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Human functional magnetic resonance imaging (fMRI) brain networks have

a complex topology comprising integrative components, e.g. long-distance

inter-modular edges, that are theoretically associated with higher biological

cost. Here, we estimated intra-modular degree, inter-modular degree and con-

nection distance for each of 285 cortical nodes in multi-echo fMRI data from 38

healthy adults. We used the multivariate technique of partial least squares

(PLS) to reduce the dimensionality of the relationships between these three

nodal network parameters and prior microarray data on regional expression

of 20 737 genes. The first PLS component defined a transcriptional profile

associated with high intra-modular degree and short connection distance,

whereas the second PLS component was associated with high inter-modular

degree and long connection distance. Nodes in superior and lateral cortex

with high inter-modular degree and long connection distance had local tran-

scriptional profiles enriched for oxidative metabolism and mitochondria,

and for genes specific to supragranular layers of human cortex. In contrast,

primary and secondary sensory cortical nodes in posterior cortex with high

intra-modular degree and short connection distance had transcriptional

profiles enriched for RNA translation and nuclear components. We conclude

that, as predicted, topologically integrative hubs, mediating long-distance

connections between modules, are more costly in terms of mitochondrial

glucose metabolism.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
1. Introduction
In many ways, functional magnetic resonance imaging (fMRI) is misaligned

to the elementary scale of basic neuroscience. The neuron is the anatomi-

cal unit of nervous systems and the action potential is the physiological

unit of communication between neurons. Functional MRI is incapable of
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resolving cellular structures and processes on these micro-

scopic scales of space and time in humans. A single fMRI

voxel (around 1 cubic millimetre) represents approximately

1–2 million neurons and other cells. The sampling rate of

fMRI (approx. 1/60 ¼ 0.02 Hz) is too slow to resolve rapid

transients like action potentials, or the full spectrum of

electrophysiological oscillations (0.1–1000 Hz). An fMRI

time series will typically only resolve very low-frequency

oscillations (approx. 0.1 Hz) and these ‘resting-state’

dynamics will represent local blood oxygenation changes

coupled to neuronal activity rather than a direct measure of

neuronal electrophysiology.

The mechanistic links between the blood oxygen-level

dependent (BOLD) contrast measured by fMRI and under-

lying neuronal states of excitation and inhibition have been

extensively investigated [1]. There is, for example, evidence

that BOLD oscillations represent a hyperaemic response that

is coupled to modulations in the amplitude envelope of

higher frequency oscillations in local field potentials [2]. How-

ever, there remains a need for clearer explanatory connections

between the molecular and cellular scale of neurovascular

mechanisms of BOLD contrast in animals or other experimen-

tal models, and the whole-brain systems scale of cognitive

and clinical neuroscientists using BOLD contrast for fMRI.

Deeper biomechanistic interpretation of fMRI results from

human experiments will inevitably be challenged by oper-

ational and ethical limits on what else can be measured

in humans in an effort to control or explain the neurovascular

factors of the BOLD signal. There are also a number of signifi-

cant technical drawbacks to consider. BOLD contrast is not

measured in SI units. A ‘raw’ human fMRI dataset is typically

more noise than signal, and it can be challenging to control

common and potentially severe sources of noise, such as tran-

sient micro-movements of the head (approx. 1 mm) during

scanning [3,4].

To set against this list of arguments against fMRI, there

are also two important advantages to consider. First and fore-

most, fMRI is remarkably safe and accessible for human

participants including patients. Second, despite the caveats

about its physiological origins, fMRI has turned out to be a

highly reliable and plausible marker of local or regional

brain (de-)activation by diverse cognitive tasks [5], as well

as a robust signal of abnormal brain function in patients

with clinical disorders [6].

In this context, it has been exciting to see new opportun-

ities recently emerging to link fMRI phenomena to the

genomic substrates of human brain organization. A pivotal

role has been played by the Allen Institute for Brain Science

(AIBS), which has measured expression of all approximately

20 000 genes in the human genome at each of approximately

500 locations in six post-mortem adult human brains, and

publically released these data [7]. On this basis, it has been

shown that human brain regions can be differentiated in

terms of their transcriptional profiles of gene expression,

e.g. cortex, cerebellum and thalamus have markedly different

transcripts from each other. Conversely, brain regions can be

aggregated with each other to constitute modules that

demonstrate high co-expression of genes [7]. Gene expression

profiles can also be mapped to the same anatomical space as

human imaging data, enabling the first direct explorations of

how the molecular mechanisms of whole-genome transcrip-

tion might be related to fMRI dynamics and connectivity in

humans [7,8]. For example, genes were more strongly co-
expressed by functionally connected brain regions [9] and,

more specifically, different classes of functional networks

were distinguished by differing co-expression patterns in a

set of 19 genes known to be enriched in human supra-

granular cortex [10]. We were motivated by these and other

results to explore genomic associations with functional MRI

network parameters.

Human fMRI research is arguably negotiating a shift from

an interventional paradigm, focused on local signal changes

estimated in response to experimentally controlled changes

of cognitive state, to a more naturalistic paradigm focused

on estimating very low-frequency oscillations and their correl-

ation or functional connectivity between pairs of brain

regions or voxels [11]. Functional MRI connectivity has

been analysed in many different ways, ranging from simple

correlational analysis, through multivariate methods such

as independent component analysis (ICA), to graph theoret-

ical analysis of the topological properties of brain functional

networks [12,13]. This work has discovered that there are

spatially extensive systems or networks of correlated BOLD

oscillation in the human brain. These functional networks

representing anatomical patterns of fMRI time-series covari-

ance are reliable [14], heritable [15], electrophysiologically

explicable in terms of amplitude envelope coupling of under-

lying neuronal oscillations [2], related to normal cognitive

functions [16] and implicated in the pathophysiology of

many clinical disorders [17].

The complex topology of human fMRI networks—com-

prising small-worldness, hubs and modules among other

non-random and non-regular features—has been accounted

for theoretically by an economical model of competition

between selection pressures for both low biological cost and

high topological integration [18,19]. Low cost is certainly

advantageous given inevitable constraints on the intra-cranial

space, biological material and metabolic resources, available

to build and sustain a human brain network [20]. Topological

integration is thought to be advantageous because integrated

networks or global workspaces are behaviourally valuable by

conferring computational capacity for adaptive, ‘higher

order’ cognitive functions [18,19,21]. However, network inte-

gration is typically expensive [22]. An integrated brain

network with short topological paths between all possible

pairs of spatially distributed nodes will cost more in terms

of the length of axonal ‘wiring’ needed to connect network

nodes over long anatomical distances. The wiring cost

of brain networks is nearly minimized by the anatomi-

cal co-location of densely inter-connected clusters and

modules of cortical areas that typically share a specialized

information-processing function [23,24]. Modularity is biologi-

cally cost-saving: but if the network is not to decompose into

isolated modules, and therefore to lose capacity for global

integration, there must be some connections between nodes in

different modules [23]. And these inter-modular edges will

generally be longer distance (higher wiring cost) than the

shorter distance intra-modular edges between anatomically

concentrated nodes in the same module [24,25].

On this basis, we predicted that human fMRI network

nodes with high inter-modular degree, mediating many

long-distance connections between modules, would be associ-

ated with a distinctive gene expression profile compared to the

transcriptional profile of nodes with high intra-modular

degree, mediating many short-distance connections within

the same module. To test this, we measured inter-modular

http://rstb.royalsocietypublishing.org/
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degree, intra-modular degree and connection distance, for each

of 285 regional nodes, by graph theoretical analysis of resting-

state, multi-echo echoplanar imaging data on 38 healthy young

adults. We anatomically matched the fMRI network par-

ameters at each node to detailed human brain maps

of whole-genome expression provided by the AIBS (see the

electronic supplementary material). Then, we used the multi-

variate technique of partial least squares (PLS) to identify

combinations of approximately 20 000 genes whose regional

expression profiles best predicted the fMRI network par-

ameters [26]. Finally, we used a suite of recently developed

gene enrichment algorithms to interpret the biological func-

tions of genes relatively over- or under-expressed in

association with specific network features [27–29].
.R.Soc.B
371:20150362
2. Material and methods
(a) Sample, functional magnetic resonance imaging

data and pre-processing
In total, 2500 healthy young people in the age range 14–24 years

were recruited in north London and Cambridgeshire and pro-

vided details by postal questionnaire on socio-demographics

and mental health. This primary cohort was stratified into five

contiguous age-related strata: 14–15 years inclusive, 16–17

years, 18–19 years, 20–21 years and 22–24 years. Recruitment

within each stratum was evenly balanced for sex and ethnicity.

A demographically balanced cohort (n ¼ 300) was sub-sampled

from the primary cohort for structural and functional MRI

assessments and more detailed cognitive testing. Here, we used

fMRI data from 40 participants sampled from the top two age

strata of the secondary cohort (20–24 years), with 10 men and

10 women in each of the two strata. Participants were excluded

if they were currently being treated for a psychiatric disorder

or for drug or alcohol dependence; had a current or past history

of neurological disorders including epilepsy or head injury caus-

ing loss of consciousness; had a learning disability requiring

specialist educational support and/or medical treatment; or

had a safety contraindication prohibiting MRI.

MRI scanning was conducted at the following three sites:

(i) the Wellcome Trust Centre for Neuroimaging, London, (ii) the

Wolfson Brain Imaging Centre, Cambridge, and (iii) the Medical

Research Council Cognition and Brain Sciences Unit, Cambridge.

All sites were identically operating 3 T whole-body MRI systems

(Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany;

VB17 software version) with standard 32-channel radio-frequency

(RF) receive head coil and RF body coil for transmission.

Resting-state fMRI data were acquired using a multi-echo echo-

planar imaging sequence with online reconstruction [30]: repetition

time (TR)¼ 2.42 s; GRAPPA with acceleration factor ¼ 2; flip

angle ¼ 908; matrix size¼ 64� 64� 34; FOV ¼ 240 � 240 mm;

in-plane resolution ¼ 3.75� 3.75 mm; slice thickness¼ 3.75 mm

with 10% gap, sequential slice acquisition, 34 oblique slices;

bandwidth ¼ 2368 Hz/pixel; echo times (TE) ¼ 13, 30.55 and

48.1 ms. For pre-processing of these data, we used multi-echo inde-

pendent component analysis (ME-ICA) [3,30] to identify the

sources of variance in the fMRI time series that scaled linearly

with TE and could therefore be confidently regarded as represent-

ing BOLD contrast. Other sources of fMRI variance, such as head

movement, which were not BOLD dependent, and therefore did

not scale with TE, were identified by ME-ICA and discarded. The

retained independent components, representing BOLD contrast,

were optimally recomposed to generate a broadband denoised

fMRI time series at each voxel [3]. We used a wavelet transform

for estimating functional connectivity in these data because of

prior evidence indicating that cortical fMRI time series often have
slowly decaying positive autocorrelation [31,32]. This approach

also allowed us to focus on functional associations between brain

regions based on a physiologically relevant frequency range or

wavelet scale. We used a discrete wavelet transform (Daubechies

4 wavelet), resulting in a BOLD signal oscillating in the frequency

range 0.025–0.111 Hz (scales 2 and 3) [33].

Pre-processing and ME-ICA was performed with the AFNI

tool meica.py [3] which we slightly modified for a more stable

ICA and more conservative component selection. The forked

release is based on the original ME-ICA V2.5 and was released on

GitHub (doi://10.5281/zenodo.50505). Wavelet decompositions

were implemented using an open source, R-based software library:

brainwaver v. 1.6, which is freely downloadable at: https://cran.r-

project.org/web/packages/brainwaver/index.html

(b) Functional magnetic resonance imaging
connectivity and network analysis

To define regional nodes or parcels of cortex for network analysis,

we used a backtracking algorithm [34] to parcellate the Freesurfer

average (fsaverage) brain, subdividing regions of the Desikan–

Killiany surface-based anatomical atlas of the human brain [35]

into 308 smaller contiguous regions (nodes) with approximately

homogeneous sizes (500 mm2 on the surface). This parcellation

template image in standard space was transformed to the native

space of each individual’s fMRI dataset and regional BOLD time

series were estimated by averaging the time series over all voxels

in each of the 308 parcels. Some regions (particularly near the front-

al and temporal poles) were excluded because of low regional

mean signal in at least one subject, and two participants were

excluded because of poor co-registration between functional and

anatomical data. Two further regions were later excluded from

the analysis due to outlier values of the corresponding gene

expression data (see the electronic supplementary material,

figure S1). The fMRI dataset available for analysis thus consisted

of 38 individual matrices of regional mean BOLD oscillations at

each of 285 cortical regions.

Functional connectivity was estimated by the pairwise wavelet

correlations between each possible pair of regional mean fMRI time

series. The resulting functional connectivity or association matrices

were thresholded to construct binary (undirected and unweighted)

adjacency matrices or graphs [36]. We used the minimum span-

ning tree to ensure that the graphs were node-connected even at

the sparsest connection density [37]. Additional edges were then

superimposed in order of decreasing inter-regional correlation to

construct networks with arbitrary connection density, in the

range 0–100% of the total number of possible pairwise connections.

We used standard network metrics to characterize the top-

ology of the fMRI network (see the electronic supplementary

material). To estimate the inter- and intra-modular degree of

each node, we first had to define the modular community struc-

ture of each network. The modularity, Q(G), of a graph is

proportional to the number of intra-modular edges compared

to the number of intra-modular edges expected in a random

graph [38]. The prototypical modules of the healthy brain func-

tional network were derived from the sample mean wavelet

correlation matrix. We used consensus modular decomposition

[39] over 100 runs of the Louvain modularity algorithm on the

10% density graph constructed from this matrix. The Louvain

algorithm parameter g defining the coarseness of the modular

partition was set at g ¼ 2, yielding eight modules. We demon-

strate in the electronic supplementary material that our key

results are robust to this parameter setting.

For each subject’s binary graph, the degree centrality of each

node, k(i), i ¼ 1,2,3 . . . 285, was calculated as the total number of

edges connecting it to the rest of the network. Total degree was

subdivided into the intra-modular degree kintra(i), i.e. the

number of edges connecting the ith node to other nodes within

http://dx.doi.org/doi://10.5281/zenodo.50505
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the same module, and the inter-modular degree kinter(i), i.e. the

number of edges connecting the ith node to nodes in other

modules. For each node, we also estimated the participation coef-

ficient, PC(i), which has been widely used as a measure of nodal

role in a modular community structure [40,41]:

PCðiÞ ¼ 1�
XM
m¼1

kiðmÞ
ki

� �2

, ð2:1Þ

where ki(m) is the number of edges between node i and all nodes

in module m, and the sum is over all M modules [42]. The PC of

the index node is therefore inversely related to its intra-modular

degree and will be close to PC ¼ 0 if it is mostly connected to

other nodes in the same module and close to PC ¼ 1 if it is

more homogeneously connected to all modules. The nodal

measures kintra(i), kinter(i) and PC(i) were estimated for each sub-

ject with respect to the prototypical modular structure estimated

for the sample as a whole. For each edge, we also estimated its

connection distance (in millimetres) as the Euclidean distance

between the linked pair of regional nodes in standard anatomical

space. Topological metrics were calculated using the Brain

Connectivity Toolbox, v. 2014-04-05 [43].
50362
(c) Microarray data and pre-processing
Microarray data for six donors (H0351.1009, H0351.1016,

H0351.1015, H0351.2002, H0351.1012 and H0351.2001) were

available from the AIBS (http://human.brain-map.org/static/

download; [19]). Five of the donors were male and one was

female; three were Caucasian, two African-American and one His-

panic; mean age ¼ 42.5 years (see the electronic supplementary

material for more information on the AIBS dataset).

We used the Maybrain package (see the electronic supplement-

ary material) to match the centroids of the regions of the fMRI

parcellation template to the closest regional gene expression pro-

file. Microarray data were averaged across all samples from all

donors in homologous regions in both hemispheres. The data

were also averaged across probes corresponding to the same

gene, excluding probes that were not matched to gene symbols

in the AIBS database. We used the Z-transformation to normalize

mean expression of each gene for variance in its expression (see

the electronic supplementary material). The final output was a

(20 737 � 285) matrix, T, of Z-scored expression values for each

of 20 737 genes estimated in 285 fMRI regions. Gene expression

data for individual genes or subsets, such as the 19 genes selec-

tively over-expressed in human supragranular cortex [10], and

the 162 genes specialized for aerobic glycolysis (AG) [44],

were available by sub-sampling the appropriate rows of this

whole-genome brain regional transcription matrix (T ).
(d) Parcellation into cytoarchitectonic classes
Each of the 308 regions in the cortical parcellation scheme was

assigned to a cytoarchitectural type according to the classifi-

cation scheme of von Economo & Koskinas [45] (figure 1 and

electronic supplementary material, figure S2). This atlas sub-

divided the cortex into five types according to the laminar

structure of the cortex and roughly corresponding to functional

cortical specializations. Briefly, regions with poor laminar differ-

entiation, particularly the primary motor cortex/precentral gyrus

are structural type 1, regions generally considered to be associ-

ation cortices are structural types 2 and 3, while secondary and

primary sensory areas are types 4 and 5, respectively. The orig-

inal classification of structural types does not discriminate

between true six-layered isocortex and mesocortex or allocortex,

which have markedly different cytoarchitectures and ontogenies

[46]. We therefore defined two additional subtypes: limbic cortex

which included the entorhinal, retrosplenial, presubicular and

cingulate cortices, and thus primarily constitutes allocortex;
and the insular cortex which contains granular, agranular and

dysgranular regions, and is therefore not readily assigned a

single structural type. Structural types were manually assigned

to cortical regions based on visual comparison with von

Economo & Koskinas’s parcellation and anatomical landmarks.

(e) Partial least squares
To explore the associations between topological centrality and

distance metrics at each node of the fMRI networks, and tran-

scription across the whole genome, we used the multivariate

technique of PLS.

PLS is an established and widely used multivariate method for

identifying associations between a set of response variables and a

set of predictor variables, especially when the number of predictor

variables exceeds the number of observations, and when the pre-

dictor variables are highly interdependent or multi-collinear

[26,47]. In this case, the (285 � 20 737) regional gene transcription

matrix T comprised the predictor variables; the (285 � 3) matrix C
comprised the response variables of intra-modular degree, inter-

modular degree and mean connection distance for each regional

node of the fMRI networks.

PLS is related to principal component analysis (PCA) and

combines a PCA-style dimensionality reduction with linear

regression. While PCA identifies the so-called principal com-

ponents in the data that best explain the variance in the

predictor variables T, PLS finds components from T (gene

expression) that have maximum covariance with the response

variables in C (fMRI network measures). The total number of

components needed to exactly fit the response C is limited

by the number of observations (in this case the number of

brain regions). The PLS components are ranked by covariance

between predictor and response variables, so the first few PLS

components (PLS1, PLS2, PLS3, etc.) will provide the optimal

low-dimensional representation of the covariance between the

higher dimensional data matrices (see the electronic supplementary

material).

We used non-parametric data resampling techniques for

inferential analysis of PLS results. We tested the goodness of fit

of low-dimensional PLS components by repeating the analysis

1000 times after shuffling the regional labels assigned to each

set of three response variables. We note that the dependency

between spatially neighbouring regions that exists in both fMRI

and transcriptomic datasets may lead to an over-estimation of

significance by this simple, spatially naive null model. In the

electronic supplementary material, figure S4, we confirm that

the PLS results were robust to the use of more sophisticated

null models that account for spatial correlations expected

due to homogeneous tissue type within anatomical regions.

We used bootstrapping (resampling with replacement of the

285 cortical regions) to estimate the error on the PLS weights

estimated for each gene. The ratio of the weight of each gene

to its bootstrap standard error was used to rank the genes

according to their contribution to each PLS component. The list

of ranked genes for the first three PLS components can be

found in the electronic supplementary material: Vertes_PLS_

GOenrichment.xlsx

( f ) Gene ontology and enrichment analysis
We used gene ontology (GO) tools for enrichment analysis of the

ranked gene lists defined by the first three PLS components (Gor-

illa: http://cbl-gorilla.cs.technion.ac.il, version 30 January 2016)

[27,28]. The GO terms are based on a large online database of

gene annotations corresponding to ‘biological processes’ and

‘cellular components’ [48]. Enrichment analysis identified GO

terms that were over-represented among the most positively

and most negatively weighted genes on each PLS component.

We further filtered the resulting list of enriched GO terms

http://human.brain-map.org/static/download
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Figure 1. Complex topology of fMRI brain networks. (a) Network representation of brain functional connectivity. Colours represent eight distinct modules; the size of
nodes is proportional to their degree; only the top 4% strongest connections are shown for clarity. (b) Degree distribution of the brain functional networks, pooled
across subjects. (c) Normalized rich club curves of each participant’s brain functional network. (d ) Boxplots showing key network measures for the brain functional
networks (in red) compared to randomized networks with preserved degree distribution (grey). From left to right, the metrics shown are: modularity Q, clustering C,
path length L, and small-worldness s. (e) Cortical surface map colour-coding brain regions according to fMRI modules, as in panel (a). The legend describes the
approximate anatomical location of each module and defines the acronym with which each module (mod) is represented in figures 2 and 3. ( f ) Cortical surface map
colour-coding brain regions according to von Economo & Koskinas’s cytoarchitectonic classification [45]. Class 1 ( purple): granular cortex, primary motor cortex.
Classes 2 and 3 (blue and green): association cortex. Class 4 (orange): dysgranular cortex, primary/secondary sensory cortex. Class 5 (yellow): agranular cortex,
primary sensory cortex. Class 6 (cyan): limbic regions, allocortex. Class 7 (magenta): insular cortex. The legend also defines the acronym with which each cytoarch-
itectonic class is represented in figures 2 and 3.
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(i) by retaining only terms that were significantly enriched after

controlling the p-value for significance of each term so that the

false discovery rate (FDR) over all GO terms was PFDR , 0.001

and (ii) for visualization purposes we also discarded enriched

GO terms for biological processes associated with over 2500
genes, which typically correspond to general ontological terms

near the top of the hierarchy, such as ‘cellular process’ or ‘organ-

elle organization’. All excluded terms are still listed and

highlighted in grey in the electronic supplementary material:

Vertes_PLS_GOenrichment.xlsx.

http://rstb.royalsocietypublishing.org/
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Figure 2. Anatomical and cytoarchitectonic patterning of fMRI network hubs. (a) Binary graphs constructed at 4% connection density (for clarity) showing a sagittal
view of the brain. Nodal size was scaled by five nodal metrics: from top to bottom, total degree (k), intra-modular degree (kintra), inter-modular degree (kinter),
participation coefficient (PC), and average nodal distance (d ). Nodes are coloured by module, as defined in figure 1. Nodes with high PC (.0.5) are highlighted by
square markers with a magenta outline. (b) Axial view of the brain networks in panel (a). (c) Boxplots showing the distribution of nodal distance and nodal
topological metrics in each of the eight modules. Modules are colour-coded and named according to the scheme shown in figure 1. (d ) Boxplots showing
the distribution of nodal distance and nodal topological metrics in each of the seven cytoarchitectonic classes as defined by von Economo & Koskinas’s [45]
classification of cortical laminar patterns. Cytoarchitectonic classes are numbered and colour-coded according to the scheme in figure 1.
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To visualize the results of whole-genome enrichment analysis,

we used the online tool REViGO (http://revigo.irb.hr) to summar-

ize the list of significant GO terms by selecting representative

subsets of the terms using a simple clustering algorithm that relies

on measures of semantic similarity between terms [29]. For example,

the terms ‘respiratory electron transport chain’, ‘electron transport

chain’ and ‘mitochondrial electron transport, NADH to ubiquinone’

will be clustered together by the algorithm and only some of the

terms will be retained. To further facilitate interpretation, REViGO

was used to plot the remaining significant GO terms in semantic

space, where semantically similar terms are represented close to

one another. Markers are scaled according to the log10 of the

p-value for the significance of each term. Clusters in these plots there-

fore represent families of related GO terms, and the GO term
associated with the largest marker in each cluster can be annotated

to label the whole cluster in a representative manner.

For the more hypothetically driven enrichment analysis of gene

lists associated a priori with (i) supragranular layers of human

cortex (human supragranular enriched, HSE) [10] or (ii) aerobic

glycolysis (AG) [44] we also used permutation testing for non-para-

metric inference. We estimated the PLS weightings of 1000

randomly drawn sets of 19 genes and compared the PLS weights

of the HSE genes to this permutation distribution to estimate the

probability of HSE gene enrichment of each PLS component

under the null hypothesis. We note that this permutation procedure

does not take into account the correlation between HSE genes or

their average expression values or their exclusively cortical origin

in sampling the null distribution. More sophisticated null models

http://revigo.irb.hr
http://revigo.irb.hr
http://rstb.royalsocietypublishing.org/
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for permutation testing that controlled for these or other character-

istics of candidate genes will be important to develop for

computational inference in future studies.
3. Results
(a) Human functional magnetic resonance imaging

network parameters: spatial patterning and
cytoarchitectonic differentiation

We constructed graphs of the human brain functional network

by binary thresholding of the pairwise inter-regional wavelet

correlation (functional connectivity) matrices estimated for

n ¼ 38 healthy volunteers aged 20–24 years. We focus most

attention on the characteristics of the graph with 10%
connection density. This fMRI network had complex topologi-

cal properties consistent with many prior studies [13],

including a broad scale degree distribution, a rich club, a com-

munity structure comprising eight modules, high clustering,

short path length and small-worldness (see figure 1a–d and

electronic supplementary material for definitions of these

widely used network metrics).

At each node in the fMRI network, we estimated four topo-

logical parameters: total degree (k), inter-modular degree (kinter),

intra-modular degree (kintra) and PC. We note that definition of

kinter, kintra and PC will depend on both the network connection

density and the resolution parameter, g, defining the coarseness

of the modular partition. In coarser decompositions with fewer

modules, for example, fewer edges will be classed as inter-

modular and the inter-modular degree distribution will shift

to the left. We show in the electronic supplementary material

http://rstb.royalsocietypublishing.org/


Table 1. Correlations between nodal fMRI variables and spatial coordinates. Matrix showing the correlations (Pearson’s r) between MRI variables of interest as well
as spatial coordinates. The y-coordinate corresponds to the rostro-caudal axis and the z-coordinate corresponds to the dorsoventral axis. We use the absolute value
of the x-coordinate (corresponding to the medio-lateral axis) due to the symmetry between brain hemispheres. Significant correlations and anti-correlations are
highlighted in italic and bold, respectively; p , 0.05. k ¼ total degree, PC ¼ participation coefficient, kintra ¼ intra-modular degree, kinter ¼ inter-modular
degree, d ¼ mean Euclidean distance of edges connecting each node to the network.

k PC kintra kinter d jxj y z

k 1.00 0.05 0.83 0.63 20.09 20.11 20.49 0.23

PC 0.05 1.00 20.45 0.73 0.27 0.20 0.05 0.51

kintra 0.83 20.45 1.00 0.09 20.24 20.19 20.50 20.05

kinter 0.63 0.73 0.09 1.00 0.18 0.07 20.19 0.48

d 20.09 0.27 20.24 0.18 1.00 0.81 0.16 20.06

jxj 20.11 0.20 20.19 0.07 0.81 1.00 0.00 20.19

y 20.49 0.05 20.50 20.19 0.16 0.00 1.00 20.09

z 0.23 0.51 20.05 0.48 20.06 20.19 20.09 1.00
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that similar results were obtained with a coarser decomposition

defining only four modules, as well as with a range of thresholds

on the functional connectivity matrix, yielding networks with

connection densities in the range 10–30%. For each node, we

also estimated four spatial parameters: the connection distance

(mean Euclidean distance of nodal edges) and the three-

dimensional (x, y, z) coordinates of each node’s location in

anatomical space (electronic supplementary material, table S1).

The topological parameters were correlated with each other

by construction: total degree, k ¼ kinter þ kintra, was positively

correlated with both inter-modular degree kinter and intra-

modular degree kintra; participation coefficient PC � 1/kintra was

positively correlated with inter-modular degree and negatively

correlated with intra-modular degree. The spatial parameter of

connection distance was positively correlated with inter-modular

degree and PC, but negatively correlated with intra-modular

degree (electronic supplementary material, table S1).

The three-dimensional location of nodes was correlated

with their topological properties (table 1): intra-modular

degree was negatively correlated with y location, meaning

that intra-modular hubs were concentrated in posterior cortical

regions; whereas inter-modular degree and PC were positively

correlated with z location, meaning that inter-modular hubs

were concentrated in superior cortical regions. The spatial pat-

terning of these parameters can also be represented by

anatomical maps of nodal topology and connection distance

(figure 2a). Hubs defined by high intra-modular degree were

concentrated in occipital and somatosensorimotor cortex, or

spatially patterned on the rostro-caudal axis; whereas hubs

defined by high inter-modular degree and PC were concen-

trated in somatosensorimotor and superior parietal cortex, or

spatially patterned on the dorsoventral axis. Nodes with

greater connection distance were concentrated in lateral

cortex, reflecting the existence of long-distance, inter-hemi-

spheric connections between bilaterally homologous cortical

areas (figure 2a–c).

Following prior work relating local cytoarchitectonic

characteristics to nodal properties of human structural connect-

omes [49], here we explored the relationships between cortical

histology and fMRI network parameters. To this end, we

mapped each regional node of the fMRI network to an existing

atlas of cytoarchitectonic areas classified according to the

scheme of von Economo & Koskinas (figure 1f, §2d) [45].
Both intra- and inter-modular degree were significantly differ-

ent between cytoarchitectonic classes (kintra: F6,278 ¼ 22.7, p ,

0.001; kinter: F6,278 ¼ 11.1, p , 0.001). Intra-modular degree

was highest in primary and secondary sensory cortex and

lowest in association cortex and limbic regions. Inter-modular

degree was highest in primary motor cortex and lowest in

secondary sensory cortex. Because both total degree and PC

were constructed from intra- and inter-degree, they also

showed significant differences between cytoarchitectonic

classes (k: F6,278 ¼ 13.6, p , 0.001; PC: F6,278 ¼ 22.7, p , 0.001;

figure 2d ), with similar patterning to kintra and kinter, respect-

ively. The average nodal connection distance was also

significantly different between cytoarchitectonic classes

(repeated measures ANOVA for main effect of class: F6,278 ¼

21.3, p , 0.001; figure 2d). The longest connection distances

were in association cortex, whereas the shortest distances

were in secondary sensory cortex and limbic regions

(figure 1). We note that the association between inter-modular

degree (as well as PC) and cytoarchitecture depended on

the coarseness of the modular partition (see the electronic

supplementary material).
(b) Partial least-squares analysis of functional magnetic
resonance imaging network parameters and gene
expression

To investigate how this spatially patterned set of fMRI network

nodal topology (kintra and kinter) and distance parameters was

related to local expression of approximately 20 000 genes, we

co-registered the fMRI regional nodes in the same anatomical

space as the AIBS dataset of human brain gene expression.

For each fMRI node, we then estimated the mean regional

expression of each of 20 737 genes (§2e). To explore a low-

dimensional representation of the multivariate relationships

between the matrix of response variables (fMRI network

nodal parameters) and the matrix of predictor variables

(gene expression profiles) we used PLS (§2e).

The first three PLS components accounted for about 37%

of the total variance in nodal metrics and this measure of the

goodness of fit was statistically significant ( p , 0.001)

for a spatially naive permutation test (see the electronic

http://rstb.royalsocietypublishing.org/


Table 2. Correlations between gene expression profiles and fMRI network topology and geometry. The first three partial least-squares components (PLS1, PLS2
and PLS3) were differently correlated (Pearson’s r) with: total degree (k), participation coefficient (PC), intra-modular degree (kintra), inter-modular degree
(kinter,), average nodal distance (d) and spatial locations in three dimensions (jxj, y, z). Significant correlations and anti-correlations are highlighted in italic and
bold, respectively; p , 0.05.

k PC kintra kinter d jxj y z

PLS1 0.50 20.26 0.59 0.07 20.34 20.19 20.66 0.10

PLS2 0.26 0.45 20.01 0.48 0.28 0.23 20.15 0.53

PLS3 0.11 20.05 0.10 0.06 20.55 20.67 0.17 0.15
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supplementary material for additional data and for spatially

constrained permutation tests).

The first PLS component (PLS1) was positively correlated

with intra-modular degree and not significantly predictive

of inter-modular degree (table 2). This means that genes

positively weighted on this component were relatively over-

expressed in intra-modular hubs (figures 2 and 3). Given the

pattern of correlations already observed between the fMRI net-

work parameters (table 1), it is not surprising that PLS1 was

also negatively correlated with connection distance, meaning

that positively weighted genes were relatively under-expressed

in nodes with many long-distance connections. We also note

that PLS1 results were coherent with nodal parameters (PC,

x, y, z) that were not explicitly included in the PLS model but

were known to be significantly correlated with intra-modular

degree (table 1). Thus, PLS1 scores were negatively correlated

with the nodal PC and were spatially patterned on the y-axis

(rostro-caudal), with positive PLS1 scores located in posterior

cortical nodes (figure 3a,c). Nodal PLS1 scores were also signifi-

cantly different between cytoarchitectonic classes (F6,278 ¼

14.4, p , 0.001; figure 3e) with positive PLS1 scores located in

primary and secondary sensory cortical areas.

By contrast, the second PLS component (PLS2) was predict-

ive of inter-modular degree and not significantly predictive

of intra-modular degree (table 2). This means that genes

positively weighted on this component were relatively

over-expressed in inter-modular hubs (figures 2 and 3). Con-

vergently, PLS2 was positively correlated with connection

distance, meaning that positively weighted genes were rela-

tively over-expressed in nodes with many long-distance

connections. PLS2 results were coherent with nodal parameters

(PC, x, y, z) that were not explicitly included in the PLS model

but were known to be significantly correlated with inter-mod-

ular degree (table 1). Thus, PLS2 scores were positively

correlated with nodal PC and spatially patterned on the z (dor-

soventral) and x (medio-lateral) axes, with high PLS2 scores

located in superior and lateral cortex (figure 3b,d). Nodal

PLS2 scores were also significantly different between cytoarch-

itectonic classes (F6,278 ¼ 19.4, p , 0.001; figure 2f ) with the

highest PLS2 scores located in primary motor and primary sen-

sory cortical areas and the lowest scores located in secondary

sensory cortex. We note that the association between PLS2

and cytoarchitecture depended on the coarseness of the

modular partition because coarser partitions by definition

lead to longer inter-modular connections (see the electronic

supplementary material).

In short, the first two PLS components defined independ-

ent gene expression profiles that were specifically associated

with (high) intra-modular degree and (short) connection dis-

tance (PLS1) or with (high) inter-modular degree and (long)
connection distance (PLS2). The third PLS component defined

an independent gene expression profile that was not signifi-

cantly predictive of inter- or intra-modular degree (or PC),

but was significantly predictive of connection distance, and

was spatially patterned in all three dimensions (see the elec-

tronic supplementary material). Since we were hypothetically

motivated to explore the relationships between fMRI network

topology and gene expression, PLS3 was not as relevant as

PLS1 or PLS2. The fourth and subsequent PLS components

inevitably explained progressively smaller proportions of

covariance between network metrics and gene expression,

and will be less robust to noise. We therefore focus further

attention only on the first two components of the PLS solution.
(c) Enrichment analysis of gene expression profiles
(PLS1 and PLS2) associated with functional
magnetic resonance imaging network topology and
connection distance

Given the statistical independence of PLS components, these

results indicate that there are specific or distinct gene

http://rstb.royalsocietypublishing.org/
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expression profiles associated with different nodal roles in

fMRI networks. We used enrichment analysis to resolve the

differences in transcriptional predictors of nodal topology

and connection distance in more detail. We found that PLS1

and PLS2 components were significantly enriched for distinct

biological functions.

Genes significantly over-expressed in association with

high intra-modular degree (positively weighted on PLS1)

were significantly enriched (PFDR , 0.001) for GO terms

related to transcriptional regulation in the nucleus. By con-

trast, genes significantly over-expressed in association with

high inter-modular degree and longer connection distance

(positively weighted on PLS2) were significantly enriched

(PFDR , 0.001) for GO terms related to oxidative metabolism

and mitochondria (figure 4); see the electronic supple-

mentary material Vertes2016_PLS_GOenrichment.xlsx and

figure S5 for full GO enrichment results. We additionally

show in the electronic supplementary material that these

results were robust to a range of parameter settings in con-

structing fMRI networks and to the use of alternative PLS

response variables. We also show that the key results were

preserved in sensitivity analyses across AIBS post-mortem

brain donors.

As well as these hypothesis-free analyses that tested for

enrichment of all GO terms, we also conducted two more

hypothesis-driven enrichment analyses: (i) to test each PLS

component for over-expression of a set of genes anatomically

specific to supragranular layers of human cortex (human

supragranular enriched, HSE [10]) and (ii) to test each PLS

component for over-expression of a set of genes functionally

specialized for aerobic glycolysis [44].

It has been shown [10] that the transcriptional profile of

19 HSE genes over-expressed specifically in supragranular

layers of human cortex (but not mouse cortex) was different

between brain regions with predominantly local connectivity

compared to association cortical regions with a higher pro-

portion of long-range connectivity. This motivated us to

test the hypothesis that HSE genes would be differentially

enriched in the first two PLS components, with greater

HSE enrichment expected for PLS2 because of its specific

association with long-distance and inter-modular con-

nections in these data. As predicted, we found that

HSE genes were significantly enriched among the over-

expressed genes positively weighted on PLS2 (permutation

test, p , 0.001); but HSE genes were not significantly enric-

hed among the over-expressed genes positively weighted

on PLS1.

Separately, it has been shown [44] that a set of 116 genes

were functionally specialized for AG in the brain. This corres-

ponds to non-oxidative metabolism of glucose despite the

presence of oxygen. Because PLS2 was specifically enriched

for oxidative metabolism genes, we were motivated to inves-

tigate whether AG genes would also be enriched in the

second PLS component. We found that AG genes were not

over-represented among the genes positively weighted on

PLS2 (permutation test, p . 0.05). We note, however, that

this result depended on the coarseness of the modular par-

tition in a predictable manner, with coarser partitions by

definition constraining inter-modular links to span longer dis-

tances. As connection distance was weighted more strongly on

PLS2, AG genes were correspondingly more enriched in

PLS2 in the analysis of the coarser four-module community

structure (see the electronic supplementary material).
4. Discussion
The biological validation of human fMRI networks has been

challenging, not least because there are fundamental ques-

tions outstanding about the biological sources of the BOLD

signal itself. We cannot yet securely reduce the basic fMRI

observation of inter-regional correlation between pairs

of functionally connected BOLD time series to a mechanistic

explanation in terms of cellular processes, neuronal physi-

ology, neurovascular coupling or anatomical connectivity.

This has made it difficult to test (refute or validate) econom-

ical models of human fMRI networks by the classical

reductionist logic of explanatory mechanistic coupling

between cellular processes, at a micro scale, and network

topology metrics, at a macro scale (table 2).

Most of the previous evidence for biological validity of

human MRI connectomes has therefore rested on analogical

rather than reductionist logic. Informative analogies make

comparisons between a poorly understood system and a

more certainly or completely understood system of the same

type. There have been several studies recently supporting

the value of this approach for comparative connectomics—

comparing the topology of human neuroimaging networks

to the topology of more biologically specified nervous systems

[50]. For example, MRI networks generally comprise a rich club

of densely inter-connected high-degree hubs. Human brain

network-rich clubs are topologically integrative by mediating

many of the shortest paths between pairs of more peripheral

nodes in different modules [51]. Rich clubs of fMRI co-

activation networks are associated with diverse cognitive

functions including higher order executive tasks [16], and are

biologically expensive in terms of wiring cost [52,53]. These

MRI observations are suggestive of an economical trade-off,

between minimizing biological cost and maximizing topologi-

cal value, and have been affirmed by demonstration of

analogous findings in more certainly known nervous systems.

In particular, the anatomical network of axonal projections and

synapses between the 302 neurons of Caenorhabditis elegans [53]

includes a topologically integrative rich club that is expensively

wired and comprises command interneurons known to be

functionally important for coordinated movement and adapt-

ive behaviours [54]. Indeed, high-cost, high-value rich clubs

have now been demonstrated across a wide range of scales,

species, experimental techniques for network mapping, and

computational models of network generation [55–58]. It

seems plausible, on this basis, that the topological properties

of human fMRI networks are not idiosyncratic epiphenomena

but are instead representative of a general class of brain net-

works that have been naturally selected by the same

competitive pressures for relatively low biological cost and

high topological integration [18].

Here, we have provided further evidence in support of this

economical model of brain network organization by a more

reductionist approach. We spatially co-registered fMRI net-

work parameters with whole-genome expression data on

anatomically corresponding brain regions. We used the multi-

variate method of PLS to define the gene expression profiles

that were optimally predictive of fMRI network parameters.

We found that the first two PLS components were specifically

predictive of distinct nodal network phenotypes: PLS1 was

predictive of high intra-modular degree and short connection

distance; whereas PLS2 was predictive of high inter-modular

degree and long connection distance (PLS3 was not predictive

http://rstb.royalsocietypublishing.org/
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of nodal topology; table 2). The genes most positively weighted

on PLS2, and therefore relatively over-expressed in brain

regions mediating many long-distance inter-modular connec-

tions, were enriched for oxidative metabolism and

mitochondria. This result is clearly convergent with the expec-

tation that integrative network features should be more

metabolically expensive. It has previously been shown that

hubs of human brain networks have greater rates of glucose

metabolism and blood flow [59,60]; these observations have

been regarded as consistent with prior knowledge of the

brain’s metabolic budget [61]. Synaptic transmission and

maintenance of resting membrane potentials represent major

demands on the brain’s supply of ATP, generated mainly by

mitochondrial metabolism of glucose [62]. Our data further

suggest that hubs mediating more long-distance connections

between modules face greater metabolic demands than hubs

mediating more short-distance connections within modules.

This may be because long-distance, inter-modular hubs must

energetically restore and maintain electrical potentials across

a greater surface area of axonal membrane. These results

from human fMRI network analysis are analogous to recent

results from tract-tracing and gene expression data in the

mouse indicating that genes regulating oxidative metabolism

were strongly co-expressed in pairs of brain regions that

included a hub [63].

It was also notable that the genes associated with inter-mod-

ular degree and long distance (positively weighted on PLS2 in

these data) were enriched for a set of 19 genes, expressed specifi-

cally in human supragranular cortex, that may have been

necessary for the characteristically human evolution of cortico-

cortical connectivity and associative cognitive processes [10].

The HSE genes were not significantly enriched in the genes

associated with intra-modular degree and short distance (posi-

tively weighted on PLS1). Interestingly, the positively weighted

genes on PLS2 were not significantly enriched for 116 genes

specialized for AG, suggesting that the energetic resources of

long-distance, inter-modular hubs are largely provided by oxi-

dative metabolism rather than AG. However, in assessing these

and other enrichment results, it is important to bear in mind

that they are based on a small experimental sample (n¼ 6 post-

mortem adult brains) and that individual differences in gene

expression can have a marked effect on group statistics (see the

electronic supplementary material for sensitivity analysis).

Interpreting the relationship between gene expression

and network topology is potentially complicated by the spatial

patterning of both transcriptional and topological phenotypes.

Regional co-expression, or sharing of the same gene expression

profile between a pair of brain regions, is related to the spatial

distance between them: regions that are closer to each other

will have greater genomic co-expression. Functional connect-

ivity between regions is also conditional on distance: regions

that are closer to each other are more likely to have correlated

fMRI time series and so to form clusters and modules of locally

inter-connected nodes in fMRI brain graphs. The question arises:

does an association between gene co-expression and fMRI con-

nectivity trivially reflect the confounding effect of distance?

Previous studies have been concerned that topological clusters

and modules of nodes may have transcriptional profiles in

common simply because they are spatial neighbours, or mem-

bers of the same cytoarchitectonic class [7]. For example, in

several studies of transcriptional similarity and anatomical

connectivity in the rodent brain, a statistical correction for

the distance of edges was used to show that greater genomic
co-expression between connected nodes was not entirely

attributable to the shorter distance between them [63–68].

Our analysis of network topology has focused on nodes

rather than edges and we have shown that different nodal

properties have different spatial patterning, e.g. intra-modular

degree was correlated with nodal location on the y-axis,

whereas inter-modular degree was correlated with nodal

location on the z-axis and connection distance was correlated

with nodal location on the x-axis. PLS analysis enabled us sim-

ultaneously to explore the relationships between all three

network parameters and the whole genome. We found two dis-

tinct components of gene expression that were specifically

related to different aspects of nodal topology and connection

distance, and had different spatial patterning as well as differ-

ential enrichment for biological processes. This pattern of

results is not obviously attributable to a homogeneous and

spatially isotropic effect of distance as a confounding factor

of both genomic co-expression and functional connectivity

[63,64,68]. Instead, these results suggest to us that multiple

dimensions of spatially patterned gene expression define func-

tionally connected systems of cytoarchitectonically similar

nodes. By this account, the intertwined patterning of spatial

location, nodal topology and gene expression is in fact the phe-

notype of interest and it would therefore not be appropriate to

correct the data for spatial location prior to analysis. This is not

to say that potentially problematic issues related to spatial

location were entirely neglected in our analysis. For statistical

inference on PLS results by permutation testing, for example,

the significance of association between nodal topology and

gene expression defined by the first two PLS components

could be artefactually inflated by randomly permuting the

regional network metrics regardless of their spatial proximity.

This point is related to the more general issue of exchangeability

in the proper design of permutation tests. If units of observation

(regional nodes) are not expected to be independent of each

other, e.g. due to their close proximity in space or time, they

are not exchangeable under the null hypothesis and a permu-

tation test based on the random permutation of individual

units will not be valid. We addressed this technical concern

with a block permutation algorithm that randomly permuted

spatially contiguous subsets of regional nodes, rather than

permuting each node individually (see the electronic supple-

mentary material for details). This methodological refinement

did not materially affect the statistical robustness of our findings

although it will be important to investigate more sophisticated

permutation testing methods in future.

There are a number of theoretical and methodological

limitations to this work. First, the results reported here are

correlational, not causative. More generally, there remains

an explanatory gap in determining whether and how these

specific gene profiles support short-range intra-modular con-

nectivity (PLS1) or long-range inter-modular connectivity

(PLS2). Second, the matching between fMRI and transcrip-

tional data is imperfect as the transcriptional data are based

on six human brains (mean age ¼ 42.5 years) sampled at

approximately 500 locations in each hemisphere, whereas

the fMRI data are recorded from 38 healthy young adults

(mean age ¼ 22 years) sampled at 308 locations across the

cerebral cortex. Third, the interpretability of enrichment ana-

lyses based on these microarray data is hampered by the fact

that expression was not measured separately in different cell

types. Up- or down-regulation of a gene may therefore

equally represent variations in the density of certain cell

http://rstb.royalsocietypublishing.org/
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types enriched for that gene or variation of expression levels

of the gene within a cell type. Fourth, we approximated the

distance between connected nodes by the Euclidean (straight

line) distance, which is anatomically unrealistic, especially

for inter-hemispheric connections between posterior parietal

and anterior prefrontal cortex which follow a nonlinear

trajectory constrained by the contours of the corpus callosum.

In addition, our nodal measure of connection distance

averaged the distance of all edges, whereas it would be

informative in future studies to distinguish between the

nodal distance of intra-hemispheric and inter-hemispheric

or trans-callosal connections.

Nonetheless, it is encouraging to see that reductionist

strategies, linking macro network properties measured

in human fMRI to the underlying micro organization of cor-

tical cytoarchitectonics and gene expression, are increasingly

tractable and informative. The fMRI/mRNA results reported

here have provided mechanistic support for the economic

model that highly integrative network nodes, mediating

many long-distance connections between modules, are

metabolically expensive.
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Ersche KD, Suckling J, Bullmore ET. 2014 A wavelet
method for modeling and despiking motion
artifacts from resting-state fMRI time series.
NeuroImage 95, 287 – 304. (doi:10.1016/j.
neuroimage.2014.03.012)

5. Raichle ME, Snyder AZ. 2007 A default mode of
brain function: a brief history of an evolving idea.
NeuroImage 37, 1083 – 1090. (doi:10.1016/j.
neuroimage.2007.02.041)

6. Greicius MD, Srivastava G, Reiss AL, Menon V. 2004
Default-mode network activity distinguishes
Alzheimer’s disease from healthy aging: evidence
from functional MRI. Proc. Natl Acad. Sci. USA 101,
4637 – 4642. (doi:10.1073/pnas.0308627101)

7. Hawrylycz M et al. 2015 Canonical genetic
signatures of the adult human brain. Nat. Neurosci.
18, 1832 – 1844. (doi:10.1038/nn.4171)

8. Wang G-Z et al. 2015 Correspondence between resting-
state activity and brain gene expression. Neuron 88,
659 – 666. (doi:10.1016/j.neuron.2015.10.022)

9. Richiardi J et al. 2015 Correlated gene expression
supports synchronous activity in brain networks.
Science 348, 1241 – 1244. (doi:10.1126/science.
1255905)
10. Krienen FM, Yeo BTY, Ge T, Buckner RL, Sherwood
CC. 2016 Transcriptional profiles of supragranular-
enriched genes associate with corticocortical
network architecture in the human brain. Proc. Natl
Acad. Sci. USA 113, E469 – E478. (doi:10.1073/pnas.
1510903113)

11. Raichle ME. 2010 Two views of brain function.
Trends Cogn. Sci. 14, 180 – 190. (doi:10.1016/j.tics.
2010.01.008)

12. Salvador R et al. 2005 Neurophysiological
architecture of functional magnetic resonance
images of human brain. Cereb. Cortex 15,
1332 – 1342. (doi:10.1093/cercor/bhi016)

13. Achard S, Salvador R, Whitcher B, Suckling J,
Bullmore E. 2006 A resilient, low-frequency, small-
world human brain functional network with highly
connected association cortical hubs. J. Neurosci. 26,
63 – 72. (doi:10.1523/JNEUROSCI.3874-05.2006)

14. Damoiseaux JS, Rombouts SARB, Barkhof F,
Scheltens P, Stam CJ, Smith SM, Beckmann CF. 2006
Consistent resting-state networks across healthy
subjects. Proc. Natl Acad. Sci. USA 103, 13 848 –
13 853. (doi:10.1073/pnas.0601417103)

15. Fornito A et al. 2011 Genetic influences on cost-
efficient organization of human cortical functional
networks. J. Neurosci. 31, 3261 – 3270. (doi:10.
1523/JNEUROSCI.4858-10.2011)

16. Crossley NA, Mechelli A, Vertes PE, Winton-Brown
TT, Patel AX, Ginestet CE, McGuire P, Bullmore ET.
2013 Cognitive relevance of the community
structure of the human brain functional coactivation
network. Proc. Natl Acad. Sci. USA 110, 11 583 –
11 588. (doi:10.1073/pnas.1220826110)

17. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT,
McGuire P, Bullmore ET. 2014 The hubs of the
human connectome are generally implicated in the
anatomy of brain disorders. Brain 137, 2382 – 2395.
(doi:10.1093/brain/awu132)

18. Bullmore E, Sporns O. 2012 The economy of
brain network organization. Nat. Rev. Neurosci. 13,
336 – 349.
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