
Utility-maximizing Server Selection
Truong Khoa Phan, David Griffin, Elisa Maini, Miguel Rio

University College London, UK
Email: {t.phan, d.griffin, e.maini, miguel.rio}@ucl.ac.uk

Abstract—This paper presents a new method for selection
between replicated servers distributed over a wide area, allowing
application and network providers to trade-off costs with quality-
of-service for their users. First, we create a novel utility frame-
work that factors in quality of service metrics. Then we design
a polynomial optimization algorithm to allocate user service
requests to servers based on the utility while satisfying transit
cost constraint. We then describe an efficient - low overhead
distributed model with the need to only know a small subset of
the data required by a global optimization formulation. Extensive
simulations show that our method is scalable and leads to higher
user utility compared with mapping user requests to the closest
service replica.

I. INTRODUCTION AND MOTIVATION

As the Internet becomes the enabler for more types of
services with a wider spectrum of requirements, pressure is
being put onto the Internet ecosystem to facilitate service
placement and to select the best replica for each user request
at each instant in time. This replication always involves multi-
stakeholder trade-offs involving costs (deployment and traffic
related) and user quality of service (QoS).

There are many drivers for service replication, including
server resilience, network diversity, and proximity of servers
to users. Deploying services closer to the users allows the
application providers to improve on QoS metrics like latency
and/or throughput for all users. Some frameworks, like fog
computing [1], even attempt to put service instances at the
extreme edge of the network in locations such as access points.

Although in theory this replication could be optimal, in
practice there are several obstacles: deployment costs vary
between geographical areas and may be prohibitive in some
locations, demand forecasting is inaccurate, flash crowds are
unpredictable. Efficient allocation of user requests to service
replicas will have to rely on a service selection at query time.

Service quality has two major sets of component metrics,
relating to computation and networking parameters. Servers
will have to be properly provisioned for the arrival rate and
holding time of user requests otherwise users will be not
served or blocked, increasing application latency. Network
distance will have primarily an effect on end-to-end delay but,
in many scenarios, causes an increase in packet loss and/or a
decrease in good-put. The service selection system will have
to take into account both computation and networking factors
to optimize its selection.

Resolution involves converting a service name to a specific
network locator for the selected replica. Our work assumes that
the user’s ISP is in the best position to make this selection.

The ISP has accurate information regarding the user’s position
in the network, the current network status and, furthermore, it
allows the ISP to apply traffic network policies in the selection
process to reduce traffic costs. A centralized approach would,
in theory, allow global optimization but it would often be
unscalable and unrealistic. A central entity would not have
access to information on the detailed user position, the network
topology or current network status and would be incapable
of implementing ISPs’ specific traffic policies as it would
have to arbitrate between conflicting policies of different ISPs
which would be problematic from a business point of view. For
those reasons, our server selection model can be implemented
in a similar way of PaDIS [2] which allows ISPs to better
assign users to servers by using their knowledge about network
conditions and user locations.

In brief, the contributions of our work are as follows:
• Firstly, we introduce the utility function relating to one

or more QoS metrics that allows application providers to
define based on their application’s requirements.

• Secondly, we design a polynomial centralized optimiza-
tion algorithm that allows ISPs to redirect their users
to the best replica, allowing to trade-off their traffic
costs with users’ QoS. In addition, the model allows to
optimize for multi-services at the same time.

• Finally, we propose a simple - efficient distributed model
that allows ISPs to run a local version of the selection
algorithm without the need for global knowledge of all
service replicas and network conditions.

This paper is organized as follows: Section II introduces
the utility-maximizing server selection model and is followed
by the optimization formulation in Section III. Section IV
presents extensive evaluation. We finish by surveying related
work in Section V and conclusions in Section VI.

II. UTILITY-MAXIMIZING SERVER SELECTION

The goal of utility-maximizing server selection is to pro-
vide the highest QoS for the greatest number of users. Our
framework unifies the objectives of several stakeholders and
the quality of service of the end users. In our approach, the
stakeholders involved in service selection are as follows:
• Execution zones (EZ): These are the entities running

the computational aspect of the distributed application.
Typically they will be cloud/data centers but they can
be smaller micro-data centers. They can be run by the
ISPs themselves (current trends point to this being anISBN 978-3-901882-83-8 c© 2016 IFIP

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/79519054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

importance new revenue stream for them). Whatever the
scenario, they want to maximize their revenue.

• Application (Service) Providers: These represent the or-
ganizations that wish to run distributed applications in ex-
ecution zones. They may instantiate their replicas directly
or use a third-party orchestrator (e.g. cloud broker). They
will trade-off the deployment costs with the quality-of-
service of their users. After deployment they publish the
utility function of the service so that resolution algorithms
can maximize this utility. It is noted that the utility
function can simply be general (no sensitive) latency
requirements for applications as shown in Fig. 2.

• Internet Service Provider: These will implement resolu-
tion algorithms to resolve users queries, mapping service
names to locators. They will also trade-off the final
quality of service of their users with the traffic costs
imputed to them by these choices.

Application providers deploy service instances in execution
zones. These replicas register with a local resolver in the ISP
to which they are connected and send periodic updates. These
messages contain for each service:
• The utility function of the service as described in section

II-B.
• The number of available session slots. A session slot is a

unit of measurement representing how many users can be
accommodated simultaneously in a given service instance
without blocking.

• Servicing execution statistics regarding the total demand
on the service instance and the distribution of service
duration times.

We define routing epoch as the interval between the resolution
system making resolution decisions. Regarding to session slots
announcement, if sessions are long compared to the routing
epoch then the EZs simply announce a snapshot of what
is available. However if session durations are short then an
announcement of instantaneous availability is more-or-less
meaningless. For example: assume a routing epoch of 10
seconds and a service S1 with an average duration of 100
seconds and S2 with an average duration of 1 second, and
a single service instance for each service can each handle 2
sessions simultaneously. The EZ would announce 2 available
session slots for S1 as the current session is likely to last
much longer than the routing epoch. However for S2, if 2
available session slots are announced, it would mean that only
two requests should be forwarded to that EZ, even though the
currently active session (as well as those arriving in the near
future) is very likely to end during the epoch. Therefore the
number of session slot would be announced up to 20 for S2,
depending on the service arrival time.

Given those aforementioned stakeholders involving in the
system, we present next the main criteria to do server selection.

A. Motivation Example

As an example in Fig. 1, assuming that there are two
users requiring a voice service which is available in both

EZ2

EZ1

user1

user 2

20 ms

Internet

Fig. 1: Utility based vs. closest based selection
.

EZ1 and EZ2. However, each EZ can serve only one user
at a time or they announce only one available session slot.
Latencies between users and EZs are shown in Fig. 1. For
the voice service, we observe that if bandwidth is enough,
and when the latency is equal or less than 20 ms, humans’
ears cannot distinguish between audio and real speech or in
other words, people do not feel any disturbance [3]. Therefore,
5 ms or 20 ms latency gives the same (and the best) QoS
for voice services. Note that we consider here the latency
for on-going services, not including setup time. As shown in
Fig. 1, the classical closest based selection algorithm would
have solution: (user 1 - EZ1) and (user 2 - EZ2) (dash lines)
as the minimum total latency is (5+30) = 35 ms. It means that
user 1 can have the best QoS while user 2 sees some disruption
in the voice quality. However, we see a better solution should
be (user 1 - EZ2) and (user 2 - EZ1) in which both users
get the best QoS with 20 ms latency. This is the motivation
of our work to define a utility function applying in the server
selection problem.

B. Utility Function

Our general utility function is grounded on practical re-
search on quality of service utility [4], [5] and years of
investigation on Mean Opinion Scores [6]. Our interval data
points map to user ratings of excellent, good, fair, poor and
no service or blocked (Fig. 2).

Tmin t Tfair Tmax
0

U

1

excellent good fair poor no service

Ufair

Ub

Fig. 2: Utility function vs. latency
.

In our utility framework, application providers determine
utility function by the two latency thresholds: Tmin and Tmax.

Note that the utility is not restricted to only latency. In future
work, we will extend the utility to be a combination of any
QoS metrics such as latency, bandwidth, loss, etc. As shown
in Fig. 2, we use a non-increasing piecewise linear utility
function that is characterized by:
• If t ≤ Tmin: depending on the service type, an appro-

priate value of Tmin is selected meaning that even if the
latency reduces below this value, the improvement is not
perceived by the users of that service, thus the utility
is unchanged (Umax = 1). For instance, voice over IP
requires Tmin = 20 ms [3]; for simple web services,
Tmin = 100 ms gives users the feeling of instantaneous
response [7].

• If Tmin < t ≤ Tmax: QoS is within an acceptable range
(0 ≤ U < 1). User satisfaction reduces as the latency
increases. We also define Tfair ∈ [Tmin, Tmax] as the
point from which users start to feel disappointed about
the services as QoS is getting poor. Note that the value of
Tfair is set depending on services and does not change
the slope of the utility graph.

• If Tmax < t: the request is blocked (no service) because
the latency is beyond the acceptable range. Details on
blocked requests are presented in Section III-B2.

Based on this utility function, the utility-maximizing solution
for the problem in Fig. 1 will be (user 1 - EZ2) and (user 2
- EZ1) because both users will get the maximum utility with
t = Tmin = 20ms.

III. SERVER SELECTION OPTIMIZATION

In this section, we present a mathematical formulation
for the server selection problem that ISP’s resolvers use to
dynamically resolve names to locators. In general, the goal
is to direct user requests to suitable execution zones (EZs)
and satisfy a predefined objective function. We use the utility
function defined in Section II-B to measure user satisfaction.
We use linear programming to formulate the server selection
problem which maximizes the total utility of all users while
taking into account constraints on the data transit cost.

A central pre-requisite for our model is the existence of a
forecasting demand component that provides an input to the
optimization algorithm. Although client demand varies with
time, work in the literature [8] points to reasonably stable
demand within 10 minutes intervals. Note that, we aggregate
individual users with the same preference to form a group. This
can be done according to users’ postal codes [8] or by users’ IP
prefixes [9]. Aggregation of this kind reduces the quantity of
input variables for the optimization and also stabilizes request
rates per-group [8].

A. Problem description

• Input: estimated user requests (D); two threshold values
(T ij

min and T ij
max) for each pair of (user group i, service

j) defined in the utility function (Fig. 2); latency between
user group i and EZ z for a specific service j is ljiz; unit
data transit cost (ciz); the maximum budget (COST) and
available session slots at each EZ (Sj

z).

• Objective: maximize the performance (total utility) of
users for multi-services j while considering the trade-off
between the performance and the data transit cost.

• Output: xj
iz ∈ [0, 1]: fraction of user group i connecting

to EZ z for service j.
We define a utility function as described in Section II-B as
follows:

uij =

1 if tij ≤ T ij

min
−tij+T ij

max

(T ij
max−T ij

min)
if T ij

min < t ≤ T ij
max

Ub otherwise

The utility is defined for each pair of (user group i, service
j). When the latency is larger than T ij

max, the request is consid-
ered to be blocked. We set Ub to be a small negative value to
indicate the utility of a blocked request. More details on how
to set value for Ub are presented in Section III-B2. We first
present a centralized model and then introduce a distributed
one which is more suitable for Internet-scale deployment.

B. Centralized model

Given the key notations in Table I, we use linear pro-
gramming to formulate the utility-maximizing server selection
problem.

1) Linear Program Formulation:

max[
∑

(i,j)∈D

uij] (1)

s.t.∑
z∈Z

xj
iz = 1 ∀(i, j) ∈ D (2)∑

i∈I
dijx

j
iz ≤ Sj

z ∀j ∈ J , z ∈ Z (3)

tij =
∑
z∈Z

ljizx
j
iz ∀(i, j) ∈ D (4)

yij ≥ 0 ∀(i, j) ∈ D (5)

yij ≥ tij − T ij
min ∀(i, j) ∈ D (6)

uij =
T ij
max − T ij

min − yij

T ij
max − T ij

min

∀(i, j) ∈ D (7)∑
z∈Z

∑
(i,j)∈D

cizbijx
j
iz ≤ COST (8)

xj
iz ∈ [0, 1], uij ≤ 1 ∀(i, j) ∈ D, z ∈ Z (9)

Explanation:
• The objective function (1) maximizes the total utility over

all user groups.
• Constraint (2): all the requests of user group i for a

specific service j have to be served.
• Constraint (3): each EZ has a limited capacity (bandwidth

and computational resources) for deploying instances of a
specific service type. It may be the case that some special
services (e.g. those that require GPU processing) can only
be deployed at certain EZs with the necessary hardware

TABLE I: Key Notations (in Alphabetical Order)

bij bandwidth required by user i to get service j
COST the maximum transit cost (budget)
ciz unit transit cost between user i and EZ z
D set of user requests D = {(i, j), ∀i ∈ I, j ∈ J }
dij requested session slot of user i to service j
I set of user groups I = {i}
J set of services J = {j}
ljiz latency between user i and EZ z for service j
Sj
z available session slot of service j at EZ z

tij average latency of user i to get service j
Z set of execution zones (EZ) Z = {z}
Ub utility value of a blocked user
uij utility of user i when getting service j

xj
iz fraction of user i connects to EZ z to get j

yij variable used to compute the utility

available. This constraint ensures that the number of
session slots available in an EZ is sufficient to serve user
requests.

• Equation (4) is used to compute the average latency
for the user group i to get the service j. We model
connectivity as a full mesh between user groups and EZs.
However, for the input of the LP, we do not consider any
connections between user group i and EZ z to get service
j if the latency ljiz > T ij

max. This step guarantees that,
even without adding explicit constraints in the model, the
latency for any user group i to connect to any EZ z to
get service j is less or equal to T ij

max.
• Constraint (5) - (6) ensure that yij ≥ 0 if tij ≤ T ij

min,
otherwise yij ≥ tij − T ij

min > 0.
• Equation (7) is used to model the utility function defined

in Section III-A. There are two possibilities:
- If tij ≤ T ij

min, based on constraints (5) - (6), yij can
be any value greater or equal to 0, however, due to the
objective function maximizing utility (7) the formulation
will choose a minimum value of yij , or in other words,
yij is set to 0 and thus, uij = 1.
- Similarly, if tij > T ij

min, the formulation will choose
yij = tij − T ij

min and thus uij =
−tij+T ij

max

T ij
max−T ij

min

.
• Constraint (8) limits the data transit cost. As shown in [9],

[10], the linear transit cost we use here is also a good
approximation for the 95-th percentile transit cost.

An important remark is that our formulation allows to optimize
for multi-services at the same time, i.e. maximizing the
total utility for all pairs of (user i, service j). For instance,
assume that we have video streaming and voice services, each
potentially has different QoS requirements. If we optimize
for video streaming first, then the remaining resources are
dedicated for the voice service and vice versa. This will end
up with a sub-optimal solution. Our model allows to optimize
for multi-services at the same time, therefore it guarantees to
find a global optimal solution.

The optimization formulation above is a (pure) linear pro-
gramming model one; hence it can be solved efficiently in
polynomial time. The number of variables xj

iz in the LP

problem is |I| × |Z| × |J | where |I| is the number of user
groups, |Z| is the number of EZs and |J | is the number of
service types. Since |Z| and |J | are usually much smaller
than |I|, the worst case complexity of the LP problem will be
O(|I|3.5) [9]. We report the execution time of the algorithm
in Section IV-C1.

2) Blocked user requests: When there are not enough
resources (session slot or cost) the constraints (3) and (8) in
the LP are violated and the LP ends up with no solution. We
address this by allowing user requests to be blocked when
there are insufficient resources. To model this, we define a
virtual EZ with very large capacity so that the constraint (3)
cannot be violated. The transit cost between users and the
virtual EZ is zero. The latency between all users to this virtual
EZ is set at a value which is larger than Tmax, therefore the
utility for a blocked request is Ub < 0 (Fig. 2). We evaluate
different values of Ub and show its impact on the number of
requests to be blocked when running the optimization model
(Section IV-A2). Intuitively, the closer to 0 the value of Ub is,
the more possibility for requests to be blocked because there
is a reduced difference in utility between a request at Tmax

(UTmax
= 0) and a blocked one (Ub). It is noted that, with the

virtual EZ, the LP always finds a feasible solution because the
constraints (3) and (8) cannot be violated, but the total utility
could be extremely (negative) small. And those requests that
have to go to the virtual EZ are considered to be blocked.

C. Distributed model

Although our centralized optimization model can be solved
in polynomial time, it is impractical in real deployments as a
single global resolver would be required to collect information
from all EZs and networks and also to handle resolution
requests from all users. Moreover we want to put the ISP
(resolver) at the center of decision making in order for local
traffic policies to be applied.

Designing an efficient distributed algorithm is a classical
problem [8], [10], [11], and it would satisfy the following
general requirements:

• (1) Low overhead: small number of control messages
exchanged. In addition, it should guarantee a fair share
based on demand of each resolver.

• (2) Convergence: the algorithm is guaranteed to be always
converged to a stable solution.

• (3) Efficiency: solution of the distributed algorithm is
close to the centralized one.

Existing work in literature can satisfy the requirements (2)
and (3) by using optimization decomposition methods [8],
subgradient methods [11] or alternating direction method of
multipliers [10]. However, they end up with high complexity
formulation and require high control overhead. Potentially,
control messages can be exchanged between (in both direc-
tions): resolvers - resolvers, resolvers - EZs, and EZs - EZs.
In this work, we propose a novel distributed model satisfying
all the three aforementioned requirements. Compared with
existing work, our model is simpler (still can be solved

TABLE II: Key Notations in Distributed Algorithm

Az
i (k) allocated session slots at z by Ri in epoch k
Cz total session slots at EZ z
k epoch (iteration) number
M number of resolvers that share an EZ
N number of EZs that one resolver can see
Ri resolver i

Sz
i (k) available session slots at z seen by Ri in epoch k
Z set of execution zones

in polynomial time) and low overhead in which only one-
way control messages from EZs to resolvers are needed. In
addition, the messages exchanged are simple as we describe
later.

1) Distributed algorithm: We divide the time into intervals
in which we assume the traffic demand is unchanged (e.g. 10
minutes as observed in [8]). Each interval is sub-divided into
epochs and the distributed algorithm is run at the beginning
of each epoch. We call visibility set be a subset of EZs that
are closest to a resolver and can be seen by that resolver.

Resolver 1

EZ

Capacity C

S0 S1

A0 A1

Resolver 1

EZ

Capacity C

S0 S1

A0 A1

Epoch k Epoch (k+1)

Shared border
Shared border

Fig. 3: EZ z is shared by two resolvers R0 and R1

.

We introduce some notations used in the distributed algo-
rithm (Table II). Considering an EZ z with total available
session slots Cz which is shared by M resolvers. At an epoch
k ≥ 0, let a resolver Ri(0 ≤ i ≤ M − 1) see Sz

i (k) ≤ Cz

session slots from the shared EZ. To guarantee capacity
constraint, we have

∑M−1
i=0 Sz

i (k) ≤ Cz . Let Az
i (k) ≤ Sz

i (k)
be the number of session slots that the resolver Ri allocates for
its users to connect to the EZ z at the epoch k. A visualization
of those notations are shown in Fig. 3. The algorithm, step-
by-step, at each resolver is as follows:

1) At the beginning of each interval: collect the latest
estimated local user requests and network metrics (e.g.
latency between users and EZs).

2) At the beginning of each epoch: each EZ announces the
latest capacity (Cz) and the total-in-allocation (total-in-
use) session slots (

∑M−1
i=0 Az

i (k)) at that EZ to resolvers.
3) Each resolver updates available session slots that it can

use in the next epoch as follows:

Sz
i (k + 1) = Az

i (k)
[
1 +

Cz −
∑M−1

i=0 Az
i (k)∑M−1

i=0 Az
i (k)

]
(10)

if
∑M−1

i=0 Az
i (k) = 0, we set Sz

i (k + 1) = Cz .
4) Given new available session slots from EZs, resolvers

execute the linear program in Section III-B to find which
users should connect to which EZs to get services.

By using the equation (10), we show that the distributed
algorithm satisfies all the requirements mentioned in III-C:
• Each resolver requires local user demand and the session

slots have been used in the previous epoch (Az
i (k)). In

addition, each resolver uses the LP in III-B, thus the
distributed algorithm can be solved in polynomial time.

• Low overhead: only one-way message from EZs to re-
solvers to update information about total capacity (Cz)
and total in-use session slots at the previous epoch
(
∑M−1

i=0 Az
i (k)). In addition, we show that the equation

(10) also achieves the fair share on demand requirement.
As shown in Fig. 3, at epoch k, the resolver R0 just
uses a small fraction of its shared available session slots
(A0 < S0) while R1 requires all the slots that it can see
(A1 = S1). Therefore, in the epoch (k + 1), we should
move the shared border to the left (but do not touch the
red area - the allocated slots of R0) so that there will be
more free space for R1 to forward its requests to the EZ
if needed. This can be done automatically by using the
equation (10) (see the example in III-C2).

• We show, both by mathematical proof and simulations
that local decisions always converge within a handful of
iterations and the solution of distributed algorithm is close
to the centralized one. However, because of limited space,
we omit the mathematical proof in this paper and will
present it in a journal version.

Initially, when services are first deployed, each EZ announces
its available session slots to all resolvers that can see it. Given
the available session slots and the local user demand, each
resolver executes the linear formulation in section III-B to
find a solution for its users. In this initial step, EZs can be
overloaded as they are shared by many resolvers, but there is
no message between resolvers to say that. However, by using
the equation (10) to update available capacity at EZs after each
epoch, the capacity constraints are not violated after the initial
step. We present a simple example to make the algorithm clear.

EZ3

EZ2

EZ1

100 slots

100 slots 40 slots

user 2
user1

Fig. 4: Example of distributed algorithm
.

2) Examples of distributed algorithm: Assume that user 1
requires 100 slots and user 2 requires 80 slots. Capacities of
EZs are shown in Fig. 4. The latencies between resolvers, users
and EZs are as follows:
• l(R1, EZ2) < l(R1, EZ1) < l(R1, EZ3)
• l(R2, EZ3) < l(R2, EZ2) < l(R2, EZ1)

• Tmin < l(usr1, EZ2) < l(usr1, EZ1) < l(usr1, EZ3)
• Tmin < l(usr2, EZ2) < l(usr2, EZ3) < l(usr2, EZ1)

Recall that depending on the size of the visibility set, we can
have different solutions for the server selection problem. Using
the above network metrics, we consider the example with two
scenarios:

- Scenario 1 (visibility set size is 1): the resolver 1 can only
see EZ2 (as EZ2 is the closest EZ of R1) and the resolver 2
can only see EZ3. Therefore, the solution will be: the resolver
1 sends all 100 requests to EZ2 and similarly, all requests of
the resolver 2 go to EZ3. This solution does not change if the
user requests are unchanged between epochs.

- Scenario 2 (visibility set size is 2): resolver 1 can see (EZ2

and EZ1) and resolver 2 can see (EZ3, EZ2). Assume that
the requests do not change, we present results for each resolver
within 2 epochs (or 2 iterations of the distributed algorithm).
• Epoch 0:

- Resolver 1 sees from EZ1: S1
1(0) = 40, and from

EZ2: S2
1(0) = 100. As l(usr1, EZ2) < l(usr1, EZ1),

it forwards all 100 requests to EZ2.
- Resolver 2 sees from EZ2: S2

2(0) = 100, and from
EZ3: S3

2(0) = 100. As l(usr2, EZ2) < l(usr2, EZ3), it
assigns all 80 requests to EZ2.
The total allocated session slots at EZ2 is 180, and the
EZ2 is overloaded at epoch 0.

• Epoch 1:
- Resolver 1 updates available session slots using the
equation (10):

– S1
1(1) = C1 = 40 (as A1

1(0) +A1
2(0) = 0)

– S2
1(1) = 100× (1 + 100−180

180) = 55

Solution after epoch 1 is: 40 slots go to EZ1; 55 slots go
to EZ2 and 5 slots are blocked (as there are insufficient
session slots).

- Resolver 2 updates available session slots using
the equation (10):

– S3
2(1) = C3 = 100 (as A3

1(0) +A3
2(0) = 0)

– S2
2(1) = 80× (1 + 100−180

180) = 44

Solution after epoch 2 is: 44 slots go to EZ2; 36 slots
go to EZ3 and no slots are blocked.

It is clear that, after epoch 1, thanks to the equation (10),
no EZ is overloaded. In this example, the solution does not
change after 2 epochs as long as the user demands do not
change. It means that the distributed algorithm converges
to a stable solution. On the other hand, session slots are
assigned proportionally to the requirement of each resolver.
For instance, in the stable solution, R1 and R2 respectively
use 55 and 44 slots from the EZ2. It is because in epoch 0,
R1 requires 100 slots while R2 needs only 80 slots (10080 '

55
44).

We call this as fair share on demand.

IV. SIMULATION RESULTS

We solve the linear program model using IBM CPLEX
solver [12]. All computations were carried out on a computer
equipped with a 3 GHz CPU and 8 GB RAM. Our evaluation

is through simulation and consists of 5 main parts. Firstly,
we evaluate the algorithms with different parameters: supply

demand
ratios, Ub on blocking probability and visibility set sizes
for the distributed algorithm. Next, we compare our novel
utility-maximizing server selection (USS) with the classical
closest based server selection algorithm. Then, we evaluate
the distributed algorithm and compare with the centralized
one. Next, we show the impacts of mismatch between supply
and demand on the server selection solution. And lastly, we
discuss on the inaccuracies of demand forecasting when using
our algorithm.

We use a dataset with 2508 data centers distributed in 656
cities all over the world [13]. For the distributed model, we
assume that each city has one resolver. Since data centers
in a city are geographically close to each others, we group
them as one execution zone (EZ). The capacity of an EZ is
proportional to the number of data centers in that city. We
assume that the services are available in all EZs. The data
transit cost is based on the Amazon EC2 charging model. The
user demand is modeled as Poisson process and is proportional
to the population of each city [14]. The latency between users
and execution zones are collected based on Haversine distance,
the shortest distance between two points around the planet’s
surface [15].

A. Different Parameters for the Algorithm

0"

20"

40"

60"

80"

80%" 130%" 200%"

%
"o
f"s
es
sio

n"
slo

ts
"

Supply/Demand"ra5os"

u"=="1"
0"<="u"<"1"
-0.625"<="u"<"0"
queued"

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

supply/demand 80%
supply/demand 130%
supply/demand 200%

(a)

(b)

0 <= u < Ufair

u == 1
Ufair<= u < 1

blocked

Fig. 5: Different supply
demand ratios

.

1) Different Supply/Demand Ratios: We first find server
selection solutions for different supply

demand ratios with the cen-
tralized algorithm. We set Tmin = 20 ms, Tfair = 100 ms
and Tmax = 150 ms for all pairs of (group user, service).
In Fig. 5, we show the utility and the Cumulative Distribution
Function (CDF) of latency for three scenarios of supply

demand ratio:
80%, 130% and 200%. supply

demand = 80% means that the total

available capacity in all EZs is scaled down to equal to 80%
of the total requests. As a result, 20% of the requests will be
blocked while maximizing total utility of the served requests.
In the CDF of latency in the scenario 80% (Fig. 5b), only 80%
of requests receive service with less than Tmax = 150 and the
remaining requests are blocked. For the two other scenarios
(130% and 200%), since there are sufficient session slots, no
user request is blocked. Obviously, the greater the supply of
session slots, the better solution we get in terms of utility and
latency (Fig. 5).

2) Utility of a Blocked User: As shown in Section III-B2,
our algorithm allows to block user requests while maximizing
the total utility. By selecting different values of utility for a
blocked request (Ub < 0), we obtain solutions with different
blocking probabilities. We show in Fig. 6 the results for the
centralized algorithm with different values of Ub. When Ub

0"

20"

40"

60"

80"

ra)o"="1.1" ra)o"="2" ra)o"="10" ra)o"="100"

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1" 0"<="u"<"1"
00.625"<="u"<"0" queued"blocked

u == 1 Ufair<= u < 1
0 <= u < Ufair

Ub = -1.1 Ub = -2 Ub = -10 Ub = -100

Fig. 6: Different values of Ub

.

is close to 0, e.g. Ub = −1.1 or Ub = −2, blocking user
requests does not incur much penalty in the total utility. A
significant number of requests are blocked despite total utility
being maximized. When Ub is much more smaller (e.g. Ub =
−100), blocking a single request can dramatically reduce the
total utility, thus the algorithm tries to avoid as many requests
being blocked as possible. In Fig. 6, when Ub = −100, no
user request is blocked.

In the remaining evaluation, if not stated otherwise, default
values are used as follows: supply

demand ratio = 130%, Ub = −100,
Tmin = 20 ms, Tfair = 100 ms and Tmax = 150 ms.

3) Different visibility sets: In a distributed manner, each
resolver only sees its local user demand and a subset of
EZs which is called visibility set. We vary the size of the
visibility set by changing the parameter N , the percentage of
the total 656 execution zones that can be seen by a resolver.
For example, N = 0.3% means that each resolver can see its
2 closest EZs.

Intuitively, when N increases, more session slots are avail-
able for a resolver to allocate user requests. As shown in Fig. 7,
the percentage of blocked requests reduces as we increase N .
However, as resolvers greedily allocate their user requests to
the best EZs in their visibility set, users in “poor resource”
areas do not have enough session slots and still we can see a
few of users are blocked even N = 100%. Note that in the
centralized algorithm, there is no blocked user request when
the supply

demand ratio is 130%.

0"

20"

40"

60"

80"

N"="0.3%" N"="5%" N"="10%" N"="20%" N"="40%"N"="100%"

%
"o
f"s
es
si
on

"sl
ot
s"

Visibility"set"size"

u"=="1"
0"<="u"<"1"
00.625"<="u"<"0"
queued"blocked

u == 1

Ufair<= u < 1

0 <= u < Ufair

Fig. 7: Utility with different visibility set sizes
.

B. USS vs. closest selection algorithm

(a) Utility

(b) CDF latency

0"

20"

40"

60"

80"

USS"algorithm" Closest"algorithm"

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1"
0"<="u"<"1"
u"<"0"
blocked"

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

closest algorithm
USS algorithm

u == 1

0 <= u < Ufair
Ufair<= u < 1

Fig. 8: Voice: USS vs. closest algorithm
.

Given the parameters in IV-A2, Fig. 8 shows a comparison
between our utility-maximizing server selection (USS) and
the classical closest algorithm with N = 20%. The closest
algorithm tries to allocate user requests to nearby EZs that
have available session slots. If the closest EZ does not have
available session slots, the algorithm considers the next closest
one and so on. Only the case there is no available session
slot within the latency range of Tmax, requests have to be
blocked. After finding the latency for user requests in the
closest solutions, we compute the utility corresponding to the
voice (Tmin = 20 ms, Tfair = 100 ms and Tmax = 150
ms [16]) (Fig. 8a). We can see the USS algorithm performs
better with less blocking probability. This is because the USS
algorithm is less greedy, providing more flexibility for requests
to connect to many servers which have latency less than Tmin.
Taking a closer look at the CDF of latency (Fig. 8b), more
requests get low latency in the closest algorithm, however
more requests are also blocked due to its greedy behavior.

(a) N = 0.3% (b) N = 5% (c) N = 10%

(d) N = 20% (e) N = 40% (f) N = 100%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 0.3%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 5%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 10%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 20%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140
%

 o
f s

es
si

on
 s

lo
ts

latency (ms)

centralized algorithm
N = 40%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 100%

Fig. 9: Latency with different visibility set sizes
.

C. Distributed Algorithm
1) Distributed vs. centralized algorithm: We show in Fig. 9

the CDF of latency for the centralized and the distributed algo-
rithms with different visibility set sizes. One of the goal when
designing the distributed algorithm is that it should perform
well, close to the centralized one. However, performance of
the distributed algorithm depends on how much resource a
resolver can see. As shown in Fig. 9, as visibility set size
N increases, each resolver can see more available session
slots, therefore less user requests are blocked. To report on
execution time, the centralized algorithm with full knowledge
of execution zones and user demands takes about 2 minutes to
find an optimal solution, while the distributed algorithm only
requires a few seconds to finish.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

epoch 1
epoch 2
epoch 3
epoch 4

Fig. 10: Convergence of distributed algorithm
.

2) Convergence of distributed algorithm: To evaluate the
convergence of the distributed algorithm, Fig. 10 shows the
quality of the solution after 4 epochs in case visibility set size
N = 20%. We see that the four lines in Fig. 10 are nearly
overlapped. After the first epoch, we already have a reasonably

good solution and is close to the final solution. This result
confirms a fast convergence of the distributed algorithm.

D. Mismatch between supply and demand

To evaluate the impact of mismatch between supply and
demand, we first run the centralized model (section III) but
without the capacity and the cost constraints. That is to
find how many session slots are needed at every EZ for an
optimal server selection solution. Then we scale these values
to achieve 130% supply

demand ratio. We call this configuration
be the perfect allocation. Next, we create different levels of
mismatch between supply and demand by varying a parameter
“X% rand.” (Fig. 11). This means that for each EZ, we
remove X% of its session slots from the perfect allocation
configuration. Then, we mix the removed session slots of all
EZs and scatter them uniformly to all EZs. This guarantees that
the total session slots of EZs in all cases (perfect allocation
and “X% rand.”) are the same. “0% rand.” is equivalent to the
perfect allocation while in “100% rand.”, there is a uniform
distribution of sessions slots between all EZs. Fig. 11 shows

0"

20"

40"

60"

80"

100"

0%"rand." 25%"rand." 50%"rand." 75%"rand." 100%"rand."

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1"
Ufair"<="u"<"1"
0"<="u"<"Ufair"
blocked"
0 <= u < Ufair

u == 1
Ufair<= u < 1

Fig. 11: Utility with different mismatch levels

evaluation results for the distributed algorithm with visibility
set size N = 5% with different value of “X% rand.”. With
the perfect allocation “0% rand.”, the distributed algorithm

performs well with no blocked requests. It is clear that by
increasing X%, more requests are blocked as we increase the
level of mismatch between local supply and demand. It is
noted that because we use a 130% supply

demand ratio, the scenario
“25% rand.” is within an acceptable range of mismatch and
the solution is close to the “0% rand.” case.

E. Impact of inaccuracy in demand forecast

A central prerequisite for our model is the existence of a
forecasting demand component that provides an input to the
optimization algorithm. We discuss in this section the robust-
ness of our solution vs. inaccuracy in forecasting demand. As
shown in Fig. 11 (distributed algorithm with N = 5%), the
cases “50% rand.” and “75% rand.” respectively have around
8% and 22% of blocked user requests. On the other hand, in
Fig. 7, with N = 5%, there are around 18% of requests are
blocked. This would mean that our results for the distributed
algorithm in this paper (except Fig. 11) is corresponding to
50% − 75% inaccuracy in the forecasting demand compared
to the perfect allocation case. Therefore, this mismatch leads
to worse solutions. However, as shown in Fig. 7, we still can
find good solution (small fraction of blocked users) for the
distributed algorithm if the visibility set is large enough, for
instance N ≥ 20%.

V. RELATED WORK

Server selection: our work is closely related to recent
work on optimizing performance-cost for server selection [8],
[9]. For example, Wendell et al. [8] introduce DONAR -
a decentralized replica-selection system that considers client
locality, server load, and policy preferences. Like DONAR, our
model can perform balancing client requests across replicas by
manually setting capacity cap at each execution zone. Zhang
et al. [9] focus on optimizing cost and performance in online
service provider networks. The objective is to search for the
optimal “sweet-spot” in the performance-cost Pareto front.
Auspice [17] uses a heuristic placement algorithm to determine
the locations of active replicas so as to minimize client-
perceived latency. In general, these works use the classical
closest method saying that the closer the servers are, the better
QoS users can perceive. Our study can be a complementary for
previous work as we define utility, a more general framework
to qualify QoS compared to the classical closest approach. In
addition, our polynomial algorithm can perform optimization
for multi-services at the same time.

Network latency and traffic demand estimation: recent
works have shown that the IP geolocation of the user provides
accurate and predictable network latency [18]. This has been
confirmed not only by third-party datasets such as Peerwise
[19] and iPlane [20], but also by our own extensive active
measurements [21], [22]. On the other hand, work in literature
shows that client request rate can be sufficiently predictable
under short interval (e.g. 10 minutes [8]). These works are
useful as they provide accurate inputs for our optimization
model.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented utility-maximizing server selection, a
novel method to implement service instance selection that al-
lows for trading-off user QoS with traffic cost. Compared with
the classical closest approach, our utility framework allows
reducing blocking probability while maintaining good utility
for users. As further work, we are working on the modeling of
incentives between application and network providers and how
to address the scenarios where the ideal choice of server is not
the same for both stakeholders. In addition, we are planning
to extend the utility function to support more QoS metrics.

ACKNOWLEDGMENT

This research has received funding from the Seventh Frame-
work Programme (FP7/2007-2013) of the European Union,
through the FUSION (grant agreement 318205) projects.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in MCC, 2012.

[2] I. Poese, G. Smaragdakis, B. Frank, S. Uhlig, B. Ager, and A. Feldmann,
“Improving Content Delivery with PaDIS,” IEEE Internet Computing,
vol. 16, no. 3, pp. 46–52, 2011.

[3] M. Stone and B. Moore, “Tolerable Hearing Aid Delays. Est. of Limits
Imposed by the Auditory Path Alone using Simulated Hearing Losses,”
Ear and Hearing, vol. 20, no. 3, 1999.

[4] M. A. Khan and U. Toseef, “User Utility Function as Quality of
Experience (QoE),” in ICN, 2011.

[5] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade, “Utility-
based Placement of Dynamic Web Applications with Fairness Goals,”
in NOMS, 2008.

[6] “Recommendation p.800 (08/96),” http://www.itu.int/rec/T-REC-P.800-
199608-I/en.

[7] J. Nielsen, “Usability Engineering: Response Times: The Three Impor-
tant Limits,” 1993.

[8] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford., “DONAR:
Decentralized Server Selection for Cloud Services,” in SIGCOMM,
2010.

[9] Z. Zhang, Y. Hu, M.Zhang, R.Mahajan, A. Greeberg, and B. Christian,
“Optimizing Cost and Performance Online Service Provider Networks,”
in NSDI, 2010.

[10] H. Xu and B. Li, “Joint Request Mapping and Response Routing for
Geo-distributed Cloud Services,” in INFOCOM, 2013.

[11] S. Boyd and A. Mutapcic, “Subgradient Methods,” in Lecture notes of
EE364b, Stanford University, 2006.

[12] Www-01.ibm.com/software/commerce/optimization/cplex-optimizer.
[13] Http://www.datacentermap.com/.
[14] Https://github.com/richardclegg/multiuservideostream.
[15] G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spher-

ical Trigonometry. Princeton Uni. Press, 2013.
[16] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose, “Estimating TCP

Latency Approximately with Passive Measurements,” in PAM, 2013.
[17] A. Sharma, X. Tie, D. Westbrook, H. Uppal, A. Yadav, and A. Venkatara-

mani, “A Global Name Service for a Highly Mobile Internetwork,” in
SIGCOMM, 2014.

[18] S. Agarwal and J. Lorch, “Matchmaking for Online Games and Other
Latency-sensitive P2P Systems,” in SIGCOMM, 2009.

[19] M. Lu, J. Wu, K. Peng, P. Huang, J. Yao, and H. Chen, “Design and
Evaluation of a P2P IPTV System for Heterogeneous Networks,” IEEE
ToM, vol. 9, no. 8, pp. 1568–1579, 2007.

[20] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krish-
namurthy, , and A. Venkataramani, “iPlane: An information Plane for
Distributed Services,” in NSDI, 2006.

[21] R. Landa, J. T. Araujo, R. G. Clegg, E. Mykoniati, D. Griffin, and
M. Rio, “The Large Scale Geography of Internet Round Trip Times,”
in IFIP Networking, 2013.

[22] ——, “Measuring the Relationships between Internet Geography and
RTT,” in ICCCN, 2013.

