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ABSTRACT 

 

Objective: Surround inhibition (SI) is thought to facilitate focal contraction of a hand 

muscle by keeping nearby muscles silent. Unexpectedly, SI is reduced in skilled 

pianists. We tested whether repeated practice of focal contraction in non-pianists 

could reduce SI.  

Methods: Motor-evoked potentials were elicited by transcranial magnetic stimulation 

in the relaxed abductor digiti minimi randomly at the onset and 5s after offset of a 2s 

focal contraction (10% maximum) of the first dorsal interosseous (FDI). Over 5 blocks 

of 40 trials participants obtained points for increasing contraction speed and stability 

in FDI. In a final block, the interval between contractions was varied randomly to 

increase attention to the task.  

Results: Over the first 5 blocks, SI declined as performance (points scored) 

improved. In the final “attention” block SI increased towards baseline without 

affecting performance.  

Conclusions: Although SI may be useful during the early stages of learning, skilled 

focal finger movement does not require SI to prevent activity in non-involved 

muscles. This could be due to better targeting of the excitatory command to move. 

Results from the final block suggest that increased attention can re-engage SI when 

task parameters change. 

Significance: SI is not necessary for successful focal contraction, but may contribute 

during learning and during attention to task. 

 

KEYWORDS: Surround inhibition, motor-evoked potentials, TMS, attention  
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HIGHLIGHTS  

 Surround inhibition (SI) is not necessary for the successful generation of 

skilled isolated finger movement.  

 SI may be utilised during the early stages of motor learning to limit co-

contraction of uninvolved hand muscles.  

 Attention may play a role in modulating SI; increased attention appears to 

engage a stronger SI.  

 

ABBREVIATIONS  

ADM, abductor digiti minimi; FDI, first dorsal interosseus; MVC, maximum voluntary 

contraction; ITI, inter-trial interval; FHD, focal hand dystonia; EMG, 

electromyography; MEP, motor-evoked potential; RMS, root mean square; SI, 

surround inhibition; TMS, transcranial magnetic stimulation 
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1 INTRODUCTION 

Surround (or lateral) inhibition (SI) is a physiological phenomenon first described in 

the visual system more than 60 years ago, where neuronal activation was found to 

be associated with active inhibition in surrounding neurons (Hartline, 1949). The 

original function proposed in the visual system was to improve contrast perception at 

the edge of images. This concept was extended to include the idea that SI could 

increase the efficiency of encoding of information by “normalization” of a constant 

bias in the signal to maintain the neuronal signal distribution within the dynamic 

range of the receptive neurons, similar to a DC offset in electrical recordings 

(Srinivasan et al., 1982). 

 

The suggestion that a similar mechanism might be present in the motor system is a 

more recent development. In 2004, Sohn and Hallett reported that motor evoked 

potentials (MEP) triggered by transcranial magnetic stimulation (TMS) over the motor 

cortex at the onset of a self-paced flexion movement of the index finger were reduced 

in amplitude in “surround” muscles of the hand (e.g. the abductor digiti minimi (ADM) 

and the abductor policis brevis (APB)). It was suggested that this phenomenon 

represented surround inhibition in the motor system, which served to facilitate 

individuated finger movements and to prevent unwanted overflow of muscle activity 

to surrounding muscles. 

 

Support for this hypothesis comes from the finding of reduced SI in patients with focal 

hand dystonia, a disorder characterized by overflow of muscle activity into non-task 

relevant muscles (Beck et al., 2008). Furthermore, SI is more prominent in the 
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dominant hemisphere of right-handed subjects than in the non-dominant hemisphere 

(Shin et al., 2009). SI is also enhanced and appears earlier with increasing task 

difficulty (a choice reaction time task vs. a simple reaction time task) (Beck and 

Hallett, 2010). SI is modulated by force exertion; varying the force in the active 

muscle shows that SI peaks at 10% of maximal force and is lost when more than 

40% of maximum force is exerted (Beck et al., 2009), which has been interpreted as 

a demonstration of its role in enabling fine control of finger movements. 

 

Despite the suggestion in the literature that SI facilitates individuated finger 

movement, there is no direct evidence to date on the presence or absence of a 

relationship between motor performance on a task of individuated finger movement 

and the level of SI. In this regard, it is interesting that electromyographic (EMG) 

activity in surround muscles does not correlate with the degree of SI in healthy 

people (Kassavetis et al, 2014). The previously reported reduction of SI in patients 

with focal hand dystonia is also very variable and does not appear to correlate with 

severity of symptoms. Lastly a peculiar reduction in SI has been reported in healthy 

professional musicians who are highly skilled in performing individuated finger 

movements (Shin et al., 2012). While this latter result has been used to argue for why 

professional musicians are at risk of developing focal hand dystonia, it could also 

suggest that SI might relate to aspects of task novelty/difficulty, assuming that for 

professional musicians the task employed to assess SI is a simpler and more familiar 

one than for non-musicians.    

 

The primary aim of this study was to investigate whether over-training healthy non-

musicians on an isolated finger movement task would result in a reduction of SI, 
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similar to that seen in musicians. Subjects were over-trained on a precise force 

exertion task and SI was assessed during all stages of motor learning. Using a direct 

indicator of motor performance, we were further able to characterise the relationship 

between SI and motor performance. It has been previously demonstrated that as a 

motor task becomes overlearned and the movement performed becomes automatic,  

attention to action can be redirected with little interference with the task at hand 

(Passingham, 1996). This interplay between motor performance and attention, in 

addition to evidence that attention enhances intracortical inhibition (Liepert et al., 

1998; Conte et al., 2007), makes attention an interesting variable to consider in the 

modulation of SI in the motor system.  

 

In light of this, a secondary aim of this study was to explore a possible modulatory 

role of attention in motor SI. We hypothesised that an over-training of the task would 

lead to lower levels of attention and reduced SI. In turn, manipulating attention back 

to the task would enhance SI. 

 

 

2 MATERIALS AND METHODS 

 

2.1 Subjects 

The data from 22 right-handed healthy volunteers (mean age: 27.7, SD: 4.4, 12 

women) were analysed. None of the participants had any history of neurological 

disease, and none of them were professional musicians. All the participants gave 

their informed consent before taking part in the experiment, which was approved by 
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the local ethics committee and conducted in accordance with the Declaration of 

Helsinki. 

 

2.2 Experimental design 

There were 6 blocks of experimentation. Each block consisted of 40 trials. Each trial 

lasted 10s and included the motor task and a single TMS pulse either at movement 

onset (test) or 5s after movement onset (rest) (Fig 1B); we pseudo-randomized 20 

trials for the test and 20 trials for the rest stimuli over the 40 trials of each block.   

 

It has been demonstrated that successive presentation of signal events taxes 

sustained attention performance. Meanwhile, a high frequency of signal events (high 

event rate) combined with an unpredictability of the time of signal presentation (event 

asynchrony) enhances the demands on sustained attention (Parasurman, 1986; 

Sarter et al., 2001). As such, in the first 5 training blocks the inter-trial interval (ITI) 

was set to 3s, and in a final ‘attention’ block, the ITI was varied randomly between 1 

and 5s (Fig 1B). A final block of varied ITI following five blocks of successive, 

predictable signal presentation was designed to increase demands on sustained 

attention and redirect subjects’ attention back to the task. Subjects were not aware of 

the nature of the manipulation, they were simply informed that ‘something is going to 

change, but the nature of the task will remain the same’, and instructed to continue 

performing the task as they were in the previous blocks.  

 

2.3 Motor task 

During the experiment, subjects sat in a comfortable chair with their right hand 

resting on a desk. With their hand lying flat and relaxed on the desk, the tip of their 
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index finger was placed on a force transducer (Fig 1A). They were asked to briefly 

press down on the force transducer after a ‘go’ signal by flexing their index finger in 

the metacarpo-phalangeal joint. This movement has been shown to activate the FDI 

and suppress activity in the ADM through SI (Sohn and Hallett 2004). FDI is a 

synergist rather than primary muscle for this movement, but it has been 

demonstrated that synergists show the same type of modulation as prime movers 

(Sohn and Hallett, 2004).  

 

At the beginning of the experiment, subjects were asked to press down on the force 

transducer with maximum force in order to measure the individual maximum EMG 

activity which could be produced in the FDI during that movement. They were then 

instructed to perform the same movement with 10% of their maximum voluntary 

contraction (MVC), and to do so as quickly and accurately as possible. They were 

also asked to keep their ADM completely relaxed while performing the motor task. 

Practice sessions were not provided, as the aim of the study was to monitor changes 

in SI during all stages of motor learning. However, trials where background ADM 

EMG activity exceeded 0.1mV were excluded. 

 

The task was more demanding than those usually employed in experiments on SI. 

Visual feedback of their performance was displayed on a screen in front of the 

subjects as an interface designed specifically for this task (Fig 1B). Feedback was 

provided after each trial to facilitate faster and more effective motor training (Adams, 

1987; Blackwell and Newell, 1996). Finger flexion force was displayed as in Fig 1A. 

Participants had to press onto the transducer to place a cursor within the region 

indicated by the dotted lines (10% MVC ± 0.25 N) as it moved from left to right across 
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the screen. Force was sampled at 150 Hz. Each sample that lay within the target 

scored 10 points; 7, 5 and 3 points were awarded respectively for samples 0.5, 1, 

and 1.5 N outside of the target range. Points were summed over the whole 2s of the 

task, and then divided by 1000, giving a maximum possible score of 3. At the end of 

each trial, subjects were presented with the numerical score as a measure of their 

performance. Optimal scores were obtained if participants reacted quickly and placed 

the cursor immediately into the target zone without overshoot/undershoot, and 

remained there for the duration of the trial. Subjects were instructed to aim to 

maximise their scores i.e. gain better control of their force production, throughout the 

experiment. This provided an indication of the change in motor performance 

throughout the experiment. 

 

 

2.4 EMG recording  

EMG activity was recorded from the right FDI and ADM using a pair of Ag-AgCl 

surface electrodes in a belly-tendon montage (Fig 1A). The EMG signal was 

amplified (1000 X) and band-pass filtered (bandwidth 3-1000 Hz) with a Digitimer 

NL844 amplifier (Digtimer, UK). The signal was digitised at a frequency of 5 kHz and 

fed into a laboratory computer for storage and off-line analysis. Data were collected 

with SIGNAL software V5.11 (Cambridge Electronic Design). 

While an improvement in scores on the motor task (as described in section 2.3) 

indicates better control of the output command to the FDI, it was important to ensure 

that this was accompanied by EMG silence in the ADM, indicating focality of FDI 

contraction. Therefore, EMG activity was analysed in the ADM during FDI contraction 

to assess whether any change in surround inhibition (SI) throughout training had an 
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effect on EMG activity in the ADM muscle. The 20 trials where TMS was delivered at 

rest (TMS pulse 5s after movement onset), and an interval of 100 ms after onset of 

FDI activity were used. The duration of 100 ms after movement onset was chosen as 

it is a time interval during which SI is known to be active (Sohn and Hallet, 2004). 

The EMG activity measured was expressed as the root mean square (RMS) 

amplitude of the raw EMG signal. 

 

The amplitude of MEPs is affected by ongoing EMG activity at the time of stimulation. 

Therefore, background EMG activity in the ADM was analysed in the 20ms prior to 

stimulation in the trials where TMS was delivered at the onset of FDI movement. This 

was to ensure that background EMG activity in the ADM remained as stable as 

possible throughout the experiment, and did not influence MEP measures. The EMG 

activity measured was expressed as the RMS amplitude of the raw EMG signal. 

 

 

2.5 TMS 

TMS was delivered by a figure-of-eight shaped coil with an external diameter of 9cm 

connected to a monophasic Magstim 200 stimulator (Magstim, Carmarthenshire, 

UK). The intersection of the coil was positioned tangentially on the scalp over the left 

M1 at the optimal site for eliciting maximal amplitude MEPs in the contralateral ADM 

i.e. the ‘hot spot’. This position was marked with a felt pen to ensure consistent coil 

positioning throughout the experiment. The handle of the coil was pointing backwards 

and laterally at a 45˚ angle to the sagittal plane, this induced a P-A directed current in 

the brain and stimulated corticospinal neurons (di Lazzaro et al., 2004). The intensity 

of the stimulation was set to evoke MEPs with a peak-to-peak amplitude of 
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approximately 1-1.5 mV in the ADM at rest in a minimum of 5 out of 10 consecutive 

trials.  

 

For the assessment of SI, single TMS pulses were delivered at rest and at the onset 

of the movement (test). In order to assess MEP amplitude size at movement onset, 

the peri-triggering function of SIGNAL software was set to trigger TMS immediately 

when EMG activity in the right FDI exceeded 0.1 mV. MEPs at rest were assessed by 

a TMS pulse delivered 5s after movement onset, when subjects were resting waiting 

for the next ‘go’ signal. This time point is considered to be sufficient for 

measurements at rest. The duration of the movement was 2s, meaning the TMS 

pulse was delivered with a delay of 3s after the end of the movement. MEPs from the 

FDI and ADM muscles have been shown to return to baseline from 500 ms after 

EMG onset (Sohn and Hallett, 2004).  

Peak-to-peak ADM MEP amplitude was measured off-line for each trial, and the 

average amplitude in 40 trials was calculated for each block. SI was expressed as 

the ratio between test MEP amplitudes and rest MEP amplitudes, in percentage. 

[SI = (MEPtest / MEPrest)*100 [%]].     

 

 

 

2.6 Statistical analyses 

The SIGMAPLOT (version 12.0) software was used for the statistical analysis. 

Normality of data distribution was assessed with the Shapiro-Wilk test. 

Time-dependent changes (effect of BLOCK) in SI, performance scores and reaction 

time (RT) were evaluated through repeated measures analysis of variance 
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(rmANOVA). Where significant effects were observed, multiple comparisons were 

conducted with the Holm-Sidak test to further analyse the results. 

The relationship between SI and performance scores in the first 5 training blocks was 

explored by conducting a two-tailed regression analysis on the time-dependent 

changes in SI and performance scores using Pearson’s correlation coefficient.  

The data presented in the figures correspond to the data used for statistical analyses. 

Statistical significance was set to P < 0.05. All results are expressed as mean values 

±SEM.  

 

 

3 RESULTS 

 

A total of 22 subjects completed the study. A further 2 participants (1 man and 1 

woman) were excluded from the study because they showed insufficient surround 

inhibition (SI), i.e., larger test MEPs than rest MEPs in the ADM. While subjects were 

instructed to maintain EMG silence in the ADM (<0.1mV), there were nonetheless 

trials where this was not the case. Of the total trials analysed, 3% were excluded 

because background EMG activity exceeded 0.1mV. 

3.1 Motor performance 

The performance score was related to the time on target which depended on both the 

reaction time as well as the steadiness of the contraction. Higher scores reflect faster 

and more precise force exertion. All participants could perform the task and improved 

with practice (Fig 2A) over the first 5 repeating blocks. There was a tendency for 

performance to drop in the final attention block, but this was not significant. 
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This was confirmed by a significant effect of BLOCK in a one-way rmANOVA (F(5,21) 

= 14.025, P < 0.001). Post hoc pairwise comparisons demonstrated that scores in all 

blocks were larger than in the first block (P<0.05), but there was no significant 

change in score between subsequent pairs of blocks. The BLOCK effect remained 

strongly significant (F(5,21) = 8.188, P < 0.001) after the removal of the first 10 trials 

in the first training block, ensuring that performance improvement was not a result of 

task familiarization. Reaction times did not change over the blocks. There was a 

small increase in reaction time in the final attention block but this was not significant 

(one-way rmANOVA: no significant effect of BLOCK (F(5,21) = 0.842 , P = 0.523) 

(Fig 2B).  

 

Performance was also assessed as subjects’ ability to maintain ADM silence during 

FDI contraction. A one-way rmANOVA was conducted to analyse any change in 

ADM EMG activity during FDI contraction throughout the experiment (Fig 3B). This 

revealed no significant change (F(5,21) = 1.56 , P = 0.178). Motor training had no 

significant effect on ADM EMG activity during FDI contraction. 

 

 

3.2 Surround inhibition 

SI was quantified in terms of the amplitude of the MEP evoked in ADM at the onset of 

FDI contraction relative to the MEP evoked in ADM in the rest period between trials.  

Analysis of the data with a one-way rmANOVA revealed a significant effect of 

BLOCK (F(5,21) = 6.451, P < 0.001). Post hoc pairwise comparisons showed that SI 

was significantly lower than baseline in practice blocks 4 and 5 (t = 3.450 P = 0.010; t 
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= 4.163 P < 0.001 respectively). There was also a significant enhancement in SI 

between practice block 5 and the final attention block (t = 4.144 P < 0.001) (Fig 3A). 

 

 We confirmed that the amplitude of the resting MEPs in ADM and FDI were constant 

over all blocks and were unaffected by practice on the task (Fig 4). This was 

confirmed in a one-way rmANOVA that revealed no significant effect of BLOCK 

(F(5,21) = 1.462, P = 0.209 and F(5,21) = 0.381, P = 0.861 for ADM and FDI 

respectively). MEPs are also affected by ongoing EMG activity at the time of 

stimulation. Although the task instructions were to maintain EMG silence in ADM (< 

0.1mV) there were nevertheless small changes in activity from trial to trial. We 

measured the level of EMG activity in the 20ms prior to the TMS pulse in SI trials (Fig 

3C). A one-way rmANOVA confirmed that there was no change in ongoing activity 

over the trial blocks (no significant effect of BLOCK: F(5,21) = 2.22, P = 0.057). 

 

All participants exhibited SI: the MEP evoked in ADM was smaller when triggered at 

the onset of FDI contraction than it was in relaxed muscles. However, as particpants 

practised the task, the amount of SI declined (Fig 3A). Thus, MEPs evoked in ADM at 

the onset of FDI activity gradually increased in size as performance improved. Note 

that this occurred even though there was no change in preceding background EMG 

activity nor in the amplitude of the MEP evoked in ADM at rest. In the final attention 

block, SI increased towards levels seen in the first block of trials. 

 

3.3 Surround inhibition and performance 
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Pearson's Product-Moment Correlation revealed a significant, weak correlation 

between SI and performance scores (r = 0.25, P = 0.016), indicating that better motor 

performance is accompanied by less effective SI (Fig 5). 

 

 

4 DISCUSSION 

 

In the present experiments, healthy individuals made 240 isolated flexion movements 

of the index finger. Movement accuracy improved over that period while in contrast 

surround inhibition (SI) in the nearby relaxed ADM muscle was reduced. Analysis of 

background EMG activity in the ADM preceding stimulation, and of the amplitude of 

MEPs evoked in the ADM at rest, revealed that neither changed during training. This 

suggests that the reduction in SI was due to practice-related changes in its central 

control. The present experimental set-up did not include a measure of spinal 

excitability; it is possible that training resulted in an increase in the concurrent levels of 

spinal excitability at the onset of FDI contraction (Adkins et al., 2006) that could have 

influenced some of the measured changes in SI. Thus, it might be worthwhile to probe 

this in the future.  

 

SI refers to the reduction in amplitude of MEPs evoked in the ADM muscle at the onset 

of a focal contraction of a distant hand muscle such as FDI. The amplitude of the MEP 

depends on the excitability of neural elements in the cortex as well as interneurons and 

motorneurones in the spinal cord. Since F-waves and ongoing EMG activity in ADM 

are constant or even increase during SI (Sohn and Hallet, 2004; Kassavetis et al., 
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2014), spinal excitability is thought to remain unchanged. The conclusion is that SI is 

caused by reduced excitability at a cortical level of the corticospinal projection to ADM.  

 

As noted in the introduction, several authors have speculated that SI is a cortical 

mechanism that helps to focus excitatory output of the motor cortex, enabling isolated 

finger movements and preventing overflow of unwanted activity to other muscles. 

However, it was recently reported that SI is less effective in professional pianists 

compared with non-musicians (Shin et al., 2012). At first sight the result is unexpected 

since expert pianists might have been thought to have superior control of individuated 

finger movements. If SI is needed to focus excitatory output at the cortex, it should be 

recruited more readily in pianists. In explanation it was proposed that pianists routinely 

practice a wide variety of complex finger movements, some of which may involve co-

activation of FDI and ADM. If SI was always present, then it would interfere with such 

tasks. The hypothesis was that over time pianists reduce the effectiveness of SI, 

allowing complex combinations of finger movement to be produced. A corollary of this 

reasoning is that when pianists make isolated finger movements they can direct their 

motor commands selectively to the agonist muscles without requiring “focus” from 

surround inhibition. It is possible that reduced SI allows the expert pianist to shift more 

rapidly between isolated movements of a single finger to complex synergies of many 

fingers. 

 

In the present experiments we tested this by asking non-musicians to practice a skilled 

index finger task in which participants improve performance by increasing the accuracy 

and reducing the variability of their motor output. Our hypothesis was that this would 

train individuals to focus their commands more accurately and reduce the need for SI 



 17 

to prevent unwanted contraction of nearby muscles. The present motor task is 

ecologically limited in its ability to replicate the synergistic contractions required to play 

the piano. However, pianists utilise both skilled synergistic finger movements, as well 

as superior finger individuation. This study chose to focus on the latter to allow for a 

skill simple enough for non-musicians to ‘master’ in a relatively short amount of time. 

Moreover, synergistic contractions during synchronized finger exercise of agonist and 

surround muscles have been previously shown to reduce SI, while individuated 

contractions of the surround muscle alone had no effect on SI (Kang et al., 2012). The 

present findings extend those of Kang and colleagues (2012) by demonstrating that 

sufficient training of isolated contractions of the agonist muscle also appear to reduce 

SI. Therefore, motor training-related reduction of SI may be associated with both the 

nature of the task (synchronized vs individuated contractions), as well as the muscle 

practiced (agonist vs surround).  

 

The results show that participants improved performance over time, achieving higher 

scores in each block of trials. Improvement was initially rapid but continued slowly for 

the rest of the experiment. Simultaneously, SI showed a continuous and gradual 

reduction. Therefore, as subjects became better at performing the task, their SI 

declined. It is important to note that training led to a significant reduction, rather than a 

total absence, of SI. We suggest that SI may have been useful during the early stages 

of learning to prevent activity in muscles that could interfere with task performance. 

However, as learning progressed, and control of output became more reproducible, the 

need for SI declines and its excitability (as tested with TMS) falls. The present study is 

limited by the lack of assessment of corticospinal excitability during the whole period 

when SI is known to be active (100ms after movement onset). Therefore, the present 
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findings are limited to the instantaneous depth of inhibition and do not extend to any 

potential effect on the duration of inhibition. 

 

It is important to note that although SI decreased over time, there was no increase in 

“overflow” of activity to the ADM muscle. The level of EMG in ADM during the period 

when FDI was active was constant throughout the experiment. This confirms that 

participants were able to focus their motor commands effectively and to keep a 

constant low level of “overflow” to unwanted muscles. The nature of this overflow is 

unclear. Data show that phasic contraction of a single muscle or group of synergists 

is accompanied by a widespread increase in excitability of monosynaptic spinal 

reflexes in many muscles similar to that seen in the Jendrassik manouvre (Zehr and 

Stein, 1999). One contributor to this activation may be non-focal activity in 

descending pathways which is normally suppressed by SI. Our data show that 

although SI decreased with training, subjects still maintained a constant low level of 

“overflow” to uninvolved muscles suggesting that with practice, activity can be 

focused sufficiently well to reduce this non-focal activity without the aid of SI. In 

effect, training could improve focality of contraction in the agonist muscle, rather than 

having a direct effect on the surround muscle itself. This could make an active 

suppression of surround muscles less necessary, driving a reduction in SI.  Indeed, 

isolated finger exercise of the ADM surround muscle which does not stress focality of 

contraction shows no modulatory effect on SI (Kang et al., 2012). Finally we note that 

cortical disinhibition is associated motor learning in humans (Floyer-Lea et al., 2006); 

similarly, repetitive practice of individuated finger movement reduces GABAergic 

short intra-cortical inhibition (SICI) (Liepert et al., 1998; Rosenkrantz et al., 2007). 

Therefore, it is possible that that the reduction of SI through training in the present 
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study is not specific to SI, but is a general phenomenon reflecting motor cortical 

disinhibition during motor learning.  

 

A role for attention? 

There is a second possible explanation for the reduced SI seen in professional 

pianists as well as after practice in the present experiments. Initial performance of a 

SI task requires attention. When participants initially attempt individuated flexion of 

the forefinger, they produce some activity in the ADM muscle. Most people can 

reduce this by directing their attention to the task. It could therefore be that attention 

engages SI. Prolonged practice of such movements in pianists and after training in 

non-pianists allows them to perform the task with little attention, thus reducing SI.  

 

Therefore, as an initial attempt to probe the effect of attention on SI, we introduced a 

final block after training in which we attempted to re-engage attention back to the 

task. Unpredictability of events has been shown to increase demands on attention 

(Parasurman, 1986; Sarter et al., 2001). Therefore we randomly varied the inter-trial 

interval (ITI) in the final ‘attention’ block. This meant that, unlike in the training blocks, 

subjects were unable to predict the time of signal presentation, presumably resulting 

in greater attention to the task, although this is something that we could not measure 

directly, and therefore remains a speculative interpretation of our experimental 

manipulations. The results showed that varying the ITI resulted in an enhancement of 

SI back to baseline level (Fig 3A). This was consistent across all subjects. Note that 

there was no significant change in performance (Fig 2A, 3B) that could have 

influenced the observed enhancement of SI. Therefore, the increase in SI could be 

due to an increase in attention to the task. This finding is limited by a lack of direct 
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measure of attention in the current experiment. It is possible that varying the ITI 

drove an increase in SI to compensate for an increased unpredictability of signal 

events and maintain a relatively constant level of motor performance. However, it is 

important to note that none of the subjects perceived the nature of the manipulation. 

Additionally, longer reaction times (RT) are associated with a less automatic motor 

performance and higher levels of attention (Jueptner et al., 1997), and an analysis of 

RT showed that these were slower in the final attention block (Fig 2B), although this 

did not reach statistical significance.  

 

This final block of the experiment was exploratory and not intended to provide a 

definitive answer to the role of attention in movement control. Nevertheless it does 

suggest that attending to a movement may engage additional physiological controls 

on output, such as SI, that may not be engaged by routine tasks. 

 

4.1 Conclusions 

The present findings demonstrate that improved performance of an isolated finger 

movement is accompanied by reduced SI. Therefore, the direct role of SI in the 

mechanics of finger individuation remains unclear. Perhaps SI is a mechanism to aid 

effective finger individuation in an untrained hand, while a hand trained in isolated 

finger movements utilises alternative mechanisms developed through training, such 

as enhanced facilitatory networks for the desired movement, which would reduce the 

need for an active SI. The final part of the experiment provides some evidence that 

attention to task may be an important factor controlling the excitability of SI but this 

finding is limited by a lack of direct measure of attention.  
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FIGURE LEGENDS 

 

Fig 1. (A) Experimental setup. Two pairs of surface electrodes were placed on the 

FDI and ADM of the right hand. The tip of the index finger was placed on the force 

transducer and adjacent fingers were kept at rest. (B) Time course of the task. 

Shown are EMG traces of the FDI, and a schematic of the real-time visual feedback 

that was presented to subjects during the task. At 0s, subjects were signalled to 

press down on the force transducer placing a cursor into a 10% maximal force target. 

At 2s, subjects were signalled to stop exerting force and a measure of their 

performance was given as a numerical score. Placing the cursor into the target as 

quickly and accurately as possible yielded the highest scores. Self-triggered TMS 

pulses were delivered randomly 0s after movement onset (condition; top trace), or 5s 

after movement onset (rest; bottom trace). The inter-trial interval (ITI) was set to 3s in 

the first 5 training blocks, and varied randomly between 1-5s in the final ‘attention’ 

block. (C) Example of raw data from one subject. Shown are 10s window EMG traces 

of the ADM muscle in trials where MEP was recorded at the onset of movement (test/ 

SI) and at rest. (D) Enlarged scale demonstrates an ADM MEP of 1mV at rest and a 

30% reduction in ADM MEP size during conditioning. Displayed is a peak-to-peak 

EMG baseline of 0.02mV 200ms prior to the TMS pulse delivered at rest. Trials 

where EMG activity exceeded 0.1mV were excluded. 

 

Fig 2. (A) Mean performance scores in each experimental block. There was a steep 

learning curve between the first and second block, performance then plateaued for 

the remainder of the experiment. Error bars indicate SEM. * indicates P < 0.001 

compared to baseline. (B) Mean reaction time (RT) in each experimental block. As 
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performance became more automatic, RT gradually decreased, then plateaued. This 

was followed by a steep increase in RT in the final attention block, which involved a 

random variation of inter-trial interval (ITI) as a means of manipulating attention back 

to the task. There was no significant change in RT. Error bars indicate SEM. 

 

Fig 3. (A) Mean calculated surround inhibition (SI) in the ADM muscle in each 

experimental block. SI is expressed as the ratio of conditioned MEP amplitudes to 

rest MEP amplitudes, in percentage. An increase in this percentage indicates a 

reduction of SI. SI was reduced over the course of the first 5 training blocks, and 

returned to baseline levels in the final block where attention was manipulated back to 

the motor task. Error bars indicate SEM. ** indicates P < 0.001 compared to 

baseline, * indicates P = 0.010 compared to baseline. (B) ADM EMG amplitude 

calculated as the root mean square (RMS) of raw ADM EMG activity during FDI 

contraction (100ms after movement onset). Background EMG activity in the ADM 

during FDI contraction showed no significant change throughout training, or in the 

final attention block (P = 0.178). (C) Background EMG activity in the ADM 20ms prior 

to stimulation in trials where TMS pulse was delivered at onset of FDI activity. There 

was no significant change in this activity throughout the experiment (P = 0.057). 

 

Fig 4. (A) Motor evoked potential (MEP) in the ADM at rest (5s after onset of 

movement) in each experimental block. There was no significant change in mean 

MEP amplitude evoked at rest in each block; P = 0.209. (B) Motor evoked potential 

(MEP) in the FDI at rest (5s after onset of movement) in each experimental block. 

There was no significant change in mean MEP amplitude evoked at rest in each 

block; P = 0.861.  
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Fig 5. Scatterplot displaying a weak correlation between surround inhibition (SI) and 

motor performance. SI is expressed as a percentage of the ratio of conditioned to 

rest MEP amplitudes in the ADM muscle. An increase in this percentage indicates a 

lower SI. A reduction of SI is associated with an improvement in motor performance. 

r = 0.25, P = 0.016. 

 

 

 

 

 


