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Abstract

The retina confers upon us the gift of vision, enabling us to perceive the world in a manner unparalleled by any other tissue.
Experimental and clinical studies have provided great insight into the physiology and biochemistry of the retina; however, there
are questions which cannot be answered using these methods alone. Mathematical and computational techniques can provide
complementary insight into this inherently complex and nonlinear system. They allow us to characterise and predict the behaviour
of the retina, as well as to test hypotheses which are experimentally intractable. In this review, we survey some of the key theoretical
models of the retina in the healthy, developmental and diseased states. The main insights derived from each of these modelling
studies are highlighted, as are model predictions which have yet to be tested, and data which need to be gathered to inform future
modelling work. Possible directions for future research are also discussed.

Whilst the present modelling studies have achieved great success in unravelling the workings of the retina, they have yet
to achieve their full potential. For this to happen, greater involvement with the modelling community is required, and stronger
collaborations forged between experimentalists, clinicians and theoreticians. It is hoped that, in addition to bringing the fruits
of current modelling studies to the attention of the ophthalmological community, this review will encourage many such future
collaborations.
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1. Introduction19

The retina is a complex and highly structured tissue. Cover-20

ing the inner surface of the back of the eye, it captures incident21

light, generating electrochemical signals, which, after some ini-22

tial processing, are transmitted to the brain via the optic nerve,23

giving rise to visual perception. As such, it is arguably the most24

important means by which we gain information about the world25

around us.26

The last two decades have seen a rapid increase in the use27

of mathematical and computational modelling techniques in the28

biological sciences, due, in part, to an increase in computational29

resources. These methods have been applied to a plethora of30

systems, across a range of spatial and temporal scales, from the31
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ecological, through to the molecular scale and from the evolu-32

tionary timescale to the rapid firing of neurons [59, 60, 87, 88].33

As a consequence, a wealth of insights have been generated34

that would have been difficult, and in many cases impossible,35

to achieve through the use of experimental or diagnostic tech-36

niques alone.37

The revolution in mathematical and computational biology38

has not left eye and retinal research untouched, with a host39

of models exploring the biomechanics of the eye [14, 38, 96],40

glaucoma, flow within the aqueous and vitreous humours [7,41

102, 108] and the dynamics of the tear film [11, 12, 61]. A num-42

ber of models of the retina have also been developed, though43

modelling in this area has been less extensive than that devoted44

to other aspects of the eye. The purpose of this review is to45

highlight insights that have been gained from theoretical stud-46

ies of the retina and to stimulate further modelling work and47

theoretical/experimental collaborations in this area.48

Whilst experimental and clinical studies can reveal many of49

the physiological and biochemical details of the retina, there are50

limits to the questions that can be answered using these tech-51

niques alone. Mathematical and computational modelling al-52

lows us to extend these horizons in at least three ways. Firstly,53

it allows us to understand and predict the behaviour of systems54

which involve nonlinearities, such as those generated by feed-55

back mechanisms in biochemical reaction networks, or those56

which arise in the mechanics of fluid flow (see Sections 3.3 and57

5.1.1 for examples). The sensitivity of the system to alterations58

in each component can be tested, and the range of qualitative59

behaviours that it may exhibit, together with the conditions un-60

der which they are realised, may be determined. Thus, by plac-61

ing a problem in a modelling framework, we gain insight into62

why a system behaves as it does, when it does. Secondly, mod-63

elling allows us to isolate mechanisms, or manipulate a system,64

in ways that may not be possible experimentally. An example65

of this is discussed in Section 5.1.3, where oxygen toxicity is66

assumed to be the only cause of photoreceptor death in retinitis67

pigmentosa. Lastly, modelling allows examination of a wider68

range of scenarios than would be possible experimentally, since69

in silico (computer simulation) studies are not subject to the70

same financial and time constraints as those performed in vivo71

or in vitro. This is seen clearly in Section 5.2, where the ef-72

fects of a range of inter-cell adhesivities on the progression of73

choroidal neovascularisation are investigated.74

How, then, can mathematical and computational models be75

integrated with experimental and clinical studies? In Figure 1,76

we sketch out the basic contours of this relationship. We begin77

with the system to be modelled and all that is known about it.78

Upon this foundation, and guided by a set of well-defined ques-79

tions, we build our theoretical model. In so doing, we make80

a series of simplifying assumptions, including only those fea-81

tures of the system which are thought to be significant and of82

relevance to the questions under consideration. The nature of83

the system and the questions we bring to it will also influence84

the type of model we develop (see Section 2 for a discussion85

of model types). Having formulated our model, we use math-86

ematical analysis and/or computational simulations to derive87

solutions. Comparing these solutions with our current knowl-88

edge, we find that the model is either successful or unsuccess-89

ful in replicating its known behaviours. If unsuccessful, the90

model is revised and fresh solutions generated; if successful,91

the model is then used to make predictions that lie outside our92

knowledge domain, in an attempt to answer our earlier ques-93

tions. These predictions may then be tested experimentally. If94

the experiments match with model predictions then we may95

have some confidence that we have answered our questions,96

whilst if they do not, then we must revise our model and com-97

pare it once more with known system behaviour, returning to98

an earlier point in the modelling/experiment cycle. Insight is99

gained at two main stages during this process. Firstly, insight is100

gained at the benchmarking stage (see Figure 1), which reveals101

whether or not the mechanisms included in the model are suffi-102

cient to replicate known behaviour. Secondly, insight is gained103

when experimental/clinical studies confirm model predictions104

(see Figure 1).105

The above description does not perfectly represent the ap-106

proach taken in all of the modelling studies presented below,107

but it serves as a basic framework. Depending upon what data108

are available, it may be difficult to benchmark the model and109

many modelling predictions are left to gather dust without ex-110

perimental confirmation. It is important to note that it is unhelp-111

ful to simply characterise models as either right or wrong, since112

any model is a simplified representation of reality and hence al-113

ways, in some sense, wrong. A more fitting way of classifying114

them would be as useful or useless. A model is useful if it repli-115

cates current data enabling us to make predictions, or if it fails116

to replicate current data, but in such a way as helps us to iden-117

tify missing or unwarranted features of the model. It is useless118

if it fails in both of these respects.119

The process of constructing a mathematical model is itself120

informative, as it forces us to think about the biological system121

in a new way, formalising and consolidating the questions being122

addressed. Whilst the primary motivation for modelling arises123

from questions raised by experimentalists, it is often not until124

this stage, or those which follow, that many of the questions that125

we wish to pose to the model occur to us; insights emerging126

unexpectedly and unlooked for, as a result of this new way of127

thinking.128

The remainder of this paper is structured as follows. In Sec-129

tion 2, we review some of the mathematical and computational130

techniques used in the modelling studies discussed in this pa-131

per. In Sections 3–5, we examine a set of retinal models from132

across a range of healthy, developmental and diseased states. In133

each case, we describe the problem, the model and the results134

generated, comparing them with experimental and clinical data.135

Testable model predictions are highlighted, as are areas where136

more experimental data are needed to inform future modelling137

studies. Lastly, in Section 6, we summarise the state of the field138

and suggest directions for future research.139

2. Mathematical and Computational Modelling140

In seeking to mathematically describe a biological system,141

we must choose between a range of model types. Whilst there142

may be no unique best model, our selection will be guided by143
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Figure 1: The experiment/modelling cycle. Mathematical and computational models are derived to answer questions arising from what is known about the biological
system. Model solutions are then compared with known data and refinements to the model are made where necessary. Once successfully benchmarked, the model
is used to make predictions which may then be tested experimentally. Further model refinements may be necessary at this stage. Agreement between modelling
predictions and experimental results gives us confidence that we have gained reliable new knowledge about the system.

the form of the system and the questions which we aim to ad-144

dress. Each type of model has advantages and disadvantages145

and will involve making simplifying assumptions. Table 1 pro-146

vides an overview of the available options. In what follows, we147

summarise some key model types. This is not intended as a148

comprehensive overview; rather, it is tailored to the modelling149

studies that are presented in the remainder of this paper.150

Phenomenological models are designed simply to fit with151

experimental data, and neglect the underlying mechanisms that152

gave rise to them, whereas mechanistic models are designed to153

describe the underlying processes, such that, if they are accu-154

rate, behaviour consistent with the data will emerge naturally155

from the system. In practice, no model is fully mechanistic, its156

components reducing at some level to the phenomenological.157

The models presented below are all mechanistic.158

As the title of this paper indicates, we distinguish between159

mathematical and computational models, though we note that160

this is not a sharp distinction, there being areas of overlap be-161

tween the two model types. Broadly speaking, computational162

models require simulation to reveal their behaviours, whereas163

the behaviour of mathematical models can be revealed by the164

application of analytical techniques (see the discussion of ana-165

lytical techniques below). Typically, mathematical models com-166

prise only a few equations (the trophic factor model in Sec-167

tion 5.1.1 contains no more than 4 governing equations), whilst168

computational models involve either a large system of equa-169

tions and/or an algorithmic component (see, for example, the170

choroidal neovascularisation model in Section 5.2, where the171

movement of cells is described algorithmically). Thus, compu-172

tational models tend to be more comprehensive, whilst mathe-173

matical models allow for a more intuitive understanding of the174

system.175

If a system is homogeneous or spatial variation is unim-176

portant, then a well-mixed, spatially-independent model may177

be used (this is the case in the trophic factor model in Sec-178

tion 5.1.1, where the spatial distribution of rods and cones is179

ignored), the focus being the temporal evolution of the system.180

If, however, spatial structure is important, then either a com-181

partmental or spatial model is required. Compartmental mod-182

els decompose the system into a set of spatially homogeneous183

compartments, with terms to describe how material may be ex-184

changed between them (for instance, the toxic substance model185

in Section 5.1.2 identifies each photoreceptor with an individ-186

ual compartment, governed by its own equation), whilst fully-187

spatial models allow for spatial heterogeneity within the same188

compartment (see, for example, the models of retinal oxygen189

distribution in Section 3.1, where the oxygen concentration is190

allowed to vary across each model layer).191

If we are interested simply in the resting state of a system,192

then a steady-state model (in which the system does not change193

with respect to time) can be used, whereas, if the dynamic be-194

haviour of the system is important, then a time-dependent model195

is needed (where the system evolves over time). For example,196

the oxygen distribution models in Section 3.1 are of the steady-197
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Table 1: Model types. Contrasting types of models are described and their advantages and disadvantages noted.

Model Type Description/Assumptions Advantages Disadvantages
Phenomenological vs Designed to match the experimental data Close fit to data Little insight
Mechanistic Designed to capture the underlying processes Insight generated Loose fit to data

Mathematical vs Fully described by a set of mathematical Analytically tractable Lacks detail
equations and generally
Relatively simple not computationally

expensive
Computational Require simulation to reveal their behaviour Detailed Not analytically

Typically complex tractable and
often computationally
expensive

Well-mixed vs Spatial structure and effects are neglected More tractable Spatial effects neglected
Compartmental/Spatial Spatial distributions and compartmentalisation Spatial effects captured Less tractable

are accounted for

Steady-state vs The system does not vary in time More tractable Dynamics lost
Time-dependent The system may evolve over time Dynamics captured Less tractable

Continuous vs The system is continuous in space and time More analytically Details lost
tractable and generally
not computationally
expensive

Discrete The system moves between discrete states Many details captured Less analytically
in space and time tractable and

often computationally
expensive

Deterministic vs Simulations run under the same conditions Substantial analytical Does not account
produce the same solution insight for noise

Stochastic The model contains a probabilistic component Accounts for noise Little analytical
Simulations run under the same conditions insight
produce different solutions

state form, oxygen profiles being assumed to change very lit-198

tle under normal conditions, whilst the photoreceptor models199

in Section 3.4 are time-dependent, so that they can capture the200

time variation in outer segment length.201

If the objects being modelled (e.g. cells or molecules) are202

numerous and small in relation to the spatial domain in which203

the model is being solved, then cell populations may be treated204

as continuous densities and chemicals as concentrations (see,205

for example, the oxygen toxicity models in Section 5.1.3, where206

photoreceptors are treated as densities and oxygen as concen-207

tration). Continuum models may be analytically tractable, al-208

lowing us to derive analytical solutions (see below) and hence209

predict how a system will behave under different conditions.210

If the above assumptions do not hold, then a discrete model211

is appropriate. Discrete models may incorporate more details212

than continuous models, but are more computationally expen-213

sive, with computational costs increasing dramatically as the214

number of objects is increased. For example, the retinal an-215

giogenesis model in Section 4.1 treats blood vessels as discrete216

entities, allowing it to capture their intricate spatial structure.217

Lastly, a distinction may be made between deterministic218

and stochastic models. Deterministic model simulations run219

under the same conditions always produce the same solution220

(see, for example, the choriocapillaris blood flow models in221

Section 3.3), whilst stochastic models incorporate a probabilis-222

tic element, capturing the ‘noise’ of a biological system, as a223

result of which, each simulation is different (an example be-224

ing the stochastic apoptosis of photoreceptors in the toxic fac-225

tor model in Section 5.1.2, see de Vries et al. 34 for a de-226

scription of stochastic techniques). In recent years, continuous-227

deterministic and discrete-stochastic models have been com-228

bined in what are known as hybrid models (as in the retinal229

angiogenesis model in Section 4.1).230

Continuous-deterministic models are typically described in231

terms of ordinary differential equations (ODEs) and partial dif-232

ferential equations (PDEs). ODEs are used in well-mixed and233
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compartmental models, where they describe the evolution of the234

system with time (e.g. Sections 5.1.1 and 5.1.2), and are also235

used in one-dimensional (1D) steady-state models (e.g. Section236

3.1). PDEs are used for dynamic spatial models in 1D, 2D or237

3D and for steady-state models in 2D or 3D (e.g. Section 5.1.3).238

In defining a problem, a number of factors must be taken239

into consideration. Firstly, where the model is spatial, we must240

describe the (1D/2D/3D) geometry of the domain on which the241

problem is to be solved. Governing equations must be imposed242

in the domain, and combined with initial conditions (to describe243

the state of the system at time t = 0) and boundary conditions244

(to describe the behaviour of the problem at the domain bound-245

aries). Lastly, values must be assigned to the model parameters,246

using experimentally measured data where possible.247

Having defined a model, we may investigate its behaviour.248

Typically, the models which arise from biological problems do249

not admit explicit analytical solutions. That is, we cannot find250

algebraic expressions for the dependent variables (e.g. cell den-251

sity or chemical concentration) in terms of the independent vari-252

ables (space and time) together with the model parameters. In-253

stead, we must proceed in one or both of the following two254

ways. Firstly, we may solve our equations numerically. For255

ODE and PDE models, this may involve methods such as the256

finite difference method (or method of lines) and the finite ele-257

ment method, which involve discretising our equations in space258

and time [see 85, 111, for details]. Secondly, we may use an-259

alytical methods to systematically reduce the governing equa-260

tions to a simpler form. Commonly used analytical methods261

include asymptotic analysis, which reduces the system to its262

dominant components, and steady-state and bifurcation anal-263

yses, which allow us to determine the stability properties of264

the system i.e. whether the system behaviour is insensitive to265

small perturbations, and how such responses vary as parame-266

ters are altered [see 53, 110, for details]. Often, a combination267

of numerical and analytical techniques is used to provide a more268

complete picture, consistent results giving an added degree of269

confidence in the model and solution methods. Lastly, since the270

parameter values in our models are frequently estimated and of-271

ten subject to variability, sensitivity analyses may be performed272

to determine the effect of parameter variation on model predic-273

tions.274

3. Health275

3.1. Retinal Oxygen Distribution276

The mammalian retina has a multilayered structure consist-277

ing of numerous cell types (see Figure 2). The outer retina con-278

tains two cellular layers: the retinal pigment epithelium (RPE)279

and the light-detecting photoreceptors, which can be charac-280

terised as either rods or cones, whilst the inner retina also con-281

tains two cellular layers: a layer consisting of bipolar, horizon-282

tal, amacrine and Müller cells, and the ganglion cell layer. The283

inner layers are responsible for preprocessing of visual informa-284

tion and its subsequent transmission to the brain, via the optic285

nerve and are separated from the vitreous humour by the inner286

limiting membrane (ILM).287

Figure 2: Diagram of the human retina. The retina is composed of four cellular
layers: the outer retina contains the retinal pigment epithelium and photorecep-
tor layers, whilst the inner retina contains bipolar/horizontal/amacrine/Müller
glial cell and ganglion cell layers. The diagram is oriented such that the top
lies outermost and the bottom innermost in the eye. R: rod photoreceptor. C:
cone photoreceptor. H: horizontal cell. B: bipolar cell. M: Müller glial cell.
A: amacrine cell. G: ganglion cell. Figure reproduced, with permission and
modifications, from Swaroop et al. [112], where modifications are reproduced,
with permission, from Roberts et al. [93].

The retina consumes oxygen at a higher rate than most other288

tissues in the mammalian body [4, 5, 118, 126]. To meet this289

need, it is equipped with an extensive vasculature. The outer290

retina is supplied mainly by the choroid, which lies outward291

from the retina, separated from the RPE by Bruch’s Membrane,292

whilst the inner retina is supplied by retinal capillary layers,293

of which there are typically two, one deep and the other su-294

perficial. The magnitude of oxygen supply and demand render295

the retina vulnerable to both hypoxia (oxygen deprivation) and296

hyperoxia (toxically high oxygen levels). Therefore, it is of in-297

terest to understand how the retina is maintained in normoxia298

(favourable oxygen levels) in health, and how and why the oxy-299

gen profile changes in disease states such as vascular occlusive300

diseases, diabetic retinopathy, retinopathy of prematurity and301

retinitis pigmentosa [118].302

Oxygen sensitive microelectrodes have been used to mea-303

sure the partial pressure of oxygen across the width of the retina,304

from the ILM to the choroid, in a variety of mammals and un-305

der a range of conditions [see 118, 126, 128, 129, for reviews].306

Whilst it is helpful to determine the oxygen profile (compar-307

isons between profiles providing insight even in the absence of308

a model), the measurement does not, by itself, help us to un-309

derstand why the profile takes the shape that it does. In order310

to explain the profile, we must determine the rates of oxygen311

supply and demand, and how these vary across the retina.312

A number of mathematical models have been developed to313
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describe and explain retinal oxygen measurements. These mod-314

els typically assume that the system is at steady-state (i.e. not315

varying with time) and are posed on a one-dimensional Carte-316

sian geometry, across the width of the retina, perpendicular to317

the wall of the eye. Using a Cartesian geometry, rather than318

a spherical geometry, is justified, since the width of the retina319

is much smaller than the radius of curvature of the eye. It is320

further typically assumed that the rate of oxygen consumption321

is piecewise constant across the retina. As such, the retina is322

decomposed into a series of n discrete intervals 0 < x < L1,323

L1 < x < L2,. . . , Ln−1 < x < Ln (see Figure 3), where x is the324

distance from the choriocapillaris (CC, the innermost layer of325

the choroid). Within each interval, the rate of oxygen uptake is326

given by a constant, Qi (for i = 1,. . .,n). Therefore, invoking327

Fick’s second law, these models reduce to the following ODEs:328

329

D
d2c
dx2 = Qi, for i = 1,. . . ,n, (1)330

where c(x) is the oxygen concentration and D is the diffusivity331

of oxygen. These equations may be solved to give332

c(x) =
Qix2

2D
+ Aix + Bi, for i = 1,. . . ,n, (2)333

where the constants of integration, Ai and Bi (i = 1,. . .,n), are334

determined by imposing boundary conditions at all external and335

internal boundaries. As such, the profiles are piecewise linear336

(for Qi = 0) and quadratic (for Qi , 0), where Qi > 0 indicates337

a net uptake and Qi < 0 a net supply of oxygen.338

To date, most models have restricted their attention to the339

avascular outer retina [35, 52, 68]. Since the inner retinas of340

most mammals are penetrated by deep and superficial retinal341

capillary beds, it is not possible, using these models, to distin-342

guish between oxygen supply and consumption in this region.343

Two resolutions to this problem have typically been considered:344

use animals with avascular inner retinas such as the rabbit or345

guinea pig [32, 107], or occlude the retinal capillaries [10, 35].346

In this way, the models can be extended to describe the entire347

retina, and the oxygen consumption of each layer determined.348

Other authors include the inner retina without occlusion, but349

cannot distinguish between supply and uptake [33].350

In many theoretical studies, the number of model layers is351

varied to determine the minimum number required to obtain a352

good fit to experimental data, the number being increased un-353

til the improvement in fit is deemed insignificant, or the model354

becomes sensitive to noise in the data [10, 52, 68]. The earliest355

such models are those of Dollery et al. [35] who used single356

layer models for the outer retina and the whole retina. Later,357

Linsenmeier [68] and Stefánsson [107] developed two layer358

models for the outer retina and for the inner and outer retina359

respectively. This was followed by a three layer model of the360

outer retina [52], to which a fourth layer was later added, to en-361

compass the inner retina [10]. The most detailed model of this362

type to date is that due to Cringle and Yu [33], who decompose363

the retina into eight layers. Model layers representing either364

entire cellular layers (e.g. the ganglion cell layer), or subcom-365

partments within cellular layers (e.g. the photoreceptor inner366

segment layer).367

Once the number of model layers has been fixed, the mod-368

els may be fit to the experimental profiles by varying the Lis369

(except Ln, the total retinal width), Qis and oxygen concentra-370

tions on the external boundaries upon which Dirichlet bound-371

ary conditions (at which the oxygen concentration is held at a372

fixed value) have been imposed. In this way, one can determine373

the (net) oxygen consumption in each layer of the retina and374

thereby explain why the profile takes the shape that it does.375

This approach has led to some important discoveries. For376

example, it has been shown that the photoreceptor inner seg-377

ments (ISs) are the dominant oxygen consumers in the outer378

retina, consuming approximately twice as much oxygen under379

dark adaptation (DA) as under light adaptation (LA) [52, 68].380

Meanwhile, the outer region of the inner plexiform layer (IPL)381

dominates consumption in the inner retina, exceeding that of382

the photoreceptor ISs [33]. Other discoveries include an expla-383

nation for how inner retinal normoxia is maintained when the384

oxygen content of inspired air increases, via increased uptake385

by the outer plexiform layer (OPL) and the outer region of the386

IPL, and how outer retinal anoxia (complete oxygen depletion)387

is prevented under DA in the rat, through increased oxygen de-388

livery from the CC and deep retinal capillary layer [33, 127].389

[See 118, 126, 128, 129, for detailed reviews.]390

Whilst the above models have proved fruitful, they have two391

key limitations. Firstly, they do not distinguish between uptake392

and supply in the vascular inner retina, and, secondly, they do393

not account for the variation in oxygen uptake with local oxy-394

gen concentration, this effect becoming significant in those re-395

gions where the oxygen profile approaches hypoxic levels.396

Roberts et al. [93] have developed a model which addresses397

these limitations (see Figure 3, where layers 6 and 7 are com-398

bined in this case, reducing the model to 7 layers). Uptake399

and supply are distinguished by accounting for the retinal capil-400

lary layers through boundary conditions between model layers,401

whilst the dependence of oxygen uptake upon the local oxygen402

concentration is accounted for by replacing the constant uptake403

term, Qi, with a Michaelis-Menten term, Qic/(γ + c), so that404

equation (1) becomes405

D
d2c
dx2 =

Qic
γ + c

, for i = 1,. . . ,7, (3)406

where γ, the Michaelis constant, is the oxygen concentration407

at which the oxygen consumption rate is half maximal (Qi/2).408

The model describes the mid-peripheral human retina (with seven409

layers required to account for the spatial variation in oxygen410

consumption and the presence of capillary layers), though it411

could be adapted to model any mammalian retina by adjusting412

the number and arrangement of layers and the boundary condi-413

tions between layers. As with the previous studies, this model414

could also be fitted to experimental profiles. Unlike equation415

(1), equation (3) does not have an analytical solution and so416

must be solved numerically.417

Mathematical analysis of Roberts et al.’s model reveals that418

the earlier piecewise linear and quadratic models (equations (1)419

and (2)) are valid, provided the oxygen concentration does not420

approach hypoxic levels, oxygen levels below 1 mmHg being421
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Figure 3: Roberts et al.’s retinal oxygen distribution model. Bottom: diagram to show the model geometry. Oxygen is supplied to the tissue via the CC and retinal
capillaries, whilst the net-flux of oxygen at x = L8 is zero. The concentration and flux of oxygen is continuous across all other boundaries. The flux of neuroglobin
(Ngb) between layers is zero, except at those boundaries marked with stars, across which the concentration and flux of Ngb is continuous. In the case where Ngb is
not included, layers 6 and 7 may be combined, reducing the model to 7 layers. Top: simulation results showing the oxygen distribution in the healthy human retina
under LA and DA in the absence of Ngb. The spatial extent of the model layers is depicted by the dashed vertical lines. The oxygen concentration in the outer retina
(layers 1–5) and layer 6 is significantly lower under DA, due to the increased rate of oxygen uptake by the photoreceptor ISs. CC: choriocapillaris, RPE: retinal
pigment epithelium, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer, NFL:
nerve fibre layer. Figure reproduced, with permission and modifications, from Roberts et al. [93].

considered hypoxic [78, 93]. Quadratic approximations are also422

valid in hypoxic, or near-hypoxic regions; however, the coeffi-423

cients must be modified as described in Roberts et al. [93]. This424

analysis therefore places the previous models on a stronger the-425

oretical foundation, whilst also enabling them to be extended to426

account for a broader range of scenarios.427

Whilst Roberts et al.’s model resolves some of the weak-428

nesses in previous models, it has limitations. In particular, by429

placing capillary layers along the boundaries between model430

layers, it assumes that the capillaries lie in a plane. Whilst431

this is reasonable for the two retinal capillary layers in the mid-432

periphery of the human retina and in the retinas of many other433

mammals, some capillary layers, such as the additional layers434

found in the peripapillary area of the human retina, are more435

diffuse [23, 64, 81, 90, 104, 113]. In these cases, it would436

be more appropriate to incorporate a distributed oxygen source437

term into those layers that contain capillary beds. Provided the438

capillary surface area, permeability and oxygen concentration439

could be measured, it would still be possible to distinguish be-440

tween uptake and supply.441

In addition to considering oxygen levels within the retina,442

modellers have investigated oxygen transport within the retinal443
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vasculature. In particular, Liu et al. [70] constructed a model of444

the flow distribution and oxygen transport within a 2D retinal445

arterial network. The central retinal arterial geometry was re-446

constructed from an image of the human fundus and the periph-447

eral circulation added using a structured tree model, allowing a448

prediction for the oxygen distribution within a retinal network.449

Further, Ganesan et al. [45, 46] created a network model of the450

murine retinal vasculature, incorporating all three layers (the451

superficial layer, containing veins and arterioles, and the inter-452

mediate and deep capillary networks). The veins and arterioles453

of the superficial layer were modelled directly using data from454

the image analysis of the murine retina, whilst the capillary lay-455

ers were represented using uniformly distributed meshes. This456

model produced a number of interesting further results; for in-457

stance, it was found that the blood haematocrit (the ratio of458

red blood cell volume to total blood volume) is smaller close459

to the optic disc and greater toward the periphery. While such460

modelling frameworks do not describe oxygen levels in the sur-461

rounding tissue, it would be feasible to couple vascular oxy-462

gen transport models with tissue oxygenation models to explore463

how retinal vascular disease disrupts oxygen supply.464

Finally, we note that theoretical studies have also consid-465

ered the transmural transport of oxygen to the retina, as well466

as oxygen transport and consumption within the vitreous [see,467

40, 43, 98, for further details].468

3.2. Neuroglobin469

Given the retina’s extensive oxygen demand, any factor which470

contributes to the supply of oxygen could be vital in preventing471

hypoxia. It has been suggested that the protein neuroglobin472

(Ngb), which is present in high concentrations in the retina,473

could enhance the retinal oxygen supply [17]. A number of474

lines of evidence indicate such a role, most notably its simi-475

larity in structure and molecular mass to myoglobin; however,476

opinion about its role remains divided [see 13, 15, 16, 39, 89,477

for reviews].478

In theory, Ngb could enhance the oxygenation of retinal tis-479

sue via two distinct yet related processes, namely transport and480

storage: Ngb could transport oxygen from regions where it is481

plentiful to others where it is scarce and provide a temporary482

supply of oxygen during periods of decreased supply or in-483

creased uptake. The first scenario (transport) is best considered484

using a steady-state (ODE) model, whilst the second (storage)485

requires a time-dependent (PDE) model.486

To date, only two modelling studies have been conducted487

to investigate the oxygen transport and storage properties of488

Ngb. Fago et al. [39] developed a three layer model of the outer489

retina, consisting of a central region that consumes oxygen and490

contains Ngb, and two outer layers that do not consume oxy-491

gen and are devoid of Ngb. The proportion of Ngb molecules492

in their oxygen-bound and unbound states is assumed to be at493

quasi-steady-state at all times (that is, the two species are in494

equilibrium). Their results suggest that the concentration of495

Ngb in the middle layer would need to exceed 100 µM for Ngb496

to be effective in storage and to exceed 300 µM to be effective497

in transport. Since they assume that the local Ngb concentration498

could not exceed these values, they conclude that Ngb does not499

play a significant role in transport and storage.500

Given that the average Ngb concentration across the retina501

has been estimated to lie in the range 100–200 µM, Roberts502

et al. [93] have argued that, since Ngb is confined to the cy-503

tosol of retinal cells and since it is more highly concentrated in504

some retinal layers than others, the local cytosolic concentra-505

tions in some layers could significantly exceed 200µM. They506

constructed an eight layer model, spanning the full width of507

the (human) retina and relaxing Fago et al.’s quasi-steady-state508

assumption (see Figure 3). The model confirmed that Ngb is509

unlikely to play a significant role in oxygen storage, demon-510

strating that whilst it will delay a drop in oxygen levels, it will511

also delay recovery [92]. However, the model suggests that Ngb512

could prevent hypoxia in the ISs and IPL via transport, increas-513

ing oxygen uptake by up to 30–40% in these regions. Further, it514

was demonstrated, using a simplified, single layer model, that515

the lower affinity for oxygen of Ngb than myoglobin may be516

advantageous for oxygen transport, contrary to the prevailing517

view [15, 16, 39]. Indeed, many of the measured Ngb oxygen518

affinities appear to be close to optimal.519

3.3. Choriocapillaris520

Zouache et al. [131] have developed a model to describe521

the blood flow within the choriocapillaris (CC). The CC is the522

inner layer of the choroid, responsible for supplying the outer523

retina with oxygen and other nutrients, and for removing waste524

products. It is subdivided into independent tessellating polyg-525

onal units known as lobules. These compartments are essen-526

tially planar, and are supplied and drained by microvessels, ly-527

ing deeper in the choroid, via inlets and outlets, which feed into528

the outer surface of the lobules, perpendicular to their plane529

[131]. Blood is supplied at the centre of each lobule by an arte-530

riole, and drained at the surrounding vertices by venules. Whilst531

these compartments are not physically divided from each other,532

neighbouring outlets are connected by separatrices (streamlines533

which divide the flow into regions with different kinds of mo-534

tion) in the blood flow, on which the residence time is long,535

forming an effective barrier between adjacent lobules [131].536

Lobules are interspersed by avascular septal pillars, which stretch537

between the inner and outer boundaries, interrupting blood flow.538

The pillars are randomly distributed, with a uniform distribution539

[131].540

Rather than model the entire CC, Zouache et al. [131] con-541

sider an individual lobule. The model is further simplified by542

decomposing lobules into triangular prisms, with the inlet at543

one vertex and outlets at the other two (see Figure 4(a)). For544

simplicity, the triangle is assumed to be isosceles, the inlet be-545

ing separated from the outlets by sides of equal length. The546

internal angle at the inlet and the septae volume fraction (the547

proportion of the domain occupied by septae) are varied to rep-548

resent lobules at different geographical locations within the eye.549

Since the height of a lobule is much smaller than the width550

of the septal pillars, the component of the flow perpendicular551

to the inner and outer boundaries can be neglected. Averaging552

the fluid velocity across the height of the lobule, the model is553

reduced to a planar (2D) flow. The flow is further assumed to554

8



Figure 4: Zouache et al.’s model of blood flow in the choriocapillaris. (a) diagram to show the model geometry, including septae (represented by circles). Lobules
are decomposed into isosceles triangular prisms, the inlet (top corner) being separated from the outlets (bottom corners) by sides of equal length (L). The internal
angle at the inlet is denoted by ω. Figure adapted from Zouache et al. [131]. (b) and (c) flow streamlines (showing the paths followed by fluid particles, (b)) and
pressure field (c) in the absence of septae (ω = 45◦). (d) and (e) flow streamlines (d) and pressure field (e) in the presence of septae (ω = 60◦). Figures (b)–(e)
reproduced, with permission pending, from Zouache et al. [131].

be passive, driven by the pressure gradient between the inlet555

and outlets. Blood cells are not modelled explicitly, rather they556

are assumed to be passive tracers.557

The model is used to determine how the pressure drop (be-558

tween the inlet and outlets) and average fluid particle residence559

time (average time spent by blood corpuscles in the lobule) de-560

pend upon the internal angle at the inlet and the septae volume561

fraction.562

In the absence of septae, a separation (stagnation) stream-563

line divides the triangle in two, running from the inlet, to a564

stagnation point on the opposite side of the triangle, midway565

between the two outlets (see Figures 4(b) and (c)). The pressure566

drop is minimised, and the average residence time maximised,567

when the inlet angle is 90◦, whilst the pressure drop increases568

and the residence time decreases as the inlet angle approaches569

0 or 180◦. The residence time is lower along streamlines close570

to the walls of the domain, and increases along streamlines ap-571

proaching the stagnation streamline. As the septae volume frac-572

tion increases, the pressure drop and bulk flow velocity increase573

and the average residence time decreases (see Figures 4(d) and574

(e)). However, the septae also increase the residence time in the575

stagnation regions created on their surfaces where the stream-576

lines separate.577

As lobule geometry varies across the eye, so too does the578

pressure drop, blood velocity and residence time. It may be579

that this variation in geometry is the means by which the ex-580

change of oxygen and other nutrients is modulated to match581

supply with demand. This spatial variation could also help582

to explain the geographical heterogeneity in vulnerability seen583

in retinal diseases such as retinitis pigmentosa (RP) and age-584

related macular degeneration (AMD) [131]. It has been noted585

that drusen tend to form near venular openings in AMD [44].586

This model suggests a possible explanation, since it predicts587

that the residence time of fluid particles is greatest here [131].588

Whilst this model provides a useful first step in mathemati-589

cally describing the CC, it has several limitations. In particular,590

it does not capture the movement of fluid between the CC and591

the retina, nor does it account for the three-dimensional nature592

of the flow, which could have a significant effect on residence593

time. Zouache et al. are now developing a 3D Navier-Stokes,594

advection-diffusion model to address these limitations [131]. A595

further interesting extension would be to couple models of the596

CC to models of the retina in disease states such as RP and597

AMD, where the supply of oxygen and other nutrients may be598

critical in driving the disease progression.599

Zouache et al.’s work has also served to highlight short-600

comings in existing experimental data. In particular, the inte-601

rior angle at the inlet has not been investigated and, as yet, only602

one measurement for the pressure drop between inlet and outlet603

has been published. Zouache et al.’s models show that both of604

these features are of critical importance for blood flow within605

the CC and, as such, their accurate measurement should present606

a promising direction for future experimental research.607

3.4. Photoreceptors608

A number of models considering either individual photore-609

ceptors or groups of photoreceptors in health have been devel-610

oped. These models focus on processes such as retinal light611

adaptation, phototransduction [see in particular 65, 103, 115],612

photoreceptor and horizontal cell interactions, circadian rhythms613
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[19], information processing [105, 106] and receptive fields.614

Many of these studies are reviewed in Keener and Sneyd [60],615

Chapter 22, to which the reader is referred for further details.616

Here we discuss more recent work by Macdougall [74],617

which provides a potential explanation for the observed diur-618

nal variation in rod photoreceptor outer segment (OS) length.619

Each rod OS is composed of a stack of approximately 700–620

1200 membranous discs [122]. Discs are continuously replen-621

ished from the base of the OS, where it meets the IS, whilst622

groups of discs at the outer tip of the OS are intermittently623

shed and subsequently phagocytosed by the underlying RPE,624

the most significant shedding event occurring at the onset of LA625

[121, 122, 123, 124]. As a consequence, the OS is completely626

replaced over a period of 9–13 days [as measured in the rhe-627

sus monkey and assumed to hold true in humans 122]. Rod OS628

length varies over a daily cycle, growing under DA and shrink-629

ing under LA, indicating that the shedding and renewal rates630

vary with illumination [1].631

Macdougall [74] construct three spatially-resolved contin-632

uum models, each testing a different hypothesis, proposed to633

explain the observed differences in OS length under DA and634

LA. The first model tests the hypothesis that the observed dy-635

namics can be explained by changes in the oxygen landscape636

between DA and LA, whilst the second tests the hypothesis637

that the dynamics can be explained by changes in the phospho-638

creatine shuttle-derived ATP concentration in the OS between639

DA and LA. Both models fail in important respects (see be-640

low). Therefore, the third model proposes that a combination641

of changes in the oxygen and phosphocreatine shuttle-derived642

ATP concentrations is sufficient to explain the OS dynamics.643

All three models consist of PDEs and ODEs, where the PDEs644

are defined on a 1D domain spanning the region between the645

inner end of the IS and the outer end of the OS, the former646

boundary being fixed in space and the latter free to move (see647

Figure 5(a)). In each case, it is assumed that the choroid is the648

sole supplier of oxygen.649

The first model consists of a PDE for oxygen concentra-650

tion and an ODE for OS length. Oxygen diffuses freely across651

the photoreceptor and is taken up at a baseline level across652

the domain, with an additional consumption term in the IS to653

model mitochondrial uptake there, which increases under DA654

(see Section 3.1). The OS length increases or decreases at a655

rate proportional to the difference between a predefined thresh-656

old concentration and the oxygen concentration at the inner end657

of the IS. The length increases when the oxygen concentration658

at the inner tip of the IS is above the threshold (i.e. in abun-659

dance), and decreases when the oxygen concentration is below660

the threshold (i.e. in short supply).661

The model admits unique, positive, steady-state solutions662

for OS length under both DA and LA. Simulations capture a 24663

hour cycle, starting with the light adapted steady-state solution664

at t = 0 hours, followed immediately by DA, switching to LA at665

t = 12 hours. The only parameter which changes between DA666

and LA is the rate of oxygen uptake in the IS. It is found that OS667

length increases under LA and decreases under DA, behaviour668

which is the reverse of that seen in vivo. This result is robust669

under parameter sensitivity analysis and suggests that oxygen670

cannot be the sole regulator of OS length.671

The second model focusses on how the spatial distributions672

of creatine phosphate, creatine, free phosphate, ATP and ADP673

change over time and regulate OS length (see Figure 5(a)). ADP674

combines reversibly with phosphate to form ATP. The dominant675

source of ATP is assumed to be that formed by oxidative phos-676

phorylation in the IS mitochondria, rather than that formed by677

glycolysis throughout the photoreceptor. Consequently, ATP678

production is neglected in the OS. Dephosphorylation is as-679

sumed to be negligible in the OS under DA. However, the de-680

mand for ATP in the OS increases under LA, such that dephos-681

phorylation occurs under LA. The diffusion rates of ATP and682

ADP are slow and, hence, neglected. Therefore, in order for683

IS-produced ATP to reach the OS, it must do so via the phos-684

phocreatine shuttle: creatine binds ATP reversibly to form cre-685

atine phosphate and ADP, the forward reaction being favoured686

in the IS and the reverse in the OS. Creatine phosphate, crea-687

tine and phosphate are all free to diffuse across the photorecep-688

tor, resulting in a net flux of creatine phosphate from the IS to689

the OS, and of creatine and phosphate from the OS to the IS.690

Since the ATP and ADP concentrations evolve on a much faster691

timescale than those of the other reactants, they are assumed to692

be at quasi-steady-state, so the system comprises 3 PDEs for693

phosphocreatine, creatine and phosphate. The OS is assumed694

to grow at a constant rate and to shed discs only when the ATP695

concentration at the outer tip of the OS falls beneath a thresh-696

old value, corresponding to a critical OS length, at which point697

shedding proceeds at a rate proportional to the amount by which698

OS length exceeds this critical length.699

Simulations for the 24 hour dark/light cycle predict that the700

OS will shed discs under LA, causing it to shrink towards a701

steady-state (after about 2 hours), in agreement with in vivo702

observations. The OS length increases linearly under DA; how-703

ever, it does not reach steady-state, growing unboundedly if DA704

is maintained indefinitely. These results suggest that the phos-705

phocreatine shuttle is sufficient to regulate OS length under LA,706

but not under DA.707

The third model combines the hypotheses of the two pre-708

vious models. Simulations of the combined model show OS709

growth under DA and shrinkage under LA, in agreement with in710

vivo observations (see Figure 5(b)). The decrease in IS oxygen711

consumption leads to growth under LA; however, rapid shed-712

ding dominates growth at the onset of LA [as observed in 123]713

leading to net OS shrinkage (see Figure 5(c)). The shedding714

rate subsequently decreases, balancing growth, such that the715

system approaches, and effectively reaches, steady-state under716

LA. Growth under DA is both linear and bounded, improving717

on both of the previous models; however, OS growth does not718

reach steady-state until approximately 100 hours. Whilst one719

would expect growth to stall earlier than this in vivo, these re-720

sults are supported by a study carried out by Bassi and Powers721

[9] on goldfish, which showed that OS length increases at a con-722

stant rate when dark conditions are sustained for 7 days. In an723

ordinary light/dark cycle, the onset of LA interrupts growth un-724

der DA, such that continued growth beyond the physiological725

norm is not realised.726

Many retinal diseases (e.g. AMD and RP) are associated727
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Figure 5: Macdougall’s model of photoreceptor shedding and regrowth. (a) diagram showing the model geometry, the oxygen distribution, and the kinetics and
dynamics of the phosphocreatine shuttle. The photoreceptor IS has a fixed length, spanning the region between x = −LIS < 0 and x = 0, whilst the OS length
varies with time, t, spanning the region between x = 0 and x = LOS (t) > 0. Oxygen, phosphocreatine (CrP), creatine (Cr) and phosphate (P) diffuse freely across
the domain, whilst none of the species can leave the photoreceptor. Diffusive transport of ATP and ADP is neglected. ADP and P combine reversibly to form ATP,
whilst CrP and ADP react reversibly to form Cr and ATP. Larger arrows show the dominant direction of each reaction. (b) simulation results for the third (combined)
model, showing the growth and shrinkage of the OS over a 24 hour dark/light cycle, where the heat map represents the oxygen profile (in units of µM) internal to
the photoreceptor. The simulation is initiated at the LA steady-state, grows under dark conditions for the first 12 hours and shrinks under light conditions from 12
to 24 hours. (c) graph to show the evolution of the shedding rate over time for the simulation depicted in (b). Shedding is absent under DA, but occurs under LA,
reaching its highest rate shortly after the onset of LA. Figures (a) and (b) reproduced, with permission and modifications, from Macdougall [74], where the diagram
of the photoreceptor in (a) is adapted from Young [121]. Figure (c) supplied by Macdougall and reproduced with permission.

with a decrease in OS length. One possible cause of decreased728

OS length is mitochondrial inefficiency, or inefficiency in OS729

energy utilisation. This may be represented in the model by730

decreasing the IS ATP production rate or increasing the ATP731

threshold. Both changes decrease OS length, suggesting that732

these factors are sufficient to explain the OS shrinkage observed733

in diseased states. The above inefficiencies could also be rep-734

resented by increasing the rate at which the ISs take up oxy-735

gen or reducing the oxygen threshold; however, this has an in-736

significant effect on OS length, since, although it decreases the737

steady-state OS length, the steady-state is not reached during a738

standard diurnal cycle.739

The above study illustrates the way in which mathematical740

models can be used to isolate mechanisms in a way that would741

be difficult, if not impossible, experimentally; examining their742

sufficiency in explaining observed behaviours. Future models743

could incorporate the effects of Ngb in oxygen transport (see744

Section 3.2), or signalling between the photoreceptor and the745

RPE [74]. The model could also be developed to consider dis-746

ease states. For example, it could be combined with the oxygen747

toxicity mode for RP, described in Section 5.1.3, to account for748

the increased oxidative damage incurred by the IS as they ap-749

proach the choroid, following shrinkage of the OS.750

4. Development751

4.1. Retinal Angiogenesis752

The retinal capillary layers, also known as the retinal vas-753

cular plexus (RVP), colonize the retina via the process of an-754

giogenesis (the development of new blood vessels from pre-755

existing vessels). Astrocytes migrate from the optic nerve, over756

the surface of the inner retina, in response to a gradient in platelet-757

derived growth factor A (PDGF-A), which is produced by the758

underlying retinal ganglion cells. Astrocytes in turn guide the759

formation of the RVP, producing vascular endothelial growth760

factor A (VEGF-A), which attracts endothelial cells to move up761

spatial gradients in its concentration, from the optic nerve, to-762

ward the retinal periphery. Astrocyte migration begins shortly763

before birth, whilst endothelial migration begins on post-natal764

day 0 (P0), reaching the retinal periphery by P8 [6, 77, 119].765

Aubert et al. [6], McDougall et al. [77] and Watson et al.766

[119] have created a series of models, produced alongside an767

accompanying experimental program, to capture the dynamics768

of the angiogenesis of the superficial RVP, in the developing769

murine (mouse) retina. The mammalian retina is an ideal sys-770

tem for studying angiogenesis, since the vascular architecture771

can easily be imaged using retinal whole mounts. Furthermore,772

development can be split into a well-defined sequence of events773
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and the vessel network has an ordered architecture, facilitating774

comparisons between in vivo and in silico results.775

In Aubert et al. [6], two 1D PDE models are developed, de-776

fined on a domain spanning the region between the centre of777

the optic nerve and the position of the retinal periphery once778

fully-grown, starting from P0 (for model 1) or E17 (embry-779

onic day 17, or P-4, for model 2) and running to P8. The first780

model focusses on capillary tip density, blood capillary density781

(which follow behind the capillary tips) and VEGF-A concen-782

tration, whilst the second accounts also for astrocyte density783

and PDGF-A concentration.784

In the first model, an initial VEGF-A gradient is imposed,785

whilst in the second, the VEGF-A gradient is initially set to786

zero, and evolves over time as it is produced by astrocytes and787

consumed by endothelial cells, matching the in vivo situation788

more closely. Sensitivity analysis of the first model shows that789

chemotaxis has a significant influence upon RVP development,790

confirming the importance of the more realistic chemotactic791

gradients in the second model. The simulation predictions for792

capillary tip and astrocyte migration from the second model are793

in good agreement with the in vivo results, providing experi-794

mental support for the model and showing that the factors ac-795

counted for in the model are sufficient to explain the observed796

dynamics.797

In later work, a 2D hybrid model was used to simulate the798

complex, branched structure of the RVP [77, 119]. The model799

contains discrete-stochastic and continuous-deterministic ele-800

ments and is posed on a domain spanning the surface of the801

inner retina. As before, PDEs are defined for the astrocyte and802

endothelial cell densities (the distinction between capillary tips803

and blood capillaries being dropped at the level of the PDEs)804

and for the PDGF-A and VEGF-A concentrations. Four ad-805

ditional PDEs are also included to account for the density of806

the matrix-bound proteins vitronectin and fibronectin, both of807

which are produced by astrocytes, and the concentrations of808

astrocyte and endothelial cell produced matrix degrading en-809

zymes, which degrade vitronectin and fibronectin respectively.810

Astrocytes and endothelial cells move up adhesion gradients in811

vitronectin and fibronectin respectively, via haptotaxis (see Fig-812

ure 6(a)).813

In order to capture the migration of individual astrocytes814

and endothelial cells, and hence the formation of discrete cap-815

illary vessels, the PDEs for these equations are discretised. The816

direction of movement of each individual cell is determined817

stochastically, integrating the effects of diffusion (random move-818

ment), chemotaxis and haptotaxis. Both astrocytes and endothe-819

lial cells also undergo stochastic branching, the probability of820

branching increasing with increasing PDGF-A and VEGF-A821

concentrations respectively, whilst anastomoses occur when-822

ever a sprout tip meets either another sprout tip or an existing823

capillary.824

Blood is a biphasic fluid, composed largely of erythrocytes825

and plasma. The model accounts for the separation of these two826

phases at bifurcations in the vascular bed. The model also ac-827

counts for changes in vessel radius due to wall shear stress, in-828

travascular pressure, conducted and convected metabolic stim-829

uli and a shrinking tendency which dominates in the absence of830

growth stimuli. The conducted (acting upstream) and convected831

(acting downstream) stimuli help to prevent shunt formation by832

favouring the dilation of vessels that are part of extended flow833

pathways.834

Lastly, the model contains PDEs to describe the oxygen dy-835

namics in the tissues and within the blood vessels. It is also as-836

sumed that erythrocytes are the only source of oxygen. Vessel837

pruning occurs when the oxygen concentration in the surround-838

ing tissue and vessel age exceed critical thresholds and in the839

absence of any flow-related stimuli.840

Simulations including astrocyte and endothelial cell migra-841

tion, but neglecting perfusion, produce cell front migratory dy-842

namics that match well with in vivo experiments (see Figure843

6(c)); however, they do not reproduce the highly structured vas-844

cular trees seen in vivo. When perfusion, plexus remodelling845

and oxygen delivery, without convected and conducted stimuli,846

are included, capillary shunts develop, such that the haemat-847

ocrit only takes non-zero values in the regions neighbouring the848

optic nerve. As a result, oxygen delivery to the peripheral retina849

is negligible. When convected and conducted stimuli are in-850

cluded (see Figure 6(d)), the haematocrit is spatially heteroge-851

neous, and the entire retina receives a reasonable supply of oxy-852

gen, demonstrating the importance of these stimuli for adequate853

oxygen delivery. Interestingly, the haematocrit is predicted to854

increase toward the retinal periphery, exceeding 0.75 in some855

regions around the periphery (this is as compared with the in-856

put value of 0.45), in good agreement with Ganesan et al. [45]857

(see Section 3.1) and being most highly concentrated around858

dilated arterio-venous loops. This phenomenon is due to phase859

separation, which causes the haematocrit to increase along the860

arterial side of each bifurcation. In the absence of phase sepa-861

ration, the peripheral retina would be oxygen starved. Also in862

agreement with Ganesan et al. is the development of arterial in-863

let segments that are narrower than those of the venous outlet864

segments. Visual comparison of in vivo and in silico vascular865

architectures reveals that they are qualitatively similar, the main866

differences being that in silico, the vascular plexuses are a little867

denser and the vessels remain dilated up to the growth front,868

rather than narrowing toward the periphery (see Figure 6(b)).869

Having benchmarked their model against normal develop-870

ment, it can be used to predict what would happen if one or871

more developmental mechanisms were altered. For example,872

increasing or decreasing the VEGF-A diffusion coefficient 10-873

fold slows the rate of capillary growth, due to the loss of sharp874

gradients in VEGF, suggesting that the usual isoform (VEGF-875

A164) is more effective for retinal angiogenesis that its lighter876

and faster diffusing (VEGF-A120), and its heavier and slower877

diffusing (VEGF-A188) isoforms.878

Increasing the input arterial haematocrit, or decreasing the879

tissue oxygen consumption rate causes large capillary-free zones880

and hyperoxia to develop, these effects being more extensive in881

the latter case. The former case is equivalent to retinopathy of882

prematurity and the latter to oxygen-induced retinopathy.883

If capillary pruning is reduced, the spatial distribution of di-884

lated vessels is not significantly affected, but phase separation885

is reduced, causing haematocrit levels across the retina to be-886

come more heterogeneous, with erythrocytes being more con-887
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Figure 6: McDougall and co-workers’ hybrid model of retinal angiogenesis [77, 119]. (a) diagram summarising the key components and processes included in the
model. Pointed arrows indicate production or attraction, whilst flat-headed arrows represent degradation or inhibition. Figure adapted from McDougall et al. [77].
(b) comparison between in silico (i) and in vivo (ii) vasculatures at P7.7 and P8 respectively (using the full model). Brighter colour in the in silico image represents
wider vessels, corresponding with the colour bar in (d)(i). The results are qualitatively similar, the main differences being that, in silico, the vascular plexuses are
slightly denser and the vessels remain dilated up to the growth front, rather than narrowing toward the periphery. Figure reproduced, with permission pending, from
Watson et al. [119]. (c) graph comparing the in vivo and in silico (neglecting perfusion) migration of astrocyte and endothelial cell fronts. The in vivo results are
represented by black triangles (upward: astrocytes, inverted: endothelial cells), whilst the in silico results are represented by red (astrocytes) and green (endothelial
cells) lines. The results show good agreement. Figure reproduced, with permission pending and modifications, from Watson et al. [119]. (d) simulation results from
the full model at P7.7 showing (i) vessel radii, (ii) tissue oxygen concentration, (iii) haematocrit and (iv) vessel oxygen concentration. Figure reproduced, with
permission, from McDougall et al. [77]. PDGF-A: platelet-derived growth factor A, VEGF-A: vascular endothelial growth factor A, P: post-natal day, RVP: retinal
vascular plexus.

centrated around the dilated arteriolar segments. These results888

suggest that capillary pruning is important in ensuring that all889

regions of the retina receive an adequate supply of oxygen.890

The above results illustrate how computational models can891

be used to examine scenarios and isolate mechanisms in a way892

that would be technically challenging, if not impossible, to re-893

produce experimentally. This is particularly true for the simula-894

tions in which the convected and conducted stimuli are switched895

off.896

Extending the hybrid mode to 3D would allow studies of897

later developmental stages (between P8 and P16), during which898

vertical sprouting from the superficial RVP leads to the forma-899

tion of two additional RVP layers deeper within the retinal tis-900

sue [77, 119]. This would require a fully 3D model. It would901

also be interesting to test whether the model could be adapted902

to account for the curved vascular arcades seen in humans (as903

opposed to the radial pattern found in the murine retina). The904

effects of mechanical signalling upon vessel formation and mat-905

uration could also be incorporated. Lastly, the model could be906

adapted to study diabetic retinopathy and the critical develop-907

mental period in the early stages of RP [79], providing a tool908

for testing potential treatment strategies.909

Finally, we note that recent modelling studies have also con-910

sidered angiogenesis within the cornea [see, 31, 54].911

4.2. Retinal Mosaic Formation and Retinogenesis912

A number of theoretical modelling studies have explored913

the formation of retinal photoreceptor and ganglion cell mo-914

saics, using a combination of phenomenological and mecha-915

nistic approaches. Typically focussing on the processes of lat-916

eral migration, cell fate and cell death, these studies seek to917

explain how a regular arrangement of neurons emerges from an918

initially random distribution. These studies are reviewed in de-919

tail in Eglen [36, 37], to which the reader is referred for further920

details.921

More recently, Salbreux et al. [97] have developed a com-922

putational model to explain the ordered packing of cone pho-923

toreceptors in the zebrafish retina, in terms of the coupling of924

mechanical deformations and planar cell polarity. Their model925

reproduces many behaviours observed during development in926

vivo, as well as elucidating how this process may break down927

in mutants. In addition, Jiao et al. [58] have constructed a multi-928

scale model for the packing of avian photoreceptors. The model929

indicates that short- and long-range repulsive forces between930

photoreceptors are sufficient to explain the observed patterns.931

Barton and Fendrik [8] have used a stochastic model to932

explore vertebrate retinogenesis, the process by which differ-933

ent retinal cell types derive from multipotent retinal progenitor934

cells. The model, which assumes that a single factor regulates935
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both division and competency, reproduces the timings at which936

different cell types are produced, as measured in rats, suggest-937

ing that a single regulatory factor is sufficient to explain this938

process.939

5. Disease940

The various diseased and damaged states of the retina have941

received a significant proportion of the theoretical modelling942

community’s attention. Models cover a range of topics includ-943

ing laser-induced damage [114], blast injury [95], retinal de-944

tachment [57, 80], proliferative retinopathy [75, 76], retinitis945

pigmentosa and age-related macular degeneration. In what fol-946

lows, we focus on the latter two conditions, where modelling947

studies are most highly concentrated.948

5.1. Retinitis Pigmentosa949

The term retinitis pigmentosa (RP) denotes a group of in-950

herited retinal diseases which cause the progressive degener-951

ation of photoreceptors and, hence, loss of vision. The most952

common inherited retinal degeneration, RP is currently untreat-953

able [100]. RP usually occurs as a rod-cone dystrophy, in which954

rod function and number are diminished earlier and more severely955

than for cones [49]. Cone-rod dystrophies, in which cone loss956

precedes rod degeneration, can also occur and, rarely, rod and957

cone loss may occur simultaneously [51]. Whilst the initial loss958

of rods (or cones) may be attributed to genetic mutations, the959

cause of the secondary loss of cones (or rods) is unknown.960

Histological studies in humans and rats suggest that pho-961

toreceptor degeneration initiates in patches, which presumably962

spread and coalesce over time [24, 47, 56, 66, 130]. RP pro-963

gression in animal models is largely homogeneous in space;964

however, in humans, photoreceptor loss has a distinct spatio-965

temporal pattern, typically initiating in the mid-periphery, with966

the central retina being the last region to degenerate [51]. While967

the phenomena driving this pattern remain to be determined,968

three hypotheses have been proposed to explain them: the trophic969

factor, toxic substance and oxygen toxicity hypotheses. Mathe-970

matical modelling has proven valuable in evaluating the strengths971

and weaknesses of these hypotheses and in suggesting potential972

treatment strategies.973

5.1.1. The Trophic Factor Hypothesis974

It has been suggested that rods may release chemicals that975

are essential for cone survival [41, 82, 83, 84]. Rod loss would976

remove the source of these factors, leading to cone degenera-977

tion. One such factor, rod-derived cone viability factor (Rd-978

CVF), identified by Léveillard et al. [67], has been shown to979

slow cone degeneration and to preserve cone function in chick,980

mouse and rat models [41, 67, 82, 83, 84, 120].981

Camacho, Wirkus et al. have developed a series of spatially-982

averaged ODE models to investigate the role of RdCVF in both983

the healthy and diseased retinas.984

Their first model considers the healthy retina, describing the985

dynamics of rod and cone OS number, and RPE cell number986

[equivalent to the trophic pool, 20, note that we use the interpre-987

tation given in the subsequent papers]. Their equations describe988

the shedding and renewal of the photoreceptor OS, where the989

renewal involves the conversion of trophic pool (which is con-990

tinuously replenished) into new OS discs. Rods produce Rd-991

CVF, which is mathematically distinct from the trophic pool, at992

no cost to themselves, augmenting the supply of trophic factor993

to the cones (see Figure 7(a)). The presence of RdCVF makes994

it possible for rods and cones to coexist indefinitely, suggest-995

ing that this factor may be necessary for their mutual survival996

[20]. We note that earlier modelling work by Camacho and col-997

leagues led them to predict the existence of such a factor, before998

its discovery by Léveillard et al. in 2004 [see 30], though they999

were not the first to predict such a factor [82, 84].1000

Mathematical analysis and numerical simulations suggest1001

that, for certain parameter values, the system will exhibit mul-1002

tiple stable oscillatory solutions, of various amplitudes, corre-1003

sponding to the rhythmic shedding and renewal of photorecep-1004

tors observed in vivo (see Figure 7(b)). The period of oscillation1005

ranges from 8–9 hours, for small amplitude oscillations, to 261006

hours, for large amplitude oscillations. The range of parame-1007

ters for which this behaviour occurs is larger, and hence these1008

dynamics are more probable, when more RdCVF is produced1009

by rods and when photoreceptors convert trophic factor into OS1010

more efficiently. Outside this parameter range, rods, cones and1011

RPE cannot coexist.1012

The model further predicts that rod and cone OS lengths os-1013

cillate in phase. This has been observed in vivo, but is not true1014

of all species [see 20, and references therein]. It would be inter-1015

esting to investigate ways in which the model might be modified1016

to induce out-of-phase oscillations, for example, by introducing1017

an explicit time delay in the aid supplied to the cones via Rd-1018

CVF, capturing the in vivo delay [20].1019

Camacho and Wirkus [22] extended their model to describe1020

the disease state of RP by distinguishing between normal and1021

mutant rods, where both types of rod are genotypically mutant,1022

but only the latter type has had its functionality compromised1023

(represented in the model by altered rates of shedding and re-1024

newal of OS). Normal rods can become mutant, but not vice1025

versa, whilst both normal and mutant rods consume trophic fac-1026

tor and contribute RdCVF to the cones. The RPE equation is1027

also modified so that, neglecting the terms involving photore-1028

ceptors, it obeys logistic, rather than exponential, dynamics, the1029

number of RPE cells remaining bounded under all conditions1030

(see Figure 7(a)).1031

Mathematical analysis reveals that, for any given set of pa-1032

rameter values, there exist seven equilibrium (steady-state) so-1033

lutions, each corresponding to a different stage in the disease1034

progression, from healthy to completely degenerate. Four pa-1035

rameters, which are key in determining the form of the disease1036

progression, are identified, namely the ratio of shedding to re-1037

newal in normal rods, mutant rods and cones, and the carrying1038

capacity of the RPE (in the absence of photoreceptors). All1039

of these parameters must remain fixed in order for an equi-1040

librium solution to remain stable, whilst changes in parameter1041

values can drive disease progression between the different equi-1042

librium solutions, where equilibrium solutions exchange stabil-1043
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Figure 7: Camacho and Wirkus et al.’s trophic factor model of RP. (a) diagram showing the components and processes in the Camacho et al. [21] model. (The
Camacho and Wirkus [22] model does not include RdCVF treatment, whilst the Camacho et al. [20] model includes neither treatment, nor the mutant rod component
and its associated processes.) Figure adapted from Camacho et al. [20] and Camacho and Wirkus [22]. (b) stable limit cycle (oscillatory) solution of the Camacho
et al. [20] model, demonstrating the rhythmic shedding and regrowth of rod and cone OS in the healthy retina. Figure reproduced, with permission and modifications,
from Camacho et al. [20]. (c) diagram showing two alternative paths (marked with arrows) that may be traced through parameter space, leading to different cone-rod
dystrophy forms of the RP disease progression, in the Camacho and Wirkus [22] model. Lines without arrows demarcate the boundaries of the stability regions,
across which (transcritical) bifurcations occur. Path 1: E7→E6→E2. Path 2: E7→E5→E3→E2. Dm: shedding to renewal ratio of mutant rods, DT : RPE (trophic
pool) carrying capacity, E7: healthy steady-state, E6: steady-state at which all cones are lost, E5: steady-state at which all normal rods are lost, E3: steady-state
at which all cones and normal rods are lost, E2: steady-state at which all photoreceptors are lost. Figure reproduced, with permission and modifications, from
Camacho and Wirkus [22].

ity through (transcritical) bifurcations. Variation of these pa-1044

rameters allows a variety of paths to be traced to total blind-1045

ness, passing through different combinations of equilibrium so-1046

lutions, corresponding either to the rod-cone, cone-rod or si-1047

multaneous form of RP (see Figure 7(c)).1048

The above results suggest potential therapeutic strategies,1049

that could halt disease progression. For example, the model1050

predicts that progression of rod-cone RP requires a decrease in1051

the ratio of shedding to renewal in cones. Therefore, a treatment1052

designed to maintain this ratio might prevent disease progres-1053

sion in patients whose rods and cones are degenerating via this1054

pathway.1055

This model generated two other, noteworthy results. Firstly,1056

small changes in parameter values can lead to markedly differ-1057

ent pathways to blindness, helping to explain the differences1058

in disease progression seen in closely related patients with the1059

same mutation. For example, an increase in the ratio of shed-1060

ding to renewal in cones can change the disease progression1061

from one in which all photoreceptors are lost simultaneously,1062

to one in which cones are lost before rods. Secondly, the model1063

suggests that the reduction in photoreceptor OS length observed1064

in RP is an emergent property of the nonlinear interactions be-1065

tween rods, cones and RPE, rather than simply due to changes1066

in shedding and renewal rates.1067

Lastly, Camacho et al. [21] modified their RP model to1068

include an RdCVF treatment term (see Figure 7(a)). Using1069

optimal control theory, they determined a treatment level that1070

will achieve the desired degree of cone preservation, whilst1071

minimising the RdCVF dose. This is important, since using1072

too large a dose of RdCVF could impair retinal function. A1073

two week treatment period is considered for comparison with1074

Léveillard et al. [67]s experimental results. Simulations, start-1075

ing from different stages in the disease progression, reveal that1076

treatment will have a negligible effect on rod loss, but can sig-1077

nificantly reduce cone loss during the later stages of the disease1078

(when all the rods have been lost), provided the treatment is1079

aggressive enough. It is also possible, using the model, to es-1080

timate the minimum treatment required to achieve the approxi-1081

mate 40% sparing of cones reported in Léveillard et al. [67].1082

5.1.2. The Toxic Substance Hypothesis1083

Another mechanism by which photoreceptor cell death could1084

spread is via the release of toxic substances by dying photore-1085

ceptors. These substances are most likely released into the in-1086

terphotoreceptor matrix, where they are taken up by and, thus,1087

poison neighbouring photoreceptors. It has been suggested that1088

toxic substances may be transmitted between photoreceptors1089

via gap junctions; however, this hypothesis is now in doubt,1090
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since disruption of gap junctions does not seem to affect dis-1091

ease progression [63, 91].1092

Clarke et al. [25] have suggested a one-hit model of neu-1093

ronal cell death for a variety of conditions including RP [see1094

also 26, 27, 28]. Guided by experimental observations which1095

suggest that the risk of (photoreceptor) cell death is either con-1096

stant of decreases exponentially with age, Clarke et al. [25] as-1097

sume that the time at which a neuron dies is random.1098

This assumption can be justified at the biochemical level by1099

the mutant steady-state (MSS) hypothesis, which suggests that1100

mutations result in elevated levels of a pre-apoptotic compound,1101

placing it closer to a critical threshold, above which apoptosis1102

is induced [28]. Random fluctuations in the concentration of1103

this compound may cause it to exceed this threshold, resulting1104

in cell death [28].1105

Burns et al. [18] incorporated the MSS hypothesis into a1106

spatially explicit 1D model, consisting of a pair of PDEs, in1107

which a diffusible toxic factor, produced by dying photorecep-1108

tors and released into the interphotoreceptor matrix, upregulates1109

the production of pre-apoptotic factors in the surrounding pho-1110

toreceptors. Assuming that toxic factor uptake is effectively lin-1111

ear, the toxic factor PDE can be solved analytically, so that the1112

problem reduces to solving a single PDE for the pre-apoptotic1113

factor. Since the pre-apoptotic factor is unable to move between1114

photoreceptors, its PDE lacks terms for diffusion or transport,1115

containing only kinetic terms. Thus, it may be split into N spa-1116

tially dependent ODEs, one for each of the N photoreceptors1117

spanning the domain.1118

In the absence of toxic factor, each of the ODEs is bistable,1119

such that the pre-apoptotic factor concentration can exist sta-1120

bly at either of two steady-state values (see Figure 8(a)). The1121

solution with the lower value (zero) corresponds to the MSS,1122

in which all photoreceptors are assumed to start, whilst the1123

upper (strictly positive) value corresponds to a state in which1124

the photoreceptor is committed to apoptosis. These two sta-1125

ble steady-states are separated by an unstable steady-state. In-1126

creases in the concentration of the toxic factor above a critical1127

threshold cause the lower stable and unstable steady-states to1128

approach one another, coalesce and annihilate, such that the up-1129

per stable steady-state becomes the attractor for the whole sys-1130

tem. Provided the toxic factor concentration remains elevated1131

for long enough, the system will become irreversibly trapped in1132

this steady-state’s basin of attraction (such that it continues to1133

move towards the steady-state), at which point the photorecep-1134

tor is considered to be committed to apoptosis.1135

A stochastic simulation algorithm is used to determine when1136

a photoreceptor in the commitment state will undergo apopto-1137

sis, where the lifetime of each photoreceptor in the commitment1138

state is drawn from either a normal or an exponential distribu-1139

tion. Upon apoptosis, a photoreceptor releases toxic factor into1140

the extracellular space where it evolves over time according to1141

the analytical solution to its associated PDE. The degeneration1142

process is initiated by selecting a single photoreceptor to un-1143

dergo apoptosis. When the lifetime in the commitment state1144

is normally distributed, the decline in photoreceptor number1145

is slow and sigmoidal. However, when it is exponentially dis-1146

tributed, photoreceptors are lost more rapidly, declining expo-1147

nentially, in agreement with the experimental studies mentioned1148

above [25, 28]. This suggests that photoreceptor lifetimes in the1149

apoptosis commitment state are exponentially, rather than nor-1150

mally, distributed. Simulations also demonstrated that when1151

multiple photoreceptors undergo apoptosis at points that are1152

close in space and time, the released toxic factors may have1153

a synergistic effect, committing more photoreceptors to apop-1154

tosis than would occur if the effects were more separated (see1155

Figure 8(b)).1156

The model also predicts a patchy pattern of photoreceptor1157

loss, similar to that often observed in the early stages of RP1158

(see above), with patch diameters similar to those seen in vivo,1159

providing a potential explanation for these patterns (see Figure1160

8(c)).1161

More recently, Lomasko et al. [71, 72] and Lomasko and1162

Lumsden [73] have extended the work of [18] by constructing1163

stochastic models of cytoskeleton-induced neuron death. While1164

these models were not developed specifically for the retina, it1165

is noteworthy that they replicate the exponential and sigmoidal1166

patterns of cell loss measured by Clarke et al. [25].1167

5.1.3. The Oxygen Toxicity Hypothesis1168

The final hypothesis suggests that the initial loss of pho-1169

toreceptors results in a rise in oxygen levels, due to decreased1170

demand, creating a toxic environment for those that remain1171

[109, 116, 117]. These oxygen levels are maintained, since the1172

CC, which is the main source of oxygen for the photorecep-1173

tor containing outer retina, autoregulates poorly in response to1174

hyperoxia [109, 125, 128]. An increase in oxygen levels above1175

normal physiological levels (normoxia) is harmful to retinal tis-1176

sue, since it upsets the redox potential, resulting in increased1177

production of reactive oxygen species which cause damage to1178

lipids, protein and DNA [2, 3, 62, 99].1179

Roberts [92] has created a series of models examining the1180

oxygen toxicity hypothesis. The models are formulated as sys-1181

tems of PDEs, for oxygen concentration, photoreceptor density1182

(or rod and cone densities taken separately) and capillary (CC)1183

surface area per unit volume. The models incorporate the het-1184

erogeneous distribution of rods and cones, whilst a spherical1185

polar coordinate system is used to capture the geometry of the1186

eye. For simplicity, the retina is assumed to be symmetric in1187

the azimuthal direction (for rotations about the axis, passing1188

at a right-angle to the wall of the eye, through the foveal cen-1189

tre) and hence the optic disc is neglected. Oxygen supplied1190

by the CC diffuses freely across the domain and is consumed1191

by photoreceptors at a rate proportional to their density, whilst1192

photoreceptors either remain at or approach their healthy local1193

density under normoxia (unless they are absent, in which case1194

their density remains at zero), but decay exponentially when1195

local oxygen levels rise above a defined hyperoxic threshold.1196

The CC dynamics follow those of the photoreceptors; however,1197

since their rate of decay and regrowth is generally slower than1198

that of the photoreceptors, their dynamics lag behind those of1199

the photoreceptors.1200

The first set of models are posed on a 1D domain, spanning1201

the region between the centre of the fovea and the ora serrata.1202
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Figure 8: Burns et al.’s toxic substance model of RP. (a) graph showing how the time rate of change of pre-apoptotic factor concentration, ∂s/∂t, evolves with
increasing PACF (photoreceptor apoptosis commitment factor), c, concentration. When c = 0 (i), the system has three steady-states; two stable steady-states, s0

1
(corresponding to the MSS) and s0

3 (corresponding to the apoptosis commitment state), separated by an unstable steady-state, s0
2. As c increases past ccrit (iii), s0

1
and s0

2 meet and annihilate, such that only s0
3 remains for c > ccrit (iv). When the system becomes irreversibly trapped by s0

3’s basin of attraction, it is considered to
be committed to apoptosis. (b) graph showing the recruitment of photoreceptors to apoptosis, following three bursts of PACF release, at close points in space and
time. PACF is released at (x, t) = (20, 0), (40, 10) and (60, 5). The light grey surface shows the evolution of PACF concentration in space and time, whilst the dark
grey surface is the c(x, t) = ccrit plane. The black curve on the c(x, t) = 0 plane delimits the photoreceptors which have committed to apoptosis. The PACF bursts act
synergistically, such that more photoreceptors are recruited to apoptosis than in the case where the bursts are more distantly separated in space and time. (c) stochastic
simulation in which photoreceptors in the apoptosis commitment state undergo apoptosis after a time drawn from an exponential distribution. Upon undergoing
apoptosis, a photoreceptor releases a burst of PACF, committing neighbouring cells to apoptosis. Grey regions represent photoreceptors committed to apoptosis and
black regions represent photoreceptors which have undergone apoptosis. The recruitment cascade is initiated by a single PACF burst at (x, t) = (250, 0). The results
demonstrate a patchy loss of photoreceptors, similar to that which is often seen in the early stages of RP. Figures reproduced, with permission (and modification in
(a)), from Burns et al. [18].

Numerical solution and mathematical analysis of the steady-1203

state 1D problem without capillary loss reveals the conditions1204

under which a patch (corresponding to an annulus in 2D) of1205

photoreceptor degeneration will spread or remain stable. It is1206

found that the retina may be divided into a series of 5 concentric1207

stability regions, centred on the fovea (see Figure 9(a)). Starting1208

from the centre of the retina these regions are: the central un-1209

stable region, the near-central stable region, the para/perifoveal1210

unstable region, the mid-peripheral stable region and the pe-1211

ripheral unstable region. Wide patches (with width greater than1212

about one-hundredth of the width of the domain) remain sta-1213

ble to small losses of photoreceptors, provided both boundaries1214

lie within a stable region, and will expand otherwise. There-1215

fore, provided a patch can be classified as wide, its stability1216

properties do not depend upon its width, only the position of its1217

boundaries. Narrow patches (with width less than about one-1218

hundredth of the width of the domain, that is, less than about1219

40 photoreceptors across) are stable within the ‘stable’ regions,1220

and are also stable within ‘unstable’ regions, provided they are1221

sufficiently narrow.1222

Simulations of the dynamic (time-dependent) 1D problem1223

without capillary loss and with an initial patch of photoreceptor1224

loss, together with mathematical analysis, reveal that the wave1225

speed of photoreceptor degeneration is a decreasing function of1226

the photoreceptor density local to the degenerating wavefront.1227

This prediction awaits experimental/clinical confirmation.1228

Numerical solution and mathematical analysis of the steady-1229

state 1D problem including capillary loss, reveals the counter-1230

intuitive result that a patch of capillary loss must be essentially1231

coincident with a patch of photoreceptor loss in order to sta-1232

bilise it, in those cases where it would otherwise be unstable1233

(given the assumption that the capillary loss does not extend1234

beyond the degenerate photoreceptor patch). This is surprising,1235

as it would have been natural to assume that a substantial region1236

of capillary loss, within a patch of photoreceptor loss, would be1237

sufficient to prevent further hyperoxia-driven photoreceptor de-1238

generation. However, the above result suggests that this is not1239

the case. This prediction could be tested experimentally in an1240

animal model by using a laser to ablate the choroid within a1241

patch of photoreceptor loss and also suggests a potential treat-1242
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Figure 9: Roberts’s oxygen toxicity model of RP. (a) diagram to show the arrangement of stable and unstable regions within the retina. (b) diagrams to show some
of the in vivo patterns of visual field loss. Scotomas (blind spots) are shaded and areas of preserved vision are shown in white. (c) in silico results. Graphs show
the photoreceptor density at earlier (left) and later (right) stages (the calibration of the heat map is given by the colour bar on the right, where 1 corresponds to
1.11 × 105 photoreceptors/mm2). The problem is solved on a spherical surface and projected onto the x-y plane for visualisation. Pattern 1B and the later stage of
pattern 3 are replicated; however, pattern 2 cannot be replicated (in the example shown, a partially degenerate disc recovers fully, in the sense of regaining vitality),
the retina being resistant to the spread of photoreceptor degeneration in the mid-peripheral stable region. Figures reproduced, with permission and modifications,
from Roberts [92].

ment strategy to arrest the progression of the disease in humans.1243

Dynamic simulations including capillary loss in 1D demon-1244

strate that capillary loss may prevent, halt, delay or partially re-1245

verse (in the sense of restoring photoreceptor vitality, given that1246

new photoreceptors cannot be generated) photoreceptor loss.1247

Further experimental work is required to quantify the rate of1248

CC degeneration and hence to determine its effect on photore-1249

ceptor degeneration.1250

The second set of models extends the previous models to1251

2D, spanning the region between the centre of the fovea and the1252

ora serrata, whilst assuming that the capillary density remains1253

constant. Simulations of the dynamic 2D problem demonstrate1254

the spatio-temporal patterns of degeneration that the oxygen1255

toxicity hypothesis can give rise to. In addition to the initial re-1256

moval of annulus and disc shaped patches of photoreceptors,1257

the hyperoxia-independent mutation-induced degeneration of1258

either rods and/or cones is also included in some simulations,1259

to represent the rod-cone, cone-rod and simultaneous forms of1260

RP. The patterns formed are compared with those classified by1261

Grover et al. [48] in their study of visual loss in RP patients.1262

Grover et al. identified three characteristic patterns or visual1263

field loss: pattern 1 involves concentric loss of visual field,1264

sometimes accompanied by a perifoveal or parafoveal ring sco-1265

toma (blind spot); pattern 2 begins with a nasal or temporal1266

restriction, out from which an arcuate (bow shaped) scotoma1267

winds through the mid-periphery; lastly, pattern 3 starts with a1268

mid-peripheral ring scotoma, which expands either temporally1269

or inferiorly, leaving a U- or n-shaped peripheral visual field,1270

the arms of which retract until peripheral vision is lost (see Fig-1271

ure 9(b)). In all cases, central vision is best preserved, though1272

it is eventually lost unless preceded by patient mortality.1273

It is found that mutation-induced rod degeneration results1274

in pattern 1 degeneration, including a para/perifoveal ring sco-1275

toma (see Figure 9(c)(top)), whilst patch loss in, or overlapping,1276

the para/perifoveal region may also spread to form a para/perifoveal1277

ring scotoma. Patch loss near the ora serrata spreads around the1278

periphery of the retina, mimicking the latter stage of pattern1279

3 degeneration (see Figure 9(c)(bottom)). Mutation-induced1280

cone loss results in degeneration of the central retina and may1281

in some cases also result in degeneration of the peripheral un-1282

stable region. These results are consistent with the cone-rod1283

dystrophy degeneration patterns described by Hamel [50]. It is1284

not possible, with this model, to stimulate preferential loss from1285

the middle of the mid-periphery associated with the intermedi-1286

ate stage of pattern 2 and the initial stage of pattern 3 (see Figure1287

9(c)(middle)). By isolating the oxygen toxicity mechanism, in1288

a way that would not have been possible experimentally, these1289

models highlight the strengths and weaknesses of this hypoth-1290

esis. The replication of patterns seen in vivo demonstrates the1291

sufficiency (though not the necessity) of this mechanism to gen-1292

erate certain patterns of degeneration, whilst the failure to repli-1293

cate other patterns indicates that other mechanisms are likely to1294

be at play here. This provides a useful insight for the develop-1295

ment of future treatment strategies.1296

Both 1D and 2D models predict that treatment with antiox-1297

idants and/or trophic factors could prevent, halt, delay or par-1298

tially reverse (in the sense of restoring photoreceptor vitality)1299

photoreceptor loss, depending upon the strength and timing of1300
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the treatment. Since the analysis and simulations indicate that1301

the para/perifoveal and peripheral unstable regions are the most1302

susceptible to hyperoxic degeneration, this suggests that, if pos-1303

sible, treatment should preferentially target these regions.1304

A natural way to extend this modelling work would be to1305

adapt the modelling framework, with its incorporation of the1306

distribution of rods and cones, to consider the dynamics of dis-1307

ease progression under the trophic factor and toxic substance1308

hypotheses. These models could perhaps explain the other ob-1309

served patterns of photoreceptor loss in RP. The latter hypoth-1310

esis has particular potential to explain the preferential loss of1311

photoreceptors from the middle of the mid-periphery seen in1312

progression patterns 2 and 3, as it is here that the toxin produc-1313

ing rods are most densely packed. This could then be followed1314

by more comprehensive models which combine the three RP1315

hypotheses. Following sufficient benchmarking, such models1316

could be used to inform treatment decisions, parametrising the1317

model to make it patient specific.1318

Perhaps the most useful data, for informing future mod-1319

elling studies, could be derived from a detailed longitudinal1320

clinical study, measuring the precise positions of the bound-1321

aries of degenerate photoreceptor, RPE and CC patches, at reg-1322

ular intervals throughout the disease progression, together with1323

the rod and cone densities across the retina at each stage, in1324

a range of patients. This could be done using optical coher-1325

ence tomography and adaptive optics scanning light ophthal-1326

moscopy [69, 86]. Combining this with visual field tests, multi-1327

focal electroretinograms and autofluorescence imaging would1328

enhance these studies still further [94]. This would yield better1329

parametrised models, which have the potential to more accu-1330

rately predict the pattern and speed of degeneration. Present1331

studies tend to focus on the patterns of visual field loss, rather1332

than changes in the photoreceptor density, making it difficult1333

to determine precise measurements for the retinal locations af-1334

fected. In addition, the early stages in the disease progression1335

are often not recorded (largely because symptoms tend not to1336

manifest until later in life) and the intervals between measure-1337

ments are too long (it would be helpful if observations could be1338

made on at least an annual basis).1339

5.2. Choroidal Neovascularisation1340

Choroidal neovascularisation (CNV) is a process which oc-1341

curs during the advanced stage of neovascular (wet) AMD [55].1342

It involves the growth and spread of the choroid past Bruch’s1343

membrane (BM), which in health forms a barrier between the1344

choroid and the RPE, into the retina. The choroidal vessels1345

penetrating the retina are abnormally permeable and fragile,1346

leading to the build-up of fluid and subsequent damage to the1347

retina. The physiological and biochemical mechanisms under-1348

lying CNV are not well understood, whilst present treatment1349

strategies show limited success [29].1350

Flower et al. [42] have constructed a model which relates1351

the blood flow in the CNV to that in the underlying CC. The1352

CC is modelled as a (2D) planar porous medium, with a set1353

of sparsely distributed inflows and outflows (arranged accord-1354

ing to the histology of a sample human eye), which supply and1355

drain blood from deeper within the choroid, whilst the CC is1356

connected to the CNV via capillary-like vessels. The model1357

predicts that reducing the blood flow in an arteriole/venule, feed-1358

ing/draining the CC, by as little as 50% could be sufficient to1359

significantly reduce or halt blood flow in an overlying CNV,1360

whose penetrating vessels neighbour the arteriole/venule.1361

The model has clear implications for potential treatment1362

strategies. Flower et al. [42] suggest that it may be better to1363

target the underlying choroid, rather than destroying the CNV,1364

which often results in recurrence. At present, treatment only1365

targets arterioles, whereas the model suggests that ablating venules1366

could be just as effective. If the model could be tailored to in-1367

dividual patients, then it could potentially be used to determine1368

which arterioles and venules to target, optimising treatment.1369

Shirinifard et al. [101] have developed a 3D computational1370

model of the choroid and outer retina in which they investigate1371

the role played by adhesion in CNV progression. The model is1372

of the cellular Potts type, where each model ‘cell’ is composed1373

of a set of (simply) connected points on a pre-defined lattice.1374

The model ‘cells’ may either represent biological cells, parts of1375

cells or fluid-containing regions, their positions being updated1376

stochastically over time, subject to energy (e.g. adhesion ener-1377

gies) and other constraints. The model accounts for vascular1378

cells (of the CC), stalk cells (of the CNV), tip cells, RPE cells,1379

photoreceptor OS cell parts, photoreceptor IS cell parts, BM,1380

medium (which fills the spaces unoccupied by cells or BM),1381

oxygen, VEGF and matrix metalloproteinases (MMP).1382

Each simulation begins either with or without a single tip1383

cell (an endothelial cell which leads other endothelial cells upon1384

activation of sprouting angiogenesis), which degrades the BM1385

via the secretion of MMP, allowing it to penetrate the retina. In1386

each case, the simulation time covers a year’s disease progres-1387

sion, the first three months of which are regarded as the early1388

phase and the last three months of which are denoted the late1389

phase.1390

In both the early and late phases, one of three patterns of1391

vascularisation may occur: type 1 (sub-RPE) CNV, with a vas-1392

cular layer between BM and the RPE; type 2 (sub-retinal) CNV,1393

with a vascular layer between the RPE and the photoreceptors;1394

and type 3 (combined pattern) CNV, which combines both of1395

the above vascular layers. The model accounts for the adhesion1396

between RPE cells and BM (RPE-BM), between neighbouring1397

RPE cells (RPE-RPE) and between RPE cells and photorecep-1398

tor OSs (RPE-POS, see Figure 10(a)). All three pairings involve1399

labile adhesion (without junctional structures), whilst the first1400

two also involve plastic coupling (with junctional structures).1401

The combination of these two types of adhesion is known as1402

junctional adhesion. This gives rise to five adhesion parame-1403

ters, corresponding to each of the adhesion types between each1404

sort of structure. By varying these parameters, the effects of ad-1405

hesion failure upon disease progression can be determined (see1406

Figure 10(b)).1407

A total of six scenarios are observed, as judged by the pat-1408

tern of vascularisation at the early and late phases: stable type1409

1 (early and late type 1), early type 1 to late type 2 (see Figures1410

10(c) and (d)), early type 1 to late type 3, stable type 2 (early1411

and late type 2), early type 2 to late type 3, and stable type 31412

(early and late type 3). It is found that the combination of the1413
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Figure 10: Shirinifard et al.’s model of CNV. (a) diagram showing the adhesive coupling between retinal components. Plastic coupling involves junctional structures,
whilst labile adhesion does not. Junctional adhesion is the combination of plastic coupling and labile adhesion. (b) sensitivity analysis showing the dependence of
the CNV initiation probability upon the strength of the RPE-POS, RPE-BM and RPE-RPE adhesive coupling. Red corresponds to a probability of 1 and purple to a
probability of 0. The black region (top-front corner) demarcates the locus of normal adhesion. The isosurfaces correspond to initiation probabilities of 025, 0.5 and
0.75, from front to back. (c) and (d) snapshots from a simulation showing type 1 (sub-RPE) to type 2 (sub-retinal) CNV progression. PIS and POS are light purple,
RPE is brown, stalk cells are green, vascular (CC) cells are red and BM is light blue. (c) 3D snapshot at month 6. The open arrow indicates a location at which stalk
cells have migrated into the sub-retinal space. (d) 2D snapshot at month 12. The black arrow marks the sub-RPE capillary network, whilst the open arrows mark
the sub-retinal capillary network. PIS: photoreceptor inner segment, POS: photoreceptor outer segment, RPE: retinal pigment epithelium, BM: Bruch’s membrane,
RBaL: basal lamina of the RPE, RBaM: basement membrane of the RPE, CC: choriocapillaris. Figures reproduced, with permission (and modifications in (a) and
(b)), from Shirinifard et al. [101].

presence of a tip cell and the occurrence of adhesion failures1414

are both necessary and sufficient for CNV to initiate, and that1415

severe impairment of any one of the three adhesion pairings can1416

independently induce CNV. In particular, reduced RPE-BM ad-1417

hesion results in early type 1, reduced RPE-RPE or RPE-POS1418

adhesion results in early type 2, and simultaneous reduction of1419

RPE-RPE and RPE-BM results in either early type 1 or early1420

type 2, which may often progress to late type 3. Simulations1421

also reveal that the plastic coupling strengths have a relatively1422

minor effect on the ability of the retina to resist CNV, with labile1423

adhesion playing the most important role.1424

Many previous studies have suggested that CNV results ei-1425

ther from the overexpression of VEGF or holes in BM [101].1426

Simulations demonstrate that overexpression of VEGF increases1427

the probability of CNV initiation, but that the early and late vas-1428

cular patterns do not change, whilst holes in BM are insufficient1429

to initiate CNV when all the adhesions are normal. In addition,1430

neither the threshold for RPE hypoxia, nor RPE hypoxic sig-1431

nalling, affects the results. Thus, the model provides important1432

insights into CNV.1433

Simulations show good agreement with experimental and1434

clinical data, though there are some discrepancies. For exam-1435

ple, the type 1 to type 2 progression has not been observed clin-1436

ically. It may be that this progression does occur, but that it is1437
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difficult to detect, requiring more frequent observations over a1438

longer period of time [101].1439

Future modelling work could include blood flow and its ef-1440

fect on capillary development in a similar way to McDougall1441

et al. [77] and Watson et al. [119] (Section 4.1) and perhaps also1442

blood flow within the CC as in Zouache et al. [131] (Section 3.3,1443

noting that Shirinifard et al.’s model assumes that oxygen levels1444

are constant throughout the blood vessels). Additionally, basal1445

deposits such as hard and soft drusen, together with fibrosis (the1446

formation of extracellular matrix) could also be included in fu-1447

ture models [101].1448

Experimental quantification of the adhesivities between the1449

cells of the retina and how these change under pathological1450

conditions would allow more effective validation of the model,1451

together with more clinically accurate predictions. Shirinifard1452

et al. suggest that these measurements could be made non-invasively1453

by examining changes in RPE and CC morphology, or changes1454

in autofluorescence due to lipid accumulation.1455

In time, and following extensive trials, this model, or a re-1456

fined version thereof, could become a useful clinical tool, al-1457

lowing for more accurate determination of each patient’s pathol-1458

ogy and, hence, inform the selection of the most appropriate1459

treatment strategy (i.e. personalised medicine). Further, Shirini-1460

fard et al. suggest that the model could be continuously im-1461

proved using data from each clinical or experimental case to1462

which it is applied (e.g. using machine learning).1463

6. Perspective and Future Directions1464

The mathematical and computational models discussed in1465

this paper have uncovered a wealth of insights into retinal phys-1466

iology and biochemistry, across a range of scenarios, spanning1467

the healthy, developmental and diseased states. Whilst models1468

are developed with a particular state in mind, it is often the case1469

that they may be adapted to examine one or both of the other1470

two states. In particular, many of the models of the healthy and1471

developing retina can be used to explore pathological scenarios.1472

In the healthy state, theoretical models have enabled us to1473

explain the retinal oxygen distribution in terms of the varia-1474

tion in oxygen demand between different retinal layers, allow-1475

ing the identification of the chief oxygen consumers and an1476

investigation of how consumption varies between light adap-1477

tation and dark adaptation. Further, it has been demonstrated1478

that the protein neuroglobin may play an important role in the1479

prevention of hypoxia within the retina, through its ability to1480

transport oxygen from regions where it is rich to those where1481

it is poor, its oxygen affinity being near-optimal for this pro-1482

cess. Modelling of blood flow within the choriocapillaris has1483

demonstrated the effect of lobule geometry upon the flow prop-1484

erties within each lobule, suggesting how blood flow will vary1485

across the eye with geographical variation in lobule geome-1486

try. This may also be a factor in the spatially heterogeneous1487

progression of diseases such as retinitis pigmentosa (RP) and1488

age-related macular degeneration (AMD). Lastly, it has been1489

demonstrated that the diurnal variation in photoreceptor outer1490

segment (OS) length may be regulated by the oxygen and phos-1491

phocreatine shuttle-derived ATP landscape within the photore-1492

ceptor, but that neither of these factors in isolation is sufficient1493

to explain this variation. It is shown that inefficiencies in mi-1494

tochondrial function or OS energy utilisation give rise to OS1495

shortening, a phenomenon observed in many retinal diseases1496

such as RP and AMD.1497

In the developing state, mathematical and computational1498

models of retinal angiogenesis have captured the in vivo dy-1499

namics of retinal vascular plexus formation with a remarkable1500

degree of accuracy. The importance of perfusion, plexus re-1501

modelling, and convected and conducted stimuli for the devel-1502

opment of highly structured vascular trees is demonstrated. The1503

model is also used to predict the effect of various parameter val-1504

ues and model components upon development. For example, if1505

the input arterial haematocrit is increased, or the rate of tissue1506

oxygen consumption is decreased, hyperoxia develops, leading1507

to the formation of large capillary-free zones. The former case1508

is equivalent to retinopathy of prematurity and the latter to oxy-1509

gen induced retinopathy, producing similar predicted outcomes1510

to those seen in these conditions.1511

In the diseased state, mathematical and computational mod-1512

els have been used to investigate RP and choroidal neovascular-1513

isation (CNV). In RP, models have explored the trophic factor,1514

toxic substance and oxygen toxicity hypotheses. Trophic factor1515

models demonstrate the rhythmic shedding and renewal of pho-1516

toreceptors seen in vivo. The photoreceptor (cone, normal rod1517

and mutant rod) shedding to renewal ratios and trophic factor1518

carrying capacity are found to be key in determining the ad-1519

vancement of RP through various disease states, providing po-1520

tential clues to treatment. The toxic substance model is able1521

to replicate the exponential decline in photoreceptor number1522

seen in experiments, together with the patchy photoreceptor1523

loss seen in the early stages of RP. The oxygen toxicity model1524

suggests that this mechanism is sufficient to explain some, but1525

not all of the in vivo spatio-temporal patterns of degeneration,1526

demonstrating the strengths and weaknesses of this hypothesis.1527

Lastly, the CNV model demonstrates that adhesion failures be-1528

tween outer retinal components, together with the presence of1529

a tip cell, are necessary and sufficient conditions for CNV to1530

initiate.1531

The above studies demonstrate the power of mathematical1532

and computational modelling in investigating the structure and1533

function of the retina. Despite the advances which have been1534

made, theoretical modelling has yet to achieve its full potential1535

in this area, current work representing merely the tip of the ice-1536

berg, given the possibilities which have yet to be explored. In1537

the healthy state, much work remains to be done in modelling1538

processes such as the visual cycle, photoreceptor-RPE interac-1539

tions, pre-processing of visual information by the retina and1540

aging of the retina. In development, there is scope for exten-1541

sive work targeted at understanding how the complex layered1542

structure of the retina arises, including retinal mosaic forma-1543

tion, together with the establishment of the full 3D structure of1544

the retinal capillary layers. Many retinal diseases start to take1545

effect during the developmental stage, therefore extensive mod-1546

elling of retinal development will be required in order to fully1547

understand these pathologies. Substantial further work remains1548

for RP and AMD, whilst other disease states such as diabetic1549
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retinopathy, retinopathy of prematurity and retinoblastoma are1550

largely untouched. Ultimately, the aim would be to produce a1551

collection of validated models, individually detailing an impor-1552

tant aspect of the retina, which can subsequently be coupled, as1553

required, to enable retinal modelling that can encompass devel-1554

opment, health and the full range of disease states. These could1555

then be used as clinical tools, to inform personalised treatment1556

strategies.1557

In order to achieve these aims, greater attention to this area1558

is required from the mathematical and computational modelling1559

communities, together with an increase in ophthalmic clini-1560

cians and experimentalists ready to work with theoreticians to1561

parametrise and validate their models and to test model predic-1562

tions (thus completing the experiment/modelling cycle, see Fig-1563

ure 1). At present, whilst a lot of data are available on the retina,1564

many of the parameters which are key to forming accurate mod-1565

els have yet to be precisely measured, despite advances in ex-1566

perimental, diagnostic and imaging techniques rendering these1567

measurements tractable. As experimental/theoretical collabo-1568

rations increase, so too will the insights which can be obtained1569

into the retina, making possible discoveries which neither set of1570

disciplines could have achieved on its own.1571

Acknowledgements1572

We gratefully acknowledge the Engineering and Physical1573

Sciences Research Council (EPSRC) in the UK for funding1574

through a studentship at the Systems Biology programme of1575

the University of Oxford’s Doctoral Training Centre P.A.R.1576

[1] Abrámoff, M. D., Mullins, R. F., Lee, K., Hoffmann, J. M., Sonka, M.,1577

Critser, D. B., Stasheff, S. F., Stone, E. M., 2013. Human photoreceptor1578

outer segments shorten during light adaptation. Invest. Ophthalmol. Vis.1579

Sci. 54 (5), 3721–3728.1580

[2] Ames, B. N., Shigenaga, M. K., Hagen, T. M., 1993. Oxidants, antiox-1581

idants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci.1582

90 (17), 7915–7922.1583

[3] Ames, B. N., Shigenaga, M. K., Hagen, T. M., 1995. Mitochondrial1584

decay in aging. Biochim. Biophys. Acta. 1271 (1), 165–170.1585

[4] Anderson, B., 1968. Ocular effects of changes in oxygen and carbon1586

dioxide tension. Trans. Am. Ophthalmol. Soc. 66, 423–474.1587

[5] Anderson, B., Saltzman, H. A., 1964. Retinal oxygen utilization mea-1588

sured by hyperbaric blackout. Arch. Ophthalmol. 72 (6), 792–795.1589

[6] Aubert, M., Chaplain, M. A. J., McDougall, S. R., Devlin, A., Mitchell,1590

C. A., 2011. A continuum mathematical model of the developing murine1591

retinal vasculature. Bull. Math. Biol. 73, 2430–2451.1592

[7] Band, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H.,1593

Foss, A. J. E., 2009. Intracellular flow in optic nerve axons: A mech-1594

anism for cell death in glaucoma. Invest. Ophthalmol. Vis. Sci. 50 (8),1595

3750–3758.1596

[8] Barton, A., Fendrik, A. J., 2015. Retinogenesis: Stochasticity and the1597

competency model. J. Theor. Biol. 373 (0), 73–81.1598

[9] Bassi, C. J., Powers, M. K., 1990. Shedding of rod outer segments is1599

light-driven in goldfish. Invest. Ophthalmol. Vis. Sci. 31 (11), 2314–1600

2319.1601

[10] Braun, R. D., Linsenmeier, R. A., Goldstick, T. K., 1995. Oxygen con-1602

sumption in the inner and outer retina of the cat. Invest. Ophthalmol.1603

Vis. Sci. 36 (3), 542–554.1604

[11] Braun, R. J., 2012. Dynamics of the tear film. Annu. Rev. Fluid Mech.1605

44 (1), 267–297.1606

[12] Braun, R. J., King-Smith, P. E., Begley, C. G., Li, L., Gewecke, N. R.,1607

2015. Dynamics and function of the tear film in relation to the blink1608

cycle. Prog. Retin. Eye. Res. 45, 132–164.1609

[13] Brunori, M., Vallone, B., 2007. Neuroglobin, seven years after. Cell.1610

Mol. Life Sci. 64, 1259–1268.1611

[14] Burd, H. J., Regueiro, R. A., 2015. Finite element implementation1612

of a multiscale model of the human lens capsule. Biomech. Model1613

Mechanobiol., 1–16.1614

[15] Burmester, T., Hankeln, T., 2004. Neuroglobin: A respiratory protein of1615

the nervous system. News Physiol. Sci. 19 (3), 110–113.1616

[16] Burmester, T., Hankeln, T., 2009. What is the function of neuroglobin?1617

J. Exp. Biol. 212 (10), 1423–1428.1618

[17] Burmester, T., Weich, B., Reinhardt, S., Hankeln, T., 2000. A vertebrate1619

globin expressed in the brain. Nature 407 (6803), 520–523.1620

[18] Burns, J., Clarke, G., Lumsden, C. J., 2002. Photoreceptor death: Spa-1621

tiotemporal patterns arising from one-hit death kinetics and a diffusible1622

cell death factor. Bull. Math. Biol. 64, 1117–1145.1623

[19] Camacho, E., Rand, R., Howland, H., 2004. Dynamics of two van der1624

Pol oscillators coupled via a bath. Int. J. Solids Struct. 41 (8), 2133–1625

2143.1626
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P., Poch, O., Lambrou, G., Sahel, J. A., 2004. Identification and charac-1768

terization of rod-derived cone viability factor. Nat. Genet. 36 (7), 755–1769

759.1770

[68] Linsenmeier, R. A., 1986. Effects of light and darkness on oxygen dis-1771

tribution and consumption in the cat retina. J. Gen. Physiol. 88 (4), 521–1772

542.1773

[69] Liu, B. S., Tarima, S., Visotcky, A., Pechauer, A., Cooper, R. F., Land-1774

sem, L., Wilk, M. A., Godara, P., Makhijani, V., Sulai, Y. N., Syed,1775

N., Yasumura, G., Garg, A. K., Pennesi, M. E., Lujan, B. J., Dubra,1776

A., Duncan, J. L., Carroll, J., 2014. The reliability of parafoveal cone1777

density measurements. Br. J. Ophthalmol. 98 (8), 1126–1131.1778

[70] Liu, D., Wood, N. B., Witt, N., Hughes, A. D., Thom, S. A., Xu, X. Y.,1779

2009. Computational analysis of oxygen transport in the retinal arterial1780

network. Curr. Eye Res. 34 (11), 945–956.1781

[71] Lomasko, T., Clarke, G., Lumsden, C. J., 2007. One-hit stochastic1782

decline in a mechanochemical model of cytoskeleton-induced neuron1783

death I: Cell-fate arrival times. J. Theor. Biol. 249 (1), 1–17.1784

[72] Lomasko, T., Clarke, G., Lumsden, C. J., 2007. One-hit stochastic1785

decline in a mechanochemical model of cytoskeleton-induced neuron1786

death II: Transition state metastability. J. Theor. Biol. 249 (1), 18–28.1787

[73] Lomasko, T., Lumsden, C. J., 2009. One-hit stochastic decline in a1788

mechanochemical model of cytoskeleton-induced neuron death III: Dif-1789

fusion pulse death zones. J. Theor. Biol. 256 (1), 104–116.1790

[74] Macdougall, L., 2015. Mathematical modelling of retinal metabolism.1791

Ph.D. thesis, University of Nottingham.1792

[75] Maggelakis, S. A., Savakis, A. E., 1996. A mathematical model of1793

growth factor induced capillary growth in the retina. Mathl. Comput.1794

Modelling 24 (7), 33–41.1795

[76] Maggelakis, S. A., Savakis, A. E., 1999. A mathematical model of reti-1796

nal neovascularization. Mathl. Comput. Modelling 29 (2), 91–97.1797

[77] McDougall, S. R., Watson, M. G., Devlin, A. H., Mitchell, C. A., Chap-1798

lain, M. A. J., 2012. A hybrid discrete-continuum mathematical model1799

of pattern prediction in the developing retinal vasculature. Bull. Math.1800

Biol. 74, 2272–2314.1801

[78] McGuire, B. J., Secomb, T. W., 2001. A theoretical model for oxygen1802

transport in skeletal muscle under conditions of high oxygen demand. J.1803

Appl. Physiol. 91 (5), 2255–2265.1804

[79] Mervin, K., Stone, J., 2002. Regulation by oxygen of photoreceptor1805

death in the developing and adult C57BL/6J mouse. Exp. Eye Res.1806

75 (6), 715–722.1807

[80] Meskauskas, J., Repetto, R., Siggers, J. H., 2012. Shape change of the1808

vitreous chamber influences retinal detachment and reattachment pro-1809

cesses: Is mechanical stress during eye rotations a factor? Invest. Oph-1810

thalmol. Vis. Sci. 53 (10), 6271–6281.1811

[81] Michaelson, I., 1954. Retinal circulation in man and animals. Thomas.1812

[82] Mohand-Saı̈d, S., Deudon-Combe, A., Hicks, D., Simonutti, M., Forster,1813
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