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Abstract The rigorous analysis of socio-technical sys-

tems is challenging, because people are inherent parts

of the system, together with devices and artefacts. In

this paper, we report on the use of PVS as a way of

analysing such systems in terms of Distributed Cog-

nition. Distributed Cognition is a conceptual frame-

work that allows us to derive insights about plausible

user trajectories in socio-technical systems by exploring

what information in the environment provides resources

for user action, but its application has traditionally re-

quired substantial craft skill. DiCoT adds structure and

method to the analysis of socio-technical systems from

a Distributed Cognition perspective. In this work, we

demonstrate how PVS can be used with DiCoT to con-

duct a systematic analysis. We illustrate how a rela-

tively simple use of PVS can help a field researcher (i)
externalise assumptions and facts, (ii) verify the con-

sistency of the logical argument framed in the descrip-

tions, (iii) help uncover latent situations that may war-

rant further investigation, and (iv) verify conjectures

about potential hazards linked to the observed use of in-

formation resources. Evidence is also provided that for-

mal methods and empirical studies are not alternative

approaches for studying a socio-technical system, but

that they can complement and refine each other. The

combined use of PVS and DiCoT is illustrated through

a case study concerning a real-world emergency medical

dispatch system.
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1 Introduction and background

Design errors are well-known sources of system failures:

in computer systems, they represent the major cause

of failures; in interactive systems, they are also a ma-

jor cause of systematic human error. For instance, in

the healthcare domain the ‘system’ of importance is of-

ten not just a single computer device but the whole

work environment. Whether it was explicitly designed,

or more likely evolved and was adapted by those work-

ing within it over time, errors in its ‘design’ can cause

computer system failures and systematic human errors.

The development process of a system of whatever level,

therefore, must adopt appropriate means to eliminate

design errors. This is especially relevant in safety-critical

domains, such as healthcare.

In complex socio-technical systems, like hospitals or

power plants, operators are required to follow written

procedures that specify what actions must be taken

to achieve intended goals. The best way of achieving

a goal is usually context-dependent, but written pro-

cedures cannot cover all possible situations and con-

texts [38]. As a consequence, actual practice may de-

viate from written procedures (e.g., see [33]). Studying

actual practice in a systematic and rigorous way is key

to identifying potential hazards in such socio-technical

systems, given trial-and-error approaches should be avo-

ided in safety-critical contexts, and given operators sho-

uld get work done correctly on the first attempt. Also,

better understanding of current practice can help re-
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design a system in response to performance deviations

and potential hazards.

Contextual studies such as ethnographic studies pro-

vide a way to understand how a system works in prac-

tice. They involve collecting information from people

actually working in the system, including observing ac-

tivities as they are carried out in the real workplace.

This contrasts with studies based on experimental or

simulated settings. A common difficulty in ethnographic

studies is that field researchers have limited time and

resources to perform the study. They therefore need to

make decisions about what to look for and when. Dis-

tributed cognition [19] is a conceptual framework that

can help field researchers make those decisions.

Distributed cognition is a conceptual framework pro-

posed by Hutchins in [19]. It is based on the idea that

cognition is not confined to the mind of humans, but

spans across humans and artefacts. As such, cognition

is distributed across the system, and can be described

in terms of transformations of the representational state

of information resources. Based on this view, Hutchins

argues that it is possible to deduce important infor-

mation about the cognitive activities of the users of a

system by reasoning about the observable representa-

tional states of information resources. Furthermore, he

observes that even if the cognitive activities of users re-

main hidden, in many cases the representational state

of information and the kind of errors made by users

impose constraints that are tight enough to enable an

accurate identification of plausible internal representa-

tions and processes that the users must be adopting.

An important implication of this is that the design of

artifacts and technologies can be used not only for un-

derstanding plausible internal representations, but also

for shaping them to ones that are “syntactically cor-

rect”. This is meant in the sense that they can provide

guidance to the people who have to perform tasks, thus

making the path to achieving that task apparent.

Examples of activities that involve distributed cog-

nition processes range from familiar everyday interac-

tions to complex interactive systems. For example, in

everyday interactions we use to-do lists to organise at-

tention to tasks, we use shopping lists to extend our

memory, and we group piles of paper to organise our

work — we change the environment to support the task

we need to perform [21]. Similar considerations also ap-

ply in complex interactive systems, such as cockpits.

For example, Hutchins, in [20], analysed how a cockpit

“remembers its speed” through a combination of differ-

ent people, in different roles, with different tools and

artefacts collectively moving and changing the repre-

sentation of information.

DiCoT [6] is a semi-structured methodology that

has been proposed by the human-computer interaction

community for applying distributed cognition to the

analysis of teamwork systems. The approach has been

successfully applied to analyse various real-world socio-

technical systems (see for instance [37,27,39,33]). Di-

CoT proposes three core interdependent models to anal-

yse socio-technical systems: the physical model, which

studies the physical layout of the system; the infor-

mation flow model, which studies how information is

transformed and propagated in the system; the artefact

model, which studies how artefacts are designed and

used in the system. Associated with each of these mod-

els is a representation or diagram and distributed cog-

nition principles. The DiCoT models will be described

in detail in Section 4.

2 Contributions

In summary, this paper makes several novel contribu-

tions. We develop a constructive approach for using

the specification and verification system PVS [31] in

combination with DiCoT, an semi-structured analysis

method for studying socio-technical systems from a dis-

tributed cognition perspective.

We present a set of generic PVS theories suitable

for guiding the translation of DiCoT models into PVS

higher-order logic specifications, and show how to use

such theories to support rigorous reasoning about socio-

technical systems design.

We demonstrate that a relatively simple use of PVS

can help field researchers (i) automate various consis-

tency checks for the DiCoT models, (ii) systematically

challenge the logical argument they describe in the mod-

els, (iii) help uncover latent situations that may warrant

further investigation, and (iv) verify conjectures about

potential hazards linked to the observed use of informa-

tion resources. Note that the proposed approach is not

intended to replace the existing DiCoT analysis, but to

complement it by using automated reasoning tools. In

fact, we use PVS in such a way that it systematically

challenges (through proof obligations) the reconstruc-

tion of facts and events observed by the field researcher.

We show that properties of interest can be auto-

matically generated out of the specification, and that

proof attempts can be automatically performed by the

PVS system, reducing the perceived cost of using the

tool. Whenever a proof obligation cannot be discharged

(either automatically, or through an interactive proof)

then a situation is found where the logical argument

framed in the models may contain gaps that need to be

filled (e.g., the field researcher is using hypotheses not

explicitly stated in the model), or inconsistency that
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may warrant further investigation. A set of generic PVS

theories is also presented to guide modelling and anal-

ysis. The theories can be animated with the PVSio ex-

tension of PVS, thus enabling the analyst to perform

preliminary analyses through simulations.

The pragmatic use of PVS described in this paper

explores new ways of using software tools during field

studies. To date, software tools have been developed

and used by field researchers to store and encode infor-

mation efficiently — see for instance [40]. We provide

evidence of the potential benefits of an integrated ap-

proach using both PVS and DiCoT by re-analysing field

study data from a previously published case study with

the original investigator. The considered case study fo-

cuses on an emergency dispatch system [17,18]. In sec-

tion 6, we will provide a step-by-step analysis of the

socio-technical system, and show that additional in-

sights can be gained from the same data collected in

the field study, providing therefore some evidence that

the use of PVS allows a finer-grained analysis.

A preliminary version of this work was presented

in [24], where we gave only an outline of the developed

PVS theories to specify DiCoT information flow mod-

els, along with an overview of the insights that could

be gained when using PVS in conjunction with DiCoT.

An informal description of the constructive procedure

has been presented in [23], and its application to sup-

port incident investigations has been explored in [26].

In [25], the approach has been successfully used within

the context of a live field investigation.

2.1 Organisation of the paper

In Section 3, we provide an overview of PVS, focussing

on the features of the tool relevant to this work. In

Section 4, we present the DiCoT approach in detail. In

Section 5, we present a method for supporting a DiCoT

analysis (how to translate existing DiCoT models, how

to analyse them in a such a way that insights can be

gained about how to refine the analysis) and a set of

generic PVS theories for guiding the specification and

analysis. In Section 6, we apply the proposed method

and developed PVS theories to analyse DiCoT models

developed in an already performed and complete study.

The considered example is based on the London Am-

bulance Service. In Section 7, we discuss related work.

In Section 8, we draw conclusions.

3 Prototype Verification System (PVS)

PVS [31] is a specification and verification system that

combines an expressive specification language with an

interactive proof checker. The PVS specification lan-

guage is based on strongly typed higher-order logic,

which allows quantification over propositional functions

to be formulated. The language includes the usual base

types (e.g., bool, nat, integer and real), function

type constructors [A -> B] (predicates are functions

with range type bool), and abstract data types. The

language supports predicate subtyping [36], which is a

powerful mechanism for expressing complex consistency

requirements. An example of a subtype is {x: real |

x 6= 0}, which is derived from real numbers by using

the predicate x 6= 0. When using expressions with sub-

types, PVS automatically generates proof obligations,

denominated type correctness conditions (TTCs), for

ensuring the valid use of the type. We will rely on this

automatic generation of proof obligations to check the

consistency of the logical argument framed in the Di-

CoT models.

PVS specifications are packaged as theories. Theo-

ries can be parametric in types and constants, and they

can use definitions and theorems of other theories by

importing them. PVS has a pre-defined built-in prelude,

and a variety of loadable libraries, such as the NASA

library [11], which provides several standard definitions

and proved facts that can be used when developing new

theories.

PVS includes an automated theorem prover that

can be used to interactively apply powerful inference

procedures within a sequent calculus framework. The

primitive inference procedures include, among others,

propositional and quantifier rules, induction, simplifi-

cation using decision procedures for equality and linear

arithmetic, data and predicate abstraction [31].

PVS has a ground evaluator [12] that automati-

cally compiles executable constructs of a specification

into efficient Lisp code. In order to be able to execute

theories that include non-executable constructs (e.g.,

declarative specifications), the ground evaluator can be

augmented by so-called semantic attachments. Through

these, the user can supply pieces of Lisp code and attach

them to the declarative parts. The ground evaluator

was subsequently extended by a component, denomi-

nated PVSio [30], which provides a high-level interface

for writing semantic attachments, as well as a set of

proof rules to safely integrate the attachments to the

PVS theorem prover.

4 Distributed Cognition for Teamwork (DiCoT)

In this section, we report a detailed description of the

DiCoT models we will consider: physical, information

flow, and artefact. For each model, we describe (i) what

elements should be represented in the model, (ii) what
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analysis should be performed on the model, and (iii)

the characteristics of a suitable specification language

for the models.

Physical model. A DiCoT physical model describes

the structure of the physical layout of the environment

where actions are performed by individuals.

The model highlights what media can be used by

individuals to extend their cognitive space (e.g., arte-

facts, information technologies, and other individuals)

and what information resources can be held by such

media (e.g., written notes, displayed data, utterances).

The analysis of the physical models aims to identify

constraints and affordances provided by the physical

environment. In [17], two strategies are suggested for

choosing the bounds of the environment to be mod-

elled: individual- and location-based. The individual-

based strategy identifies the bounds of the environment

with what individuals can physically hear, see, or have

access to while actions are performed. Depending on the

aim of the analysis, this perspective can be extended

from an individual perspective to a team, a working

unit, or an organisation perspective. The location-based

strategy identifies the bounds of the environment on the

basis of physical locations, e.g., a desk, a room, a floor

or a building. A suitable modelling language for these

models should allow the layout structure and the phys-

ical location of actors and artefacts to be specified.

Information flow model. A DiCoT information flow

model describes how information resources are trans-

formed and propagated in the system.

The model highlights the role of users, technologies

and artefacts during communication, and describes the

sequence of events observed in the system.

The analysis of the information flow models aims

to (i) identify relevant aspects and potential issues re-

lated to single tasks and communications, and (ii) as-

sess system-wide properties emerging from the way in-

formation resources are processed, e.g., identification of

information buffers, where a person withholds informa-

tion temporarily from someone else until they naturally

pause from concentrating on a different task. In [17], a

three-level hierarchical modelling approach is presented

to aid investigators build the model. The first level

aims to model a high-level summary of the function

of the system; as such, the developed model describes

the main purpose of the system, the information go-

ing into the system, and the system output. The sec-

ond level aims to model in detail the routine activities

carried out in the system by highlighting the task and

the communications between team members. The third

level aims to model events and cases that break the rou-

tine activities. Each developed model includes a narra-

tive description and a number of ad hoc semi-formal

diagrams for understanding how the system works and

for reasoning about design issues. A suitable modelling

language for these models should allow us to identify

activities and dependency relations (such as temporal

ordering) among activities.

Artefact model. A DiCoT artefact model describes

in detail how specific media and information resources

are used within the system.

This model can be seen as a refinement of the DiCoT

physical and information flow models, as it provides ad-

ditional details about the structure of selected artefacts

and about their use in the system. In particular, the

artefact model aims to highlight the role of artefacts in

tasks and how their interface facilitates or hinders work.

Artefacts are selected on the basis of those aspects of

the system that are deemed central for its function, e.g.,

what a field study researcher believes important for un-

derstanding how actual practice is carried out, or what

a designer believes important for studying how a design

change may affect the socio-technical system.

In [17], the Resource Model [41] is suggested as a

starting point to study how information resources are

distributed in the system, either internalised in the hu-

man mind or externalised in the environment. In the

Resource Model, six abstract information structures are

used to classify information resources: plans (sequences

of actions that could be carried out), goals (system

states that one would like to achieve), affordances (sets

of possible next actions that can be taken from the

current system state), history (lists of actions already
taken to achieve the current system state), action-effect

(a transition relation that defines how the current state

is transformed when an action is taken), and current

state (a collection of relevant values of objects in the

environment). A suitable modelling language for the

artefact model should enable a detailed specification

of the structure and transformations of information re-

sources at different levels of detail.

5 Using PVS to support a DiCoT analysis

In this section, we illustrate a constructive procedure

for building PVS theories suitable for supporting a Di-

CoT analysis. The proposed procedure is general and

represents a guideline for specifying and analysing in

PVS: field study data1, existing DiCoT models, and

1 Field study data considered here consist of written notes
produced by the field investigator during the observations.



Using PVS to support the analysis of distributed cognition systems 5

Fig. 1 Overview of the approach.

user manuals. A set of generic PVS theories to sup-

port the constructive approach are presented in sec-

tions 5.1 5.2 5.3, and their application is shown in sec-

tion 6. An overview of the approach is depicted in Fig-

ure 1. In the following, we illustrate the approach.

Analysis of information resources. The first step is

to develop PVS theories that allow field researchers to

externalise facts about information resources available

from artefacts, technologies and individuals (e.g., infor-

mation printed on labels or displayed by devices). Each

information resource is modelled using a different PVS

data-type. The type definitions can be given at different

level of details, according to what the field researcher

deems relevant. Uninterpreted types are used to model

information resources at the highest level of abstraction

— uninterpreted types just define the name of informa-

tion resources. Known constraints about information

resources are embedded in the type definitions through

predicate subtyping. The utility of using predicate sub-

types is that PVS automatically generates proof obli-

gations and proof attempts to demonstrate the con-

sistency (or otherwise) of the specification, discharg-

ing therefore field researchers from the burden of speci-

fying (and manually checking) consistency constraints.

When a proof obligation cannot be discharged, either

automatically or by guiding the theorem prover, then

a situation is found that may warrant further investi-

gation — e.g., the field researcher is using assumptions

not explicitly stated in the model; the model specifica-

tion contains inconsistencies/gaps; or there is an actual

issue related to the information resources provided by

the real-world system. Examples of constraints that can

be expressed by subtyping are the physical location of

individuals in indoor settings (e.g., how desks and walls

limit movement and communication), physical charac-

teristics of artefacts (e.g., the number of post-its on a

board), limits of observable information externalised by

devices (e.g., the maximum numbers of calls that can

be displayed on a digital display board).

Analysis of transformations of information re-

sources. The second step is to develop PVS theories

that allow field researchers to specify how information

resources are generated, transformed and propagated

in the system. In PVS, we specify such transformations

as transition functions over system states. As for infor-

mation resources, transformations can be provided at

different levels of detail, according to what the field re-

searcher deems relevant to the analysis. For instance,

the field researcher can be very detailed about the use

of some artefacts and information technologies (e.g.,

describing how operators organise paper reports on a

desk, or how a specific report’s field is entered in an

electronic record) or simply describe abstract relations

between individuals (e.g., which communication chan-

nels exist between operators). The PVS specification

language allows one to use different levels of details —

as for information resources, uninterpreted types can

be used to specify abstract relations, and subtypes and

actual definitions can be used to gradually add detail.

The system state is given by the observable state of in-

formation resources. Predicate subtyping can be used

to express constraints about the possible transforma-

tions allowed by the system — PVS will automatically

generate proof obligations to ensure that the transfor-

mations are used consistently within the specification.

Analysis of conjectures about emerging proper-

ties. The third step is to develop PVS theories for

checking conjectures about why physical layouts and

work-flows are the way they are, and for identifying

potential hazards linked to the observed use of infor-

mation resources. Conjectures can be specified as pred-

icates over information resources and over transforma-

tions of information resources. The analysis of potential

hazards can be supported by a systematic formalisation

of user manuals and written procedures, as they provide

insights about the designers’ perspective on the system.

This kind of analysis is useful to pull out potential haz-

ards linked to latent situations. The approach has sim-

ilarities with the analysis carried out by Rushby in [34,

2]. In his work, Rushby compared the specification of

an interactive system with the mental model created by

its users for discovering possible sources of mode con-

fusion. He argues that a strong divergence between the



6 Paolo Masci et al.

mental model and the actual behaviour prescribed by

the interactive system may lead to automation surprise,

i.e., situations where the automated system behaves in

a way that is different from that expected by the opera-

tor. In our case study, user manuals and written proce-

dures are used as the basis for specifying the behaviour

of the interactive system, and the DiCoT models are

used to derive insights about plausible mental models

developed by users of the system.

5.1 Generic PVS theories to support DiCoT modelling

In the following we present a set of generic PVS theo-

ries developed with the aim of guiding analysts during

the specification process and help reduce the perceived

cost of using PVS in a DiCoT analysis. The developed

theories allow one to build a PVS specification which

can be naturally mapped to the DiCoT models, i.e., the

relationship between the DiCoT models and the PVS

specification can be easily seen and justified. The spec-

ification style used in the generic PVS theories allows

PVSio to be used to animate the specifications, thus can

potentially facilitate interdisciplinary discussion about

the situations described in the models. In section 5.3,

we present a simulation engine developed on top of PV-

Sio that automates the generation of simulation traces

out of the PVS specification of the DiCoT models.

System State. Information resources are specified as

fields of a record type, system state. Each information

resource is characterised by a unique resource identifier.

Resource identifiers can be specified either explicitly

(e.g., through natural numbers or enumerated types),

or implicitly (through the type name).

The level of detail at which an information resource

is modelled generally depends on the aim of the DiCoT

analysis. At the highest level of abstraction, fields are

specified as uninterpreted types. In order to enable a

modular construction of the specification, we exploit in-

formation hiding when defining theories for the system

state. Each PVS theory is assimilated to the class con-

cept used in object-oriented programming languages:

interface functions are used for accessing and modifying

data types in a consistent way, and the actual specifi-

cation of the data-types is hidden.

Activities. Activities are actions carried out within

the system by individuals or information technologies.

They are specified as transition functions over system

states. Each activity has a unique identifier. We devel-

oped a PVS theory, activity th, to provide some stan-

dard type definitions: activity, a function type suit-

able for specifying activities as state transitions over

system states; activity id, a bounded natural num-

ber type for defining unique identifiers for activities;

and an execute function, which specifies that a new

system state can be obtained by applying an activity

to the current system state. The type definition of the

system state and the number of activities are theory

parameters, and must be instantiated when importing

the theory.

activity_th[system_state: TYPE,

N_ACTIVITIES: posnat]: THEORY

BEGIN

activity: TYPE = [system_state -> system_state]

activity_id: TYPE = below(N_ACTIVITIES)

execute(act: activity):

[system_state -> system_state] =

LAMBDA(sys: system_state): act(sys)

END activity_th

Tasks. Tasks define dependency relations among ac-

tivities, which can be performed either in sequence or

concurrently. We specify tasks with a graph-based no-

tation suitable for formalising a graphical notation used

in DiCoT: nodes in the graph represent activities, and

edges between nodes represent dependency relations be-

tween activities. Drawing concepts from Activity Net-

works [29], a widely used formalism for modelling com-

plex concurrent systems, we associate an enabling pred-

icate to each activity, which can be specified as predi-

cates over system states. An enabling predicate defines

the necessary pre-condition for performing the associ-

ated activity. When an enabling predicate is true, we

say that the associated activity is enabled. By default,

an activity is enabled when all directly connected activi-

ties have already been performed. Whenever an activity

becomes enabled, the activity can be performed. When

several activities are enabled at the same time, then

such activities can be performed concurrently. Activi-

ties are atomic: the concurrent execution of activities

is therefore a sequential execution where any ordering

is possible. When an activity is performed, the system

state is updated according to the function defined by

the activity, and we say that the activity completes. De-

pendency relations among activities can be parametric

with respect to control flow conditions, which define

different ways of continuing the task. If a control flow

condition is true, then the associated edge is included

in the graph describing the task; otherwise, the edge

is removed. Control flow conditions can be specified as

predicates over system state associated to edges (here-

after, dependency predicates).

In PVS, we therefore specify tasks as structured

data types consisting of five fields: F, a function that as-

sociates a unique identifier to each activity that can be

performed in the task; G, a directed graph that defines
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dependency relations among activities (the identifier of

each node in the graph is given by the identifier of the

associated activity); P, a function that associates depen-

dency relations to dependency predicates; S, a status

vector that defines the progress status of each activity

in the task; E, a function that associates enabling pred-

icated to activities (the default predicate checks that

all activities connected with incoming edges are com-

pleted). The type definition of G uses the NASA library

on directed graphs [11] which provides a large number

of standard definitions and already proved theorems.

The type definition of dependency predicates, on the

other hand, has been defined as a function from sys-

tem states to booleans. The type definitions of system

state, activity, activity identifier, activity progress sta-

tus, and enabling predicate are theory parameters, i.e.,

they are left unspecified, and must be instantiated by

the theories importing task th.

task_th[system_state, activity, activity_id,

progress_status, enabling_predicate: TYPE]:

THEORY BEGIN IMPORTING digraphs[activity_id]

dependency: [system_state -> bool]

task: TYPE =

[# F: [activity_id -> activity],

G: digraph[activity_id],

P: [edgetype[activity_id] -> dependency],

S: [activity_id -> progress_status],

E: [activity_id -> enabling_predicate] #]

END task_th

5.2 Generic PVS theories to support DiCoT analysis

We have developed a generic PVS theory to provide a

template for comparing specifications of activities de-

rived from different sources. The aim is to identify un-

safe divergence between actual practice (as described in

a DiCoT model) and prescribed practice (as described,

for instance, in user manuals). Informally stated, unsafe

divergences are situations where critical information re-

sources have strongly different values. An example of

unsafe divergence in an emergency dispatch system is

that an ambulance is supposed to receive the emergency

address when an operator enters the emergency address

in the information system (e.g., according to the speci-

fication derived from field study data), while in practice

he/she doesn’t (e.g., according to the user manual). The

precise definition of “unsafe divergence” depends on the

considered situation — it may change from system to

system, and over time.

A generic approach suitable for developing a tai-

lored specification of unsafe divergence can be obtained

through the use of an abstract domain. In the abstract

domain, we can define equivalence classes reflecting the

concerns that are deemed safety critical for the system,

and thus map actual values of information resources to

those abstract classes. By using the abstract domain,

we can say that a system is not in a situation of unsafe

divergence (or, alternatively, say that the system is op-

erating within its safety limits) as long as information

flows described in the specifications we are comparing

generate equivalent abstract states.

More precisely, given any pair of corresponding ac-

tivities from two specifications, if we start from two con-

crete states that are equivalent in the abstract domain,

then the system is within safety limits if the new states

obtained by executing the activities are still equivalent

in the abstract domain.

In PVS, we can support the analysis described above

by defining a data type for the abstract domain, and an

abstraction function for mapping system states from

the concrete specification into the abstract domain. To

this end, we defined a parametric PVS theory, safe div

ergence th, which defines a predicate, safe divergence,

for specifying claims about divergences in terms of five

parameters: the state of the abstract domain (abstract

state), which specifies what information is deemed

safety-critical for the system; two function types (actual

state, pre scribed practice), which specify a pair

of concrete transitions that we want to compare; two

function types (alpha1, alpha2) defining the relations

to abstract concrete system states into abstract states.

safe_divergence_th[

safety_state, actual_state,

prescribed_state: TYPE,

alpha1 : [actual_state -> safety_state],

alpha2 : [prescribed_state -> safety_state] ]:

THEORY BEGIN

safe_divergence?

(st1: actual_state, st2: prescribed_state)

(f1: [actual_state -> actual_state],

f2: [prescribed_state -> prescribed_state]):

bool

= (alpha1(st1) = alpha2(st2))

=> (alpha1(f1(st1)) = alpha2(f2(st2)))

END safe_divergence_th

5.3 Generic PVS theories to support model animation

We have developed a simulation engine for animating

the formal specification of DiCoT information flow and

artefact models. In this work, the main utility of the

simulation engine is to facilitate the dialogue between

field researchers, practitioners, and analysts when check-

ing the correctness of the formal specification.

The developed simulation engine schedules activi-

ties according to the dependency relations specified in

a task, and uses PVSio for generating visual feedback

of the execution. Drawing ideas from approaches for
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the analysis of protocols for distributed systems of au-

tonomous and cooperating nodes [4,5], we define the

simulation engine as a higher-order function, simulate,

that iteratively selects, through a scheduler, the activ-

ity to be performed. The iteration is performed at most

N times. At each iteration a new system state is gener-

ated by applying the transition function of the selected

activity to the current system state.

The scheduler identifies the activity to be executed

on the basis of its progress status, which can be one of

the following: ready, i.e., the activity is ready for exe-

cution, needs action, i.e., the activity cannot be per-

formed because other activities need to be completed

first, completed, i.e., the activity has been performed,

cancelled, i.e., the activity is enabled but it cannot be

executed (this may happen because of control flows);

and deleted, i.e., the activity has not been performed.

Activities are chosen non-deterministically from two work-

lists, C and R. Worklist C contains cancelled activities.

Worklist R contains activities ready for execution. Ac-

tivities in worklist C have priority over those in worklist

R — this way, dependency relations due to cancelled

activities can be automatically removed from the de-

pendency graph of the task. Whenever an activity is se-

lected from a worklist, the activity is also removed from

the worklist. Two auxiliary functions, update completed

and update deleted, are used in the engine for identi-

fying the set of activities that become enabled after an

activity completes. In particular, when activity i com-

pletes, function update completed changes to ready

the status of all activities j connected to i if the en-

abling predicate if j becomes true and the dependency

predicate on edge (i, j) is true. Otherwise, if the en-

abling predicate of j is true and the dependency pred-

icate on (i, j) is false, the function changes the status

of j to cancelled. Function update deleted, on the

other hand, changes the status of cancelled activities to

deleted. The system state is left unchanged when an

activity is deleted.

Function simulate uses function execute defined in

activity th for generating the new system state when

an activity completes. The execution of the task termi-

nates either when function simulate has been executed

N times, or when both worklists R and C are empty. The

PVS specification of function simulate follows.

simulate(N: nat): RECURSIVE

[task, system_state -> system_state] =

LAMBDA(t: task, sys: system_state):

IF N = 0 THEN sys

ELSE

LET dbg = print(state2string(sys)),

C = { x: activity_id | cancelled?(S(t)(x))},

R = { x: activity_id | ready?(S(t)(x))}

IN IF empty?(C) AND empty?(R) THEN sys

ELSE LET (t_prime, sys_prime) =

COND

NOT empty?(C)

-> LET x = choose(C)

IN (update_deleted(x)(t,sys), sys),

NOT empty?(R) AND empty?(C)

-> LET x = choose(R)

IN (update_completed(x)(t,sys),

execute(F(t)(x))(sys))

ENDCOND

IN exec(N-1)(t_prime, sys_prime) ENDIF

ENDIF MEASURE N

6 PVS-aided analysis of the London

Ambulance Service

In this section, we apply PVS to the analysis of rep-

resentative DiCoT models developed in the context of

an already performed and completed field study [17,

18]. The considered field study investigated the activ-

ities carried out in the Central Control Room of the

London Ambulance Service (LAS). The LAS Central

Ambulance Control room consists of two main areas:

call taking and dispatching. Operators in the call taking

area receive calls from external callers and filter out rel-

evant information about the incident. Operators in the

dispatching area use the information entered in the sys-

tem by call-takers for deciding which ambulance (and

how many ambulances) should be allocated to which

incident. In the dispatching area there is a sector desk

for each zone of the city (London has seven zones), plus

a fast response unit (FRU), which responds to urgent

emergencies (red calls), a helicopter emergency medical

service desk (HEMS), an administration desk, which

provides support services (e.g., vehicle maintenance),

and a control desk, which supervises the operation of

the whole room.

In the following, we describe step-by-step how PVS

can be used to support the DiCoT analysis. Following

the approach described in section 5, we formalise the

considered DiCoT models in PVS, and use PVS to auto-

mate the analysis. We will show that additional insights

can be derived from the same models analysed in [17],

providing evidence of the benefits gained when using

PVS to systematically check details at a finer-grain. In

the considered examples, we will use a level of detail

appropriate for the purposes of this article. Readers in-

terested in a comprehensive description of the Central

Control room should refer to [17].

6.1 Supporting DiCoT physical layout analysis

We consider here a DiCoT physical model developed for

studying how the physical layout affects the activities
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carried out in the dispatching area of the LAS Central

Ambulance Control room.

Physical layout of the dispatch room. The dis-

patch room has seven sector desks, each of which is

responsible for allocating ambulances in an area of Lon-

don. All sectors cooperate for ensuring an overall effi-

cient service. In order to support co-operation, sector

desks are organised such that they reflect the geograph-

ical location of sectors (see Figure 2). This organisation

of sector desks aims to ease direct face-to-face commu-

nication between allocators — some incidents may re-

quire cross-sector coordination. The fast response unit

has a central position in the room layout because the

unit aims to support all other desks for urgent emergen-

cies (red calls). The room contains two display boards,

which report the amount of incoming calls waiting to be

answered, and the percentage of calls that has been an-

swered within given pre-defined time-frames. The room

also contains a city map.

PVS-aided analysis. We aim to specify in PVS the

concepts framed in the DiCoT physical model. To this

end, we define three different data-types for specifying

the characteristics of displays, sector desks and maps

described in the DiCoT model. Displays are specified

as a record type, display board, which contains two

fields (one for each information resource provided by the

display): incoming calls, a bounded natural number,

and answered calls, a percentage. Desks in the control

room are specified as an enumerated type, CAC desk,

which defines unique names for each desk. The map of

the city is specified as an uninterpreted type, map, be-

cause additional details about it are not available from

the field study data — the field researcher deemed the

map not relevant for the specific analysis. The system

state is thus specified as a record type, system state,

which contains a finite set of desks (desks), two dis-

play boards (display a and display b), and a city

map (city map).

CAC_resources_th: THEORY

BEGIN

MAX_CALLS : posnat

percentage : TYPE

= {x: real | x >= 0 AND x <= 100}

display_board: TYPE

= [# incoming_calls: upto(MAX_CALLS),

answered_calls: Percentage #]

CAC_desk : TYPE

= { NW_desk, W_desk, SE_desk, SW_desk,

EC_desk, C_desk, NE_desk, HEMS_desk,

FRU_desk, Control_desk, Admin_desk }

map : TYPE

system_state: TYPE

= [# desks : finite_set[CAC_desk],

display_a : display_board,

display_b : display_board,

city_map : map #]

END CAC_resources_th

The specification above can be refined by includ-

ing additional facts about information resources. From

the observations carried out in the field study, for in-

stance, we know that the display boards are updated

when new calls are received. This fact can be specified

with a function, new incoming call, which increments

the number of incoming calls on the displays. Initially,

we can use an uninterpreted function, and use pred-

icate subtyping to assert that the function returns a

new state with a larger number of incoming calls.

new_incoming_calls(sys: system_state):

{s: system_state |

incoming_calls(display_a(s))

> incoming_calls(display_a(sys))

AND incoming_calls(display_b(s))

> incoming_calls(display_b(sys))}

With the above specification, PVS automatically gen-

erates an existence TCC, i.e., PVS requires evidence

that a function can be implemented that is compliant

with the uninterpreted function type specification. The

simplest implementation we could use for discharging

the proof obligation is a function that increments the

number of incoming calls by 1:

LAMBDA(sys: system_state): sys WITH

[ display_a :=

(# incoming_calls

:= incoming_calls(display_a(sys)) + 1,

answered_calls

:= answered_calls(display_a(sys)) #),

display_b :=

(# incoming_calls

:= incoming_calls(display_b(sys)) + 1,

answered_calls

:= answered_calls(display_b(sys)) #) ]

When using the function above in the proof attempt,

the interactive theorem prover automatically identifies

a situation that violates another type constraints:

|-------

{1} FORALL (sys: system_state):

1 + incoming_calls(display_b(sys))

<= MAX_CALLS

The above situations points out that the proposed func-

tion is not guaranteeing a constraint for the maximum

value that can be shown on the display. Although math-

ematically trivial, this violation highlights issues that

may be glossed over in an informal description but may

warrant further investigation: What is the maximum

number that can be shown on the display boards? What

happens if the maximum number is reached? The first
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Fig. 2 Geographical sectors in London and schematic diagram of the LAS Central Ambulance Control room layout.

question reflects the concern that, in any situation, the

maximum number should never be reached. The sec-

ond question reflects concerns about critical situations

when the system is pushed to its limits.

Further support from PVS can be obtained by for-

mulating claims about emergent properties. In this case,

the claim we consider is about the relation between the

geographical position of sectors and the physical loca-

tion of sector desks: physically close sector desks corre-

spond to adjacent geographical sectors on the map. In

order to formulate this claim, we define: an enumerated

type, sector geo, which specifies a set of unique iden-

tifiers for the sectors; type sector desk, a subtype of

desk that identifies sector desks in the dispatching area;

a transformation function, sector, which specifies the

relation between sector desks and geographical sectors;

two predicates, adjacent? and f2f communication?,

which specify what sectors are geographically adjacent

and what is to be considered a face to face communi-

cation.

sector_geo : TYPE = { NW, W, SE, SW, EC, C, NE }

sector_desk: TYPE = { d: CAC_desk |

d /= Control_desk

AND d /= Admin_desk }

sector(s: Sector_desk): finite_set[sector_geo] = %..

adjacent?(s1, s2: finite_set[sector_geo]): bool %..

f2f_communication?(s1, s2: sector_desk): bool %..

With the definitions above, we can then specify the

claim in PVS as follows:

sector_desk_claim: CLAIM

FORALL (d1, d2: Sector_desk):

f2f_communication?(d1, d2)

=> adjacent?(sector(d1),sector(d2))

The claim can be automatically verified in seconds with

PVS through one of its automated decision procedures,

e.g., grind. We note here that the provided example

aims to demonstrate how emergent properties can be

specified and verified in PVS. Although the specific ex-

ample is simple, its utility is to allow one (i) to exter-

nalise concepts that could otherwise lie hidden in the

analyst’s head, and potentially lead to different inter-

pretations and understanding from others, and (ii) to

systematically check basic claims in a completely au-

tomatic fashion — when these check fails, the theorem

prover points out the specific situation that may require

further investigation.

6.2 Supporting DiCoT information flow analysis

We consider here a DiCoT information flow model de-

veloped for studying in detail the activities carried out

in the call taking area and the dispatching area of the

Central Ambulance Control room. To support the anal-

ysis, we formalise some relevant paragraphs of the user

manual of the computerised version of the emergency

medical dispatch system used in the call taking and dis-

patching areas, and use PVS to compare the two specifi-

cations. The aim of the comparison is to systematically

identify potential unsafe divergence between what has

been observed (which reflects actual practice) and what

is required by the information system according to the

manual (which reflects prescribed practice).

Actual practice. Call-takers interview external callers

according to a protocol captured in the ‘Advanced Med-

ical Priority Dispatch System’. This protocol defines

a structured dialogue between call-takers and external

callers that enables call-takers to classify incidents in

terms of their medical urgency. ProQA [32] is a com-

puterised version of the system, and is currently used in

the central ambulance control room. ProQA structures

the dialogue between call-takers and external callers,

and enables communication between call-takers and al-

locators. The protocol is the following. Initially, the call-
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taker greets the external caller and verifies the caller’s

location and telephone number both of which are au-

tomatically gathered by the ProQA system. Then, the

call-taker starts a questioning procedure to distill infor-

mation about the incident location and the complaint.

As soon as the call-taker enters the incident location in

the system, the relevant sector desk is activated to re-

ceive live information on the incident. Specifically, the

allocator responsible for the incident’s zone is notified

about the new incident, and is updated in real-time

as the call-taker inputs further information. While the

incident’s details are entered the allocator can start

checking that the call is actually a new incident and

not an additional call about an incident that has al-

ready been reported. Allocators can view the position

of all ambulances. In the case of a new incident, the

allocator mentally selects an ambulance on the basis

of its location and availability status. As soon as the

incident priority is known, the call-taker can provide

support and advice to the caller, and the allocator can

alert the ambulance crew and co-ordinate with it. If

the ambulance crew accepts the mission, the allocator

transfers the incident’s details to the ambulance crew.

Otherwise, the allocator transfers the incident’s details

to another allocator of a neighbouring sector.

User Manual. The ProQA application starts with a

log-in screen — a log-in name and password should be

assigned to each call-taker by the system administra-

tor. After the log-in screen, the call-taker is presented

with the waiting for next incident screen (page 2 of

the ProQA user manual [32]). A computer aided dis-

patch (CAD) number is automatically assigned to the

new incident. If needed, the call-taker can change the

CAD number through the change case number func-

tion provided by ProQA. When starting a new case,

the call-taker needs to enter the following information

in a sequential order in the case entry screen (pages

71—81 of the ProQA user manual [32]): address of the

emergency, which must be verified by having the caller

repeat it; phone number, which must be verified by hav-

ing the caller repeat it; the caller’s name; a brief de-

scription of what happened (e.g., chest pain); whether

the caller is with the patient (default: yes); the num-

ber of the injured person (default: 1); the age, either

in months or years, of the injured person (default unit:

years); the gender of the injured person (default: male);

whether the injured person is conscious and breathing

(default: yes). ProQA automatically identifies a chief

complaint code reflecting the information entered by

the call-taker. A case timer keeps track of the total

elapsed time since when the call-taker started enter-

ing information about the incident. After the case en-

try screen, ProQA presents the key question screen to

the call-taker (pages 71—81 of the ProQA user man-

ual [32]), which specifies a set of additional questions

pertinent to the incident that need to be asked of the

caller (e.g., whether the caller is safe or in danger).

ProQA automatically displays a send dispatch screen

as soon as it has enough information to recommend a

dispatch code (pages 88—90 of the ProQA user man-

ual [32]). This may happen at any instant: either dur-

ing the questioning process or after all questions have

been answered. In order to deliver the dispatch code to

allocators, call-takers must use the send dispatch code

function provided by ProQA. The dispatch code auto-

matically selected by the application can be changed by

call-takers. Also, call-takers can delay sending the dis-

patch code when they believe it is appropriate to ask

additional information of the caller.

PVS-aided analysis. We aim to specify in PVS the

information flows described in the DiCoT model and

in the user manual. To this end, we define two the-

ories, observed state th and user manual state th,

for specifying the structure of the system state and the

set of activities described in the DiCoT model and in

the ProQA user manual.

According to the description provided by the DiCoT

model, the system state can be specified as a record

type containing two fields: call taker info, which de-

fines the state of information resources handled by call-

takers; allocator info, which defines the state of in-

formation resources handled by allocators.

%-- system state

system_state: TYPE

= [# call_taker_info: call_taker_state,

allocator_info : allocator_state #]

The call taker state is a record type containing three

fields: caller phone, an enumerated field type that

specifies the phone number of the caller; caller location,

an enumerated field type that specifies the caller loca-

tion; incident info, of type incident state.

%-- call taker state

call_taker_state: TYPE

= [# caller_phone : phone_number,

caller_location: location_state,

incident_info : incident_state #]

The incident state is specified with three fields: location,

an enumerated type field that specifies the location of

the incident; details, a Boolean type field that speci-

fies whether details about what happened are available;

priority, an enumerated type field that specifies the

priority of the incident.
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%-- incident state

incident_state : TYPE

= [# location: location_state,

details : boolean,

priority: priority_code #]

Similarly, the allocator state is a record type with

two fields: incidents, a vector of incidents; ambulances,

a vector of elements of type ambulance info, which

specifies location and availability of each ambulance in

the sector.

%-- allocator state

allocator_state: TYPE =

[# incidents :

[incident_id -> incident_state],

ambulances:

[ambulance_id -> ambulance_state] #]

Transformations of information resources described

in the DiCoT model are specified as transition func-

tions over system states. In the following, we describe

in detail the specification for the first two activities

performed by call takers: the call taker takes a call

(ct takes call), and the call taker verifies the call

(ct verifies call). The specification of the other ac-

tivities is only informally described here — the com-

plete PVS specification will be made available at [1].

The first activity is ct takes call, which specifies

the state transformation when the call taker takes a

new call: location and telephone number fields become

available. At the considered level of detail, the only in-

formation we have about the caller’s phone and location

is that the call taker will enter them. The uncertainty

about whether the entered number has been properly

validated can be specified through the epsilon func-

tion defined in the PVS prelude library, which non-

deterministically chooses a value from the set provided

as argument to the function. The specification follows.

%-- activity 1: call taker takes a call

ct_takes_call(st: system_state): system_state

= st WITH

[ call_taker_info := call_taker_info(st)

WITH

[ caller_phone

:= epsilon({x: phone_number | x /= NA}),

caller_location

:= epsilon({x: location_state | x /= NA})]]

The second activity is ct verifies call, which cor-

responds to the call-taker verifying the caller’s location

and telephone number. This transformation changes the

call-taker state as follows: the caller’s phone and loca-

tion are verified, and the incident location is also ver-

ified. The function also modifies the allocator state —

according to the description, ProQA automatically ac-

tivates the relevant sector desk: field allocator info

of the allocator state will contain the incident location.

The specification follows.

%-- activity 2: call taker verifies call

ct_verifies_call(incident: below(MAX_INCIDENTS))

(st: system_state): system_state

= LET new_incident: incident_state

= call_taker_info(st)‘incident_info

WITH [ location := verified_loc ]

IN st WITH [

call_taker_info := call_taker_info(st)

WITH [ caller_phone := verified_num,

caller_location := verified_loc,

incident_info := new_incident ],

allocator_info := allocator_info(st)

WITH [ incidents := LAMBDA(x: incident):

IF x = incident_id

THEN new_incident

ELSE allocator_info(st)

‘incident(x)

ENDIF ]]

Following the same approach, we formalised also the fol-

lowing activities: the call-takers enters the incident de-

tails (ct enters details); the call-taker provides sup-

port and advice to the caller (ct provides support);

the allocator checks whether the incident is new or it

has been already reported (al checks incident); the

allocator mentally selects an ambulance (al selects

ambulance); the allocator alerts the selected ambulance

(al alerts ambulance); the allocator transfers the in-

cident details either to the selected ambulance or to

another allocator (al transfers details).

The concepts described in the ProQA user manual

can be formalised in a similar way. The type definitions

in the PVS specification will reflect the constraints im-

posed by ProQA. Namely, we define a new PVS data-

type, text field, for specifying the content of input

boxes; the data-type has two constructors (text for

completed input boxes, and NA for empty input boxes).

We use enumerated types for selection boxes, and record

types for information resources with fields. Informa-

tion resources available to call takers are specified as a

record type, proQA call taker state, which, accord-

ing to the user manual, has twelve fields:

cad number a bounded natural number that defines the

computer aided dispatch number automatically as-

signed by ProQA to identify incidents

em address a text field that identifies the location of

the emergency

ph number a text field that identifies the caller’s tele-

phone number

name a text field that identifies the caller’s name

description a text field that describes the kind of in-

cident

with patient an enumerated type that specifies if the

caller is with the injured person — possible options
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are: yes, no, the patient himself/herself (first party),

a person that is directly involved with or in close

proximity to the patient (second party), a person

that is not directly involved with or in close prox-

imity to the incident (third party), someone from

a public service agency (fourth party)

n patients a natural number that specifies how many

persons are injured

patient age a composite field with a text box and a

selection box for specifying the age of the injured

person; we model this field be defining a new data-

type, proQA age

patient gender an enumerated type for specifying the

gender of the injured person (possible options are:

male, female, unknown)

is conscious an enumerated type for specifying if the

injured person is conscious (possible options are:

yes, no, unknown)

is breathing an enumerated type for specifying if the

injured person is breathing (possible options are:

yes, no, unknown (third or fourth party caller who

doesn’t know if the patient is breathing), uncertain

(second party caller who is uncertain if the patient

is breathing), ineffective (the patient in uncon-

scious and breathing is irregular or slow)

complaint code a bounded natural number identify-

ing the chief complaint

elapsed time information about the time elapsed since

when the new call has been taken; this is specified

with a new data type, proQA time.

The specification of the call taker state follows.

%-- call taker state

proQA_call_taker_state: TYPE =

[# cad_number : below(MAX_CAD),

em_address : text_field,

ph_number : text_field,

name : text_field,

description : text_field,

with_patient : proQA_with_patient,

n_patients : nat,

patient_age : proQA_age,

patient_gender: proQA_gender,

is_conscious : proQA_is_conscious,

is_breathing : proQA_is_breathing,

complaint_code: below(MAX_COMPLAINT_CODE) #]

Information resources available to allocators are sim-

plified by considering only three fields, as this is suffi-

cient to show some additional insights further below.

The considered fields are: the finite set of CAD num-

bers associated to incidents (cad numbers), and two

vectors of text fields reporting the emergency addresses

(em addresses) and the incident details (em details).

%-- (simplified) allocator state

proQA_allocator_state: TYPE

= [# cad_numbers : finite_set[below(MAX_CAD)],

em_addresses: [below(MAX_CAD) -> text_field],

em_details : [below(MAX_CAD) -> text_field]#]

Given the specification above, we can then specify

the activities described in the user manual as transition

functions over states of type proQA system state.

%-- system state

proQA_system_state: TYPE

= [# call_taker_info: proQA_call_taker_state,

allocator_info : proQA_allocator_state #]

In the following, we describe in detail two activ-

ities which raise issues that may warrant further in-

vestigation. The specification of the other activities is

available at [1]. The first activity we consider here is

when the call-taker enters information about the gen-

der of the patient. The activity is specified as a function

proQA patient gender, which updates the call taker

state by setting a gender (given as function parame-

ter). The description provided by the user manual when

entering the patient’s gender states that “If you enter

Unknown as the answer to the age question and there is

only one patient, ProQA allows you to continue with the

questioning [by entering the patient’s gender].” (page

74 of the ProQA user manual [32]). We use a predicate

subtype to model this constraint — we restrict the do-

main of the function to system states where either the

age of the patient is known, or the number of injured

persons is 1.

%-- activity 2: call taker enters patient age

proQA_patient_gender(gen: proQA_gender)

(st: {st: proQA_system_state |

call_taker_info(st)‘patient_age /= unknown

OR call_taker_info(st)‘n_patients = 1}):

proQA_system_state

= st WITH [ call_taker_info := call_taker_info(st)

WITH [ patient_gender := gen ] ]

The subtype constraint we had to introduce in the spec-

ification already suggests possible areas that may re-

quire further investigation in the DiCoT analysis: Why

did the application designers enforce the mentioned re-

striction? Is the restriction actually implemented in the

software used in the Central Ambulance Control room

of the London Ambulance Service? If so, what is the

actual procedure followed by call-takers when the infor-

mation system reaches that state? The exercise alone

of formalising this activity from the user manual can

therefore be used to catch the investigator’s attention

about potential issues that are latent in the system (in

this case, a situation where call-takers are not able to

proceed), and stimulate specific questions that could

be asked during the field study including finding out

whether there are any important ramifications around

the issue identified.
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In the following, we show how PVS can provide fur-

ther support by mechanically checking whether the two

developed specifications provide a coherent description

of the propagation of incident details from call takers

to allocators. We aim to check here if any situation may

exist where a specification indicates that the allocator

has the emergency location and the incident details en-

tered by the call-taker, while the other specification in-

dicates the opposite.

We illustrate how to specify and verify the conjec-

ture when considering the emergency location and the

incident details fields. For the emergency location, we

describe step-by-step the analysis by using the generic

theories developed in section 5.1; rather than, for the

incident details we will only discuss the results, as the

specification and verification procedure are similar to

those used for the emergency location field. For the il-

lustrative purposes of the example, we will consider only

two transitions relations, ct enters details (from the

specification of the DiCoT model) and proQA incident

details (from the specification of the user manual).

The same approach can be used with any other corre-

sponding transition functions.

The first step for developing the PVS specification

for checking the property is to define a data-type for

the abstract state (see the procedure explained in sec-

tion 6.2). The abstract state reflects the safety concerns

deemed relevant for the situation. In this case, a suit-

able abstract state encodes the status of information

available to call takers and allocators. We are only in-

terested in checking whether information is available,

rather than the actual content. The abstract state is

therefore a record with two Boolean fields: call taker

has location, which is true when the call-taker en-

ters information about the location in the system, and

allocator has details, which is true when the allo-

cator is able to view information about the location:

safety_state: TYPE

= [# call_taker_has_location: boolean,

allocator_has_location : boolean #]

The second step is to define the abstraction func-

tions for mapping actual practice and prescribed prac-

tice states into abstract domain states. In the specifica-

tion of actual practice, call takers and allocators en-

ter/can view the location of the incident when field

location of the incident state is different from NA.

Therefore, we can define an abstraction function alpha1

that specifies the transformation by using such con-

ditions. In the function specification, we can conve-

niently use an uninterpreted constants (the incident)

for modelling a generic incident.

the_incident: below(MAX_INCIDENTS)

alpha1(st: system_state): safety_state =

(# call_taker_has_location

:= call_taker_info(st)

‘incident_info‘location /= NA ,

allocator_has_location

:= allocator_info(st)

‘incidents(the_incident)‘location /= NA #)

In the prescribed practice, call takers enter the loca-

tion when field em address is different from NA; allo-

cators can view the location when the system state

contains the CAD number associated with the inci-

dent and the associated address is different from NA.

Therefore, as for the other abstraction function, we can

define here alpha2, which specifies the transformation

by using such conditions. In the specification, we can

conveniently use the same uninterpreted constant for

the incident (the incident), and define an additional

uninterpreted conversion function (cad) for associating

CAD numbers to incidents.

cad(x: below(MAX_INCIDENTS)): below(MAX_CAD)

alpha2(st: proQA_system_state): safety_state =

(# call_taker_has_location

:= call_taker_info(st)‘em_address /= NA,

allocator_has_location

:= member(cad(the_incident),

allocator_info(st)‘cad_numbers)

AND allocator_info(st)

‘em_addresses(cad(the_incident)) /= NA #)

Given the above definitions, we can now specify the con-

jecture by importing the generic theory safe divergen

ce th. In the following, we show the specification when

considering transitions ct enters details (form the

specification of the DiCoT model) and proQA incident

details (form the specification of the user manual).

IMPORTING safe_divergence_th

[ safety_state, system_state,

proQA_system_state, alpha1, alpha2 ]

actual_st: VAR system_state

prescr_st: VAR proQA_system_state

details : VAR string

always_verified_location: CONJECTURE

safe_divergence?(actual_st, prescr_st)

(ct_enters_details(the_incident),

proQA_incident_details(details))

The conjecture can be verified automatically in seconds

with the grind strategy provided by the PVS theorem

prover.

The conjecture about incident details can be anal-

ysed in a similar way. Interestingly, if we try to ver-

ify the conjecture for the same pair of transition rela-

tions for the incident details, the PVS theorem prover
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fails to verify the property. In particular, the theorem

prover stops in the following situation: the allocator

has the incident details according to the actual prac-

tice, but the prescribed practice indicates that the allo-

cator doesn’t. On checking the developed specification

we see that allocators, according to the user manual,

receive the incident details only after a specific activ-

ity has been performed by call takers, rather than con-

tinuously. This reflect the description provided in the

user manual, which suggests that the communication

happens only when the ProQA system displays a send

dispatch screen: “The send dispatch screen appears as

soon as ProQA has enough information to recommend

a dispatch code. [...] Click on the Send button to im-

mediately send the dispatch code.” (page 88 of ProQA’s

user manual [32]).

Further analysis with PVS also shows that there

are other situations where allocators may not receive

the incident details. For instance, call takers may de-

lay sending the dispatch code for the incident: “When

appropriate, click on the Delay and Continue button to

delay dispatch and continue caller interrogation.” (page

89 of ProQA’s user manual [32]). This last mismatch is

potentially a serious problem, because allocators cannot

proceed if call-takers delay sending the dispatch code.

The issue, indeed, seems to have been foreseen by the

system designers, because ProQA’s user manual reports

the following warning on delaying the dispatch: “Exer-

cise caution when delaying dispatch. Do it only when

you need to ask additional questions before sending dis-

patch.” (page 89 of ProQA’s user manual [32]).

Again, the above examples show how a relatively

simple use of PVS can pull out important details that

may warrant further investigation, highlighting issues

for the empirical investigators to query or explicitly ob-

serve. When a conjecture cannot be verified, then the

proof attempt provides precise insights about why the

conjecture does not hold. Even if the issue highlighted

here could have been in principle identified manually

during the specification process, we note that in the

general case the specification of real socio-technical sys-

tems can be very large, and therefore having a tool-

based support that automates mechanic checks is key

to performing a more detailed and rigorous analysis.

6.3 Supporting DiCoT model animation

In the context of this case study, the main role played

by simulations is to facilitate the dialogue among ana-

lysts and stakeholders when checking the correctness of

the formal specification. The formal specification can

be animated with the simulation engine presented in

section 5.3. We customised the traces generated by the

execution engine by defining functions that automati-

cally translate the system state into a string that can

be easily interpreted by humans. As an example of such

a function, let us consider the theory for incident lo-

cations. Assume that the theory encodes the incident

location with a natural number. In order to present

the street name in a more human-readable format, a

function (street2string) can be defined for convert-

ing numbers into actual street names. The function will

be seamlessly used by the PVSio environment whenever

printing the output —to this end, we exploit a PVS

mechanism for defining automatic type conversions.

street_th: THEORY BEGIN %-- imports omitted

street: TYPE = posnat

street2string(s: street): string =

COND s = 0 -> " Boulevard rd. "

s = 1 -> " Terrace pl. "

ENDCOND

CONVERSION street2string

END street_th

The conversion can be defined for any PVS data

type used in the system state, thus enabling a full cus-

tomisation of the output. In the following, we show

an example of simulation trace that can be obtained

with the simulator. The simulation trace is related to

the PVS specifications of the DiCoT information flow

model. The simulator executes four simulation steps.

For simplicity, here we consider a system with two am-

bulances. We have redefined the print function used

by the simulator so that it shows only the initial and

final states, and the sequence of actions performed.

<PVSio> exec(4)(LAS_task(sys)

(initial_task_status), sys);

== Initial state =============

caller_phone( N/A )

caller_location( N/A )

incident_location( N/A )

incident_details ( N/A )

incident_priority( N/A )

-------------------

incidents( { } )

ambulances( {

[1] available, at_station

[2] available, on_street

} )

=================================

>> ProQA gathers number and location <<

>> Call-Taker takes a call <<

>> Call-Taker verifies number <<

>> Call-Taker enters incident location <<

== Final State =============

caller_phone( +23 322 3860 843 )

caller_location( valid )

incident_location( Terrace pl. )

incident_details ( N/A )

incident_priority( N/A )
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-------------------

incidents( {

[1] ( loc(Terrace pl.), det(N/A), prio(N/A) )

} )

ambulances( {

[1] available, at_station

[2] available, on_street

} )

=================================

The textual output generated in this example shows

that a simple redefinition of the print function of the

simulator can be used to tailor the animation, with-

out the need of modifying the developed specification

of the DiCoT model. In this case, we generated an out-

put meant to be intelligible by humans. However, the

same approach can be also used for generating textual

outputs that can be imported by external visualisation

tools (in [3], for instance, we used this approach for gen-

erating waveforms that could be visualised in a graph-

ical tool).

7 Related work

The idea of using formal methods for the analysis of in-

teractive systems in terms of information resources has

been investigated in Wright, Fields and Harrison [13,

41] and Doherty Campos and Harrison [27]. In their

approach, they specify the actions carried out by indi-

viduals in the system, and how these actions are sup-

ported by information resources. Such a specification is

then verified with automated reasoning tools for check-

ing whether given user goals are adequately supported.

They demonstrate the approach by formalising an in-

teractive control system in Uppaal [22]. Their approach

is general and not linked to a specific formalism or tool,

and they also argue that a resource-based analysis could

be extended to the context of a broader methodology,

such as DiCoT [6]. In our work, we explore this pos-

sibility. In particular, we show that a fairly simple use

of an automated reasoning tool like PVS can help an-

alysts verify properties of interest, and also help field

researchers identify issues that may warrant further in-

vestigation. In section 5, we also demonstrate that prop-

erties of interest can be automatically formulated by the

automated reasoning system out of the specifications.

Wright, Fields and Merriam [42] investigated the

possibility of defining a conceptual framework for inte-

grating formal methods and empirical approaches for

studying interactive systems. They proposed a concep-

tual framework which integrates formal methods and

empirical methods in a cyclical process where the two

methods feed each other. They demonstrate the ap-

proach with an example based on a web browser. The

conceptual framework was applied to the analysis of a

remote control system in [15]. This work shares with

ours the argument that informal approaches and for-

mal methods have complementary roles in the analy-

sis of the system. Namely, in their works, they argue

that extant artefacts and informal understanding of

the system can provide insights about usability prop-

erties that might be of interest. This informal under-

standing can then be refined through formal methods

by generating design questions and evaluating design

alternatives, which can in turn be evaluated empiri-

cally, e.g., through prototypes. In our work, we pro-

ceed in a similar way: starting from field study data

or semi-structured DiCoT models, we specify how in-

formation resources are transformed and propagated

within the system in higher-order logic, and then me-

chanically check the logical argument framed in the

specifications. To support the analysis, we also formalise

user manuals, which provide insights about the design-

ers’ point-of-view. As gaps and inconsistencies are un-

covered within and between the various specifications,

new questions are generated, which can be used to re-

fine the DiCoT analysis. Also, the formal specification

can be refined as new facts are discovered — the two

methods feed each other.

Tasks and work-flow analysis for checking norma-

tive behaviours have been explored in other studies

with different techniques and different aims. For in-

stance, in [16], work-flows are initially modelled with a

Web Service Business Process Language (WS-BPEL),

and then such semi-formal models are translated into

a Finite State Process (FSP) model suitable for verify-

ing properties with model checking approaches; in [43]

and [14], Petri nets based formalisms are used for mod-

elling and analysing industrial and business processes.

The aim of these works is to verify the consistency of

the system with respect to prescribed (normative) be-

haviours. In our work, we extend the analysis by consid-

ering a distributed cognition perspective on the system

that allows us to consider how the deployment of in-

formation resources affects users’ tasks. Also, our work

is based on an integrated use of formal methods and

empirical approaches, and allows us to perform a rig-

orous analysis of both normative behaviours and actual

practice.

A systematic analysis of normative behaviour for

studying interactive systems has been explored by Bolton

et al [9,10]. In their work, they explicitly consider the

environment in addition to the human interactive sys-

tem. They use a task-based analysis for studying how

interactive systems may break down because of unan-

ticipated conditions. In their work, they propose a for-

mal modelling language, denominated Enhanced Oper-
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ator Functional Model (EOFM), for specifying norma-

tive human behaviours, i.e., sequences of actions pre-

scribed in user manuals. The task models are then used

in combination with a specification of an interactive sys-

tem for verifying properties of interest in the Symbolic

Analysis Laboratory (SAL) [28]. They applied their ap-

proach to an example from aviation, where an air-traffic

controller has to co-ordinate with the pilots of an air-

craft. Formerly, Bolton and Bass [7] applied the ap-

proach to the verification of a programmable drug in-

fusion pump, and proposed a framework for modelling

the system. This work shares with ours the concerns

that (i) the model should take into account the broader

system (environment, interactions between individuals

and devices, and interactions among individuals), and

that (ii) the non-experts of formal methods should be

able to use the developed tools for analysing realistic

systems. The approach was then extended in [8] to ad-

dress multi-agent systems, human-human communica-

tion, and non-normative behaviour. Our work differs

from theirs in that we aim to use formal methods to

support informal approaches based on distributed cog-

nition for analysing what users do in the wild (i.e., their

actual behaviour), which can be different from the nor-

mative behaviour (e.g., what is reported in written doc-

uments of user manuals). Also, our main concern is not

to develop a new modelling language (like EOFM), but

to build on the expressiveness of formal specification

languages, like typed higher-order logic, to closely re-

semble informal or semi-formal notations used by non-

experts of formal methods. As Wright et al [42] ob-

served, multiple methods and multiple empirical tech-

niques are needed to analyse interactive systems, rather

than a single modelling language and environment, as

each approach can highlight a different aspect of the

system. We follow this philosophy.

The work of Rushby [34] also relates to ours. He

uses model checking approaches for comparing plausible

mental models developed by users and the actual im-

plementation of the system. He argues that any strong

divergence between mental models and device models

is a potential cause of “automation surprises”, i.e., sit-

uations where the automated system behaves in a way

that is different from that expected by the operator.

He proposed a constructive method for deriving men-

tal models from the specification of the interactive sys-

tems [35], and he applied the approach to the analysis

of an MD-88 autopilot system, demonstrating how the

model checker could provide precise insights about de-

sign aspects that may require further investigation. In

our work, we use a similar approach for checking unsafe

divergence between actual practice (according to field

study data) and prescribed practice (according to user

manuals, written protocols, or system implementation).

Also, we broaden the system under study as we build

on field study data gathered that provides information

about the whole physical work-space.

8 Conclusion and future work

We have illustrated how an integrated approach us-

ing PVS in a pragmatic way and DiCoT can deliver

insights about socio-technical systems in a systematic

way. A systematic comparison between actual practice

(i.e., what individuals do in the workplace, according to

the observations of the field investigator) and norma-

tive practice (i.e., what individuals are required to do

according, for instance, to written documents or user

manuals) proved useful for identifying latent situations

that may warrant further investigation.

In many cases, even before using automated reason-

ing tools and techniques, the formal specification pulled

out questions to feed discussions on system design and

helped to identify important aspects of the system.

As in [42], we believe that multiple methods and

empirical techniques are needed to analyse interactive

systems, rather than a single modelling language and

environment, as each approach can highlight a different

aspect of the system. This is especially true for socio-

technical systems, where data collected through field

studies represents an essential element for studying the

system. From this and other case studies analysed with

this combined approach, we have some evidence that

formal methods and empirical studies are not alterna-

tive approaches for studying a socio-technical system,

but instead they complement and refine each other.

The expressiveness of the PVS specification language

allowed us to overcome some pre-conceived ideas of

field researchers about possible limitations of translat-

ing informal descriptions into mathematical specifica-

tions. Also, the PVSio extension for animating speci-

fications allowed us to engage with them, even if in a

limited way, when checking the correctness of the spec-

ification. Though, the way automated reasoning tools,

including PVS, are currently packaged is a major bar-

rier when engaging with field researchers. We are ex-

ploring ways to mitigate this by developing ad hoc GUIs

that allow one to explore simulation traces or generate

them interactively through simple push button style in-

terfaces.

We are currently exploring the utility of the ap-

proach while a field study is in process. The prelimi-

nary results, which are reported in [25], are extremely

positive, as the tool is allowing an overall finer-grained

analysis by uncovering various latent situations that

warranted further investigation.
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