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Abstract 28 

 29 

Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of 30 

behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory 31 

bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory 32 

circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb 33 

mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell 34 

responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory 35 

circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition 36 

from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results 37 

identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral 38 

phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input 39 

can be transformed to yield meaningful olfactory bulb output.  40 

41 
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Introduction  42 

 Odorants in the environment are detected by a large repertoire of odorant receptor, expressed 43 

on the dendrites of sensory neurons in the olfactory epithelium (Buck and Axel, 1991; Zhang and 44 

Firestein, 2002). In mice, each olfactory sensory neuron expresses only one of ~1,300 odorant receptor 45 

genes, and each of these receptors interacts with multiple odorants (Chess et al., 1994; Malnic et al., 46 

1999). Neurons expressing a given receptor are distributed randomly across large zones of the 47 

olfactory epithelium, but project to two spatially invariant glomeruli in the olfactory bulb, the first 48 

processing center of olfactory information in the mammalian brain (Ressler et al., 1994; Vassar et al., 49 

1994). Thus, the distributed pattern of neural activity that is evoked by the binding of an odorant to a 50 

given receptor in the olfactory epithelium is transformed into a topographically organized, invariant 51 

map of glomerular activity at the level of the olfactory bulb (Bozza et al., 2004; Meister and 52 

Bonhoeffer, 2001; Rubin and Katz, 1999; Uchida et al., 2000; Wachowiak and Cohen, 2001).  53 

The principal neurons of the olfactory bulb, mitral and tufted cells, extend their apical dendrite 54 

into a single glomerulus, and thus only receive direct input from sensory neurons expressing a single 55 

odorant receptor. Electrophysiological and imaging experiments have revealed that, consistent with 56 

this anatomical organization, mitral cells tend to be narrowly tuned and only respond to a small 57 

number of odorants (Davison and Katz, 2007; Tan et al., 2010) The spatiotemporal patterns of mitral 58 

cell firing are strongly shaped by the activity of local inhibitory neurons, including periglomerular 59 

cells, EPL interneurons, and granule cells (Banerjee et al., 2015; Fukunaga et al., 2014; Kato et al., 60 

2013; Luo and Katz, 2001; Miyamichi et al., 2013; Yokoi et al., 1995). Ultimately, mitral and tufted 61 

cells relay this odor information to several higher brain regions, including the piriform cortex, 62 

amygdala, and entorhinal cortex, via a dense elaboration of axonal projections (Ghosh et al., 2011; 63 

Igarashi et al., 2012; Luskin and Price, 1982; Miyamichi et al., 2011; Nagayama et al., 2010; Sosulski 64 

et al., 2011). How the patterns of activity evoked by odor stimulation in the cells of the olfactory bulb 65 

ultimately relate to odor perception, discrimination, and behavior, however, remains largely undefined.  66 

A major challenge for the olfactory system is that it must function across a wide range of 67 

stimulus intensities. For example, salient odor cues must reliably be detectable against strong and 68 

highly dynamic background odors. To explore potential neural mechanisms that can mediate such 69 
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signal amplification and noise reduction we used previously generated M71 transgenic mice with a 70 

“monoclonal nose” (Fleischmann et al., 2008). In these mice, more than 95% of all olfactory sensory 71 

neurons express a single odorant receptor, M71. As a consequence of this genetic manipulation, the 72 

frequency of sensory neurons expressing endogenous odorant receptor genes is reduced 20-fold, and 73 

the canonical glomerular odor map observed in wild-type mice disappears: most odorants now fail to 74 

elicit detectable levels of glomerular activity, while the majority of glomeruli respond to 75 

acetophenone, a known M71 ligand (Figure 1 – figure supplement 1).  76 

Surprisingly, despite this striking alteration of odor-evoked neural activity, M71 transgenic 77 

mice are able to smell a variety of odors. They can detect and discriminate several odorants in a go/no 78 

go operant conditioning task, although their performance in this task decreases compared to controls 79 

when M71 transgenic mice are required to discriminate mixtures of structurally and perceptually 80 

similar odorants. Moreover, M71 transgenic mice fail to discriminate acetophenone, a known strong 81 

M71 ligand, from air in this go/no go discrimination assay, despite the fact that acetophenone activates 82 

the vast majority of sensory neurons and glomeruli in these mice.  83 

This apparent discrepancy between molecular alteration and receptor neuron physiology on 84 

the one side and behavioral phenotype on the other now allows us to investigate the neural 85 

mechanisms at play: What does allow M71 transgenic mice to detect and discriminate most odorants 86 

despite the 20-fold decrease in the expression of endogenous odorant receptors? Conversely, what 87 

underlies the inability of these mice to detect the pervasive glomerular activity evoked by 88 

acetophenone? To explore the link between odor-evoked sensory neuron activity and behavior we 89 

analyzed the activity of olfactory bulb mitral cells, the main output neurons of the olfactory bulb. 90 

Two-photon calcium imaging and whole cell patch-clamp recordings of mitral cells revealed that 91 

mitral cell odor responses in M71 transgenic mice greatly resembled the responses observed in wild-92 

type mice. Indeed, the fraction of responsive mitral cells and odor-evoked changes in firing rates were 93 

indistinguishable from controls. Calcium imaging and whole cell recordings further indicated that 94 

much of this normalization of odor-evoked activity is achieved through inhibition by periglomerular 95 

interneurons. Finally, we found that M71 transgenic mice exhibit spontaneous sniff adaptation in 96 

response to acetophenone exposure, suggesting that while they consistently fail to discriminate 97 
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acetophenone from air in a go/no-go operant conditioning tasks they are indeed able to detect the 98 

presence of acetophenone. Together, our data reveal that odor-evoked patterns of glomerular activity 99 

can be substantially transformed by olfactory bulb neural circuits, to extract meaningful odor 100 

information from massively degraded sensory input and point towards a key role of glomerular 101 

inhibition.   102 

103 
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Results 104 

The ability of M71 transgenic mice to detect acetophenone is task-dependent 105 

Previous behavioral experiments using a go/no go operant conditioning task indicated that 106 

M71 transgenic mice failed to discriminate acetophenone from its diluent, mineral oil, but could detect 107 

and discriminate other odorants (Fleischmann et al., 2008) (Figure 1- figure supplement 1). To better 108 

understand the link between odor-evoked neural activity and behavior we first replicated these 109 

behavioral observations with an independent cohort of mice. Consistent with our initial observations, 110 

we found that M71 transgenic mice consistently failed to detect acteophenone in this task 111 

(acetophenone versus mineral oil, repeated measure ANOVA, (block x genotype) F(9,90) = 5.43, p < 112 

0.001), yet readily discriminated other pairs of odorants (ethyl acetate versus mineral oil, citronellol, 113 

or carvone, (block x genotype) F(9,90) = 1.49, p = 0.17, Figure 1A and B). Individual experiments 114 

consisted of 10 blocks of 20 odor presentations, and all 15 M71 transgenic mice failed to reach a 115 

"correct lick ratio" surpassing 75%. In contrast, the same 15 M71 transgenic mice all successfully 116 

discriminated ethyl acetate from mineral oil, citronellol, or carvone (Figure 1A and B, Figure 1 – 117 

figure supplement 2). Thus, in a go/no-go operant conditioning task, M71 transgenic mice are 118 

consistently unable to discriminate acetophenone from air.  119 

We next asked if the failure to detect acetophenone was specific for this go/no go operant 120 

conditioning task, or whether it could similarly be observed in a different behavioral test. To address 121 

this question we measured exploratory sniffing behavior in response to novel odors, a simple, 122 

spontaneous test for odor perception, which does not require training (Welker, 1964; Wesson et al., 123 

2008). As previously described, wild-type mice exhibited increased sniff frequencies when exposed to 124 

a novel odorant (mean response = 2.1 Hz, SD = 1.6 Hz) that then decreased upon repeated presentation 125 

of the same odorant (mean response for 2nd and 3rd presentation = 0.3 Hz, SD = 1.2 Hz, p = 3.3 x10-7, 126 

paired t-test 1st presentation versus mean of 2nd and 3rd, n = 27 mouse-odor pairs, n = 7 mice, Figure 127 

1C-F). Consistent with their ability to detect and discriminate most odorants, M71 transgenic mice 128 

exhibited an initial increase in sniff frequency to ethyl acetate, hexanone, heptanal, or a mixture of 129 

isoamyl acetate, 2-nonanone and cyclohexanol (referred to as “non-acetophenone” odors in Figure 1F, 130 

mean response = 2.7 Hz SD = 1.4 Hz). This response was indistinguishable from controls (p = 0.12, t-131 
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test), and similarly displayed a significant decrease in sniff frequencies upon re-exposure (p = 1.7 x 10-132 

8, paired t-test, n = 29 mouse-odor pairs, n = 8 mice, Figure 1G). Surprisingly, similar results were 133 

obtained for acetophenone presentations: both control and M71 transgenic mice displayed initial high 134 

frequency responses (control: mean = 3.0 Hz, SD = 1.6 Hz; M71 transgenic: mean = 3.8 Hz, SD = 1.9 135 

Hz, p = 0.38, t-test), and reductions in response frequencies during the second and third acetophenone 136 

presentation (Figure 1F and G, right panels).  137 

Together, these results indicate that in contrast to the aforementioned go/no go operant 138 

conditioning task, M71 transgenic mice can identify acetophenone in a spontaneous test for odor 139 

detection. Thus, in M71 transgenic mice the strong M71 ligand acetophenone results in major 140 

behavioral perturbations - while acetophenone is spontaneously detected, it cannot reliably be 141 

discriminated from background in an operant conditioning experiment.  142 

 143 

Rabies virus-mediated expression of GCaMP3 in olfactory bulb mitral cells  144 

The ability to probe the cellular processes that underlie changes in olfactory-driven behaviors 145 

in this massively perturbed system can provide important general insights into how odor information is 146 

normally processed in the olfactory bulb. We therefore next asked how perturbed glomerular inputs in 147 

M71 transgenic mice are transformed into olfactory bulb outputs. We developed an in vivo imaging 148 

approach that permits the visualization of odor-evoked responses specifically in mitral cells, the main 149 

output neurons of the olfactory bulb. We used a replication-deficient recombinant rabies virus to drive 150 

the expression of the calcium-sensitive indicator of neural activity GCaMP3 (RVΔG-4GCaMP3) (Tian 151 

et al., 2009; Wickersham et al., 2010) in large populations of mitral cells. We made multiple injections 152 

of this rabies-GCaMP3 virus into the olfactory cortex underneath the lateral olfactory tract (Figure 153 

2A). After injections, mice were allowed to recover for 5-7 days before two-photon imaging of neural 154 

activity was performed under ketamine/xylazine anesthesia. Because this modified rabies virus lacks 155 

the gene encoding its viral glycoprotein, it is unable to spread transsynaptically, thereby restricting the 156 

expression of GCaMP3 to neurons directly infected via their axonal terminations (Wickersham et al., 157 

2010, 2007). However, because the virus retains its ability to replicate in infected cells, we found that 158 
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infected cells began exhibit clear signs of toxicity after 12 days (not shown). We therefore performed 159 

all imaging experiments within 5-7 days after virus injections.  160 

Using this method, we were able to selectively express GCaMP3 in hundreds of mitral cells in 161 

the olfactory bulb (Figure 2B-D). GCaMP3-expressing mitral cells were uniformly distributed across 162 

the olfactory bulb. The cell bodies of GCaMP3-expressing neurons were exclusively located in the 163 

mitral cell layer, and we often observed multiple GCaMP3-expressing mitral cells projecting to the 164 

same glomerulus (Figure 2C). While we cannot exclude the possibility that GCaMP3 is also 165 

expressed in some tufted cells, these results demonstrate that rabies-GCaMP3 virus permits the highly 166 

efficient and selective labeling of mitral cells projecting to the piriform cortex.  167 

 168 

Similar odor-evoked responses in mitral cells of wild-type and M71 transgenic mice 169 

Mitral cells infected with rabies-GCaMP3 displayed robust stimulus-locked responses to 170 

odorants, which could vary with respect to their response magnitudes (e.g. peak ΔF/F values), duration 171 

and trial-to-trial variability (Figure 2E). In wild-type mice, we found that odorants at low 172 

concentrations (0.01%, or 1/10,000 vol./vol. dilution) typically evoked sparse, spatially distributed 173 

patterns of activity in ~15% of mitral cells (mean = 14.5%, standard deviation (SD) = 11.2%; Figure 174 

2F and H). These observations are consistent with recent results using adeno-associated virus (AAV)-175 

mediated and transgenic GCaMP3 expression (Blauvelt et al., 2013; Kato et al., 2012; Wachowiak et 176 

al., 2013). We observed mitral cell responses to a variety of structurally and perceptually diverse 177 

odorants, regardless of whether the neurons were located in the posterior, medial, or anterior dorsal 178 

olfactory bulb (13 odorants at 0.01% vol./vol. dilution; Figure 2F and H, and data not shown). 179 

Furthermore, mitral cells responsive to a given odorant were typically distributed across the imaging 180 

site and did not exhibit the segregated patterns observed in odor-evoked glomerular activity.  181 

We next performed these same imaging experiments using M71 transgenic mice. Remarkably, 182 

we found that the fraction and distribution of odor-responsive mitral cells in M71 transgenic mice and 183 

their wild-type littermate controls were strikingly similar (Figure 2I). Interestingly, our test set of 184 

odorants includes several odorants that have been reported to not activate the M71 receptor. Ethyl 185 

acetate or eugenol, for example, do not activate M71-expressing olfactory sensory neurons at all 186 
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concentrations tested (Bozza et al., 2002), and do not elicit detectable glomerular activity in M71 187 

transgenic mice (Fleischmann et al., 2008). However, we found that all test odorants including ethyl 188 

acetate and eugenol evoked mitral cell responses. Moreover, the fractions of odor-responsive neurons 189 

were indistinguishable from wild-type littermate controls (mixed-effect ANOVA (genotype x 190 

odorants), F(13, 242) = 0.58, p = 0.87, Figure 2H and I). Thus, at least at the gross level of overall 191 

activation, different odorants including odorants that barely engage the large population of M71 192 

expressing olfactory sensory neurons, result in the excitation of a population of mitral cells that is 193 

similar to wild-type mice.  194 

Given that 95% of all olfactory sensory neurons in these mice express the M71 receptor, we 195 

next examined mitral cell responses to acetophenone, a known strong M71 receptor ligand (Bozza et 196 

al., 2002) that evoked pervasive glomerular activation of the dorsal surface of the olfactory bulb of 197 

M71 transgenic mice (Fleischmann et al., 2008). We observed two surprising findings: first, the 198 

fraction of mitral cells activated by acetophenone was virtually identical to littermate controls, and 199 

second, the fraction of mitral cells responding to acetophenone was highly similar to the fractions of 200 

mitral cells responding to other odorants (Figure 2H,I right). Given the massively altered glomerular 201 

input and essentially normal mitral cell output, these imaging data indicate that the OB circuitry 202 

profoundly normalizes activity, strengthening the weakened input from odorants that do not activate 203 

the M71 receptor, and suppressing the overt excitation due to the M71 ligand acetophenone, resulting 204 

in responses that – on the crude level of overall activation – were indistinguishable from wild-type 205 

mice.  206 

 207 

A more detailed analysis of our imaging data, however, did reveal subtle differences between 208 

the response properties of M71 transgenic mitral cells and wild-type littermate controls. In controls, 209 

individual mitral cells generally displayed narrow stimulus tuning at low odor concentrations, in 210 

accord with previously published results from electrophysiological and optical recordings (Figure 3A) 211 

(Davison and Katz, 2007; Kato et al., 2012; Tan et al., 2010). Approximately half of the neurons 212 

(46.1%) did not respond to any of the 13 odorants in the stimulus set used to probe selectivity, while 213 

the majority of odor-responsive neurons (43.9% of all neurons) displayed significant increases in 214 
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fluorescence to only 1-5 odor stimuli. A small subpopulation (10.0%) of mitral cells were more 215 

broadly tuned. Moreover, the majority of stimulus-evoked mitral cell response magnitudes were small, 216 

with peak ΔF/F values below 35%, although we could observe a small number of large stimulus-217 

evoked responses with ΔF/F values of up to 200% (Figure 3C). Finally, the fluorescence levels of 218 

most odor-responsive neurons (>80%) returned to baseline within 8 seconds after response onset 219 

(Figure 3D). In M71 transgenic mice, mitral cells tended to be more broadly tuned (Figure 3A and 220 

B), but this difference did not reach statistical significance (Chi-squared test: χ2 = 17.7, p = 0.17). For 221 

acetophenone and the 12 other odorants, the distribution of the response magnitudes of mitral cell was 222 

shifted towards smaller peak ΔF/F values, with a particularly large reduction in the number of strongly 223 

responding neurons (i.e. those reaching ΔF/F values of greater than 50%; Figure 3C, median ΔF/F: 224 

control: 0.36, M71 transgenic: 0.32; mean ΔF/F: control: 0.47, M71 transgenic: 0.38, Two-sample 225 

Kolmogorov-Smirnov test: D4116,1639 = 0.12, p<0.01, and Figure 3 - figure supplement 1). In contrast, 226 

the average response duration of M71 transgenic mitral cells to acetophenone and the 12 other 227 

odorants was significantly increased (Figure 3D, Two-sample Kolmogorov-Smirnov test: D4116,1639 = 228 

0.24, p<0.01, and Figure 3 - figure supplement 1).  229 

 230 

Finally, we analyzed the trial-to-trial variability of mitral cell responses following the repeated 231 

delivery of the same odorant. Mice were presented with the same odorant 4 times (average inter-trial 232 

interval ~10 min), and the presentation of each odorant was interleaved with other odorants to avoid 233 

habituation. In littermate controls, 56% of responsive mitral cells responded on only one out of 4 234 

trials, 20% of cells responded twice, 10% three times, and 14% of cells responded on all 4 out of 4 235 

trials (Figure 3 - figure supplement 1). In M71 transgenic mice, the fraction of neurons responding 236 

on all 4 out of 4 repeat presentations of the same odorant was reduced from 14% in controls to 2.9% in 237 

M71 transgenic mice. Furthermore, we calculated the Pearson correlation coefficients of the activity 238 

patterns after odor onset. We found that for acetophenone and the 12 other odorants, the mean 239 

correlation of response patterns to individual exposures of the same odorant was reduced in M71 240 
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transgenic mice compared to controls (controls: mean across 13 odorants = 0.75 ± 0.11; M71: mean = 241 

0.25 ± 0.17, Figure 3E and F).  242 

Taken together, these data suggest that the neural circuits of the olfactory bulb of M71 243 

transgenic mice can greatly amplify weak odor-evoked signals while suppressing overly strong 244 

signals. Such amplification may explain how M71 transgenic mice can still detect and discriminate 245 

most odorants. However, an increase in the trial-to-trial variability of mitral cell responses will 246 

degrade the fidelity of the odor representation, and may underlie the impairments in odor 247 

discrimination that M71 transgenic mice exhibit with more challenging assays.  248 

 249 

Intrinsic and odor-evoked mitral cell activity in M71 transgenic mice 250 

Our calcium imaging experiments provide information about the patterns of odor-evoked 251 

activity in large ensembles of mitral cells. We next sought to obtain more detailed information about 252 

the network mechanisms underlying the normalization of odor-evoked mitral cell activity, using whole 253 

cell recordings from mitral and tufted cells (MTCs) in awake head-fixed mice. First, we characterized 254 

the intrinsic properties of MTCs, including resting membrane potentials, input resistance, membrane 255 

time constant tau, and baseline firing rates. These biophysical properties of MTCs were, on average, 256 

similar in M71 transgenic mice (n = 6 cells from 6 mice) and controls (n = 7 cells from 5 mice, Figure 257 

4A-G). Interestingly, however, we observed that MTCs in M71 transgenic mice appeared to be less 258 

heterogeneous compared to wild-type, in particular for baseline firing rate (Control: 5.8 ± 6.2 Hz, 259 

M71: 3.0 ± 1.0 Hz, p = 0.003 Bartlett test) and theta modulation strength (Control: 0.4 ± 0.4 mV, M71: 260 

0.2 ± 0.1 mV, p = 0.01 Bartlett test), which might reflect their more homogeneous olfactory inputs and 261 

thus developmental history (Angelo et al., 2012).  262 

 263 

Next, we sought insight into how responses to odorants other than acetophenone are able to 264 

evoke largely normal levels of mitral cell activity, despite the dramatic reduction in the expression of 265 

endogenous odorant receptors in M71 transgenic mice. We measured evoked MTC response profiles 266 

to a one-second pulse of 4 non-acetophenone stimuli (3 monomolecular odorants - hexanone, heptanal, 267 

ethyl acetate - and a mixture of isoamyl acetate, 2-nonanone and cyclohexanol, at a concentration of 268 
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1% of absolute vapor pressure). As previously reported (Cury and Uchida, 2010; Kollo et al., 2014; 269 

Shusterman et al., 2011), MTC activity in these awake, head-fixed mice was modulated by odor in a 270 

diverse manner, with prominent excitatory as well as inhibitory responses (Figure 4H, J, and K). On 271 

average, odor exposure resulted in a moderate hyperpolarization (mean ΔVm = -1.8 mV, SD = 2.1 272 

mV, 27 cell/odor pairs), and a small increase in the firing rate (mean Δ firing rate = 2.2 Hz, SD = 13.3 273 

Hz, 27 cell/odor pairs). Consistent with our imaging data, we found that overall firing rate 274 

distributions to the same 4 stimuli were more compact in M71 transgenic mice; mean changes in firing 275 

rate were indistinguishable from controls (mean Δ firing rateM71 = 0.75 Hz, SD = 2.2 Hz, 20 cell/odor 276 

pairs, p = 0.67, Rank-sum, Figure 4M), yet the fraction of excitatory responses was similar (control: 277 

32%, M71: 25%). Odor presentation generally resulted in both excitatory and inhibitory responses, 278 

with only a small change in the average membrane potential (mean ΔVm = 0.10 mV, SD = 1.1mV, 20 279 

cell/odor pairs; Figure 4I, J, and M). However, both excitatory and inhibitory responses were 280 

generally weaker (Δ|Vm|M71 = 0.5+[-0.3 0.8] mV, Δ|Vm|cntrl = 1.3+[-0.6 2.5] mV, p = 0.006, Wilcoxon 281 

rank sum; Δ |firing rate|M71 = 0.8+[-0.3 1.6]yy Hz, Δ|firing rate|cntrl = 6.0+[-3.0 6.2] Hz, p <0.001, 282 

Wilcoxon rank sum, median +[lower quartile, upper quartile]), and strong excitatory responses notably 283 

absent in M71 transgenic mice (Figure 4M). Most prominently, inhibitory responses were 284 

substantially reduced compared to littermate controls (p = 0.003, Rank-sum, Figure 4L).  285 

Taken together, calcium imaging experiments and in vivo whole cell recordings reveal overall 286 

surprisingly normal mitral cell odor responses in M71 transgenic mice, despite massive changes in 287 

odor-evoked sensory input. Importantly, however, responses to odorants other than acetophenone 288 

result in slightly weaker, more variable responses and in particular - as apparent from the subthreshold 289 

analysis - substantially less hyperpolarizing responses. Finally, as in the awake case, in anaesthetized 290 

M71 transgenic mice responses to non-acetophenone odors were weaker than in controls while 291 

acetophenone resulted in prominent inhibitory responses (Figure 4 - figure supplement 1).  292 

 293 

Acetophenone induces strong and prolonged inhibition and a massive increase in theta coupling 294 

in M71 transgenic mice 295 
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In contrast to all our other test odorants, acetophenone strongly activates the vast majority of 296 

sensory neurons, resulting in pervasive glomerular activity in M71 transgenic mice (Fleischmann et 297 

al., 2008). Despite this widespread glomerular activation, our calcium imaging experiments have 298 

demonstrated that acetophenone activates similar numbers of mitral cells in both control and M71 299 

transgenic mice. One mechanism behind this apparent normalization could be inhibition that is 300 

increased concomitantly with the massively increased excitatory input.  301 

To directly test this prediction we also examined acetophenone-evoked mitral cell activity in 302 

M71 transgenic mice using whole cell patch-clamp recordings. Strikingly, in M71 transgenic mice, 303 

acetophenone exposure caused a massive and prolonged increase in theta modulation of the membrane 304 

potential (Figure 5C and D). Phasic odor responses, however, were highly similar in control and M71 305 

transgenic mice: mean firing rate change induced by acetophenone was again not significantly 306 

different between M71 transgenic mice and controls (control: -0.2 ± 7.5 Hz, M71: -0.5 ± 2.7 Hz, p = 307 

0.89, t-test, Figure 5F and H), consistent with results obtained in calcium imaging experiments. 308 

However, acetophenone generally induced prolonged hyperpolarizations in M71 transgenic mice, 309 

whereas responses were more transient in littermate controls (responses over 5 second window: 310 

control: -0.7 ± 0.5 mV, M71: -2.2 ± 1.9 mV, p < 0.05, 1-tailed t-test. Figure 5E, G, and I, and Figure 311 

5 - figure supplement 1).  312 

Thus, while supra-threshold responses in mitral cells are highly similar between control and 313 

M71 transgenic mice, whole-cell recordings in awake animals reveal a potential source of this 314 

normalization: hyperpolarizing, inhibitory responses are increased for the M71 receptor ligand 315 

acetophenone but reduced for other odorants compared to control animals (cf. Figure 4 J and L and 316 

Figure 5 I). These alterations in inhibition were not a consequence of altered sampling behavior e.g. 317 

due to anxiety (Glinka et al., 2012) or other behavioral state changes, as whole-cell recordings in 318 

anaesthetized mice showed a similarly profound and selective increase in inhibitory responses to 319 

acetophenone exposure (Figure 4 - figure supplement 1).  320 

 321 

Previous work indicated that such slow, odor-evoked phasic inhibition likely originates in the 322 

glomerular layer (Fukunaga et al., 2014), and the position and connectivity of PG cells make them 323 
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prime candidates to mediate both presynaptic and feedforward inhibition in response to acetophenone 324 

in M71 transgenic mice. Therefore, we performed two-photon imaging experiments in mice 325 

engineered to selectively express GCaMP3 in PG cells. Selectivity was achieved by injecting Cre-326 

dependent AAV (AAV5.hSynap.Flex.GCaMP3.WPRE.SV40) into the olfactory bulbs of either M71 327 

transgenic mice that also carried a Gad2-Cre transgene (Taniguchi et al., 2011), or littermate controls 328 

expressing the Gad2-Cre transgene only. AAV injections resulted in the labeling of large numbers of 329 

GABA-positive interneurons in the glomerular layer, with extensive processes extending into 330 

individual glomeruli (Figure 5K-M). In control mice, only a fraction of PG cells displayed responses 331 

to either acetophenone or ethyl acetate (acetophenone: 10.9%; ethyl acetate: 12.1%, Figure 5O and 332 

Figure 6G). The magnitudes of these odor-evoked responses were small, with more than 80% of peak 333 

∆F/F values below 10% (data not shown). Unlike mitral cells, where responses in M71 transgenic 334 

mice and their littermate controls were often indistinguishable, odor responses were strikingly 335 

different in PG cells. Exposure of M71 transgenic mice to acetophenone, even at the lowest 336 

concentration (0.01% vol./vol.), resulted in pervasive, strong and persistent activity in over 48% of PG 337 

cells, significantly higher than in littermate controls (Figure 5P and Figure 6H, Rank-sum test nco = 338 

10, nM71 transgenic = 9, U = 83, p < 0.01). Furthermore, the magnitude and duration of acetophenone-339 

evoked PG cell activity was significantly increased in M71 transgenic mice compared to controls (data 340 

not shown). In contrast to these robust and pervasive responses to acetophenone, ethyl acetate elicited 341 

PG cell activity in only a small population of neurons (<10%, Figure 5P and Figure 6H), and 342 

response magnitudes were consistently below 10% peak ∆F/F values (data not shown). These 343 

responses tended to be fewer and with smaller ∆F/F values than those observed in littermate controls, 344 

but this observation did not reach statistical significance. Taken together, electrophysiology and 345 

imaging experiments indicate that pervasive and strong glomerular excitation is balanced by similarly 346 

pervasive and strong periglomerular inhibition to normalize olfactory bulb mitral cell output.  347 

 348 

Inhibition-mediated normalization breaks down at high acetophenone concentrations 349 

We next attempted to upset this balance of mitral cell excitation and PG cell inhibition by 350 

increasing odorant concentration. As mentioned above, acetophenone and ethyl acetate at low 351 



Roland et al., 2016 

 15

concentrations (0.01% vol./vol.) activate approximately 10% of mitral cells in both M71 transgenic 352 

mice and controls (Figure 6C and D). In control mice, a 10- and 100-fold increase in acetophenone or 353 

ethyl acetate concentration only caused a modest increase in mitral cell activity: about 15% of mitral 354 

cells responded to either odorant at 0.1% dilutions, and ~20% of mitral cells responded at 1% dilutions 355 

(Figure 6A and C). Response magnitudes and durations increased slightly while trial-to-trial 356 

variability decreased with increasing odor concentrations  (Figure 6 - figure supplement 1).  357 

In marked contrast to controls, increasing concentrations of acetophenone in M71 transgenic 358 

mice dramatically increased the fraction of responsive mitral cells: acetophenone at 0.1% activated 359 

over 28% of mitral cells (mean = 28.7% ± 17.1%), while over 50% (mean = 50.1% ± 25.8%) of mitral 360 

cells responded at 1% acetophenone (Figure 6B and D). The number of responsive neurons was 361 

highly correlated to acetophenone concentration (n = 10, Pearson’s correlation coefficient = 0.71), 362 

indicating that the strong dependence of acetophenone responses on concentration is consistently 363 

observed across all imaging sites. Furthermore, although response magnitudes sharply increased with 364 

increasing acetophenone concentrations, response durations were reduced (Figure 6 - figure 365 

supplement 1). The striking sensitivity to acetophenone concentration was not observed for ethyl 366 

acetate. A 10-fold increase in ethyl acetate concentration resulted in only a ~1.5-fold increase in the 367 

fraction of responsive mitral cells, and a 100-fold increase in ethyl acetate activated ~2 times more 368 

cells, essentially identical to what we observed in controls (Figure 6B and D). We did not observe 369 

robust concentration-dependent changes in the distributions of peak ∆F/F values and response 370 

durations to ethyl acetate (Figure 6 – figure supplement 1). To quantify these differences, we 371 

calculated the difference in concentration-driven linear change between stimuli (∆LC = LCacetophenone – 372 

LCethyl acetate) in control and M71 transgenic mice. A ∆LC of 0 indicates no difference in the effect of 373 

concentration on the response to the two stimuli, while a positive ∆LC indicates the greater linear 374 

change in acetophenone-evoked response density with increasing concentration. We found no 375 

difference in linear change between ethyl acetate and acetophenone responses for controls (∆LC = -376 

0.04), indicating that control mice responded similarly to increasing concentrations of these 2 stimuli. 377 

In contrast, we found a positive ∆LC in M71 transgenic mice (∆LC = 0.18), highlighting that the 378 

density of neural responses to acetophenone is strongly modulated by concentration in these mice.  379 
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 380 

Earlier we suggested that PG cell-mediated feedforward inhibition plays an important role in 381 

normalizing olfactory bulb output (Figure 5). We therefore next asked how increasing odorant 382 

concentration affects the activity of PG cells in both M71 transgenic mice and controls. While PG 383 

cells were already quite responsive to low acetophenone concentrations in M71 transgenic mice, 384 

increasing acetophenone concentrations dramatically increased PG cell activity in these mice (Figure 385 

6F and H): 0.1% activated over 85% (mean 85.1% ± 13%) of PG cells in M71 transgenic mice 386 

compared to only 10.8% (± 6.6%) observed in controls. A further 10-fold increase in concentration 387 

(1%) increased the fraction of responsive neurons to 94% (± 8%) in M71 transgenic mice. Increasing 388 

acetophenone concentration also markedly increased response magnitudes and durations, which was 389 

not observed in controls (data not shown). Interestingly, exposure of M71 transgenic mice to 390 

intermediate concentrations of ethyl acetate at (0.1%) activated only 14.6% (±11%) of PG cells, 391 

similar to the 18.2% (± 9.3%) responsive PG cells observed in littermate controls (Mann-Whitney test 392 

nco = 10, nM71 transgenic = 9, U = 35, p = 0.45). Interestingly, however, a 100-fold increase in ethyl acetate 393 

concentration (1%) activated 77.9% (± 20%) of PG cells, more than double that observed in controls. 394 

Although ethyl acetate has previously been reported not to activate the M71 receptor (Bozza et al., 395 

2002), these data suggest that ethyl acetate may in fact be a weak M71 receptor agonist that activates 396 

M71 at high concentrations. This speculation is supported by the observation that while odorants 397 

activate segregated, glomerulus-specific clusters of PG cells in wild-type mice, PG cell responses to 398 

both acetophenone and ethyl acetate were pervasive and not restricted to individual glomeruli in M71 399 

transgenic mice, consistent with the pervasive glomerular innervation by M71-expressing sensory 400 

inputs (Figure 6E and F).  401 

Taken together, these data demonstrate that the pervasive glomerular activity elicited by 402 

acetophenone in M71 transgenic mice results in strong, stimulus-specific PG cell activation, even at 403 

low concentrations. At higher concentrations, acetophenone-evoked PG cell activity appeared to 404 

saturate in M71 transgenic mice while the proportion of responsive mitral cells dramatically increased. 405 

These data therefore suggest that at high acetophenone concentrations, periglomerular inhibition fails 406 

to counterbalance excitation.  407 
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Discussion 410 

We have characterized the transformation of odor-evoked activity in the olfactory bulb of M71 411 

transgenic mice with a “monoclonal nose”, in which glomerular input patterns are massively 412 

perturbed. Calcium imaging experiments reveal that olfactory bulb mitral cell output in M71 413 

transgenic mice is surprisingly similar to that observed wild-type mice. The olfactory bulb of M71 414 

transgenic mice thus provides a powerful model system with which to explore neural mechanisms of 415 

signal normalization. Cell-specific calcium imaging together with in vivo patch-clamp recordings 416 

identify feedforward periglomerular inhibition as a major candidate neural circuit mechanism for 417 

signal amplification and suppression. Our results thus highlight the capacity of the olfactory bulb to 418 

extract meaningful information from degraded sensory input.  419 

 420 

The ability of M71 transgenic mice to detect acetophenone is task-dependent 421 

Our previous behavioral analyses of M71 transgenic mice using a go/no go operant 422 

conditioning task indicated that M71 transgenic mice could readily detect and discriminate most 423 

odorants. In contrast, M71 transgenic mice failed to discriminate the M71 receptor ligand 424 

acetophenone from air. We have replicated these initial findings with an independent cohort of mice. 425 

In total, 15 M71 transgenic mice were tested in this task, and all 15 mice failed to reach a correct lick 426 

ratio of above 75%. Why do M71 transgenic mice fail this test? We previously hypothesized that 427 

pervasive glomerular activation elicits inhibition at multiple stations along the olfactory pathway, 428 

which could entirely suppress acetopheone-evoked neural activity. However, our calcium imaging and 429 

electrophysiological recordings do not support this hypothesis. Instead, we observe that acetophenone-430 

evoked suprathreshold mitral cell activity in M71 transgenic mice is surprisingly similar to that 431 

observed in wild-type mice: the fraction of acetophenone-responsive neurons, and acetophenone-432 

induced changes in mitral cell firing rates are indistinguishable from controls. Furthermore, alterations 433 

in mitral cell response magnitude, duration, and changes in the dynamic range of mitral cell responses 434 

do not provide a simple explanation for the observed behavioral deficit. The most striking 435 

acetophenone-specific effect we observe is a massive amplification of theta oscillations. A single one 436 

second puff of acetophenone elicits strong theta oscillations that last for at least 20 seconds. The 437 
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behavioral consequences of this oscillatory activity are unknown, but it is possible that these 438 

prolonged network perturbations interfere with the discrimination of acetophenone from clean air in 439 

the go/no go operant conditioning task. Alternatively, we cannot exclude that our clean air stimulus 440 

contains contaminating traces of acetophenone, and that acetophenone at extremely low concentrations 441 

is sufficient to elicit neural activity in M71 transgenic mice that makes it indistinguishable from the 442 

acetophenone odor puff. This would suggest that the observed behavioral deficit results from the 443 

inability of M71 transgenic mice to discriminate between different acetophenone concentrations, 444 

rather than from the inability to detect it. Finally, strong oscillatory network activity may precede an 445 

epileptic state (Nguyen and Ryba, 2012), which could obstruct odor discrimination.  446 

In contrast to their inability to discriminate acetophenone from air in the go/no go operant 447 

conditioning task, M71 transgenic mice adapt their spontaneous sniffing behavior in response to 448 

acetophenone exposure, suggesting that they can indeed detect acetophenone in this test. Spontaneous 449 

sniff adaptation does not require that mice accurately discriminate between successive presentations of 450 

two different stimuli. Therefore, while acetophenone-induced network perturbations may interfere 451 

with odor discrimination, mice may be able to detect and recognize acetophenone as a previously 452 

encountered stimulus in this test. Additionally, the heightened level of anxiety in M71 transgenic mice 453 

(Glinka et al., 2012) might amplify sniff responses to novel stimuli including to non-olfactory 454 

components of the stimulus. Another important difference between the two behavioral tasks is that 455 

unlike spontaneous sniff adaptation, operant conditioning requires extensive training. It is possible that 456 

training, which is performed with non-acetophenone odorants, may shape the processing of odor-457 

evoked activity, and that such plastic changes may underlie the task dependency of the behavioral 458 

deficit.  459 

 460 

Suppression of pervasive glomerular activity in M71 transgenic mice 461 

Changes in the expression of odorant receptor genes in M71 transgenic mice have two major 462 

consequences for odor-evoked glomerular activity. First, exposure to the M71 receptor ligand 463 

acetophenone activates the vast majority of sensory neurons and elicits pervasive glomerular activity. 464 

Second, the number of sensory neurons responsive to most odorants, i.e. those that do not activate the 465 
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M71 receptor, is strikingly reduced, resulting in glomerular activity that is below the detection 466 

threshold of in vivo synapto-pHluorin imaging experiments (Fleischmann et al., 2008). Despite these 467 

massive perturbations in odor-evoked olfactory bulb input, both our calcium imaging experiments and 468 

electrophysiological recordings reveal that mitral cell responses to acetophenone and non-469 

acetophenone odorants are highly similar. Thus, M71 transgenic mice provide an exaggerated genetic 470 

setting in which we have examined neural circuit mechanisms for generating normalized sensory 471 

output for downstream targets that direct olfactory behaviors.  472 

 The fraction of acetophenone-responsive mitral cells as well as acetophenone-evoked changes 473 

in mitral cell firing rates are indistinguishable between M71 transgenic mice and controls. This 474 

observation immediately suggests that powerful inhibitory mechanisms must exist within the olfactory 475 

bulb to prevent massive excitation evoked by pervasive inputs to the glomerular layer. We now show 476 

that PG cells are pervasively and robustly activated by acetophenone in M71 transgenic mice. 477 

Furthermore, mitral cell patch-clamp recordings reveal that acetophenone evokes strong and prolonged 478 

phasic inhibition in M71 transgenic mitral cells, reminiscent of PGC-mediated feedforward inhibition 479 

described previously (Fukunaga et al., 2014). This feedforward inhibitory activity is likely to provide 480 

an effective mechanism to transform pervasive glomerular activity into sparse mitral cell responses.  481 

Interneuron populations in the deeper layers of the olfactory bulb could further modify neural 482 

activity evoked by acetophenone. Candidates include superficial dopaminergic interneurons that have 483 

previously been suggested to mediate signal normalization (Banerjee et al., 2015), as well as 484 

parvalbumin-expressing interneurons, which reside in the external plexiform layer and receive direct 485 

input from widely distributed mitral cells (Kato et al., 2013; Miyamichi et al., 2013). In addition, deep 486 

layer granule cells, which form dendrodendritic synapses on the lateral dendrites of nearby mitral cells 487 

can modulate neighboring mitral cell output by means of powerful feedback and feedforward 488 

inhibition (Abraham et al., 2010; Isaacson and Strowbridge, 1998; Jahr and Nicoll, 1982; Margrie et 489 

al., 2001; Rall et al., 1966). Altogether, these interglomerular inhibitory networks can normalize 490 

response magnitudes across a range of input intensities and enhance contrast between patterns of odor-491 

evoked glomerular activity, and feedforward inhibition from primary onto secondary olfactory neurons 492 

represents an olfactory circuit function that appears highly conserved in evolution (Olsen and Wilson, 493 



Roland et al., 2016 

 21

2008; Zhu et al., 2013). However, we found that increasing acetophenone concentration dramatically 494 

increased the fraction of responsive mitral cells, resulting in dense neural odor representations similar 495 

to the dense patterns of acetophenone-evoked glomerular activity. Thus, at high acetophenone 496 

concentrations, excitation may override inhibition, exposing the limits of olfactory bulb circuit 497 

mechanisms to normalize glomerular activity.  498 

 499 

The amplification of weak sensory inputs in the olfactory bulb of M71 transgenic mice 500 

We observed that all odorants tested elicit sparse and unique, overlapping patterns of mitral 501 

cell activity in M71 transgenic mice. Strikingly, the fraction of responsive neurons to a panel of 13 502 

odorants (including acetophenone) was not significantly different from what was observed in 503 

littermate controls. While individual ligand-receptor interactions remain incompletely characterized, 504 

calcium imaging experiments suggest that most odorants do not activate M71-expressing olfactory 505 

sensory neurons, or do so only at high odorant concentrations (Bozza et al., 2002; Fleischmann et al., 506 

2008). Thus, our data provide a striking example of signal amplification by olfactory bulb neural 507 

circuits.  508 

 Whole cell recordings of mitral cells reveal that odorants commonly evoke phasic inhibition in 509 

wild-type mice (as described previously e.g Fukunaga et al., 2014; Margrie et al., 2001), and that this 510 

inhibition in response to odorants other than acetophenone is significantly reduced in M71 transgenic 511 

mice. This result suggests that olfactory bulb inputs ordinarily evoke non-specific inhibition that can 512 

only be overcome by strong and specific input. Such inhibition coupled with specific excitation can 513 

increase signal-to-noise ratios and enhance contrast (Cleland and Sethupathy, 2006). By contrast, in 514 

the M71 transgenic mice, non-acetophenone inputs are too weak to recruit inhibition, allowing these 515 

weak inputs to evoke responses. This may at least partially explain why responses are prolonged, and 516 

why trial-to-trial variability of responses is increased in these animals. However, weak signals may 517 

also be actively amplified. For example, electrical coupling electrical coupling between mitral cells 518 

connected to the same glomerulus, and self-excitation of intraglomerular mitral cell assemblies, can 519 

further facilitate the detection of weak odor signals (Christie et al., 2005; Isaacson, 1999; Margrie et 520 

al., 2001; Murphy et al., 2005; Schoppa and Westbrook, 2001). However, a multi-synaptic pathway 521 
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involving olfactory bulb tufted cells may also directly amplify the output of mitral cells in response to 522 

weak inputs (De Saint Jan et al., 2009; Fukunaga et al., 2012; Gire et al., 2012; Najac et al., 2011). 523 

These different neural mechanisms are likely to cooperate in improving the ability of M71 transgenic 524 

mice to detect odorants that do not activate the M71 receptor. Interestingly, however, we observed that 525 

the patterns of mitral cell activity are more variable across multiple odorant presentations. The fraction 526 

of mitral cells responding reliably to the same stimulus is significantly reduced in M71 transgenic 527 

mice, and the variation of the average fraction of responsive neurons for a given trial is increased. 528 

Odorants will therefore activate more variable ensembles of cells. One important source of variability 529 

in neural responses to sensory stimuli is noise, and neural circuit mechanisms to reduce variability due 530 

to noise often rely on averaging signals from neurons carrying redundant information (Faisal et al., 531 

2008). Large numbers of sensory neurons expressing the same odorant receptor and converging onto 532 

only two glomeruli in the olfactory bulb provide a striking example of this principle. In M71 533 

transgenic mice, the number of sensory neurons expressing a given odorant receptor are strongly 534 

reduced, thus limiting the power of averaging to reduce variability. We speculate that this increased 535 

variability of a neural odor representation will affect the accuracy of odor discrimination in M71 536 

transgenic mice, a model consistent with the olfactory discrimination deficits observed for difficult to 537 

discriminate odorant mixtures.  538 

In conclusion, we report a number of ways in which the olfactory bulb can modify 539 

substantially altered primary inputs to generate meaningful odor representations. Amplification of 540 

weak signals and suppression of strong, pervasive input patterns are likely to be crucial under normal 541 

circumstances, for example by allowing the system to tune to odors with considerable variations in 542 

vapor pressures. 543 

544 
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Materials and methods  545 

Mice 546 

Adult (6-10 week-old) mice on a mixed 129SvEv; C57BL/6 genetic background were used for 547 

all experiments. Omp-ires-tTA and teto-M71-ires-lacZ mouse lines were bred to generate hemizygous 548 

Omp-ires-tTA /teto-M71-ires-lacZ transgenic mice (referred to as M71 transgenic mice). Wild-type and 549 

Omp-ires-tTA heterozygous littermates were used as controls. To generate compound Omp-ires-tTA; 550 

teto-M71-ires-lacZ; Gad2-Cre transgenic mice (Taniguchi et al., 2011), Omp-ires-tTA / teto-M71-ires-551 

lacZ females were bred with homozygous Gad2-Cre males. Gad2-Cre littermates were used as 552 

controls. All experiments were performed according to Columbia University, College de France, and 553 

the Francis Crick Institute institutional animal care guidelines.  554 

 555 

Behavior 556 

Go/no go operant conditioning experiments were performed in a liquid dilution, eight channel 557 

olfactometer (Knosys, Lutz, Florida) as described previously (Bodyak and Slotnick, 1999; 558 

Fleischmann et al., 2008). Briefly, mice were water-restricted (1-1.5 ml water/day) and maintained on 559 

a reverse 12 hr light/dark cycle. Initial training was performed with ethyl acetate, citronellol, and 560 

carvone. All odorants were used at 1% vol./vol. dilution in mineral oil. Individual experiments 561 

consisted of at least 200 trials and typically lasted for ~30 minutes. Individual trials consisted of a 2 562 

second odor sampling period, followed by an inter-trial interval of at least 4 seconds. The median time 563 

from the end of one odor presentation (closing of the odor valve) to the beginning of the next was 6.3 564 

± 0.5 seconds (mean and SD across 7 animals, 300 trials each). Discrimination accuracy was 565 

calculated as the percent correct licks during a two second interval following valve opening for blocks 566 

of 20 trails each. Behavioral data were analyzed in R by fitting a linear mixed-effects model to test the 567 

effect of genotype on the fraction of correct licks (fraction correct lick ~ genotype * block + 1 | mouse 568 

Id / block).  569 

Sniff behavior was measured in head-fixed passive mice using a fast mass flow sensor 570 

(FBAM200DU, Sensortechnics, Puchheim, Germany) externally placed in close proximity to the left 571 

nostril. Baseline sniff frequencies for each trial were calculated by taking the inverse of the mean 572 
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inter-sniff interval (time between successive inhalation peaks) during the 2s prior to odor period. 573 

Responses were calculated by subtracting the baseline sniff frequency from the sniff frequency 574 

measured similarly for all sniff cycles beginning and ending within the odor period. Inter-trial interval 575 

was 10 seconds and 8 odor stimuli were presented in a fixed order (1% acetophenone, ethyl acetate, 576 

0.5% acetophenone, mixture 1, 0.1% acetophenone, hexanone, 0.05% acetophenone, heptanal). This 577 

block was repeated at least 3 times. The sequence of odors was randomized between animals ensuring 578 

alternating acetophenone and non-acetophenone odors. No blank controls were presented. For 579 

analysis, sniff responses were analyzed for the first and second/third acetophenone presentation 580 

irrespective of concentration. 581 

 582 

Rabies-GCaMP3 Virus Injections  583 

Deletion-mutant rabies virus was generated as described in Wickersham et al., 2010. Mice 584 

were anaesthetized with ketamine/xylazine (100mg/kg / 10mg/kg, Sigma Aldrich) and body 585 

temperature was maintained at 37°C using a feedback-controlled heating pad (Fine Science Tools). 586 

The scalp was removed, and the membrane overlying the skull was cleared using a microblade 587 

(Roboz). An aluminum headpost was attached to the skull using RelyX luting cement (Henry Schein). 588 

The skin overlying the cheek and zygomatic bone was removed, and vessels over the zygomatic bone 589 

were sealed using a cauterizing iron (Fine Science Tools). The muscle above and attached to the 590 

zygomatic bone was peeled away, and the bone was removed with microscissors (Roboz). The 591 

membrane and muscle holding the jawbone and associated tissue in place were then slightly peeled 592 

back to allow access to the skull underneath. A dental drill was used to thin the bone directly overlying 593 

the lateral olfactory tract (LOT), and fine forceps (Fine Science Tools, USA) were used to remove the 594 

thinned skull and dura underneath. Using a micromanipulator and injection assembly kit (Narishige; 595 

WPI), 3,000-3,500 nL of rabies-GCaMP3 virus was slowly pressure injected via a pulled glass pipette 596 

at five locations; three approximately equidistant locations directly underneath the LOT (normal to the 597 

surface of the brain), and two locations ~500 µm deep to the surface of the brain in the anterior portion 598 

of the exposed area. The craniotomy was covered with silicone sealant (WPI), and the surgical 599 

exposure was covered with a layer of lidocaine jelly (Henry Schein Veterinary) followed by a layer of 600 
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silicone sealant. No signs of virus toxicity, such as highly fluorescent or blebbing cells could 601 

occasionally be observed before 9 days post-infection, but were clearly evident after 2 weeks post-602 

infection. Therefore, mice all imaging experiments were performed 5-7 days post-infection. 603 

 604 

Histological Processing 605 

Animals were deeply anaesthetized with ketamine/xylazine and transcardially perfused with 606 

10 ml PBS, followed by 10 ml 4% paraformaldehyde. The brain was removed and postfixed in 4% 607 

paraformaldehyde at 4°C overnight. A vibratome was used to cut 85 µm-thick coronal slices through 608 

the olfactory bulb, and slices were counterstained overnight in 1/1,000 NeuroTrace 435 (Invitrogen) in 609 

PBS and mounted in Vectashield (Vector Labs) for imaging on a Zeiss 710 confocal microscope 610 

(Zeiss) using a 10x water immersion objective (Zeiss 0.45 NA).  611 

 612 

Olfactory Bulb Imaging 613 

Mice were anaesthetized using ketamine/xylazine (100mg/kg / 10mg/kg, Sigma Aldrich) and 614 

the skull overlying the olfactory bulb was thinned using a dental drill and removed with forceps, and 615 

the dura was peeled back using fine forceps. A small circular coverslip cut from a cover glass 616 

(Corning #2870-18) using a diamond scriber (VWR) was placed over the exposed bulb and sealed in 617 

place using 2% agarose to minimize movement of the brain. Animals were then moved to a two-618 

photon microscope (Ultima, Prairie Technologies, or Leica SP5) for imaging. A 16x objective at 2x 619 

zoom (Ultima) or a 25x (Leica SP5) was used to focus on the glomerular layer (~150 µm below the 620 

pial surface) or the mitral cell layer (~300-400 µm below the pial surface), and a Ti-Sapphire laser 621 

(Coherent) was tuned to 910 nm for experiments. Images (256 x 256 pixels) were acquired at a frame 622 

rate of 2.53 Hz (Ultima) or 2.9 Hz (Leica SP5). Odors were delivered at a flow rate of 1L/min for 2 623 

seconds with inter-trial intervals of ~60 seconds. Odor stimuli for a given experiment consisted of one 624 

of two odor sets, delivered through a 16 channels olfactometer (Automate Scientific): a set of 13 625 

monomolecular odorants (purchased from Sigma-Aldrich with the highest purity available) diluted at 626 

1/10 000 vol./vol. dilution in mineral oil (Sigma-Aldrich), and a set of “concentration series” 627 

consisting of three odors of 10 fold increasing concentrations (1/100, 1/1 000 and 1/10 000 vol./vol. 628 
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dilutions of acetophenone, ethyl acetate, and hexanone). Odorants were presented 4 times each, in 629 

pseudorandomized order. A total of 2-3 spatially distinct sites (often consisting of the posterior, 630 

medial, and anterior dorsal surface of the bulb) were imaged in each mouse.  631 

 632 

Electrophysiology 633 

For anaesthetized recordings, male and female M71 transgenic mice and their littermate 634 

controls (6 - 9 weeks old) were anaesthetized intraperitoneally with ketamine and xylazine (100 mg/kg 635 

and 20 mg/kg, respectively for induction; xylazine concentration was reduced to 10 mg/kg for 636 

maintenance) and kept warm (37°C; DC temperature controller, FHC, Bowdoin ME, USA) for the 637 

duration of the experiments. A small craniotomy and duratomy of approximately 1-2 mm in diameter 638 

was made over the dorsal right olfactory bulb, which was submerged in Ringer solution containing (in 639 

mM): NaCl (135), KCl (5.4), HEPES (5), MgCl2 (1), CaCl2 (1.8), and its pH adjusted to 7.2 and 280 640 

mOsm/kg. Whole-cell recordings were made with borosilicate glass pipette filled with (in mM): 641 

KMeSO4 (130), HEPES (10), KCl (7), ATP2-Na (2), ATP-Mg (2), GTP (0.5), EGTA (0.05), biocytin 642 

(10), with pH and osmolarity adjusted to 7.3 and 275-80 mOsm/kg, respectively. Signals were 643 

amplified and filtered at 30 kHz by an Axoclamp 2B (Molecular Devices, Sunnyvale, CA, USA) and 644 

digitized at 20 kHz with a micro 1401 (Cambridge Electronic Design, Cambridge, UK). Odors were 645 

presented to the animals using a custom-made flow-dilution olfactometer at approximately 1% of 646 

saturated vapor with an inter-trial interval of 10 seconds (awake) or 20-25 seconds (anaesthetized). All 647 

recordings were done blindly with respect to the genotype of the animals. Data were analysed in 648 

Matlab (MathWorks, Natick, Massachusetts, USA). To calculate the evoked membrane potential (Vm) 649 

in anaesthetized animals, voltage traces were first aligned to expiration peaks of respiration rhythms 650 

(chest distension, see Fukunaga et al., 2012; Schaefer et al., 2006)). The average waveform from the 651 

baseline period was subtracted from the aligned voltage trace from first complete sniff-cycle after odor 652 

valve opening. Evoked Vm for each cell was the mean of this subtracted component, averaged across 653 

trials. Responses were defined as significantly hyperpolarizing or depolarising if the evoked Vm 654 

deviated by more than -2 or 2 standard deviations from baseline fluctuations, respectively. For two-655 
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sample KS test, the test statistic, D, was max (| F1(x) - F2(x) |), where F(x) is the cumulative 656 

distribution function for each dataset.  657 

For awake recordings, head plate surgery and craniotomy was performed either directly 658 

preceding the electrophysiological recording or up to 2 days before (cf. Kollo et al., 2014) under 659 

isoflurane anaesthesia (5% for induction, 1.5-3% for maintenance in 95% oxygen), with local (0.5% 660 

mepivicaine s.c.) and general anaesthesia (5mg/kg carprofen, s.c.) administered. Recordings, solutions 661 

and analysis were as described above for anaesthetized animals. The only exception was that in awake 662 

animals, where sniff length is more variable, for each trial, the baseline Vm was calculated as the 663 

mean Vm during the 2s prior to odor onset, and this was subtracted from the Vm during odor period. 664 

Evoked response was directly calculated as the mean Vm during the 1s odor period, averaged over all 665 

trials. For FR responses, FR was calculated within each 0.25s time bin aligned to the first inhalation 666 

post odor onset. Baseline FR was calculated on each trial as the mean within the 2s prior to odor onset, 667 

and this was subtracted from the odor period. FR response was calculated as the mean FR in all time 668 

bins of the odor period across all trials. To test whether FR responses were significant, a paired T-test 669 

was performed between FR calculated during baseline in the 2s prior to odor onset, and those 670 

calculated during the 1s odor stimulus for all trials. Theta tuning was calculated from Vm during sniffs 671 

of durations >0.2s and <0.32s within the inter-trial intervals as described previously (Fukunaga et al., 672 

2012). 673 

 674 

Imaging Data Analysis 675 

 Data analysis was conducted in ImageJ and Matlab. Motion artifacts were first corrected by 676 

using a subpixel translational-based discrete Fourier analysis (Guizar-Sicairos and Fienup, 2008). 677 

ROIs were then manually drawn on an average image of the imaging site, and the pixel gray values 678 

averaged in each ROI were used to estimate the fluorescence of single cells at each time frame. For 679 

each trial, the change in fluorescence (∆F/F0) was calculated as (F-F0) / F0 , where F0 is the median 680 

value between seconds 2 and 6 of the pre-odor period. We estimated the baseline fluctuation at a given 681 

trial as the standard deviation (SD) of ∆F/F0 during the baseline period. Odor responses were assessed 682 

over a 10 second period following odor onset. A cell was deemed responsive if it exceeded response 683 
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threshold (3.2 x SD for mitral cells, false positive rate (FPR) = 1.3%, 3.4 x SD for periglomerular 684 

cells, FPR = 3.8%) during at least 3 frames in this period. Using a more stringent response criterion for 685 

mitral cells (3.8 x SD) yielded reduced numbers of odor-responsive neurons, but did not change the 686 

relative distributions of odor-responsive neurons between M71 transgenic mice and controls, or mitral 687 

cell response variability (data not shown). The percent of responding neurons to each stimulus was 688 

calculated as the average number of active neurons across 4 trials. To construct the odor spot maps and 689 

to calculate the tuning curves, only cells that responded at least 2 out of the 4 trials were included. To 690 

build the cross-correlation matrix of the patterns of activity we combined ∆F/F0 responses of all mitral 691 

cells, averaged over the 4 seconds following odor onset into a single mitral cell x odor trial matrix. We 692 

then calculated the cross-trial correlations of the patterns of mitral cell activity. 693 

 694 

Statistics   695 

All descriptive statistics in the text are mean ± SD. Before performing parametric statistical 696 

tests (ANOVA), homogeneity of variance within datasets was tested by computing the maximum 697 

variance ratio Max(s2)/Min(s2) between groups. Homogeneity of variance was assumed if the 698 

maximum variance ratio was below 4. To explore the variability of mitral cell odor representation 699 

density across genotypes and odorants (Figure 1H-I), we used a mixed-effect ANOVA with genotype 700 

and odor as fixed-effect categorical factors, and imaging site as a random effect variable to account for 701 

repeated measure of the same imaging site in the course of an experiment. To quantify the differences 702 

in the concentration dependence of neural responses across stimuli and genotypes (Figure 4), we 703 

regressed the number of responsive neurons on stimulus intensity, and calculated the difference in 704 

linear change between stimuli (∆LC = LCacetophenone – LCethyl acetate) as the difference between their 705 

regression slopes.  706 

 707 

  708 
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Figure legends 911 

Figure 1. The ability of M71 transgenic mice to detect acetophenone is task-dependent.  912 

(A, B) In a go/no go operant conditioning task, M71 transgenic mice fail to discriminate acetophenone 913 

from mineral oil (left panels). In contrast, M71 transgenic mice readily discriminate other pairs of 914 

odorants (ethyl acetate vs. mineral oil, citronellol, or carvone, right panels).  915 

(A) Original results reported in Fleischmann et al., 2008.  916 

(B) Repeat experiment with an additional cohort of mice. Thin lines: learning curves for individual 917 

mice. Thick lines: averaged learning curves. Error bars: 95% CI of the mean.  918 

(C) Sniff adaptation: schematic of the experimental configuration.  919 

(D) Example sniff traces during first 3 (1st, 2nd, and 3rd) presentations of hexanone (shaded area) 920 

from a control mouse. Lighter colored traces signify later presentations. ‘FV’ trace shows opening of 921 

final valve directing odorized air to the mouse, ‘flow’ trace shows the output from the olfactometer, 922 

and ‘PID’ trace shows signal evoked by odorized air from a photo-ionization detector.  923 

(E) Example moving averages of instantaneous sniff frequency during first 3 presentations of 924 

hexanone (window = 500ms, plotted against leading edge). Black traces: controls, red traces: M71 925 

transgenic mice.  926 

(F, G) Mean instantaneous sniff frequency responses to first vs. the average of the 2nd and 3rd 927 

presentation of an odor for control (black, F) and M71 transgenic (red, G) mice. Pooled non-928 

acetophenone odorants: hexanone, ethyl acetate, heptanal, and an odor mixture. Lighter colors: 929 

individual trials, thick lines: averages. Error bars: SD. Black dotted lines on the M71 plots show the 930 

means for the corresponding data from controls. 931 
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Figure 2. Normalization of odor-evoked mitral cell activity in M71 transgenic mice. 933 

(A-I) Two-photon in vivo imaging of mitral cell odor responses in anesthetized mice.  934 

(A) Schematic of rabies-GCaMP3 injection into the lateral olfactory tract (LOT) and two-photon 935 

imaging of olfactory bulb mitral cells.  936 

(B) Mitral cells expressing GCaMP3 in a coronal slice of the olfactory bulb after injection of rabies-937 

GCaMP3. Note the restriction of labeled cell bodies to the mitral cell layer. Scale bar = 100µM.  938 

(C) Higher magnification of mitral cells expressing GCaMP3 throughout the neuron, including the 939 

apical and lateral dendrites. Scale bar = 20µM.  940 

(D) Two-photon micrograph showing GCaMP3 expression in mitral cell of a single imaging site. 941 

Scale bar = 30µM.  942 

(E) Example traces of the responses of 4 mitral cells (circled in (D)) to 4 different odorants. Traces 943 

represent responses to 4 individual odorant exposures, non-responsive trials are shown in grey, 944 

responsive trials in black. Horizontal bar indicates odorant application.  945 

(F, G) Representative maps of odor-evoked mitral cell activity elicited by a panel of 5 different 946 

odorants at a single imaging site in a control (F) and M71 transgenic (G) mouse. Cells responding to at 947 

least 2 out of 4 trails are color-coded. Overlap: cells responsive to more than one odorant are shown in 948 

blue.  949 

(H, I) Mean fraction of cells (horizontal line) responding to a given odorant at 0.01% vol./vol. 950 

dilution, in control (H) and M71 transgenic (I) mice. Dots represent the fraction of responding cells for 951 

a given imaging site. Controls: 14 imaging sites in 7 mice, n (median number of cells per site) = 35; 952 

M71 transgenic: 7 imaging sites in 4 mice, n = 28. Error bars = 95% CI of the mean. 953 
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Figure 3. Normalization of odor-evoked neural activity in M71 transgenic mice results in 955 

changes in response magnitudes and duration, and trial-to-trial variability.  956 

(A-F) Two-photon in vivo imaging of mitral cell odor responses in anesthetized mice.  957 

 (A, B) Odor tuning: the fraction of mitral cells responding to N odorants out of the 13 odorant test 958 

panel in control (A, black) and M71 transgenic (B, red) mice. Error bars = 95% CI.  959 

(C) Peak DF/F values for odor-evoked responses in control (black) and M71 transgenic (red) mice. 960 

The fraction of responses with high peak DF/F values is reduced in M71 transgenic mice.  961 

(D) Response durations are increased in M71 transgenic mice (red) compared to controls (black).  962 

(E, F) Trial-to-trial variability. Pearson’s correlation coefficients for individual odor presentations (13 963 

odorants, 4 trials per odorant). The similarities of response patters to 4 presentations of the same 964 

odorant is reduced in M71 transgenic mice.  965 
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Figure 4. Intrinsic and odor-evoked mitral cell activity in M71 transgenic mice.  967 

(A-M) In vivo whole cell recordings in awake mice: comparison of physiological properties of mitral 968 

cells in control (black, n = 7) and M71 transgenic mice (red, n = 6).  969 

(A) Schematic of the experimental configuration.  970 

(B) Resting membrane potential (mV), (C) input resistance (MΩ), (D) membrane time constant tau 971 

(ms), (E) baseline firing rate (Hz), (F) strength of modulation of baseline Vm by the sniff cycle (theta 972 

coupling) (mV), and (G) phase-preference of baseline Vm within the sniff cycle (rad).  973 

(H, I) Example trace showing single 1s odor presentation (shaded area) during mitral cell recordings 974 

from control (H) and M71 transgenic (I) mice.  975 

(J, K) Histograms of mean odor-evoked membrane potential (J) and firing rate (K) responses in 976 

control cells to non-acetophenone odors, n = 28 cell-odor pairs from 7 cells.  977 

(L, M) Histograms of mean odor-evoked membrane potential (L) and firing rate (M) responses in M71 978 

transgenic cells, n = 24 cell-odor pairs from 6 cells. Black dotted lines in (L) and (M) show 979 

corresponding data from controls.  980 
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Figure 5. Increased acetophenone-evoked inhibition and theta coupling in M71 transgenic mice.  982 

(A-H) In vivo whole cell recordings in awake mice.  983 

(A) Schematic of the experimental configuration.  984 

(B, C) Example trace of a 1% acetophenone presentation to a mitral cell in a control (B, black) and 985 

M71 transgenic (C, red) mouse. Note the differences in the duration of inhibition, and the great 986 

amplification in theta coupling of the M71 transgenic cell after response offset.  987 

(D) Quantification of strength of theta coupling before and after acetophenone presentation for control 988 

(black) and M71 transgenic (red) cells.  989 

(E-H) Histograms of mean 1s odor-evoked membrane potential and firing rate responses to 990 

acetophenone presentation in control (E, F) and M71 transgenic (G, H) mice. (I) Comparison of 991 

control and M71 transgenic mean Vm responses calculated over different time windows: 1s, 2s and 5s 992 

from the first inhalation post odor-onset.  993 

(J-P) Two-photon in vivo imaging of periglomerular cell activity in anesthetized mice.  994 

(J) Schematic of the experimental configuration.  995 

(K) Expression of GCaMP3 (in green) in inhibitory neurons after injection of conditional AAV-flex-996 

GCaMP3 into the olfactory bulb of a Gad2-Cre transgenic mouse. Purple: nuclear counterstain. Scale 997 

bar = 100µM.  998 

(L) Higher magnification of periglomerular (PG) cells (examples indicated by white arrowheads) 999 

expressing GCaMP3. Scale bar = 20µM. (M) Two-photon micrograph showing GCaMP3 expression 1000 

in PG cells of a single imaging site. Scale bar = 20µM.  1001 

(O, P) Example traces of the responses of 4 PG cells to acetophenone and ethyl acetate in control (O) 1002 

and M71 transgenic (P) mice. Traces represent responses to 4 individual odorant exposures, non-1003 

responsive trials are shown in grey, responsive trials in black. Note the difference in the scale of the y-1004 

axis between genotypes. 1005 
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Figure 6. The olfactory bulb excitation/inhibition balance in M71 transgenic mice breaks down 1007 

at high acetophenone concentrations.  1008 

(A-D) Two-photon in vivo imaging of mitral cell odor responses in anesthetized mice.  1009 

(A, B) Representative maps of odor-evoked mitral cell activity elicited by acetophenone and ethyl 1010 

acetate at increasing odorant concentrations in a control (A) and M71 transgenic (B) mouse. Weak to 1011 

strong responses are color-coded in blue to red.  1012 

(C, D) Mean fraction of mitral cells that respond to acetophenone and ethyl acetate at increasing 1013 

odorant concentrations in control (C, black) and M71 transgenic (D, red) mice. Grey circles represent 1014 

the fraction of responsive cells of a single imaging site. Controls: 19 imaging sites in 8 mice, n 1015 

(median number of cells per site) = 57; M71 transgenics: 10 imaging sites in 4 mice, n = 28. red line : 1016 

linear fit onto concentration. r : coefficient of correlation.  1017 

(E-H) Two-photon in vivo imaging of periglomerular cell activity in anesthetized mice.  1018 

(E, F) Representative maps of odor-evoked periglomerular (PG) cell activity elicited by acetophenone 1019 

and ethyl acetate at increasing odorant concentrations in a control (E) and M71 transgenic (F) mouse. 1020 

Note that the heatmaps predominantly reflect dendritic responses of PG cells in glomeruli.  1021 

(G, H) Mean fraction of PG cells that respond to acetophenone and ethyl acetate at increasing odorant 1022 

concentration in control (G, black) and M71 transgenic (H, red) mice. Grey circles represent the 1023 

fraction of responsive cells of a single imaging site. Controls: 10 imaging sites in 5 mice, n (median 1024 

number of cells per site) = 46; M71 transgenics: 9 imaging sites in 5 mice, n = 51. Error bars = SD.  1025 

 1026 

  1027 



Roland et al., 2016 

 40

Supplementary figure legends  1028 

Figure 1 - figure supplement 1. Schematic representation of the perturbation of the glomerular 1029 

map of M71 transgenic mice with a “monoclonal nose”.  1030 

(A) In wild-type mice, odors bind to subsets of odorant receptors (ORs), which results in the activation 1031 

of subsets of olfactory sensory neurons (OSNs) and glomeruli in the olfactory bulb (OB). This activity 1032 

is transformed into sparse patterns of mitral cell activity, which transmits odor information to higher 1033 

olfactory centers to drive behavior.  1034 

(B and C) In M71 transgenic mice, odor-evoked patterns of glomerular activity are massively 1035 

perturbed. The pervasive expression of the M71 OR, instead of a large repertoire of endogenous OR, 1036 

results in the pervasive activation of OSNs and glomeruli in response to acetophenone, an M71 1037 

receptor ligand. In contrast, most other odorants do not elicit detectable glomerular activity. 1038 

Surprisingly, behavioral experiments using a go/no go operant conditioning task showed that M71 1039 

transgenic mice could detect and discriminate most odorants, but not acetophenone.  1040 
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Figure 1 - figure supplement 2. M71 transgenic mice fail to detect acetophenone in a go/no go 1043 

operant conditioning task.  1044 

(A) Wild-type mice consistently discriminate acetophenone from its diluent mineral oil (black lines). 1045 

Wild-type mice also discriminate between other pairs of odorants (ethyl acetate versus mineral oil, 1046 

citronellol, or carvone, dotted lines).  1047 

(B) M71 transgenic mice consistently fail to discriminate acetophenone from mineral oil, but readily 1048 

discriminate between the other pairs of odorants.  1049 
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Figure 3 - figure supplement 1. Response magnitudes and durations, and trial-to-trial variability 1052 

of mitral cell odor responses in M71 transgenic mice.  1053 

(A-I) Two-photon in vivo imaging of mitral cell odor responses in anesthetized mice.  1054 

(A) Cumulative frequency plots of the peak F/F values for ethyl acetate- and acetophenone-evoked 1055 

mitral cell responses in control (black) and M71 transgenic (red) mice.  1056 

(B) Cumulative frequency plots of response durations for ethyl acetate- and acetophenone-evoked 1057 

mitral cell responses in control (black) and M71 transgenic (red) mice.  1058 

(C) Percent of neurons responding to 1, 2, 3, or 4 out of 4 odorant exposures in control (black) and 1059 

M71 transgenic (red) mice. Note that the fraction of neurons responding on 4 out of 4 trials in strongly 1060 

reduced in M71 transgenic mice. Error bars = SEM.  1061 

(D-G) Trial-to-trial variability of mitral cell odor responses decreases with increasing odorant 1062 

concentrations. (C, D) Percent of neurons responding to 1, 2, 3, or 4 out of 4 odorant exposures to 1063 

ethyl acetate (D) and acetophenone (E) at increasing concentrations in control mice. (F, G) Percent of 1064 

neurons responding to 1, 2, 3, or 4 out of 4 odorant exposures to ethyl acetate (F) and acetophenone 1065 

(G) at increasing concentrations in M71 transgenic mice. Error bars = SEM.  1066 

(H, I) Pearson’s correlation coefficients for individual acetophenone and ethyl acetate presentations at 1067 

increasing concentrations. Note that response patterns to acetophenone at increasing concentrations are 1068 

highly dissimilar from responses to acetophenone at low concentrations, and to responses to ethyl 1069 

acetate.  1070 
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Figure 4 - figure supplement 1. Patch clamp mitral cell recordings in anesthetized mice reveal 1072 

increased acetophenone-evoked inhibition in M71 transgenic mice.  1073 

(A) Schematic: whole cell recordings in anesthetized mice.  1074 

(B, C) Example traces showing single 1s ethyl acetate presentations (shaded area) during mitral cell 1075 

recordings from control (black) and M71 transgenic (red) mice.  1076 

(D, E) Histograms of mean odor-evoked membrane potential responses in control and M71 transgenic 1077 

cells.  1078 

(F, G) Example traces showing single 1s acetophenone presentations during mitral cell recordings 1079 

from control and M71 transgenic mice.  1080 

(H, I) Histograms of mean acetophenone-evoked membrane potential responses in control and M71 1081 

transgenic cells. Arrows indicate the median evoked Vm.  1082 
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Figure 5 - figure supplement 1. Individual acetophenone response traces.  1084 

In vivo whole cell recordings in awake mice. Mean spike-clipped traces in response to acetophenone 1085 

at a concentration of 1% of absolute vapor pressure, averaged across all trials aligned to first inhalation 1086 

post odor onset for each MTC. In black are traces from each cell recorded in control littermates, in red 1087 

are traces from M71 transgenic cells. The shaded area shows the 1s odor stimulus. The dotted line at 2 1088 

s is for comparison of the long-duration component of the response. Note the long inhibitory transients 1089 

seen in 4 of the 6 transgenic MTCs, compared to the much more transient responses in controls.  1090 
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Figure 6 - figure supplement 1. Response magnitudes and durations strongly increase with 1093 

increasing acetophenone concentrations in M71 transgenic mice.  1094 

(A-H) Two-photon in vivo imaging of mitral cell odor responses in anesthetized mice.  1095 

(A, B) Cumulative frequency plot of the peak DF/F values for mitral responses in control (A) and M71 1096 

transgenic (B) mice to increasing acetophenone concentrations. Light, intermediate and dark colored 1097 

curves represent responses to low (1:10.000 vol./vol.), intermediate (1:1.000 vol./vol.) and high (1:100 1098 

vol./vol.) odorant concentration.  1099 

(C, D) Cumulative frequency plot of the peak DF/F values for mitral responses in control (C) and M71 1100 

transgenic (D) mice to increasing ethyl acetate concentrations.  1101 

(E, F) Cumulative frequency plot of response durations of mitral cells in control (E) and M71 1102 

transgenic (F) mice to increasing acetophenone concentrations.  1103 

(G, H) Cumulative frequency plot of response durations of mitral cells in control (G) and M71 1104 

transgenic (H) mice to increasing ethyl acetate concentrations.  1105 

 1106 
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