. After fitting each trait to the model the 

residuals from the model are kept and represent the trait in eQTL analyses.  

Thus, the expression variation attributable to gender, age, post-mortem 

interval, tissue bank and hybridization batch are removed prior to eQTL 

analysis. Histograms showing the proportion of mRNA traits that are 
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potentially impacted by these covariates are shown in Figure 3.5. Covariates 

for hybridization batch and Brain Bank tissue source had the largest effect, 

but were also very colinear. Gender and post-mortem interval (PMI) 

covariates had the smallest effects. It is unknown whether the cause of death 

was confounding effect within our subject cohort. A cause of death covariate 

was not included in the covariate adjustment as the information was not 

complete for 24% of the subjects in the cohort. It has previously been shown 

that agonal state for conditions such as hypoxia and coma affect gene 

expression in post-mortem brain more than age, gender, and post-mortem 

interval, which are covariates that were available for analysis within our 

subjects (Tomita et al. 2004). It has also previously been reported by Li et al. 

that tissue pH (measure of acidity or basicity) from post-mortem human brain 

is indicative of agonal state. They found that subjects with a prolonged agonal 

state had a lower pH than subjects with brief deaths. Additionally, they found 

that samples with lower pH showed an increase in expression of transcription 

factors and genes encoding stress-response proteins, and decreased 

expression for energy metabolism and proteolytic activity related genes. The 

authors suggest that the functional specificity of these gene expression 

changes reflect a coordinated biological response in living cells and not 

random RNA degradation (Li et al. 2004).  
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3.2.3.7:  Quantitative trait loci analysis  

For each of the four brain regions, a regression analysis was performed on 

the residuals described in the preceding section for mRNA transcript 

expression levels. The trait residuals were then used as the quantitative 

phenotype for that probe in genome-wide association analysis looking for 

quantitative trait loci. These analyses were performed using the assoc 

function within PLINK, which correlates allele dosage with change in the trait. 

Each of the four tissue regions was analysed separately, and independent 

genome-wide association analyses were performed to identify expression 

quantitative trait loci (eQTL). The PLINK toolset quantitative trait association 

analysis fits data to the following model:  

Y=β0 + β1ADD+ ε 

In this model, Y is the quantitative trait and ADD represent genotypes 

encoded as allele dosage.  

 

3.2.3.8:  Correction for multiple tests 

To correct for the large number of SNPs tested per trait, a genome-wide 

empirical p-value was computed (North, Curtis and Sham 2002) for the 

asymptotic p-value for each SNP by using 1,000 permutations of swapping 

the sample labels of the traits, using the maxT permutation functionality 

provided within PLINK. A permutation based method using label-swapping of 

the traits is an appropriate method of test correction (Churchill and Doerge 

1994) for these analyses as it is not dependent on these quantitative traits 

having a normal distribution and also allows the linkage disequilibrium of the 

genomic regions being tested against the traits to be maintained. 
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To correct for the number of traits being tested per tissue region, a false 

discovery rate (FDR) threshold was determined based on the empirical p-

values using the fwer2fdr, family wise error rate to false discovery rate, 

function of the multtest package in R (Pollard, Dudoit and van der Laan 2005). 

The multtest package is an R library providing multiple methods for use to 

correct for multiple hypothesis testing. The FDR method finds the largest p-

value that is substantially smaller than expected, based on the desired false 

discovery rate level, where this largest p-value and all p-values less than it 

can then be considered significant (Benjamini and Hochberg 1995). Empirical 

p-values were allowed to exceed this threshold if their linkage disequilibrium r2 

was greater than or equal to 0.7 with a SNP with empirical values within the 

FDR threshold.  

 

3.2.3.9:  Replicated eQTL  

To identify eQTL that have previously been reported, we considered the 

results from studies within the Pritchard Lab eQTL Browser 

(http://eqtl.uchicago.edu/). Of our 282 mRNA transcripts with a cis-eQTL 

detected in at least one tissue, 149 (53%) of these may have also been seen 

in at least one or more previous eQTL studies. To avoid incomplete 

annotation information when comparing between studies, the search for 

overlap in the studies was based on the transcript’s gene symbol. Searching 

based on gene symbol means that the 53% possible overlap with other 

studies is applicable for stating that a gene with an eQTL was shared between 

studies, but this does not imply that the same eQTL was seen in multiple 

studies. For instance different transcripts for the same gene or a different 

region of genetic variation may have been identified between the studies. For 
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the 53 mRNA transcripts with a cis-eQTL that we detected in all four of brain 

regions, 37 of these have been identified in at least one or more eQTL 

studies. Overlap with findings in LCL HapMap samples (Stranger et al. 2007) 

is 76 transcripts, in cortical samples (Myers et al. 2007a) the overlap is 19 

transcripts, and in liver (Schadt et al. 2008) the overlap is 108 transcripts. 

While it may be discouraging that the overlap with findings from the Myers et 

al. cortical samples is not larger, we believe that this is a function of the 

coverage of genetic variation included in the analysis and changes to the 

analysis design, such as adjusting for covariates prior to analysis instead of 

removing all results with a potential covariate effect. The current study 

includes genotypes from 550K (~1.65 million after imputation and selection) 

SNPs whereas the Myers et al. study included 366,140 SNPs; the Schadt 

study used 782,476 SNPs; and the Stranger study used ~2.2 million SNPs. 

So ~53% of our transcripts with a cis-eQTL may have also been seen in at 

least one other study; this does not take into consideration differences in the 

tissues, assay platforms, analysis methods and annotations used in these 

studies.  

 

3.2.4:  Data Access 

The genotype and expression data are publicly available as NCBI dbGaP 

study accession phs000249.v1.p1 and NCBI GEO series accession 

GSE15745 (Edgar, Domrachev and Lash 2002; Barrett et al. 2007; Mailman 

et al. 2007) (Figures 9.2 and 9.3, Appendix). 
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3.3:  Results 

3.3.1: mRNA transcript levels differ between brain regions  

To assess whether differences in mRNA expression were consistently 

different between brain regions a global comparison of these measures 

across tissues was performed. Unsupervised cluster analysis using these 

data demonstrated that the four brain regions have different expression 

profiles (Figure 3.6A). Expression pattern differences were most distinct 

between cerebellum, pons and cerebral cortical tissue, with frontal and 

temporal cortices clearly separating within the dataset. These data show that 

mRNA expression levels vary measurably and markedly between brain 

regions. 

 

The next analysis was limited to the mRNA dataset of those probes where 

sufficient detection was observed in 95% of samples analysed in each tissue 

region. This provided data on a total of 10,326 probes against individual 

mRNA transcripts. The distribution of observed transcript abundance was 

plotted as a histogram for each tissue (Figure 3.6B). We next compared 

mRNA expression levels at individual loci directly between each possible pair 

of tissue regions (Figure 3.6B). In general levels of expression were quite 

similar between tissues. Measures within frontal and temporal cortices were 

consistently the most alike whereas cerebellar tissue provided the most 

distinct profile of the four regions.  
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Figure 3.6: Analysis of mRNA measures across four human brain regions. (A), 
unsupervised cluster analysis of mRNA expression levels. Cluster branches from each 
brain region are colour coded accordingly and demonstrate consistent separation of 
cerebellum, pons and cerebral cortical samples; with separation of frontal and 
temporal cortex samples using mRNA transcript levels. (B) Tissue based pairwise 
comparisons of mRNA expression. The analyses in these figures used only transcripts 
that were well detected in each pairing of tissues compared. Histograms show the 
distribution of mRNA expression levels for each tissue, axes are log2 normalized 
expression intensities and the % of transcripts at that expression level. Scatter plots 
are direct comparison of the level of each detected transcript in each tissue pair; axes 
are the log2 normalized expression intensities. Notably frontal cortex (FCTX) and 
temporal cortex (TCTX) show the most similar patterns of expression; conversely, all 
comparisons against cerebellar (CRBLM) tissue show this tissue to have the most 
distinct patterns for all measures. Figure was adapted from (Gibbs et al. 2010). 

	
  

3.3.2:  Genotype influences mRNA expression 

A primary aim underlying these experiments was to examine the extent of 

genetic control of expression within brain tissues. To investigate this process, 

we undertook a series of eQTL analyses. From the 537,411 genotyped SNPs 

that passed quality control filtering we imputed 2,545,178 SNPs. After 

additional quality and analysis specifications filtering 1,629,853 SNPs 

(average) were used for analysis. With these data, we then performed 

regression of allele dosage against each measure using expression of mRNA 

transcripts as the dependent variable and genotype as the independent 

variable and treating each tissue as a separate analysis. We corrected for 

number of tests per trait by permutation and for the number of traits using an 
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FDR-like measure. This yielded a necessarily conservative threshold for 

significance (Churchill and Doerge, 1994). Prior to analysis, each trait was 

adjusted using available biological and methodological covariates in an 

attempt to reduce the influence of systematic confounding effects. Post hoc 

we annotated significant eQTL as cis if the SNP was within 1 megabase (Mb) 

of the transcript being tested; all other SNP-dependent variable tests were 

designated as trans. Notably, because the designation of cis- and trans-eQTL 

tests was performed post hoc, there was no distinction in terms of level of 

statistical correction between these groups. 

 

There were a large number of significant correlations detected between 

genetic variation and variation in the expression of mRNA transcripts, with 

significant eQTL detected in each of the four brain regions; ranging from 280 

(3.2%) in the pons to 391 (4.2%) in the temporal cortex (Table 3.3). These 

eQTL accounted for between 18% and 77%, of corrected expression levels, of 

associated transcripts between individuals. On average the eQTL accounted 

for 28% of the expression variation of the associated transcript (cis-eQTL 

mean is 30% and trans-eQTL mean is 22%). 

 

Table 3.3: Counts of significant eQTL by brain region; cerebellum (CRBLM), cerebral 
frontal cortex (FCTX), caudal pons (PONS), and cerebral temporal cortex (TCTX). 
Counts include total, cis and trans numbers for correlated pairs of mRNA transcripts 
and SNPs as well as unique number of mRNA transcript probes and SNPs. Table 
adapted from (Gibbs et al. 2010). 
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To assess the enrichment of detected cis-eQTL relative to those in trans we 

calculated the number of observed and possible cis- and trans-eQTL for 

mRNA expression levels. Based on a definition of cis at 1Mb, these data 

showed an enrichment of cis-eQTL relative to trans. The peak enrichment of 

cis-eQTL was observed at ~68 Kb for mRNA transcripts.  

	
  

The abundance of cis-eQTL for mRNA expression prompted us to examine 

the distribution of cis-eQTL (Figure 3.7A-D). This revealed that both the 

number of significant eQTL and the strength of association between SNP and 

mRNA expression level were inversely correlated with physical distance 

between the genetic variation and the transcript start site (TSS) of the mRNA 

transcript in question. The average distance, for cis-eQTL, between the SNP 

and the transcript is 70 Kb. The most significant cis-eQTL tended to be 

present in all four tissues tested (Figure 3.7E). Of the transcripts with cis-

eQTL that were significantly detected in at least one brain region, 53% have 

been previously reported, when intersecting by gene names instead of 

individual gene mRNA transcripts or assay probe IDs. This number increased 

to 70% when analysis is limited to those cis-eQTL detected in all four tissues 

(Myers et al., 2007a; Schadt et al., 2008; Stranger et al., 2007). Table 3.4 lists 

the top ten cis-eQTL transcripts found in this study. 
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Figure 3.7: (A-D) Significant cis-eQTL p-values per tissue region relative to the 
transcription start site (TSS). (E) Average p-values for cis-eQTL across regions. The 
more significant cis-QTL tended to be both closer to the transcription start site and 
common across tissue regions tested. Figure adapted from (Gibbs et al. 2010). 

 

3.3.3:  Detected eQTL are consistent across brain regions 

In order to compare detected eQTL between tissues, we selected every SNP-

transcript pair that passed the defined threshold for significance in at least one 

tissue. We then compared R2 values for each eQTL across tissues using 

ternary plots (Figure 3.8). The majority of significant cis-eQTL were shared 

across the four brain regions, while trans signals shared across tissues are 

almost complete absent. 
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Figure 3.8: Comparison of eQTL across tissue regions. Any eQTL that passed our 
threshold for significance in at least one tissue was included in the Ternary plots. The 
colour of the points in the ternary plots reflects the cumulative R2 value, from the 
correlations, for all tissues tested within each plot. Points toward the centre indicate 
an equal R2 value across the three regions under investigation. Points toward the 
corner of a plot indicate a high R2 in one of the three tissues; points toward the edges 
of the plot indicate a high R2 in two of the three tissues. (A-H) Comparing eQTL in 
every three-way combination of the four tissues for cis (A-D) and trans (E-H). Notably 
the cumulative R2 is generally higher for cis compared to trans loci. Green circles 
highlight a cluster of relatively high cumulative R2 values driven primarily by the 
observed R2 within cerebellar tissue. These points were revealed to be a cis-eQTL 
involving 20 SNPs and two neighbouring transcripts, PPAPDC1A and C10orf85. (Q-T) 
Boxplots show expression level plotted against genotype for one of these eQTL SNP-
transcript pairs (SNP rs2182513 and PPAPDC1A) and illustrates that this is a tissue-
specific eQTL limited to the cerebellum. C10orf85 follows the same pattern with an 
eQTL present in cerebellum but not in the other three tissue. Figure adapted from 
(Gibbs et al. 2010). 

 

 

These plots illustrate that the great majority of cis-eQTL with strong effect 

sizes were consistent across these tissues. We found tissue-specific eQTL to 

be less common for large effect sizes, but there were observable events. 
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However, for individual significant SNP and trait correlations, tissue-specific 

correlations were detectable (Figure 3.9). For example, while strong eQTL 

were found for churchill domain containing 1 (CHURC1) in all tissues and as 

reported previously in liver (Schadt et al. 2008), several cis-eQTL for 

phosphatidic acid phosphatase type 2 domain containing 1A (PPAPDC1A) 

were restricted to the cerebellum, despite reliable detection of the transcript in 

all four brain regions (Figures 3.10 and 3.11). 

 

Figure 3.9: Stylized Venn diagrams showing the frequency overlap of the number of 
significant SNP and transcript correlations that are detected in the four brain tissues. 
The rectangles with different orientations and border, shown on the left legend 
represent the different tissue and the different squares represent overlapping 
frequencies between different tissues. The colour coded squares represent the number 
of tissues overlapping, where the central blue square in each Venn diagram represent 
the proportion of significant correlations detected in all four tissues. Hence, the blue 
square in the cis diagram indicates that 18.6% of the significant SNP and transcript 
correlations detected were present in all four of the tissue regions. Whereas the green 
squares show the proportion of significant SNP and transcript correlations only 
detected in that region of the brain.  
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Figure 3.10: Manhattan plots, one for each brain tissue region, show the p-values from 
the correlations between SNPs and mRNA transcripts in a 500Kb region centred on 
CHURC1. A cis-eQTL for CHURC1 in this genomic region is present in all four brain 
tissues. A cis-QTL for CHURC1 has also been reported within liver (Schadt et al. 2008). 
Within each plot the X-axis is the physical position along this region of the 
chromosome and the Y-axis is the –log10(asymptotic p-values) for the correlations.  
The p-values are colour coded and numbered to match the annotated transcripts 
labelled in the top portion of the plots. Thus in cerebellum (CRBLM), cerebral frontal 
cortex (FCTX), caudal (PONS), and cerebral temporal cortex (TCTX) the dark blue ‘5’s 
are p-values, for individual SNPs, correlated with expression levels of CHURC1. mRNA 
transcript annotations shown in grey are those where a probe is present on the 
expression platform but not detected in 95% of the tissues. Figure reproduced from 
(Gibbs et al. 2010). 
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Figure 3.11: Manhattan plots show an example of a cis-eQTL for an mRNA that appears 
to be tissue-specific. The plots, one for each brain tissue region, show the p-values of 
correlations between SNPs and mRNA transcripts in a 1Mb region centred on 
PPAPDC1. Within each plot the X-axis is the physical position along this region of the 
chromosome and the Y-axis is the –log10(asymptotic p-values) for the SNP and 
transcript correlations. The p-values are colour coded and numbered to match the 
annotated transcripts labelled in the top portion of the plots. Thus in cerebellum 
(CRBLM) the red ‘2’s are p-values for SNPs correlated with the expression levels of 
PPAPDC1A.  Also present at this same genomic locus is another tissue specific eQTL 
for the mRNA transcript C10orf85, shown as green ‘3’s. Figure reproduced from (Gibbs 
et al. 2010). 
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3.4: Discussion 

The work I have described here and the public release of the data resulting 

from this effort, aim to facilitate an understanding of the initial consequences 

of common genetic variation on gene expression in brain. These data show 

clearly that, as expected, patterns of expression are measurably different 

across brain tissues. eQTL analyses reveal an abundance of significant eQTL 

that are predominantly cis in nature. Previous eQTL results, from the human 

cerebral cortex (Myers et al. 2007a), as well as eQTL results from HapMap 

lymphoblastoid cell lines (LCL) (Veyrieras et al., 2008) have suggested that 

SNPs proximal to genes, including SNPs upstream of the transcription start 

site (TSS), within the gene, and downstream of the transcription end site 

(TES) have a greater influence on gene expression than those further away. 

This is presumably because genetic variation around promoter elements, 

splice sites, and 3' UTRs affects transcription, splicing, and mRNA stability 

(Kwan et al. 2008) that results in an enrichment of cis- over trans-eQTL. The 

power to detect the signal in a local cis-variant is likely a direct effect whereas 

trans, if detectable, are likely indirect and underpowered for accurate 

detection in series of these sizes (Pastinen, Ge and Hudson 2006). As the 

effect from trans-variation is likely to occur through an indirect effect, this 

means there is likely another unaccounted-for intermediate effect in between 

the genetic variation and the trait being measured, which decreases the 

power of detection (Schliekelman 2008).  

 

It is notable, particularly given the systematic differences in expression 

patterns among the four tissues, that many of the significant eQTL with the 

strongest signal were consistent across brain tissues. Tissue-specific eQTL 
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are also observable in the current data set, suggesting that there are genetic 

effects on expression that are dependent on the tissue type used irrespective 

of expression levels of the mRNA. This emphasizes the importance of 

exploring eQTL in the context of a relevant tissue. The ability to analyse and 

compare both distinct and similar brain tissue regions, from the same 

subjects, in this study allowed for a more thorough comparison of eQTL in 

brain tissues. Whereas in the previous study, described in Chapter 2 of a 

single sample set based on a mix of cortical tissues, the only whole-genome 

eQTL results available for comparison were from HapMap lymphoblastoid cell 

lines (LCL), at that time. This study and data created the initial cohort that has 

since become known as the North American Brain Expression Consortium 

(NABEC). 

 

The use of LCLs in the discovery and understanding of eQTL has been quite 

useful; however, there may be potential problems with using LCLs as a proxy 

of other tissues and cell types in eQTL analysis. When using LCLs there may 

be potential artefacts in expression levels. Expression levels may correlate 

with Epstein–Barr virus (EBV) load and growth rates, some genes may exhibit 

monoallelic expression and LCLs are generated from a blood cell lineage 

(Choy et al. 2008; Plagnol et al. 2008). In a 2009, a report from Dimas et al. 

suggested that tissue specificity for eQTL is widespread with only 20 to 30% 

of eQTL replicating across tissues (Dimas et al. 2009). An interpretation of the 

Dima et al. results, suggests that eQTL shared across tissues are closer to 

the TSS and have a larger effect size while tissue-specific eQTL are more 

widely dispersed in cis and have a smaller effect sizes (Figure 3.12) (Dimas et 

al. 2009; Montgomery and Dermitzakis 2011). More generally it has also been 
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shown that eQTL shared across tissues typically falls somewhere between 

40% and 80% depending on tissue similarity and analysis methods (Heinzen 

et al. 2008; Ding et al. 2010). In 2008, Emilsson et al. published a large study 

of expression and obesity traits in an Icelandic population from blood and 

adipose tissue. Their results showed correlations between obesity traits and 

gene expression in both tissues, but the results were much stronger in 

adipose than in blood, 50% and 10% respectively. The stronger correlations in 

adipose tissue with obesity traits were likely expected as this tissue is 

primarily composed of adipocytes and obesity can be characterized by the 

increase in size of adipocytes. They also identified eQTL based on 

segregation and linkage analysis. Of the eQTL they identified, 50% were 

shared by both tissues and were strongly cis rather than trans (Emilsson et al. 

2008). In 2011, Innocenti et al. published a study considering the 

reproducibility of eQTL studies. This study based on human liver from 3 

cohorts found that ~30% of SNP-expression correlations failed to replicate. 

They suggest that other factors associated with the tissue were confounders 

for replication including: drug exposure, clinical descriptors, and tissue 

ascertainment. They reiterated that the array’s expression probe design can 

be a confounder, if polymorphisms within the assay probes are not accounted 

for. They found that controlling for these possible confounds increased the 

replication rate. They also found that the most replicable eQTL variants were 

those enriched at gene starts and stops. For 14 genes, they did additional 

validation and fine mapping confirming haplotype-specific in-vitro expression 

differences. Overall, their study potentially validated hundreds of eQTL in 

human liver. They suggest that many of these eQTL may be informative in 

indentifying and functionally characterizing the genetic contribrution to 
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diseases and complex traits (Innocenti et al. 2011). Innocenti et al. reference 

two examples of previously characterized mechanistic links to disease and 

complex traits that also intersected with replicated eQTL within their study: 

warfarin drug response and vitamin K epoxide reductase complex subunit 1 

(VKORC1) expression (Rieder et al. 2005), and sortilin 1 (SORT1) expression 

correlations with lipid levels and heart disease (Kathiresan et al. 2008). 

Additionally, Innocenti et al. suggest that their results may also support the 

hypotheses that NOD2 expression levels are linked to leprosy risk (Zhang et 

al. 2009), and that C2orf43 gene expression levels are linked to prostate 

cancer risk (Takata et al. 2010). 

 

	
  

Figure 3.12: Cartoon from Montgomery and Dermitzakis review showing larger and 
shared effects for eQTL are closer to the transcription start site (TSS) and that weaker 
and tissue-specific effects tend to be further from the TSS and that trans effects may 
help to understand gene and regulatory networks. Figure reproduced from 
(Montgomery and Dermitzakis 2011). 

 

Other studies, performed during the late 2000s, also began to consider other 

forms of expression or regulatory traits and their association with genetic 

variation. In 2009, Wei Zhang et al. published a study examining alternative 

splicing (AS). This study made use of Affymetrix exon expression arrays in 
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176 LCLs from HapMap CEU and Yoruban subjects. They identified local and 

distant genetic variants associated with transcript isoform variation between 

the two populations and found a substantial fraction (8%) of transcripts with 

isoform variation were associated with genetic variation (Zhang et al. 2009b). 

In 2009, Kun Zhang et al. published a study of allele-specific expression 

(ASE), which was based on four cell lines from two subjects for the Personal 

Genome Project. They found that between 11% and 22% of heterozygous 

mRNA SNPs showed allele-specific expression per cell line, and that between 

4% and 8% of these were tissue-specific. When analyses were expanded to 

include two pairs of siblings, they found that ASE was more similar among the 

siblings than in the unrelated subjects. In their results, genetic variation 

accounted for more variation in allelic ratios of expression than tissue type or 

growth conditions. Based on expression of alleles by strand, they suggest that 

allelic ratios are primarily cis-regulated on the sense strand (Zhang et al. 

2009a). In 2010, Dandan Zhang et al. published a study of CpG site 

methylation QTL (methQTL) in human cerebellum from ~150 subjects. They 

found that 9% of CpG sites that displayed large variation between subjects 

were also correlated with cis genetic variants. They also found that ~1% of 

methQTL were also eQTL, where both DNA methylation and gene expression 

were also correlated (Zhang et al. 2010). It should be noted that DNA 

methylation at CpG sites has also been generated in all four tissues for the 

NABEC subjects described in this chapter. I have not included a description of 

this data, analysis, or results because this data is part of another student’s 

thesis on DNA methylation in human tissues. I will briefly describe the 

methylation results here, as they are similar to those found by the Zhang et al. 

study, which were also done using human cerebellar tissue. I identified 
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methQTL in the NABEC tissues following almost the exact same analysis as 

used for the identification of eQTL in this chapter. For methQTL, we found 

between 4% and 5% of CpG sites methylation levels were significantly 

correlated with genetic variation. The genetic variants, for the methQTL, 

accounted for between 18% and 88% of the CpG methylation level, at 

individual CpG sites. I then performed an analysis of the intersection of eQTL 

and methQTL to determine if these traits were independent of each other. I 

found that while 4.8% of the genetic loci intersected (2.6% of methQTL and 

8.2% of eQTL) their effects on gene expression levels were independent. 

 

While we were able to detect tissue-specific eQTL in the four brain tissues, 

the majority of the eQTL detected appear to have a high degree of sharing 

between the tissues. Even though we selected tissues that are both diverse 

and similar, where cerebellum was the most distinct and the cerebral cortical 

regions were similar, these tissues are heterogeneous in cellular composition. 

This heterogeneous cellular composition makes it difficult to determine if the 

degree of eQTL sharing we see between brain regions is a result of eQTL 

being similar between different types of neurons or different types of glia, or 

do they appear shared because specific neuronal and glia cell types have 

cell-specific eQTL but the presence of enough of these cells in bulk tissue 

regions is allowing us to detect the majority of the cell-specific signal but 

without a way to deconvolute the signal. The possibility may also exist that 

with glia and granule cells being a common class of cell types in the brain that 

the eQTL we are detecting represent shared eQTL among glial cell types and 

shared eQTL among granule cell types. With this in mind we undertook the 
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next study in my thesis, identifying eQTL in samples enriched for a specific 

neuronal cell type. 
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4:  Identifying eQTL in a specific Human Neuronal cell 

type 

Statement of Contribution to this Research: 

I was involved in the conception and design of this study, including choice of 

genotyping platform, expression platform, and selection of tissue. I performed 

data quality control, data analysis, and data interpretation. Cookson MR and 

Singleton AB were also involved in the conception, design, choice of platform, 

and tissue and cell type selection. I was not involved in the collection of the 

tissue samples or the generation of the genotype and mRNA expression data. 

Coordination and collection of the tissue was performed by Traynor BJ. 

Genotyping of the samples was coordinated or performed by: Hernandez DG, 

Traynor BJ, Arepalli S, Rafferty IP, and Lai SL. Laser capture microdissection 

was performed by: Kumar A, Beilina A, and Kumaran R. Generation of mRNA 

expression data was performed by: Dillman A, Kumaran R, and Kumar A. 

 

4.1:  Introduction 

As shown in the previous two chapters, genetic diversity contributes to 

variation in gene expression in human brain. However, one difficulty with 

examining gene expression in tissues with heterogeneous cellular 

composition is that different cells have different gene expression patterns. For 

example, in the brain there are many types of neurons as well as different glia 

and other cell types. In my previously described eQTL studies, the tissue 

samples were based on human brain regions that contain a heterogeneous 

cell mix. The heterogeneity of the tissues adds a degree of ambiguity in 
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characterizing the eQTL identified. In 2011, Price et al. published a study of 

cis and trans heritability of gene expression based on 722 familial Icelandic 

subjects from blood and adipose tissue. They found that the heritability of 

gene expression for 37% of transcripts in blood and 24% transcripts in 

adipose was attributable to cis-regulatory variants. They also found that gene 

expression correlations between the tissues were also due to heritability of 

cis-regulatory loci, but this was not the case for trans-regulation for the two 

tissues. They repeated a similar analysis in unrelated individuals and found 

similar results. They suggest this means that tissues with heterogeneous cell 

types will be more effected by cis-regulation than tissues of homogenous cell 

types (Price et al. 2011). In order to understand whether changes in the 

cellular composition of the brain influenced the previous observations, we 

repeated the analyses in neurons isolated by laser capture microdissection 

(LCM). In 1999, Luo et al. published a study using LCM and microarrays to 

examine differential expression between adjacent large and small neurons 

from dorsal root ganglia (DRG) in rats. They found that they could cleanly 

capture adjacent large and small neurons and identified 40 transcripts 

differentially expressed, where 26 were preferentially expressed in small 

neurons and 14 in large neurons (Luo et al. 1999). In 2012, Friedrich et al. 

published a study of gene expression in Purkinje cells from mice examining 

Polyglutamine (PolyQ) diseases: spinocerebellar ataxia type 7 (SCA7) and 

Huntington's disease (HD). These diseases share a cerebellar degenerative 

phenotype of progressive selective cell loss and formation of protein 

aggregates. In this study, they used laser capture microdissection (LCM) to 

compare gene expression in Purkinje cells from transgenic PolyQ mouse 

models using microarrays. They used real-time PCR for validation of their 
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results. They found a similar reduced expression of mRNA in their mouse 

models where decreases in aldolase C and phospholipase C beta3 increased 

the vulnerability of Purkinje cells to excitotoxic events. Additionally, they found 

that the decrease in mRNA expression, in their mouse models, was facilitated 

by the Pcp2 promoter (Friedrich et al. 2012). The Purkinje cell is also the 

specific neuronal cell chosen for our study. This cell type was chosen 

because Purkinje cells are a large and distinctive neuronal cell type found in 

the cerebellar cortex, a tissue already collected for the NABEC cohort. 

Additionally, while the dendrites of Purkinje cells branch very profusely they 

do so in a flattened almost two-dimensional layer. These aspects of the 

Purkinje cells make them easily identifiable, using simple rapid staining in 

frozen sections, and their flattened structure makes them amenable for 

capture with LCM. Thus we performed a cis-eQTL analysis in a subset (N = 

85) of the North American Brain Expression Consortium (NABEC) subjects, 

where laser capture microdissection was used to isolate Purkinje neurons 

from the cerebellum. Additionally, for this subset of NABEC subjects, eQTL 

analysis was repeated using data from the bulk cerebellum and cerebral 

frontal cortex samples. 

 

4.2:  Materials and Methods 

4.2.1:  Subjects 

(Coordination and collection of the tissue was performed by Traynor BJ.) 

This study was composed of 100 neurologically normal Caucasian subjects 

from the United States; these subjects are from the North American Brain 

Expression Consortium (NABEC). Tissue from the cerebellum and cerebral 
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frontal cortex were previously obtained for all subjects. After filtering subjects 

based on quality control steps, based on data from all assays for the cell and 

tissue groups, 85 subjects remained and were used in the analysis. 

 

Frozen tissue samples of the cerebral frontal cortex and cerebellum were 

obtained from each of 388 subjects who had donated their brains for medical 

research, making up the current NABEC cohort. Of these, 100 subjects were 

chosen from the University of Maryland Brain Bank and Baltimore 

Longitudinal Study of Aging collections within the NABEC cohort. All 

individuals were of non-Hispanic Caucasian ethnicity, none of the subjects 

had a clinical history of neurological or cerebrovascular disease, or a 

diagnosis of cognitive impairment during life. The average age at time of 

death was 38.6 years of age (range, 16 – 101 years). Of the 100 subjects, 

33% were female. The average post-mortem interval was 14.5 hours (range, 

4 – 28 hours). 

 

4.2.2: Assays 

4.2.2.1: SNP Genotyping 

(Genotyping of the samples was coordinated or performed by: Hernandez 

DG, Traynor BJ, Arepalli S, Rafferty IP, and Lai SL.) 

 

Genomic DNA extraction for genotyping was performed using the DNeasy 

Blood and Tissue Kit as per the manufacturer’s instructions (Qiagen Inc., 

Valencia, California, USA). DNA concentration was determined using a 

Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE), 
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and DNA extraction was repeated using a new tissue aliquot for samples with 

DNA concentration less than 50ng/ul, or where the 260nm/280nm wavelength 

absorption ratio was less than 1.7, indicative of significant protein 

contamination of the DNA sample. SNP genotyping was performed using 

DNA extracted from cerebellar tissue for each subject using Infinium 

HumanHap550 version 3 BeadChips (Illumina Inc., San Diego, California, 

USA) according to the manufacturer’s instructions. Genotype data was 

analysed using the Genotyping Analysis Module 3.2.32 within the BeadStudio 

software version 3.1.4 (Illumina Inc.).  

 

4.2.2.2: mRNA Expression 

(Laser capture microdissection was performed by Kumar A, Beilina A, and 

Kumaran R. Generation of mRNA expression data was performed by Dillman 

A, Kumaran R, and Kumar A (Kumar et al. 2013).) 

 

Laser capture microdissection (LCM) is a sample extraction technique that 

allows for specific sub-selection of a tissue sample to be dissected out (Figure 

4.1). Typically, this sub-selection is for extracting a particular cell or group of 

cells from a tissue sample in order to obtain a pure population of cells to 

assay. Emmert-Buck et al. described a LCM method, in 1996. Their method 

starts with a transparent film being placed over a tissue sample. The sample 

is then microscopically viewed and the region or cells of interest are then 

selected (Figure 4.2A). An infrared laser then applies a short duration focus 

pulse that thermally adheres the transfer film to the selected region of the 

tissue (Figure 4.2B). The film, with the selected tissue, can then be extracted 
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from the larger tissue section (Figure 4.2C) (Emmert-Buck et al. 1996). This 

LCM method offered advantages of other microdissection techniques of the 

time. These advantages included: no manual microdissection, one step 

transfers, the transferred tissue on film retains original morphology, laser 

focus size allows for targeting of single cell. A possible drawback is that the 

localized heating of the film has some direct absorption by the underlying 

tissue, as enough energy must be applied to the film to raise the temperature 

to fusion point (Emmert-Buck et al. 1996). 

	
  

Figure 4.1: Example of LCM extraction of Alzheimer’s disease plaques from a section 
of frontal cortex. E) Image of the frontal cortex section with the LCM selected regions 
already removed; the white circular shapes one of which is indicated by the black 
arrow. F) Image of the extracted regions, selected from the larger tissue sample, on the 
transfer film. The extracted regions are the darker circular shapes one of which is 
highlighted by a black arrow. Since the extracted tissue is still on the transfer film the 
pattern of extracted tissue aligns to their removal points on the previous image. G) A 
zoomed image (scale bar, 50 µm) of one of the extracted plaques, where the 
neurofibrillary tangle is the darker staining. The figure images are adapted and 
reproduced from (Emmert-Buck et al. 1996). 
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Figure	
  4.2:	
  A	
  cartoon	
  of	
  LCM	
  extraction	
  process.	
  a)	
  The	
  transfer	
  film	
  is	
  placed	
  over	
  the	
  
tissue	
  and	
  a	
  sub-­‐section	
  is	
  selected.	
  b)	
  A	
  laser	
  pulse	
  thermally	
  bounds	
  the	
  selected	
  sub-­‐
section	
  of	
  tissue	
  to	
  the	
  transfer	
  file.	
  c)	
  The	
  sub-­‐selection	
  tissue	
  can	
  then	
  be	
  extracted	
  fro	
  
the	
  larger	
  tissue	
  section.	
  This	
  figure	
  is	
  reproduced	
  from	
  (Liotta	
  and	
  Petricoin	
  2000).	
  

 

For bulk tissue, total RNA was extracted using Trizol, biotinylated and 

amplified using the Illumina® TotalPrep-96 RNA Amplification Kit. For laser-

capture microdissection (LCM) tissue was immersed in Shandon M-1 

embedding matrix (Thermo Electron Corporation, Rockford, IL) and stored at -

80°C until use. Cryostat sections (7–8 µm thick) were cut and stained with 

Cresyl Violet (Ambion, Austin, TX). Laser capture microdissection was 

performed with ArcturusXT microdissection system (Arcturus, Mountain View, 

CA). The cell bodies of between 70 and 150 Purkinje cells were captured per 

subject. The excised cells were selected from the slide surface and captured 

on LCM Macro Caps. High-quality cellular total RNA was recovered from the 

collected cells using PicoPureTM RNA isolation kit (Arcturus) and treated with 
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RNase-free DNase (Qiagen, Valencia, California, USA). The quality of the 

RNA was analysed using an Agilent 2100 bioanalyzer (Agilent, Foster City, 

California, USA). Two rounds of amplification were carried out with the 

Ambion MessageAmp II aRNA kit. It should be noted that the LCM prepared 

samples underwent two rounds of amplification whereas the bulk tissue 

samples underwent one round of amplification, and this may introduce some 

bias to the expression measurements. However, it is unlikely that this bias, if 

present, would affect the type of primary analyses being performed in this 

study since the analyses are within tissue and then results compared across 

tissues. Amplified RNA from either bulk tissue extracts or LCM Purkinje cells 

were hybridized onto Illumina HumanHT-12 v3 Expression BeadChip 

(Illumina). The Illumina HumanHT-12 v3 Expression BeadChips assay the 

expression levels of approximately 49,000 human Refseq transcripts using 

50-mer probes. The Illumina HumanHT-12 v3 Expression BeadChip is 

constructed based on the Illumina Sentrix bead arrays, like the HumanRef-8 

v1.0 and v2.0 assays described in Chapters 2.2.2.2 and 3.2.2.2 respectively. 

However, the HumanHT-12 platform contains more arrays per chip, where 12 

samples can be processed per chip and contains more bead-types per array 

assaying 49,000 RNA transcripts. 

	
  

4.2.3:  Data Analysis 

4.2.3.1: Genotype data 

Genotype based filtering included subject and SNP filtering based on call rate, 

expected subject gender, relatedness among subjects and population outliers 

when combined with HapMap3 genotypes. Genotype-based metrics for 
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filtering were acquired using the PLINK toolset (Purcell et al. 2007) and R (R 

Core Team 2012).  

 

The threshold call rate for inclusion of the sample in analysis was 95%. The 

SNP call rate was computed using the missing command within the PLINK 

v1.07 software toolset. The gender of the samples reported to NABEC by the 

brain banks was compared against their genotypic gender using PLINK 's 

check-sex algorithm. The check-sex algorithm determines a sample’s 

genotypic gender based on heterozygosity across the X chromosome. 

Genotype data of the samples were compared for cryptic relatedness using 

the Identity-By-Descent (IBD) procedure within PLINK. No subjects were 

excluded based on call rate, gender or relatedness. 

 

To confirm the ethnicity of the samples, Identity-By-State (IBS) clustering and 

multidimensional scaling analyses were performed within PLINK. The ethnicity 

check was run using the genotypes from the NABEC samples and genotypes 

from the HapMap3 populations. Outlier detection was based on a sample’s 

distance in the first and second principal components being more than three 

standard deviations (S.D.) from the mean of the study cohort for those 

components. Three subjects were identified as outliers based on population 

and excluded from further analysis. Population structure for the first two 

principal components after excluding NABEC population outliers is shown in 

Figure 4.3. 
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Figure 4.3: Population MDS plot, based on genotype, from genome wide Identity-By-
State pairwise distances between the subjects used in this study (LNG, black +’s) and 
HapMap III population samples.  The plot shows that all of the post quality control 
screened subjects used in this study match their reported population ethnicity of 
Caucasians of European decent. Outlier detection was based on 3 S.D. from the mean 
for the reported population group. There are no population outliers as this plot was re-
generated post removal of outlier subjects. 

 

A two-step imputation process was performed excluding genotyped SNPs 

where SNP and subject call rate was less than 95%, MAF was less than 1% 

and Hardy-Weinberg equilibrium (HWE) p-value was less than 0.000001.  

Mach (Li et al. 2010; Howie et al. 2012) and MiniMac (Howie et al. 2012)  

were used to impute genotypes for ~38.9 million autosomal SNPs based on 

European reference haplotypes from the 1000 Genomes Phase1 

v2.20101123 data (1000 Genomes Project Consortium et al. 2012). Imputed 

SNPs were excluded if their MAF was less than 0.035 or the r2 was less than 
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0.3 between known and imputed genotypes. This process resulted in ~6.4 

million autosomal SNPs available for eQTL analysis.  The MAF threshold of 

0.035 is an estimate that establishes a lower bound for the smallest allele 

frequency testable in this sample series for eQTL analysis. This lower bound 

was determined based on the MAF cutoff at which it becomes less likely that 

the imputed allele dosages would have at least 3 minor homozygotes present 

in this study. 

 

4.2.3.2: mRNA expression data 

Transcript expression data was cubic spline normalized (Workman et al. 

2002) and exported using the Illumina GenomeStudio Gene Expression 

module. Cubic spline normalization removes curvature that may exist in the 

data as a result of non-linear relationships between samples or groups of 

samples. The Illumina HumanHT-12 probes were re-annotated using the 

ReMOAT tool (Barbosa-Morais et al. 2010) to identify probes that may have 

design issues. The ReMOAT annotation tool performs a re-alignment of the 

Illumina probes then re-annotates the probes based on multiple public 

genomic and transcriptome resources and then scores the probes quality. I 

excluded all probes that were annotated as ‘Bad’ or ‘No Match’ by the 

ReMOAT tool. Probes are labelled as bad if the probe aligns to repeat 

sequences, intergenic or intronic regions, more than one transcript from 

different genes, or contains more than three mismatches to target sequence. 

Probes are labelled as no match if they do not align to any transcript or 

genomic region. Filtering based on the ReMOAT quality score fields resulted 

in 14067 of the 48803 probes being excluded from analysis. Expression-

based filtering included removal of subjects if any of their sample expression 
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profiles were outliers based on their mean normalized intensity profile or their 

overall detection rate in any of the sample groups. A subject’s overall 

detection rate was computed per sample type as the fraction of detected 

(expressed) probes from the total probe set that passed the ReMOAT probe 

quality filter. Outlier detection was based on a sample’s distance for their 

mean expression profile and transcript detection rate being more than three 

standard deviations (S.D.) from the mean of the study cohort for those 

measures. Four subjects where excluded as outliers based on their average 

expression level and detection rate; two were Purkinje cell samples (Figure 

4.4), one that was an outlier in both cerebellum and frontal cortex, and an 

additional one that was also an outlier in cerebellum. Additionally, eight of the 

subjects were not assayed for either cerebellum or cerebral frontal cortex. 
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Figure 4.4: Scatterplot visualizing the quality control step applied for detecting poor 
quality mRNA samples based on their overall profile being identified as an outlier. Here 
the data for the Purkinje cell samples is shown. The two metrics tested for outlier 
detection are the subjects overall detection rate (fraction of expressed probes), based 
on all QCed probes, and the average intensity over on all QCed probes. Outlier 
detection was based on 3 S.D. from the mean of the expression intensity or detection 
rate for the study cohort. As shown above two subjects were found to be outliers and 
excluded from the eQTL analysis in all groups.  

	
  

4.2.3.3: Polymorphism(s) in Assay Probes 

Sequence variants within the sequence interval of the probe design used to 

assay individual transcripts may cause differential hybridization and 

inaccurate expression measurement. To correct for potential hybridization 

bias resulting from polymorphisms within the mRNA 50-mer probe, I identified 

all probes where this artefact may affect the analysis and excluded these 
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probes. A probe containing a polymorphism was only considered to have an 

effect and therefore excluded if it contained a variant that had a MAF greater 

than or equal to 0.03529. This MAF is the same estimated lower bound 

appropriate for eQTL analysis in a cohort of this size. We used variants and 

their frequencies based on the European subjects from the 1000 Genomes 

Phase1 v2.20101123 (1000 Genomes Project Consortium et al. 2012) data to 

identify the probe set for exclusion from further analysis. This removed 1,938 

probes from the overall chip content in addition to those previously identified 

with design issues by the ReMOAT tool. 

 

4.2.3.4: Selection of traits for analysis 

Expression probes were considered reliably detected within an individual 

sample if the Illumina Detection p-value was <= 0.01. An expression probe 

was selected for eQTL analysis if the probe was reliably detected for 95% of 

the QC filtered subjects within a tissue sample group and free from probe 

design issues. In total 10,850 mRNA transcripts were analysed within at least 

one sample group: 7,044 mRNA transcripts were present within all three 

groups; 8,025 in Purkinje cell, 9,869 in cerebellum, and 9,983 in cerebral 

frontal cortex. 

 

4.2.3.5: Correction for known Biological and Methodological 

Covariates 

The selected probe expression profiles were then adjusted using known 

covariates for subject age, gender, post-mortem interval, principal 

components 1 through 12 based on identity-by-state pairwise distances within 
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this cohort and the HapMap3 populations representing any possible 

population substructure in the cohort (Price et al. 2006), and the mRNA 

sample preparation/hybridization batch. The expression profiles were then 

log2 transformed and covariates were stepwise fitted in R (R Core Team 

2012) against the following model: 

€ 

Y = β 0 + β1X1+ ...+ βnXn + ε  

In this model, β0 … βn represent the continuous and categorical covariates.  

The residuals of this model fit for each probe were then standardized to a z-

score and used as the quantitative trait for the eQTL analysis. A z-score (or 

standard score) is a measure of how many standard deviations a data point is 

from the mean of the data set. 

 

4.2.3.6: Expression quantitative trait loci analysis 

eQTL analysis was then performed using the standardized residuals for every 

selected and adjusted trait in both brain tissue regions and Purkinje cells 

using mach2qtl (Li et al. 2009) to regress the trait with the allele dosage 

probabilities. For each trait analysed, only SNPs that are cis to the trait and 

passed our imputation quality control and SNP MAF threshold were 

considered in the analysis. For these analyses, cis is defined as the genomic 

region that contains the trait (the gene encoding the transcript), where the 

boundaries of the genomic region are +/- 1Mb from the mRNA transcript start 

or end site. 
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4.2.3.7: Correction for multiple tests 

To correct for the large number of tests performed in the eQTL analysis of 

these three sample groups I applied a Bonferroni correction based on the total 

number of estimated independent tests performed per sample group. The 

approximate number of independent tests being performed can accurately be 

estimated by considering the number of LD blocks and inter block variants 

being tested (Duggal et al. 2008). To estimate the number of independent 

variants I reduced the (1000 Genomes Project Consortium et al. 2012) 

European subjects genotype data to the SNP set that was included in the 

eQTL analysis for our cohort. This genotype set was then LD pruned to 

estimate the number of SNPs representing the amount of independent genetic 

variation represented within the imputed genotype set used in the analysis 

(Nicodemus et al. 2005). Then for each eQTL analysis group, the total 

number of tests performed was computed by summing all cis tests per mRNA 

transcript probe. Each independent SNP may be tested in cis against multiple 

transcript probes and each of these is a separate test included in the sum of 

cis tests. Based on the total approximate independent test counts per analysis 

group a Bonferroni cut-off was determined. The number of approximate 

independent tests performed per analysis group differs based on the number 

of transcript probes that were reliably detected and selected for analysis 

within that group (as discussed in Section 4.2.3.4).  For the Purkinje cell 

samples a total of 2,758,709 independent tests (36,710,361 total actual) were 

performed and the threshold for significance was a p-value <= 1.81x10-8. In 

the cerebellar tissue samples a total of 3,375,842 independent tests 

(45,054,510 total actual) were performed with a threshold of significance of p-

value <= 1.48x10-8. In the cerebral frontal cortex tissue samples a total of 
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3,436,351 independent tests (45,853,437 total actual) were performed with a 

threshold of significance of p-value <= 1.46x10-8. 

 

To estimate a threshold of suggestive eQTL signal a Benjamini & Hochberg 

(1995) false discovery rate was computed (Benjamini and Hochberg 1995). 

This cut-off was computed based on all cis tests performed per analysis group 

regardless of independence of the SNPs. For the Purkinje cell group this 

threshold for suggestive eQTL signal is a p-value <= 1.52x10-6, in cerebellum 

p-value <= 1.88x10-5 and in cerebral frontal cortex the threshold is a p-value 

<= 1.55X10-5. 

 

4.2.3.8: Data Access 

The genotype and expression data for this study is publically available as 

NCBI’s dbGaP study accession phs000249.v1.p1 and NCBI’s GEO series 

accession GSE37205 (Edgar, Domrachev and Lash 2002; Barrett et al. 2007; 

Mailman et al. 2007) (Figures 9.2 and 9.4, Appendix). 

 

4.3: Results 

4.3.1: Expression in single and heterogeneous neuronal cell type 

populations  

Prior to eQTL analysis a general comparison of expression levels between 

Purkinje cells, cerebellum and cerebral frontal cortex was performed. Within 

Purkinje cells 8,025 mRNA transcript probes were well detected while 9,869 
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and 9,983 mRNA transcripts were well detected in cerebellum and cerebral 

frontal cortex respectively. Here well detected is defined as detected within at 

least 95% of the post quality control screened samples. In total 10,850 mRNA 

transcripts are well detected in at least one group and 65% of these are well 

detected in all three groups (groups are Purkinje cell, cerebellum and cerebral 

frontal cortex sample sets). Of this total population of detectable mRNA 

transcripts, 74% were well detected in Purkinje cells while 91% and 92% of 

this total transcript population were well detected in cerebellum and cerebral 

frontal cortex respectively (Figure 4.5). It is plausible that the significant 

decrease in well-detected transcripts within the Purkinje cell group may be 

expected, as it is a single neuronal cell type whereas the other two groups 

comprise tissues of mixed cell types. It is important to note however that the 

Purkinje cell group was isolated by laser capture micro-dissection, thus it may 

be possible that some portion of this decrease in well detected mRNA 

transcript probes is an artefact of the sample isolation and preparation 

method. The use of LCM is labour intensive and involves a time sensitive 

protocol. It has been shown that RNA quality can be affected during LCM 

primarily by humidity or the presence of water but also by cell count and 

tissue staining (Clément-Ziza et al. 2008; Ordway et al. 2009). 

 

Simply examining those transcripts detected in each tissue, I did not find an 

excess of the transcripts detected in Purkinje cells in cerebellar tissue (90%) 

when compared to those found in the frontal cortex (91%). This likely reflects 

the fact that Purkinje cells only represent a fraction of the total cell population 

in cerebellum and therefore transcripts that are exclusively Purkinje-specific 

would not constitute enough of a signal within the total cerebellum to be 
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detected. Additionally for this study it was the cell body of the Purkinje cells 

that were captured for analysis, these cell bodies are located within the 

Purkinje cell layer of the cerebellar cortex, so not only do Purkinje cells 

represent a fraction of the total cell population in the cerebellum but also their 

cell bodies are not distributed throughtout the tissue. The Purkinje cell layer is 

a narrow region of the cerebellar cortex located between the molecular layer, 

which contains the dendrites of the Purkenje cells, and the granule cell layer. 

This observation, that cell-specific transcripts will likely not be well detected in 

whole tissue (and implicitly that the transcripts detected in whole tissue are 

therefore likely to be quite ubiquitously expressed in brain) is quite 

generalizable. This is reflected in the relatively small percentages of mRNA 

transcripts that are well detected only within a single tissue or cell type: 4.6% 

of transcripts were well detected in Purkinje cell only, 6.1% in cerebellum only, 

and 6.6% in frontal cortex only. As further reinforcement of this possibility, 

65% of the mRNA transcript probes are well detected in all three groups and 

an additional 18% are shared between the mixed cell type samples of 

cerebellum and frontal cortex (Figure 4.5). 
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Figure 4.5: Venn diagram showing set intersections for well-detected mRNA transcript 
probes between the two brain tissue regions and specific cell type. 

 

Next I assessed how similar the expression profiles of the mRNA transcripts 

are within the tissues. Considering the population of mRNA transcripts well 

detected in all three sample groups the overall expression profile of Purkinje 

cell was not significantly more similar to either of these two bulk tissue 

regions, the R2 was 0.55 and 0.57 when comparing with cerebellum and 

cerebral frontal cortex respectively. Additionally the Purkinje cell data are 

enriched for genes such as CALB1, PCP2 (also known as Purkinje cell-

specific protein L7) and GRID2. These genes are known to be specifically 

expressed by Purkinje cells (Figure 4.6) (Oberdick, Levinthal and Levinthal 

1988; Zhang, Zhang and Oberdick 2002; Rong, Wang and Morgan 2004). 

These three Purkinje specific markers are well detected in both the Purkinje 

cell and cerebellum samples but are not well detected in frontal cortex 

samples; where well detected means that transcript is present in 95% of the 
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samples. In considering the average expression levels of these Purkinje 

specific markers both CALB1 and PCP2 are more highly expressed in the 

Purkinje cell samples than in the cerebellum samples whereas GRID2 is 

similar in both (Figure 4.7). It should be noted that while LCM enriches for a 

specific cell type, and markers of Purkinje cells were more highly expressed in 

LCM compared to bulk tissue, the separation is imperfect and tightly 

associated cells such as glia and granule cells may also be captured with the 

Purkinje cell bodies and contribute some signal in the LCM Purkinje cell 

samples. Myelin basic protein (MBP) is a known oligodendroglial marker 

(Friedrich et al. 2012); there are three transcript probes for this gene on the 

Illumina platform that were detected in 92%, 6% and 36% of our Purkinje cell 

samples. Glial fibrillary acidic protein (GFAP) is a known astroglial marker 

(Friedrich et al. 2012); there is one transcript probe for this gene on the used 

expression platform, which was detected in all of our Purkinje cell samples. 

The expression of GFAP is likely an indication of Bergmann glial cells also 

being captured with the LCM samples as they are found in the Purkinje layer 

of the cerebellum and are known to express GFAP. Parvalbumin (PVALB) is 

another neuronal marker for Purkinje cells (Friedrich et al. 2012); the 

expression array includes one probe for this gene, which was detected in all 

of the Purkinje cell samples. 

	
  

Figure 4.6: In situ hybridization showing the localization of L7 mRNA in Purkinje cell 
dendrites from A) mouse, B) rat, and C) human (bar in panel = 1.25 mm) This figure is 
reproduced from (Zhang, Zhang and Oberdick 2002). 
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Figure 4.7: Scatterplots showing comparisons between bulk tissue regions and 
specific neuronal cell type. Each point represents the average expression over all 
QCed subjects in a tissue region and cell type for all transcript probes that are well 
detected in at least one analysis group. As each transcript probe is not well detected in 
all groups the average expression level is scaled by the detection rate within the 
group. On the left is the comparison between cerebellum and Purkinje cell and the 
right plot is between the frontal cortex and Purkinje cell. In both plots some Purkinje 
specific gene markers are highlighted in red: GRID2, CALB1 and PCP2. Plot on the 
right shows that the Purkinje specific markers are close to zero for abundance in 
frontal cortex as they should be, as Purkinje cells are not present in that tissue region. 
In the plot on the left all three markers are detected, as Purkinje cells are present in the 
cerebellum; however, as should be expected the expression levels for PCP2 and 
CALB1 are higher in Purkinje cells. 

	
  

4.3.2: Genotype effects mRNA expression 

Much like our previous eQTL study in our larger four brain region study I was 

able to identify eQTL in Purkinje cells, cerebellum and cerebral frontal cortex 

samples even with the reduced sample size (~60% of previous subject cohort 

size). As with other eQTL studies the strength of the signal was evenly 

distributed around the transcription start site (Figure 4.8), with stronger signal 

typically closer to the TSS. The average distance between the transcript start 

site and the significantly correlated SNPs is 56 kilobases (Kb) and per 

analysis group: 36 Kb for Purkinje cell, 56 Kb for cerebellum, and 59 Kb for 

cerebral frontal cortex. It is unknown whether the tighter distribution for 

Purkinje cell is because this is a single cell type while the other two are 

heterogeneous tissues. For the heterogeneous tissues, it may be possible 
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that the distribution is broader because we are detecting more eQTL related 

to enhancers modulating expression for the multitude of neuronal and non-

neuronal cell types present in the bulk tissue. For instance, if many of the 

eQTL signals in the core promoters are shared across cell types and most of 

this signal is more proximal to the transcription start site (TSS), this will draw 

the average distance closer to the TSS with a more narrow distribution of 

distances. While if the eQTL signal found in cell-specific enhancers is located 

further from the TSS, both up and downstream of the TSS, this will elongate 

the average distance from the TSS. When detecting these eQTL for cell-

specific enhancer(s) in a single type of cell this will also broaden the tail of the 

distribution; however, in a bulk tissue of heterogeneous cell types if the 

signals from multiple cell-specific enhancers are detected this will broaden the 

overall distribution of the distances. Within the Purkinje cell group 10 (0.1%) 

traits (mRNA transcript probes) were found to have a significant correlation 

with cis SNPs, or 472 trait/SNP pairs. Significant cis-eQTL were also 

identified, as expected, in our heterogeneous tissue regions, 64 (0.6%) traits 

or 2,565 trait/SNP pairs in cerebellum and 61 traits (0.6%) or 2,090 trait/SNP 

pairs in cerebral frontal cortex. 
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Figure 4.8: Distribution of all significantly correlated SNPs relative to the transcription 
start site (adjusted for strand) of the mRNA transcript the SNP is correlated with. The 
X-axis is the physical distance between a SNP and the TSS of the transcript and the Y-
axis is –log10(p-value) from the regression test between the SNP’s allele dosage and 
the transcript’s expression levels. The analysis tissue groups are colour coded as 
follows, Purkinje cell (green), cerebellum (CRBLM, red), and cerebral frontal cortex 
(FCTX, blue). Results are concordant with previous eQTL studies being fairly evenly 
distributed about the transcription start site with the eQTL signal being stronger closer 
to the gene. 

 

4.3.3: Many eQTL appear to be cell- and tissue-region specific 

In contrast to our previous study, many of the significant eQTL detected 

appear to be cell-type and tissue-region specific. A large portion of this is 

likely accounted for by the previous study including two biologically and 

ultrastructurally related regions (cerebral frontal and temporal cortex). In that 

study, it was shown that both the cerebral frontal and temporal cortex had 

high similarity in their overall expression profile and their eQTL (Figures 3.6B 
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and 3.8D). Of the 10 mRNA expression probes or traits with a significant 

eQTL in the Purkinje cell analysis, five of these were only significant within the 

Purkinje cell and not significant in the cerebellum or cerebral frontal cortex 

samples (Figure 4.9). For the other five mRNA expression probes, with 

significant eQTL in Purkinje cell, four of these also had significant signal in 

both cerebellum and cerebral frontal cortex, and 1 was shared between only 

the Purkinje cell and cerebellum groups. Table 4.1 lists these 10 transcripts 

with their best eQTL p-value from the Purkinje cell analysis. The single mRNA 

transcript probe shared between Purkinje cell and cerebellum is for 

peroxisomal biogenesis factor 6 (PEX6). Mutations in PEX6 are linked to 

Zellweger syndrome, a severe neonatal neurodegenerative disorder with a 

hallmark of delayed cerebellar development (Volpe and Adams 1972). For the 

heterogeneous tissues the significant eQTL identified within the cerebellum 

and cerebral frontal cortex also appear to be specific to their tissue regions 

with 35 of 64 and 33 of 61 respectively significant only within their tissue 

region. As may be expected the heterogeneous tissue types shared more in 

their intersection than with the Purkinje cell group. 
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Figure 4.9: Venn diagram showing set intersections for mRNA transcript probes, with a 
significant eQTL, detected between the two brain tissue regions and Purkinje cells. As 
shown, between 50% and 55% of transcripts, with a significant eQTL, are cell or tissue 
specific. 

 

It is important to note that while based on significant eQTL results, the 

abundance of cell and region-specific eQTL signal does not mean that some 

suggestive signal is completely absent for the other cell and tissue groups. To 

further investigate the similarity in the eQTL signals I plotted the regression 

effect (correlation coefficient) for each of the two-way comparisons based on 

the union of all significant trait and SNP pairings (Figure 4.10). The effect 

sizes are computed by mach2qtl (Li et al. 2009), used to identify the 

correlations by regression between allele dose probabilities and expression 

levels. As shown in these plots, many trait and SNP signals are of similar 

effect size but not necessarily statistically significant within each of the 

analysis groups. However, there are very strong signals that are specific to 

the Purkinje cell type, or one of the other two tissue regions. 
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Figure 4.10: Scatter plots of the effect sizes compared between the different analysis 
groups for all SNP and traits pairs that were significant in one or both of the 
comparison tissue groups plotted. The effect sizes (regression correlation coefficients) 
were computed by mach2qtl (Li et al. 2009) to identify the correlations between allele 
dose and expression levels. If the SNP and trait pairing was significant in only one 
group it is colour coded by group: Purkinje cell (green), cerebellum (CRBLM, red) and 
cerebral frontal cortex (FCTX, blue). If the pairing was significant in both comparison 
groups it is colour coded black. As expected most significant signals follow positive or 
negative correlations in both comparison groups, i.e. signal should be in top right or 
bottom left quadrants of the plots. Also, completely vertical and horizontal lines of 
signal are primarily artificial in cases where a correlation is significant in one analysis 
group but was not tested in another analysis group because the transcript was not well 
detected in that analysis group, in these instances the effect size is set to zero for the 
missing correlation. 

 

To further elucidate the differences between group specific and shared eQTL 

signal I have included some of the mRNA transcript probe specific results 

using regional Manhattan plots to show the associated SNP’s position relative 

to the mRNA transcript the expression probe captures. Included are examples 
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of eQTL that appear to be cell-specific, but with suggestive signal in the other 

tissues, shared but borderline sub-significant in one of the tissues, and 

significant in all three groups. Of the five apparent Purkinje cell specific eQTL 

one of these is because the mRNA transcript was well detected in Purkinje 

cells but not in the cerebellum or cerebral frontal cortex samples, and 

therefore did not meet the quality control thresholds for inclusion in their 

analysis groups. This eQTL is for a transcript of CCZ1B, encoding CCZ1 

vacuolar protein trafficking and biogenesis associated homolog B. The 

regional Manhattan plot is shown in Figure 4.11.  
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Figure 4.11: Manhattan plot showing this region’s eQTL p-values for an mRNA 
transcript for the gene CCZ1B. Each point represents the p-value for a specific SNP, 
along chromosome 7, that is cis to the CCZ1B transcript. Here only the Purkinje cell 
eQTL is present and significant, there is no data for cerebellum and cerebral frontal 
cortex as this transcript is not well detected in those tissues, and so does not meet 
criteria for inclusion in analysis of those tissues. Also included in the plot are the 
recombination rates (right axis) as a dark grey continuous line based on HapMap III 
data. Threshold for significance is denoted by horizontal dashed line and the 
suggestive signal threshold is denoted by the horizontal dotted line. The relative 
position of the gene is the labelled arrow centred near the bottom of the plot. The 
direction of the arrow is the gene’s strand. 

 

An example of an mRNA transcript with a significant eQTL only within 

Purkinje cells but also with suggestive eQTL in cerebellum and cerebral 

frontal cortex is for a transcript of ALDH3A2, encoding aldehyde 

dehydrogenase 3 family member A2. As shown in the regional Manhattan plot 

for this eQTL while a significant signal is not seen intersecting with that of the 
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Purkinje cell signal, there is clearly a suggestive peak for this transcript in 

cerebellum and cerebral frontal cortex over the same genomic interval (Figure 

4.12). 

 

Figure 4.12: Manhattan plot showing this region’s eQTL p-values for an mRNA 
transcript for the gene ALDH3A2. Each point represents the p-value for a specific SNP, 
along chromosome 17, that is cis to the ALDH3A2 transcript. Here only the Purkinje 
cell eQTL is significant; however, there is some suggestive signal also present in both 
cerebellum (CRBLM, red) and cerebral frontal cortex (FCTX, blue). Also included in the 
plot are the recombination rates (right axis) as a dark grey continuous line based on 
HapMap III data. Threshold for significance is denoted by horizontal dashed line and 
the suggestive signal threshold is denoted by the horizontal dotted line. The relative 
position of the gene is the labelled arrow centred near the bottom of the plot. The 
direction of the arrow is the gene’s strand. 

 

As an example of an eQTL that has shared signal across analysis groups, but 

within one of the groups the signal was borderline sub-significant, is for a 
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transcript of PEX6. This transcript was mentioned earlier as the eQTL 

transcript probe that was found to be significant in both the Purkinje cell and 

cerebellum but not within the cerebral frontal cortex. Upon further inspection 

of the eQTL signal for this probe, while not reaching statistical significance 

within the current analysis, the signal is close to the predetermined threshold 

for significance. This is clearly shown in the regional Manhattan plot for PEX6 

(Figure 4.13). 

 

Figure 4.13: Manhattan plot showing this region’s eQTL p-values for an mRNA 
transcript for the gene PEX6. Each point represents the p-value for a specific SNP, 
along chromosome 6, that is cis to the PEX6 transcript. Here both the Purkinje cell 
(green) and cerebellum (CRBLM, red) eQTL are significant; however signal for cerebral 
frontal cortex (FCTX, blue) is also but borderline sub-significant. Also included in the 
plot are the recombination rates (right axis) as a dark grey continuous line based on 
HapMap III data. Threshold for significance is denoted by horizontal dashed line and 
the suggestive signal threshold is denoted by the horizontal dotted line. The relative 
position of the gene is the labelled arrow centred near the bottom of the plot. The 
direction of the arrow is the gene’s strand. 
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Lastly an example of an eQTL with a significant signal across Purkinje cells, 

cerebellum and frontal cortex is shown (Figure 4.14). This eQTL is for an 

mRNA transcript for CHURC1. This eQTL is also one of the strongest and 

most consistent eQTL detected across studies. The regional Manhattan plot 

for the CHURC1 eQTL from this analysis is shown below and is clearly 

significant in each of the three sample groups used in this analysis. 

Considering not just the CHURC1 transcript, with a significant eQTL, but all of 

the individual SNPs making up the eQTL there was very high overlap between 

the tissues suggesting this is the same eQTL in all three analysis groups. All 

of the SNPs identified, for the CHURC1 eQTL, from the Purkinje cell analysis 

were also significant in cerebellum and cerebral frontal cortex, and 98% of the 

significant SNPs from the cerebral frontal cortex eQTL were significant in 

cerebellum. In addition to the strong eQTL seen for CHURC1 in NABEC 

related studies previous studies have also identified eQTL for CHURC1 in 

lymphoblastoid cell lines from the HapMap populations (Stranger et al. 2007; 

Veyrieras et al. 2008) and in human liver (Schadt et al. 2008).  
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Figure 4.14: Manhattan plot showing this region’s eQTL p-values for an mRNA 
transcript for the gene CHURC1. Each point represents the p-value for a specific SNP, 
along chromosome 14, that is cis to the CHURC1 transcript. Here the eQTL is clearly 
significant in all groups: Purkinje cell (green), cerebellum (CRBLM, red) and cerebral 
frontal cortex (FCTX, blue). Also included in the plot are the recombination rates (right 
axis) as a dark grey continuous line based on HapMap III data. Threshold for 
significance is denoted by horizontal dashed line and the suggestive signal threshold 
is denoted by the horizontal dotted line. The relative position of the gene is the labelled 
arrow centred near the bottom of the plot. The direction of the arrow is the gene’s 
strand. 

 

To get a broader picture of the overlap of eQTL, I generated a larger pool of 

associated loci using a less restrictive correction, recognizing this will 

invariably increase the number of false positives. When considering 

suggestive or better eQTL, based on a FDR correction per group with a mean 

cut-off of p-value <= 1.19x10-5 (1.88x10-5 in Purkinje cells, 1.55x10-5 in 
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cerebellum, and 1.52x10-6 in cerebral frontal cortex) additional signal that is 

both shared and specific is possibly revealed. The proportion of shared and 

specific transcripts with an eQTL remains approximately 50% shared and 

50% specific for Purkinje cells, while the proportions of transcripts with a 

region-specific eQTL increases for the other two groups from 55% to 74% in 

cerebellum and from 54% to 68% for frontal cortex. It is important to note that 

using a less restrictive test correction results in increasing the sensitivity to 

detect an eQTL but also results in a decrease in a specificity of the detection. 

This means that more false negatives may be recovered but at the same time 

more false positives will be introduced, beyond the 5% originally allowed for. It 

is also important to clarify that these shared and non-shared counts of eQTL 

are based on set overlaps of the unique mRNA transcript probes with eQTL 

signal. However, many more of the genetic variants making up the eQTL may 

also be specific to Purkinje cells or the other two tissue regions. While this is 

difficult to assess on a whole-genome basis, it will likely be useful for 

individual loci of interest to perform finer scale analyses on the existing data, 

and likely additional functional characterization. 
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4.4: Discussion 

The current work shows that cell-type specific eQTL signals can be identified. 

This reinforces the idea that undertaking eQTL analysis in tissues and specific 

cell types relevant to biological, cellular and molecular function is important for 

understanding how particular mRNA transcripts vary with genetic variation 

within the context of a specific cell-type. Even with the modest sample size 

used within this study, both shared and tissue-specific eQTL could be 

identified and the resolution of these eQTL should improve with much larger 

subject cohorts. While performing eQTL analyses in heterogeneous tissue 

regions still remains relevant, the application of this work in specific cell types 

should elucidate much more of the effect of genetic variation on gene 

expression in a functionally specific context. This is apparent in these results 

in the set overlap between Purkinje cells and the cerebellum. While Purkinje 

cells are one of the largest and most distinct neurons in the brain and only 

found in the cerebellum it is the cerebellar granule cells that are the most 

numerous neurons in this tissue. The cerebellar granule cell is one of the 

smallest and most densely packed neurons in the brain. The cerebellum also 

contains other interneuron cell types such as Golgi cells, basket cells, stellate 

cell, and Bergman glial cells. It is possible that analysis of a large enough 

cohort of cerebellum samples would capture all the signal that is detectable 

with a smaller cohort of Purkinje cell samples; however, there are likely two 

limitations to this possibility: first, the signal may be too small to detect within 

the inherent noise of the assay; second, eQTL have been detected with 

contrasting directions of effect when comparing tissues, and presumably this 
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extends to cell types, thus a signal may be masked in a heterogeneous tissue 

sample.  Purkinje cells only represent a fraction of the total cell population in 

cerebellum and therefore transcripts that are exclusively Purkinje-specific 

would not constitute enough of a signal within the total cerebellum to be 

detected. Lastly, and perhaps more importantly the use of single cell types 

provides resolution as to which cell types are also contributing or possible 

reducing the relative signal between the functional neuronal cell type contexts. 

For example, consider a situation where a particular mRNA transcript has a 

significant eQTL that is found in both Purkinje cells and another cerebellar cell 

type such as granule cells. If in this instance separate portions of the loci, 

such as different haplotype blocks across the promoter, are more important in 

one cell context but not in the other, it may not be possible to observe the net 

eQTL signal identified using bulk tissue.  

 

In 2009, Lee et al. published a study of tissue-specific expression from 

fibroblasts, LCLs, induced pluripotent stem (iPS) cells, and differentiated iPS 

cells. They suggest that using iPS cells helps reduce in-vitro experimental 

noise that allows for the detection of tissue-specific cis-regulatory variants that 

effect gene expression. They also found that allele specific expression (ASE) 

is both genotype- and cell-dependent, but that the majority of genotype effects 

are detectable and consistent across cell types, except for genes on the X 

chromosome (Lee et al. 2009). Studies using multi-tissue samples often focus 

on across tissue replication so tissue-specific signals may be harder to 

account for especially across studies but also within studies by not accounting 

for differences in effect sizes, allelic direction, or additional effects from non-

linked variants on the same gene (Fu et al. 2012). In the 2011 Nica et al. 
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report, they performed an analysis based on twins from the MuTHER study 

and measured gene expression in LCLs, skin, and fat to identify cis-eQTL. In 

line with other studies, of the time, they found that 4.7% of genes have an 

eQTL. Based on method refinement for comparing across-tissue eQTL 

signals, they found that 30% of their eQTL are shared between all three 

tissues and that 29% are tissue-specific. However, for the shared eQTL 

between 10% and 20% have significant differences in magnitude of effect 

(Nica et al. 2011). In 2012, Fu et al. published a multi-tissue cis-eQTL study 

based on 85 subjects with gene expression from liver, two adipose tissues, 

and muscle that were compared to eQTL results from more than 1,200 blood 

samples. They examined the possible tissue-dependent eQTL based on four 

categories: specific regulation, alternative regulation, different effect size, and 

opposite direction of effect (Figure 4.15). The authors consider specific 

regulation as cis-regulatory genetic variation that correlates with gene 

expression but only in one tissue. Under specific regulation, SNP X is 

associated with gene A’s expression in Tissue 1 but not in Tissue 2; 33% of 

the eQTL variants they identified fit this category. They consider alternative 

regulation as cis-regulatory genetic variation that is correlated with gene 

expression in multiple tissues but that each independent variant (locus) is 

associated with a specific tissue. Under alternative regulation, SNP X is 

associated with gene A’s expression in Tissue 1 but not Tissue 2 while SNP Y 

is also associated with gene A’s expression but in Tissue 2 and not in Tissue 

1; 14% of the eQTL variants they identified fit this category. The authors also 

found that 48% of the eQTL variants they identified were correlated with gene 

expression in multiple tissues but the effect sizes were different in magnitude, 

but in the same direction, between the tissues. Additionally, they found that 
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4% of eQTL variants that were associated with gene expression in multiple 

tissues had an effect that was in the opposite direction for the same variant in 

different tissues (Fu et al. 2012). 

 

 

Figure 4.15: Representation of tissue specific eQTL differences found. The pie charts, 
left centre, show the proportion of concordant and disconcordant eQTL identified 
between tissues. The disconcordant portion is shown as another pie chart, centre of 
figure, showing the proportion of disconcordance by the four types considered: 
specific regulation (top left), alternative regulation (top right), different effect size 
(centre right), and opposite allele direction (bottom right). This figure is reproduced 
from (Fu et al. 2012).  

 

While identifying eQTL based on samples enriched for Purkinje cells was 

informative in the detection of cell-type specific eQTL there still remains much 

to be done in eQTL of brain tissues and cell-types. The comparison of 

Purkinje cells to heterogeneous brain tissues did identify both shared and cell-

specific eQTL but this is not as informative as comparing eQTL from multiple 



	
   199	
  

specific cell types from the brain. For instance, being able to identify cell-

specific eQTL in Purkinje cells, cerebellar granule cells, and Bergmann glial 

cells for comparison with the cerebellum would be more informative in 

understanding cell specific eQTL in brain. Using LCM to extract these specific 

types of cells from whole tissue is probably not appropriate in order to perform 

this kind of analysis. Purkinje cells, cerebellar granule cells, and Bergmann 

glial are all found in close proximity in the same layer of the cerebellum. While 

it is likely that using LCM can enrich the extracted sample for a particular cell 

type, as we have done in this chapter, it is probably not sufficient when 

comparing between cell types found packed so closely together. Using LCM 

may be appropriate for comparison of larger neurons that are not found in 

within the same tissue regions, such as Purkinje cells from the cerebellum 

and pyramidal neurons from the cerebral cortex, although these samples 

would still contain some portion of the smaller cell types located in close 

proximity such as glia and granule cells. There are additional methods for 

isolating cell types, but these also have similar limitations to LCM, such as: 

Translating Ribosome Affinity Purification (TRAP), Immunopanning (PAN), 

and Fluorescence Activated Cell Sorting (FACS) (Okaty, Sugino and Nelson 

2011). In the future a more feasible approach for getting cell populations 

enriched for specific cell types for analysis may be to differentiate iPS cells 

into the cell type(s) of interest for study. However, currently there are many 

limitations in the protocols for differentiating iPS cells into the desired cell 

type, including heterogeneity of cell types, variability of iPS cell clones, 

consistently generating a large number of cells, and notably that the in vitro 

context may not be a true representation of the in vivo context (Santostefano 

et al. 2015). Even as protocols improve to overcome these iPS cell limitations 
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it may not be practical to generate enough of these iPS cells lines such that it 

is possible to adequately represent common genetic variation so that a 

transcriptome-wide analysis could be performed. Using iPS would still be 

appropriate in a candidate based approach where you would be able to 

determine the number of subjects and the genotypes such that you could pick 

the subjects that are representative of the genetic variation for the gene or the 

cis-regulatory region of interest.  
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5: Application to disease GWAS loci 

5.1: Introduction 

The integration of eQTL and genome-wide association study (GWAS) loci has 

become a more common occurrence, where the drive is to begin to formulate 

possible hypotheses on how these loci confer risk for disease when the loci 

intersect. In studies examining the intersection of eQTL and GWAS results it 

has been suggested that eQTL are enriched at GWAS loci (Verlaan et al. 

2009; Nica et al. 2010; Nicolae et al. 2010). Many studies suggesting how 

disease risk may arise from changes in expression associated with genetic 

variants have been published:  for Crohn’s disease (Libioulle et al. 2007), 

childhood asthma (Cantero-Recasens et al. 2010), lupus (Nica et al. 2010; 

Sakurai et al. 2013), Type 2 diabetes (Zhong et al. 2010), osteoarthritis 

(Syddall et al. 2013), and drug response for rheumatoid arthritis (Cui et al. 

2013). Of course the appropriate study, replication, and validation of these 

hypotheses must take place. In some instances these are just intersections 

between an expression quantitative trait and disease risk locus, such as the 

one from a replicated GWAS locus for Crohn’s disease. Examination of the 

Crohn’s disease locus, considered a 1.25 megabase gene desert (large 

region lacking in genes) on chromosome 5 where the risk variants are also 

part of a cis-eQTL, for the nearest gene in the region, prostaglandin receptor 

EP4 (PTGER4) (Libioulle et al. 2007). Other studies have made efforts to look 

beyond the intersection of disease risk loci and eQTL by integrating existing 

public annotations. In 2010, Zhong et al. published a study integrating eQTL 

(in liver, and two adipose tissues), GWAS variants and pathway information 

from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa 
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and Goto 2000). The inclusion of the KEGG information made it possible to 

elucidate which pathways may play a role in disease. Based on pathways 

enriched for eQTL genes whose variants also intersected disease associated 

risk variants they identified 16 pathways that may play a role in Type 2 

diabetes (Zhong et al. 2010). Other studies have considered how other 

expression related QTL might intersect with disease risk. In 2009, Fraiser and 

Xie published a study examining transcript isoform variation, which they 

labelled polymorphic transcript variation (PTV). This study was based on gene 

expression in human B cells from two populations. They found that tens of 

thousands of exons showed variation in expression levels that were heritable, 

and correlated with cis-variants (splicing QTL, sQTL). The cis-variants 

correlated with PTV were enriched for risk variants associated with four 

autoimmune diseases: Crohn's disease (CD), Type 1 diabetes (T1D), 

rheumatoid arthritis (RA), and ankylosing spondylitis (AS). B cells are known 

to have a role in autoimmune diseases. They suggest that for eight of the 

common risk variants of immune disease, that PTV may be the risk 

mechanism (Fraser and Xie 2009). In 2010, Nica et al. published a study on 

the integration eQTL and GWAS loci. They developed an algorithm for the 

integration of disease- and expression-associated loci that accounts for local 

LD structure in order to identify GWAS signals that may also be cis-eQTL, 

which they called Regulatory Trait Concordance (RTC). Applying their RTC 

method, they found an enrichment of cis-eQTL among GWAS SNPs. Their 

method confirmed prior eQTL disease mediated effects for ORMDL3 and 

asthma, C8orf13 and lupus, and SLC22A25 and Crohn’s disease (Nica et al. 

2010). 

 



	
   203	
  

Beyond the intersection of eQTL and disease risk loci, other studies have 

begun to focus on possible mechanisms in identifying the risk variant and how 

the risk for disease is conferred through gene expression. In a follow-up of the 

ORMDL3 eQTL associated with childhood asthma (Moffatt et al. 2007), it was 

found that the changes in ORMDL3 expression result in a change of 

inflammatory response. This change in inflammatory response is by way of 

altered endoplasmic reticulum-mediated calcium signalling leading to an 

unfolded-protein response inducing inflammation (Cantero-Recasens et al. 

2010). In a 2013 study, by Syddal et al., of how osteoarthritis risk may be 

modulated by expression, the authors focused on a variant in the 5’ UTR of 

growth differentiation factor (GDF5), a gene that is associated with increased 

risk of osteoarthritis in Europeans and Asian populations. The risk 

susceptibility is through decreased expression of GDF5. They found four 

trans-acting factors binding to the 5’UTR of GDF5, three of which repress 

expression via the osteoarthritis risk allele for a cis-regulatory variant in the 

binding site (Figure 5.1) (Syddall et al. 2013).  

	
  

Figure 5.1: Schematic showing the allele in the cis-regulatory variant that changes a 
binding site in the 5’ UTR of GDF5, for the factors Sp1, Sp3, DEAF-1, and P15 complex, 
which results in repressing GDF5 expression. This figure is reproduced from (Syddall 
et al. 2013).  

 

In 2013, Sakurai et al. published a study to identify the potential causal risk 

variant for Systemic lupus erythematosus (SLE). In patients with SLE both 
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mRNA and protein levels of interleukin-10 (IL-10) are elevated in sera. SLE is 

associated with a risk variant 9.2 Kb upstream of IL10. They found that 

preferential binding of the transcription factor Elk-1, at the IL10 risk allele, 

increases expression of IL-10 in SLE patients for both mRNA and protein 

(Figure 5.2). Sera levels of IL-10 are elevated in SLE patients and correlated 

with disease activity. Expression levels of both phosphorylated Elk-1 and IL-

10 were elevated in SLE patient’s cells (Sakurai et al. 2013). 

	
  

Figure 5.2: Correlation plots of IL-10 mRNA expression levels (A) and protein levels 
(B), for controls and SLE patients, by genotype at the SLE risk variant, rs3122605. The 
risk allele is correlated with increased mRNA expression (A) and protein levels (B), of 
IL-10, by allele dose for the G allele in both patients and controls. Figure reproduced 
from (Sakurai et al. 2013). 

 

In 2013, Cui et al. published a study of drug response for anti-TNF therapies 

(etanercept, infliximab and adalimumab) in patients with rheumatoid arthritis. 

The performed a meta-GWAS to identify a genetic basis for why some 

patients failed to have adequate drug response. It was found that a variant 

associated with change in disease activity, for etanercept patients but not the 

other two therapies, is predicted to disrupt a transcription factor binding-site in 

CD84, an immune-related gene. The allele associated with drug response 

also correlated with higher expression of CD84 in blood. CD84 expression 
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correlates with disease activity score. Additionally, in a replication analysis, 

which included multiple ethnicities, the drug response for etanercept was 

significant only for European ancestry patients (Cui et al. 2013). These 

studies provide examples for the formation of a disease aetiology hypothesis 

where disease risk loci and eQTL intersect and in some instances begin to 

provide evidence related to these hypotheses. 

 

5.2: Examples in Neurological diseases 

An important reason for the execution of the work presented in my thesis and 

the creation of this data resource is to allow us and others to understand how 

loci associated with neurological diseases, we work on, may have an effect on 

gene expression in human brain. To this end, we have referred to these 

NABEC eQTL data in the study of GWAS related to neurological diseases. 

These studies include Progressive Supranuclear Palsy (PSP) at loci near the 

SLC25A38/MOBP and the MAPT H1/H2 inversion polymorphism region 

(Höglinger et al. 2011) (Figure 5.3a-c). These data have also been used to 

investigate loci associated with Tourette’s Syndrome (Scharf et al. 2012), 

Obsessive-Compulsive Disorder (Stewart et al. 2012), amyotrophic lateral 

sclerosis (ALS) (Traynor et al. 2010), frontotemporal lobar degeneration 

(FTLD) (Carrasquillo et al. 2010) and Alzheimer’s disease (Guerreiro et al. 

2010; Holton et al. 2013). 
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Figure 5.3: Manhattan plots for PSP associated regions that also have significant 
eQTL. (a) eQTL results for the SLC25A38-MOBP region, on chromosome 3, shown are 
the eQTL p-values per SNP for three transcripts; MOBP is red, RPSA is blue, and 
SLC25A38 is green. (b) eQTL results for the H1/H2 inversion polymorphism region near 
MAPT, on chromosome 17; eQTL p-values colour coded by transcript probe provided 
in legend. (c) eQTL results for the for the H1/H2 inversion polymorphism region, on 
chromosome 17 near MAPT, controlling for H1/H2 by conditional analysis based on 
variant that tags the haplotypes. After controlling for the haplotype only an eQTL for 
ARL17A remains. Plots in panel (c) use the same colour legend as panel (b). Each plot 
in the left panel are results from the cerebellum and plots in the right panel are from 
cerebral frontal cortex. The colour of each data point is colour coded per transcript 
and represents the p-value for a SNP allele dose correlation with a transcript’s 
expression level. Each SNP is tested against multiple cis transcripts. This figure is 
reproduced from (Höglinger et al. 2011) 

 

While the proximity of an eQTL to a GWAS loci does not imply that the 

disease risk and expression effect are the same loci, in a few clear instances 

we have shown that the eQTL effect signal intersects with a GWAS signal, 

and at the very least is a potential candidate for the biologic effect. An 
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example of a significant eQTL overlapping with a significant locus is one from 

a meta-GWAS for Migraine (Anttila et al. 2013) that included eQTL data 

based on combined NABEC and UK Brain Expression Consortium (UKBEC) 

data in cerebellum and cerebral frontal cortex. In this study the eQTL 

overlapped with the GWAS loci with moderate LD between the eQTL and 

GWAS loci, but one locus was in perfect LD. The eQTL in perfect LD with the 

GWAS locus is for a transcript from the gene STAT6, signal transducer and 

activator of transcription 6, interleukin-4 induced. STAT6 phosphorylation has 

been shown to lead to prostaglandin release as a result of astrocyte response 

to oxidative stress (Park et al. 2012), and in macrophages has been shown 

that transcription factor activation signals are transduced by STAT family 

members (Lawrence and Natoli 2011). Additionally, we have made great use 

of the NABEC/UKBEC eQTL data within our GWAS studies of Parkinson’s 

disease (PD). Beginning with an early GWAS of PD (Simón-Sánchez et al. 

2009) we were able to intersect the signals of our disease risk alleles with 

those of an eQTL for a transcript of MAPT showing an increase in MAPT 

abundance with risk allele dosage (Figure 5.4).  
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Figure 5.4: Shown are boxplots for several SNPs associated with Parkinson’s Disease 
(Simón-Sánchez et al. 2009) that also are significant eQTL for a MAPT transcript in the 
cerebral frontal cortex. The figure shows an increase in the abundance of the MAPT 
transcript with dosage of the risk allele.  

 

It has since been shown that our original finding of an eQTL for the MAPT 

transcript is likely an artefact of a polymorphism within the Illumina 50-mer 

probe for this transcript. While I have consistently screened our probes for this 

type of artefact, I have done so using allele frequencies within populations of 

European descent, where available. Unfortunately, the variant within the 

mRNA probe design is for a 2 base pair InDel present on the H2 haplotype for 

this region. The earlier screenings performed for this type of artefact were 

based on HapMap SNP data for the European population and this InDel 

variant was not present in that dataset, at that time, with an allele frequency in 

the European population. This type of screening has vastly improved with the 

release of the 1000 Genomes genotypes (1000 Genomes Project Consortium 

et al. 2012) based on sequencing data, where it is now possible to screen 

from this resource, in the appropriate population, at the appropriate allele 

frequency that includes both single nucleotide and InDel variants.  
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In a more recent analysis of PD risk loci based on results from the 

International Parkinson’s Disease Genomics Consortium (IPDGC) we have 

continued to make use of the NABEC/UKBEC eQTL data showing overlap 

between disease risk and eQTL at multiple risk loci (Nalls et al. 2011, 2013, 

2014). Based on the most significant variants for the 26 loci associated with 

PD, from the most recent meta-GWAS (Nalls et al. 2014), the NABEC/UKBEC 

eQTL results from cerebellum and cerebral frontal cortex were scanned based 

on these PD risk variants to see if they were also part of eQTL. In performing 

the scan I limited the search space to just the cis possible eQTL tests that 

would involve these PD risk variants and only the transcripts well detected 

(detected in 95% of samples) in the NABEC/UKBEC series that were within 1 

Mb of these risk variants. Reducing the eQTL search space in this simple 

manner, only including eQTL tests which included the PD risk variants, also 

reduces the multiple test burden therefore increasing the sensitivity to detect 

signal, but of course this also reduces specificity. Using this PD risk and eQTL 

intersection search scheme results in approximately 360 independent eQTL 

tests per tissue, yielding a significance threshold of 1.4x10-4 based on a 

Bonferroni multiple test correction to maintain a 5% false positive rate. This 

search identified three PD risk loci that were also correlated with expression 

changes for five genes (six transcripts) in one or both brain tissues. Two of 

these eQTL are for pleckstrin homology domain containing family M (with 

RUN domain) member 1 (PLEKHM1) and leucine rich repeat containing 37, 

member A4 (pseudogene) (LRRC37A4) in the MAPT region of chromosome 

17. Both, PLEKHM1 and LRRC37A4, are correlated with the same PD risk 

variant rs17649553 and significant only in the cerebellum; these two eQTL 

were also correlated with the H1/H2 MAPT haplotype, denoting the large 
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inversion polymorphism present in that genomic region. Three other genes 

with an eQTL, present in human brain, intersect with two PD risk loci. The first 

of these risk loci is on chromosome 1, in the region of nuclear casein kinase 

and cyclin-dependent kinase substrate 1 (NUCKS1) and RAB7 member RAS 

oncogene family-like 1 (RAB7L1), where the most significant (p-value = 

1.36x10−13) risk variant from the PD meta-GWAS is rs823118 (Nalls et al. 

2014). This PD risk variant is located 1.35 Kb downstream of the 3’UTR of 

RAB7L1 and 4.2 Kb upstream of the 5’UTR of NUCKS1 and is correlated with 

expression changes in both genes. While the eQTL for NUCKS1 shows 

significant signal in both cerebellum and cerebral frontal cortex, the RAB7L1 

eQTL is only significant in cerebellum (Figure 5.5).  
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Figure 5.5: Manhattan plot of region, on chromosome 1, across the GWAS associated 
PD risk locus spanning NUCKS1 and RAB7L1. The plot shows association p-values 
representing the significance of correlation between a variant’s allele dosage and the 
transcript’s expression level. The points are colour coded by transcript and tissue 
region in red, blue, green, and purple while the grey data points represent the p-values 
from the meta-GWAS for PD. The plot also includes the recombination rates (right axis) 
as a dark grey continuous line based on HapMap III data. The threshold for 
significance is denoted by horizontal dotted line. The relative positions of the genes 
are the labelled arrows centred in the upper portion of the plot. The direction of the 
arrow is the gene’s strand. The most significant PD risk variant, rs823118, is labelled 
near the bottom of the plot, at its chromosomal position, and the vertical dashed line. 

 

It has recently been shown that the protein RAB7L1 interacts with the protein 

leucine-rich repeat kinase 2 (LRRK2) (MacLeod et al. 2013; Beilina et al. 

2014), LRRK2 is a gene harbouring Mendelian mutations that cause PD 

(Paisán-Ruíz et al. 2004; Nichols et al. 2005) as well as a risk locus 
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associated with sporadic PD (Nalls et al. 2014). LRRK2 encodes a 

multidomain protein with GTPase (enzymes that hydrolyze guanosine 

triphosphate) and kinase activities, and has been shown to be involved in 

macroautophagy-lysosomal protein degradation and Golgi apparatus integrity 

(MacLeod et al. 2006; Heo, Kim and Seol 2010; Dodson et al. 2012; Stafa et 

al. 2012). Current findings, from MacLeod et al., suggest that the retromer and 

lysosomal pathways are important in PD pathogenesis. They show that a 

deficiency of RAB7L1 gene expression, in rodent primary neurons and its 

ortholog in fly dopamine neurons, recapitulates some of the degenerative 

phenotype observed in expression models for a familial PD mutation in 

LRRK2. However, they also find that overexpression of RAB7L1 rescued the 

mutant LRRK2 phenotype. Additionally, both the RAB7L1 PD risk and LRRK2 

PD linked mutation resulted in endosomal and Golgi sorting defects; and 

affected the VPS35 component of the retromer complex. They suggest the 

potential causal risk variant may be a variant in LD with a PD risk variant that 

results in the alternative splicing of RAB7L1, where the risk allele leads to 

increased skipping of exon 2 (MacLeod et al. 2013). In another study, from 

Beilina et al., it was shown that RAB7L1 is a protein-binding partner of 

LRRK2. This binding interaction was identified using an unbiased screen from 

protein-protein interaction arrays. Additionally, the genes BCL2-associated 

athanogene 5 (BAG5) and cyclin G associated kinase (GAK) encode proteins 

that are also part of this protein complex; GAK is also a PD associated locus. 

These protein interactions were validated in cell lines and in mouse brain. The 

authors’ experiments suggest that the proteins encoded by LRRK2, RAB7L1, 

GAK, BAG5, and heat shock 70kDa protein 4 (Hsp70) form a single protein 

complex. Examining the cellular localization of these proteins the authors 
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found that both RAB7L1 and GAK are largely vesicular in neuron localization, 

which suggest that RAB7L1 directs Lrrk2 to trans-Golgi network derived 

vesicles. Based on these results, the authors suggest that these proteins form 

a complex that promotes clearance of Golgi-derived vesicles through the 

autophagy-lysosome system (Beilina et al. 2014). 

 

The second PD risk locus that intersects with an eQTL, in the brain, is on 

chromosome 7 and located in an intron of the glycoprotein transmembrane 

nmb gene (GPNMB), where the most significant (p-value = 2.37x10−12) risk 

variant from the PD meta-GWAS is rs199347 (Nalls et al. 2014). This PD risk 

variant is correlated with changes in gene expression for two transcripts of 

nucleoporin like 2 (NUPL2); rs199347 is located in the intron of GPNMB and 

is 53.1 Kb downstream of the 3’UTR of NUPL2. Both NUPL2 transcripts have 

a significant eQTL in both cerebellum and cerebral frontal cortex (Figure 5.6). 

Functionally, a hypothesis may be formed that the effects of an expression 

change in NUPL2 may have an affect on the LRRK2 protein binding complex 

described by Beilina et al., in reference to the RAB7L1 and LRRK2 protein-

protein interaction. NUPL2, previously known as hCG1, is part of the nuclear 

pore complex (NPC) and required for export of mRNA from the nucleus to the 

cytoplasm. Based on a previous finding, from Kendirgi et al., NUPL2 protein 

may be required for the export of Hsp70 mRNA from the nucleus to the 

cytoplasm. This finding was based on experiments using a small interfering 

RNA (siRNA) knockdown of hCG1 (NUPL2) mRNA that resulted in decreased 

Hsp70 protein levels, under heat shock conditions in HeLa cells. The 

decreased protein levels resulted from Hsp70 mRNA not being exported from 

the nucleus to the cytoplasm because of the reduction in NUPL2 protein 
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levels (Kendirgi et al. 2005). It is known that Hsp70 protein is important in 

removing clathrin from vesicles, including at the trans-Golgi. One way to 

connect NUPL2 and LRRK2, a known PD gene, and other gene candidates 

from PD GWAS: BAG3/5, Hsp70, GAK, and RAB7L1 is to assume that there 

is a simultaneous protein complex at the trans-Golgi that removes clathrin. 

Increasing protein levels of any one of these would promote protein complex 

formation and, hence, function. In this model, more NUPL2 protein would 

mean more cytosolic Hsp70 protein resulting in more LRRK2 protein complex 

function, exacerbated by stimulation. Of course, this hypothesis would require 

many experiments to support its claims but they are testable ideas. 

Knockdown of NUPL2 could diminish LRRK2 relocalization to the trans-Golgi. 

Additionally, this hypothesis requires a few assumptions, including that 

promoting the formation of the LRRK2 protein complex alters the removal of 

clathrin from vesicles or the clearance of Golgi-derived vesicles through the 

autophagy-lysosome pathway and that this alteration in function is deleterious 

and involved in the disease pathway of PD. (Note: Hypotheses of how NUPL2 

may be involved in PD through HSP70 and LRRK2 are based on personal 

communications with Mark Cookson and Andrew Singleton).  
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Figure 5.6: Manhattan plot of region, on chromosome 7, across the GWAS associated 
PD risk locus spanning NUPL2. The plot shows association p-values representing the 
significance of correlation between a variant’s allele dosage and the transcript’s 
expression level. The points are colour coded by transcript and tissue region in red, 
blue, green, and purple while the grey data points represent the p-values from the 
meta-GWAS for PD. The plot also includes the recombination rates (right axis) as a 
dark grey continuous line based on HapMap III data. The threshold for significance is 
denoted by horizontal dotted line. The relative positions of the gene are the labelled 
arrow centred in the upper portion of the plot. The direction of the arrow is the gene’s 
strand. The most significant PD risk variant, rs199347, is labelled near the bottom of 
the plot, at its chromosomal position, and by the vertical dotted line. 

 

5.2: Other GWAS loci 

To access the prevalence of other disease- and complex trait-associated 

variants with eQTL variants in brain, a search of variants from the NHGRI-EBI 

GWAS catalogue (Welter et al. 2014) was performed against the 
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NABEC/UKBEC eQTL results from cerebellum and cerebral frontal cortex. 

The NHGRI-EBI GWAS catalogue is a repository provided by the National 

Human Genome Research Institute (NHGRI) and the European 

Bioinformatics Institute (EMBL-EBI), which maintains a manually curated, and 

quality controlled collection of published genome-wide association studies. 

For this search, the catalogue was downloaded on 4 April 2015 and included 

15,653 variants for 1,276 diseases or traits from 2,140 published studies. 

Based on the cis-tested variants from the NABEC/UKBEC eQTL analysis, 

12,888 of the NHGRI-EBI GWAS catalogue variants were tested against one 

or more of 9,374 transcript expression probes in one or both brain tissues. 

This testable set results in approximately 119,000 independent eQTL tests 

per tissue yielding a significance threshold of 4.7x10-7 when applying 

Bonferroni based multiple test correction to maintain a 5% false positive rate. 

At this threshold of significance, 320 (2.5%) variants are associated with 189 

(2.0%) expression traits for 201 (15.8%) disease or complex traits from 247 

(11.5%) studies in the NHGRI-EBI GWAS catalogue. These variants were 

then annotated so the distribution of variant types relative to transcription, 

could be considered, based on the following annotations: exon, intron, UTR, 

intergenic, upstream, and downstream. Upstream and downstream regions 

included variants that lie within 5 Kb of the 5’ and 3’ UTR respectively for 

these annotation purposes. For the variants that were both GWAS risk 

variants and part of an eQTL, when compared to all GWAS risk variants that 

did not show a significant eQTL, there were shifts within the distributions of 

variant types. For the variants that were both GWAS risk and eQTL variants 

there are increases, when compared to GWAS risk variants that were not 

eQTL variants, in the percentage of variants located upstream (+7.2%), exon 
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(+1.1%), 3’ UTR (+0.7%) and downstream (+8.8%) (Figure 5.7). Conversely, 

this same variant set also showed a decrease in the number of variants 

present in introns (-12.7%) and intergenic (-5.3%) regions while the 5’ UTR 

remained relatively unchanged. When considering which of these regions may 

be functionally active regulatory regions, the variants were annotated based 

on ENCODE DNase I hypersensitivity sites (DHS) and transcription factor 

binding site (TFBS) clusters (ENCODE Project Consortium 2012). These two 

annotations should denote most of the active sites where transcription factors 

bind based on the diverse set of cell and tissue types used in the generation 

of these data. The DHS annotation data includes ~2.9 million DHSs based on 

125 cell types including differentiated primary cells (56.8%), immortalized 

primary cells (12.8%), malignancy-derived cell lines (24.0%) and multipotent 

and pluripotent progenitor cells (6.4%) (Thurman et al. 2012). The TFBS 

annotation data is based on 161 transcription factors and 91 cell types 

(Gerstein et al. 2012; Wang et al. 2012). It is estimated that between 8.5% 

and 19.4% of the human genome is covered by a DHS footprint or TFBS motif 

and that 94.4% of transcription factor occupancy sites are within DHS 

footprints (ENCODE Project Consortium 2012; Thurman et al. 2012; Kellis et 

al. 2014). For GWAS risk variants that were also part of eQTL, these are 

enriched for both DHS and TFBS clusters with both having ~10% increases in 

regulatory active regions when compared to GWAS risk variants that do not 

show a significant eQTL signal (Figure 5.8). 
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Figure 5.7: Bar graphs showing the distribution of variants by their genomic location 
relative to transcription for all NHGRI-EBI GWAS risk variants that were tested with and 
without a significant a cis-eQTL in the combined NABEC and UKBEC analysis in 
cerebellum and cerebral frontal cortex. The left column (Risk) represents all risk 
variants tested and the right column (eQTL_Risk) represents all risk variants that are 
also significant as a cis-eQTL variant. 
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Figure 5.8: Bar graphs showing the distribution of variants by there genomic location 
relative to functionally active regulatory regions based on ENCODE v3 annotations for 
all NHGRI-EBI GWAS risk variants that were tested with and without a significant cis-
eQTL in the combined NABEC and UKBEC analysis of cerebellum and cerebral frontal 
cortex. In the bars for both DHS (DNase I hypersensitivity sites) and TFBS 
(transcription factor binding sites) the grey colour represents risk variants that are not 
significant as an cis-eQTL variant and the black colour represents all risk variants that 
are also significant as a cis-eQTL variant. 

 

5.3: Discussion 

In this chapter I have highlighted applications of eQTL to disease risk loci 

performed by others: Crohn’s disease (Libioulle et al. 2007; Nica et al. 2010), 

autoimmune diseases (Fraser and Xie 2009), Type 2 diabetes (Zhong et al. 

2010), asthma (Cantero-Recasens et al. 2010; Nica et al. 2010), and lupus 

(Nica et al. 2010). I have also highlighted a few studies where not only were 

eQTL being applied to disease risk variants but some work has been done to 
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begin to understand disease mechanisms: inflammatory response in 

childhood asthma (Cantero-Recasens et al. 2010), osteoarthritis risk altering a 

regulatory binding site (Syddall et al. 2013), Systemic lupus erythematosus 

and IL10 (Sakurai et al. 2013), and response to anti-TNF therapies (Sakurai et 

al. 2013). These studies have made use of eQTL information to begin to 

understand the underlying molecular mechanisms linking a genetic locus to 

disease or complex trait resulting from changes in expression. I have also 

highlighted several studies where we have made use of the NABEC and 

UKBEC brain eQTL data to investigate neurological diseases: Progressive 

Supranuclear Palsy (Höglinger et al. 2011), Tourette’s Syndrome (Scharf et 

al. 2012), Obsessive-Compulsive Disorder (Stewart et al. 2012), amyotrophic 

lateral sclerosis (ALS) (Traynor et al. 2010), frontotemporal lobar 

degeneration (FTLD) (Carrasquillo et al. 2010), Alzheimer’s disease 

(Guerreiro et al. 2010; Holton et al. 2013), Migraine (Anttila et al. 2013), and 

Parkinson’s disease (Simón-Sánchez et al. 2009; Nalls et al. 2011, 2014). 

Additionally, I have used the NABEC and UKBEC brain eQTL variants to 

investigate all disease risk variants maintained by the NHGRI-EBI GWAS 

catalogue. Scanning the brain eQTL results based on more than 15,000 risk 

variants for more that 1,200 diseases or traits, 15% of these diseases or 

complex traits had an associated risk variant that was also an eQTL variant. 

In evaluating the risk variants that were also eQTL variants compared to all 

risk variants considered, the variants that were both risk and eQTL variants 

show an increase for being located within 5 Kb up and downstream of a 

transcript, and a decrease in intronic and intergenic variants. Additionally, the 

variants that were both risk and eQTL variants showed an increase in being 

located in regions of DHS and TFBS occupancy compared to the variants that 



	
   221	
  

were not significant as an eQTL. This enrichment of GWAS risk variants that 

are also eQTL variants in active regulatory elements may support the 

hypothesis that the functional effect of the risk is mediated through changes in 

expression. 

 

Many of the above applications of eQTL in the analysis of risk variants are 

fairly rudimentary, typically based on the actual risk variant being present in 

an eQTL variant set or in LD with a variant in the eQTL variant set. However, 

methods are being developed to integrate disease risk and eQTL variants 

beyond a simple intersection of the genetic loci. In 2014, Corradin et al. 

published a method for defining enhancer-gene interactions in relation to the 

multiple enhancer variant hypothesis for common traits. Under this hypothesis 

a set of variants in LD affects multiple enhancers resulting in a cooperative 

affect on gene expression. To provide evidence of this model they considered 

GWAS results from six common autoimmune disorders based on data from 

HapMap B lymphoblasts. They found some evidence to support this 

hypothesis, but the effects on gene expression were modest (Corradin et al. 

2014). In 2012, Schaub et al. published a method using ENCODE functional 

data to investigate disease associated variants. The method’s purpose was to 

identify a functional variant as the actual risk variant for the disease 

association signal. They found a significant enrichment of variants within 

regulatory elements that are also associated with diseases. The strength of 

this enrichment increases when multiple functional sources and higher 

confidence disease associated variants are used (Schaub et al. 2012). In 

2011, Lappalainen et al. published a study proposing a hypothesis suggesting 

that cis-eQTL may modulate the penetrance of deleterious protein coding 



	
   222	
  

variants. The hypothesis is that heterozygous deleterious coding variants and 

heterozygous cis-regulatory variants have an epistatic interaction, where if the 

deleterious coding allele is on the higher expressing haplotype of the cis-

regulatory allele the penetrance of the coding variant increases. They 

analysed genotype and mRNA expression data generated from both 

sequencing and arrays from CEU and Yoruban subjects from the 1000 

Genomes project to begin to test this hypothesis. They found an 

underrepresentation of functional coding variants on the higher expressed 

regulatory haplotypes suggesting purifying selection against these deleterious 

coding alleles, through their regulatory backgrounds. They also found that the 

allele frequency distributions of the eQTL alleles might support their 

suggestion of purifying selection. They found that LD between eQTL variants 

and nonsynonymous coding variants was stronger than LD between eQTL 

variants and synonymous coding variants. Additionally, they found that eQTL 

signals that intersect with GWAS signals show an enrichment for this type of 

putative epistatic interaction, suggesting that rare coding variants may attain 

higher penetrance through cis-regulatory eQTL (Lappalainen et al. 2011). In 

2014, Pickrell published a report describing the integration of annotation 

information applied to GWAS data for 18 human traits. The model included 

450 genomic annotations to model if these elements are enriched or depleted 

for loci associated with GWAS traits. They found that between 2% and 20% of 

trait associated SNPs influence protein sequence. They also found that 

repressed chromatin was depleted for several traits and that cell-type specific 

DNase-I hypersensitive sites were enriched for several traits. The integration 

of their annotation model as weights into GWAS analysis increased the 

number of high-confidence associations by ~5% (Pickrell 2014). 
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It is important to re-iterate that when using eQTL data to inform on a possible 

disease mechanism, when these loci intersect, that this information is only 

sufficient for forming hypotheses about disease mechanism(s). The 

appropriate study designs still need to be formulated and carried out to test 

these hypotheses. It is also important to note that while the large effect cis-

eQTL typically replicate across many studies and tissue types, often many of 

these have not been validated using a different assay type to quantify the 

mRNA expression measures such as quantitative real-time PCR. The 

presence of the eQTL at a disease risk locus does not mean that the disease 

risk is conferred through expression changes in that transcript. Conversely the 

absence of an eQTL does not mean that the disease risk is not mediated 

through changes in gene expression. As eQTL can be tissue-specific, an 

eQTL may be present in one tissue while being absent in another that may be 

the disease relevant tissue. Additionally, it is not uncommon for multiple 

transcripts, from different genes, to be associated with the same cis genetic 

locus. Both of these instances occur at the PD risk locus near RAB7L1, one of 

the PD loci I discussed earlier in this chapter. At this PD locus there is a 

significant eQTL for RAB7L1 in cerebellum but a significant eQTL for this 

transcript is not present in cerebral frontal cortex. This PD locus also has a 

significant eQTL in both cerebellum and cerebral frontal cortex for a transcript 

of NUCKS1. It is highly suggestive that RAB7L1 may be the relevant gene for 

PD risk at this locus on the basis that RAB7L1 is a protein binding partner of 

LRRK2, a known Mendelian and risk gene for PD. The empirical evidence still 

needs to be gathered to link the genetic risk near RAB7L1 to the gene 

RAB7L1 and likewise evidence needs to be gathered to confirm the RAB7L1 
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eQTL in a disease relevant cell type, such as dopaminergic neurons, as well 

as evidence to evaluate whether or not the disease risk is mediated through 

changes in expression of this gene. 
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6:  Conclusions 

As I have shown in these studies that make up my thesis, eQTL are 

manifested in human brain tissues. I have also demonstrated how these eQTL 

can begin to be applied in our understanding of disease risk variants. Many of 

the eQTL signals I have identified are shared between distinct tissue regions 

and even with an individual cell type, however there are also many eQTL that 

appear to be distinct among tissue regions and cell types. I have shown an 

example of a gene, CHURC1, which displays very strong eQTL signal across 

multiple neuronal tissues as well as in studies on non-neuronal tissue 

performed by others. I have also provided examples of eQTL that appear to 

be specific to a human brain region (PPAPDC1A) or distinct to an individual 

neuronal cell type (CCZ1B). Given our understanding of the regulation of 

gene expression it is not unrealistic to expect that eQTL may be identifiable 

for many RNA transcripts in many cell types. The identification of these eQTL 

would require a cohort size with sufficient power so that both common and 

less common variants could be included in the eQTL analysis as well as 

expression measures from a diverse set of tissue and cell types. The genetic 

variation from these eQTL are likely have a direct cis-regulatory affect on 

mRNA expression by altering the promoters or enhancers, splice site 

enhancers or suppressors, or miRNA binding sites within the 3’ UTR. With a 

sufficient  increase in power it may also become possible to start reliably 

detecting trans effects. Trans-regulatory effects are biologically feasible 

through genetic variation that affects the expression of regulatory proteins, 

changes to the DNA binding domain within regulatory proteins affecting which 

promoters and enhancers they bind to, or genetic variation in a regulatory 

protein’s protein-protein interaction domain possibly affecting how or when 
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regulatory proteins assemble at a gene’s promoter and enhancer regions. 

However, this does not imply that all identified eQTL would be of the same 

importance within each cellular context as the relative effect within individual 

cell types may be much stronger or weaker. A possible example of this is the 

significant eQTL I have identified for a mRNA transcript from the gene 

ALDH3A2, which has a much stronger signal within Purkinje cells than the 

suggestive signal observed in the heterogeneous cell populations from the 

cerebellum or cerebral frontal cortex. I have also shown a Purkinje cell-

specific example, CCZ1B, which has a significant eQTL in Purkinje cells but 

none at all within the bulk tissue regions. However, it is also the case that the 

same mRNA transcript may have significant eQTL in multiple cell types or 

tissue regions but that the regions of genetic variation exists in distinct or 

overlapping blocks of variation and therefore does not necessarily represent 

the same eQTL signal. It is feasible in this scenario that portions of this 

variation may be more impactful within certain specific cellular contexts than 

in others, and this in turn may reflect the cell-type specific expression of 

regulatory factors such as transcription binding factors. Some studies have 

made efforts at better resolving the variation within a locus that appears to be 

cell and tissue-dependent, but these studies have typically included highly 

differentiated tissue types such as blood and brain (Heinzen et al. 2008; 

Dimas et al. 2009; Kwan et al. 2009; Fu et al. 2012; Hernandez et al. 2012). 

This reinforces the importance of undertaking eQTL studies ultimately within 

individual cell types. Performing eQTL studies within specific cell types 

informs us as to the effect of genetic variation on gene expression within the 

context of that cell type.   
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My thesis shows that ultimately performing these types of studies in all 

individual cell types would provide a more granular resolution of eQTL. This 

does not discount the applicability of performing these types of studies in 

heterogeneous tissues as well, which is currently a more feasible approach. 

Each layer of functional knowledge we develop is informative to the next. This 

is not only important for our general knowledge and understanding of biology 

but creates a basis for hypothesis generation when applied to phenotypes 

affecting cellular and molecular processes related to human health and 

disease. As a researcher in the field of neurodegenerative disease and 

disorders, I have performed and continue to perform these types of analysis in 

human brain tissues so that we will have a functional foundation that provides 

clues into the aetiology of the diseases that we study. A large public 

consortium is currently underway to greatly add to the already public eQTL 

datasets and should open many more avenues for the discovery and 

characterization of eQTL as well as the application of this information in 

understanding disease. The Genotype-Tissue Expression (GTEx) project is a 

large public resource database established so that investigators can study the 

relationship between genetic variation and gene expression in many human 

tissues (GTEx Consortium 2013). The GTEx project aims to have genotype 

and expression data for 47 tissues from 900 subjects by the end of 2015. The 

four-tissue eQTL project described in Chapter 3 was an early dataset included 

in an early GTEx repository and browser for software pilot testing, which was 

available to access through the NCBI eQTL browser.  

 

In viewing this doctoral work, the efforts here reflect the evolution of the 

modern eQTL field. Our early work centred on the feasibility of eQTL in 
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human brain tissue, and showed clearly that there was much to discover in 

this regard. We moved on to more refined experiments, which attempted to 

look at varied tissues, in a larger set of samples, and aimed to answer 

questions regarding the importance of examining cell type specific QTL. While 

this work has mirrored the considerable progress of the field there is still much 

to be done. These projects have generated vast amounts of data in relation to 

expressed transcripts in human neurological tissues and will no doubt provide 

many data mining opportunities in the years to come. Not all of those mining 

analysis would be appropriate for inclusion within an individual graduate 

research thesis. As such I would consider the completion of my graduate 

thesis of expression quantitative traits in human neurological tissue to be 

logically complete after the detection and characterization of the eQTL in 

human brain. I believe the primary detection of these eQTL is fairly complete, 

in the existing cohort, and described in my thesis and that the bulk of the work 

still remaining is within the characterization of these eQTL. Additionally much 

work remains to be done in using more integrative approaches in applying 

eQTL, and other functional, information towards understanding disease risk 

variants. The work of characterization should contain much of the following 

future work. 
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7: Future Work  

Moving beyond the simple QTL analysis, there are several spaces where 

additional work would be useful. It is likely to be informative to expand 

analysis from genotypes to haplotypes. In addition to providing haplotype 

block-specific eQTL, this will allow further investigation of the regional 

structure of the cis eQTL signals along the lines of work performed by 

Veyrieras and colleagues in 2008. This has the benefit of providing greater 

resolution regarding the location of the probable quantitative trait 

nucleotide(s), and thus insight into the functional basis of the genotype trait 

relationship. It may also be more biologically appropriate to alter the local 

boundries defining the cis region for eQTL analysis from a fixed distance, 

typically +/- 1Mb proximal to the transcript, and instead define the cis 

boundries based on the topologically associating domain (TAD) that the 

transcript is found in. It would be informative to investigate whether these 

expression signals are recent targets of natural selection and if present are 

they enriched in genes based on cellular function. Signatures of selection 

should be expected for variants from eQTL based on previous studies that 

assessed selection in cis-regulatory regions, eQTL, and beneficial adaptive 

traits in humans conferred by eQTL. ENCODE analyses of primate-specific 

cis-regulatory elements found that these elements display evidence of 

negative selection (ENCODE Project Consortium 2012). It has also been 

suggested that cis-eQTL may modulate the penetrance of deleterious protein 

coding changes through purifying (negative) selection (Lappalainen et al. 

2011). While it has also been suggested that cis variants associated with 
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changes in expression are enriched for variants showing signatures of recent 

positive selection (Kudaravalli et al. 2009). Two well studied instances of 

recent beneficial adapations in humans are malaria resistance and lactose 

persistence both or which are eQTL and show signatures of recent positive 

selection (Hamblin and Di Rienzo 2000; Hamblin, Thompson and Di Rienzo 

2002; Olds and Sibley 2003; Bersaglieri et al. 2004; Tishkoff et al. 2007). In 

2009, Flint and Mackay published a review of comparing QTL of quantitative 

phenotypes in mice, flies, and humans. They reported the existence of eQTL 

for a large number of loci but with moderate effects in all three species. 

However, based on studies done to that point they found very few 

homologous QTL (Flint and Mackay 2009). One area that has been 

considerably challenging is the reliable detection of trans-eQTL: these have 

generally proven difficult to replicate and it may be necessary to take several 

approaches in this regard, likely including anchoring observations in 

biologically plausible events (Dimas et al. 2008). Such an effort may also 

require the integration of other reference data such as that generated by 

ENCODE from a diverse set of tissues and cell types (~125) while recognizing 

that these cell types, or the conditions from which they were generated such 

as cancer cell lines (24%), may not be appropriate proxies for complete 

information. While these approaches will be useful it is likely that trans 

analysis will remain difficult until cohort sizes are large enough such that 

sufficient power is attained to reliably detect signal for intermediate effects. 

For instance, Westra et al. published a meta-analysis of trans-eQTL in 

peripheral blood, with a discovery cohort that included 5,311 subjects and a 

replication cohort of 2,775 subjects, in which they were able to replicate trans-

eQTL for 103 loci. However, this analysis, while transcriptome-wide for gene 
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expression measures, limited the genetic variation included for analysis to 

only 4,542 SNPs that had been previously implicated in complex traits or 

disease. The authors reported replication rates of 52% and 79% (based on 

individual SNPs not loci) when the replication was performed in two cohorts 

with gene expression measures also from blood samples. The replication 

rates were much smaller when when considering smaller eQTL cohorts from 

non-blood gene expression measures, between 2% and 7%. Additionally the 

authors note that 95% of the trans-eQTL identified in their discovery analysis 

accounted for less than 3% of the gene expression variance and that the 

replication cohorts they had access to lack sufficient power for replication of 

these particular loci (Westra et al. 2013). In the same vein as including 

external reference data, it will also be useful to expand our current models 

from pairwise Trait~Genotype to more integrative models Trait~Genotype (or 

Haplotype) with additional data resources such as miRNA expression and 

CpG methylation as covariates. Where DNA methylation measures for CpG 

sites that are cis-regulatory or miRNA expression levels for miRNA with 

putative binding sites within the mRNA 3’ UTR (or the entire transcript) could 

be used as covariates within the regression models (Zhang and Su 2008; 

Younger, Pertsemlidis and Corey 2009).  

 

Ultimately, it would of course be extremely informative to include protein 

levels, and protein modifications in this effort, as this is often the next most 

proximal readout, to (in the example of disease) clinical phenotype. In 2010, 

Garge et al. published a study identifying protein QTL (pQTL) based on 24 

LCLs from HapMap subjects for 544 proteins. They found 24 proteins (15 

genes) where genetic variation accounted for more than 50% of the variation 
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in protein abundance. Of the 24 proteins, 19 were associated with cis-

variation and 4 of these were nonsynonymous coding variants that resulted in 

altered migration patterns on 2D gels (Garge et al. 2010). In 2013, Wu et al. 

published results re-affirming that mRNA expression levels are not a perfect 

proxy measure of protein abundance. They suggest non-correlations of these 

levels may be because of post-translational processes. In studies of mRNA 

expression and protein abundance the correlation of these measures has 

typically been modest. This study was based on ~6000 genes from 95 LCLs 

from HapMap subjects with protein levels measured by quantitative mass 

spectrometry. They found that protein levels vary between individuals and 

populations and that protein levels are heritable. They identified cis-pQTL, 

some of which did not have a previously identified eQTL based on eQTL 

analysis of mRNA expression from the same HapMap LCLs. A pQTL without 

a corresponding eQTL, where genetic variation is correlated with variation in 

protein abundance but not variation in mRNA expression would suggest that 

the effect of the genetic variation is post-transcriptional. They also found that 

sets of proteins involved in similar biology processes are well correlated 

between individuals, suggesting that these processes are tightly regulated 

(Wu et al. 2013). In 2014, Hause et al. published a study of pQTL based on 

68 Yoruban Hapmap LCLs considering protein levels for 441 protein isoforms 

of transcription factors and signalling genes. They identified 12 cis-pQTL and 

160 trans-pQTL. Two thirds of the eQTL from the same cohort and transcript 

set were also pQTL but this study also found that many pQTL did not have a 

corresponding eQTL. They found a significant enrichment in 5’ and 3’ UTRs 

and depletion in introns for eQTL. They also found 5’ and 3’ UTR enrichment 

for pQTL variants, but also saw enrichment for coding variants. They suggest 
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that these pQTL variant enrichments may be involved in protein stability or 

miRNA-mediated regulation of mRNA translation. Their results also suggest 

there might be buffering of eQTL and that pQTL may contribute to phenotypic 

diversity (Hause et al. 2014). In 2015, Battle et al. published a study of eQTL, 

ribosomal occupancy QTL (rQTL), and pQTL based on 75 LCLs from HapMap 

Yoruban subjects. This study combined pre-existing genotype and RNAseq 

based expression measures with ribosomal profiling and protein abundance 

from quantitative high-resolution mass spectrometry. In general, they found 

consistencies between QTL types. They found that on average the expression 

variation identified for eQTL was attenuated or buffered at the protein level. 

They also identified pQTL where eQTL were not present. Additionally, they 

were able to identify expression- and protein-specific QTL (esQTL and 

psQTL). They found that when eQTL and pQTL are discordant that the 

ribosomal data typically tracked with the RNA. They suggest this means that 

psQTL are not capturing signal related to transcription or translation but 

possibly rates of protein degradation. They find that psQTL are enriched for 

UTR and coding variants, but the enrichment in coding variants is larger for 

nonsynonymous variants than other coding variants (Battle et al. 2015). 

 

Another particularly exciting extension of the current work lies in the 

application of sequence-based assays of gene expression (RNAseq) within 

brain tissues. While array based work has many positives, the application of 

high-throughput sequencing, particularly with the development of improving 

analytical approaches, offers more potential insight. RNAseq offers several 

advantages: first it provides absolute knowledge regarding genotype, 

capturing rare and common variants; second it removes probe-based design 
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limitations of microarrays; third, it allows for detection and analysis of low 

abundance RNA species for analysis, such as LRRK2; fourth, it allows assay 

of exon usage; and fifth, it can also directly reveal expression differences, in 

the context of allele-specific expression, by allowing the observation of an 

imbalance of alleles expressed within any informative transcript. Removing 

the probe-based limitation will allow for analysis of all detectable splice forms 

and whether or not eQTL are more associated with general gene expression 

or expression of gene splice forms as well as to be able to more clearly 

identify allelic expression. A probe-free design also removes the artefact of 

polymorphisms within the probe. In addition to detecting low abundance 

mRNA, protocols are now available for more general sequencing of RNA, 

including strand-specific and total RNA sequencing. There are many hurdles 

to overcome in RNAseq work and the sample preparation and data analysis 

are more challenging than with array-based work. Our laboratory has 

performed some preliminary transcriptome sequencing on ~60 smallRNA 

tissue samples, ~75 mRNA tissue samples and now approximately 300 total 

RNA tissue samples, from the NABEC cohort described in this thesis, where 

these subjects also have targeted deep resequencing and exome sequencing 

data. This work remains in the early stages; however, it promises to reveal 

further understanding into the genetic basis of expression. In 2008, Sultan et 

al. published a very early deep sequencing based study of gene expression in 

human embryonic kidney and B cells. They found that 66% of polyA 

transcripts mapped to known genes and 34% to unannotated genomic 

regions. Their findings suggested that RNAseq based measures of gene 

expression can detect 25% more expressed genes than microarrays. 

Additionally, with RNAseq based methods splicing events are measureable 
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and they found that exon skipping is the most common form of alternative 

splicing within their analysis and results (Sultan et al. 2008). In 2009, Tang et 

al. published a study describing a single-cell digital expression assay for 

performing mRNAseq. They suggest their method allows the detection of 

more expression events than trying to do so with other protocols requiring 

more material from more cells. They ran their assay on a single mouse 

blastomere and detected the expression of 75% more genes, between 8% 

and 19% of the genes expressed multiple isoforms in the same cell. 

Additionally, they detected more than 1,700 novel splice junctions (Tang et al. 

2009). In 2010, Pickrell et al. published their RNAseq study based on 69 LCLs 

from HapMap Nigerians subjects. This study used a pooled RNAseq 

approach to survey the transcriptional landscape and found extensive use of 

unannotated UTRs as well as 100 new coding exons. For the genes, with 

these new exons, 4.6% also had a cis-eQTL. For 90% of the eQTL, they 

identified, they found that the variants affecting expression are within 15 Kb of 

the gene. They also found that 88% of eQTL have reads from the higher 

expressing haplotype suggesting that many eQTL are allele-specific and 

result from modulation of cis-regulatory elements. Of note, based on 

heterozygotes, the ratio of reads from the fraction of the higher expression 

haplotypes correlates with the strength of the eQTL. Additionally, they found 

that genetic variation correlated with splicing (sQTL) and these were enriched 

in or near consensus splice sites (Pickrell et al. 2010). In 2010, Montgomery 

et al. also published an RNAseq study based on 60 LCLs from HapMap CEU 

subjects. Their results suggest that sequencing allows for improved dynamic 

range and better quantification of alternative and high expression transcripts, 

which should allow for improved eQTL detection. They found more eQTL 
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using RNAseq than expression arrays, when comparing to results generated 

from the same samples previously. However, some of these differences were 

related to the array’s saturation at the higher end and splicing complexity that 

are not well captured by the array’s probe designs. The RNAseq based data 

also allowed for the detection of QTL for long noncoding RNAs as well as 

allele-specific expression (ASE). Their results suggest that rare ASE may be 

markers of rare eQTL variants. They also identified QTL for splicing (sQTL). 

For the sQTL identified, 41% of these were exon skipping, 17% alternative 

acceptor, 13% multiple exon skipping, 6% alternative donor, 5% exclusive 

exons, and 5% were for retained introns (Montgomery et al. 2010).  

 

Another area I would like to pursue in relation to eQTL work in human brain is 

working with specific cell types, as I discussed in chapter 4. Following a 

similar course as Lee et al. described, in 2009, in using iPS cells to generate 

samples enriched for specific cell types which should already represent that 

natural genetic variation present in the subjects (Lee et al. 2009). Using iPS 

cells may also allow for the analysis of eQTL in neuronal cells types from 

patients with neurodegenerative diseases. Although, this would be 

depenedent on being able to overcome some of the limitations that can occur 

in iPS cell work such as generating the desired cell type without heterogeneity 

or a method that can account for the heterogeneity in the cell population. 

Currently it is not informative, from a disease perspective, to work with brain 

tissues of patients who died from neurodegenerative diseases such as 

Parkinson’s and Alzheimer’s disease. For neurodegenerative disease there is 

considerable cell loss in the brain, so assaying gene expression in these 

disease tissues is not informative for understanding the disease process. The 
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ability to differentiate iPS cells into neuronal cells types and study them in a 

pre- or early-disease state would be informative. More recently, it has become 

possible to more easily edit genomic sequence using CRISPR-Cas9. 

Clustered regularly interspaced palindromic repeat and Cas9 (CRISPR-Cas9) 

allows targeted editing and manipulation of the genome using the Cas9 

enzyme mechanism with a bacterially RNA-guided system (Barrangou 2014; 

Doudna and Charpentier 2014). I could foresee using the iPS cell based work 

to more narrowly map eQTL of interest in cells types of interest, such as 

Dopaminergic neurons generated from controls and PD patients, and in 

combination with other functional data identify the putative cis-regulatory risk 

variants. Using CRISPR-Cas9 these putative variants could be manipulated to 

identify causal risk variants and understand their effect in the cells and tissues 

relevant to disease. Although, currently I believe that CRISPR-Cas9 may 

need more refinement, as it is my understanding that beyond the targeted 

edits that sometimes other off target edits, such as InDels, can also occur. 



	
   238	
  

8. References 

1000 Genomes Project Consortium, Abecasis GR, Altshuler D et al. A map of 
human genome variation from population-scale sequencing. Nature 
2010;467:1061–73. 

1000 Genomes Project Consortium, Abecasis GR, Auton A et al. An 
integrated map of genetic variation from 1,092 human genomes. 
Nature 2012;491:56–65. 

Abu-Shaar M, Ryoo HD, Mann RS. Control of the nuclear localization of 
Extradenticle by competing nuclear import and export signals. Genes 
Dev 1999;13:935–45. 

Alberts R, Terpstra P, Li Y et al. Sequence polymorphisms cause many false 
cis eQTLs. PLoS ONE 2007;2:e622. 

Allers T, Lichten M. Differential timing and control of noncrossover and 
crossover recombination during meiosis. Cell 2001;106:47–57. 

Altshuler DM, Gibbs RA, Peltonen L et al. Integrating common and rare 
genetic variation in diverse human populations. Nature 2010;467:52–8. 

Anttila V, Winsvold BS, Gormley P et al. Genome-wide meta-analysis 
identifies new susceptibility loci for migraine. Nat Genet 2013;45:912–
7. 

Arbiza L, Gronau I, Aksoy BA et al. Genome-wide inference of natural 
selection on human transcription factor binding sites. Nat Genet 
2013;45:723–9. 

Arnone MI, Davidson EH. The hardwiring of development: organization and 
function of genomic regulatory systems. Dev Camb Engl 
1997;124:1851–64. 

Bachner-Melman R, Dina C, Zohar AH et al. AVPR1a and SLC6A4 gene 
polymorphisms are associated with creative dance performance. PLoS 
Genet 2005;1:e42. 

Baek D, Villén J, Shin C et al. The impact of microRNAs on protein output. 
Nature 2008;455:64–71. 

Bamshad MJ, Mummidi S, Gonzalez E et al. A strong signature of balancing 
selection in the 5’ cis-regulatory region of CCR5. Proc Natl Acad Sci U 
S A 2002;99:10539–44. 

Barbosa-Morais NL, Dunning MJ, Samarajiwa SA et al. A re-annotation 
pipeline for Illumina BeadArrays: improving the interpretation of gene 
expression data. Nucleic Acids Res 2010;38:e17. 

Barbosa-Morais NL, Irimia M, Pan Q et al. The evolutionary landscape of 
alternative splicing in vertebrate species. Science 2012;338:1587–93. 



	
   239	
  

Barbujani G, Magagni A, Minch E et al. An apportionment of human DNA 
diversity. Proc Natl Acad Sci U S A 1997;94:4516–9. 

Barrangou R. RNA events. Cas9 targeting and the CRISPR revolution. 
Science 2014;344:707–8. 

Barrett JC, Cardon LR. Evaluating coverage of genome-wide association 
studies. Nat Genet 2006;38:659–62. 

Barrett JC, Fry B, Maller J et al. Haploview: analysis and visualization of LD 
and haplotype maps. Bioinforma Oxf Engl 2005;21:263–5. 

Barrett T, Troup DB, Wilhite SE et al. NCBI GEO: mining tens of millions of 
expression profiles--database and tools update. Nucleic Acids Res 
2007;35:D760–5. 

Barton NH, Otto SP. Evolution of recombination due to random drift. Genetics 
2005;169:2353–70. 

Battle A, Khan Z, Wang SH et al. Genomic variation. Impact of regulatory 
variation from RNA to protein. Science 2015;347:664–7. 

Baudat F, Buard J, Grey C et al. PRDM9 is a major determinant of meiotic 
recombination hotspots in humans and mice. Science 2010;327:836–
40. 

Beilina A, Rudenko IN, Kaganovich A et al. Unbiased screen for interactors of 
leucine-rich repeat kinase 2 supports a common pathway for sporadic 
and familial Parkinson disease. Proc Natl Acad Sci U S A 
2014;111:2626–31. 

Beldade P, Brakefield PM, Long AD. Contribution of Distal-less to quantitative 
variation in butterfly eyespots. Nature 2002;415:315–8. 

Bell AC, Felsenfeld G. Stopped at the border: boundaries and insulators. Curr 
Opin Genet Dev 1999;9:191–8. 

Belting HG, Shashikant CS, Ruddle FH. Modification of expression and cis-
regulation of Hoxc8 in the evolution of diverged axial morphology. Proc 
Natl Acad Sci U S A 1998;95:2355–60. 

Ben-Ari Y ’ara, Brody Y, Kinor N et al. The life of an mRNA in space and time. 
J Cell Sci 2010;123:1761–74. 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J R Stat Soc Ser 1995;B:289–
300. 

Bergen A, Baccarelli A, McDaniel T et al. cis sequence effects on gene 
expression. BMC Genomics 2007;8:296. 

Bersaglieri T, Sabeti PC, Patterson N et al. Genetic signatures of strong 
recent positive selection at the lactase gene. Am J Hum Genet 
2004;74:1111–20. 



	
   240	
  

Berthelsen J, Zappavigna V, Ferretti E et al. The novel homeoprotein Prep1 
modulates Pbx-Hox protein cooperativity. EMBO J 1998;17:1434–45. 

Bickel RD, Kopp A, Nuzhdin SV. Composite effects of polymorphisms near 
multiple regulatory elements create a major-effect QTL. PLoS Genet 
2011;7:e1001275. 

Botstein D, White RL, Skolnick M et al. Construction of a genetic linkage map 
in man using restriction fragment length polymorphisms. Am J Hum 
Genet 1980;32:314–31. 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. 
Acta Neuropathol (Berl) 1991;82:239–59. 

Braunschweig U, Barbosa-Morais NL, Pan Q et al. Widespread intron 
retention in mammals functionally tunes transcriptomes. Genome Res 
2014;24:1774–86. 

Bray NJ, Buckland PR, Owen MJ et al. Cis-acting variation in the expression 
of a high proportion of genes in human brain. Hum Genet 
2003;113:149–53. 

Bray NJ, Jehu L, Moskvina V et al. Allelic expression of APOE in human 
brain: effects of epsilon status and promoter haplotypes. Hum Mol 
Genet 2004;13:2885–92. 

Brickman JM, Clements M, Tyrell R et al. Molecular effects of novel mutations 
in Hesx1/HESX1 associated with human pituitary disorders. Dev Camb 
Engl 2001;128:5189–99. 

Cáceres M, Lachuer J, Zapala MA et al. Elevated gene expression levels 
distinguish human from non-human primate brains. Proc Natl Acad Sci 
U S A 2003;100:13030–5. 

Cain CE, Blekhman R, Marioni JC et al. Gene expression differences among 
primates are associated with changes in a histone epigenetic 
modification. Genetics 2011;187:1225–34. 

Calhoun VC, Stathopoulos A, Levine M. Promoter-proximal tethering 
elements regulate enhancer-promoter specificity in the Drosophila 
Antennapedia complex. Proc Natl Acad Sci U S A 2002;99:9243–7. 

Cantero-Recasens G, Fandos C, Rubio-Moscardo F et al. The asthma-
associated ORMDL3 gene product regulates endoplasmic reticulum-
mediated calcium signaling and cellular stress. Hum Mol Genet 
2010;19:111–21. 

Carninci P, Kasukawa T, Katayama S et al. The transcriptional landscape of 
the mammalian genome. Science 2005;309:1559–63. 

Carninci P, Sandelin A, Lenhard B et al. Genome-wide analysis of mammalian 
promoter architecture and evolution. Nat Genet 2006;38:626–35. 



	
   241	
  

Carrasquillo MM, Nicholson AM, Finch N et al. Genome-wide screen identifies 
rs646776 near sortilin as a regulator of progranulin levels in human 
plasma. Am J Hum Genet 2010;87:890–7. 

Carrión AM, Link WA, Ledo F et al. DREAM is a Ca2+-regulated 
transcriptional repressor. Nature 1999;398:80–4. 

Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic 
theory of morphological evolution. Cell 2008;134:25–36. 

Caspi A, McClay J, Moffitt TE et al. Role of genotype in the cycle of violence 
in maltreated children. Science 2002;297:851–4. 

Cavener DR. Transgenic animal studies on the evolution of genetic regulatory 
circuitries. BioEssays News Rev Mol Cell Dev Biol 1992;14:237–44. 

Chakravarti A. Population genetics--making sense out of sequence. Nat 
Genet 1999;21:56–60. 

Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious 
mutations on neutral molecular variation. Genetics 1993;134:1289–
303. 

Chaudhuri A, Polyakova J, Zbrzezna V et al. The coding sequence of Duffy 
blood group gene in humans and simians: restriction fragment length 
polymorphism, antibody and malarial parasite specificities, and 
expression in nonerythroid tissues in Duffy-negative individuals. Blood 
1995;85:615–21. 

Chaudhuri A, Zbrzezna V, Polyakova J et al. Expression of the Duffy antigen 
in K562 cells. Evidence that it is the human erythrocyte chemokine 
receptor. J Biol Chem 1994;269:7835–8. 

Cheung VG, Conlin LK, Weber TM et al. Natural variation in human gene 
expression assessed in lymphoblastoid cells. Nat Genet 2003;33:422–
5. 

Cheung VG, Spielman RS, Ewens KG et al. Mapping determinants of human 
gene expression by regional and genome-wide association. Nature 
2005;437:1365–9. 

Choy E, Yelensky R, Bonakdar S et al. Genetic analysis of human traits in 
vitro: drug response and gene expression in lymphoblastoid cell lines. 
PLoS Genet 2008;4:e1000287. 

Churchill GA, Doerge RW. Empirical threshold values for quantitative trait 
mapping. Genetics 1994;138:963–71. 

Clément-Ziza M, Munnich A, Lyonnet S et al. Stabilization of RNA during laser 
capture microdissection by performing experiments under argon 
atmosphere or using ethanol as a solvent in staining solutions. RNA N 
Y N 2008;14:2698–704. 



	
   242	
  

Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging 
human DNA sequence variation. Science 1997;278:1580–1. 

Comeron JM, Williford A, Kliman RM. The Hill-Robertson effect: evolutionary 
consequences of weak selection and linkage in finite populations. 
Heredity 2008;100:19–31. 

Cookson W, Liang L, Abecasis G et al. Mapping complex disease traits with 
global gene expression. Nat Rev Genet 2009;10:184–94. 

Coon KD, Myers AJ, Craig DW et al. A high-density whole-genome 
association study reveals that APOE is the major susceptibility gene for 
sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 
2007;68:613–8. 

Coop G, Przeworski M. An evolutionary view of human recombination. Nat 
Rev Genet 2007;8:23–34. 

Core LJ, Martins AL, Danko CG et al. Analysis of nascent RNA identifies a 
unified architecture of initiation regions at mammalian promoters and 
enhancers. Nat Genet 2014;46:1311–20. 

Corradin O, Saiakhova A, Akhtar-Zaidi B et al. Combinatorial effects of 
multiple enhancer variants in linkage disequilibrium dictate levels of 
gene expression to confer susceptibility to common traits. Genome Res 
2014;24:1–13. 

Cowell LG, Kepler TB, Janitz M et al. The distribution of variation in regulatory 
gene segments, as present in MHC class II promoters. Genome Res 
1998;8:124–34. 

Crawford DL, Segal JA, Barnett JL. Evolutionary analysis of TATA-less 
proximal promoter function. Mol Biol Evol 1999;16:194–207. 

Cresko WA, Amores A, Wilson C et al. Parallel genetic basis for repeated 
evolution of armor loss in Alaskan threespine stickleback populations. 
Proc Natl Acad Sci U S A 2004;101:6050–5. 

Cui J, Stahl EA, Saevarsdottir S et al. Genome-wide association study and 
gene expression analysis identifies CD84 as a predictor of response to 
etanercept therapy in rheumatoid arthritis. PLoS Genet 
2013;9:e1003394. 

Daly MJ, Rioux JD, Schaffner SF et al. High-resolution haplotype structure in 
the human genome. Nat Genet 2001;29:229–32. 

von Dassow G, Meir E, Munro EM et al. The segment polarity network is a 
robust developmental module. Nature 2000;406:188–92. 

Dausset J, Cann H, Cohen D et al. Centre d’etude du polymorphisme humain 
(CEPH): collaborative genetic mapping of the human genome. 
Genomics 1990;6:575–7. 



	
   243	
  

Davison D, Pritchard JK, Coop G. An approximate likelihood for genetic data 
under a model with recombination and population splitting. Theor Popul 
Biol 2009;75:331–45. 

Dawson E, Abecasis GR, Bumpstead S et al. A first-generation linkage 
disequilibrium map of human chromosome 22. Nature 2002;418:544–8. 

Dawson SJ, Morris PJ, Latchman DS. A single amino acid change converts 
an inhibitory transcription factor into an activator. J Biol Chem 
1996;271:11631–3. 

D’Elia AV, Tell G, Paron I et al. Missense mutations of human homeoboxes: A 
review. Hum Mutat 2001;18:361–74. 

Dermitzakis ET, Clark AG. Evolution of transcription factor binding sites in 
Mammalian gene regulatory regions: conservation and turnover. Mol 
Biol Evol 2002;19:1114–21. 

DiLeone RJ, Russell LB, Kingsley DM. An extensive 3’ regulatory region 
controls expression of Bmp5 in specific anatomical structures of the 
mouse embryo. Genetics 1998;148:401–8. 

Dillon N, Sabbattini P. Functional gene expression domains: defining the 
functional unit of eukaryotic gene regulation. BioEssays News Rev Mol 
Cell Dev Biol 2000;22:657–65. 

Dimas AS, Deutsch S, Stranger BE et al. Common regulatory variation 
impacts gene expression in a cell type-dependent manner. Science 
2009;325:1246–50. 

Dimas AS, Stranger BE, Beazley C et al. Modifier effects between regulatory 
and protein-coding variation. PLoS Genet 2008;4:e1000244. 

Di X, Matsuzaki H, Webster TA et al. Dynamic model based algorithms for 
screening and genotyping over 100 K SNPs on oligonucleotide 
microarrays. Bioinforma Oxf Engl 2005;21:1958–63. 

Dixon AL, Liang L, Moffatt MF et al. A genome-wide association study of 
global gene expression. Nat Genet 2007;39:1202–7. 

Dixon JR, Selvaraj S, Yue F et al. Topological domains in mammalian 
genomes identified by analysis of chromatin interactions. Nature 
2012;485:376–80. 

Dodson MW, Zhang T, Jiang C et al. Roles of the Drosophila LRRK2 homolog 
in Rab7-dependent lysosomal positioning. Hum Mol Genet 
2012;21:1350–63. 

Do R, Balick D, Li H et al. No evidence that selection has been less effective 
at removing deleterious mutations in Europeans than in Africans. Nat 
Genet 2015;47:126–31. 

Doudna JA, Charpentier E. Genome editing. The new frontier of genome 
engineering with CRISPR-Cas9. Science 2014;346:1258096. 



	
   244	
  

Dröge P, Müller-Hill B. High local protein concentrations at promoters: 
strategies in prokaryotic and eukaryotic cells. BioEssays News Rev Mol 
Cell Dev Biol 2001;23:179–83. 

Duggal P, Gillanders EM, Holmes TN et al. Establishing an adjusted p-value 
threshold to control the family-wide type 1 error in genome wide 
association studies. BMC Genomics 2008;9:516. 

Dunning AM, Durocher F, Healey CS et al. The extent of linkage 
disequilibrium in four populations with distinct demographic histories. 
Am J Hum Genet 2000;67:1544–54. 

Eden E, Geva-Zatorsky N, Issaeva I et al. Proteome half-life dynamics in 
living human cells. Science 2011;331:764–8. 

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res 
2002;30:207–10. 

Eisen MB, Spellman PT, Brown PO et al. Cluster analysis and display of 
genome-wide expression patterns. Proc Natl Acad Sci U S A 
1998;95:14863–8. 

Emilsson V, Thorleifsson G, Zhang B et al. Genetics of gene expression and 
its effect on disease. Nature 2008. 

Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. 
Science 1996;274:998–1001. 

Enard W, Khaitovich P, Klose J et al. Intra- and interspecific variation in 
primate gene expression patterns. Science 2002a;296:340–3. 

Enard W, Khaitovich P, Klose J et al. Intra- and interspecific variation in 
primate gene expression patterns. Science 2002b;296:340–3. 

ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA 
Elements) Project. Science 2004;306:636–40. 

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in 
the human genome. Nature 2012;489:57–74. 

Enoch MA, Kaye WH, Rotondo A et al. 5-HT2A promoter polymorphism -
1438G/A, anorexia nervosa, and obsessive-compulsive disorder. 
Lancet Lond Engl 1998;351:1785–6. 

Evans SJ, Choudary PV, Vawter MP et al. DNA microarray analysis of 
functionally discrete human brain regions reveals divergent 
transcriptional profiles. Neurobiol Dis 2003;14:240–50. 

Falush D, Stephens M, Pritchard JK. Inference of population structure using 
multilocus genotype data: linked loci and correlated allele frequencies. 
Genetics 2003;164:1567–87. 



	
   245	
  

FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest ARR, 
Kawaji H et al. A promoter-level mammalian expression atlas. Nature 
2014;507:462–70. 

Felsenstein J. The evolutionary advantage of recombination. Genetics 
1974;78:737–56. 

Flint J, Mackay TFC. Genetic architecture of quantitative traits in mice, flies, 
and humans. Genome Res 2009;19:723–33. 

Force A, Lynch M, Pickett FB et al. Preservation of duplicate genes by 
complementary, degenerative mutations. Genetics 1999;151:1531–45. 

Fraser HB. Gene expression drives local adaptation in humans. Genome Res 
2013;23:1089–96. 

Fraser HB, Xie X. Common polymorphic transcript variation in human 
disease. Genome Res 2009;19:567–75. 

Frazer KA, Sheehan JB, Stokowski RP et al. Evolutionarily conserved 
sequences on human chromosome 21. Genome Res 2001;11:1651–9. 

Friedrich B, Euler P, Ziegler R et al. Comparative analyses of Purkinje cell 
gene expression profiles reveal shared molecular abnormalities in 
models of different polyglutamine diseases. Brain Res 2012;1481:37–
48. 

Fry CJ, Farnham PJ. Context-dependent transcriptional regulation. J Biol 
Chem 1999;274:29583–6. 

Fu J, Wolfs MGM, Deelen P et al. Unraveling the regulatory mechanisms 
underlying tissue-dependent genetic variation of gene expression. 
PLoS Genet 2012;8:e1002431. 

Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks 
in the human genome. Science 2002;296:2225–9. 

Galasko D, Edland SD, Morris JC et al. The Consortium to Establish a 
Registry for Alzheimer’s Disease (CERAD). Part XI. Clinical milestones 
in patients with Alzheimer’s disease followed over 3 years. Neurology 
1995;45:1451–5. 

Garge N, Pan H, Rowland MD et al. Identification of quantitative trait loci 
underlying proteome variation in human lymphoblastoid cells. Mol Cell 
Proteomics MCP 2010;9:1383–99. 

Gerstein MB, Kundaje A, Hariharan M et al. Architecture of the human 
regulatory network derived from ENCODE data. Nature 2012;489:91–
100. 

Gibbs JR, van der Brug MP, Hernandez DG et al. Abundant quantitative trait 
Loci exist for DNA methylation and gene expression in human brain. 
PLoS Genet 2010;6:e1000952. 



	
   246	
  

Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of gene 
regulation: the promise of eQTL studies. Trends Genet TIG 2008, DOI: 
S0168-9525(08)00177-7. 

Gilbert JM, Brown BA, Strocchi P et al. The preparation of biologically active 
messenger RNA from human postmortem brain tissue. J Neurochem 
1981;36:976–84. 

Gompel N, Prud’homme B, Wittkopp PJ et al. Chance caught on the wing: cis-
regulatory evolution and the origin of pigment patterns in Drosophila. 
Nature 2005;433:481–7. 

Göring HHH, Curran JE, Johnson MP et al. Discovery of expression QTLs 
using large-scale transcriptional profiling in human lymphocytes. Nat 
Genet 2007;39:1208–16. 

de la Grange P, Gratadou L, Delord M et al. Splicing factor and exon profiling 
across human tissues. Nucleic Acids Res 2010;38:2825–38. 

Grosveld F, Antoniou M, Berry M et al. The regulation of human globin gene 
switching. Philos Trans R Soc Lond B Biol Sci 1993;339:183–91. 

Grundberg E, Small KS, Hedman AK et al. Mapping cis- and trans-regulatory 
effects across multiple tissues in twins. Nat Genet 2012;44:1084–9. 

GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat 
Genet 2013;45:580–5. 

Guardiola J, Maffei A, Lauster R et al. Functional significance of 
polymorphism among MHC class II gene promoters. Tissue Antigens 
1996;48:615–25. 

Guerreiro RJ, Beck J, Gibbs JR et al. Genetic variability in CLU and its 
association with Alzheimer’s disease. PloS One 2010;5:e9510. 

Gunderson KL, Steemers FJ, Lee G et al. A genome-wide scalable SNP 
genotyping assay using microarray technology. Nat Genet 
2005;37:549–54. 

Gustincich S, Sandelin A, Plessy C et al. The complexity of the mammalian 
transcriptome. J Physiol 2006;575:321–32. 

Hadley TJ, Peiper SC. From malaria to chemokine receptor: the emerging 
physiologic role of the Duffy blood group antigen. Blood 1997;89:3077–
91. 

Hamblin MT, Di Rienzo A. Detection of the signature of natural selection in 
humans: evidence from the Duffy blood group locus. Am J Hum Genet 
2000;66:1669–79. 

Hamblin MT, Thompson EE, Di Rienzo A. Complex signatures of natural 
selection at the Duffy blood group locus. Am J Hum Genet 
2002;70:369–83. 



	
   247	
  

Hammock EAD, Young LJ. Microsatellite instability generates diversity in 
brain and sociobehavioral traits. Science 2005;308:1630–4. 

Hariri AR, Mattay VS, Tessitore A et al. Serotonin transporter genetic variation 
and the response of the human amygdala. Science 2002;297:400–3. 

Hause RJ, Stark AL, Antao NN et al. Identification and Validation of Genetic 
Variants that Influence Transcription Factor and Cell Signaling Protein 
Levels. Am J Hum Genet 2014, DOI: 10.1016/j.ajhg.2014.07.005. 

Heidari N, Phanstiel DH, He C et al. Genome-wide map of regulatory 
interactions in the human genome. Genome Res 2014;24:1905–17. 

Heinzen EL, Ge D, Cronin KD et al. Tissue-specific genetic control of splicing: 
implications for the study of complex traits. PLoS Biol 2008;6:e1. 

Hellmann I, Ebersberger I, Ptak SE et al. A neutral explanation for the 
correlation of diversity with recombination rates in humans. Am J Hum 
Genet 2003;72:1527–35. 

Hellmann I, Prüfer K, Ji H et al. Why do human diversity levels vary at a 
megabase scale? Genome Res 2005;15:1222–31. 

Heo HY, Kim K-S, Seol W. Coordinate Regulation of Neurite Outgrowth by 
LRRK2 and Its Interactor, Rab5. Exp Neurobiol 2010;19:97–105. 

Hernandez DG, Nalls MA, Moore M et al. Integration of GWAS SNPs and 
tissue specific expression profiling reveal discrete eQTLs for human 
traits in blood and brain. Neurobiol Dis 2012;47:20–8. 

Hill WG, Robertson A. The effect of linkage on limits to artificial selection. 
Genet Res 1966;8:269–94. 

Hindorff LA, Sethupathy P, Junkins HA et al. Potential etiologic and functional 
implications of genome-wide association loci for human diseases and 
traits. Proc Natl Acad Sci U S A 2009;106:9362–7. 

Höglinger GU, Melhem NM, Dickson DW et al. Identification of common 
variants influencing risk of the tauopathy progressive supranuclear 
palsy. Nat Genet 2011;43:699–705. 

Holstege FC, Jennings EG, Wyrick JJ et al. Dissecting the regulatory circuitry 
of a eukaryotic genome. Cell 1998;95:717–28. 

Holton P, Ryten M, Nalls M et al. Initial assessment of the pathogenic 
mechanisms of the recently identified Alzheimer risk Loci. Ann Hum 
Genet 2013;77:85–105. 

Horuk R, Chitnis CE, Darbonne WC et al. A receptor for the malarial parasite 
Plasmodium vivax: the erythrocyte chemokine receptor. Science 
1993;261:1182–4. 

Hovatta I, Tennant RS, Helton R et al. Glyoxalase 1 and glutathione 
reductase 1 regulate anxiety in mice. Nature 2005;438:662–6. 



	
   248	
  

Hovatta I, Zapala MA, Broide RS et al. DNA variation and brain region-specific 
expression profiles exhibit different relationships between inbred 
mouse strains: implications for eQTL mapping studies. Genome Biol 
2007;8:R25. 

Howie B, Fuchsberger C, Stephens M et al. Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. 
Nat Genet 2012;44:955–9. 

Hsiao LL, Dangond F, Yoshida T et al. A compendium of gene expression in 
normal human tissues. Physiol Genomics 2001;7:97–104. 

Hudson RR, Kaplan NL. The coalescent process in models with selection and 
recombination. Genetics 1988;120:831–40. 

Hurd YL. Subjects with major depression or bipolar disorder show reduction of 
prodynorphin mRNA expression in discrete nuclei of the amygdaloid 
complex. Mol Psychiatry 2002;7:75–81. 

Hussin JG, Hodgkinson A, Idaghdour Y et al. Recombination affects 
accumulation of damaging and disease-associated mutations in human 
populations. Nat Genet 2015, DOI: 10.1038/ng.3216. 

Innocenti F, Cooper GM, Stanaway IB et al. Identification, replication, and 
functional fine-mapping of expression quantitative trait Loci in primary 
human liver tissue. PLoS Genet 2011;7:e1002078. 

International HapMap Consortium. The International HapMap Project. Nature 
2003;426:789–96. 

International HapMap Consortium. A haplotype map of the human genome. 
Nature 2005;437:1299–320. 

International HapMap Consortium, Frazer KA, Ballinger DG et al. A second 
generation human haplotype map of over 3.1 million SNPs. Nature 
2007;449:851–61. 

Iwamoto S, Li J, Sugimoto N et al. Characterization of the Duffy gene 
promoter: evidence for tissue-specific abolishment of expression in 
Fy(a-b-) of black individuals. Biochem Biophys Res Commun 
1996;222:852–9. 

Jackson-Fisher AJ, Chitikila C, Mitra M et al. A role for TBP dimerization in 
preventing unregulated gene expression. Mol Cell 1999;3:717–27. 

Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of 
proteins. J Mol Biol 1961;3:318–56. 

Jacques P-É, Jeyakani J, Bourque G. The majority of primate-specific 
regulatory sequences are derived from transposable elements. PLoS 
Genet 2013;9:e1003504. 



	
   249	
  

Jakobsson M, Scholz SW, Scheet P et al. Genotype, haplotype and copy-
number variation in worldwide human populations. Nature 
2008;451:998–1003. 

Jansen RC, Nap JP. Genetical genomics: the added value from segregation. 
Trends Genet TIG 2001;17:388–91. 

Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination 
in the class II region of the major histocompatibility complex. Nat Genet 
2001;29:217–22. 

Jensen JD, Thornton KR, Bustamante CD et al. On the utility of linkage 
disequilibrium as a statistic for identifying targets of positive selection in 
nonequilibrium populations. Genetics 2007;176:2371–9. 

Jin W, Riley RM, Wolfinger RD et al. The contributions of sex, genotype and 
age to transcriptional variance in Drosophila melanogaster. Nat Genet 
2001;29:389–95. 

Johnson GC, Esposito L, Barratt BJ et al. Haplotype tagging for the 
identification of common disease genes. Nat Genet 2001;29:233–7. 

Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. 
Science 2001;293:1068–70. 

Kadosh D, Struhl K. Targeted recruitment of the Sin3-Rpd3 histone 
deacetylase complex generates a highly localized domain of repressed 
chromatin in vivo. Mol Cell Biol 1998;18:5121–7. 

Kammandel B, Chowdhury K, Stoykova A et al. Distinct cis-essential modules 
direct the time-space pattern of the Pax6 gene activity. Dev Biol 
1999;205:79–97. 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res 2000;28:27–30. 

Karp CL, Grupe A, Schadt E et al. Identification of complement factor 5 as a 
susceptibility locus for experimental allergic asthma. Nat Immunol 
2000;1:221–6. 

Kasowski M, Grubert F, Heffelfinger C et al. Variation in transcription factor 
binding among humans. Science 2010;328:232–5. 

Kathiresan S, Melander O, Guiducci C et al. Six new loci associated with 
blood low-density lipoprotein cholesterol, high-density lipoprotein 
cholesterol or triglycerides in humans. Nat Genet 2008;40:189–97. 

Keightley PD, Otto SP. Interference among deleterious mutations favours sex 
and recombination in finite populations. Nature 2006;443:89–92. 

Kellis M, Wold B, Snyder MP et al. Defining functional DNA elements in the 
human genome. Proc Natl Acad Sci U S A 2014;111:6131–8. 



	
   250	
  

Kendirgi F, Rexer DJ, Alcázar-Román AR et al. Interaction between the 
shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a 
conserved mechanism in the export of Hsp70 mRNA. Mol Biol Cell 
2005;16:4304–15. 

Khaitovich P, Hellmann I, Enard W et al. Parallel patterns of evolution in the 
genomes and transcriptomes of humans and chimpanzees. Science 
2005;309:1850–4. 

Khaitovich P, Muetzel B, She X et al. Regional patterns of gene expression in 
human and chimpanzee brains. Genome Res 2004;14:1462–73. 

Kim-Cohen J, Caspi A, Taylor A et al. MAOA, maltreatment, and gene-
environment interaction predicting children’s mental health: new 
evidence and a meta-analysis. Mol Psychiatry 2006;11:903–13. 

Kleinjan DA, van Heyningen V. Long-range control of gene expression: 
emerging mechanisms and disruption in disease. Am J Hum Genet 
2005;76:8–32. 

Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-
related macular degeneration. Science 2005;308:385–9. 

Knoepfler PS, Kamps MP. The pentapeptide motif of Hox proteins is required 
for cooperative DNA binding with Pbx1, physically contacts Pbx1, and 
enhances DNA binding by Pbx1. Mol Cell Biol 1995;15:5811–9. 

Kong A, Gudbjartsson DF, Sainz J et al. A high-resolution recombination map 
of the human genome. Nat Genet 2002;31:241–7. 

Kong A, Thorleifsson G, Frigge ML et al. Common and low-frequency variants 
associated with genome-wide recombination rate. Nat Genet 
2014;46:11–6. 

Kristensen AR, Gsponer J, Foster LJ. Protein synthesis rate is the 
predominant regulator of protein expression during differentiation. Mol 
Syst Biol 2013;9:689. 

Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of 
common disease genes. Nat Genet 1999;22:139–44. 

Kudaravalli S, Veyrieras J-B, Stranger BE et al. Gene expression levels are a 
target of recent natural selection in the human genome. Mol Biol Evol 
2009;26:649–58. 

Kumar A, Gibbs JR, Beilina A et al. Age-associated changes in gene 
expression in human brain and isolated neurons. Neurobiol Aging 
2013;34:1199–209. 

Kuras L, Struhl K. Binding of TBP to promoters in vivo is stimulated by 
activators and requires Pol II holoenzyme. Nature 1999;399:609–13. 

Kwan T, Benovoy D, Dias C et al. Genome-wide analysis of transcript isoform 
variation in humans. Nat Genet 2008;40:225–31. 



	
   251	
  

Kwan T, Grundberg E, Koka V et al. Tissue effect on genetic control of 
transcript isoform variation. PLoS Genet 2009;5:e1000608. 

Lagrange T, Kapanidis AN, Tang H et al. New core promoter element in RNA 
polymerase II-dependent transcription: sequence-specific DNA binding 
by transcription factor IIB. Genes Dev 1998;12:34–44. 

Lambert JC, Pérez-Tur J, Dupire MJ et al. Distortion of allelic expression of 
apolipoprotein E in Alzheimer’s disease. Hum Mol Genet 1997;6:2151–
4. 

Lam EW-F, Brosens JJ, Gomes AR et al. Forkhead box proteins: tuning forks 
for transcriptional harmony. Nat Rev Cancer 2013;13:482–95. 

Landolin JM, Johnson DS, Trinklein ND et al. Sequence features that drive 
human promoter function and tissue specificity. Genome Res 
2010;20:890–8. 

Lappalainen T, Montgomery SB, Nica AC et al. Epistatic selection between 
coding and regulatory variation in human evolution and disease. Am J 
Hum Genet 2011;89:459–63. 

Laurent JM, Vogel C, Kwon T et al. Protein abundances are more conserved 
than mRNA abundances across diverse taxa. Proteomics 
2010;10:4209–12. 

Laurie DA, Hultén MA. Further studies on chiasma distribution and 
interference in the human male. Ann Hum Genet 1985;49:203–14. 

Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: 
enabling diversity with identity. Nat Rev Immunol 2011;11:750–61. 

Laws SM, Friedrich P, Diehl-Schmid J et al. Fine mapping of the MAPT locus 
using quantitative trait analysis identifies possible causal variants in 
Alzheimer’s disease. Mol Psychiatry 2007;12:510–7. 

Lee J-H, Park I-H, Gao Y et al. A robust approach to identifying tissue-specific 
gene expression regulatory variants using personalized human induced 
pluripotent stem cells. PLoS Genet 2009;5:e1000718. 

Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu 
Rev Genet 2000;34:77–137. 

Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors 
for gene control. Genes Dev 2000;14:2551–69. 

Lesecque Y, Glémin S, Lartillot N et al. The red queen model of 
recombination hotspots evolution in the light of archaic and modern 
human genomes. PLoS Genet 2014;10:e1004790. 

Lettice LA, Horikoshi T, Heaney SJH et al. Disruption of a long-range cis-
acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad 
Sci U S A 2002;99:7548–53. 



	
   252	
  

Libioulle C, Louis E, Hansoul S et al. Novel Crohn disease locus identified by 
genome-wide association maps to a gene desert on 5p13.1 and 
modulates expression of PTGER4. PLoS Genet 2007;3:e58. 

Li JJ, Bickel PJ, Biggin MD. System wide analyses have underestimated 
protein abundances and the importance of transcription in mammals. 
PeerJ 2014;2:e270. 

Li JZ, Vawter MP, Walsh DM et al. Systematic changes in gene expression in 
postmortem human brains associated with tissue pH and terminal 
medical conditions. Hum Mol Genet 2004;13:609–16. 

Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for 
genome-wide association studies. Eur J Hum Genet EJHG 2008. 

Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet 
2000;1:48–56. 

Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification 
of a dinucleotide repeat within the cardiac muscle actin gene. Am J 
Hum Genet 1989;44:397–401. 

Li WW, Dammerman MM, Smith JD et al. Common genetic variation in the 
promoter of the human apo CIII gene abolishes regulation by insulin 
and may contribute to hypertriglyceridemia. J Clin Invest 
1995;96:2601–5. 

Li Y, Willer CJ, Ding J et al. MaCH: using sequence and genotype data to 
estimate haplotypes and unobserved genotypes. Genet Epidemiol 
2010;34:816–34. 

Li Y, Willer C, Sanna S et al. Genotype imputation. Annu Rev Genomics Hum 
Genet 2009;10:387–406. 

Lohmueller KE, Bustamante CD, Clark AG. Methods for human demographic 
inference using haplotype patterns from genomewide single-nucleotide 
polymorphism data. Genetics 2009;182:217–31. 

Luo L, Salunga RC, Guo H et al. Gene expression profiles of laser-captured 
adjacent neuronal subtypes. Nat Med 1999;5:117–22. 

Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu 
Rev Genomics Hum Genet 2004;5:317–49. 

Mack WJ, Freed DM, Williams BW et al. Boston Naming Test: shortened 
versions for use in Alzheimer’s disease. J Gerontol 1992;47:P154–8. 

MacLeod DA, Rhinn H, Kuwahara T et al. RAB7L1 interacts with LRRK2 to 
modify intraneuronal protein sorting and Parkinson’s disease risk. 
Neuron 2013;77:425–39. 

MacLeod D, Dowman J, Hammond R et al. The familial Parkinsonism gene 
LRRK2 regulates neurite process morphology. Neuron 2006;52:587–
93. 



	
   253	
  

Mailman MD, Feolo M, Jin Y et al. The NCBI dbGaP database of genotypes 
and phenotypes. Nat Genet 2007;39:1181–6. 

Maiuri P, Knezevich A, De Marco A et al. Fast transcription rates of RNA 
polymerase II in human cells. EMBO Rep 2011;12:1280–5. 

Manzanares M, Wada H, Itasaki N et al. Conservation and elaboration of Hox 
gene regulation during evolution of the vertebrate head. Nature 
2000;408:854–7. 

Marcil A, Dumontier E, Chamberland M et al. Pitx1 and Pitx2 are required for 
development of hindlimb buds. Dev Camb Engl 2003;130:45–55. 

de Massy B. Distribution of meiotic recombination sites. Trends Genet TIG 
2003;19:514–22. 

Mathieson I, McVean G. Demography and the age of rare variants. PLoS 
Genet 2014;10:e1004528. 

Matsuzaki H, Dong S, Loi H et al. Genotyping over 100,000 SNPs on a pair of 
oligonucleotide arrays. Nat Methods 2004;1:109–11. 

May CA, Shone AC, Kalaydjieva L et al. Crossover clustering and rapid decay 
of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. 
Nat Genet 2002;31:272–5. 

McClurg P, Janes J, Wu C et al. Genomewide association analysis in diverse 
inbred mice: power and population structure. Genetics 2007;176:675–
83. 

McVean GAT, Myers SR, Hunt S et al. The fine-scale structure of 
recombination rate variation in the human genome. Science 
2004;304:581–4. 

Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene 
frequencies in Europeans. Science 1978;201:786–92. 

Metherall JE, Gillespie FP, Forget BG. Analyses of linked beta-globin genes 
suggest that nondeletion forms of hereditary persistence of fetal 
hemoglobin are bona fide switching mutants. Am J Hum Genet 
1988;42:476–81. 

Miller LH, Mason SJ, Clyde DF et al. The resistance factor to Plasmodium 
vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 
1976;295:302–4. 

Milo R, Shen-Orr S, Itzkovitz S et al. Network motifs: simple building blocks of 
complex networks. Science 2002;298:824–7. 

Moffatt MF, Kabesch M, Liang L et al. Genetic variants regulating ORMDL3 
expression contribute to the risk of childhood asthma. Nature 
2007a;448:470–3. 



	
   254	
  

Moffatt MF, Kabesch M, Liang L et al. Genetic variants regulating ORMDL3 
expression contribute to the risk of childhood asthma. Nature 
2007b;448:470–3. 

Monks SA, Leonardson A, Zhu H et al. Genetic inheritance of gene 
expression in human cell lines. Am J Hum Genet 2004;75:1094–105. 

Montgomery SB, Dermitzakis ET. From expression QTLs to personalized 
transcriptomics. Nat Rev Genet 2011;12:277–82. 

Montgomery SB, Sammeth M, Gutierrez-Arcelus M et al. Transcriptome 
genetics using second generation sequencing in a Caucasian 
population. Nature 2010;464:773–7. 

Morley M, Molony CM, Weber TM et al. Genetic analysis of genome-wide 
variation in human gene expression. Nature 2004;430:743–7. 

Muller HJ. THE RELATION OF RECOMBINATION TO MUTATIONAL 
ADVANCE. Mutat Res 1964;106:2–9. 

Myers AJ, Gibbs JR, Webster JA et al. A survey of genetic human cortical 
gene expression. Nat Genet 2007a;39:1494–9. 

Myers AJ, Pittman AM, Zhao AS et al. The MAPT H1c risk haplotype is 
associated with increased expression of tau and especially of 4 repeat 
containing transcripts. Neurobiol Dis 2007b;25:561–70. 

Myers S, Bottolo L, Freeman C et al. A fine-scale map of recombination rates 
and hotspots across the human genome. Science 2005;310:321–4. 

Myers S, Bowden R, Tumian A et al. Drive against hotspot motifs in primates 
implicates the PRDM9 gene in meiotic recombination. Science 
2010;327:876–9. 

Naganawa S, Ginsberg HN, Glickman RM et al. Intestinal transcription and 
synthesis of apolipoprotein AI is regulated by five natural 
polymorphisms upstream of the apolipoprotein CIII gene. J Clin Invest 
1997;99:1958–65. 

Nalls MA, Pankratz N, Lill CM et al. Large-scale meta-analysis of genome-
wide association data identifies six new risk loci for Parkinson’s 
disease. Nat Genet 2014;46:989–93. 

Nalls MA, Plagnol V, Hernandez DG et al. Imputation of sequence variants for 
identification of genetic risks for Parkinson’s disease: a meta-analysis 
of genome-wide association studies. Lancet 2011;377:641–9. 

Nalls MA, Saad M, Noyce AJ et al. Genetic comorbidities in Parkinson’s 
disease. Hum Mol Genet 2013, DOI: 10.1093/hmg/ddt465. 

Neznanov N, Umezawa A, Oshima RG. A regulatory element within a coding 
exon modulates keratin 18 gene expression in transgenic mice. J Biol 
Chem 1997;272:27549–57. 



	
   255	
  

Nica AC, Montgomery SB, Dimas AS et al. Candidate causal regulatory 
effects by integration of expression QTLs with complex trait genetic 
associations. PLoS Genet 2010;6:e1000895. 

Nica AC, Parts L, Glass D et al. The Architecture of Gene Regulatory 
Variation across Multiple Human Tissues: The MuTHER Study. PLoS 
Genet 2011;7:e1002003. 

Nichols WC, Pankratz N, Hernandez D et al. Genetic screening for a single 
common LRRK2 mutation in familial Parkinson’s disease. Lancet Lond 
Engl 2005;365:410–2. 

Nicodemus KK, Liu W, Chase GA et al. Comparison of type I error for multiple 
test corrections in large single-nucleotide polymorphism studies using 
principal components versus haplotype blocking algorithms. BMC 
Genet 2005;6 Suppl 1:S78. 

Nicolae DL, Gamazon E, Zhang W et al. Trait-associated SNPs are more 
likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS 
Genet 2010;6:e1000888. 

Nielsen LB, Kahn D, Duell T et al. Apolipoprotein B gene expression in a 
series of human apolipoprotein B transgenic mice generated with recA-
assisted restriction endonuclease cleavage-modified bacterial artificial 
chromosomes. An intestine-specific enhancer element is located 
between 54 and 62 kilobases 5’ to the structural gene. J Biol Chem 
1998;273:21800–7. 

Nobrega MA, Ovcharenko I, Afzal V et al. Scanning human gene deserts for 
long-range enhancers. Science 2003;302:413. 

Nordborg M, Tavaré S. Linkage disequilibrium: what history has to tell us. 
Trends Genet TIG 2002;18:83–90. 

North BV, Curtis D, Sham PC. A note on the calculation of empirical P values 
from Monte Carlo procedures. Am J Hum Genet 2002;71:439–41. 

Novembre J, Johnson T, Bryc K et al. Genes mirror geography within Europe. 
Nature 2008;456:98–101. 

Novembre J, Stephens M. Interpreting principal component analyses of 
spatial population genetic variation. Nat Genet 2008;40:646–9. 

Oberdick J, Levinthal F, Levinthal C. A Purkinje cell differentiation marker 
shows a partial DNA sequence homology to the cellular sis/PDGF2 
gene. Neuron 1988;1:367–76. 

Okaty BW, Sugino K, Nelson SB. A quantitative comparison of cell-type-
specific microarray gene expression profiling methods in the mouse 
brain. PloS One 2011;6:e16493. 

Olds LC, Sibley E. Lactase persistence DNA variant enhances lactase 
promoter activity in vitro: functional role as a cis regulatory element. 
Hum Mol Genet 2003;12:2333–40. 



	
   256	
  

Oleksiak MF, Churchill GA, Crawford DL. Variation in gene expression within 
and among natural populations. Nat Genet 2002;32:261–6. 

Onyango P, Miller W, Lehoczky J et al. Sequence and comparative analysis 
of the mouse 1-megabase region orthologous to the human 11p15 
imprinted domain. Genome Res 2000;10:1697–710. 

Ordway GA, Szebeni A, Duffourc MM et al. Gene expression analyses of 
neurons, astrocytes, and oligodendrocytes isolated by laser capture 
microdissection from human brain: detrimental effects of laboratory 
humidity. J Neurosci Res 2009;87:2430–8. 

Orphanides G, Lagrange T, Reinberg D. The general transcription factors of 
RNA polymerase II. Genes Dev 1996;10:2657–83. 

Otto SP, Lenormand T. Resolving the paradox of sex and recombination. Nat 
Rev Genet 2002;3:252–61. 

Pai AA, Bell JT, Marioni JC et al. A genome-wide study of DNA methylation 
patterns and gene expression levels in multiple human and 
chimpanzee tissues. PLoS Genet 2011;7:e1001316. 

Paisán-Ruíz C, Jain S, Evans EW et al. Cloning of the gene containing 
mutations that cause PARK8-linked Parkinson’s disease. Neuron 
2004;44:595–600. 

Pan Q, Shai O, Lee LJ et al. Deep surveying of alternative splicing complexity 
in the human transcriptome by high-throughput sequencing. Nat Genet 
2008, DOI: ng.259. 

Paquette J, Giannoukakis N, Polychronakos C et al. The INS 5’ variable 
number of tandem repeats is associated with IGF2 expression in 
humans. J Biol Chem 1998;273:14158–64. 

Park SJ, Lee JH, Kim HY et al. Astrocytes, but not microglia, rapidly sense 
H₂O₂via STAT6 phosphorylation, resulting in cyclooxygenase-2 
expression and prostaglandin release. J Immunol Baltim Md 1950 
2012;188:5132–41. 

Pastinen T, Ge B, Hudson TJ. Influence of human genome polymorphism on 
gene expression. Hum Mol Genet 2006;15 Spec No 1:R9–16. 

Pastinen T, Sladek R, Gurd S et al. A survey of genetic and epigenetic 
variation affecting human gene expression. Physiol Genomics 
2004;16:184–93. 

Patil N, Berno AJ, Hinds DA et al. Blocks of limited haplotype diversity 
revealed by high-resolution scanning of human chromosome 21. 
Science 2001;294:1719–23. 

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS 
Genet 2006;2:e190. 



	
   257	
  

Peckys D, Hurd YL. Prodynorphin and kappa opioid receptor mRNA 
expression in the cingulate and prefrontal cortices of subjects 
diagnosed with schizophrenia or affective disorders. Brain Res Bull 
2001;55:619–24. 

Peiper SC, Wang ZX, Neote K et al. The Duffy antigen/receptor for 
chemokines (DARC) is expressed in endothelial cells of Duffy negative 
individuals who lack the erythrocyte receptor. J Exp Med 
1995;181:1311–7. 

Petronczki M, Siomos MF, Nasmyth K. Un ménage à quatre: the molecular 
biology of chromosome segregation in meiosis. Cell 2003;112:423–40. 

Pickrell JK. Joint analysis of functional genomic data and genome-wide 
association studies of 18 human traits. Am J Hum Genet 2014;94:559–
73. 

Pickrell JK, Marioni JC, Pai AA et al. Understanding mechanisms underlying 
human gene expression variation with RNA sequencing. Nature 2010, 
DOI: 10.1038/nature08872. 

Pittman AM, Myers AJ, Duckworth J et al. The structure of the tau haplotype 
in controls and in progressive supranuclear palsy. Hum Mol Genet 
2004;13:1267–74. 

Plagnol V, Uz E, Wallace C et al. Extreme clonality in lymphoblastoid cell lines 
with implications for allele specific expression analyses. PloS One 
2008;3:e2966. 

Plagnol V, Wall JD. Possible ancestral structure in human populations. PLoS 
Genet 2006;2:e105. 

Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the 
expression of human genes. Proc Natl Acad Sci U S A 
2004;101:12588–91. 

Pogo AO, Chaudhuri A. The Duffy protein: a malarial and chemokine receptor. 
Semin Hematol 2000;37:122–9. 

Pollard KS, Dudoit S, Laan MJ van der. Multiple Testing Procedures: the 
multtest Package and Applications to Genomics. In: Gentleman R, 
Carey VJ, Huber W, et al. (eds.). Bioinformatics and Computational 
Biology Solutions Using R and Bioconductor. Springer New York, 2005, 
249–71. 

Ponjavic J, Lenhard B, Kai C et al. Transcriptional and structural impact of 
TATA-initiation site spacing in mammalian core promoters. Genome 
Biol 2006;7:R78. 

Pool JE, Hellmann I, Jensen JD et al. Population genetic inference from 
genomic sequence variation. Genome Res 2010;20:291–300. 



	
   258	
  

Price AL, Helgason A, Thorleifsson G et al. Single-Tissue and Cross-Tissue 
Heritability of Gene Expression Via Identity-by-Descent in Related or 
Unrelated Individuals. PLoS Genet 2011;7:e1001317. 

Price AL, Patterson NJ, Plenge RM et al. Principal components analysis 
corrects for stratification in genome-wide association studies. Nat 
Genet 2006;38:904–9. 

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using 
multilocus genotype data. Genetics 2000;155:945–59. 

Prud’homme B, Gompel N, Rokas A et al. Repeated morphological evolution 
through cis-regulatory changes in a pleiotropic gene. Nature 
2006;440:1050–3. 

Purcell S, Neale B, Todd-Brown K et al. PLINK: A Tool Set for Whole-
Genome Association and Population-Based Linkage Analyses. Am J 
Hum Genet 2007;81:559–75. 

Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. 
Bioinforma Oxf Engl 2006;22:7–12. 

Rademakers R, Melquist S, Cruts M et al. High-density SNP haplotyping 
suggests altered regulation of tau gene expression in progressive 
supranuclear palsy. Hum Mol Genet 2005;14:3281–92. 

R C Lewontin. EVOL BIOL. Evol Biol 1972;6:381–98. 

R Core Team. R: A Language and Environment for Statistical Computing. 
Vienna, Austria: R Foundation for   Statistical Computing, 2012. 

Reich DE, Cargill M, Bolk S et al. Linkage disequilibrium in the human 
genome. Nature 2001;411:199–204. 

Reinberg D, Orphanides G, Ebright R et al. The RNA polymerase II general 
transcription factors: past, present, and future. Cold Spring Harb Symp 
Quant Biol 1998;63:83–103. 

Richards EJ, Elgin SCR. Epigenetic codes for heterochromatin formation and 
silencing: rounding up the usual suspects. Cell 2002;108:489–500. 

Rieder MJ, Reiner AP, Gage BF et al. Effect of VKORC1 haplotypes on 
transcriptional regulation and warfarin dose. N Engl J Med 
2005;352:2285–93. 

Rockman MV, Hahn MW, Soranzo N et al. Ancient and recent positive 
selection transformed opioid cis-regulation in humans. PLoS Biol 
2005;3:e387. 

Rockman MV, Wray GA. Abundant raw material for cis-regulatory evolution in 
humans. Mol Biol Evol 2002;19:1991–2004. 

Roeder GS. Meiotic chromosomes: it takes two to tango. Genes Dev 
1997;11:2600–21. 



	
   259	
  

Rogaeva E. The solved and unsolved mysteries of the genetics of early-onset 
Alzheimer’s disease. Neuromolecular Med 2002;2:1–10. 

Romey MC, Guittard C, Chazalette JP et al. Complex allele [-
102T>A+S549R(T>G)] is associated with milder forms of cystic fibrosis 
than allele S549R(T>G) alone. Hum Genet 1999;105:145–50. 

Romey MC, Pallares-Ruiz N, Mange A et al. A naturally occurring sequence 
variation that creates a YY1 element is associated with increased 
cystic fibrosis transmembrane conductance regulator gene expression. 
J Biol Chem 2000;275:3561–7. 

Ronald J, Brem RB, Whittle J et al. Local regulatory variation in 
Saccharomyces cerevisiae. PLoS Genet 2005;1:e25. 

Rong Y, Wang T, Morgan JI. Identification of candidate Purkinje cell-specific 
markers by gene expression profiling in wild-type and pcd(3J) mice. 
Brain Res Mol Brain Res 2004;132:128–45. 

Rosenberg NA, Pritchard JK, Weber JL et al. Genetic structure of human 
populations. Science 2002;298:2381–5. 

Rozenberg JM, Shlyakhtenko A, Glass K et al. All and only CpG containing 
sequences are enriched in promoters abundantly bound by RNA 
polymerase II in multiple tissues. BMC Genomics 2008;9:67. 

Ruvkun G, Wightman B, Bürglin T et al. Dominant gain-of-function mutations 
that lead to misregulation of the C. elegans heterochronic gene lin-14, 
and the evolutionary implications of dominant mutations in pattern-
formation genes. Dev Camb Engl Suppl 1991;1:47–54. 

Sabeti PC, Reich DE, Higgins JM et al. Detecting recent positive selection in 
the human genome from haplotype structure. Nature 2002;419:832–7. 

Sabeti PC, Varilly P, Fry B et al. Genome-wide detection and characterization 
of positive selection in human populations. Nature 2007;449:913–8. 

Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome 
sequence variation containing 1.42 million single nucleotide 
polymorphisms. Nature 2001;409:928–33. 

Saeed AI, Sharov V, White J et al. TM4: a free, open-source system for 
microarray data management and analysis. BioTechniques 
2003;34:374–8. 

Saito-Hisaminato A, Katagiri T, Kakiuchi S et al. Genome-wide profiling of 
gene expression in 29 normal human tissues with a cDNA microarray. 
DNA Res Int J Rapid Publ Rep Genes Genomes 2002;9:35–45. 

Sakurai D, Zhao J, Deng Y et al. Preferential binding to Elk-1 by SLE-
associated IL10 risk allele upregulates IL10 expression. PLoS Genet 
2013;9:e1003870. 



	
   260	
  

Sandelin A, Carninci P, Lenhard B et al. Mammalian RNA polymerase II core 
promoters: insights from genome-wide studies. Nat Rev Genet 
2007;8:424–36. 

Santostefano KE, Hamazaki T, Biel NM et al. A practical guide to induced 
pluripotent stem cell research using patient samples. Lab Investig J 
Tech Methods Pathol 2015;95:4–13. 

Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG 
dinucleotides in the human genome distinguishes two distinct classes 
of promoters. Proc Natl Acad Sci U S A 2006;103:1412–7. 

Scaffidi P, Bianchi ME. Spatially precise DNA bending is an essential activity 
of the sox2 transcription factor. J Biol Chem 2001;276:47296–302. 

Schadt EE, Li C, Ellis B et al. Feature extraction and normalization algorithms 
for high-density oligonucleotide gene expression array data. J Cell 
Biochem Suppl 2001;Suppl 37:120–5. 

Schadt EE, Molony C, Chudin E et al. Mapping the genetic architecture of 
gene expression in human liver. PLoS Biol 2008;6:e107. 

Schadt EE, Monks SA, Drake TA et al. Genetics of gene expression surveyed 
in maize, mouse and man. Nature 2003;422:297–302. 

Scharf JM, Yu D, Mathews CA et al. Genome-wide association study of 
Tourette’s syndrome. Mol Psychiatry 2012, DOI: 10.1038/mp.2012.69. 

Schaub MA, Boyle AP, Kundaje A et al. Linking disease associations with 
regulatory information in the human genome. Genome Res 
2012;22:1748–59. 

Schiffels S, Durbin R. Inferring human population size and separation history 
from multiple genome sequences. Nat Genet 2014, DOI: 
10.1038/ng.3015. 

Schliekelman P. Statistical power of expression quantitative trait loci for 
mapping of complex trait loci in natural populations. Genetics 
2008;178:2201–16. 

Schug J, Schuller W-P, Kappen C et al. Promoter features related to tissue 
specificity as measured by Shannon entropy. Genome Biol 
2005;6:R33. 

Schwanhäusser B, Busse D, Li N et al. Global quantification of mammalian 
gene expression control. Nature 2011;473:337–42. 

Segal JA, Barnett JL, Crawford DL. Functional analyses of natural variation in 
Sp1 binding sites of a TATA-less promoter. J Mol Evol 1999;49:736–
49. 

Selbach M, Schwanhäusser B, Thierfelder N et al. Widespread changes in 
protein synthesis induced by microRNAs. Nature 2008, DOI: 
nature07228. 



	
   261	
  

Shabalina SA, Ogurtsov AY, Kondrashov VA et al. Selective constraint in 
intergenic regions of human and mouse genomes. Trends Genet TIG 
2001;17:373–6. 

Sham PC, Purcell SM. Statistical power and significance testing in large-scale 
genetic studies. Nat Rev Genet 2014;15:335–46. 

Shang J, Luo Y, Clayton DA. Backfoot is a novel homeobox gene expressed 
in the mesenchyme of developing hind limb. Dev Dyn Off Publ Am 
Assoc Anat 1997;209:242–53. 

Shapiro MD, Bell MA, Kingsley DM. Parallel genetic origins of pelvic reduction 
in vertebrates. Proc Natl Acad Sci U S A 2006;103:13753–8. 

Shapiro MD, Marks ME, Peichel CL et al. Genetic and developmental basis of 
evolutionary pelvic reduction in threespine sticklebacks. Nature 
2004;428:717–23. 

Sharova LV, Sharov AA, Nedorezov T et al. Database for mRNA half-life of 19 
977 genes obtained by DNA microarray analysis of pluripotent and 
differentiating mouse embryonic stem cells. DNA Res Int J Rapid Publ 
Rep Genes Genomes 2009;16:45–58. 

Sheffield NC, Thurman RE, Song L et al. Patterns of regulatory activity across 
diverse human cell types predict tissue identity, transcription factor 
binding, and long-range interactions. Genome Res 2013;23:777–88. 

Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties 
to genome-wide predictions. Nat Rev Genet 2014;15:272–86. 

Shyamsundar R, Kim YH, Higgins JP et al. A DNA microarray survey of gene 
expression in normal human tissues. Genome Biol 2005;6:R22. 

Simon J, Peifer M, Bender W et al. Regulatory elements of the bithorax 
complex that control expression along the anterior-posterior axis. 
EMBO J 1990;9:3945–56. 

Simón-Sánchez J, Schulte C, Bras JM et al. Genome-wide association study 
reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009, 
DOI: 10.1038/ng.487. 

Simpson P, Woehl R, Usui K. The development and evolution of bristle 
patterns in Diptera. Dev Camb Engl 1999;126:1349–64. 

Skaer N, Simpson P. Genetic analysis of bristle loss in hybrids between 
Drosophila melanogaster and D. simulans provides evidence for 
divergence of cis-regulatory sequences in the achaete-scute gene 
complex. Dev Biol 2000;221:148–67. 

Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res 
1974;23:23–35. 

Son CG, Bilke S, Davis S et al. Database of mRNA gene expression profiles 
of multiple human organs. Genome Res 2005;15:443–50. 



	
   262	
  

Stafa K, Trancikova A, Webber PJ et al. GTPase activity and neuronal toxicity 
of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. 
PLoS Genet 2012;8:e1002526. 

Steemers FJ, Chang W, Lee G et al. Whole-genome genotyping with the 
single-base extension assay. Nat Methods 2006;3:31–3. 

Stefansson H, Helgason A, Thorleifsson G et al. A common inversion under 
selection in Europeans. Nat Genet 2005;37:129–37. 

Stephan W, Song YS, Langley CH. The hitchhiking effect on linkage 
disequilibrium between linked neutral loci. Genetics 2006;172:2647–63. 

Stern DL. Evolutionary developmental biology and the problem of variation. 
Evol Int J Org Evol 2000;54:1079–91. 

Stewart SE, Yu D, Scharf JM et al. Genome-wide association study of 
obsessive-compulsive disorder. Mol Psychiatry 2012, DOI: 
10.1038/mp.2012.85. 

Stögmann E, Zimprich A, Baumgartner C et al. A functional polymorphism in 
the prodynorphin gene promotor is associated with temporal lobe 
epilepsy. Ann Neurol 2002;51:260–3. 

Stone JR, Wray GA. Rapid evolution of cis-regulatory sequences via local 
point mutations. Mol Biol Evol 2001;18:1764–70. 

Storey JD, Madeoy J, Strout JL et al. Gene-expression variation within and 
among human populations. Am J Hum Genet 2007;80:502–9. 

Stranger BE, Forrest MS, Clark AG et al. Genome-wide associations of gene 
expression variation in humans. PLoS Genet 2005;1:e78. 

Stranger BE, Nica AC, Forrest MS et al. Population genomics of human gene 
expression. Nat Genet 2007;39:1217–24. 

Su AI, Cooke MP, Ching KA et al. Large-scale analysis of the human and 
mouse transcriptomes. Proc Natl Acad Sci U S A 2002;99:4465–70. 

Sucena E, Delon I, Jones I et al. Regulatory evolution of shavenbaby/ovo 
underlies multiple cases of morphological parallelism. Nature 
2003;424:935–8. 

Sucena E, Stern DL. Divergence of larval morphology between Drosophila 
sechellia and its sibling species caused by cis-regulatory evolution of 
ovo/shaven-baby. Proc Natl Acad Sci U S A 2000;97:4530–4. 

Sultan M, Schulz MH, Richard H et al. A Global View of Gene Activity and 
Alternative Splicing by Deep Sequencing of the Human Transcriptome. 
Science 2008, DOI: 1160342. 

Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu 
Rev Genet 2003;37:197–219. 



	
   263	
  

Syddall CM, Reynard LN, Young DA et al. The identification of trans-acting 
factors that regulate the expression of GDF5 via the osteoarthritis 
susceptibility SNP rs143383. PLoS Genet 2013;9:e1003557. 

Takata R, Akamatsu S, Kubo M et al. Genome-wide association study 
identifies five new susceptibility loci for prostate cancer in the Japanese 
population. Nat Genet 2010;42:751–4. 

Tang F, Barbacioru C, Wang Y et al. mRNA-Seq whole-transcriptome 
analysis of a single cell. Nat Methods 2009;6:377–82. 

Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 
16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 
1995;9:184–90. 

Thurman RE, Rynes E, Humbert R et al. The accessible chromatin landscape 
of the human genome. Nature 2012;489:75–82. 

Tishkoff SA, Reed FA, Ranciaro A et al. Convergent adaptation of human 
lactase persistence in Africa and Europe. Nat Genet 2007;39:31–40. 

Tomita H, Vawter MP, Walsh DM et al. Effect of agonal and postmortem 
factors on gene expression profile: quality control in microarray 
analyses of postmortem human brain. Biol Psychiatry 2004;55:346–52. 

Torchia J, Glass C, Rosenfeld MG. Co-activators and co-repressors in the 
integration of transcriptional responses. Curr Opin Cell Biol 
1998;10:373–83. 

Tournamille C, Blancher A, Le Van Kim C et al. Sequence, evolution and 
ligand binding properties of mammalian Duffy antigen/receptor for 
chemokines. Immunogenetics 2004;55:682–94. 

Tournamille C, Colin Y, Cartron JP et al. Disruption of a GATA motif in the 
Duffy gene promoter abolishes erythroid gene expression in Duffy-
negative individuals. Nat Genet 1995;10:224–8. 

Townsend JP, Cavalieri D, Hartl DL. Population genetic variation in genome-
wide gene expression. Mol Biol Evol 2003;20:955–63. 

Traynor BJ, Nalls M, Lai S-L et al. Kinesin-associated protein 3 (KIFAP3) has 
no effect on survival in a population-based cohort of ALS patients. Proc 
Natl Acad Sci U S A 2010;107:12335–8. 

Trefilov A, Berard J, Krawczak M et al. Natal dispersal in rhesus macaques is 
related to serotonin transporter gene promoter variation. Behav Genet 
2000;30:295–301. 

Treisman J, Gönczy P, Vashishtha M et al. A single amino acid can determine 
the DNA binding specificity of homeodomain proteins. Cell 
1989;59:553–62. 



	
   264	
  

Tseng GC, Oh MK, Rohlin L et al. Issues in cDNA microarray analysis: quality 
filtering, channel normalization, models of variations and assessment 
of gene effects. Nucleic Acids Res 2001;29:2549–57. 

Ubeda F, Wilkins JF. The Red Queen theory of recombination hotspots. J 
Evol Biol 2011;24:541–53. 

Van Gelder RN, von Zastrow ME, Yool A et al. Amplified RNA synthesized 
from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S 
A 1990;87:1663–7. 

Ventriglia M, Bocchio Chiavetto L, Bonvicini C et al. Allelic variation in the 
human prodynorphin gene promoter and schizophrenia. 
Neuropsychobiology 2002;46:17–21. 

Verlaan DJ, Ge B, Grundberg E et al. Targeted screening of cis-regulatory 
variation in human haplotypes. Genome Res 2009;19:118–27. 

Veyrieras J-B, Kudaravalli S, Kim SY et al. High-resolution mapping of 
expression-QTLs yields insight into human gene regulation. PLoS 
Genet 2008;4:e1000214. 

Vierstra J, Rynes E, Sandstrom R et al. Mouse regulatory DNA landscapes 
reveal global principles of cis-regulatory evolution. Science 
2014;346:1007–12. 

Voight BF, Kudaravalli S, Wen X et al. A map of recent positive selection in 
the human genome. PLoS Biol 2006;4:e72. 

Volpe JJ, Adams RD. Cerebro-hepato-renal syndrome of Zellweger: an 
inherited disorder of neuronal migration. Acta Neuropathol (Berl) 
1972;20:175–98. 

Wang ET, Sandberg R, Luo S et al. Alternative isoform regulation in human 
tissue transcriptomes. Nature 2008;456:470–6. 

Wang J, Zhuang J, Iyer S et al. Sequence features and chromatin structure 
around the genomic regions bound by 119 human transcription factors. 
Genome Res 2012;22:1798–812. 

Warrington JA, Nair A, Mahadevappa M et al. Comparison of human adult 
and fetal expression and identification of 535 
housekeeping/maintenance genes. Physiol Genomics 2000;2:143–7. 

Weber JL, May PE. Abundant class of human DNA polymorphisms which can 
be typed using the polymerase chain reaction. Am J Hum Genet 
1989;44:388–96. 

Wegmann D, Kessner DE, Veeramah KR et al. Recombination rates in 
admixed individuals identified by ancestry-based inference. Nat Genet 
2011, DOI: 10.1038/ng.894. 



	
   265	
  

Welter D, MacArthur J, Morales J et al. The NHGRI GWAS Catalog, a curated 
resource of SNP-trait associations. Nucleic Acids Res 2014;42:D1001–
6. 

Westra H-J, Peters MJ, Esko T et al. Systematic identification of trans eQTLs 
as putative drivers of known disease associations. Nat Genet 
2013;45:1238–43. 

Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans 
gene regulation. Nature 2004;430:85–8. 

Wittkopp PJ, True JR, Carroll SB. Reciprocal functions of the Drosophila 
yellow and ebony proteins in the development and evolution of pigment 
patterns. Dev Camb Engl 2002;129:1849–58. 

Wolffe AP. Gene regulation. Insulating chromatin. Curr Biol CB 1994;4:85–7. 

Workman C, Jensen LJ, Jarmer H et al. A new non-linear normalization 
method for reducing variability in DNA microarray experiments. 
Genome Biol 2002;3:research0048. 

Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev 
Genet 2007;8:206–16. 

Wray GA, Hahn MW, Abouheif E et al. The evolution of transcriptional 
regulation in eukaryotes. Mol Biol Evol 2003;20:1377–419. 

Wu L, Candille SI, Choi Y et al. Variation and genetic control of protein 
abundance in humans. Nature 2013;499:79–82. 

Xie M, Hong C, Zhang B et al. DNA hypomethylation within specific 
transposable element families associates with tissue-specific enhancer 
landscape. Nat Genet 2013;45:836–41. 

Yáñez-Cuna JO, Kvon EZ, Stark A. Deciphering the transcriptional cis-
regulatory code. Trends Genet TIG 2013;29:11–22. 

Yang C, Bolotin E, Jiang T et al. Prevalence of the initiator over the TATA box 
in human and yeast genes and identification of DNA motifs enriched in 
human TATA-less core promoters. Gene 2007;389:52–65. 

Yan H, Yuan W, Velculescu VE et al. Allelic variation in human gene 
expression. Science 2002;297:1143. 

Yeo G, Holste D, Kreiman G et al. Variation in alternative splicing across 
human tissues. Genome Biol 2004;5:R74. 

Younger ST, Pertsemlidis A, Corey DR. Predicting potential miRNA target 
sites within gene promoters. Bioorg Med Chem Lett 2009;19:3791–4. 

Yuh C-H, Brown CT, Livi CB et al. Patchy interspecific sequence similarities 
efficiently identify positive cis-regulatory elements in the sea urchin. 
Dev Biol 2002;246:148–61. 



	
   266	
  

Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence 
for gene expression. Genes Dev 2011;25:2227–41. 

Zhang D, Cheng L, Badner JA et al. Genetic control of individual differences 
in gene-specific methylation in human brain. Am J Hum Genet 
2010;86:411–9. 

Zhang F-R, Huang W, Chen S-M et al. Genomewide association study of 
leprosy. N Engl J Med 2009a;361:2609–18. 

Zhang K, Li JB, Gao Y et al. Digital RNA allelotyping reveals tissue-specific 
and allele-specific gene expression in human. Nat Methods 
2009b;6:613–8. 

Zhang R, Su B. MicroRNA regulation and the variability of human cortical 
gene expression. Nucleic Acids Res 2008, DOI: gkn431. 

Zhang W, Duan S, Bleibel WK et al. Identification of common genetic variants 
that account for transcript isoform variation between human 
populations. Hum Genet 2009c;125:81–93. 

Zhang X, Zhang H, Oberdick J. Conservation of the developmentally 
regulated dendritic localization of a Purkinje cell-specific mRNA that 
encodes a G-protein modulator: comparison of rodent and human 
Pcp2(L7) gene structure and expression. Brain Res Mol Brain Res 
2002;105:1–10. 

Zhong H, Yang X, Kaplan LM et al. Integrating pathway analysis and genetics 
of gene expression for genome-wide association studies. Am J Hum 
Genet 2010;86:581–91. 

Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and 
function. Annu Rev Genet 1999;33:603–754. 

 

 



	
   267	
  

9. Appendix 

	
  

	
  
Figure	
  9.1:	
  Figure is a screen capture for the GEO study page for the ‘pilot’ study 
cohort used in the eQTL analysis of mixed cortical tissues described in Chapter 2. 
GEO (Gene Expression Omnibus) is a public repository at the National Institutes of 
Health in the USA that allows public access to gene expression data used in studies 
(Edgar, Domrachev and Lash 2002; Barrett et al. 2007). The is for series accession 
GSE8919. 
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Figure 9.2: Figure is a screen capture of the dbGaP study page for the initial NABEC 
cohort used in the eQTL analysis described in Chapter 3. dbGaP (data bases of 
Genotypes and Phenotyes) is a public repository at the National Institutes of Health in 
the USA that allows public access with appropriate approval to genotypes data used in 
studies (Mailman et al. 2007). This is for study accession phs000249.v1.p1. 
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Figure 9.3: Figure is a screen capture for the GEO study page for the initial NABEC 
cohort used in the eQTL analysis described in Chapter 3. GEO (Gene Expression 
Omnibus) is a public repository at the National Institutes of Health in the USA that 
allows public access to gene expression data used in studies (Edgar, Domrachev and 
Lash 2002; Barrett et al. 2007). This is for series accession GSE15745. 

 

 

Figure 9.4: Figure is a screen capture for the GEO study page for the Purkinje cell data 
from the NABEC cohort used in the eQTL analysis described in Chapter 4. GEO (Gene 
Expression Omnibus) is a public repository at the National Institutes of Health in the 
USA that allows public access to gene expression data used in studies (Edgar, 
Domrachev and Lash 2002; Barrett et al. 2007). This is for series accession GSE37205. 
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