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Abstract 

Purpose: In this work we present the MASSIVE (Multiple Acquisitions for Standardization of 

Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is 

intended to facilitate diffusion MRI (dMRI) modeling and methodology development. 

Methods: MRI data of one healthy subject (female, 25 y) were acquired on a clinical 3 T system 

(Philips Achieva) with an 8-channel head coil. In total, the subject was scanned on 18 different 

occasions with a total acquisition time of 22.5 hours. The dMRI data were acquired with an isotropic 

resolution of 2.5 mm3 and distributed over five shells with b-values up to 4000 s/mm2 and two 

Cartesian grids with b-values up to 9000 s/mm2. 

Results: The final dataset consists of 8000 dMRI volumes, corresponding B0 field maps and noise 

maps for subsets of the dMRI scans, and ten 3D FLAIR, T1-, and T2-weighted scans. The average 

signal-to-noise-ratio (SNR) of the non-diffusion-weighted images was roughly 35.  

Conclusion: This unique set of in vivo MRI data will provide a robust framework to evaluate novel 

diffusion processing techniques and to reliably compare different approaches for diffusion modeling. 

The MASSIVE dataset is made publically available (both unprocessed and processed) on 

www.massive-data.org. 

Keywords 
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http://www.massive-data.org/
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Introduction 

Diffusion magnetic resonance imaging (dMRI) is used in a wide range of clinical and scientific 

disciplines for its ability to infer information about tissue architecture and microstructure in vivo (1–

4). Investigating brain tissue characteristics with dMRI, however, remains challenging mainly due to 

the presence of numerous artifacts during data acquisition and the high complexity of the diffusion-

weighted (DW) signal for modeling purposes. Consequently, multiple processing steps have to be 

performed to be able to extract meaningful and reliable features from dMRI data. A variety of 

correction strategies have been developed that address data imperfections (e.g. , eddy current 

induced distortions, susceptibility based deformations caused by magnetic f ield in homogeneities, 

noise and physiological artifacts (1,5)) to minimize the presence of confounds that could convolute 

data interpretation. In addition, a wide range of dMRI models and reconstruction methods have been 

proposed that aim to extract tissue characteristics in a reliable way, including diffusion tensor 

imaging (DTI) (6), diffusion kurtosis imaging (DKI) (7), diffusion spectrum imaging (DSI) (8), Q-ball 

imaging (QBI) (9), spherical deconvolution (SD) (10–12), CHARMED (13), and NODDI (14). 

Notwithstanding recent developments in dMRI artifact correction and modeling, optimizing the dMRI 

processing pipeline is still an active area of research. For example, there is currently no consensus on 

the optimal dMRI model or representation to characterize the DW signal, or on the optimal sampling 

scheme for dMRI reconstruction techniques that use ´multi -shell´ acquisitions (i.e., gradient 

directions distributed over multiple b-value shells). Moreover, these two issues may even depend on 

each other, i.e., optimal sampling might be different for different models. In parallel, many new 

artifact correction strategies are currently being developed (15,16). In this context, a comprehensive 

evaluation framework for such novel diffusion processing techniques and for a reliable comparison 

between different approaches is highly desired. 
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Unbiased and reliable evaluations are, however, generally hampered by the lack of a genuine gold-

standard, and there is an urgent need for a reliable framework that can facilitate the development of  

dMRI methodology. Hardware phantoms and simulations are very valuable because of their known 

ground truth, but are often too simplistic (17) or can be biased towards a specific model (18–20). 

Real data acquisitions can, despite their unknown ground-truth, serve as valuable references to 

complement phantom and simulated data in the validation and evaluation of new processing 

strategies. For this purpose, a comprehensive dMRI dataset is required. 

Data repositories and databases are becoming more readily available (21), greatly facilitating the 

development of dMRI methods. Many of these repositories contain cross-sectional and/or 

longitudinal data allowing for research on normal brain development and function (22–26). Other 

databases aim to give insight into brain anatomy and resolve complex neuronal microarchitecture, 

either by deriving templates or atlases from data of a single subject or multiple subjects (27–30) , or 

using high resolution post mortem data (31–33). An example of a cross-sectional repository is the 

Human Connectome Project (HCP) database, which will contain dMRI data (among others) of 1200 

subjects acquired with maximum gradient strengths surpassing that of clinical scanners (25,26). 

Although this database contains data acquired with multiple b-values and more diffusion gradient 

directions than most acquisitions it is still limited in its sampling of q-space (270 directions on three 

shells). More densely sampled q-space data (512 directions) with higher b-values (b=10.000 s/mm2 )  

for a broader age range are also available (34). These datasets are acquired with innovative gradient 

systems and therefore not comparable to those typically acquired in a clinical setting in terms of 

resolution and SNR, among others. Another dMRI database is provided as part of the 

"MyConnectome Project" (35). This database contains 19 (15 usable) repeated scans of a single 

subject acquired over the course of 18 months with the purpose of specifically investigating the 

dynamics of brain function, and the scans are thus identical in terms of acquisition parameters ( i .e .,  

b-values and gradient orientations). Despite the availability of many excellent high quality 
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repositories, for validation of processing methods and algorithms (36,37) in a clinical setting, 

typically, synthetic phantoms (20,38,39) or small clinical datasets (40) are still used. 

In this work we present the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging 

Validation and Evaluation) brain dataset containing multi-modal MR data and 8000 dMRI volumes of  

a single healthy subject acquired on a clinical 3 T scanner. All the datasets were specifically acquired 

in a clinical setting, i.e., using single-shot echo-planar imaging (EPI), ̀ conventional` gradient strengths 

and hardware, no dedicated head fixation or advanced high density receive coil, to be in line with the 

current standards in acquisition protocols from routine examinations. As such, subsets of the 

MASSIVE dataset are comparable to data acquired in clinical studies, and can serve as representative 

test beds for new developments in a wide range of dMRI data correction strategies, image processing 

techniques, and microstructural modeling approaches. The MASSIVE dataset consists of 8000 dMRI 

volumes with b-values up to 9000 s/mm2, sampled in configurations of five shells and two Cartesian 

grids. Data was acquired with echo-planar imaging (EPI) phase-encoding in both anterior-posterior 

(AP) and posterior-anterior (PA) directions, and with gradient directions both in positive and negative 

z-direction resulting in 2000 scans for each combination. In addition, the dataset contains B0 field 

maps, noise maps, and ten 3D fluid-attenuated inversion recovery (FLAIR), T1-, and T2-weighted 

datasets, which often play an important role in dMRI processing and analysis methods (e.g., (41–43))  

and can also be used independently for test-retest experiments and methodological evaluations and 

comparisons (e.g., (44–46)). The MASSIVE dataset, which was first presented at the 22nd Scientific 

Annual Meeting of the ISMRM (47), is made publicly available on www.massive-data.org.  

  

http://www.massive-data.org/
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Methods 

Data acquisition 

All the MRI data of the healthy subject (female, 25 y) were acquired on a clinical 3 T system (Phi l ips 

Achieva) with an 8-channel head coil. The subject gave informed consent to participate in this study 

under a protocol approved by the University Medical Center Utrecht ethics board.  In total, the 

subject was scanned on 18 different occasions (total acquisition time: 22.5 h). A schematic overview 

of the protocol for a single session is shown in Figure 1. Each of the 18 scan sessions consisted of four 

dMRI acquisition blocks of 15 minutes in which a unique subset of the 8000 DW volumes was 

acquired with B0-maps being acquired before and after each of these four dMRI acquisition block 

(48–50). Additionally, noise maps were obtained at the end of each dMRI acquisition block by 

switching off the RF pulses and imaging gradients. Finally, ten 3D FLAIR, T1-, and T2-weighted datasets 

were acquired in five of the eighteen sessions. In these sessions, two FLAIR, T1-, and T2-weighted 

datasets were acquired with a two hour pause in between. Positioning of the head in the coil and 

planning the field-of-view in each session was done manually, which resulted in small offsets in 

rotation and translation. The coronal positioning was intentionally varied between sessions to 

minimize the systematic effects of ghosting artifacts. The design of the diffusion and anatomical  MRI 

acquisitions will be outlined in more detail in the next paragraphs (further acquisition detail s can be 

found in Table 1). 

 

Diffusion MRI 

The MASSIVE dataset comprises 8000 unique DW volumes, subdivided into four ‘sets’ with both 

positive and negative gradient directions, and with both AP and PA phase encoding directions (in the 

following referred to as AP+, AP-, PA+ and PA-). The acquisition of each set of 2000 DW volumes was 

divided in 18 sessions (see examples shown in Figure 2) of which eight sessions contained 120 dMRI 
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volumes and 10 sessions contained 104 dMRI volumes. The ordering of the diffusion gradient 

orientations and b-values was randomized throughout every set to prevent an acquisition bias across 

sessions (Figure 2 D-F). The exact scan order can be found in the lookup table which can be 

downloaded from the website www.massive-data.org. 

The gradient directions are distributed over five shells and two Cartesian grids. The diffusion gradient 

orientations on the shells were generated using the approach described in Caruyer et al., 2013 (51) . 

In short, this approach uses static repulsion of particles to homogenize the gradient orientations on 

half a sphere (51–53). In this work, the solution was obtained by an iterative solver where in each 

iteration the particles repel each other and are subsequently back-projected onto the unit sphere 

until convergence is reached (see Supporting material 1, Figure S1). The software tool that was 

developed for computing these gradient orientations is also made available on the MASSIVE website. 

The five shells consisted of 125, 250, 250, 250 and 300 gradient orientations on the half sphere with 

a b-value of 500, 1000, 2000, 3000 and 4000 s/mm2, respectively. The two Cartesian grids were 

evenly spaced in half a cube, one with an even (83/2 = 256) and one with an odd ((93+1)/2 = 365) 

number of samples. The maximum b-values along the axes were 2296 s/mm2 (q = 0.038 μm-1) for the 

even grid and 3000 s/mm2 (q = 0.043 μm-1) for the uneven grid. The maximum b-values for the corner 

points were 6890 s/mm2 (q = 0.066 μm-1) for the even grid and 9000 s/mm2 (q = 0.075 μm-1) for the 

uneven grid. For the diffusion data with a b>3000 s/mm2 and for the Cartesian grids the EPI 

bandwidth was reduced from 50 to 30 Hz (keeping the TE, δ and Δ constant) to maximize the SNR for 

the high b-values and to be able to acquire the data in a feasible scan time given the  system ’s  duty 

cycle limitations. Additionally, 204 b = 0 s/mm2 images were acquired, resulting in the 2000 dMRI 

volumes per set with approximately a 1:9 ratio between the non-DW and the DW volumes. These 

non-DW volumes were randomly interleaved throughout each dMRI acquisition to avoid any 

measurement bias and to allow for signal drift correction ((16), see also section 2.2). 
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Anatomical MRI 

Ten anatomical MRI datasets (T1- and T2-weighted, and FLAIR) were acquired as they often support 

dMRI processing and analysis methods (facial features were removed for anonymization). For 

instance, T1-weighted data can be used for segmentation of gray and white matter regions, which 

can be used to improve fiber tractography (43,54). Similarly, as T2-weighted data provide a 

comparable contrast with the non-DW data, these can be used to correct for susceptibi lity induced 

distortions (41,42). The FLAIR data, which has a similar contrast to the T2-weighted data but with 

suppression of the signals originating from the cerebrospinal fluid, may be useful to investigate the 

contributions of partial volume effects (55,56). Details of the acquisition protocols for these 

anatomical MRI data are included in Table 1. 

 

Data processing 

In addition to the raw data, we provide further information on the acquired data, such as SNR 

estimates and the “true” applied b-matrix for the raw data as derived from the scanner. In addition, 

we make available three processed datasets: 1) only the intensity-normalized data; 2) both intensity-

normalized and signal-drift corrected data; and 3) data that has been intensity-normalized and 

corrected for signal-drift, subject motion, eddy current distortions, and EPI deformations. Note that 

for each of these results conventional processing tools were used as described in the following 

subsections.  

 

Signal-to-noise-ratio (SNR) estimation 

Having knowledge of the image SNR is often important in dMRI modeling and processing (1,57–64). 

The SNR can be quantified in numerous ways, however, and may not be the same across different 

methods (65–69). Therefore, noise maps were obtained after each acquisition of a 15-minute 
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diffusion block, by switching off the gradients and RF power but leaving the acquisition channels 

open. The acquisition parameters of the noise map were equal to the dMRI acquisition parameters  

and, as such, an accurate noise measurement is obtained. To calculate a rough approximation for the 

global SNR, the average whole brain signal within a mask was computed for every DW volume and 

divided by the noise standard deviation within the same brain mask as derived from the noise map.  

 

Intensity normalization and signal drift correction 

Since the data were acquired in different sessions, intensity normalization between sessions is 

needed to be able to combine the DW volumes into a single data set (70). To this end, the first 

volume of each 15-minute dMRI acquisition block, which was always a non-DW volume, was used to 

normalize the signal intensities of all the other volumes within that acquisition block. 

In dMRI, the heavy duty cycle of the EPI-readout and the diffusion gradients can lead to temporal 

instability of the scanner. This instability typically causes a decrease in global signal intensity of  the 

DW images over time, as explained in detail in (16). To correct for this so-called signal drift, the  non-

DW volumes, which were randomly interleaved throughout each dMRI acquisition block, were 

identified. Subsequently, the signal drift that occurred during this 15 minute time-window was 

characterized by a quadratic fit of the mean signal of the b=0 s/mm2 volumes as a function of the 

scanned volume (16), i.e. 

𝑆(𝑛 |𝑏 = 0 s/mm) = 𝑑1 ∙ 𝑛2 + 𝑑2 ∙ 𝑛 + 𝑆0,   (1) 

where 𝑆 is the normalized measured signal, 𝑛 the ordering number of the acquired volume, 𝑆0 the 

signal offset at 𝑛 = 0, and 𝑑1 and 𝑑2 describe the quadratic and linear signal drift per volume, 

respectively. The corrected signal of the nth volume, 𝑆𝑐𝑜𝑟(𝑛), is then given by: 

𝑆𝑐𝑜𝑟(𝑛) = α 
𝑆(𝑛)

𝑑1∙𝑛2+𝑑2∙𝑛+𝑆0
,     (2) 
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where the factor α is an arbitrary chosen signal scaling factor.  

 

True b-matrix calculation 

In addition to the DW pulsed field gradients, imaging gradients can also contribute to the di f fusion-

weighting. Therefore, the actual b-matrix was calculated in addition to the prescribed b-matrix 

(71,72). The amount of diffusion weighting 𝒃𝑖,𝑗 along the coordinate axes 𝑖 = {𝑥, 𝑦, 𝑧}  and 𝑗 =

{𝑥, 𝑦, 𝑧} can be expressed as the time (𝑡) integral over the echo time (𝑇𝐸) of the zeroth-order (𝑛 = 0) 

moments (𝑴𝑛) of the gradients, i.e., 

𝒃𝑖,𝑗 = 𝛾2 ∫ 𝑴(𝑡)n=0,𝑖𝑴(𝑡)n=0,𝑗𝑑𝑡
𝑇𝐸

0 ,     (3) 

with, 

𝑀(𝑡)𝑛 = ∫ 𝑡′ 𝑛𝐺(𝑡)𝑑𝑡′,
𝑡

0       (4) 

Where 𝛾 is the gyromagnetic ratio and 𝐺(𝑡) the gradient wave form.  

 

Correcting for subject motion, eddy current distortions, and EPI deformations 

dMRI acquisitions suffer from subject motion and eddy current induced distortions within an 

acquisition session (1,73). In this study, the dataset was scanned in multiple sessions which caused an 

additional source of misalignment. As a result, the final gradient distribution will slightly di ffer from 

the applied one, because the b-matrix needs to be rotated when correcting for subject motion (74) . 

For each session, the dMRI data was registered using ExploreDTI (75) using an affine method with 12 

degrees of freedom to also correct for eddy current induced distortions in the same step (76). The 

first b=0 s/mm2 image of each acquisition was chosen as a reference image. To correct for EPI 

distortions and subject motion between the different session, all data was transformed to a common 
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T1-weighted anatomical target dataset using a rigid-registration for rough alignment, fol lowed by a 

non-rigid b-spline registration to correct for susceptibility induced deformations (42,77–79). Here, 

only non-rigid deformations along the phase-encoding axis of the dMRI data were allowed, as this i s 

the axis along which susceptibility distortions occur. Note that the transformations from these two 

last steps are combined with the previous eddy current correction procedure to ensure that only one 

interpolation step is needed minimizing unwanted smoothing effects due to resampling  All other 

anatomical datasets (FLAIR, T1-, and T2-weighted) were also transferred to the same T1-weighted 

target dataset using rigid registration.  
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Results 

Figure 3 shows representative images of the acquired data. The top two rows (Figure 3 A-H) show 

images from the different shells and Cartesian grids. The FLAIR, T1-, and T2-weighted anatomical 

scans are shown in Figure 3 I-K and a B0 map is shown in Figure 3 L. 

 

Signal-to-noise-ratio (SNR) 

The noise as derived from the noise map is Rayleigh distributed (see Figure 4 A). The SNR estimates 

are presented in Figure 4 B. The average SNR was between 35 and 40 for the non-DW images and 

was in the same range across all sessions. The SNR of  the data in sessions 9 to 18 (b = 4000 s/mm2 

shell and both DSI grids) was around 15 percent higher than for the shells with b ≤ 3000 s/mm2, 

which was to be expected with the lower bandwidth. The estimated SNR values per acquired volume 

can be found in the lookup table which can be downloaded from the website www.massive-data.org. 

 

Intensity normalization and signal drift correction 

In Figure 5, the mean signal of the non-DW volumes is shown as a function of the measurement 

number (red markers) for 24 randomly chosen acquisition blocks. The quadratic fit used to correct 

for signal drift is shown in black and the signal-drift corrected data are shown in blue. The mean 

signal drift during a 15 minute acquisition block was 9.3 % with a standard deviation of 3.7 % (range:  

3.0 to 18.8 %) with respect to the initial volume. The mean signal for all the 8000 acquired volumes is 

shown in Figure 6 A and B. By comparing A with B of Figure 6, one can appreciate that the mean 

signal of the normalized and drift-corrected volumes across all sessions is more constant now. 
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True b-matrix calculation 

Since the slice selection gradients are always in the orientation of the z-axis, the actual  b-value for 

the non-DW images, using equations [3] and [4], is 0.25 s/mm2 instead of 0 s/mm2. The average 

value and the range of the actual b-values of the five shells are listed in Table 2. For the DW images 

the actual b-value differs up to 2% from the applied b-value. The relative difference is largest for 

lower b-values. The effect of these small differences is shown in Figure 6, C and D, where the 

intensity-normalized mean signal (with and without signal-drift correction is plotted as a function of  

both the applied and the actual b-value. The imaging gradients not only affect the b-value, but also 

the gradient direction. However, the median change in orientation due to the slice selection 

gradients across all gradients was found to be only 0.004 degrees. The applied and actual b-matrix 

values can be found in the lookup table which can be downloaded from the website www.massive -

data.org. 

 

Correcting for subject motion, eddy current distortions, and EPI deformations 

The average maximal translations over all individual sessions were 0.3 ± 3.3 mm (range -4.7 to 4.6 

mm), 0.4 ± 1.2 mm (range -2.5 to 2.8 mm), and -0.8 ± 1.3 mm (range -3.6 to 2.3 mm) for the coronal, 

sagittals and axial directions, respectively. The average maximal rotations over all individual session 

were -0.6 ± 1.0 ° (range -2.5 to 2.9 °), 0.2 ± 1.2 ° (range -2.9 to 2.6 °), and -0.2 ± 1.1 ° (range -2.3 to 2.4 

°) along the coronal (roll), sagittal (pitch), and axial (yaw) axes, respectively. The maximal range of the 

rotations between and within the sessions was only ±5 degrees with respect to the mean. The 

difference between the imposed gradient distribution and the gradient distribution after b-matrix 

correction for subject motion is shown for a subset of the data (b=1000 s/mm2 and b=3000 s/mm2 

volumes) in Supporting material 1, Figure S2. 
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Figure 7 shows the differences in image distortions between AP and PA phase encoding directions , 

on the one hand, and positive and negative diffusion weighting gradient directions, on the other 

hand (AP+, AP-, PA+, PA-). The differences in the distortions between the AP and PA phase-encoding 

directions can be appreciated most in the regions of the eyes, the temporal lobes, and the 

cerebellum. The difference in distortions between positive and negative gradient directions is 

reflected by the opposite eddy current distortions (e.g., compressions vs. stretches along the phase -

encoding orientation). The color-coded FA map (Figure 8 A) and the T1-weighted data (Figure 8 B)  in 

anatomical space with a 1x1x1 mm3 voxel size are shown in Figure 8. The alignment of both datasets 

after motion correction, eddy current distortion correction, and EPI distortion correction by 

registration to the T1-weighted image is illustrated in Figure 8 C. The registered data in the 

anatomical space is available with a 2.5x2.5x2.5 mm3 (website) and a 1x1x1 mm3 voxel size (upon 

request, due to limited online storage capacity). 
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Discussion 

In this work, we have presented the MASSIVE brain dataset, which contains 8000 in vivo dMRI 

volumes of a healthy subject. Currently, the raw, intensity-normalized, signal-drift corrected, and 

subject motion / eddy current distortion / EPI distortion corrected dMRI data can be downloaded 

from www.massive-data.org. All the B0 field maps, noise maps, and the volumetric FLAIR, T1-, and T2 -

weighted datasets are also made available. 

We have established a platform through the MASSIVE website to share improvements of specific 

processing steps and updates of the processed data. Such methodological developments encompass 

novel subject motion and distortion correction methods, new microstructural modeling approaches, 

etc. Similarly, we anticipate that segmentations of the anatomical images (e.g., T1- and T2 -weighted 

images) using common brain atlases and processing tools will also become available.  

The purpose of MASSIVE is to serve as an extensive dataset to compare, evaluate, and validate 

existing or novel diffusion MRI methods, such as preprocessing steps, signal modeling, tissue 

characterization, and analysis strategies. While existing brain dMRI databases can provide data from 

many subjects with only moderate coverage of q-space, none of these provide dMRI data from a 

single subject with as dense a q-space sampling as provided in the MASSIVE database. MASSIVE is 

unique in consisting of 8000 DW volumes that are sampled on shells as well as two Cartesian grids. 

The data was acquired on a standard clinical system using a coil and acquisition settings that are 

commonly available. This makes the data quality of each individual dMRI volume comparable to data 

typically acquired in most clinical studies, which means that subset of the data, e.g. containing 100 

dMRI volumes with b = 1000s/mm2, would closely resemble a clinical acquisition. As such, methods 

and models derived from this database can easily be transferred to other clinical and pre -clinical 

research workflows. 
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Examples of research questions that have already been addressed using the MASSIVE brain database  

include characterizing signal drift in dMRI acquisitions (16), investigating the in vivo trade-off 

between accuracy and precision of multi-fiber methods with respect to b-value and number of 

gradient orientations (80), studying the difference between interpolation methods for transforming  

dMRI data between grids and shells (81), and characterizing single fiber population signal profiles 

using a wide range of reconstruction strategies (82). Furthermore, the MASSIVE dataset could be 

useful in investigating the optimality of different EPI distortion correction techniques, e.g. using field 

maps, registration to an anatomical image, or using opposite phase encoding images. Commonly 

used dMRI acquisition protocols sample either the upper or lower hemisphere in q-space. However, 

eddy current correction techniques might benefit from sampling on the whole sphere (83). In 

addition to correcting for image distortions, correction for subject motion remains an active  f ie ld of  

research in which new methods (e.g. targeted to high b-values) are constantly being developed and 

evaluated (84,85). Therefore, the optimal acquisition scheme to adequately correct for artifacts and 

motion remains an open question, and the MASSIVE dataset could be subsampled to investigate such 

issues. In addition, whereas there is a reasonable consensus of an ‘ideal’ single shell acquisition for 

diffusion tensor imaging (86), optimal acquisition strategies for many of the other diffusion models 

are still being investigated and new models are constantly under development (14,51,87–91). The 

MASSIVE brain database, and in particular the unique dMRI dataset, which – to the best of our 

knowledge – represents the largest in vivo dMRI dataset of a single subject to date, will avert the 

need to continuously reacquire optimized data and boost new developments in diffusion modeling 

and processing.  

 

Conclusion 
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We have presented the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging 

Validation and Evaluation) brain dataset, consisting of an unprecedented set of 8000 DW volumes of  

a single human subject. This unique set of in vivo MRI data will provide a robust framework to 

evaluate novel diffusion processing techniques and to reliably compare different approaches for 

diffusion modeling. All data is made publicly available on www.massive-data.org. 
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Figure Captions 

Figure 1: Schematic overview of the MRI acquisition protocol of a single session. 

Figure 2: Schematic representation of the encoding schemes in q-space. A) The 5 shells (b= 500, 

1000, 2000, 3000 and 4000 s/mm2). B) The two Cartesian DSI grids (DSI8: light gray, DSI9 dark gray). 

C) The five shells and the two Cartesian grids combined. D-E) Examples of the random selection of 

gradients for each session. The gradients defined along the positive direction are shown in color, 

whereas the mirrored gradient directions are shown in light gray. All the gradients are  color-coded 

for their session. F) The 18 sessions combined fill up half of the q-space (2000 orientations) and by 

mirroring the gradients the q-space is fully filled. 

Figure 3: Representative images of the acquired data (intensity windowing is adjusted for each 

image). Diffusion-weighted images with an applied b-value of: A) 0 s/mm2, B) 500 s/mm2, C) 1000 

s/mm2, D) 2000 s/mm2, E) 3000 s/mm2, F) 4000 s/mm2, G) 5500 s/mm2, H) 9000 s/mm2. Anatomical 

images: I) T1–weighted image, J) T2–weighted image , and K) FLAIR. L) B0 phase map. 

Figure 4: Method and result used for SNR calculation. A) Schematic representation of the method 

used for SNR calculation. Using a whole-brain mask the average signal was estimated from the 

diffusion weighted volume. The noise standard deviation was estimated using the acquired noise 

map in which the noise is Rayleigh distributed as shown in the probability density histogram. B) 

Estimated SNR using the acquired noise map. Black markers are for session 1 to 8 (b ≤ 3000 s/mm2) 

and blue markers are for session 9 to 18 (b > 3000 s/mm2 and DSI grids). The left image shows the 

SNR per session in the scanned order, the middle image shows the SNR per session sorted for the 

SNR, and the right image shows the SNR for all the volumes. The SNR levels of the different shells can 

clearly be identified. 
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Figure 5: Original (red) and signal-drift corrected (blue) average signal of the non-diffusion-weighted 

volumes for 24 acquisition blocks of 15 minutes. The black line describes the quadratic signal drift 

(see Eq. 1) and the dashed line is the theoretically constant signal of 100%. 

Figure 6: A-B) The mean signal per acquired volume of the drift-uncorrected volumes (top row - A) 

signal-drift corrected volumes (bottom row - B). The left column shows the signal per session in the 

scanned order, the middle column shows the mean signal for all sessions in the scanned order and 

the right column shows the signal for all the volumes sorted for the signal values.  

C-D) The intensity-normalized mean signal per acquired volume as a function of the b-value for all 

8000 volumes (top row) and a zoomed b-value range (bottom row). The signal is plotted using a 

linear and a logarithmic scaling of the y-axes revealing the obvious non-exponential decay of the 

diffusion weighted signal. C) The normalized  mean signal (but not corrected for signal drift) as a 

function of the predefined b-value. D) The intensity-normalized and signal-drift corrected mean 

signal as function of the actual b-value. The bottom row clearly shows how the “effective” b-value 

causes a spread of the signal over the b-value axes, that correctly follows the signal decay. 

Figure 7: Representative images for the different phase encoding (AP+, AP-, PA+, PA-) directions. 

Axial (A and C) and sagittal (B and D) cross-sectional images of a non-diffusion-weighted (A and B, 

b = 0 s/mm2) and a diffusion-weighted (C and D, b = 1000 s/mm2) volume with the different phase 

encoding directions and gradient signs. The differences in the distortions between the AP and PA 

phase encoding directions can be appreciated most in the eyes (green arrows), temporal region (blue 

arrows), and the cerebellum (red arrows). 

Figure 8: Example DTI reconstruction of the MASSIVE data. A) Color coded FA maps after applying al l  

the correction procedures. B) T1 weighted data, which were used here to correct for EPI 

deformations. C) Color coded FA maps fused with T1 weighted data to appreciate the qual i ty of  the 

processing. 
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Figure S-1: A) Iterative method of optimization, first all particles are repulsed (red) after which they 

are projected back on the unit sphere (blue). The resulting particles (green) are then used for the 

next iteration. B) The percent change in entropy of the system over 1500 iterations for single- and 

multi-shell optimizations. C) Time it takes to perform 1000 iterations (Intel Core i5-2520M CPU, 

2.5GHz) for shell ranging from 3 to 180 gradient orientations.  

Figure S-2: Effect of subject motion on the imposed gradient orientations. The 500 gradient direction 

for b = 1000 s/mm2 and b = 3000 s/mm2 as they were defined (A and B) and after registration with b-

matrix correction (74) (C and D). The condition number of the b = 1000 s/mm2 and b = 3000 s/mm2 

shells (1.5813 for both) changed to 1.5826 and 1.5861, respectively. 
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Tables 

Table 1: Overview of the acquisition parameters. (Abbreviations: IR – inversion recovery, TSE – turbo 

spin echo, TFE – turbo field echo, SE – spin echo, EPI – echo planar imaging, FFE – fast field echo, FOV 

– field of view, AP – anterior posterior, RL – right left, IS – inferior superior, SENSE – sensitivity 

encoding, SPIR – spectral pre-saturation by inversion recovery, BW – bandwidth, NSA – number of 

signal averages, G – gradient strength, DSI – diffusion spectrum imaging) 

 FLAIR T1 T2 DWI B0 

Sequence 3D-IR-TSE 3D-TFE 3D-TSE 2D-SE-EPI 
Dual echo 

2D-FFE 

FOV [mm3 / mm2] 
(AP/RL/IS) 

240x180x140 240x180x140 240x180x140 240x240 240x240 

Acquisition matrix 240x90x140 240x90x140 240x90x140 96x96 96x96 

Reconstruction matrix 240x180x140 240x180x140 240x180x140 96x96 96x96 

Sl ice thickness [mm] - - - 2.5 2.5 

Voxel  size [mm3] 1x1x1 1x1x1 1x1x1 2.5x2.5x2.5 2.5x2.5x2.5 

Sl ices - - - 56 56 

SENSE: AP/RL: 2/2 2/2 2/2 2.5 (AP) - 

Fl ip angle [°] 90 8 90 90 20 

Partial Fourier - - - 1 / 0.77 *  

TSE/TFE/EPI factor 182 122 124 
36 (24ms) /  

31 (25ms) * 
- 

Startup echo’s 6 4 6 - - 

TE [ms] Effective: 300 
Equivalent: 128 

1.25 Effective: 213 
Equivalent: 92 

100 Fi rs t: 2 
Second: 4 

TR [ms] 4800 8000 2500 7000 / 7500 * 322 

TI [ms] 1650 - - - - 

Fat suppression SPIR none SPIR SPIR none 

BW frequency [Hz] 1111 191 1111 3035/1991 * 2804 

BW EPI [Hz] - - - 50/30 * - 

NSA 2 1 2 1 1 

Δ/δ/ζ [ms] - - - 51.6 / 32.8 / 0.9 - 

Gmax [mT/m] - - - 61.7 - 

GD [mT/m] 

(Di ffusion-weighting 
gradient strength  

a long one  
gradient axis) 

- - - 

12.6 (b500) /  
17.8 (b1000) / 

25.2 (b2000 ) / 
30.9 (b3000) / 

35.6 (b4000) / 
27.0 (DSI8) /  
30.9 (DSI9) 

- 

Scan time [min:s] 3:45 3:46 2:47 14:08 / 
13:10 * 

0:32 

* Settings for session 1-8 and (b ≤ 3000 s/mm2) and for session 9 to 18 (b > 3000 s/mm2 and DSI grids) respectively. 
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Table 2: Mean values and range of the actual b-values for the 5 acquired shells. 

Applied b-value in 
units s/mm2 

Actual b-value 
(mean ± SD) in units s/mm2 

Actual b-value  
range in units s/mm2 

Percent deviation  
from applied b-value 

500 500.3 ± 5.2 491.3 – 509.2 ± 1.8 

1000 1000.3 ± 7.3 987.6 – 1013.0 ± 1.3 

2000 2000.3 ± 10.4 1982.3 – 2018.2 ± 0.9 

3000 3000.3 ± 12.7 2978.3 – 3022.3 ± 0.7 

4000 4000.2 ± 15.1 3974.1 – 4026.4 ± 0.7 
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Figure 1: Schematic overview of the MRI acquisition protocol of a single session. 
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Figure 2: Schematic representation of the encoding schemes in q-space. A) The 5 shells (b= 500, 

1000, 2000, 3000 and 4000 s/mm2). B) The two Cartesian DSI grids (DSI8: light gray, DSI9 dark gray). 

C) The five shells and the two Cartesian grids combined. D-E) Examples of the random selection of 

gradients for each session. The gradients defined along the positive direction are shown in color, 

whereas the mirrored gradient directions are shown in light gray. All the gradients are  color-coded 

for their session. F) The 18 sessions combined fill up half of the q-space (2000 orientations) and by 

mirroring the gradients the q-space is fully filled. 
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Figure 3: Representative images of the acquired data (intensity windowing is adjusted for each 

image). Diffusion-weighted images with an applied b-value of: A) 0 s/mm2, B) 500 s/mm2, C) 1000 

s/mm2, D) 2000 s/mm2, E) 3000 s/mm2, F) 4000 s/mm2, G) 5500 s/mm2, H) 9000 s/mm2. 

Anatomical images: I) T1–weighted image, J) T2–weighted image , and K) FLAIR. L) B0 phase map. 
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Figure 4: Method and result used for SNR calculation. A) Schematic representation of the method 

used for SNR calculation. Using a whole-brain mask the average signal was estimated from the 

diffusion weighted volume. The noise standard deviation was estimated using the acquired noise 

map in which the noise is Rayleigh distributed as shown in the probability density histogram. B) 

Estimated SNR using the acquired noise map. Black markers are for session 1 to 8 (b ≤ 3000 s/mm2) 

and blue markers are for session 9 to 18 (b > 3000 s/mm2 and DSI grids). The left image shows the 

SNR per session in the scanned order, the middle image shows the SNR per session sorted for the 

SNR, and the right image shows the SNR for all the volumes. The SNR levels of the different shells can 

clearly be identified. 

  



33 
 

 

Figure 5: Original (red) and signal-drift corrected (blue) average signal of the non-diffusion-weighted 

volumes for 24 acquisition blocks of 15 minutes. The black line describes the quadratic signal drift 

(see Eq. 1) and the dashed line is the theoretically constant signal of 100%. 
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Figure 6: A-B) The mean signal per acquired volume of the drift-uncorrected volumes (top row - A) 

signal-drift corrected volumes (bottom row - B). The left column shows the signal per session in the 

scanned order, the middle column shows the mean signal for all sessions in the scanned order and 

the right column shows the signal for all the volumes sorted for the signal values. C-D) The intensity-

normalized mean signal per acquired volume as a function of the b-value for all 8000 volumes (top 

row) and a zoomed b-value range (bottom row). The signal is plotted using a linear and a logarithmic 

scaling of the y-axes revealing the obvious non-exponential decay of the diffusion weighted signal. C)  

The normalized  mean signal (but not corrected for signal drift) as a function of the predefined b -

value. D) The intensity-normalized and signal-drift corrected mean signal as function of the actual  b -

value. The bottom row clearly shows how the “effective” b-value causes a spread of the signal  over 

the b-value axes, that correctly follows the signal decay. 



35 
 

 

Figure 7: Representative images for the different phase encoding (AP+, AP-, PA+, PA-) directions. 

Axial (A and C) and sagittal (B and D) cross-sectional images of a non-diffusion-weighted (A and B, b = 

0 s/mm2) and a diffusion-weighted (C and D, b = 1000 s/mm2) volume with the different phase 

encoding directions and gradient signs. The differences in the distortions betw een the AP and PA 

phase encoding directions can be appreciated most in the eyes (green arrows), temporal region (blue 

arrows), and the cerebellum (red arrows). 

  



36 
 

 

Figure 8: Example DTI reconstruction of the MASSIVE data. A) Color coded FA maps after apply ing al l  

the correction procedures. B) T1 weighted data, which were used here to correct for EPI 

deformations. C) Color coded FA maps fused with T1 weighted data to appreciate the qual i ty of  the 

processing. 
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SUPPORTING MATERIAL 

 

Figure S-1: A) Iterative method of optimization, first all particles are repulsed (red) after which they 

are projected back on the unit sphere (blue). The resulting particles (green) are then used for the 

next iteration. B) The percent change in entropy of the system over 1500 iterations for single- and 

multi-shell optimizations. C) Time it takes to perform 1000 iterations (Intel Core i5-2520M CPU, 

2.5GHz) for shell ranging from 3 to 180 gradient orientations.  
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Figure S-2: Effect of subject motion on the imposed gradient orientations. The 500 gradient direction 

for b = 1000 s/mm2 and b = 3000 s/mm2 as they were defined (A and B) and after registration with b-

matrix correction (45) (C and D). The condition number of the b = 1000 s/mm2 and b = 3000 s/mm2 

shells (1.5813 for both) changed to 1.5826 and 1.5861, respectively. 

 

 


