
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.41.61.111

This content was downloaded on 16/08/2016 at 14:41

Please note that terms and conditions apply.

You may also be interested in:

A method for reconstructing tomographic images of evoked neural activity with electrical impedance

tomography using intracranial planar arrays

Kirill Y Aristovich, Gustavo Sato dos Santos, Brett C Packham et al.

Use of statistical parametric mapping (SPM) to enhance electrical impedance tomography (EIT) image

sets

R J Yerworth, Y Zhang, T Tidswell et al.

Investigation of potential artefactual changes in measurements of impedance changes during evoked

activity: implications to electrical impedance tomography of brain function

Kirill Y Aristovich, Gustavo S Dos Santos and David S Holder

An electrode addressing protocol for imaging brain function with electrical impedance tomography

L Fabrizi, A McEwan, T Oh et al.

Modelling for imaging neuronal depolarization by electrical and magnetic detection impedance

tomography

O Gilad, L Horesh and D S Holder

Optimal choice of the regularization parameter for linear EIT of brain function

Juan-Felipe P J Abascal, Simon R Arridge, Richard H Bayford et al.

Empirical validation of statistical parametric mapping for group imaging of fast neural activity

using electrical impedance tomography

View the table of contents for this issue, or go to the journal homepage for more

2016 Physiol. Meas. 37 951

(http://iopscience.iop.org/0967-3334/37/6/951)

Home Search Collections Journals About Contact us My IOPscience

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/79518566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/0967-3334/35/6/1095
http://iopscience.iop.org/article/10.1088/0967-3334/35/6/1095
http://iopscience.iop.org/article/10.1088/0967-3334/28/7/S11
http://iopscience.iop.org/article/10.1088/0967-3334/28/7/S11
http://iopscience.iop.org/article/10.1088/0967-3334/36/6/1245
http://iopscience.iop.org/article/10.1088/0967-3334/36/6/1245
http://iopscience.iop.org/article/10.1088/0967-3334/30/6/S06
http://iopscience.iop.org/article/10.1088/0967-3334/30/6/S14
http://iopscience.iop.org/article/10.1088/0967-3334/30/6/S14
http://iopscience.iop.org/article/10.1088/0967-3334/29/11/007
http://iopscience.iop.org/0967-3334/37/6
http://iopscience.iop.org/0967-3334
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


951

Physiological Measurement

Empirical validation of statistical parametric 
mapping for group imaging of fast neural 
activity using electrical impedance 
tomography

B Packham1, G Barnes2, G Sato dos Santos1, K Aristovich1, 
O Gilad1, A Ghosh1, T Oh1 and D Holder1

1 Department of Medical Physics & Bioengineering, University College London, UK
2 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University 
College London, UK

E-mail: b.packham@ucl.ac.uk

Received 16 December 2015, revised 17 March 2016
Accepted for publication 5 April 2016
Published 20 May 2016

Abstract
Electrical impedance tomography (EIT) allows for the reconstruction of 
internal conductivity from surface measurements. A change in conductivity 
occurs as ion channels open during neural activity, making EIT a potential tool 
for functional brain imaging. EIT images can have  >10 000 voxels, which 
means statistical analysis of such images presents a substantial multiple testing 
problem. One way to optimally correct for these issues and still maintain the 
flexibility of complicated experimental designs is to use random field theory. 
This parametric method estimates the distribution of peaks one would expect 
by chance in a smooth random field of a given size. Random field theory has 
been used in several other neuroimaging techniques but never validated for 
EIT images of fast neural activity, such validation can be achieved using non-
parametric techniques. Both parametric and non-parametric techniques were 
used to analyze a set of 22 images collected from 8 rats. Significant group 
activations were detected using both techniques (corrected p  <  0.05). Both 
parametric and non-parametric analyses yielded similar results, although 
the latter was less conservative. These results demonstrate the first statistical 
analysis of such an image set and indicate that such an analysis is an approach 
for EIT images of neural activity.
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1. Introduction

Electrical impedance tomography (EIT) is an emerging medical imaging technique which 
allows for the reconstruction of the distribution of conductivity, or changes in this, from  
surface measurements. This is achieved by the application of a constant current to a series 
of surface electrodes, with simultaneous recording of the resulting voltages. As the applied 
current is constant, changes in the measured voltage can be used to determine changes in the 
internal conductivity (Bayford 2006). Ideally, one independent measurement is needed for 
each voxel in the reconstructed image. However, while images typically contain  >10 000 
voxels, it is not usually practical to have more than 30–60 electrodes. This yields up to one 
thousand or so independent measurements, so that the inverse solution is under-determined. 
As a result, the spatial resolution is typically about 5–10% of the image diameter, and so is less 
than modalities such as MRI. Nonetheless, EIT has the advantages of a high temporal resolu-
tion (<1 ms), no ionizing radiation, low cost and portability (Lionheart 2004). Consequently, 
EIT has been proposed for multiple applications in biomedicine, including imaging of  
pulmonary perfusion (Nguyen et al 2012), gastric emptying (Smallwood et al 1994), breast 
(Zou and Guo 2003) and prostate malignancy (Borsic et al 2010) and acute cerebral stroke 
(Malone et al 2014). It is currently in clinical use for imaging lung inflation as a means of 
monitoring invasive ventilation (Frerichs 2000, Luecke et al 2012).

1.1. EIT of neural activity

Among the proposed applications of EIT is its use for the imaging of neural activity and asso-
ciated haemodynamic changes (Tidswell et al 2001). Impedance has been shown to change 
during neural activity in modeling studies (Liston et  al 2012), peripheral nerve (Cole and 
Curtis 1939, Gilad et al 2009), and cerebral cortical tissue (Adey et al 1962, Klivington and 
Galambos 1968, Oh et al 2011). This impedance change is caused by the opening of ion chan-
nels during action potentials and post-synaptic potentials. In peripheral nerve, the changes are 
up to  −1% (Gilad et al 2009, Oh et al 2011); however, the changes in the brain, recorded with 
scalp or subdural electrodes, are diminished by two or more orders of magnitude. This is due 
to volume conduction and the diversion of applied current, by the skull, so that a large propor-
tion does not pass into the brain. Recently, the UCL EIT research group has produced tomo-
graphic images of fast neural activity, using EIT (Gilad et al 2010, Oh et al 2011, Aristovich 
et al 2016). However, the statistical analysis of this work presents a considerable multiple 
testing problem, due to the nature of EIT image reconstruction.

Commonly, in EIT image reconstruction a ‘sensitivity matrix’ is employed; a linear 
approximation is used to relate a map of small conductivity changes, δσ , within a finite- 
element method (FEM) mesh with respect to a baseline conductivity distribution, σ0, to 
changes in boundary voltages, δv:

σδ δ= Av ,

where A is the sensitivity matrix, an m-by-n matrix, where m is the size of the collected 
data, typically  <1000, and n the size of the number of tetrahedra in the FEM mesh,  
typically  >10 000.
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This formulation is referred to as the forward problem, with the pseudoinversion of A allow-
ing for calculation of the conductivity from the measured voltage changes. As the problem is 
underdetermined and the solution is ill-posed, the pseudo-inverse is performed with regulari-
zation of A (Lionheart et al 2005). A critical component in minimizing errors in the forward 
solution is ensuring a sufficient number of elements are present in the FEM mesh, which 
can be greater than several million elements or voxels. This has previously been explored by 
assessing mesh convergence, which relates to refining the element size near the electrodes 
until the convergence error reaches a required precision (Aristovich et al 2014).

In this study, we are concerned with the construction of statistical parametric maps, which 
involves a mass-univariate approach: the same General Linear Model (GLM) is applied at 
each voxel. This gives rise to images consisting of thousands of statistical tests—one for each 
voxel. These numerous statistical tests give rise to an inflated false positive rate. For example 
at a test wise significance level of 0.05 and 10 000 independent test; then by definition even if 
there is no experimental effect one could expect up to 500 significant findings.

1.2. Analysis of EIT images

To date, the only application of mass-univariate analysis to EIT images has been first-level 
analysis of haemodynamic responses, whereas the image set presented here relates directly to 
fast neural activity. Zhang et al undertook first-level analysis on simulated EIT images of hae-
modynamic responses, both without and with added noise. The employment of SPM allowed 
for the localization of significant changes whose center were  <8.5% displaced from the simu-
lated perturbation’s center (Zhang et al 2005). Similarly, Yerworth et al undertook first-level 
analysis on simulated, tank phantom, and human data of visual evoked potentials secondary 
to checkerboard stimulation in 14 healthy adults. In both the simulation and tank experiments, 
averaged EIT images were deemed comparable to SPMs (statistical parametric maps) and 
resulted in a significant area in the occipital region of the head (p  <  0.001). However, the SPM 
results for human data, as with the EIT images, were seemingly artefactual, with significant 
results also in the anterior and lateral aspects of the brain (Yerworth et al 2007).

Given the minimal application of SPM to EIT images, consideration must be given to 
the unique aspects of EIT as compared to techniques such as fMRI; EIT suffers from a poor 
spatial resolution and comparably large point spread function, which may result in persistent 
artifacts that would be identified as significant activations by SPM. In addition to this, SPM 
has never been applied to EIT imaging of fast neural activity or EIT imaging undertaken with 
a planar electrode array, both of which might uniquely affect interpretation of SPMs; sensitiv-
ity drops exponentially with increased distance from a planar array and can result in a larger 
increase in the point spread function in the z-axis (Mueller et al 1999, Kao et al 2006).

In this work, we compare three distinct methods for controlling family wise error rate 
(FWE) across a large number of EIT image voxels. These are Bonferroni correction, random 
field theory (RFT) and permutation testing, and are briefly outlined below. A more detailed 
background to RFT and permutation testing have been detailed numerous times previously 
(for example Friston et al (2006)).

1.2.1. Bonferroni correction. The simplest way to mitigate an inflated family wise error rate is 
to use a Bonferroni correction, which adjusts the significance level to account for the number 
of independent tests:

/α = p n,FWE

B Packham et alPhysiol. Meas. 37 (2016) 951
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where, α is the voxel level threshold value against which significance is determined, n is the 
number of tests and pFWE is the desired false positive rate for the whole volume. In this case, 
assuming a total image of 10 000 voxels, we would only accept individual voxels as significant 
if /<p 0.05 10 000.

1.2.2. Random field theory. The problem with Bonferroni correction is that, in most neuro-
imaging modalities, voxels are not independent, but in fact locally correlated. This is espe-
cially true in EIT where the underdetermined nature of the image and low spatial resolution 
result in substantial spatial correlation, which would make a Bonferroni correction thoroughly 
inappropriate. In order to take advantage of this local smoothness structure, one can employ 
techniques like random field theory, which effectively predicts how many peaks and troughs 
one might expect in a smooth image of, for example, t-statistics on random data (Worsley et al 
1992, Kiebel et al 1999).

By knowing the smoothness and volume occupied by an image, we can make direct  
analytic predictions of what would be unusual (p  <  0.05) in a random field of this size. Using 
this family wise correction, under the null hypothesis, the resultant maps of significant t- or 
F-values are displayed as images (Worsley et al 1992). These tests can be applied to single 
subject experiment observations, referred to as first-level analysis. Alternatively, inferences 
can be made across data collected from multiple subjects, and so a population’s estimated 
responses tested for statistical significance, referred to as second-level analysis (Holmes and 
Friston 1998, Friston et al 2005).

The principle underpinning the family-wise correction in random field theory is that, 
because many voxels are spatially correlated, the number of independent tests that need  
correcting for is less than the number of voxels. This is addressed in random field theory by 
considering the number of resels and Euler characteristic of an image domain. Resels, or reso-
lution elements, are spatially correlated groups of voxels and are estimated from the effective 
full width at half maximum (FWHM). While the FWHM is known for a smoothing kernel, if 
one was employed, the effective FWHM will often be different and dependent on location and 
so is estimated. This estimation is based upon the spatial derivative of the normalized least-
squares residuals calculated in the estimation procedure for the GLM. Therefore, in principle, 
while EIT and other neuroimaging techniques have very different properties, such as differing 
spatial resolutions, so long as the error terms of the GLM meet certain assumptions, the cor-
rection can be calculated from the images’ properties (Friston et al 2006).

There are specific assumptions placed upon the error terms of the GLM, which include 
that the errors have a constant variance in each observation with a mean around zero, and that 
the errors are independent-they are non-autocorrelative across observations. The assumptions 
underpinning RFT are that the error fields in the data are a reasonable lattice approximation 
of an underlying random field with a multivariate Gaussian distribution and that the fields are 
continuous. These assumptions can be broken if the data is not smooth or if the GLM was 
incorrectly specified (Friston et al 1995, Kiebel and Holmes 2007, Worsley 2007).

1.2.3. Permutation testing. It would therefore be valuable to apply SPM to a cohort of EIT 
images of neural activity, but the validity of doing so might need to be tested as SPM and RFT 
require the fulfillment of certain assumptions. Validation of the use of RFT can be achieved 
through the use of nonparametric methods; such as permutation testing as implement in statis-
tical non-parametric mapping (SnPM).

In permutation testing, the data is used to generate the probability distribution, rather 
than assuming a particular distribution (i.e. t-distribution). The main assumption behind 
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permutation testing is that under the null hypothesis relabeling of the data will have no effect. 
For example, at a first-level analysis this might involve replacing ‘active’ with ‘passive’ trials 
or at a second level analysis switching the sign of the effect size (active-passive) on certain 
subjects. With this assumption in place, the data are reassigned to a new labeling, which for 
second-level analysis involves multiplication of data from each subject by either 1 or  −1. The 
rationale is that, under the null hypothesis (the change over subjects is zero), the multiplication 
of each subject’s effect size by either 1 or  −1 will have no effect. There are many possible per-
mutations of relabeling and this allows one to build up a distribution of statistical images. The 
multiple-comparison problem is automatically dealt with by constructing a null-distribution  
based on the maximum values from each of these images (Nichols and Hayasaka 2003). 
However, permutations testing can be computationally demanding as the total number of  
possible permutations is 2N, where N is the number of relabelings. Often this many permuta-
tions would represent an unacceptable computational burden and so Monte Carlo testing is 
often employed, in which a random subsample, ′N , of all the possible relabellings is taken. 
While this reduces the power of the test (Nichols and Hayasaka 2003), as few as 1000 permu-
tations in the subset can be sufficient to maintain power in Monte Carlo testing (Edgington 
1969). The error that is introduced can be calculated as ( )/− ′p p N2 1  (Jocekl 1986). Hence, 
while permutation testing lacks the assumptions of RFT it is still preferable to be able to 
employ RFT. First, permutation testing is computationally more demanding than RFT, as 
randomization of each voxel, or at least several thousand voxels, must be undertaken and 
secondly, expanding permutation testing to more complex designs is somewhat more complex 
than the RFT equivalents. For these reasons it is desirable to use RFT, but the validity of its 
use should ideally be examined first.

In this paper, we set out to compare parametric (random field theory) and non-parametric 
(permutation testing) approaches to controlling the false positive rate for group-level analysis of 
EIT images of fast neural activity. The purpose was to determine if SPM is a tenable approach 
to statistical analysis of EIT images of fast neural activity by using non-parametric methods as 
a gold standard against which to compare SPM results. The paper proceeds as follows. We first 
describe the collection and pre-processing of an EIT dataset based on somatosensory stimula-
tion on a cohort of anesthetized rats. This gives us a set of 3D images per rat which evolve in 
time over a 40 ms time window. We then test for significant experimental effects, correcting for 
multiple comparisons throughout the volume either using parametric (RFT) or non-parametric 
(permutation) approaches. In addition, a Bonferroni correction approach was also employed. 
While it was expected from first principles and its use in analyzing other neuroimages that it 
would yield more conservative results than parametric (RFT) or non-parametric techniques its 
use was mainly for comparative reasons to offer a reference point for those unfamiliar with the 
use of SPM or SnPM. Indeed we did find that both parametric and non-parametric methods 
are much more sensitive than a Bonferroni correction, but also that parametric approaches are 
marginally more conservative than non-parametric approaches for these data.

2. Methods

2.1. Data cohort and collection

EIT images were reconstructed from data collected during somatosensory evoked cerebral 
activity in the anesthetized rat, using an epicortical planar electrode array, ×7 5 mm with 
29 electrodes, each 0.6 mm in diameter. It was constructed of platinum foil on a silicone 
rubber backing. It was placed over exposed somatosensory cerebral cortex. Somatosensory 
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stimulation was produced by 2 Hz electrical stimulation of the contralateral median nerve. 
Current for impedance recording was injected at 50 μA and 225 Hz through a single elec-
trode pair in the planar epidural electrode array for 70 s. During each current injection, the 
remaining 27 electrodes recorded voltage. This was repeated by switching the current injec-
tion pair, for 30 different electrode pairs, so that a total of approximately 900 four terminal 
traces were recorded. The first 10 s of each injection was discarded to remove switch related 
artifacts, yielding a 60 s segment with 120 stimulations. The average of the phase and anti-
phase was subsequently added or subtracted to yield the evoked potential or modulated imped-
ance change, respectively. The impedance data was filtered with a bandwidth of 100–350 Hz 
to minimize EEG noise within the recordings, as EEG power is largely  <100 Hz; however,  
a 250 Hz bandwidth limited reliable temporal feature extraction to 8 ms (Oh et al 2011). Post-
mortem recordings were also undertaken as a control.

The final data were 300 ms long, 50 ms pre-stimulus and 250 ms post-stimulus. The pre-
stimulus data were used to calculate voltage differences. Some of the recorded voltages were 
rejected or not recorded if the noise in the pre-stimulus time was greater than 0.3 μV or 0.01% 
of the boundary voltages, there was significant 50 Hz noise, or if there was a faulty electrode 
contact. After rejection, the noise was ±0.18 0.04 μV (mean  ±  standard deviation; range 
0.10–0.24 μV) across the 24 recordings in 8 rats, of which 2 recordings were controls (table 1).  
From this process, images were reconstructed with the real component of voltage differences 
taken at 21 time points, 0–40 ms every 2 ms. All data processing and image reconstruction 
was undertaken using MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA). The 
methodology of the data acquisition and processing is described in Gilad et al (2010) and Oh 
et al (2011).

2.2. Image reconstruction and preprocessing

The voltage differences were reconstructed into conductivity difference images using a  
sensitivity matrix reconstruction algorithm (Bagshaw et  al 2003). In solving the forward 
problem the conductivity of the brain was taken to be 0.3 Sm−1, homogeneous and isotopic. 
Calculations were performed using the UCL SuperSolver package, which is based on the 
EIDORS package (Adler and Lionheart 2006). A rat brain FEM mesh was used, which had  
3 000 000 tetrahedra, with refinement over the region of electrode placement. Electrode array 
positions were determined post-hoc by analysis of the distribution of the topography of the 
EPs’ (appendix). Inversion was performed using Tikhonov regularization, with the hyper-
parameter set using cross-validation. The hyperparameter spanned × −1 10 20 to 1, in 2000 
logarithmically spaced steps, and the cross validation was ten-fold using 10% of the data for 
training (Lionheart 2004).

Table 1. Distribution of recordings across rats.

Rat number Active recordings Controls

1 4
2 3
3 3
4 2
5 3
6 2
7 1 2
8 4

B Packham et alPhysiol. Meas. 37 (2016) 951
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Following inversion, a region of interest (ROI), ×9.25 6.4 mm, centered upon the elec-
trode array’s location, was identified, as to consider the entirety of the mesh was unnecessary 
as sensitivity drops exponentially with increased distance from a planar array (Mueller et al 
1999, Kao et al 2006), and as the physiological area of interest was restricted to the neocortex. 
To aid translaminar visualization, this ROI was rotated to have the layers represented normal 
to the brain’s surface. This was achieved by first identifying the centroids, C, of the overlying 
surface triangulation:

∑=
+ =

C
n

v
1

1
,

i

n

i
1

where …v vi n are the vectors defining the vertices and n is the number of dimensions. To these 
centroids, a plane was fitted using linear regression and the ordinary least squares solution. 
The normal vector of this surface was calculated and this vector’s angle in each axis identi-
fied. The FEM mesh’s vertices were then multiplied by a rotation matrix so that the surface’s  
normal vector only had a z component (i.e. so that it was directed normal to the cortical 
surface). Voxels deeper than 2.1 mm, a reasonable expected lower bound for layer VI (Zilles 
1985, Dykes and Lamour 1988), were then removed. This × ×9.25 6.4 2.1 mm ROI was  
linearly interpolated on a 3D grid whose lattice points were spaced 25 μm apart in each axis. 
The smallest structure of interest was a column of approximately 300–500 m in diameter 
(Woolsey and Van der Loos 1970), and so 25 μm was chosen to ensure structures of interest 
would not be a affected by interpolation, but also as a trade-off between computational over-
head and down-sampling.

Image smoothing was undertaken with a Gaussian kernel with an effective full width at 
half maximum (FWHM) of 150 μm. This FWHM was based upon the approximate thickness 
of the thinnest neocortical layer (Zilles 1985, Dykes and Lamour 1988), but also fulfilled the 
requirement of RFT that a kernel is required to be at least twice the voxel size. The data were 
filtered along each axis, both forwards and backwards, so as to be zero-phase filtered. Lastly, 
image scaling was applied to correct for the loss of power following regularization in solving 
the inverse problem, and was achieved by essentially applying proportional scaling. The first 
step was to find the time point at which a recording’s image set was maximal above zero. The 
mean of above half maximum changes at this peak time point was used to determine the scal-
ing factor by finding its ratio to one. Having scaled the images, they were then converted from 
the MATLAB file format to NIfTI-1 file format. Realignment of images within SPM was not 
required as all images were reconstructed in the same FEM mesh and the same location within 
this mesh taken as the ROI; the ROI volume spanned all imaging areas following the post-hoc 
electrode alignment (appendix).

2.3. Parametric and non-parametric analysis

This image processing produced 21 images of × ×291 349 121 voxels spanning the time 
period 0–40 ms for each of the 8 rats. Although it theoretically would have been possible to 
account for this 4th dimension of time, parametrically or non-parametrically, we opted, for 
clarity, to make independent statistical tests over different time bins and then pool the result-
ing metrics (like number of significant voxels). In order to correct for these independent tests, 
we made a basic Bonferroni correction to control family wise error over time bins for both 
approaches. That is, given the effective temporal resolution of 8 ms and 21 time bins separated 
by 2 ms, correction was undertaken for 5 independent tests; therefore, the significance level for 
any individual time bin was set to α = 0.01. These temporally corrected p-values are hereafter 
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denoted by the subscript tcorr. In order to compare between parametric and non-parametric 
approaches, we ascertained the significance thresholds and the total significant image volume 
for the two distinct approaches over time. We also analyzed the 2 control recordings (based 
on post-mortem recordings in rats) using the same methods—the rationale was to consider 
control of the false positive rate where no experimental effect was expected.

Below a description of the employed methodology for both parametric and non-parametric 
analyses is given, however, a detailed didactic description of the use of the employed software 
has been omitted. An excellent explanation of the software, its use, and tutorials can be found 
at www.fil.ion.ucl.ac.uk/spm/.

2.3.1. Parametric analysis. Second level-analysis was performed, using SPM8 (www.fil.ion.
ucl.ac.uk/spm/). Separately, at each of the 21 time bins, the 22 image volumes were input 
into a one-sample t-test (assuming independence) with implicit masking. The resultant design 
matrix was so that the estimated parameter at each voxel was the mean of that voxel over all 
the recordings, and so the null hypothesis was that this was equal to zero. Family wise sig-
nificance was set at p  <  0.01 based on the correction for multiple time-bins outlined above,  
so that images were assessed for significant activations above zero.

2.3.2. Non-parametric analysis. These same EIT difference images were also assessed using 
SnPM analysis. Second-level, Monte-Carlo permutation testing was undertaken, using a 
SnPM toolbox (www.go.warwick.ac.uk/tenichols/software/snpm) written for the SPM soft-
ware package. Separately, at each time bin, the image volumes were input into a one-sample 

t-test, without variance smoothing, but with implicit masking. The t-tests were with ptcorr
FWE-val-

ues and so again the significance level for any single time-bin was set to p  <  0.01. A randomly 
selected subset of 1000 permutations was calculated out of the total set of possible permuta-
tions. The total number of possible permutations for 22 recordings would have totaled 4194 
304 and so a Monte Carlo test was performed, so that for the chosen subset size in this study 
the test was for α = ±0.01 0.0063. This was deemed acceptable because to reduce the error 
to 10% would have required 37 500 permutations.

3. Results

3.1. Statistical parametric mapping

Physiologically plausible significant (corrected over time and volume) conductivity changes 
occurred in somatosensory cortex, predominantly in the period beginning at 4 ms and ending 
28 ms post-stimulus (Figure 1(a)). There were also spatially small (<1300 voxels in 9M), but 
significant changes at all other time bins except 0 (the time of stimulation), 34, 36 and 38 ms. 
The image volume showed significant changes spanning the entire neocortex with the largest 
volume of significance (7.53 mm3) at 14 ms, at a depth of approximately 1.55–2 mm, which 
spans layers V and VI (Krieg 1946, Zilles 1985, Dykes and Lamour 1988), which are predomi-
nantly the output layers of the neocortex (Zhang and Deschenes 1997, Killackey and Sherman 
2003). In addition to this, the volume of significance tapered towards the pial surface and 
layer I, within which, only later, feedback activity from S2 is expected (Cauller 1995). Prior 
to this (4–6 ms), the volume consisted of two smaller cylindrical shapes, while following this 
period (after 18 ms) the volume of significance reduced into a smaller more cylindrical shape, 
consistent with orthogonally oriented neocortical columns (Mountcastle 1997).

In the SPMs of the two post-mortem control recordings, there were no significant positive 
changes using the same methods.
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3.2. Statistical non-parametric mapping

Using non-parametric methods, we found qualitatively very similar significant conductivity 
changes (figure 1(b)) to those observed in the parametric case (figure 1(a)). As with the para-
metric analysis, there were no significant positive changes at 0 ms in the non-parametric case. 
However, while the parametric (RFT) significant positive changes were not present in many 
of the later images (30–40 ms), in the non-parametric statistical maps, there were significant 
positive changes in all time bins except 0 ms, although as with the SPMs, these changes were 
predominantly within a window of 4–24 ms.

The non-parametric permutation distribution of image maxima was centered within a range 
of t-values from 3 to 5 (as an example, figure 2 shows the distribution at 14 ms).

As an example, the thresholds calculated with SnPM were compared to those for RFT 
employed in SPM, both for the images at 14 ms, and these were compared to a volumetric 

Figure 1. Parametric and non-parametric one-sample t-test results. (a) Parametric 
one-sample t-test SPMs of 22 images, =p 0.05tcorr

FWE . Non-significant changes are 
black. Each subimage is for a given time point (columns) and depth (rows). Subplots 
are posterior-anterior and medial-lateral in x and y axes, respectively. The significant 
response predominated in deeper layers and persisted in these output layers, with 
minimal significance in layer I (layer I 0–200 μm; layer II/III 200–750 μm; layer IV 
750–980 μm; layer V 980–1350 μm; layer VI 1350–2000 μm (Krieg 1946, Zilles 1985, 
Dykes and Lamour 1988)). (b) Non-parametric one-sample t-test SnPMs of 22 images, 

=p 0.05tcorr
FWE . Non-significant changes are black. The non-parametric thresholding was 

less conservative than the parametric, with the same location/shape of significance but 
a larger volume.
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Bonferroni correction. This indicated that, for a given test significance level, the Bonferroni 
correction was extremely conservative for these EIT data. While the RFT thresholds were less 
conservative than the Bonferroni values, they were still less sensitive than the SnPM thresh-
olds for an equivalent test level (figure 3).

3.3. Parametric and non-parametric comparison

As we estimated thresholds for each time-bin independently, we were able to examine 
the stability of these threshold estimates for the different methods over time (figure 4). 
The Bonferroni thresholds were constant over the time bins, which was to be expected as 
they are data independent. There was only minimal variability over the time bins in the 
t-threshold with RFT SPM, with all values being within 0.08 of the mean of 6.44, suggest-
ing the spatial smoothness of the residuals was similar in all time bins. Similarly, the non-
parametrically derived t-threshold also remained relatively stable (mean 5.78  ±  standard 
deviation 0.15).

Based on these thresholds, the total cortical volume of significant conductivity change 
over time for RFT SPM and the SnPM images was calculated (figure 5). As expected, a larger 
volume of significantly active cortex is apparent, based on the non-parametric rather than the 
parametric control over false positive rate.

Over the entire time series, this same pattern was evident with the total number of signifi-
cant voxels across all time points varying for different p-values in a similar fashion for para-
metric and non-parametric approaches (figure 6).

4. Discussion

4.1. Validity of SPM results and comparison to SnPM

Typically, non-parametric tests form the gold standard through which parametric tests are eval-
uated, due to their robustness and lack of assumptions (Nichols and Hayasaka 2003, Nichols 
2012). It is for this reason the applicability of parametric testing was empirically tested, by 

Figure 2. Permutation distribution of maxima t-statistic values for the images at 
14 ms. The black dashed lines indicate the t-threshold for FWE corrected significance 
level p  <  0.01 based on the permuted null distribution. The observed (unpermuted) 
maximum t-value is shown by the red-dashed line and is therefore very unlikely to have 
occurred by chance.
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comparison to permutation testing which lacks the assumptions of RFT, such as Gaussian 
error distribution and the absence of non-stationarity. Nonetheless, it is desirable to show the 
validity of parametric testing as the use of the parametric inference scheme opens up a very 
powerful and standard GLM analysis framework in which it is simple to work with complex 
factorial designs, including based on multiple regressors and contrasts. Although these more 
complex designs are tractable with non-parametric methods (Suckling and Bullmore 2004), 
they become less intuitive.

It was reassuring that the parametric tests were mildly more conservative than the non-
parametric. The non-parametric approach has minimal assumptions and therefore we expect 
good control of false positive rate. It was desirable that RFT was on the conservative side of 
this threshold. This echoes findings reported for MEG, PET and MRI (Nichols and Holmes 
2002, Singh et al 2003). At the outset of this work it was not clear if parametric and non-
parametric testing of EIT images of fast neural activity would yield such comparable results 

Figure 3. Family wise corrected error rate as a function of Bonferroni (——), RFT  
(— — —) and SnPM (– – –) t-statistical thresholds. The horizontal line indicates 
α = 0.01 (— · —). Note that the Bonferroni is the most conservative approach. Note 
also that although RFT is based on the properties (smoothness, volume) of the voxel 
grid, while SnPM is based on the data they have very similar t-value thresholds (with 
RFT being marginally more conservative).

Figure 4. Critical t-thresholds for parametric and non-parametric FWE-correction 
methods. Bonferroni volumetric correction (——) was constant over time bins, while 
SPM with RFT (— — —), and SnPM (– – –) had minimal variability over time bins.
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and this underpins one of the key purposes of this study. In other words multiple testing is a 
serious concern for brain imaging and is something that needs addressing almost in a per-case 
basis, as different imaging types can have different properties that may make a generic, catch-
all approach likely to fail.

We found no significant changes in either of the two dead rat controls using either method. 
This is encouraging as it shows the error rate is properly controlled. In an ideal world, had we 
had 20 dead rats, however, we would have expected one false positive at this rate (p  <  0.05).

The onset of spatially large significant activity in the images was at 4 ms, which, while 
earlier than most reports of the onset latency of forepaw somatosensory evoked potentials, is 
similar to the onset latency of EP activity of ±3.7 0.2 ms reported by Jellema et al (2004). 
We did however observe significant small volume activations that occurred before 4 ms and 
after 26 to 28 ms in both image sets. First, we have controlled the false positive rate (and not 
eliminated it) and so these activations could well be false positives. All these regions were 
all  <200 μm3 and so might also be attributed to high spatial frequency artifacts. Alternatively, 

Figure 5. Significant volume within images at each time bin for SPM with RFT  
(— — —) and SnPM (– – –). The volume of significance for techniques varied similarly 
over time, but SPM has a smaller volume of significance at all time bins indicative of 
the method being more conservative.

Figure 6. Total number of significant voxels across all times points for different FWE 
controlled p-values. The techniques had a similar relationship between p-value and 
significant voxels, but SPM with RFT (— — —) had fewer significant voxels for given 
p-values than for SnPM (– – –).
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it is possible that these significant peaks derive from conductivity change at other time points 
and are artifacts of the finite bandpass filtering used for the voltage demodulation. Given that 
the parametric analysis of the control recordings yielded no significant changes (but with the 
same EIT set up), we think that the latter explanation is most likely the key contributor to this 
finding, but further work would be required to confirm this.

4.2. Processing and interpreting SPM analysis of EIT images of fast neural activity

In order to undertake SPM analysis of EIT images, several pre-processing steps were required. 
Due to the absence of anatomical images or landmarks, image alignment had to be achieved 
through post-hoc analysis of the topography of simultaneously recorded EPs. In addition to 
this some pre-processing steps were essential due to the use of a planar array; the sensitive 
imaging volume was considerably smaller than the entire rat brain, resulting in analysis being 
of a ROI around the electrode array. Similarly, this ROI was rotated to visualize changes with 
respect to the neocortical laminar, which is different to the ‘glass brain’ projection typically 
used to visualize SPM results.

The interpretation of the EIT images considered in this study had multiple unique aspects, 
in comparison to the more common applications of SPM. Despite images being of a ROI, 
the high density of the electrode array yielded a considerable multiple testing problem as the  
number of voxels per image was 6 254 041. While it is clear that for so many voxels uncor-
rected testing would present a substantial risk of false positives (Bennett et al 2011), it also 
seemed likely that the poor spatial resolution and high point spread function of EIT would 
make interpretation of SPMs difficult. It is also worth noting that the activity measured using 
EIT and resulting in the SPM results are related to electrical activity rather than a secondary 
metabolic correlate, and therefore are more akin to the findings of EEG/MEG, than fMRI 
or PET results. Therefore, EIT activation maps might be more directly related to the actual 
substrate of brain activity: neuronal depolarization. However, further work is required to more 
fully understand the components of neural activity that result in the EIT signal and how much 
each contributes to the resultant reconstruction.

4.3. Study limitations

The meshes were neither specific nor scaled for each rat’s anatomy; however, the effect of this 
is presently not completely clear. There were also uncertainties regarding the optimal inver-
sion approach in imaging fast neural changes with EIT using a planar array. The choice of 
Tikhonov regularization was one based upon its reported efficacy with planar array imaging 
(Mueller et al 1999, Kao et al 2006), but, in all instances, the perturbation is a single continu-
ous object, which is unlikely to be representative of the nature of the conductivity changes, 
which might be expected to consist of more internally diffuse changes existing in multiple 
spatially separate groups.

The image scaling employed in this current study was an attempt to compensate for the 
effect of different hyperparameter values introducing an artificial inter-recording variance. 
Nonetheless, this approach of proportional scaling was not rigorously validated: proportional 
scaling did not result in the control recordings reaching significance, but it does limit the abil-
ity to analyze the amplitude of images’ conductivity changes.

Further examination of the appropriateness of variance smoothing in EIT images of fast 
neural activity, or suprathreshold cluster analysis may be required. These approaches may be 
essential for the technique to be applied to data with lower degrees of freedom than the cohort 
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considered in the present study. A few simplifying assumptions were employed in the SPM 
analysis undertaken in this study, such as the assumption all data were independent. These 
assumptions were made predominantly as this was a preliminary study and also because the 
wealth of knowledge related to the application of SPM that exists for fMRI and PET is absent 
with respect to its use with EIT images. The group-level analysis of EIT images undertaken 
in this study was limited to fixed-effects analysis; the input to SPM was EIT conductivity 
change images rather than the output of first-level analysis of SPM. This was due to the lack 
of a canonical response function existing for the fast neural activity measured with EIT. While 
canonical response functions do exist for evoked response, this limitation is related to an 
incomplete understanding of the contributors related to the signals reconstructed with EIT.

5. Conclusion

In this study, it has been shown that both parametric and nonparametric testing can be used 
to assess the statistical significance of group EIT images of fast neural activity. Application 
of second-level analysis to the active experimental recordings yielded SPMs with a highly 
significant large volume at all post-stimulus time points from 4 to 24 ms, while for the control 
recordings there were no significant changes. This study represents the first attempt at vali-
dation of applied random field theory for an EIT imaging set of fast neural activity, through 
comparison with a permutation approach and the use of controls. In addition, this is the first 
study to make use of SPM second-level analysis on EIT imaging data, which has yielded 
some encouraging results. This validation, through comparison with non-parametric analysis, 
confirms that SPM can be employed, both in its current form and the full and powerful array 
of parametric inference schemes would in future be available to the analysis of EIT imaging 
of fast neural activity.

Future studies could profit from investigating the effect of varying the EIT image process-
ing steps that, for PET and fMRI, have been determined to substantially affect the results of 
SPM. Similarly, examination of the efficacy of employing different smoothing methods might 
inform the future use of SPM on EIT image sets (Maisog and Chmielowska 1998, Skudlarski 
et al 1999). In addition, the application of SnPM might be further explored, particularly its 
use with smaller data sets and the use of pseudo-t-tests. Additionally, there are general aspects 
of EIT imaging of fast neural activity, especially with a planar array, that might be further 
explored, and such modification might be expected to affect subsequent SPM analyses.
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Appendix. Electrode alignment

Electrodes for a given rat were placed on the mesh in the forward model in such a way as to 
minimize the difference between its EPs’ topography and that of an exemplar topography 
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chosen from the recorded EPs. The exemplar EP was chosen by finding the recording with 
an EP center, c, closest to that of the center of the electrode array. For a given EP its center, c, 
was defined as:

( )
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∑ ∑

∑ ∑

= =

= =
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where …EP EPji JI, are a given recording’s EP values for the jth electrode and the ith time 
point, and p is the the electrode position. The exemplar EP was then chosen as the recording 
whose center had the shortest distance from the electrode array center.

The minimization between each recording and the exemplar was accomplished by mini-
mizing the l2 norm between a given EP topography and the interpolation of the exemplar 
topography over a series of translations and rotations of the electrode positions. Translation 
was over a distance which spanned twice the area of the array (translation in each axis), in 
steps of 0.1 mm, while rotation was in the xy plane from − �10  to 10°, in steps of 0.5°. Then 
each recording’s EP, EPji, was compared to each point, l, of an interpolation of the exemplar 
EP, �EP, and the point within this that yielded the least difference was calculated:

= − ̂l EP EPargmin ,k
l

kji lji
2

2∥ ∥ˆ

where ̂ ̂EP EP, ...,l ji L JI are the interpolated values at the lth location, and l̂k is the translation 
and rotation yielding the smallest difference between the measured recording’s EP and that of 
the exemplar EP, at the jth electrode and ith time point. The electrode array was then placed in 
the optimized location for solving the forward problem for the recordings from that rat.
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