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Abstract 

Most models of decision-making suggest that confidence, the “feeling of knowing” that 

accompanies our choices, is constructed as the decision unfolds. However, more recent 

studies have noted that processes occurring after we commit to a particular choice also affect 

this subjective belief. This leads to following question: when are we better judges of ourselves? 

If, after a decision, evidence continues to accumulate in an unbiased manner, then our 

confidence judgements should improve. Conversely, if post-decisional information processing 

is biased, our sense of confidence could be distorted, and so our confidence judgements 

should degrade with time. We briefly discuss recently proposed models of post-decisional 

evidence accumulation, and explore whether, and how, biases in confidence could arise. 

Highlights: 

 Confidence in decision-making is often regarded as a process that is constructed 

during choice. 

 Recent experimental findings suggest, however, that post-decisional processes 

modulate our sense of confidence. 

 These processes can improve our confidence judgements, but also distort them if 

information processing is biased. 

 We discuss models of decision-making that contemplate different biases in post-

decisional processing. 

 We explore possible explanations for the origin and function of these biases  
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1. Introduction 

Humans and other animals integrate noisy sensory input to infer the state of the world, and 

guide action and choice [1]. Action selection is accompanied by a “sense of confidence”, a 

subjective feeling about the validity of the choice [2]. Much of the psychology and 

neuroscience of decision making has focused on understanding the computations that 

underlie this subjective belief. Several different models for computing confidence have been 

proposed (signal detection theory [3,4], sequential sampling [5-7], Bayesian inference [8,9], 

heuristics [10], etc.) and they have been compared with explicit reports in humans [4-6,8,9] 

and with implicit estimates of confidence in non-human animals [3,7]. Until recently, most of 

these models assumed that confidence is a decisional process; i.e., that it is computed by the 

same circuitry that drives choice or, at the very least, that it is constructed during the decision. 

This assumption rests on a vast corpus of neurophysiological evidence in rodents [3] and 

monkeys [7] showing that changes in stimulus reliability (e.g. the coherence of moving dots) 

modulate the firing of neurons that predict both choice accuracy and confidence [11].  

In sharp contrast to this perspective, several more recent experiments have concluded 

that our sense of confidence is also determined by processes that occur well after we commit 

to a choice [12-19]. This observation leads to several questions: What are the consequences 

of such post-decisional processing of confidence? How does it affect the accuracy of this 

subjective belief? For example, should we trust our immediate (gut) feeling of confidence, or 

is it better to take our time and “gain perspective”? Here, we review state-of-the-art models of 

confidence and explore possible answers to these questions. In particular, we focus on how 

post-decisional processes affect our “metacognitive accuracy”, namely, the extent to which 

our confidence is consistent with our probability of being correct [20]. Far from being idle 

curiosity, knowing when we are better judges of ourselves could benefit us in several ways: it 

could help us cooperate effectively [21,22] and reduce aversive counterfactual thinking [23] 

that otherwise leads to negative emotions such as regret [24]. In addition, knowing the right 

time to gauge the validity of our choices is essential for minimising distortions of confidence 
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[25] wherein confidence is no longer predictive of objective accuracy (Box 1). These include 

overconfidence [26] and confirmation bias [27]; both are systematically observed in human 

choices, and both contribute to poor judgement and bad decisions [28].  

2. Biases in post-decisional processing 

The most straightforward experimental evidence that subjects continue processing information 

after making a decision is that they often express a desire to reverse their initial choice [12,14]. 

These “changes of mind” were observed both in simple perceptual decisions [12], and in a 

recognition memory task [14], and cannot be explained by models that disregard post-

decisional processing. Given that evidence continues to accumulate after a decision, it would 

not be surprising if confidence changed as well. And indeed, confidence sometimes depends 

on the length of the inter-judgement interval; i.e., the amount of time between making a 

decision and giving a confidence rating on that decision [16]. In line with these observations, 

recent studies have suggested that post-decisional neural signals correlate with [18] and 

causally drive [19] confidence judgements. 

There have been several proposals to account for post-decisional evidence 

accumulation and for changes in confidence [13,15-17]. In our view, the most promising 

proposal involves a two-stage dynamic signal detection theory [15]. This is mainly due to its 

simplicity and applicability to a wide range of different scenarios, including perceptual choices 

[29], general knowledge questions [17], and value-based decisions [30]. In the first stage, a 

decision variable is accumulated, and choice is typically guided by the sign of that variable; 

the first stage ends at the time of the decision. In the second, post-decisional, stage, the 

decision variable continues evolving, and its absolute value determines confidence (Fig. 1-A). 

Post-decisional processing changes our confidence in the selected option, and might either 

confirm or reject the first choice.  Different two-stage models differ primarily in how the agent 

accumulates evidence after choice [17]. Critically, the different hypotheses make different 

predictions for how post-decisional processing changes metacognitive accuracy.  



For example, the decision-maker could continue accumulating evidence after choice 

in an unbiased manner. In that case, after making a correct decision, more evidence should 

provide further support for the choice and boost confidence. Conversely, if an error was made 

(e.g., due to noise in the process of evidence accumulation), post-decisional evidence will 

typically oppose the chosen option and, as a consequence, confidence in the decision will 

decrease. In either case, as more and more post-decisional evidence is accumulated, 

eventually the difference in confidence between correct and incorrect trials becomes large. 

Thus, longer inter-judgement intervals will both improve accuracy and confidence. 

In general, accumulating post-decisional evidence is a good strategy to refine 

estimates of confidence, especially in rapidly changing environments where later samples 

carry more information than earlier samples. This is assuming that evidence is integrated 

without bias. However, several studies have shown that post-decisional processing could be 

biased, and so could distort confidence judgments [17,26,31-34]. For example, evidence for 

the chosen option could be overweighed (i.e., accumulated at a larger rate than the unchosen 

options as in [31]) leading to an increase in confidence that is not based on objective evidence; 

this is known as “confirmation bias” [26]. Because this boost in confidence is not accompanied 

by an underlying increase in objective accuracy, confirmation bias results in overconfidence. 

Another type of post-decisional process is simple decay. In contrast to confirmation bias, post-

decisional decay reduces confidence (also regardless of the validity of the choice) and leads 

to underconfidence.  
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Figure 1. Two-stage models of categorical decisions. A) Models of a two-alternative choice 
between options ‘A’ and ‘B’. Evidence is accumulated by tracking a decision variable over 
time. At a given time, the decision is made, and the sign of the decision variable determines 
choice. After the decision, evidence continues to be accumulated during the inter-judgement 
interval, i.e. until the confidence judgement is made. Solid black lines sketch two examples of 
unbiased processing in two different trials: one leading to the selection of option ‘A’ and the 
other one to choosing ‘B’. Coloured lines depict deviations from this optimal (unbiased) 
process. Red lines show the temporal evolution of the decision variable in the presence of a 
confirmation bias; blue lines show the evolution in the presence of post-decisional decay. B) 
Serial dependencies can be modelled as an initial bias in the decision variable that is 
contingent on the previous choice. Solid black line: example of unbiased processing in one 
trial. Dotted black line: same example with serial dependence if the previous choice was ‘B’. 
This figure was inspired by the model described in ref [17], based on decisions that lasted 
~500 ms. Similar models were implemented in other choices with a timescale of a few seconds 
[15]. 

 

 

Other sources of bias include serial dependencies; i.e., conditions in which choices 

made in the recent past influence upcoming decisions [32-34]. Such bias has been seen in a 

low level task, orientation judgement, in which participants’ choices were significantly biased 

toward orientations reported in the previous trials even though the stimuli changed randomly 

trial-by-trial [33]. It has also been seen in a high-level task, face-perception [34]. In both cases, 

the effects of post-decisional processing extended to the next trial and modulated subsequent 

decisions. Serial dependencies can be modelled as an initial bias (e.g. prior) in evidence 

accumulation that is contingent on the previous choice (Fig 1-B). 

 



3. Confidence in continuous variables 

The models depicted in Figure 1 deal with two-alternative choices, and can be extended to 

categorical decisions with a larger number of options [35]. A very different problem occurs 

when participants need to estimate a continuous variable such as orientation [33] or probability 

[8]. Implementing a Bayesian perspective [8,9,36], subjective beliefs can be modelled as a 

probability distribution that evolves over time throughout the course of the decision. To 

determine this distribution, the decision-maker needs to track, at the very least, its mean and 

variance [37].  

 

 

Figure 2. Confidence in the estimation of a continuous variable. A) Temporal evolution of 
the mean and standard deviation of a probability distribution that encodes possible values of 
an estimated variable. The black line sketches the evolution of the mean, and the grey shaded 
region corresponds to one standard deviation on either side of the mean. If the decision-maker 
continues accumulating evidence after choice, this leads to more accurate and more confident 
estimates. B) For unbiased evidence accumulation (solid black line) the variance decreases 
as a function of time. Confirmation bias is modelled as a faster decrease in the variance during 
the inter-judgement interval; post-decisional decay is modelled as a slower decrease (as 
shown here), or even an increase. 

 

Figure 2-A sketches this process in the absence of biases. As more evidence is 

accumulated, the estimated mean converges to the true value while variance decreases. 

Confidence, in this scenario, should reflect the uncertainty encoded by the probability 

distribution; namely, its inverse variance or precision [8,38]. A recent study has shown that 

human subjects do indeed learn to estimate probability (a continuous quantity) similarly to an 

ideal Bayesian observer, and report their internal precision as confidence [8].  
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To the best of our knowledge, there are no studies that manipulate the length of the 

inter-judgement interval in these types of tasks. But, assuming that evidence continues to be 

accumulated after choice (as in categorical choices [13,15,17]), then unbiased processing 

would predict both more accurate and more confident estimates. Biased processing, on the 

other hand, could lead to either a reduction in variance (corresponding to confirmation bias; 

red trace in Fig 2-B) or an increase in variance (corresponding to underconfidence; blue trace 

in Fig 2-B).  

4. Origins and function of post-decisional biases 

Empirical evidence suggests that post-decisional processes affect our sense of confidence 

and influence subsequent decisions. Some of these processes clearly arise from a finite 

cognitive capacity. For example, in studies in which sensory stimulation is turned off after 

choice, post-decisional decay in accuracy may be due to the transient nature of working 

memory [39]. The lack of perceptual input in these studies may lead to greater uncertainty and 

a reduction in confidence. Several studies have also tested conditions in which the stimulus 

remains available after choice [13,15,17]. It would be interesting, however, to see more 

experiments testing both conditions and manipulating the availability of perceptual evidence 

during the inter-judgement interval (e.g. [13]). This would make it possible to determine which 

paradigms are likely to elicit post-decisional decay and which ones lead to confirmation bias.  

Variations in post-decisional bias can be attributed to individual differences in 

metacognition. Previous research showed that healthy adults differ in their metacognitive 

accuracy [40], in their tendency to be under or overconfident, and in the shape of their 

distribution of confidence ratings [41]. These features were linked to individual differences in 

brain structure [40], function [42], and personality trait [41]. For example, scoring high in 

optimism correlates with the tendency to be overconfident [41]. It would not be surprising if 

these individuals were also more prone to post-decisional biases that inflate confidence such 

as confirmation bias, but experiments testing this have not been performed yet. 



Confirmation biases could also be a consequence of finite cognitive resources which 

results in the use of heuristics [43,44]. One proposal posits that humans can contemplate only 

one hypothesis at a time, and that they implement a “positive-test strategy” [45]. This approach 

assumes that a given hypothesis is true and rejects it only if there is sufficient evidence against 

it. Positive-test strategies are much more liberal than most statistical tests, which assume 

exactly the opposite (the “null hypothesis”) precisely to avoid false positives. Other studies 

emphasise motivational aspects of the confirmation bias, such as our desire to believe in 

propositions that we would prefer to be true. For example, people may hang on to beliefs that 

are categorically wrong to minimise cognitive dissonance [46], even in the light of 

overwhelming evidence against them [47]. Yet another explanation argues that decision-

makers are pragmatic, and that confirmation bias might be optimal in certain real-life scenarios 

[43]. According to this view, humans might not be so concerned about determining the veracity 

of different hypothesis as they are about minimising the odds of making a costly mistake. If 

the negative consequences of assuming that a particular hypothesis is false are larger than 

the positive ones associated with accepting it as true, then the strategy that maximises reward 

would also exhibit a confirmation bias (see [43] and [44] for real-life examples of this situation).  

Finally, serial dependencies (Fig 1-B) can lead to bias in laboratory experiments 

(where evidence is often independent and identically distributed), but they may be a good 

strategy in more realistic conditions, where noise is structured differently [33,34]. Because the 

statistical properties of the physical world are temporally stable (for example, low-level 

properties in a natural scene do not vary randomly over time, making the past a good predictor 

of the future), the brain might be tuned to exploit these regularities in the environment. This 

principle was demonstrated in the visual system both in the processing of orientation [33] and 

face identity [34]. Future research should explore whether this effect is also present in other 

sensory modalities, and whether it affects our sense of confidence.  

Although conditions exist where biases improve decision making, they always distort 

confidence judgments. This is because, from a normative perspective, confidence should 



9 
 

reflect the probability of being correct [20]. In this context, processing information with bias 

implies under or overweighting evidence for the chosen option (regardless of its validity) 

leading to suboptimal estimates of confidence (Box 1). 

5. Concluding remarks  

We focused on whether and how post-decisional processes influence our sense of 

confidence. In particular, we discussed a recent class of theories based on sequential 

sampling methods which allow decision-makers to continue accumulating evidence after 

choice [13,15,17]. This framework can account for a wide range of behavioural patterns, such 

as changes of mind [12], improvements in metacognitive accuracy with increasingly long inter-

judgement intervals [13], and serial dependencies [33]. This framework also explains 

distortions of confidence (Box 1), such as under and overconfidence, as a consequence of 

biased processing taking place after choice. 

One of the most intriguing aspects of two-stage models are their predictions for neural 

data. As an extension of accumulation-to-bound models, one would expect that neural signals 

indexing evidence accumulation (e.g., the firing of neurons in the macaque lateral intraparietal 

sulcus [11]) should continue evolving during the inter-judgement interval. This result has not 

yet been reported. One possible explanation could be that, until recently, neural signatures of 

evidence accumulation were found only in non-human animals, where confidence judgements 

are obtained indirectly (see [48] for a review of different techniques for indirectly measuring 

confidence in animals). Hence, testing this prediction might be more suitable for an experiment 

combining explicit reports in humans with M/EEG recordings as the analogous counterpart for 

the firing of intraparietal neurons [49,50]. In fact, a very recent study found that these signals 

indeed continued evolving after choice, guiding confidence judgments [51]. Further research 

is needed to identify the neural sources contributing to this process. 

 

 



Box 1 Distortions of confidence 

From a normative viewpoint, an appealing property for a system that reflects the validity of its 

choices is to be “well-calibrated”; i.e., to express high confidence only when it is likely to be 

correct and low confidence otherwise. Because confidence ratings are metacognitive 

judgements (i.e., decisions about decisions) this property is also known as having high 

“metacognitive accuracy” [52]. Many experiments in real-life settings have shown, however, 

that humans are very often miscalibrated. For example, we might ignore evidence 

contradicting the option that we chose (“confirmation bias” [27]), increase our confidence in 

predicted outcomes that seem to have a consistent pattern (the “illusion of validity” [10]), 

underestimate our probability of being correct in hard scenarios, and overestimate it in easier 

situations (the “hard-easy effect” [26]). Among this rich repertoire of cognitive illusions, the 

most widespread is “overconfidence” [28]. This bias is particularly harmful when it is present 

among experts, such as forecasters [53] and policy makers [54], and a deeper understanding 

of its cognitive origin may help us guard against it.  
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