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Abstract 1 

 2 

In their seminal book ‘Worldwide variation in human growth’, published in 1976, Eveleth 3 

and Tanner highlighted substantial variability within and between populations in the 4 

magnitude and schedule of human growth. In the four decades since then, research has 5 

clarified why growth variability is so closely associated with human health. First, growth 6 

patterns are strongly associated with body composition, both in the short- and long-term. 7 

Poor growth in early life constrains the acquisition of lean tissue, while compensatory ‘catch-8 

up’ growth may elevate body fatness. Second, these data are examples of the fundamental 9 

link between growth and developmental plasticity. Growth is highly sensitive to ecological 10 

stresses and stimuli during early ‘critical windows’, but loses much of this sensitivity as it 11 

undergoes canalisation during early childhood. Crucially, the primary source of stimuli during 12 

early ‘critical windows’ is not the external environment itself, but rather maternal 13 

phenotype, which transduces the impact of ecological conditions. Maternal phenotype, 14 

representing many dimensions of ‘capital’, thus generates a powerful impact on the 15 

developmental trajectory of the offspring. There is increasing evidence that low levels of 16 

maternal capital impact the offspring’s size at birth, schedule of maturation, and body 17 

composition and physiological function in adulthood. While evidence has accrued of 18 

substantial heritability in adult height, it is clear that the pathway through which it is 19 

attained has major implications for metabolic phenotype. Integrating these perspectives is 20 

important for understanding how developmental plasticity may on the one hand contribute 21 

to adaptation, while on the other shape susceptibility to non-communicable disease. 22 

 23 

Key words: growth, body composition, developmental plasticity, inter-generational effects 24 
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Introduction 25 

 26 

At the start of their seminal work ‘Worldwide variation in human growth’, Eveleth and 27 

Tanner (1976) made two statements that are simultaneously complementary and yet 28 

seemingly antagonistic. The very first sentence of the book stated: 29 

 30 

A child's growth rate reflects, better than any other single index, his state of health 31 

and nutrition; and often indeed his psychological situation also. 32 

 33 

On this basis, they argued, growth studies could be used to monitor the health of 34 

populations, or to identify subgroups particularly deserving of economic and social benefits. 35 

Elsewhere, Tanner developed the theme that growth monitoring provides unique insight 36 

into a population’s living conditions. Many are familiar with his comment: 37 

 38 

If you want to measure the classlessness of a society, and you are not interested in 39 

rhetoric but in actual conditions and facts, then looking at the growth of children … is 40 

perhaps the best way (Tanner 1990). 41 

 42 

This approach duly inspired a new discipline of ‘anthropometric history’ (Komlos 1991; 1994) 43 

- the analysis of variability in adult stature to provide an indication of environmental 44 

conditions in earlier life. This approach can broadly overcome the limitations of conventional 45 

indices of living standards such as wages or gross domestic product, which cannot take into 46 

account variability in mediating variables such as the price of food, or the differential agency 47 

of individuals to obtain resources. Variability in adult stature cannot index in detail the 48 
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underlying environmental causes impacting early growth, but the broader approach remains 49 

very valuable. 50 

 51 

However, the second paragraph of ‘Worldwide variation in human growth’ added a crucial 52 

cautionary note: 53 

 54 

There is no guarantee, however, that all populations have the same growth potential 55 

(Eveleth and Tanner 1976) 56 

 57 

Several chapters of the book explored how ecological factors such as temperature or 58 

altitude are associated with growth patterns, and discussed genetic adaptation in this 59 

context. Here then is a key dilemma. How can we disentangle ‘beneficial’ variability in 60 

growth that could plausibly reflect adaptation to local ecological conditions from 61 

‘detrimental’ variability in growth emerging from societal inequality, or from exposure to 62 

pathogens, parasites, pollution or malnutrition? 63 

 64 

The book summarized with unprecedented detail the extraordinary diversity in size and 65 

shape that characterizes humans through the life course, much of it apparent across broader 66 

geographical regions. Tables and figures systematically demonstrated substantial between-67 

population variability in growth outcomes, such as weight, height, body girths and skinfold 68 

thicknesses. Within-population studies further highlighted associations with environmental 69 

factors, yet the substantial heritability of growth traits was also described. 70 

 71 

Page 4 of 48

John Wiley & Sons

American Journal of Human Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 5 

Eveleth and Tanner were very aware that adaptation could incorporate both developmental 72 

and genetic components. In their chapter focusing on variability associated with altitude and 73 

temperature, they observed:  74 

 75 

The responses made by the human organism are physiological ones, but the 76 

limitations in making these responses are determined by the genotype. The analysis 77 

of growth physique encompasses both aspects of adaptability and may be seen both 78 

as the development of adaptive mechanisms and as the end product of growing up in 79 

a climatic extreme (Eveleth and Tanner 1976). 80 

 81 

Forty years later, what more have we learned about this profound variability in human 82 

growth, and in particular, what does it mean in relation to human health? On the one hand, 83 

growth variability is now accorded a central role in the ‘developmental origins of adult 84 

disease’ hypothesis (Hales and Barker 1992). Indeed, while much reference is made to 85 

under-nutrition as the key stress during development that predisposes to chronic disease in 86 

later life, much of the data pertains to growth – either birth weight as an index of fetal 87 

development, or post-natal gains in weight or length as an indication of growth faltering or 88 

compensatory catch-up (Barker et al., 1989; Hales et al., 1991; Eriksson et al., 1999). At the 89 

same time, studies repeatedly emphasise that components of size and shape are highly 90 

heritable, with some twin studies attributing as much as 80-90% of variability in adult 91 

stature to genetic factors (Silventoinen et al., 2003; Perola et al., 2007). 92 

 93 

We are more aware than ever, therefore, that the study of growth carries vital messages 94 

about short- and long-term health variability. But it is also clear that growth itself is only a 95 
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marker for diverse other traits that are more direct determinants of health. ‘Adding’ a few 96 

centimetres of height to an individual cannot directly alter their risk of diabetes or heart 97 

disease, rather it must index underlying effects of developmental experience on the 98 

structure and function of cells and organs. 99 

 100 

The last decade has seen another seminal publication, the World Health Organisation 101 

growth reference (Bhandari et al., 2002). This study, based on well-off individuals from six 102 

different populations, highlighted substantial consistency in early patterns of linear growth, 103 

giving a strong message that in good ecological conditions, humans grow relatively similarly 104 

in early life. More recent work has extended this approach to fetal life (Papageorghiou et al., 105 

2014). It remains unclear, however, how relevant this scenario is to variability in adult size, 106 

or indeed to other somatic traits such as body shape, physique and body composition. A 107 

recent comprehensive survey of 200 countries reported substantial variability (20 cm 108 

between tallest and shortest countries) in adult height, and much of this variability has 109 

persisted despite secular trends in recent centuries (NCD Risk Factor Collaboration (NCD-110 

RisC 2016). 111 

 112 

The aim of this review is consider growth in more detail, in order to emphasise four issues 113 

relevant to the association between growth variability and health. First, I will summarise 114 

how growth patterns during different stages of development are associated with body 115 

composition. Second, I will suggest how these associations contribute to the ‘developmental 116 

origins’ of health and disease through the medium of developmental plasticity. Third, I will 117 

argue that growth is best considered a multi-generational phenomenon, bearing a strong 118 
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imprint of parental phenotype. Finally, I will reconsider the evidence that population 119 

variability in early growth may incorporate genetic effects. 120 

 121 

Growth and body composition 122 

 123 

Shortly after the publication of ‘Worldwide variation in human growth’, another landmark 124 

article emerged - the ‘reference child’ of Fomon and colleagues (1982). This paper 125 

highlighted for the first time substantial aged-associated variability in pediatric body 126 

composition. Six months after birth, infants were typically over 25% fat, in contrast with 127 

around 14% at birth. Yet by mid childhood, the reference boy was barely 12% fat, and the 128 

girl around 17%. These data indicate that infants become adipose only temporarily, 129 

suggesting unique functions of body fat stores during early life. The same data indicated a 130 

steady acquisition of lean mass from birth onwards, though not consistently in proportion 131 

with height. In other words, the developmental profile of human body composition is quite 132 

complex, and like growth patterns, it too might very substantially between populations. 133 

 134 

Since children grow at variable rates, it is ideal to adjust for this when assessing body 135 

composition. Fomon’s data can be re-plotted as fat mass index (fat mass/height
2
) against 136 

lean mass index (lean mass/height
2
), which effectively splits body mass index into its two 137 

principal components (Hattori et al., 1997; Van Itallie et al., 1990; Wells 2001). This approach 138 

highlights the changes in body composition that occur with age, as well as sex differences 139 

(Figure 1). That both growth and body composition are sensitive to ecological influences in 140 

early life is clearly demonstrated through studies of infant feeding mode (Dewey et al., 1993; 141 

Butte et al., 2000). 142 
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 143 

Subsequent comparisons across ethnic groups have consistently shown population 144 

differences. For example, Ethiopian infants have less body fat than European infants at birth 145 

(Andersen et al., 2011), while at birth and in early infancy, South Asian infants in the UK have 146 

less lean mass but similar body fat compared to white European infants (Yajnik et al., 2003; 147 

Stanfield et al., 2012). During childhood, South Asian children continue to have lower lean 148 

mass index compared to European children, whereas Afro-Caribbean and black African 149 

children tend to have higher levels of lean mass index than European children, and similar 150 

body fat (Nightingale et al., 2011; Lee et al., 2015; D'Angelo et al., 2015). Though current 151 

living conditions undoubtedly contribute to such differences, their large magnitude also 152 

suggests potential genetic responses to ancestral ecological conditions. 153 

 154 

Beyond body composition variability per se, it is now also clear that early growth variability 155 

has implications for body composition at later ages. Data from numerous studies are 156 

relatively consistent in showing an association between birth weight and later lean mass 157 

(Wells et al., 2007). Associations between birth weight and later adiposity in contrast are 158 

inconsistent across studies: in many populations, no such association is apparent, but in a 159 

few populations low birth weight predicts subsequent central adiposity whereas in others, a 160 

heavier birth weight also predicts greater adiposity in later life (Wells et al., 2007). This 161 

heterogeneity is most likely due to differences between populations in the rate of infant 162 

growth, for example some populations with low average birth weight may have undergone 163 

catch-up growth. In two large studies, birth weight was associated with later adiposity in 164 

females but not males (Sachdev et al., 2005; Rogers et al., 2006), suggesting contrasting life 165 

history strategies between the sexes. Broadly, these data indicate that fetal life is a key 166 
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period in the developmental trajectory of lean tissue mass, and this is consistent with similar 167 

associations between birth weight and later height. 168 

 169 

The scenario for infancy is rather more complex. In high-income industrialised populations, a 170 

number of studies have demonstrated an association between rapid infant weight gain and 171 

later adiposity, or risk of obesity (Stettler et al., 2002; 2005; Ekelund et al., 2006; Chomtho et 172 

al., 2008). This in turn has identified infancy as a potential critical period in the 173 

developmental origins of obesity. However, data from low- and middle-income countries 174 

contrast markedly with these findings. In a number of studies, from both South American 175 

populations and India, faster weight gain during infancy has been associated with later lean 176 

mass, but not with later fat mass (Li et al., 2003; Sachdev et al., 2005; Wells et al., 2005; 177 

2012; Kuzawa et al., 2012). However, whether interventions in early life invariably promote 178 

lean mass rather than fat accretion remains unclear (Rivera et al., 1995; Kulkarni et al., 179 

2014). This may be because the optimal intervention may require the mediating influence of 180 

maternal nutrition, as discussed below.  181 

 182 

The reasons underlying this population-contrast remain poorly understood. One possibility is 183 

that there are genetic differences between populations that directly affect the composition 184 

of tissue accretion, but this explanation is perhaps unlikely given that some of the studies 185 

from lower and middle-income countries derive from Brazil, where a substantial proportion 186 

of the population are of European origin. An alternative is that infants larger at birth and 187 

closer to their ‘growth potential; have lower capacity to gain additional lean mass, and must 188 

therefore gain more fat. A more intriguing possibility is that populations differ in the 189 

duration of critical windows, during which nutrition regulates infant growth (Wells 2014). 190 
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Earlier closure of critical windows might direct energy intake to fat accretion rather than 191 

lean tissue. Possible underlying mechanisms may include hormonal factors in breast milk, 192 

differences in exposure to environmental agents such as pathogens, or genetic variability in 193 

the physiological mechanisms that regulate critical windows. Supporting evidence for these 194 

hypotheses is currently lacking and given the need to tackle both under-nutrition and 195 

obesity through public health efforts, this represents an important topic for further research. 196 

 197 

Developmental plasticity 198 

 199 

The complex associations between early growth patterns and later body composition 200 

highlight the mediating role of developmental plasticity. Indeed, it was classic animal studies 201 

of growth that first revealed the long-term impact of early-life nutrition on size and 202 

metabolic phenotype. If a rat were malnourished directly after birth, it would never fully 203 

recover the deficit in body size. If the insult was delayed until 9 weeks after birth, however, 204 

growth would only slow temporarily, and as soon as adequate supplies of food were 205 

restored, the rat would gain weight rapidly and regain the growth trajectory it had displayed 206 

prior to the insult (McCance and Widdowson 1956; McCance 1962).  This implicated early 207 

infancy as a ‘critical period’ in the development of adult size and metabolism. 208 

 209 

Critical windows of sensitivity in growth close in due course, after which growth becomes 210 

canalized, or ‘self-correcting’ under the genetic influence of growth hormone. The tendency 211 

of traits to remain relatively stable following periods of plasticity is often termed ‘tracking’. 212 

This does not mean that growth is entirely immune from subsequent environmental effects.  213 
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Rather, the magnitude of tracking is best described on a continuous scale, for example the 214 

tendency of height to track after infancy is relatively high, whereas that of weight is lower. 215 

 216 

The concepts of critical windows, plasticity and tracking allow a number of specific questions 217 

to be raised (Table 1), in terms of phenotypic targets, mechanisms, timing and reversibility 218 

(Wells 2016). The primary period of plasticity in humans comprises fetal life and infancy, 219 

though which of these periods is most sensitive depends on the trait. Recently, attention has 220 

been directed to adolescence as another sensitive period, particularly for reproductive 221 

physiology and behaviour (Prentice et al., 2013).  Overall, the life-course profile of human 222 

plasticity remains poorly understood, because scientists have generally been quick to notice 223 

its implications, but slower to define its characteristics in detail. 224 

 225 

The importance of developmental plasticity for human health rapidly became clear, in 226 

particular through the pioneering epidemiological studies of Barker and colleagues (Barker 227 

et al., 1989; 2005; Hales et al., 1991). Following up cohorts of individuals born in the first half 228 

of the 20th century, it was repeatedly found that low birth weight and poor weight gain 229 

during infancy were associated with the risk of chronic diseases in late adulthood, including 230 

ischaemic heart disease, type 2 diabetes, hypertension and stroke (Barker et al., 1989; 2005; 231 

Eriksson et al., 1999; 2001). These findings have subsequently been extended to low and 232 

middle-income countries (Adair et al., 2013), although there is also some heterogeneity 233 

between populations in the associations between early growth patterns and later health 234 

outcomes (Wells et al., 2007; Sterling et al., 2014). 235 

 236 
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The initial interpretation of these data was that fetal malnutrition induced 237 

pathophysiological development, which in the long term elevated chronic disease risk. 238 

Initially, it seemed logical that low birth weight was implicating maternal malnutrition, either 239 

directly or through compromised function of the placenta. Hales and Barker (1992) proposed 240 

the ‘thrifty phenotype’ hypothesis: that in malnourished fetuses, growth of organs such as 241 

the pancreas was sacrificed in order to protect the vulnerable energy-demanding brain. This 242 

would represent a survival strategy in the short term, but at the long-term cost of a reduced 243 

capacity to tolerate high-energy diets. Individuals developing such a thrifty phenotype were 244 

thus at high risk of developing type 2 diabetes and other chronic diseases in later adult life. 245 

Eveleth and Tanner duly acknowledged this rapidly developing research area in the revised 246 

edition of their book (Eveleth and Tanner 1991). 247 

 248 

Nevertheless, these retrospective cohort studies provided no direct information on putative 249 

malnutrition in early life. Rather, everything ‘nutritional’ was inferred from data on birth 250 

weight, placental weight, or the size and shape of the mother (Barker et al., 1989; 1990; 251 

2005; Martyn et al., 1996). Moreover, the supporting data repeatedly showed that 252 

associations between birth weight or early postnatal growth and later disease risk were not 253 

restricted to those at the lower extremes, but were rather evident across the whole range of 254 

birth weight. In other words, each additional increment in birth weight lowered the risk of 255 

chronic disease in adult life, and this draws attention back to the process of growth itself. 256 

 257 

The capacity-load model 258 

 259 
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Building on the ‘thrifty phenotype’ hypothesis, I have developed a simpler model of 260 

developmental plasticity and long-term health, focusing on two generic traits, one that 261 

promotes homeostasis and one that impedes it (Wells, 2011; 2016). This approach places 262 

less emphasis on the extremes of nutritional status, such as low birth weight or adult 263 

obesity. Instead, I assume that the relevant traits are each characterised by a continuous 264 

distribution. Specifically, I assume that in early life, the fetus and infant gain ‘metabolic 265 

capacity’, a generic term for physiological traits that enhance the potential to maintain 266 

homeostasis. From late fetal life onwards, I assume that individuals can accumulate 267 

‘metabolic load’, a generic term for traits that challenge the capacity for homeostasis. The 268 

risk of chronic disease in adult life is then predicted to scale inversely with capacity, and 269 

positively with load (Wells 2011). Of particular importance, metabolic capacity and load are 270 

closely associated with different stages of development and different components of 271 

growth. 272 

 273 

Metabolic capacity derives from key components of organ structure and function that 274 

develop during the period of hyperplasic growth, characterized by increasing in cell number 275 

(Bogin 1999). Specific examples include nephron number in the kidney, muscle mass, 276 

pancreatic beta-cell mass, blood vessel diameter, and the size of the airways in the lungs.  277 

Each of these traits scales relatively linearly with birth weight – the heavier the neonate, the 278 

larger or more productive the physical trait (Wells 2011; 2016). Because these traits often 279 

have little capacity to change subsequently, their functional properties tend to track on into 280 

adult life. For example, the long-term inverse association between birth weight and blood 281 

pressure may be due to the fact that nephron number, fundamental to kidney function, 282 

changes negligbly after term birth (Hinchliffe et al., 1991). 283 
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 284 

Not all stresses that shape metabolic capacity necessarily act through fetal weight gain, as 285 

proxied by birth weight or infant weight gain. First, early fetal growth faltering may leave no 286 

signal in birth weight, as was apparent for offspring exposed in utero to maternal famine 287 

during the first trimester of pregnancy (Roseboom et al., 2001). Indeed, following such early 288 

growth faltering, neonatal adiposity may even be greater than normal, indicating that a 289 

degree of ‘catch-up’ has already occurred prior to birth (Hemachandra and Klebanoff 2006); 290 

but this would conceal reduced lean mass. Likewise, the high body fat content of 291 

macrosomic neonates reduces their metabolic capacity relative to their birth weight. Thus, 292 

maternal obesity may in fact constrain metabolic capacity in the offspring, despite the high 293 

levels of maternal energy stores. 294 

 295 

Second, maternal nutritional status around the time of conception may affect fetal gene 296 

expression, independent of fetal growth (Waterland et al., 2010; Khulan et al., 2012). Third, 297 

non-nutritional factors such as maternal psychosocial stress may impact signalling systems in 298 

the brain or other organs (Entringer et al., 2009, 2011).  Birth weight cannot index such 299 

effects, even though they may involve perturbations of metabolic capacity. We should not 300 

therefore assume that the developmental origins of chronic disease are explained entirely by 301 

growth patterns, or that early growth patterns have a simple relation with maternal 302 

nutrition. Nevertheless, birth weight has been repeatedly associated with adult chronic 303 

disease risk in diverse populations, and the fact that such data is increasingly widely 304 

available means that it is one of the most valuable proxies for the quality of fetal 305 

development. 306 

 307 
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As the process of growth shifts to hypertrophy, characterized by increasing in cell size, the 308 

regulatory systems change. Whereas fetal development is very sensitive to the delivery of 309 

nutrients and oxygen, post-natal growth gradually loses this sensitivity, and comes under the 310 

canalizing control of growth hormone. From this point onwards, non-brain organ growth 311 

closely follows growth in stature (Figure 2). The striking linearity of these relationships 312 

indicates a common regulatory system, and helps explain why metabolic capacity tracks 313 

from early life into adulthood, where height remains associated with organ masses in both 314 

sexes (de la Grandmaison et al., 2001).  315 

 316 

Evidence from rats indicates that hyperplasic growth may extend into early infancy (Enesco 317 

and LeBlond, 1962). Markers of early post-natal nutritional experience might therefore also 318 

correlate with certain components of metabolic capacity that are still developing after birth. 319 

However, infant weight gain is a problematic way to assess the quality of post-natal growth, 320 

since it shows an inverse correlation with birth weight on account of small neonates tending 321 

to undergo ‘catch-up’ (Ong et al., 2000). Thus we cannot tell whether rapid infant weight 322 

gain represents continued ‘good growth’, or recovery from earlier ‘poor growth’, 323 

characterized by constrained fetal organ development. To resolve this, we need a marker of 324 

infant/childhood growth that is independent of fetal growth. 325 

 326 

The best candidate currently appears to be relative leg length (leg length/height), for while 327 

each component of birth length is associated with birth weight, the ratio between them is 328 

not, indicating that relative leg length is primarily determined in post-natal life (Gunnell et 329 

al., 1999; Bogin and Baker, 2012; Pomeroy et al., 2014).  After birth, leg length typically 330 

shows stronger associations than trunk length with environmental factors such as infant or 331 
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early childhood diet (Gunnell et al., 1998; Wadsworth et al., 2002).  In turn, relatively shorter 332 

legs have been associated with poorer metabolic function in adult life, including higher 333 

blood pressure and blood lipids, insulin resistance, thickened carotid arteries, and greater 334 

risk of coronary disease and diabetes (Asao et al., 2006; Gunnell et al., 2003; Tilling et al., 335 

2006; Fraser et al., 2008; Lawlor et al., 2002a).  Collectively, these findings indicate that 336 

components of metabolic capacity may continue to be compromised after birth under 337 

adverse conditions, in association with poorer leg growth.  338 

 339 

As in fetal life, some post-natal growth traits may be protected during adverse conditions at 340 

a cost to others. This is supported by a recent study in Peru, which compared children from a 341 

high altitude rural setting, exposed to various ecological stresses, with children from a more 342 

favourable lowland urban setting. While the high altitude children were shorter, the growth 343 

deficit varied according by anatomical region. Whereas lower leg length was ~1.3 z-scores 344 

shorter, foot length was ~1 z-score shorter, and the combined length of the head and trunk, 345 

incorporating the brain and vital organs, was only ~0.7 z-scores shorter (Pomeroy et al., 346 

2012).  The thrifty phenotype thus appears to apply to body proportions as well as organs, 347 

and this supports the use of growth outcomes such as leg length as developmental markers 348 

of chronic disease risk. For example, height explained 25% of the variability in kidney length 349 

in pre-pubertal children from lowland Nepal, though in this case sitting height and leg length 350 

showed similar associations (Wells et al., 2016a).  351 

 352 

Obesity, itself manifesting as excessive somatic growth, is a key factor challenging 353 

homeostasis in later life. One reason for this, according to autopsy studies, is that adult 354 

organ masses scale with total body weight much more weakly than with height (de la 355 
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Grandmaison et al., 2001).  This means that as adults gain weight, their organs cannot keep 356 

up, and bear a relatively heavier metabolic burden. Thus, the second element of my model 357 

comprises ‘metabolic load’, referring to traits or behaviours that challenge the capacity for 358 

homeostasis. 359 

 360 

This concept is clearly analogous to that of ‘allostatic load’ developed by McEwen and 361 

colleagues (McKewan and Stellar 1993; McEwan 1998), but contrasting with their emphasis 362 

on ‘psychosocial stress’ and its impact on neuroendocrine function, my focus is specifically 363 

on nutritional/metabolic exposures. Beyond central abdominal obesity, metabolic load also 364 

links closely with various ‘adult lifestyle’ risk factors for chronic diseases such as lipogenic 365 

diets, sedentary behaviour, psychosocial stress and tobacco smoking, as well as infectious 366 

disease and a variety of toxins and pollutants, all of which challenge homeostasis (Wells 367 

2011, 2016). Metabolic load develops primarily during the period of hypertrophic growth, 368 

though elevated adiposity in newborns of obese mothers (Sewell et al., 2006) suggests that 369 

load may rise even during fetal life. At the cellular level, metabolic load may cause insulin 370 

resistance, oxidative stress and telomere attrition (Wells 2016), and this helps understand 371 

why catch-up growth is associated not only with adult size and body composition, but also 372 

longevity (Metcalfe and Monaghan 2001). 373 

 374 

Consistent with the capacity-load model, interactive effects of birth weight and current 375 

weight have now been described for a variety of traits (Wells 2011). The greatest chronic 376 

disease risk is predicted in those who have diminished capacity and elevated load. For 377 

example, a study of Swedish men showed that the blood pressure ‘penalty’ associated with 378 

low birth weight was minimal in those of small adult size, but large in those who were both 379 
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tall and heavy (Leon et al., 1996).  In other words, the penalty for diminished capacity was 380 

greatest in those with elevated load, while the penalty for high load was greatest in those 381 

with diminished capacity. Moreover, recent data from three US cohorts demonstrate 382 

continuous interactive associations of birth weight and unhealthy adult lifestyle with the risk 383 

of diabetes and hypertension (Li et al., 2015a,b), exactly as the capacity-load model predicts 384 

(Figure 3). 385 

 386 

This approach breaks down simplistic categorical differentiations, and provides a more 387 

realistic life-course model of chronic disease risk. Whilst nutrition is clearly a key 388 

determinant of both metabolic capacity and metabolic load, we can see that growth also 389 

plays a central role in their interaction. 390 

 391 

Intergenerational effects 392 

 393 

Barker and colleagues were quick to acknowledge the importance of maternal phenotype in 394 

relation to the offspring's growth trajectory during early life (Barker et al., 1990; Martyn et 395 

al., 1996). Building on the embodied capital model of Kaplan and colleagues (2003), 396 

components of maternal phenotype that impact development of the offspring have been 397 

termed ‘maternal capital’ (Wells 2010). Recent studies have shown that many different 398 

components of maternal phenotype are relevant, some of them (eg micronutrient status, 399 

adiposity) reflecting current maternal condition, while others (eg height) reflect ecological 400 

conditions during the mother's own period of development. 401 

 402 
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The fact that growth represents an inter-generational process makes it challenging to 403 

understand how developmental plasticity can contribute to adaptation. The ‘predictive 404 

adaptive response’ hypothesis assumed that early-life plasticity allows metabolic adaptation 405 

directly to local ecological conditions (Gluckman and Hanson 2004). This perspective has 406 

been challenged for several reasons: first, early-life cues in long-lived species such as 407 

humans are highly likely to go ‘out-of-date’, making long-term adaptation implausible (Wells 408 

2007) and second, the nature of placental nutrition and lactation is such that the primary 409 

ecological influence during early critical windows is not the external environment but 410 

maternal capital (Wells 2010). This means that early growth trajectory is profoundly 411 

imprinted by maternal phenotype, and within any given environment, mothers will vary 412 

amongst themselves in their physiological condition.  413 

 414 

In pregnancy, the quality and quantity of blood reaching the placental interface determines 415 

the supply of nutrients (Haig 1993). The human placenta presents a relatively thin barrier of 416 

cells separating maternal and fetal blood. It is highly permeable and efficient at passing 417 

certain nutrients to the fetus, in particular free fatty acids which are important in building 418 

the large human brain, and glucose which provides fuel for fetal energy metabolism (Rurak 419 

2001).  This high permeability potentially makes the fetus very sensitive to variability in 420 

maternal metabolism, but in healthy mothers, homeostatic mechanisms buffer the fetus 421 

from short-term metabolic fluctuations, so that the fetus is exposed to more stable 422 

metabolic signals, such as maternal lean mass (Mongelli  1996; Kulkarni et al., 2006). 423 

Although mothers typically gain weight during pregnancy, this energy is primarily stored for 424 

lactation, and has modest effect on fetal growth unless the mother has impaired fuel 425 

homeostasis.  Other components of maternal metabolism that may impact fetal growth 426 
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include physical activity level (Tafari et al., 1970), the presence of infections such as malaria 427 

(Guyatt and Snow 2004), and micronutrient status. For example, in rural India, low maternal 428 

intake of vitamin B12 in the first trimester was associated with adiposity and insulin 429 

resistance in the offspring at 6 years (Yajnik et al., 2008).   430 

 431 

Beyond the effects of current maternal nutritional status, the offspring is also sensitive to 432 

ecological stresses that impacted its mothers when she herself was developing. Studies from 433 

Mexico and India show that the offspring of shorter or lighter mothers tend to replicate 434 

these traits (Varela-Silva et al., 2009; Yajnik 2009). These associations may span multiple 435 

generations: in an African-American community from Illinois, grand-maternal exposure to 436 

poverty was associated with an increased risk of their daughters producing low birth weight 437 

grandchildren (Collins et al., 2009).  438 

 439 

Although short-term nutritional supplementation of mothers has relatively modest effects 440 

on birth weight of the offspring (Ceesay et al., 1997), sustained nutritional supplementation 441 

initiated before pregnancy begins has been associated with more favourable growth in the 442 

offspring, including lower risk of stunting (Martorell, 1995). Thus, increasing maternal capital 443 

can be very beneficial for the offspring. 444 

 445 

Inter-generational effects are not limited to undernourished mothers, and are also evident 446 

in those who are overweight. Maternal obesity has been consistently associated with high 447 

risk of adverse metabolic traits in the offspring, including high birth weight, childhood 448 

obesity and components of the metabolic syndrome (Boney et al., 2005; Phillips et al., 2005).  449 

A study found that each 5-year increase in maternal age increased the risk of obesity in the 450 
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offspring by 14%, most likely because older mothers were fatter (Patterson et al., 1997).  451 

Following bariatric surgery to reduce body fat, mothers have a lower risk of delivering large 452 

infants, and offspring born after maternal surgery have lower adiposity, insulin resistance 453 

and blood pressure than their siblings born before the surgery (Roos et al., 2013; Guenard et 454 

al., 2013).   455 

 456 

Significantly, the development of obesity in one generation may be more likely if under-457 

nutrition occurred in previous generations. Short maternal stature following early growth 458 

retardation carries an increased risk of gestational diabetes, which shapes phenotype in the 459 

offspring. The likelihood of maternal obesity predicting offspring obesity in a Swedish cohort 460 

was increased three-fold if the mother was herself born small (Cnattingius et al., 2012).  As 461 

the metabolic syndrome becomes more prevalent in populations, it manifests as yet another 462 

pathway whereby maternal metabolism can impact the offspring (Wells 2007). Maternal 463 

diabetes is associated with larger neonates, through the excessive transfer of glucose. 464 

However, this ‘overexposure’ to fuel does not promote healthy growth in the offspring, 465 

rather it alters the structure and function of the pancreas, leading to perturbed insulin 466 

metabolism and excess adiposity (Garcia Carrapato 2003).  The breast-milk of diabetic 467 

mothers also promotes rapid weight gain in the offspring, due to excess milk glucose and 468 

insulin content (Plagemann et al., 2002).  469 

 470 

These data indicate the mother’s capacity for homeostasis may be considered a crucial 471 

component of maternal capital, helping understand the inter-generational basis of health 472 

variability. The chronically-undernourished mother and the obese diabetic mother both have 473 

in common impaired maternal capital, reducing the quality of growth in the offspring. This 474 
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may help explain why markers of both maternal under-nutrition and maternal obesity have 475 

been associated with elevated obesity risk in the offspring (Yajnik et al., 2008; Cnattingius et 476 

al., 2012; Patel et al., 2015). 477 

 478 

What we consider maternal phenotype also includes her gut biota. Even in utero, the fetus 479 

experiences exposure to the maternal microbial community. A further major inoculation 480 

occurs through vaginal delivery, which has long-term effects on the offspring’s metabolism 481 

(Rautava et al., 2012).  Beyond such direct effects, the maternal biota are integral to 482 

maternal metabolism, and hence indirectly affect the nutrient supply to the fetus. For 483 

example, giving a probiotic supplement during pregnancy may reduce both the risk of 484 

gestational diabetes in the mother, and the risk of high birth weight and obesity in her 485 

offspring (Luoto et al., 2010a, b).  486 

 487 

Thus fetal nutrition derives from the composite metabolic milieu of the mother, integrating 488 

multiple ecological exposures. Some of these are immediate, some reflect a modest time lag 489 

and others occurred in previous generations (Figure 4). Finally, we must not forget that 490 

fathers also impact the phenotype of their offspring through similar pathways. Paternal diet 491 

may transmit epigenetic effects through imprinting of the sperm, as has been shown in 492 

observational studies of humans, and experimentally in rats (Pembrey, 2010; Pembrey et al., 493 

2006; Ng et al., 2010).  494 

 495 

Adaptation to maternal capital 496 

 497 
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Barker and colleagues produced novel evidence that factors constraining maternal 498 

investment during pregnancy impaired the long-term health of their offspring.  For example, 499 

mothers with flattened bony pelvis produced babies whose birth weight and placental 500 

weight were reduced relative to their head circumference. These traits predicted an 501 

increased risk of stroke in old age (Martyn et al., 1996). In terms of the maternal capital 502 

model, this can be interpreted as mothers who experienced nutritional constraint in their 503 

own development having reduced capacity to transfer nutritional resources to their 504 

offspring during pregnancy. In turn, the altered body proportions of the offspring can be 505 

interpreted as an unhealthy fetal growth profile, broadly consistent with the thrifty 506 

phenotype hypothesis (Hales and Barker, 1992) in showing preservation of head growth at 507 

the expense of somatic tissue growth. 508 

 509 

More recent work has demonstrated how low levels of maternal capital impact not only 510 

somatic growth itself, but also the entire developmental schedule of the offspring. In South 511 

Asian women born in the UK, low birth weight (a proxy for lower maternal investment) was 512 

associated with a suite of traits in the daughters, including short adult height, earlier 513 

menarche, higher body fatness, and higher blood pressure (Figure 5) (Wells et al., 2016b). 514 

These data indicate that female offspring receiving lower maternal investment adopt a 515 

faster life history strategy, prioritising reproduction at the expense of maintenance and 516 

growth. To the extent that these offspring are responding adaptively to cues early in their 517 

life, they appear to be tailoring their reproductive scheduling to the magnitude of maternal 518 

investment, rather than directly to the external environment. 519 

 520 
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How could it be adaptive to tailor life history strategy to a constraint in early life? Consistent 521 

with life history theory (Hill 1993) and the disposable soma theory (Kirkwood and Rose 522 

1991), developing a lower metabolic capacity in early life predicts more rapid failure of 523 

homeostasis in adulthood and thus shorter lifespan, which increases the value of shunting 524 

energy towards earlier reproduction (Wells 2016). This helps understand why compensatory 525 

catch-up growth is associated not only with earlier puberty and elevated adiposity on girls 526 

(Ong et al., 2009) but also in animal models with telomere attrition (Metcalfe and Mongahan 527 

et al., 2001). 528 

 529 

Revisiting heritability 530 

 531 

Up until now, I have focused primarily on plasticity in growth. Yet variability in adult size has 532 

long been assumed primarily to reflect genetic influences. Twin studies routinely indicate 533 

that the majority of variability in adult stature can be attributed to genotype, though family 534 

studies indicate lower coefficients of heritability (Wells and Stock 2010). Genome-wide 535 

association studies have now associated hundreds genes with height variability, and 536 

although early such studies could account for only a small minority of the total variability in 537 

stature, more recent studies account for a much greater percentage (Wood et al., 2014). 538 

 539 

To understand how growth can be simultaneously highly sensitive to ecological factors and 540 

yet also powerfully influenced by genetic factors, it is valuable to focus on how heritability of 541 

growth rates changes profoundly through the life course. Figure 6 illustrates the heritability 542 

of height and weight from mid pregnancy through to 40 months after birth, based on twin 543 

studies. (Note that estimates of genetic heritability from twin studies generally assume that 544 
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dizygotic and monozygotic twins are characterised by similar degrees of shared environment 545 

within families, an assumption that is not strictly true at this stage of development: whereas 546 

dizygotic twins have two different placentas, monozygotic twins typically share a single 547 

placenta, and hence have greater environmental similarity. However, this scenario is unlikely 548 

to explain the substantial changes in heritability  estimated to occur through late gestation 549 

or early infancy). Remarkably, heritability is relatively high in mid pregnancy, but drops to 550 

barely 20% around the time of birth, before increasing again to around 60% by two years of 551 

age, increasing more slowly subsequently. This pattern of variability gives a strong indication 552 

that the influences of genes on growth are systematically relaxed around the time of birth, 553 

likely to relate to the challenge of delivery through the maternal pelvis (Wells 2015). In turn, 554 

we recognise this as the primary period of growth plasticity.  555 

 556 

Disentangling the contributions of genotype and plasticity to height variability was of 557 

interest to Eveleth and Tanner (1976), and they highlighted the value of studying ‘mixed 558 

ethnic’ individuals in this context, showing for example that during adolescence, individuals 559 

of mixed Japanese-European ancestry had heights intermediate between those of 560 

homogenous parental ethnicity. This study design has recently been applied to birth weight. 561 

 562 

Based on analysis of individuals born in the UK, those with two Indian parents were found to 563 

have birth weights on average ~350 g lower than those with two European parents. 564 

Depending on the ethnicity of the father, Indian mothers were found to produce babies 565 

~150 to ~250 g lighter than the offspring of European mothers. This clearly indicates that 566 

lower maternal capital contributes to the lower birth weight of the Indian baby, but without 567 

differentiating ecological versus genetic influences. Compared to two Indian parents, the 568 
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combination of an Indian mother and a European father produced a baby on average ~250 g 569 

heavier, suggesting that the lower investment of Indian mothers is not ‘fixed’, but can rather 570 

be modified by paternal influence. Compared to two European parents, the combination of a 571 

European mother and an Indian father produced a baby on average ~100 g lighter (Wells et 572 

al., 2013). This suggests that although European mothers are capable of producing large 573 

babies, Indian fathers contribute ‘lower growth potential’ to their offspring, though this 574 

could occur either through genetic factors, or through epigenetic effects.  575 

 576 

As yet this question has not been answered, but given the long-term decline in Indian 577 

stature over the last 10,000 years (Wells 2010), genetic differences between these 578 

populations are at least plausible. If long-term falls in maternal height occurred through 579 

natural selection, and if this decline impacted the dimensions of the pelvis as well (Wells 580 

2015), selection could have favoured alleles constraining birth weight likewise. 581 

 582 

Growth as an index of social conditions 583 

 584 

This review strongly supports the pioneering argument of Eveleth and Tanner that human 585 

growth fundamentally reflects living conditions, with major implications for health. What has 586 

become clearer over the last four decades however is the complex intergenerational nature 587 

of this association. The capacity-load model may help understand its life-course aetiology. 588 

Many studies have shown inverse associations between levels of deprivation and birth 589 

weight or weight gain during infancy (Victora et al., 1987; Wilcox et al., 1995). Recent studies 590 

have shown striking dose response associations of childhood obesity with the level of 591 

deprivation (Figure 7). The composite effect is that metabolic capacity declines in association 592 
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with worsening deprivation even as metabolic load increases, so that those from the poorest 593 

backgrounds have the highest ratio of load to capacity. This represents a fast track to chronic 594 

disease in adulthood. 595 

 596 

Nutrition and growth play a crucial mediating role in the impact of the structure of society 597 

on health. This is no mere coincidence, for I have argued elsewhere that nutrition is the 598 

primary arena in which societal power relations are expressed. Social hierarchies emerge 599 

from differential control over nutrition in its broadest sense: the availability of food, the 600 

kinds of activity people undertake, and the level of agency that characterises their lifestyle 601 

(Wells 2016). We should not be surprised therefore that the more hierarchical a society, the 602 

stronger the social gradient in growth and height. 603 

 604 
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Legends for illustrations 609 

 610 

Figure 1. Hattori charts illustrating average age-associated changes in body composition 611 

adjusted for height in (a) infancy and (b) childhood, based on data from the reference child 612 

of Fomon et al., 1982. Sequential data points are as follows: (a) monthly from birth to 6 613 

months, and then at 9 and 12 months; (b) 1 years, 1.5 years, and then yearly from 2 to 10 614 

years. Movement across the graph over time indicates whether changes in body mass index 615 

are due to differences in fat-free mass (FFM), fat mass (FM) or both. Reproduced with 616 

permission from Wells (2000).  617 

 618 

Figure 2. Associations between body length and mass of the kidney, liver and brain, based 619 

on autopsy data from children between birth and 12 years. Data from Coppoletta and 620 

Wolbach 1932, reproduced with permission from Wells (2016). 621 

 622 

Figure 3. Interactive associations of birth weight (indexing metabolic capacity) and 623 

components of an unhealthy adult lifestyle (indexing metabolic load) in relation to the 624 

prospective risk of developing diabetes in three US cohorts. Data from Li et al., 2015b. 625 

 626 

 Figure 4. Schematic diagram summarizing the multiple nutritional influences acting on the 627 

developmental origins of chronic diseases. Reproduced with permission from Wells (2016). 628 

 629 

Figure 5. Associations between maternal investment (proxied by birth size) and offspring 630 

phenotype in South Asian women in the UK. (a) Birth weight is positively associated with age 631 

at menarche. (b) Earlier menarche is associated with lower adult stature. (c) Earlier 632 

Page 28 of 48

John Wiley & Sons

American Journal of Human Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 29

menarche is associated with higher adult subscapular skinfold. (d) Subscapular skinfold is 633 

positively associated with adult systolic blood pressure. Reproduced with permission from 634 

Wells et al., 2016b. 635 

 636 

Figure 6. Figure 4. Estimates of heritability in weight and length/height in The Netherlands 637 

Twin Register study, with data from another study of late pregnancy added. Data from 638 

Mook-Kanamori et al., 2012 and Gielen et al., 2008. Reproduced with permission from Wells 639 

2015. 640 

 641 

Figure 7. Association between obesity prevelance and level of deprivation (categorized in 642 

deciles) in UK children in reception class or Year 6. Data from UK National Obesity 643 

Observatory. Reproduced with permission from Wells (2016). 644 

 645 
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Table 1. Key questions concerning critical windows of plasticity and human growth 646 

outcomes relevant to health 647 

 648 

 649 

Issue  Research question 

Responsiveness What phenotypic trait is affected? 

Environmental agent What stress or stimuli impacts the trait? 

Timing When do critical windows of sensitivity open and close? 

Reversibility How immutable are the environmental effects 

Mechanism What is the mechanism through which phenotype responds? 

 650 

 651 
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