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Two-level quantum systems, qubits, are not the only basis for quantum computation. Advantages exist in using
qudits, d-level quantum systems, as the basic carrier of quantum information. We show that color codes, a class of
topological quantum codes with remarkable transversality properties, can be generalized to the qudit paradigm.
In recent developments it was found that in three spatial dimensions a qubit color code can support a transversal
non-Clifford gate and that in higher spatial dimensions additional non-Clifford gates can be found, saturating
Bravyi and König’s bound [S. Bravyi and R. König, Phys. Rev. Lett. 111, 170502 (2013)]. Furthermore, by using
gauge fixing techniques, an effective set of Clifford gates can be achieved, removing the need for state distillation.
We show that the qudit color code can support the qudit analogs of these gates and also show that in higher
spatial dimensions a color code can support a phase gate from higher levels of the Clifford hierarchy that can be
proven to saturate Bravyi and König’s bound in all but a finite number of special cases. The methodology used is
a generalization of Bravyi and Haah’s method of triorthogonal matrices [S. Bravyi and J. Haah, Phys. Rev. A 86,
052329 (2012)], which may be of independent interest. For completeness, we show explicitly that the qudit color
codes generalize to gauge color codes and share many of the favorable properties of their qubit counterparts.
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I. INTRODUCTION

Quantum technologies are often developed in the qubit
paradigm, where the basic carrier of quantum information is a
two-level quantum system. Qubits are a natural choice because
binary is the language of classical technologies. However,
even here, despite the prevalence of binary, its supremacy is
questionable. Indeed, Knuth has advocated the use of balanced
ternary, a three-state classical logic [1]. In the quantum domain,
qudits offer a state space with a richer structure than their
two-level counterparts and the merits of this for quantum
information have been explored in many contexts [2–10].
Recent experiments have shown that even large-d quantum
systems can be precisely controlled [11,12].

Here we present a qudit generalization of a powerful class
of quantum error correcting codes, the color codes [13–17].
Along with surface codes [18,19], they constitute the most
successful topological codes. Using topology, quantum codes
have achieved high error thresholds, while proving more
practical than concatenated codes. Thresholds of qudit surface
codes indicate improvements with qudit dimension [7–9].
Qubit color codes have several advantages over qubit surface
codes and we show that these features can be transferred into
the qudit setting.

There has been some prior investigation into qudit color
codes for prime-power d [20] and color codes based on more
general groups [21], although these works were restricted to
two-dimensional (2D) topologies. In this paper, we generalize
color codes to any qudit dimension d and spatial dimensions μ

up to the point where μ factorial is a multiple of d. Specifically,
given any lattice suitable for constructing qubit color codes, we
show how to use the same lattice to construct a qudit color code.

*fern.watson10@imperial.ac.uk

For qubits, a non-Clifford gate can be implemented in color
codes in three and higher spatial dimensions transversally, i.e.,
by a tensor product of local unitary gates, an inherently fault-
tolerant procedure [22–24]. To avoid confusion between the
spatial dimension of the lattice and the Hilbert space dimension
of the qudit, we shall always denote the former by the μ and
the latter by the d.

Recently, it has been shown by Bravyi and König [25] that
a quantum error correcting code in μ spatial dimensions can
support a gate with constant depth from at most the μth level of
the Clifford hierarchy. The fact that color codes can be shown
to saturate this bound with transversal gates is a very promising
feature and when combined with gauge fixing techniques
[15,26–28] enables universal quantum computation without
the need of magic state distillation [5,6,29–34]. The structure
of the qudit Clifford group is very different from its qubit
counterpart [4,35]. Nevertheless, we find that 3D color codes
also provide transversal non-Clifford gates in the qudit case.

Recently, the color codes were generalized to gauge color
codes [15], subsystem codes with many advantageous features.
These include low weight error detection measurements,
universal transversal gates via gauge fixing for μ > 2, fault-
tolerant conversion [27] between codes of different spatial
dimension [36], and for the μ = 3 case, single-shot error
correction [37], a robustness to measurement errors without
the need for repeated measurements. We show that the qudit
color codes introduced here can also be generalized to gauge
color codes.

The main technique that we employ is a bipartition of
the vertices in the graph that defines the code into starred
and unstarred vertices. We call this the star bipartition to
distinguish it from the other important colorings that define
the color codes. The commutation properties of the stabilizer
and logical operators of the color codes (and gauge color
codes) in the qubit setting can be reduced to the fact that
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the pairs of operators X ⊗ X and Z ⊗ Z commute. The star
bipartition we introduce replaces some operators with their
complex conjugate with respect to the computational basis of
Z eigenstates. For example, we replace the above operators
with X ⊗ X∗ and Z ⊗ Z∗, respectively. Crucially, this latter
pair of operators does commute for qudits of any dimension
and this becomes the starting point for a generalization of
the color codes from qubits to qudits of any Hilbert space
dimension d and any spatial dimension μ. The sharp-eyed
reader will note that X∗ = X. We write the star explicitly on a
real matrix here, and throughout, to emphasize symmetry and
to simplify notation. Thus we see that as long as a pair of X-
and Z-type stabilizers have in common an equal number of
starred qudits, they will commute.

Furthermore, the star bipartition provides a general frame-
work for constructing transversal gates from higher levels of
the Clifford hierarchy. While elements of this technique can
be seen in earlier work [15,20], here we develop a method to
systematically exploit it. The second key technical component
of our work is a generalization of the triorthogonal matrix
technique by Bravyi and Haah [31].

This paper is structured as follows. We start in Sec. II
by reviewing the stabilizer formalism for d-level systems. In
Sec. III we describe how to generalize a qubit color code in
arbitrary spatial dimensions to a qudit color code by employing
the notion of star conjugation. In Sec. IV we review and
generalize the triorthogonal matrix construction. In Sec. V we
derive conditions on the lattice that must hold for a transversal
non-Clifford gate to be implementable on the code. Section VI
explains how the Hadamard gate can be implemented on
the same lattice, although not in the color code, using the
technique of gauge fixing. In Sec. VII we show that gauge color
codes can naturally be defined for all the codes we have
introduced, inheriting the favorable features of the qubit gauge
color codes. We summarize in Sec. VIII.

II. QUDIT STABILIZER CODES
AND THE CLIFFORD HIERARCHY

We will consider d-level quantum systems (qudits) as the
building blocks for the constructions of quantum codes [2].
Unless stated otherwise, the qudit dimension d is assumed to
be any integer greater than 2. The conventional basis states
for the d-level system are taken to be |j 〉, for j ∈ Zd . The
single-qubit Pauli matrices X and Z have natural extensions
in higher dimensions [2]. The qudit analogs are

X =
∑
j∈Zd

|j + 1〉〈j |, Z =
∑
j∈Zd

ωj |j 〉〈j |, (1)

where ω = e2πi/d . With a slight abuse of terminology, we
shall say that two operators A and B “ω commute” if AB =
ωBA and note that ω commutation holds for X and Z. These
generalized operators simplify to the familiar Pauli operators
for d = 2.

The single-qudit Pauli group is generated (up to global
phases) by X and Z and the n-qudit Pauli group P⊗n is the
n-fold tensor product of the single-qudit Pauli group. Consider
an Abelian subgroup S ⊂ P⊗n such that ωj1 /∈ S for nonzero
j ; then we say that S is a stabilizer group and we refer to
its elements as the stabilizers. The stabilizer group defines an

error correcting code with codewords corresponding to states
|ψ〉 that are stabilized by the stabilizers, i.e., S |ψ〉 = |ψ〉 for
all S ∈ S.

The logical operators correspond to the set of operators that
commute with S but are not contained in it. A pair of logical
operators X̄i and Z̄i ω commute with each other and hence
encode one qudit.

Gottesman and Chuang [38] introduced a classification of
quantum gates known as the Clifford hierarchy (CH), which
can be defined recursively [39] as

Pl = {U |P †UPU † ∈ Pl−1 ∀ P ∈ P1}, (2)

where P1 is the Pauli group. For example, P2 is the group of
operators that leave the Pauli group invariant under conjugation
and is called the Clifford group. We shall describe some
important Clifford group gates H , S, and �(X) below. In
prime qudit dimensions, these are known to generate the whole
Clifford group [2,40]. The gate H is the qudit version of the
Hadamard gate (also known as the discrete Fourier transform)

H = 1√
d

∑
j,k∈Zd

ωjk |j 〉〈k|, (3)

the S gate is the generalization of the qubit π/4-phase gate

S =
∑
j∈Zd

ωj 2 |j 〉〈j |, (4)

and �(X) is the controlled-X gate (also known as the SUM

gate)

�(X) =
∑

j,k∈Zd

|j 〉c|k ⊕ 1〉t 〈j |c〈k|t , (5)

where c and t are the control and target qudits, respectively.
The set of gates Pl in the hierarchy contains all gates from

lower levels of the hierarchy. To refer to gates in level l of the
hierarchy but not level l − 1 we shall say that the level l of
the hierarchy is the lowest level of the hierarchy for which the
gate is a member.

In prime dimensions, it is known that it suffices to
supplement the Clifford group with just one non-Clifford gate
from the third level of the CH in order to obtain a universal set
of gates [6]. Such a gate is not unique and in the qubit case, the
T gate diag(1,eiπ/4) is usually chosen for this purpose. For the
qudit case, we choose the following particularly convenient
definition for the T gate, which is valid in all dimensions
except when d = 2,3,6 [4,41],

T =
∑
j∈Zd

ωj 3 |j 〉〈j |. (6)

It is a consequence of Lemmas 1 and 2 (below) that for
d �= 2,3,6 this gate is non-Clifford and inhabits the third level
of the CH. In d = 3 and 6, the gate defined in Eq. (6) is not
non-Clifford, as it reduces to the Pauli Z gate since j 3 = j

modulo 3 and modulo 6. However, the following definition
provides a suitable alternative T gate for these dimensions.
The gate is non-Clifford and in the third level of the CH

T3,6 =
∑
j∈Zd

γ j 3 |j 〉〈j |, (7)
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where γ 3 = ω and the function in the exponent j 3 is evaluated
in regular arithmetic (or equivalently modulo 3d). When we
refer to the T gate in this paper we will always mean a gate of
the form of Eq. (6) or (7), depending on the qudit dimension
under consideration. For notational convenience we suppress
the dependence of T on d, since it will always be clear by the
context which T gate we require.

Notice how the T gate has a cubic power in the exponent of
ω, in contrast to the quadratic power in the case of the S gate.
For prime dimensions, the first investigation characterizing
all the phase gates from the third level of the CH was
performed by Howard and Vala [4]. In general, there is a close
correspondence between the order of the polynomial in the
exponent of ω and the lowest level of the CH the phase gate
belongs to. Let us define the following family of phase gates
in terms of a polynomial function fr (j ) of degree r such that
r � d with coefficients am ∈ Zd , so fr (j ) := ∑r

m=0 amjm:

Rfr
=

∑
j∈Zd

ωfr (j ) |j 〉〈j |. (8)

One can then prove the following useful lemmas.
Lemma 1. For all d, all r � d, and all functions fr (j ), the

gate Rfr
is in the rth level of the Clifford hierarchy.

Proof. The proof of this is simple and concise. We begin by
calculating

Rfr−1 = X†Rfr
XR

†
fr

, (9)

where fr−1 is a new function fr−1(j ) = fr (j + 1) − fr (j ) =
rarj

r−1 + · · · . Expanding, the degree r terms cancel, so the
leading term is rarj

r−1 and extra terms are all degree r − 2 or
smaller. We now observe that if r = 1, Rfr

is a Pauli operator.
Using the definition of the Clifford hierarchy in Eq. (2), the
lemma follows by induction. �

Lemma 2. For all d, all r � d, and all functions fr (j )
satisfying r!ar �= 0(mod d), the gate Rfr

is not in the (r − 1)th
level of the Clifford hierarchy.

Proof. If the gate is in the (r − 1)th level of the hierarchy,
then applying the inductive transformation in the previous
proof r − 1 times must return a Pauli operator and thus
applying it r times results in an operator proportional to
the identity. By chaining together transformations of the
form of Eq. (9) n times, we obtain f1(j ) = r!arj + c. If the
corresponding operator is proportional to the identity, then this
function must be constant and thus r!ar = 0. �

These two lemmas provide us with a simple way to generate
gates at all levels of the Clifford hierarchy as required. They
fail when r!ar = 0, which was the case above for r = 3 and
d = 2,3,6. In those exceptional cases, gates can be discovered
by moving to higher roots of unity as illustrated by Eq. (7).

III. QUDIT COLOR CODES

Color codes [13] are a class of topological qubit stabilizer
codes that be defined on a topological space of any spatial di-
mension [42] μ � 2. The μ-dimensional manifold is celluated
into a lattice of objects called k-cells for all spatial dimensions
0 � k � μ. For example, vertices are 0-cells, edges are 1-cells,
and a 2-cell is a cell defined on the faces, or plaquettes, of the
lattice.

Definition 1. A latticeL is called a μ-colex (colex is short for
color complex) whenever (a) it is a celluation of an orientable
μ-dimensional manifold without a boundary, (b) every vertex
has μ + 1 neighbors (μ + 1 valency), and (c) the μ-cells are
μ + 1 colorable.

Any μ-colex defines a qubit color code. For example,
the smallest three-dimensional color code is a 15-qubit code
defined on the lattice illustrated in Fig. 2(a). The stabilizer
group is generated by face operators (with a Z operator
assigned to the vertices around the face or 2-cell) and cell
operators (with an X operator assigned to the vertices around
each 3-cell) [see Fig. 2(b)]. Our results show that a μ-colex
also defines a qudit color code. An alternative description of a
μ-colex is that its dual L∗ is a simplical lattice. This is lattice
where each k-cell is a simplex, an object with k + 1 vertices.
In the dual, we have the following conditions: (b′) every μ-cell
has μ + 1 neighbors and (c′) the vertices are μ + 1 colorable.

Such codes can be constructed [15] by starting with a closed
hyperspherical lattice and then removing a vertex to puncture
the surface. Alternatively, as we show in Sec. III C, one can
construct them directly by defining a suitable boundary on a
regular lattice structure. Such a code encodes a single qubit
and has the attractive feature of a transversal non-Clifford T

gate. The qudit color codes have many useful properties. For
more details, we refer the reader to [13,15,42].

The stabilizer generators are guaranteed to commute in
this construction. Those of the same type (X or Z) trivially
commute, while those of different types commute since they
always meet in pairs. As already remarked, X ⊗ X and Z ⊗ Z

commute only in d = 2. However, by replacing one operator
of each pair with its complex conjugate we produce a pair
of operators that commute for all d. These are X ⊗ X∗ and
Z ⊗ Z∗. To define color codes in all qudit dimensions, we
need, therefore, to find a construction that allows us to take
advantage of the commutation of X ⊗ X∗ and Z ⊗ Z∗. This
can be achieved by identifying and exploiting a bipartition or
bicoloring of the graph defining the lattice. To avoid confusion
with other colorings of the lattice important for color codes,
we call this the star bipartition.

We note that a similar construction was defined (for
prime-power qudit dimension only) in [20]. Here we go further
and show that the star bipartition is the starting point for
an identification of a broad family of transversal gates on
these codes, including non-Clifford gates saturating Bravyi
and König’s bound.

A. Star bipartition

The star bipartition is a bipartition of the color code lattice
L. It thus divides the set of lattice vertices into starred and
unstarred vertices where neighboring vertices always belong
to different sets. Here we prove the following useful bipartition
lemmas.

Lemma 3 (star-bipartition lemma). LetL be a μ-colex; then
its vertices can be two colored into starred and unstarred sets
v� and v•, respectively.

Recall that the μ-colexes have several properties listed in
Definition 1 that are essential to proving the above lemma.
Using | · · · | to denote the number of elements in a set, we also
have the following.
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Lemma 4 (starring of cells lemma). Let L be a μ-colex,
so that its vertices are partitioned into v• and v� according to
Lemma 3. It follows that (a) |v�| = |v•| and (b) any k-cell C

with 0 < k � μ contains an equal number of vertices from
each partition, so |C ∩ v�| = |C ∩ v•|.

Lemmas 3 and 4, or variants thereof, were already proved
in prior research [13,15,17,42]. These results are especially
important to qudit color codes and play a fundamental role
and so, for completeness, we present our own proofs. Our
presentation of Lemma 3 has the merit of being more concise
than that of Ref. [17].

Before presenting our proof, we review the concept of
orientation from topology theory [43]. An orientation on a
μ simplex is an ordered list of its vertices, with orientations
considered equivalent whenever they differ by a permuta-
tion generated from an even number of transpositions (a
transposition is a swap of two elements). All permutations
can be generated by either an even or odd number of
transpositions and so there are two possible orientations
for a μ simplex. The μ simplex contains subsimplices that
can be obtained by removing a single vertex. This vertex
removal provides an induced orientation on the subsimplex
such that removing vj from a simplex with orientation
{v1,v2, . . . ,vj−1,vj ,vj+1, . . . ,vμ,vμ+1} induces an orientation
{v1,v2, . . . ,vj−1,vj+1, . . . ,vμ ,vμ+1}. Consider two oriented μ

simplices with a common subsimplex (that is, they are are
neighbors). We say their orientations are consistent if they
induce opposite orientations to their common subsimplex. An
entire lattice of simplices is said to be orientable if there
exists a choice of orientations such that all pairs of simplices
are consistently orientated. An example of a consistently
orientated lattice is shown in Fig. 1. Orientablity of a lattice is
a topological feature that depends on the underlying manifold
and from this definition one can show that many familiar
manifolds are orientable, including Euclidean, spherical, and
toroidal manifolds. We now employ these concepts in our
proof.

A B

FIG. 1. (Color online) Patch of an orientated simplicial lattice
with three colored vertices. The orientation is visually represented
by a clockwise symbol. Formally, the orientation is an ordered
list of vertices {x,y,z} moving clockwise around the simplex. For
neighboring simplices A and B, we also show the induced orientation
on their edges. For an edge orientation {x,y}, we illustrate this with
an arrow going from x to y. The simplices A and B induce opposite
orientations to their common edge and so are consistently orientated.
If a simplex has an orientation {a,b,c} with colors {red,green,blue}
then we label it starred and otherwise unstarred. The star-bipartition
lemma further formalizes this notion of starring in terms of color and
orientation.

Proof. To prove the star-bipartition lemma, we switch to
the dual lattice L∗. In the dual picture, we need to show
that the μ-dimensional cells can be two colored. Property
(b) of Definition 1 ensures that the dual lattice is simplical.
Property (c) of Definition 1 ensures the dual vertices are
μ + 1 colored. This coloring can be described by a map
C : L∗ → Zμ+1 that assigns color label C(vj ) to vertex vj .
Given a simplex σ with an orientation, say, {v1,v2, . . . ,vμ+1},
we can apply the color map to the orientation to obtain a
colored orientation {C(v1),C(v2), . . . ,C(vμ+1)}. This defines a
bipartition (the star bipartition) with two simplicies belonging
to the same partition if their colored orientation differs by
an even permutation. The remainder of the proof establishes
that neighboring simplicies belong to different partitions.
Two neighboring oriented simplices A and B always share
a common μ − 1 subsimplex. Let us call the vertices they
share in common {v1, . . . ,vμ}. Simplex A also contains
a vertex vA and we label its orientation {v1, . . . ,vμ,vA}.
Similarly, simplex B contains an additional vertex vB and
has orientation {v	(1),v	(2), . . . ,v	(μ),vB}, where 	 is some
permutation of vertex labels. No generality is lost by placing
vA and vB last in their respective orientations as this can
always be achieved with an even number of transpositions
(assuming μ > 1). Since the manifold is orientable, we can
assume a consistent orientation on their common subsimplex.
We see that A induces the orientation {v1, . . . ,vμ} and B

induces the orientation {v	(1), . . . ,v	(μ)} and so consistency
demands that 	 is an odd permutation of the vertex labels.
Next we show that this lifts to an odd permutation in
the color orientation of A and B. Simplex A has color
orientation {C(v1), . . . ,C(vμ),C(vA)} and simplex B has color
orientation {C(v	(1)), . . . ,C(v	(μ)),C(vB)}. Since the lattice is
μ + 1 colored, we know that vA and vB must possess the
same color, which is whatever color is absent from their
common subsimplex. Permutation of vertex labels results in
a corresponding permutation of colors. Therefore, the color
orientations of A and B differ by an odd permutation of
their first μ elements, which corresponds to an overall odd
permutation. Since all neighboring μ simplicies must have
opposite color orientations, they belong to separate partitions
of our star bipartition, proving the lemma. �

Let us now turn to Lemma 4.
Proof. We shall begin with part (a) of the lemma. Consider

a bipartite lattice that is r valent. We count the number of
edges NE . Every edge is incident to only one starred vertex.
Furthermore, each vertex is contained in r edges and so the
total count is NE = |v�|r . The same argument applies to
unstarred vertex, so NE = |v•|r . Equating |v�|r = |v•|r , we
see that r > 0 entails |v�| = |v•|. Since a μ-colex is μ + 1
valent, we have proven part (a) of Lemma 4.

Consider any k-cell C. It defines a sublattice LC with the
same vertex set as C. If LC is k valent with k > 0, then
the above argument applies and C contains an equal number
of starred and unstarred vertices. The following reasoning
parallels that in Ref. [15]. We show explicitly that LC is
a k-colex for the k = μ − 1 case, but any k is reached by
iteratively applying the argument down to the desired k. Again,
we must switch to the dual lattice where L∗

C is obtained by
removing a single vertex C∗ fromL∗. The sublatticeL∗

C retains
all simplices containing C∗, but with their dimension reduced
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by the removal of C∗. Therefore L∗
C is a simplical lattice of

dimension μ − 1 and so L is μ valent. Our proof only requires
the correct valency, which we have shown, but note that LC

also has the correct coloring for a (μ − 1)-colex. Specifically,
if C ′ and C intersect on some (μ − 1)-cell of LC , then we
assign it the color of C ′. �

The above results concern a lattice without a boundary.
However, if one punctures the code removing a starred vertex,
then we have the following.

Corollary 1. Let L be puncturing of a μ-colex, with the
inherited bipartition into v� and v•. Then (a) |v�| = |v•| − 1
and (b) any k-cell C with 0 < k � μ contains an equal number
of vertices from each partition, so |C ∩ v�| = |C ∩ v•|.

Property (a) immediately follows from point (a) of Lemma
4 as a single starred vertex has been removed. Property (b) is
identical to its partner in Lemma 4. The punctured lattice only
keeps cells that did not contain the punctured vertex and so
the property is directly inherited. The dual lattice L∗ has been
an essential proof tool for these lemmas, but in the rest of the
paper we shall only consider the primal lattice.

B. Qudit color codes in arbitrary spatial dimension

Before we write down the stabilizer generators for these
codes, we will use the star bipartition to define the notation
for an important family of transversal operators that we
call star-conjugate transversal. Throughout this paper, when
discussing color codes we identify qudits with vertices in the
lattice defining the code. Let v denote a set of vertices (and
thus the corresponding qudits). Let us introduce the notation

U [v] = U⊗|v| (10)

to denote the tensor product of unitary U acting on each qudit
identified with the vertices in v.

We call an operator star-conjugate transversal when it has
the form

Ũ = U [v•] ⊗ U ∗[v�]. (11)

In other words, Ũ consists of U applied to all unstarred vertices
and U ∗ applied to all starred vertices.

To define qudit color codes we need to introduce two types
of stabilizer generators that are defined with respect to cells of
different dimensions within the lattice. As in the qubit case, we
associate Z-type stabilizer generators with the μ′-cells of the
lattice and X-type stabilizers with the (μ − μ′ + 2)-cells [42].
In this section, for simplicity of presentation, we will take the
example of μ′ = 2 so the Z-type stabilizers are associated with
plaquettes (2-cells) and X-type stabilizers are associated with
μ-cells, although the construction holds in the more general
case, which we will consider later. For example, in three
dimensions, the X stabilizers act on the vertices contained
in a 3-cell of the lattice and the Z stabilizers act on the vertices
contained in a 2-cell (plaquette). This can be seen in Fig. 2.

Setting μ′ = 2 the stabilizer generators therefore take the
form

SX,C = X[v• ∩ C] ⊗ X∗[v� ∩ C], (12)

SZ,P = Z[v• ∩ P ] ⊗ Z∗[v� ∩ P ] (13)

(a) (b)

(c)

X

X∗

Z

Z∗

Z

Z∗

X

X∗

X

X∗

X
X∗

FIG. 2. (Color online) (a) Smallest instance of the qudit 3D color
code with the X-type stabilizers colored red, green, blue, and yellow.
The 1-cells (edges) of the code are also colored. The vertices are also
colored so the set v• is represented by black circles and the set v� is
represented by white stars. (b) Single Z stabilizer of the tetrahedral
3D color code. The plaquette can take the color yellow if considered
as a face of the green 3-cell and vice versa. (c) Single X stabilizer of
the tetrahedral 3D color code.

for all 2-cells P and μ-cells C of the lattice. Recall that
we write the conjugate operator X∗ explicitly to emphasize
the ubiquity of starring, even though X is a real operator
in the computational basis and X = X∗. It is not just the
SZ,P operators where starring is nontrivial, but many logical
operators also require starring.

Let us denote the group generated by SX,C operators SX

and SZ,P operators by SZ . All elements of SX commute as do
all elements of SZ . It remains to show that all elements of SX

commute with all elements of SZ . This follows from the fact
that X ⊗ X∗ commutes with Z ⊗ Z∗. The above construction
ensures that whenever cell C and cell P overlap they overlap
on an equal number of starred and unstarred vertices, which is
a point discussed further in Sec. IV C. Hence these stabilizer
generators commute as required. Note that the qubit d = 2
case is included in our definition.

We noted above that, in the constructions we consider, the
code will contain one more unstarred qudit than there are
starred qudits. We can thus define the logical encoded Pauli
operators for the code star conjugate transversally

X̄ = X̃ = X[v•] ⊗ X∗[v�],

Z̄ = Z̃ = Z[v•] ⊗ Z∗[v�]. (14)

The fact that |v�| = |v•| − 1 ensures that the logical operators
satisfy the same commutation properties as X and Z. One can
verify that these operators commute with the stabilizer opera-
tors defined above by recalling that each 2-cell P and μ-cell
C contains an equal number of starred and unstarred vertices.

C. Constructing codes of any code distance

In topological stabilizer codes we expect to be able
to increase the number of physical systems encoding the
quantum information in order to protect the information
more effectively, a property characterized by the code dis-
tance. We have remarked already that suitable codes can be
constructed by puncturing a hypersphere. In this section we
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provide, however, a constructive alternative method to show
that in μ spatial dimensions the color code distance can be
made arbitrarily large.

The code distance is the weight of the smallest logical
operator. It was convenient above, in Eq. (14), to define the
logical operator basis star conjugate transversally. However,
multiplying by a subset of the stabilizer group, we can localize
Z̄ to any edge of the polytope formed by the lattice, where
such an object is a one-dimensional submanifold of the lattice
between two of the vertices of the polytope. Each such vertex is
contained in only a single μ-cell (as opposed to those contained
in two or more cells of the lattice) and hence there are exactly
μ + 1 vertices of the polytope.

In μ spatial dimensions, an edge of the polytope is
comprised of 1-cells of two different colors. Similarly, 2-cells
contain 1-cells of two colors. Beginning from the transversal
definition of the operators in Eq. (14) and multiplying Z̄ by the
subset of Z stabilizers defined on 2-cells containing 1-cells of
the same pair of colors, the logical operator is localized to the
edge of the polytope uniquely defined as containing 1-cells
matching this pair of colors. The constraints placed on the
subset of stabilizers chosen and the initial choice of transversal
operator basis ensure that the minimum length of a stringlike
logical operator defined in this way is the length of the edge of
the polytope colored as indicated. The minimum length of a
stringlike Z̄ in such a definition, and hence the code distance,
is then the length of the shortest edge of the polytope. Thus, by
showing that the length of an edge of the polytope can be made
arbitrarily large, we demonstrate the ability to create codes of
any distance.

We begin with an example in three dimensions and then
generalize the argument to higher spatial dimensions. The
particular choice we make for this example is a four-colorable
tiling of truncated octahedra, part of which is illustrated in
Fig. 3. This is not a unique choice; for an alternative see [42],
where the 3D color code is defined on a lattice constructed
from cubes and truncated octahedra.

FIG. 3. (Color online) To increase the distance of the code, we
tile 3D space with truncated octahedron cells (with appropriate
boundary conditions). Here we show a portion of the lattice. A red
cell fits into the hollow formed by the green, blue, and yellow cells
towards the bottom of the figure and thus the tiling proceeds, ensuring
that the 4-colorability of the lattice is preserved.

In addition to the two lattices already mentioned, we have
identified two further possible choices of regular tilings in
3D Euclidean space on which a color code may be defined.
One is the cantitruncated cubic honeycomb, comprising
truncated cuboctahedra (polyhedra with square, hexagonal,
and octahedral faces), truncated octahedra, and cubes. The
second is the omnitruncated cubic honeycomb comprising
truncated cuboctahedra and octahedral prisms. This list is not
exhaustive; for instance, many more tilings may exist in curved
space.

The method proceeds by carefully cutting out a block of the
lattice in order to form a tetrahedron, similar to that illustrated
in Fig. 2(a). The main difference is that the new tetrahedron
contains more qudits and can have an arbitrarily large (though
always odd, in order to ensure the ω commutation of the logical
operators) number of qudits contained in its edges. The shape
cut from the lattice may not look tetrahedral at first, but may be
deformed to a regular tetrahedron, with vertices belonging only
to a single cell forming the four vertices of the tetrahedron.

In μ spatial dimensions a suitable tiling of the space as
outlined at the beginning of Sec. III must be found. Besides
these requirements placed on the lattice construction, the block
(polytope) cut out of the lattice to form the higher-dimensional
analog of the tetrahedron must adhere to certain rules.

(i) The polytope formed must have μ + 1 boundaries, each
of a different color. The color of the boundary corresponds
to the color of the stringlike operators that can end on that
boundary.

(ii) Every edge of the polytope must contain an odd number
of qudits. As stated above, this is to ensure that the ω

commutation of the logical operators is preserved.
(iii) There should be exactly μ vertices that belong only to a

single cell of the lattice. These cells should be different colors
and these vertices will form the vertices of the polytope.

D. Error detection

Errors are detected by measuring all the stabilizer genera-
tors. We do not present a detailed analysis here, since errors
and syndrome are related for these codes in a similar way
to the qubit case. For example, in three spatial dimensions
a single Z-type error on an unstarred qudit will result in a
measured eigenvalue of ω in the X stabilizers corresponding
to the four cells containing that vertex (see Fig. 2). Similarly,
a single X-type error on an unstarred qudit will result in a
measured eigenvalue of ω in the six faces that contain the
vertex (see Fig. 2). In general, a Zk or Xk error will lead to a
measurement outcome of ω±k . Syndromes arising from sets of
multiple errors can be calculated using standard techniques.

A classical algorithm called a decoder may be used to
interpret the syndrome and infer the correction operator that
must be applied to return the code to its original state. There
are many examples of decoding algorithms for 2D qubit color
codes that have been developed recently [44–50], but very little
is known for the case of higher qudit and spatial dimensions.

However, in the case of surface codes, it has been shown
that some proposed renormalization-group (RG) algorithms
can be generalized to qudit codes in a straightforward manner
[8,51]. Moreover, recent work for the 3D fault-tolerant
implementation of the qudit surface code using a hard-decision
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RG decoder [9] suggests that adaptations of such algorithms
for higher spatial dimensions should be possible, however,
the error correction thresholds would likely be degraded as
the spatial dimension increases due to the larger stabilizer
generators.

We do not present a decoder in this paper, but remark
that, unlike in qubit codes where neighboring errors lead
to cancellation of syndromes in between, such cancellation
becomes unlikely with increasing qudit dimension and thus in
general more information is available to the decoder. In fact, it
has been shown that it is possible to design decoders to exploit
this additional information to obtain higher thresholds with
respect to qubit codes [9].

For the case of gauge color codes, very recently a hard-
decision RG decoder [52] was implemented for the qubit
3D construction. As with the color code, we expect a
generalization of such an algorithm to gauge color codes in
arbitrary spatial and qudit dimensions to be straightforward.

IV. THE m� ORTHOGONAL MATRICES AND CODES

Brayvi and Haah introduced a powerful framework for
defining codes with a transversal non-Clifford gate: codes
defined in terms of triorthogonal matrices. Here we introduce
a significant generalization to Bravyi and Haah’s approach,
extending to qudits codes with transversal gates from higher
up the Clifford hierarchy.

A. Matrix representation of quantum codes

We begin by reviewing how Bravyi and Haah represent
Calderbank-Shor-Steane (CSS) codes with matrices [31]. They
use a matrix G over Z2 that has linearly independent rows
under modulo 2 arithmetic. The matrix G is broken up into
two blocks G1 (with k rows) and G0 (with s rows). This defines
a quantum code with k logical qubits. The elementary logical
basis state |0L〉 is written

|0L〉 = 1√
2s

∑
f ∈span[G0]

|f 〉 = 1√
2s

∑
y∈Zs

2

|yT · G0〉, (15)

where the dot denotes matrix multiplication modulo d and we
take advantage of the fact that the rows of G0 are linearly
independent to represent the terms in the superposition by a
row vector y transposed and multiplied with G0. For the other
logical computational basis states |xL〉 where x ∈ Zk

2, we have

|xL〉 = 1√
2s

∑
y∈Zs

2

|yT · G0 ⊕ xT · G1〉, (16)

where addition of row vectors is elementwise modulo 2 as
acknowledged by the symbol ⊕. Note that in the special
case that k = 1, x is a scalar (or a 1 × 1 row vector) and
the transpose operation is trivial. For qudits, quantum codes
are defined by a matrix G taking elements from Zd so that

|xL〉 = 1√
ds

∑
y∈Zs

d

|yT · G0 ⊕ xT · G1〉. (17)

The key differences are that we now sum over all y ∈ Zs
d and

that the arithmetic is modulo d.

In the CSS formalism, a quantum code has a stabilizer group
that is generated by a product of two distinct generating sets:
the X-stabilizer generators, which are tensor products of X

and I alone, and the Z-stabilizer generators, which are tensor
products of Z and I alone. In addition, one must define logical
operators; in the CSS formalism, logical encoded X operators
consist of a tensor product of X and (optionally) I alone
and the logical encoded Z consists of a tensor product of Z

and (optionally) I alone. Once the X-stabilizer generators and
logical X̄ operator (or operators if there are multiple encoded
qubits) are defined, the remaining Z-stabilizer generators are
fixed by conjugation relations that can be elegantly captured
via the use of dual codes from classical coding theory. In the
qudit setting, G0 will again define the X-stabilizer generators
for the code, via the mapping k to Xk , e.g., the row vector
000123 defines the operator I ⊗ I ⊗ I ⊗ X ⊗ X2 ⊗ X3 and
G1 will similarly define the logical X operators for the code.

B. Defining m� orthogonality

Bravyi and Haah [31] prove that a so-called triorthogonal
code supports a transversal non-Clifford gate in the third level
of the Clifford hierarchy. We now generalize Bravyi and Haah’s
construction. First, we focus on generalizing from qubits to
qudits. We defined qudit color codes using a star bipartition
and it is useful to incorporate that into the definition. We
introduce the star sign-flip matrix F . Each column of matrix
G corresponds to a qudit and we order these columns such
that the first p columns correspond to unstarred qudits and
the latter n − p columns to starred qudits. We then define the
n × n matrix F ,

F = diag( 1, . . . ,1︸ ︷︷ ︸
|v•| entries

,−1, . . . , − 1︸ ︷︷ ︸
|v�| entries

), (18)

where the first |v•| elements on the diagonal are 1 and the
remaining elements on the diagonal are −1. We note that
the ordering of the columns here is arbitrary, so we do not
lose any generality by ordering the columns in this manner.
The purpose of F will be to flip the sign of the entries
of row vectors corresponding to the starred qudits, e.g., if
g = {[g]1,[g]2, . . . ,[g]n} is a row vector, we define g · F as
the row vector where [gF ]j = [g]j for the first p elements
(corresponding to unstarred qudits) and [gF ]j = −gj for the
remaining elements (corresponding to starred vertices). We
also define the weight | · · · | of a row vector as |g| = ∑

j [g]j .
We now will define a significant generalization of triorthog-

onal matrices, which we call m� orthogonality (pronounced “m
star orthogonality”).

Definition 2. An n × n matrix G over Zd with a a
bipartition of columns into {v•,v�} is m� orthogonal if both
of the following conditions hold: (a) The weight of every
elementwise product of any m rows of GF (including repeated
rows) is equal to 0, except for the following case. (b) For each
row of submatrix G1F , the weight of the row vector raised
to the mth power elementwise is 1, where F is defined as in
Eq. (18) and the matrices’ columns are ordered with respect to
the star bipartition {v•,v�}.

Notice the above makes no mention of modular arithmetic.
If we had instead defined the weights modulo d, we would have
a weaker notion of m� orthogonality. Color codes turn out to
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satisfy this stronger notion and so this definition suffices for
this paper. We note that the results below rely on the stronger
form to deal with the exceptional cases, e.g., d = 3,6 for the T

gate (see Appendix A). We also remark on the weaker notion to
clarify that for d = 2 it exactly corresponds to the Brayvi-Haah
definition of triorthogonality. Other applications of weak m�

orthogonality include quantum Reed-Muller codes [6,34].
A more symbolic statement of m� orthogonality will prove

useful in subsequent sections. We make use of the u ◦ v symbol
to denote elementwise products of vectors u and v such that it
has elements

[ga ◦ gb]j = [ga]j [gb]j , (19)

which generalizes for an arbitrary number of vectors, e.g., for
three vectors

[ga ◦ gb ◦ gc]j = [ga]j [gb]j [gc]j . (20)

Let us now consider a reformulation of points (a) and (b) of
Definition 2. For any set of m rows, we have a list of m row
indices {a,b, . . . ,y}. The m� orthogonality demands that for
all the ∑

j

[gaF ◦ gbF ◦ · · · ◦ gyF ]j = 0 (21)

unless all rows are identical and come from G1, in which case
the weight is unity.

C. The m� orthogonality of qudit color codes

The concept of m� orthogonality is a powerful tool for
studying the properties of qudit color codes due to the
following lemma.

Lemma 5. A qudit color code for any d � 2 defined on a
lattice in spatial dimension μ, where X-stabilizer generators
are defined by μ′-cells with μ′ � μ and with a star bipartition
{v•,v�} defined by the bipartition of the lattice, is an m�

orthogonal code for all m � μ′.
To prove this, let us first prove a convenient lemma.
Lemma 6. Any m� orthogonal matrix G that includes, as

one of its rows, the all-ones vector is also m′� orthogonal for
all m′ < m.

Proof. This follows since an elementwise product of m vec-
tors including the all-ones vector is equal to the elementwise
product of m − 1 vectors excluding the all-ones vector. �

Since the logical X for all color codes is the transversal X

acting on all qudits, the matrix G1 for these codes contains
the all-ones row. Hence to prove Lemma 5 we now only
need to prove that a color code in m spatial dimensions is
m� orthogonal.

Proof. Recall that the X generators of the code are defined
by μ′-cells. Taking as an example the 3D lattice in Fig. 2,
the X-stabilizer generators are defined by 3-cells. Consider
the following geometric properties of these cells. When q

distinct μ′-cells intersect nontrivially, where they meet defines
a cell of smaller dimension. For a general lattice, there is no
further restriction on the dimension of this cell. However, for
a μ-colex it is well known [13,15,17,42] that the intersection
of q objects of dimension μ′ yields either an empty set or a
cell of dimension μ′ − q + 1. For instance, the intersect of
two neighboring μ′-cells defines a (μ′ − 1)-cell, where three

such μ′-cells meet defines a (μ′ − 2)-cell, and so on. Where
μ′ μ′-cells meet defines a 1-cell, or lattice edge. For example,
in three dimensions, two adjacent 3-cells meet at a face and
three adjacent 3-cells meet at an edge (four adjacent 3-cells
meet at a point).

We use this geometric fact to prove the theorem. Any
product of m row vectors in G0 has a geometric represen-
tation as the intersection of the vertices of these cells. This
corresponds to either an empty cell or cell of dimension no
less than μ − m + 1. Each cell in the lattice, of any dimension
greater than zero, has an equal number of starred and unstarred
vertices (see Corollary 1). When we multiply the product row
vector by F we invert the sign of the columns corresponding
to the starred vertices, but this corresponds to precisely half of
the nonzero elements in the vector. Hence the weight of the
resultant vector is zero provided μ − m + 1 > 0. Therefore,
the rows of G0 satisfy the conditions for m� orthogonality
whenever m � μ.

The other case to consider is the product where all m vectors
in the product are the all-ones vector. The elementwise product
results trivially in the all-ones vector. The number of unstarred
qudits is one more than the starred qudits (see Corollary 1),
hence the weight of this vector after multiplying by F is 1.
Together with Lemma 6, this proves Lemma 5. �

Note that the bounds in this lemma are tight. A code whose
X-stabilizer generators are defined by μ′-cells is not (μ′ + 1)�

orthogonal because μ + 1 μ′-cells meet at a point and a single
vertex represents a vector that does not have zero weight.

V. TRANSVERSAL OPERATORS

Our attention now turns to transversal gates. The qubit
color codes are the only family of topological codes known to
support transversal gates satisfying the Bravyi-König bound.
We prove in this paper that (apart from a minority of special
cases that need to be treated individually) the qudit codes we
have defined also saturate this bound.

Theorem 1. The qudit color codes on a μ-colex, where
X-stabilizer generators are defined by μ′ � μ cells and where
μ′! �= 0(mod d), support transversal gates in the μ′th level
of the CH [which are not in the (μ − 1)th level of the CH],
saturating the Bravyi-König bound.

The qualification μ′! �= 0(mod d) is due to Lemma 2,
namely, that when μ′! = 0(mod d), gates of the form of
Eq. (8) are in the (μ′ − 1)th level of the CH (and therefore
do not saturate Bravyi-König) as discussed in Sec. II. For the
most important μ = 3 case, however, we additionally prove
transversality for the exceptional d = 3 and 6 cases and can
thus state the following unqualified result.

Theorem 2. The qudit color codes on a μ-colex, where
X-stabilizer generators are defined by μ′ � μ cells, support
transversal non-Clifford gates in the third level of the CH for
all μ′ � 3.

We believe that the qualification in Theorem 1 can be
removed, following a similar approach to proving Theorem 2,
but we leave this for future work. To prove Theorem 1, we
show that gates of the form of Eq. (8) are transversal in all
m� orthogonal codes for polynomial degree r = m. To prove
Theorem 2 we also prove that gates of the form in Eq. (7) are
transversal in 3�-orthogonal codes. The theorems then follow
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by virtue of Lemmas 1, 2, and 5, together with the known
results for qubit color codes [14]. In particular, the transversal
gates we consider are of star-conjugate transversal form [see
Eq. (11)].

Lemma 7. An m� orthogonal code has a transversal
implementation of the unitary gate Rfm

such that

R̃fm
= Rfm

[v•] ⊗ R∗
fm

[v�] (22)

implements Rfm
on the code space.

We prove this lemma in Appendix A. As a simplified
presentation for the main text of the paper, we prove the special
and important case of r = 3. The general proof follows the
same approach, but is a little notationally unwieldy.

Lemma 8. A 3�-orthogonal code has a transversal imple-
mentation of the unitary gate T = Rj3 such that

T̃ = T [v•] ⊗ T ∗[v�] (23)

implements T on the code space.
Proof. We now examine the conditions that the star-

conjugate transversal T̃ implements a logical T̄ . For this to
be true, the phases for each computational basis component of
each logical codeword in Eq. (17) must agree with the phases
defining the gate in Eq. (6). Noting that the same phase applies
to all terms in the sum in Eq. (17), we can write

T̃ |(x,y)T · G〉 = ωx3 |(x,y)T · G〉, (24)

where x ∈ Zd and y ∈ Zs
d , with s the number of stabilizer

generators. In other words, we fix the number of logical qubits
k = 1.

Applying Eqs. (6) and (23) to the state on the right-hand
side of Eq. (24), we recover the following relationship between
the phases on both sides of the equation:

[(x,y)T · G · F ] ◦ [(x,y)T · G · F ]

◦ [(x,y)T · G · F ] = x3(mod d), (25)

where we have right multiplied the F matrix to vector (x,y)T ·
G. It is useful to define z = (x,y) so that∑

j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j = x3(mod d).

(26)

Now define z = ∑
a zaea , where za is the value of the ath

position of the vector z and ea are the basis vectors over Zs+1
2 .

For example e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), and so on.
Rewriting the left-hand side of Eq. (26), we obtain∑

j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j

=
∑

j

[(
s+1∑
a=1

zae
T
a · G · F

)
◦

(
s+1∑
b=1

zbe
T
b · G · F

)

◦
(

s+1∑
c=1

zce
T
c · G · F

)]
j

(mod d).

Note that eT
a · G is the ath row of the matrix G, which we

denote by ga . Therefore,∑
j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j

=
∑

j

[(
s+1∑
a=1

zaga · F

)
◦

(
s+1∑
b=1

zbgb · F

)

◦
(

s+1∑
c=1

zcgc · F

)]
j

(mod d).

We can rewrite this as∑
j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j

=
∑

j

s+1∑
a,b,c=1

[(zaga · F ) ◦ (zbgb · F )

◦ (zcgc · F )]j (mod d)

=
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc(mod d). (27)

Summing over j gives∑
j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j

=
s+1∑

a,b,c=1

|(ga ◦ gb ◦ gc) · F |zazbzc(mod d). (28)

We break the sum into two parts, so that∑
j

[(zT · G · F ) ◦ (zT · G · F ) ◦ (zT · G · F )]j

=
∑

a

|(ga ◦ ga ◦ ga) · F |z3
a

+
∑

{a,b,c|¬(a=b=c)}
|(ga ◦ gb ◦ gc) · F |zazbzc(mod d).

(29)

Now we use the definition of m�-orthogonal matrices. This
ensures that the first term is equal to x3(mod d) and the second
term is equal to zero. Hence Eq. (25) is satisfied, which
completes the proof of Lemma 8. �

For larger m, the proof follows the same lines but is with
more cumbersome algebra. The proof of Lemma 7, which we
present in Appendix A, completes the proof of Theorem 1. To
prove Theorem 2 we require one further lemma.

Lemma 9. A 3�-orthogonal qudit code where d = 3 or 6 has
a transversal implementation of the unitary gate T3,6 defined
in Eq. (7) such that

T̃3,6 = T3,6[v•] ⊗ T ∗
3,6[v�]. (30)

The proof is presented in Appendix B, completing the proof
of Theorem 2. Finally, we remark that as CSS codes, all color
codes admit a transversal �(X). We conclude this section with
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TABLE I. Illustration of the star-conjugate transversal implemen-
tation of some important logical gates and the spatial dimensions of
the codes that support them.

Logical Equation Star-conjugate Spatial
operator defined in transversal implementation dimension

H Eq. (3) H [v•] ⊗ H ∗[v�] 2
�(X) Eq. (5) applied blockwise transversally �2
S Eq. (4) S[v•] ⊗ S∗[v�] �2
T Eq. (6) T [v•] ⊗ T ∗[v�] �3
Rfr

Eq. (8) Rfr
[v•] ⊗ R∗

fr
[v�] �r

a table of star-conjugate transversal gates in qudit color codes
of different spatial dimension, see Table I.

VI. GAUGE FIXING TO IMPLEMENT THE LOGICAL
HADAMARD GATE

In this section and Sec. VII we show how a universal gate set
can be achieved via gauge fixing or by defining a gauge color
code. Although these results follow directly from the qubit
cases presented in [15,26] without the need for any further
technical innovations, we include a discussion and explanation
of these techniques for completeness.

First we consider gauge fixing. We define a subsystem code
occupying the same lattice as the color code. This code is
capable of realizing the logical Hadamard gate on the same
encoded qudit as the color code, while a set of gauge qudits
become corrupted. Fortunately, there is a simple protocol to
fix the corrupted gauge qudits to reinitialize the color code.

In a [[n,k,d]] subsystem code [53–56] there are three sets of
operators that define the code. First, a set of gauge generators
is defined, a set of Pauli operators defined on the lattice that do
not necessarily mutually commute. These generate the gauge
group A. The center of the gauge group (the elements of the
group that commute with all other elements) represents the
stabilizer of the code S (up to a free choice of plus or minus
phases that must be chosen to define the zero-error code space).
The final set of operators to define is the set of logical Pauli
operators on the code space, the Pauli operators that commute
withA. Subsystem codes can be understood as stabilizer codes
in which some of the logical qudits have been demoted to gauge
qubits. These gauge qubits are not used to carry information
and can be corrupted or measured during operations on the
code.

The logical operators X̄ and Z̄ are products of X and Z

(and X∗ and Z∗) operators acting on every qudit. Therefore, a
natural candidate for transversal H̄ is a global star-conjugate
Hadamard gate. However, for color codes of μ > 2 it can be
seen from the structure of the stabilizer generators that such a
unitary will not leave the code space invariant. In particular,
the X stabilizers act on the μ′-cells of the lattice, whereas
the Z stabilizers act on the (μ − μ′ + 2)-cells of the lattice.
Therefore, unless μ′ = μ − μ′ + 2, the Z stabilizers cannot
be transformed into valid X (cell) stabilizers by a global
Hadamard gate. The solution to this is to switch between the
stabilizer color codes and a different code in which X-stabilizer
generators and Z-stabilizer generators have identical support.

In μ spatial dimensions the subsystem code stabilizers are
defined as the star-conjugate X and Z operators acting on the
qudits contained in a μ-cell of the lattice. The logical operators
matching the color code logical operators are the transversal X̄
and Z̄ defined in Eq. (14). In addition, there are X and Z gauge
operators defined on the (μ − 1)-cells, the (μ − 2)-cells, and
so on to the 2-cells of the lattice, such that they commute with
the stabilizer group. They can be identified in ω commuting
pairs, with each pair protecting a gauge qudit.

In higher spatial dimensions there is a larger number
of gauge generators and hence more gauge qudits than in
lower spatial dimensions. Nevertheless, the basic protocol for
realizing the logical Hadamard gate in the subsystem code and
fixing the gauge to return to the stabilizer code is independent
of the spatial dimensions.

The star-conjugated transversal Hadamard gate

H̄ = H̃ = H [v•] ⊗ H ∗[v�] (31)

transforms the transversal logical operators and the stabilizers
of the code correctly. However, the gauge generators are
corrupted under the action of H̄ , meaning that Z̄j (the Z logical
operator for qudit j ) is transformed not to X̄j as desired, but
instead to the operator for a different qudit X̄k , causing the
gauge qudits to become entangled.

These corrupted gauge operators must be fixed to return
the code to the original stabilizer code in which the other
transversal operators can be realized. This fixing is enacted by
measuring the stabilizer generators. The measured eigenvalues
will indicate the Pauli correction operator that should be
applied; this is an operator that restores the corrupted gauge
qudit to its initial state while commuting with the other logical
operators.

Once the corrections are applied, the gauge qudits are
reinitialized to their original state so that any entanglement
between the gauge qudits is destroyed. This is equivalent to
the stabilizer color code with a logical Hadamard gate applied
to the encoded qudit.

VII. QUDIT GAUGE COLOR CODES

Another approach to the implementation of the transversal
Hadamard is to treat the subsystem code as the base code and to
achieve the transversal non-Clifford gates by gauge fixing to
the (stabilizer) color code. This switch in perspective leads
to the gauge color codes, recently introduced by Bombin [15].
Far more than a change in perspective, however, gauge color
codes gain many useful new properties, which the original
color codes do not possess.

The first advantage of the gauge color code construction is
that the outcome of stabilizer measurements can be inferred
from measurements of the gauge operators. This offers a
practical advantage, since the weight of the gauge generators
can be significantly smaller than stabilizer generators. For
example, in three dimensions the X-stabilizer generators
would include 24-body operators associated with truncated
octahedrons, discussed in Sec. III C, requiring coherent 24-
body measurement. In the equivalent gauge color code,
however, the X stabilizers can be decomposed into four-
or six-body X gauge operator measurements, a much more
practically feasible proposition.

022312-10



QUDIT COLOR CODES AND GAUGE COLOR CODES IN . . . PHYSICAL REVIEW A 92, 022312 (2015)

FIG. 4. (Color online) Cell of the 3D gauge color code. Its faces
are 3-colorable and colored red, green, and blue in this example. The
stabilizer outcomes for the cell can be constructed by adding together
(mod d) the outcomes of the gauge measurements for each of the red
faces, each of the blue faces, or each of the green faces.

A second advantage (in the μ = 3 case) is that the outcome
of stabilizer measurements is more robustly encoded in the
gauge generator measurement. The extra redundancy leads to
to single-shot fault-tolerant error correction [37], meaning that
measurement errors can be accounted for without the need for
repeated measurements.

A third advantage is that one can use gauge fixing to
fault-tolerantly convert [27] between codes of different spatial
dimension [36], allowing one to combine the advantageous
features of both. For example, one could perform all Clifford
computations in a 2D code while only resorting to a 3D code
to achieve a non-Clifford gate.

We can define qudit gauge color codes in any spatial
dimension analogously to Bombin’s qubit codes [15]. The
only difference is that operators are star conjugated according
to the star bipartition of the lattice.

The most studied gauge color code exists on a 3D lattice and
we shall describe the qudit analog as an example (see Fig. 4).
Gauge generators consist of star-conjugated face operators
of both X and Z type. The stabilizer is generated by 3-cell
operators whose values can be obtained from the products
of the face operators. The star-conjugate transversality of the
Hadamard gate for this code is trivial via its definition. To
achieve a transversal T gate one must gauge fix back to the
stabilizer color code by promoting Z face operators to the
stabilizer.

Although the basic properties of color codes transfer
immediately to the general qudit case via this definition
and by the results presented in previous sections in this
paper, the performance of single-shot error correction is less
straightforward to analyze and we leave a detailed study to
further work. Single-shot error correction works, in the qubit
case, because the relationship between gauge and stabilizer
measurement outcomes in the code is such that the values of
the stabilizer are mapped to delocalized structures (branching
points in stringlike extended structures) in the gauge outcomes.
This arises because the parity of the outcomes of the face
operators around the cell must be equal to the eigenvalue of
the stabilizer representing the cell: even parity in for a trivial
syndrome and odd parity for the nontrivial case.

In qudit codes, the stabilizer measurement outcome may
take any of d − 1 nontrivial values. The outcomes of gauge

measurements must sum to these values. Thus the relationship
between gauge measurements and stabilizer measurements is
more complicated than the simple “branching point or no
branching point” behavior seen in the qubit code. This extra
structure, however, should represent additional information
about the location and charge of stabilizer outcomes that
a decoder could exploit. Thus, with the development of a
suitable decoder, we expect single-shot error correction robust
to measurement error to be achieved in qudit gauge color
codes, but we leave its the construction of such a decoder, and
analysis of its performance, to future work.

VIII. CONCLUSION

We have shown how any existing qubit color code can be
generalized to support a qudit color code in arbitrary spatial
dimensions and with an arbitrarily large distance. To do this we
introduced the notion of a star-conjugate lattice and showed
how this construction allows the Clifford phase, controlled-X,
and non-Clifford phase gates to be implemented transversally.
The set of Clifford group generators is completed by the
Hadamard gate, which can be implemented in a subsystem
code. Techniques for switching between the two codes have
been outlined. An additional advantage of considering the
color codes as gauge codes is reduction of the weight of
measurements required to obtain the error syndrome.

There are still many open questions remaining; here we
outline some of the ones we find most interesting. Although a
fault-tolerant decoder has been implemented for a 2D code,
no decoder has been proposed for color codes in higher
spatial dimensions. In Ref. [37] a decoder for a 3D gauge
color code is discussed, unfortunately, however, a classical
algorithm capable of performing the decoding is not specified.
One would expect that in a fully fault-tolerant simulation the
gate error threshold for the μ-dimensional color codes would
be prohibitively low, since the stabilizers defined on the μ-cells
would require circuits of many time steps to measure. There is
hope, however, that by switching to the corresponding gauge
color code the measurements require fewer gates and therefore
the threshold may recover [52]. The development of efficient
decoders for qudit gauge color codes is therefore of significant
interest.

The construction of the transversal gates in the color codes
and gauge color codes presented in this work holds for qudits of
any dimension d. However, for nonprime d it is not clear that S,
H , and �(X) are sufficient to generate the Clifford group. We
desire a better understanding of universality and the Clifford
hierarchy when using systems of nonprime dimension.

We have identified some other lattices that can support
a color code in three dimensions. It would be interesting to
see a comprehensive list of possible lattices. Furthermore, our
star-conjugate construction is valid for all of these lattices,
but there may be one that offers advantages in terms of the
necessary qudit overhead to achieve a desired distance.

Finally, there are many Reed-Muller codes known for
qudits for which no equivalent color code is known [6,34].
Is it possible to use one of these to construct a topological
code similar to a color code and study its properties? Here
we found codes where the distance is purely topological in
nature and so depends on the lattice, not on whether we
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use qudits. In contrast, qudit Reed-Muller codes provide an
improved distance that is algebraic rather than topological
in origin. The potential exists for qudit quantum codes that
abstract topological ideas to a more general setting to generate
novel codes of arbitrary code distance with a rich family of
transversal logical gates.
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APPENDIX A: PROOF OF LEMMA 7

Here we prove Lemma 7.
Proof. For Eq. (22) to be true, for all z = (x,y) we have

R̃fm
|zT · G〉 = ωzm

j |zT · G〉. (A1)

Applying Eqs. (8) and (22) to the state on the right-hand side
of Eq. (A1), the phases on both sides of the equation are equal
if

(zT · G · F )◦m = xm(mod d), (A2)

where the notation (·)◦m means a circle-product [see Eq. (19)]
taken between m identical elements. Proceeding using the
same notation as in Sec. V, we find

∑
j

[(zT · G · F )◦m]j =
∑

j

[(∑
a

zaga · F

)◦m]
j

(mod d)

=
∑

j

⎛
⎝ ∑

�a∈[1,...,k+s]m

z�a g�a · F

⎞
⎠

j

(mod d), (A3)

where [a, . . . ,b]c is a vector of length c with elements that
take values between a and b and g�a is the bitwise product of
m rows of G, so

g�a = ga1 ◦ ga2 ◦ · · · ◦ gam
. (A4)

We can rewrite this as∑
j

[(zT · G · F )◦m]j =
∑

j

∑
�a∈[1,...,k+s]m

[g�a · F ]j z�a(mod d).

(A5)

Summing over j gives∑
j

[(zT · G · F )◦m]j =
∑

�a∈[1,...,k+s]m

|g�a · F |z�a(mod d).

(A6)

We now use the definition of an m�-orthogonal code.
This means that all terms satisfying ¬(a1 = · · · = am) in the
summation on the right-hand side vanish. This implies that the
only nonzero contribution is represented by �a = (a,a, . . . ,a),
an m-element vector where every element is a. Recall also
that such terms vanish unless a = 1; in other words, it is the
m-fold elementwise product of the vector in G1. We note that

z�a = zm
a , leaving only

∑
j

[(zT · G · F )◦m]j = |g�a · F |zm
a (mod d) = xm(mod d),

(A7)

which proves that the desired equation (A2) is satisfied. �

APPENDIX B: PROOF OF LEMMA 9

Here we prove Lemma 9, with

T3,6 =
∑
j∈Zd

γ j 3 |j 〉〈j |, (B1)

where γ 3 = ω and the function in the exponent j 3 is evaluated
in regular arithmetic (or equivalently modulo 3d). We shall
prove Lemma 9 for d = 3 and 6 separately, since each requires
calculation in arithmetic with a different modularity.

1. Case of d = 3

Proof. First we consider the case of qutrits, where d = 3. In
this case, γ = ei(2π/9). Hence, our calculation will make use
of addition modulo 9. Proceeding as before, we start with

T̃3,6 |zT · G〉 = γ x3 |zT · G〉. (B2)

The phases on both sides of this equation match if

∑
j

[(zT · G · F )◦3]j = x3(mod 9). (B3)

This expression is a mix of modulo 3 and modulo 9 arithmetic
so we must proceed with care. The matrix multiplication is
modulo 3, whereas all other arithmetic is modulo 9. Rewriting
the left-hand side as

∑
j

[(zT · G · F )◦3]j =
∑

j

s+1∑
a,b,c=1

{[ga · F ]j za(mod 3)}

◦ {[gb · F ]j zb(mod 3)}
◦ {[gc · F ]j zc(mod 3)}, (B4)

we can use the following identity to express the modulo 3
reduction in terms of standard addition:

a(mod n) = a −
⌊a

n

⌋
n. (B5)

Setting aside the modulo 9 arithmetic for the moment and
evaluating this expression first in standard arithmetic, the

022312-12



QUDIT COLOR CODES AND GAUGE COLOR CODES IN . . . PHYSICAL REVIEW A 92, 022312 (2015)

left-hand side now expands to the following form:

∑
j

[(zT · G · F )◦3]j =
∑

j

s+1∑
a,b,c=1

(
[ga · F ]j za − 3

⌊
[ga · F ]j za

3

⌋)

◦
(

[gb · F ]j zb − 3

⌊
[gb · F ]j zb

3

⌋)
◦

(
[gc · F ]j zc − 3

⌊
[gc · F ]j zc

3

⌋)

=
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc − 9[(ga ◦ gb) · F ]j zazb

⌊
[gc · F ]j zc

3

⌋

+ 27[ga · F ]j za

⌊
[gb · F ]j zb

3

⌋⌊
[gc · F ]j zc

3

⌋
− 27

⌊
[ga · F ]j za

3

⌋⌊
[gb · F ]j zb

3

⌋⌊
[gc · F ]j zc

3

⌋
.

The last three terms in this summation are integer multiples of 9 and are thus equal to 0(mod 9). Thus, if we reimpose modulo 9
arithmetic we are left with∑

j

[(zT · G · F )◦3]j (mod 9) =
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc(mod 9). (B6)

Finally, invoking m� orthogonality completes the proof. �
Note that we are using the fact that the definition of m� orthogonality is stated in regular arithmetic, which implies the modulo

9 orthogonality used here.

2. Case of d = 6

Proof. When d = 6 the phase in T3,6 is γ = ei(2π/18) and thus we proceed with modulo 18 arithmetic

T̃3,6 |zT · G〉 = γ x3 |zT · G〉. (B7)

We expand the right-hand side and find that

∑
j

[(zT · G · F )◦3]j =
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc(mod 18). (B8)

Converting modulo 18 arithmetic to normal arithmetic, we find

∑
j

[(zT · G · F )◦3]j =
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc − 18[(ga ◦ gb) · F ]j zazb

⌊
[gc · F ]j zc

6

⌋

+ 108[ga · F ]j za

⌊
[gb · F ]j zb

6

⌋⌊
[gc · F ]j zc

6

⌋
− 216

⌊
[ga · F ]j za

6

⌋⌊
[gb · F ]j zb

6

⌋⌊
[gc · F ]j zc

6

⌋
.

Casting this back into modulo 18 arithmetic, we can cancel the terms equal to integer multiples of 18, leaving

∑
j

[(zT · G · F )◦3]j (mod 18) =
∑

j

s+1∑
a,b,c=1

[(ga ◦ gb ◦ gc) · F ]j zazbzc(mod 18). (B9)

Finally, via m� orthogonality we recover ∑
j

[(zT · G · F )◦3]j (mod 18) = x3(mod 18), (B10)

completing the proof. �
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