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A small number of abnormal brain connections
predicts adult autism spectrum disorder
Noriaki Yahata1,2,3,*, Jun Morimoto4,*, Ryuichiro Hashimoto3,5,6,*, Giuseppe Lisi4,*, Kazuhisa Shibata3,7,

Yuki Kawakubo8, Hitoshi Kuwabara9, Miho Kuroda8,10, Takashi Yamada3,5, Fukuda Megumi3,11,

Hiroshi Imamizu3,12, José E. Náñez Sr13, Hidehiko Takahashi14, Yasumasa Okamoto15, Kiyoto Kasai16,

Nobumasa Kato5, Yuka Sasaki3,7, Takeo Watanabe3,7 & Mitsuo Kawato3

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural

mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically

developed (TD) individuals were developed to identify the abnormality of functional

connections (FCs). Due to over-fitting and interferential effects of varying measurement

conditions and demographic distributions, no classifiers have been strictly validated for

independent cohorts. Here we overcome these difficulties by developing a novel machine-

learning algorithm that identifies a small number of FCs that separates ASD versus TD. The

classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a

remarkable degree of generalization for two independent validation cohorts in the USA and

Japan. The developed ASD classifier does not distinguish individuals with major depressive

disorder and attention-deficit hyperactivity disorder from their controls but moderately

distinguishes patients with schizophrenia from their controls. The results leave open

the viable possibility of exploring neuroimaging-based dimensions quantifying the

multiple-disorder spectrum.
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A
utism spectrum disorder (ASD) is a major developmental
disorder characterized by repetitive, restricted behaviour
as well as deficits in communication and reciprocal social

interactions1. ASD has attracted a great deal of attention of basic
and clinical scientists in the hope that clarification of its
underlying mechanisms will lead to the development of
remedies for ASD as well as a better understanding of the
neural substrates of important cognitive functions, including
social behaviour2. Despite the significance of the disorder, no
effective biomarker has been developed. The medical diagnosis
for ASD has been made largely based on narrative interactions
between individuals and clinical professionals. With the exception
of ‘clear and typical’ cases, such diagnostic methods without
any biological grounds could run the risk of producing
a high variance in diagnosis3 and delaying the detection of
abnormalities4.

Magnetic resonance imaging (MRI)-based characterization of
ASD has been explored as a complement to the current
behaviour-based diagnoses. While previous studies have identi-
fied a multitude of ASD-specific structural and functional
abnormalities, none of them were actually implemented as a
reliable biomarker. The most crucial reason for this disappointing
situation5,6 may be the lack of its generalizability—the validity of
the previously developed classifiers has not been established in
terms of the diversity of population demographics and the variety
of data attributes7–13. These demographics and data attributes
include different ethnicities, ages14, sex15, medication profiles16,
scanner specifications17, imaging parameters18 and instructions
to participants19. All of these aspects are known to affect the
MRI data. Without proof of generalization, the classifier can
neither be regarded as practical in clinical applications, nor can
neuroimaging features selected by the classifier be regarded as the
candidate neural substrates of ASD.

The issue surrounding the generalization of neuroimaging-
based biomarkers for psychiatric disorders has attracted little
attention in neuropsychiatry until recently20,21. The majority of
the previous developments of ASD biomarkers were made based
on a single-site data, leaving the generalizability issue out of
reach7–13. This situation has held true in more recent
investigations that incorporated multiple-site data22–25, for
which the generalizability issue was not examined for an
independent validation cohort. There is one unsuccessful
attempt in which the generalizability of a classifier was tested
on an independent validation cohort26. This study applied a
classifier, that was previously developed based on measures of
structural MRI for the population of the UK7,8, to Japanese ASD
individuals26. The classifier exhibited more than 80% sensitivity
and specificity for the UK training data. However, its
performance was no better than chance level for the Japanese
test cohort. The results indicate that the development of a reliable
neuroimaging-based biomarker is extremely challenging.

To develop a generalizable classifier, we must overcome the
following two major difficulties: over-fitting and nuisance
variables (NVs). First, particular conditions in data and model
properties can cause the over-fitting problem20 in which model
fitting to the training data can be so accurate that the associated
errors become artificially smaller compared with the inherent
data variance. This inflated prediction performance typically fails
when the model is applied to independent data that are not used
for determination of the model. Among other possibilities,
determining a large number of model parameters using a
relatively small data sample almost inevitably leads to the state
of over-fitting, which makes the generalization capability of the
model extremely poor. For example, the identification of ASD-
specific features in magnetic resonance images must necessarily
entail a search over a few 104 to 105 voxels (or its squared number

for voxel-to-voxel functional connections (FCs)) using a data set
that typically consists of not more than B103 individuals. In this
case, the derived classification scheme falls almost inevitably to a
state of over-fitting, resulting in catastrophic generalization to the
external data20. In essence, an excessive number of free
parameters in the model introduces undesirable fitting to a
unique structure of the data, including inherent noise.

Second, any machine-learning algorithm used for classification
is doomed to exploit NVs unique to a given sample data, and to
erroneously select neuroimaging features that are correlated with
the NVs. NVs include both site-specific conditions in image
acquisition and properties in the sample population such as
demographic attributes, medication status, and onset and
duration of illness. However, the neuroimaging features
correlated with these NVs are irrelevant to ASD itself in an
independent validation cohort, and naturally for the general ASD
population. To avoid biased extraction of ASD irrelevant features,
it is thus essential that classifier development proceed with a large
population that is recruited at multiple sites and that all the
possible NVs be identified, controlled and removed appropriately
in the feature selection (FS) process.

Here, for the first time we have developed an ASD classifier
using a multiple-site data set in Japan, and confirmed its
generalization capability in two independent validation cohorts
in the USA and Japan. We focus on abnormal functional
connectivity (FC) in ASD as revealed by resting-state fcMRI
(rs-fcMRI)6,27–29. To suppress the over-fitting and the effects of
NVs, a unique combination of machine-learning algorithms
automatically and objectively identifies a small number of FCs
related to the ASD-specific abnormality. The resulting ASD
classifier, based only on the identified FCs, achieves generalization
capability across multiple imaging sites (site generalization).

We also examine a different type of generalizability of the
classifier towards other disorders (disorder generalization).
It is generally believed that ASD shares aetiological and
pathophysiological backgrounds with schizophrenia (SCZ) to a
greater degree than with attention-deficit hyperactivity disorder
(ADHD) and major depressive disorder (MDD)30–33. Recent
genome-level studies reported that ASD shares a significant
degree of polygenic risk with SCZ, but not with ADHD or
MDD30,31. An accumulating body of evidence by clinical,
behavioural and neuronal phenotypes studies has shown a close
relationship between ASD and SCZ32,33. To our knowledge, no
study has quantified spectral relationships among multiple
psychiatric disorders with respect to biological dimensions
defined by intrinsic FCs. Here we examine the spectral
relationships among four disorders, ASD, SCZ, ADHD and
MDD, by means of a measure provided by the ASD classifier.
More concretely, we examine the extent to which the ASD
classifier is specific to ASD or extendable (generalizable) to other
psychiatric disorders. This question can be rephrased as follows.
Does the ASD classifier discriminate only ASD individuals from
TD control (that is, specific to ASD), or does it discriminate
patients with general psychiatric disorder from their healthy
controls (that is, generalized to other disorders)? At the individual
level, the output of the ASD classifier might provide a quantitative
measure of ‘ASD-ness’ along one of biological dimensions in
psychiatric disorders (Supplementary Fig. 1). If the ASD classifier
shows specificity and/or generalizability only for a certain range
of disorders, the ASD-ness may provide a useful biological
dimension across the multiple-disorder spectrum34,35.

Results
Highly accurate Japanese-population-based classifier for ASD.
We constructed a classifier based on the FCs of each individual to
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distinguish ASD from TD adults. The whole brain images were
collected from three different sites in Japan (74 high-functioning
adult ASDs and 107 adult TDs; see Methods for details). Age and
sex were matched between ASD and TD for sites A and B. Site C
collected only TD data (Supplementary Table 1). This unbalanced
ASD/TD composition among the three sites was taken care of by
a machine-learning algorithm as explained below. Each individual
image was divided into 140 regions using a sulci-based
anatomical atlas (extended Brainvisa Sulci Atlas)36. To obtain
interregional FCs through rs-fcMRI, Pearson correlation
coefficients were computed for all possible 9,730 pairs of these
140 regions from their mean fMRI time-series data. A machine-
learning technique was then applied to the whole set of
correlation matrices to optimally select a subset of FCs so that
the best classification performance would be obtained.
Specifically, we applied the L1-norm regularized sparse
canonical correlation analysis (L1-SCCA)37 to the data set to
identify a subset of FCs relevant only to the neural substrates of
ASD while factoring out the effects of noise and NVs associated
with the data. In particular, the unbalanced ASD/TD composition
was addressed appropriately by incorporating the site label as NV
(see Methods subsection ‘Selecting FCs as the ASD classifier’).
We then employed the sparse logistic regression (SLR)38 to
further perform dimension reduction to mitigate the over-fitting
and thereby to extract the essential FCs representing the core
abnormal connectivity in ASD (see Methods and Supplementary
Fig. 2).

The classification accuracy was evaluated by the leave-
one-participant-out cross validation procedure (LOOCV, see
Methods). At each iteration, the classifier incorporated only
15.3±0.7 out of 9,730 FCs (0.2% of the entire FCs).
Supplementary Note 1 and Supplementary Fig. 3 show the
robustness and stability of the identified FCs across the
cross-validation procedure. The classifier separated ASD- from
TD-populations with an accuracy of 85% (Permutation test,
P¼ 0.001; see Supplementary Fig. 4)39. The corresponding area
under the curve (AUC) was 0.93, indicating high discriminatory
ability. For this classifier, the weighted linear summation (WLS or
linear discriminant function) of the correlation values of the
identified FCs predicted the diagnostic label of each individual.
An individual with a positive and negative WLS was classified as
ASD and TD, respectively. Figure 1a shows that the two WLS
distributions of the ASD and TD populations from the Japanese
data set were clearly separated by the threshold of WLS¼ 0, to the
right (ASD) and to the left (TD). The sensitivity was 80% and
specificity was 89%. This leads to a high diagnostic odds ratio
(DOR) of 31.1, which indicates that the effect size is very large.
We found that high classification accuracy was not only achieved
for the entire data set, but also distributed equally among the
three imaging sites in Japan (85% accuracy for all the sites A–C;
see Supplementary Fig. 5 and Supplementary Table 2).

Generalization of the classifier for independent cohorts. We
tested the generalizability of the classifier using two independent
validation cohorts obtained from the US ABIDE Project40 and
from site B in Japan (see Methods). In the ABIDE data pool,
we selected a subset of individuals that contained 44 high-
functioning adults with ASD and demographically matched 44
TD adults, who were recruited from seven sites in this data pool
(see Methods). For this US-independent validation cohort located
across the Pacific from Japan, the present classifier, trained only
with Japanese labelled samples, achieved a high performance with
an accuracy of 75% (AUC¼ 0.76) and a DOR of 9.0. The
probability of obtaining this high performance by chance is
extremely small as P¼ 1.4� 10� 6 (one-sided binomial test) and

P¼ 0.001 (permutation test, see Supplementary Fig. 4). We
emphasize that this performance was achieved when the classifier
was applied to the US ABIDE data set for the first time without
any retuning of the machine-learning procedure. Thus, this USA
data set was a true and final validation set. One of the reasons for
the true validation test is that our algorithm does not allow any
parameter tuning based on the validation cohort (see also
Methods). As can be seen in the WLS distribution for the USA
data shown in Fig. 1b, the degree of separation between the ASD
and TD populations was almost comparable to that of the
Japanese data set shown in Fig. 1a. This indicates that the present
classifier was successfully generalized across the Pacific to an
independent validation cohort of more diverse races/ethnicities
that were acquired under various imaging settings and conditions.
These results indicate that although we developed a highly
reliable classifier by only using the training data obtained from
Japan, it is sufficiently universal to classify ASD/TD in the USA
validation cohort.

Given the possibility that the identification of ASD-specific FCs
in the classifier could have been influenced by ASD individuals’
factors irrelevant to the core ASD pathology, including secondary
symptoms and the medication status, the next challenge was to
examine how the ASD classifier is resistant to such complications.
By relaxing the selection criteria for ASD, we identified 19
additional individuals with ASD and demographically matched
19 additional TDs in the ABIDE data pool (see Methods and
Supplementary Note 2). We appended these individuals into the
main USA data set to form the extended ABIDE data set that
consisted of 63 individuals with ASDs and 63 TDs. Repeating the

−30 −20 −10 0 10 20 30
0

10

20

30

40

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

TD ASD

Weighted linear summation

N
um

be
r 

of
 in

di
vi

du
al

s

Classification based on WLS

USA

TD
ASD

Japan

TD
ASD

a

b

Figure 1 | Distribution of weighted linear summations (WLS) of

functional connections used for the classification of ASD and TD.

(a) The number of TD (white) and ASD (black) individuals in the Japanese

data included in a specific WLS interval of width 5 is shown as a histogram

(see also Supplementary Fig. 5). (b) WLS for the US ABIDE dataset in the

same formats as a.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11254 ARTICLE

NATURE COMMUNICATIONS | 7:11254 | DOI: 10.1038/ncomms11254 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


same analysis for this broadened data set, we found the results to
be: AUC¼ 0.74, accuracy¼ 71% and DOR¼ 6.4, which were
slightly worse than the original narrower data set.

We further confirmed the generalizability of the classifier
using the Japanese-independent validation cohort (AUC¼ 0.77,
accuracy¼ 70%). This cohort incorporated 27 individuals with
ASD and 27 demographically matched TDs. These participants
were scanned more recently using a newer and different 3 T MR
scanner at site B in Japan, compared to the original Japanese
discovery cohort.

Characteristics of the 16 identified FCs in the classifier. Figure 2
shows the spatial distribution of the 16 FCs that were auto-
matically and objectively identified from the data for reliable
classification of ASD and TD by the machine-learning algorithm.
A detailed list of FC properties is provided in Table 1. Because the
reliability of classification was generalized to the two independent
cohorts, these FCs are thought to be much more trustworthy in
characterizing neural substrates of ASD than the FCs that were
simply selected in many previous studies by conventional
statistical thresholding of ASD/TD differences within a limited
data set41.

We identified the following three major characteristics of
the 16 FCs in terms of their hemispheric distributions and
attributions to known intrinsic functional networks (Fig. 3 and
Table 1). First, regarding the hemispheric distribution of the FCs,

inter-hemispheric (69%) and right intra-hemispheric (31%) FCs
dominated, whereas the left intra-hemispheric FCs were absent
(one-sided binomial test, P¼ 0.01). Second, regarding the
hemispheric distribution of the brain regions involved in the 16
FCs, there were significantly more regions in the right hemisphere
than in the left (one-sided binomial test, P¼ 0.05). Third,
regarding the functional network attributes of the 32 brain
regions comprising these 16 FCs (allowing for duplicates in the
count), 41% (13 regions) belonged to the cingulo-opercular
network14,42. This percentage was significantly higher than 24%,
the anatomically expected percentage, given 33 cingulo-opercular
regions among a total of 140 regions (¼ 33/140� 100) (one-sided
binomial test, P¼ 0.02; see also Table 1).

The state of FC exhibiting the smaller (that is, more negative)
and greater (more positive) mean correlation index in the
ASD population than the TD control is termed under- and
over-connectivity, respectively. In the 16 FCs incorporated in
the classifier, ASD exhibited under-connectivity in nine FCs
(rASDorTD) and over-connectivity in seven FCs (rASD4rTD)
compared with TD. See Table 1 for the mean correlation values
for the ASD and TD populations and Supplementary Fig. 6 for
their distributions. A w2-test indicated that there was no
significant difference between the number of FCs exhibiting
under- and over-connectivity (P¼ 0.62). These results suggest
that neither the under- or over-connectivity hypothesis43–45 alone
can successfully describe the overall aberrancy in the FCs
exhibited by the ASD population. One previous study observed
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Figure 2 | The 16 FCs identified for the ASD/TD classifier. (a–c) The 16 FCs viewed from (a) top, (b) posterior and (c) left. The inset displays all

9,730 FCs. The 29 terminal regions connected by the 16 FCs were numbered as follows: in the frontal lobe, the superior (1), middle (2), inferior (3, left;

4–7, right) gyri and rectus (8); in the temporal lobe, the superior (9), middle (10), inferior (11), parahippocampal (12) and fusiform (13) gyri; in the

parietal lobe, the superior parietal lobule (14) and the postcentral gyrus (15); in the occipital lobe, the middle occipital gyrus (16), cuneus (17, left; 18, right)

and the calcarine fissure (19); in the limbic system, the anterior (20), middle (21–22), posterior (23) cingulate gyri and amygdala (24); in the basal ganglia,

the caudate (25, left; 26, right), pallidum (27), thalamus (28); and cerebellum (29). See also Table 1 and Supplementary Movie 1.
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a similar trend for the FCs selected simply by using a statistical
threshold for the difference in FC between the two populations41.
However, there is no guarantee that the FCs that survived should
represent the neural substrates of ASD. This is because any
statistical result using thresholds varies with a specific data set
and the thresholds. Our result is the first demonstration that
neither the under- or over-connectivity hypothesis alone
sufficiently characterizes the FCs that can classify the ASD
population from the TD population in independent validation
cohorts (Supplementary Fig. 6 and Table 1). Furthermore, the
present findings are at odds with the previous distance-dependent
abnormality hypothesis that proposed disrupted long-range and
enhanced short-range connectivity in ASD46. Specifically, we
found that the mean distance of the FCs was not significantly
correlated with enhancement in the FCs in ASD (that is,
correlation between the distance of an FC and its rASD� rTD;
difference in correlations of FCs for ASD and TD, r¼ 0.42,
P¼ 0.10) or with the difference in their absolute strengths
(|rASD|� |rTD|; r¼ 0.24, P¼ 0.36). Furthermore, there was
no significant difference (t14¼ 1.3, P¼ 0.23) between the
mean distance of nine FCs exhibiting under-connectivity
(64.6±51.1 mm) and the mean distance of seven FCs exhibiting
over-connectivity (92.8±33.9 mm). Here the distance of each FC
was computed as a one-line distance between the central
coordinates of the two connected brain regions.

Prediction of diagnostic instrument scores using the 16 FCs.
Using the 16 FCs identified in the classifier, we predicted the
measured domain scores of the two standard diagnostic
instruments, the Autism Diagnostic Observation Schedule
(ADOS)47 and the Autism Diagnostic Interview-Revised
(ADI-R)48. The number of available subjects was 58 for ADOS
and 27 for ADI-R. Each instrument contained four domains, as
summarized in Supplementary Table 3. In each domain of each
instrument, a linear regression was individually employed to
determine the weights of 16 FCs so that their weighted linear
summation was used as a predictor for the corresponding
measured score. Among the total of eight domains of ADOS and
ADI-R, we found that the communication domain of the ADOS
(ADOS A) was well predicted from the 16 FCs with statistically
significant correlation (r¼ 0.44, uncorrected P¼ 0.001o0.05/8, a
Bonferroni-corrected threshold for multiple comparisons; see
Fig. 4a and Supplementary Table 3). The bootstrapping analysis
demonstrated that the probability that this correlation r¼ 0.44
would be derived from 16 FCs randomly selected from 9,688
(¼ 9,730� 42) FCs, which were not identified in the LOOCV
procedure, was small (P¼ 0.048, Fig. 4b, see also Methods). These
results demonstrate that the 16 FCs identified in the classifier
specifically contain more useful information than the remaining
FCs in predicting the ADOS A score, which is the degree of
deficits in communicative behaviours.

Table 1 | Properties of the 16 interregional FCs used in the classification of the ASD and TD populations.

ID Terminal regions Mean FC Wt.

Lat. Name Gyral region BA Net. rTD rASD

1 R Diagonal ramus of the lateral f. (4) Inferior frontal g. 44 SM 0.77 0.71 �0.88
R Ascending ramus of the lateral f. (6) Inferior frontal g. 45 CO

2 R Subcallosal s. (21) Middle cingulum 23 DM 0.39 0.22 � 1.95
R Calloso-marginal posterior f. (22) Middle cingulum 23 CO

3 R Thalamus (28) Thalamus — CO 0.30 0.10 � 2.62
L Subcallosal s. (23) Posterior cingulum 29 DM

4 R Amygdala (24) Amygdala 34 CO 0.16 0.05 � 2.14
L Accumbens (25) Caudate — CO

5 R Rhinal s. (12) Parahippocampal g. 30 CO 0.11 �0.04 � 2.11
R Olfactory s. (8) Rectus 11 DM

6 R Median occipito-temporal lateral s. (11) Inferior temporal g. 20 CO 0.03 �0.01 �0.98
L Anterior inferior frontal s. (3) Inferior frontal g. 45 FP

7 R Posterior terminal ascending branch of the superior temporal s. (10) Middle temporal g. 21 DM �0.09 �0.21 � 1.26
R Internal occipito-temporal lateral s. (13) Fusiform 37 OC

8 R Intermediate precentral s. (2) Middle frontal g. 46 FP �0.10 �0.19 � 1.59
L Lobe occipital (16) Middle occipital g. 19 OC

9 L Polar frontal s. (1) Superior frontal g. 9 DM �0.16 �0.29 � 1.52
R Retro central transverse ramus of the lateral f. (15) Postcentral g. 3 SM

10 R Caudate (26) Caudate — CO 0.17 0.22 0.76
L Calloso-marginal anterior f. (20) Anterior cingulum 32 CO

11 R Olfactory s. (8) Rectus 11 DM �0.10 �0.02 1.78
L Parieto-occipital f. (17) Cuneus 18 DM

12 L Pallidum (27) Pallidum — CO �0.14 0.04 1.90
R Superior temporal s. (9) Superior temporal g. 22 CO

13 M Vermis (29) Vermis — CB �0.18 �0.04 1.85
R Superior temporal s. (9) Superior temporal g. 22 CO

14 L Superior parietal s. (14) Superior parietal g. 7 FP �0.19 �0.06 0.99
R Anterior lateral f. (7) Inferior frontal g. 47 CO

15 R Inferior precentral s. (5) Inferior frontal g. 44 SM �0.24 �0.13 1.00
R Parieto-occipital f. (18) Cuneus 18 OC

16 L Anterior inferior frontal s. (3) Inferior frontal g. 45 FP �0.24 �0.16 1.74
R Calcarine f. (19) Calcarine 17 OC

CB, cerebellum; CO, cingulo-opercular; DM, default-mode; f., fissure; FC, functional connection; FP, fronto-parietal; g., gyrus; Lat, laterality; L, left; M, medial; Net, network; OC, occipital; R, right;
s., sulcus; SM, sensorimotor; Wt., weight.
Listed here are the laterality and anatomical identification of the terminal regions (as defined in the Brainvisa Sulci Atlas), the associated gyral regions (as identified by the Anatomical Automatic
Labeling), their Brodmann’s areas, and associated networks, for each connection. The number in parenthesis appended to each gyral region represents the region identification in Fig. 2. Identification
of the network is after Dosenbach et al.14. In addition, the mean correlations of the TD and ASD populations and the weighting coefficient in the SLR classifier are shown. FCs 1–9 represent
under-connectivity (rASDorTD), whereas FCs 10–16 represent over-connectivity (rASD4rTD). See also Supplementary Fig. 6.
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Application of the ASD classifier to other disorders. Here we
examine the specificity to ASD of the ASD classifier, and/or its
generalizability to psychiatric disorders other than ASD. If the
ASD classifier predicts patients with a different disorder as
healthy control individuals, then AUC by the ASD classifier for
the classification of patients with that disorder from their control
should be close to 0.5. In this case, we may as well say that the
patients possess so little ASD-ness and that the disorder is not
related to ASD from the viewpoint of the imaging biological
dimension. In contrast, if the ASD classifier perfectly dis-
criminates patients with a different disorder from its control, the
classification AUC should be close to 1. In this case, we may as
well say that the patients possess a large degree of ASD-ness in
them and that this disorder is closely related to ASD according to
the biological dimension.

To test this, we applied the ASD classifier to two additional
Japanese cohorts of SCZ and MDD (each containing a healthy
control population) and one European cohort of ADHD
(containing a TD population) (see Methods). We computed the
WLS of the identified FCs in the ASD classifier, that is, the
ASD-ness of each individual within the SCZ, MDD and ADHD
data sets, and their corresponding healthy or TD control
populations. We then compared the WLS distributions between
each disorder group and its corresponding healthy or TD control
(Fig. 5). As expected and already demonstrated in Fig. 1, the
separation of WLS distributions was the largest between ASD and
TD (Fig. 5a), meaning that the developed ASD classifier has a

good ability to discriminate ASD from TD individuals, and the
ASD-ness is able to successfully separate the two populations. The
separation between SCZ individuals and their healthy controls
was poorer than that of ASD but statistically significant (Fig. 5b;
AUC¼ 0.65, Kolmogorov–Smirnov test, P¼ 0.012 corrected for
multiple comparisons). In contrast to SCZ, the WLS distributions
of ADHD and MDD, and their corresponding TD and healthy
controls were not distinguishable (Fig. 5c,d; AUC¼ 0.57,
Kolmogorov–Smirnov test, P¼ 0.65 for ADHD; AUC¼ 0.48,
Kolmogorov–Smirnov test, P¼ 0.83 for MDD). In other words,
the ASD-ness of individuals with ADHD or MDD is not different
from that of their controls. Note that MDD was more completely
indistinguishable from its control compared with ADHD
according to the ASD-ness. It can be said that the ASD classifier
was specific to ASD regarding ADHD and MDD, but was
modestly generalized to SCZ (compare AUC¼ 0.93 for the ASD
discovery cohort and AUC¼ 0.65 for the SCZ data set). These
results demonstrate that the WLS of the ASD classifier, in other
words the ASD-ness, quantified the spectrum of the four
disorders as follows; SCZ was close to ASD, ADHD was distant
from ASD, and MDD was farthest from ASD.

Discussion
In the present study, we established a reliable neuroimaging-
based classifier for ASD by investigating the whole-brain patterns
of FCs using the rs-fcMRI data of 74 adults with ASD and 107 TD
individuals collected at multiple sites in Japan. This classifier
incorporated as small as 16 FCs (only 0.2% of the entire FCs)
distributed across the brain but not contained in the left
hemisphere, and allowed a diagnosis prediction accuracy of
85% for each individual with balanced sensitivity and specificity
of 80% and 89%, respectively. Most importantly, the high
performance of the classifier was generalized across the Pacific
to the independent, ethnically more diverse, validation cohort
in the USA (75% accuracy) with only 10% decrease in
accuracy compared with the Japanese discovery cohort. Although
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Figure 4 | Prediction of ADOS A domain score (communication) using

the 16 FCs identified in the classifier. (a) Scatter plot of the measured

ADOS A domain versus the predicted score, which was computed as a

linear weighted summation of the 16 FCs identified by the ASD/TD

classifier. Each dot represents individual data (n¼ 58, see Methods,

Participants). The line indicates the linear regression of the measured score

from the predicted score, and correlation coefficient and statistical

significance are shown (see Supplementary Table 3 for results of the other

three domains of ADOS and all four domains of the ADI-R instrument).

(b) The frequency of the different correlation coefficient values is plotted in

a bootstrap analysis in which 16 FCs were randomly selected from all 9,730

FCs, with the exception of those 42 FCs selected in the LOOCV procedure.

The correlation coefficient between the measured and predicted scores was

computed as in a. This analysis indicates that the probability of obtaining

the correlation coefficient r¼0.44 was small (P¼0.048), and

demonstrates that the 16 FCs identified in the classifier specifically contain

information useful to predict the ADOS A score.
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successful construction of a FC-based ASD classifier has been
reported previously49, our work presents the first achievement of
successful classification for ASD across discovery as well as
validation cohorts. Our approach may lay a foundation for
developing classifiers for other psychiatric disorders. This is
because, to the best of our knowledge, there exists no
neuroimaging-based classifier for any psychiatric disorder of
which the generalization capability is demonstrated for an
independent validation cohort. We have further applied the
ASD classifier for classification of SCZ, MDD and ADHD
patients from their healthy controls. The results indicate that,
while the ASD classifier exhibited hardly any generalizability as
applicable to ADHD and MDD, it can be to a modest degree
generalizable to SCZ.

In the present study, both sophisticated machine-learning
algorithms and a variety of data from the Japanese three sites
were essential for successful generalization of the classifier across
multiple sites. First, the unique combination of the two machine-
learning algorithms, L1-SCCA and SLR, worked to achieve
optimal extraction of a small number of FCs that were relevant
only to the core ASD characteristics. This optimal extraction
avoids over-fitting and eliminates the effects of NVs such as age,
sex and site-dependent characteristics in the data composition
and imaging protocols. In fact, when we applied to our data
sets a state-of-the-art machine-learning algorithm of nested
cross-validation of the elastic net50, this algorithm selected

10 times more FCs and performed 14% worse on the USA
cohort (percent correct of 61%; see Supplementary Note 3 for
more detail). This algorithm did not explicitly exclude the
interfering effects of NVs. This fact indicates that the
generalization capability of our ASD classifier across imaging
sites most probably stemmed from reduced influences of FCs
related to NVs owing to the unique combination of L1-SCCA and
SLR. By utilizing synthetic data sets and by comparing with elastic
net, we demonstrated that the unique combination of L1-SCCA
and SLR can be useful to reduce the influence of FCs related to
NVs (see Supplementary Note 4). Second, we examined the
conditions for which data sets can derive reliable ASD classifiers.
More concretely, we selected one or two of the three sites
within the Japanese discovery cohort for training data sets
(Supplementary Table 4) and constructed classifiers. In addition,
we trained a classifier with the ABIDE data set and examined its
generalization capability for the Japanese cohort (Supplementary
Note 5). The resulting performances were generally poorer than
that of the current ASD classifier. Especially, the performance of
the ASD classifier, which was developed using the ABIDE data
set, was very poor. It is suggested that having a sufficient number
of participants in total as well as in each site is a necessary
condition to construct a reliable ASD classifier (see also
Methods). We conclude that both a sophisticated machine
learning algorithm and a large training data set are essential for
developing a reliable and generalizable classifier.

It is worth noting that the performance of the classifier may be
upper-limited by the aetiological and phenotypic heterogeneity of
ASD, which is likely to be accompanied by differential biological
underpinnings. This limitation may be ameliorated and the
overall diagnostic precision may be improved by identifying
subgroups that are biologically more uniform within a given
population and by extracting a set of features that characterize
each subgroup.

What do the results of the applications of the ASD classifier to
the other psychiatric disorders suggest? Figure 5 shows the
density distributions of the WLS that resulted from the
application of the ASD classifier to data sets for other disorders,
SCZ, MDD and ADHD. The results raise the intriguing
possibility that the degree of generalizability and specificity of
the ASD classifier to these other disorders reflect their spectral
structure on the scale of whole-brain intrinsic functional
networks. From this perspective, Fig. 5 suggests that ASD shares
more intrinsic-functional networks with SCZ than with ADHD or
MDD. This is consistent with the results of the previous clinical
works as described in the opening paragraphs30,32. These results
raise the possibility that a neuropsychiatric disorder can be
redefined and represented as a location in a multi-dimensional
space defined by FC-based biological ‘dimensions’, each of which
takes the form of WLS consisting of a small number of FCs34,35.
In this case, the ‘ASD-ness’ could make a dimension along which
ASD and SCZ are located and might be orthogonal to another
dimension along which ADHD and MDD are located.
Interestingly, to aim at building a biomarker for ASD, we
started with a categorical approach by which a supervised
machine-learning algorithm was utilized and a diagnostic label
was adopted as its teaching signal. However, the results of
applying the classifier built for that original purpose to other
neuropsychiatric diseases have raised the exciting possibility that
the classifier allowed us to go beyond the category regime and to
embark on the exploration for new biological dimensions34,35.

How would the current research results contribute to the future
diagnoses and therapy for neuropsychiatric disorders? Recently,
an increasing number of researchers have had the perspective that
a biomarker can be used to stratify a broad illness phenotype
into a finite number of treatment-relevant subgroups, thereby
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Figure 5 | Application of the ASD classifier to other psychiatric

disorders. The density distributions of the weighted linear sum (WLS)

obtained by applying the ASD classifier to (a) ASD, (b) SCZ, (c) ADHD

and (d) MDD data sets. In each panel, the patient distribution and the

TD/healthy control distribution are plotted separately, with coloured and

grey areas, respectively. For reference, the WLS distribution of the ASD

patients (red area) in a is duplicated across the panels (b–d). For each

patient–control pair in a–d, the significance of the Benjamini–Hochberg-

corrected Kolmogorov–Smirnov test and AUC values are shown. In this

figure, for the visualization purposes, the WLS of each data set is

standardized to match median and s.d. of TD controls across the panels.

Note that this WLS standardization is not performed in any quantitative

analysis.
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bypassing nosological arguments over diagnostic boundaries5.
This perspective could lead to developments of multiple
neuroimaging-based biomarkers for multiple psychiatric
disorders. The generalization capability across imaging sites is a
bare minimal requirement for a classifier towards its clinical
applications. If reliable classifiers for ASD, SCZ, MDD, ADHD
and even other disorders are developed in the near future, these
classifiers may be utilized as a new diagnostic tool as a set of
biomarkers that can quantify intrinsic FCs of individuals who
need in-depth clinical examinations for various disorders. Such
quantification is possible because multiple biomarkers can use the
same rs-fcMRI data from an individual. In this vein, the current
study could provide a foundation for such a future direction in
neuropsychiatric diagnoses.

We formed a consortium with other researchers in 2013 as
part of the Japanese Strategic Research Program for Promotion
of Brain Science (SRPBS)51 with the aim of applying big
data, machine-learning algorithms and sophisticated fMRI
neurofeedback methods52,53 to study diagnosis and therapy for
multiple psychiatric disorders. We have developed fMRI real-time
neurofeedback methods that can change FC between brain
regions with healthy and ASD individuals. First, in healthy
individuals, 4 days of fMRI real-time neurofeedback of FC
between two designated areas changed rs-fcMRI connectivity,
and the changes remained for more than 2 months53. Second,
for ASD individuals within the SRPBS consortium, a further
developed neurofeedback method of FC has been applied54,55.
The identified 16 FCs in the present research may contribute to
improvements in the fMRI real-time neurofeedback of FC to ASD
individuals as a possible therapeutic target. In one recent study
with ASD individuals, target FCs were selected by the ASD
classifier developed in the present study54, and the WLS of the
ASD classifier was estimated in a real-time fMRI neurofeedback
paradigm for an ASD individual. Then, a sign-inverted WLS
value was presented to the ASD individual as a neurofeedback
target to increase in a reinforcement learning paradigm54.
Increases in the neurofeedback score lead to reductions in the
WLS value. Researches within the SRPBS consortium have
suggested that the ASD classifier we have developed in this study
could be a useful tool, with which connectivity neurofeedback
methods would make further progress to attain the goal of ASD
individuals obtaining normal rs-fcMRI dynamics51.

In summary, we have developed a generalizable rs-fcMRI-
based classifier for ASD28 for the first time. Despite the fact that
this classifier is based on a small number of identified FCs, it
greatly distinguishes ASD from TD with demonstrated
generalization in the independent validation cohorts, and
accounts for socio-communicative aspects of ASD. The results
of applications of this ASD classifier to other psychiatric disorders
have left open the interesting possibility of exploring new
neuroimaging-based dimensions for multiple-disorder spectrum.

Methods
Participants. All participants in the present study provided written informed
consent as approved by the ethics committees of the recruiting institutions as
follows: the Ethics Committee of the Graduate School of Medicine and Faculty of
Medicine at the University of Tokyo, the Ethics Committee of the Faculty of
Medicine of Showa University, the Institutional Review Board of Advanced
Telecommunications Research Institute International, the Committee on Medical
Ethics of Kyoto University and the Ethics Committee of Hiroshima University.

A total of 74 adults with ASD and 107 age, sex, handedness and IQ-matched
TD individuals participated in the present study. The participants were recruited at
three different sites in Japan (sites A–C). Their demographic information is
summarized in Supplementary Table 1.

At site A, participants with ASD were recruited through the Department of
Child Psychiatry and Neuropsychiatry at the University of Tokyo Hospital and via
an advertisement on the website of the University of Tokyo Hospital. All ASD
participants (n¼ 35) were diagnosed with pervasive developmental disorder (PDD)

based on the DSM-IV-TR criteria56. DSM-IV-TR diagnoses of autistic disorder,
Asperger’s disorder, or pervasive developmental disorder not otherwise specified
(PDD-NOS) (n¼ 24, n¼ 3 and n¼ 8, respectively) were supported by ADOS47

(n¼ 35) and ADI-R48 (n¼ 27). The Japanese version of mini-international
neuropsychiatric interview M.I.N.I. was used to evaluate psychiatric comorbidity57.
No participant satisfied the diagnostic criteria for substance use disorder, bipolar
disorder or SCZ. The IQ scores of participants with ASD were obtained using the
Wechsler adult intelligence scale-revised (WAIS-R) or third edition (WAIS-III).
The full-scale IQs (FIQs) of all of the individuals with ASD were measured and
found to be 485. TD individuals were recruited from the local community and via
other on-going studies at site A. M.I.N.I. was used to confirm that none of the
TD met the diagnostic criteria for any psychiatric disorder. The IQs of the TD
individuals were estimated using the Japanese version of the national adult reading
test (JART)58. All participants were right-handed according to the Edinburgh
Handedness Inventory59. Participants completed the Japanese version of the
autism-spectrum quotient (AQ-J)60. At the time of scanning, 11 ASD individuals
were medication free, whereas the remaining 24 ASD individuals had been
administered the following psychotropic drugs: anxiolytics (n¼ 18),
antidepressants (n¼ 20), antipsychotics (n¼ 15), antiepileptics (n¼ 6) and
sleep-inducing drugs (n¼ 17), before the scanning. Some participants had been
administered multiple drugs (n¼ 20).

At site B (Showa University Karasuyama Hospital), the diagnoses were made by
a team of experienced psychiatrists and clinical psychologists based on detailed
interviews of individuals regarding their development and behaviour, from infancy
through adolescence and family history. At least one caregiver who knew the
individual in his/her childhood was usually present in the interview. At the end of
the clinical interview, the psychiatrist diagnosed the individuals according to the
DSM-IV-TR diagnostic criteria for PDD based on the consensus of the
psychiatrists and the clinical psychologists. These assessments resulted in all of the
participants in the ASD group (n¼ 39) receiving clinical diagnoses of autistic
disorder (n¼ 19), Asperger’s disorder (n¼ 16) and PDD-NOS (n¼ 4). The
diagnoses for 23 individuals were supported by ADOS47. As performed at site A,
the IQ scores of participants with ASD were obtained using WAIS-R or WAIS-III.
FIQ for all individuals with ASD was 480. FIQ for all TD individuals was
estimated using JART. All participants, including ASD and TD, completed the
Japanese version of the AQ test60. M.I.N.I. was used to confirm that none of the
TD individuals met the diagnostic criteria for any psychiatric disorder. At the time
of scanning, 27 ASD individuals were medication free, whereas the remaining 12
ASD individuals were administered the following psychotropic drugs: anxiolytics
(n¼ 7), antidepressant (n¼ 9), antipsychotics (n¼ 3), antiepileptics (n¼ 3) and
sleep-inducing drugs (n¼ 7). Some participants were administered multiple
drugs (n¼ 8).

At site C (Advanced Telecommunications Research Institute International),
33 TDs participated in the present study after providing written informed consent.
None of the participants had a previous history of neurological disorders. All
participants were right-handed as confirmed by the Edinburgh inventory. No ASD
individuals were recruited at site C as it was not a medical institution.

Training data set used for construction of the ASD classifier. MRI data for the
training of the ASD/TD classifier were acquired at three different sites in Japan. An
MRI system was used at the site where participants were recruited. Each imaging
site adopted its own imaging protocol (Supplementary Table 5), differing in both
imaging parameters and instructions provided to the participants during the scan.
These discrepancies were taken into account in subsequent classification analysis
(see the section below ‘L1-regularized sparse canonical correlation analysis’
and Supplementary Note 6). At all sites, participants were subjected to
high-resolution T1-weighted structural imaging as well as resting-state functional
imaging, which were preprocessed with SPM8 (Wellcome Trust Centre for
Neuroimaging, University College London, UK) software running on MATLAB
(R2012b, Mathworks, USA) as follows. First, the raw functional images were
corrected for slice-timing and realigned to the mean image of that sequence to
compensate for head motion. Next, the structural image was co-registered to the
mean functional image and segmented into three tissue classes in the Montreal
Neurological Institute (MNI) space. Using associated parameters, the functional
images were then normalized and resampled in a 2� 2� 2 mm3 grid. Finally,
they were smoothed by Gaussian of full-width at half-maximum 6 mm. Because
subsequent analysis is based on the pattern of temporal correlations among the
brain regions and the evaluation has shown itself to be highly sensitive to abrupt
head motion during scanning, the pre-processed sequence of functional images was
examined as follows. First, we evaluated the mean relative displacement61 in each
of the six motion parameters (that is, translation along and rotation with respect to
the x, y and z axes) by calculating the mean of the absolute frame-to-frame relative
changes in each individual parameter through a given time series (namely, the
mean of DpðiÞ

�� �� � piþ 1 � pij jacross the time series, where p is one of the six
motion parameters and i specifies the time point). In both the Japanese and the
USA data sets, there was no statistically significant group difference in this measure
for any of the six motion parameters (Supplementary Table 6). Next, for each
participant, we calculated the frame displacement (FD) at each time point by
summing DpðiÞ

�� �� for all six parameters. Using this FD, we employed the ‘scrubbing’
procedure62 to identify and exclude any frame exhibiting excessive head motions.
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Specifically, a frame was flagged and removed, along with the previous and two
subsequent frames, from the correlation analysis, if the associated FD exceeded
0.5 mm (ref. 62). On average (±s.d.), 93.4±11.2% and 95.7±7.5% of the original
frames passed this ‘scrubbing’ procedure in the TD and ASD populations,
respectively, and these fractions did not differ significantly between the two
populations (two-sample t-test, P¼ 0.13).

Generalization to USA data. The performance of the classifier was further tested
using an independent data set available from the US ABIDE Project40. For
individuals with ASD, the criteria for data inclusion were that they must (1) be
older than 18 years of age, (2) be right-handed, (3) have a FIQ exceeding 80,
(4) have no comorbidity and (5) have been diagnosed as autistic by either ADI-R or
ADOS. Individuals with an explicit medication record at the time of the scan were
excluded. A total of 54 autistic individuals satisfied these criteria. In addition,
52 age-, sex- and FIQ-matched TD individuals satisfying criteria (1)–(4) were
selected from the same pool of participants. Then, their MRI data were obtained
and the functional images were visually inspected to ascertain that the field of view
covered the entire brain. We found that functional images for 18 participants
suffered from severe truncation at either the top (parietal lobe) or bottom
(inferior temporal lobe to cerebellum) portion of the brain, and they were removed
from the further analysis accordingly. A total of 44 individuals with ASD and 44
demographically matched TD individuals comprised the final list. Their properties
are summarized in Supplementary Table 7. The imaging protocols adopted at each
site are summarized in Supplementary Table 8. We preprocessed the MRI data in
the same way as for the Japanese data and calculated the interregional FC for each
subject. In addition, to test the performance of the classifier on individuals with
more diverse profiles, we formed a Supplementary Dataset by removing the
conditions for FIQ, comorbidity and medication status. The detail of the data
set and the result of the analysis are provided in Supplementary Note 2.

Further evaluation of the generalization capability. To further examine the
classifier’s generalization capability, we formed an extra data set at site B (Showa
University Karasuyama Hospital) independently of the training data set. This data
set incorporated 27 individuals with ASD and 27 demographically matched TDs
who were recruited under the criteria of this site (see the Participants section).
The data acquisition was conducted using a new 3 T MR scanner of a different
manufacturer, replaced after the formation of the training data set. For more detail
including the imaging protocol, see Supplementary Table 9.

Application of the ASD classifier to other disorder. To further understand
the generalization property of the ASD classifier, we evaluated its classification
specificity to ASD. Specifically, we tested its classification performance using the
data sets that incorporated individuals with SCZ, MDD and ADHD as follows.

We formed a data set that consisted of 66 patients with SCZ (34 females, age
38.2±9.1 year) and 107 age-matched healthy control participants (40 females, age
34.6±8.2 year). Their handedness was determined by the Edinburgh Handedness
Inventory59. The mean±s.d. of the SCZ was 75.0±40.9 and that of the healthy
control was 81.2±35.1. The patients were recruited at in- and out-patient facilities
in the Kansai region in Japan. They were diagnosed with the patient edition of the
Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). None of the
patients had comorbid psychiatric disorders. The controls were recruited from the
local community at Kyoto University. None of them had any history of psychiatric
illness, as indicated by screening results using the nonpatient edition of the SCID.
These screening results were confirmed by the fact that none of their first-degree
relatives had any history of psychotic disorders. The MR data of both patients
and healthy controls were acquired at the Kyoto University Hospital (see
Supplementary Table 9 for more details). All participants were physically healthy
when they were scanned. The details of this data set are stated elsewhere.

Next, we formed a data set that consisted of 105 patients with unipolar MDD
(51 females; 42.8±11.5 year) and 145 age-matched healthy control participants
(90 females; 39.5±12.7 year). Their handedness was determined by the Edinburgh
Handedness Inventory59. The mean±s.d. of the MDD were 84.8±30.1 and that of
the healthy control populations was 81.7±36.0. The patients were recruited from a
local clinic and the healthy controls in the community of the Hiroshima University.
The MR data of both patients and healthy controls were acquired at the Hiroshima
University Hospital and other local imaging facilities (see Supplementary Table 9
for the summary of the data). All the patients were screened with the DSM-IV
criteria for a unipolar MDD diagnosis using M.I.N.I. No patient had current or past
SCZ episodes. Healthy participants were interviewed with M.I.N.I. and none of
them showed a history of psychiatric disorders according to DSM-IV criteria. The
details of this data set will be described elsewhere.

Next, we formed a data set that incorporated individuals with ADHD and
TDs acquired by the NeuroIMAGE project in the Netherlands (http://www.
neuroimage.nl/). They were a part of the ADHD-200 Sample and we obtained
their permission-free MR data and the associated demographic and phenotypic
information from the ADHD-200 Sample website (http://fcon_1000.projects.nitrc.
org/indi/adhd200/) under an unrestricted usage agreement for non-commercial
research purposes. Because the current study focuses on adult ASD, only
individuals with rounded ages 418 years were incorporated into the present

analysis. The final data set consisted of 13 individuals with ADHD (2 females;
19.0±1.1 year) and age-matched 13 TDs (7 females; 19.2±1.2 year). The subtype
identification of the ADHD populations was three hyperactive-impulsive types, one
inattentive type and nine combined (hyperactive-impulsive and inattentive) types.
Among the ADHD individuals, 10 were right-handed, 3 were left-handed and no
information was available for 1 individual. Among the TD individuals, 11 were
right-handed and 2 were left-handed. For more information on their demographic
and phenotypic properties, see the ADHD-200 Sample website.

To evaluate the extent to which each additional disorder tends to share traits
with ASD, we applied the ASD classifier to these three data sets in the same manner
as the US ABIDE data. The AUC of the classification was computed to evaluate the
degree of separation of SCZ, MDD and ADHD from their corresponding control
population. Moreover, the Kolmogorov–Smirnov test was used to compare the
WLS distributions of each disorder with their corresponding healthy controls and
TD individuals. The WLS distributions of the patient and control populations were
fitted separately with a mixture of Gaussians distributions and illustrated in Fig. 5,
along with the respective AUC and Kolmogorov–Smirnov P value. The P value of
each test was corrected for multiple comparisons by the Benjamini–Hochberg
procedure. For visualization purposes, the WLS in each data set was standardized
such that the median and s.d. of healthy controls and TD individuals were matched
across panels. It should be noted that this standardization was not used for any
statistical analyses.

Interregional correlation analysis. For each participant, a pair-wise, interregional
FC was evaluated among 140 regions of interest (ROIs) covering the entire brain.
The spatial extent of each region was defined anatomically by the digital atlas of the
Brainvisa Sulci Atlas (BSA)36. Because this atlas did not include the cerebellum, the
subregions of the cerebellum were appended to it by incorporating their boundary
definitions in the anatomical automatic labelling (AAL) package63. Although the
original AAL atlas defined 26 subregions in the cerebellum, they were reorganized
into the following three subregions in this study: the left and right cerebellum, and
the vermis. This modification was necessary because the scanned volume did not
cover the entire cerebellar regions for some individuals, and this incomplete
coverage lead to missing elements in the correlation matrix. To surmount this,
the mean time courses in the cerebellar regions were evaluated in three broader
subregions by masking, if any, unavailable voxels in each individual. This
BSA-AAL composite atlas was resampled in the 2� 2� 2 mm3 grid MNI space.
The representative time course in each region was extracted by averaging the time
courses of the voxels therein. A band-pass filter (transmission range, 0.008–0.1 Hz)
was applied to these sets of time courses prior to the following regression
procedure. The filtered time courses were linearly regressed by the temporal
fluctuations of the white matter, the cerebrospinal fluid, and the entire brain as well
as six head motion parameters. Here, the fluctuation in each tissue class was
determined from the average time course of the voxels within a mask created by the
segmentation procedure of the T1 image. The mask for the white matter was eroded
by one voxel to consider a partial volume effect. These extracted times course were
bandpass filtered (transmission range, 0.008–0.1 Hz) before the linear regression, as
was done for regional time courses. Then, for each individual, a matrix of 9,730 FCs
between 140 ROIs was calculated by exhaustively evaluating pair-wise temporal
Pearson correlations of blood oxygenation level dependent signals time courses
while discarding flagged frames, if any, in the previous procedure (scrubbing). We
note that unfiltered motion-related regressors, such as six head motion parameters
in the present case, could reintroduce high-frequency fluctuations into the time
course data61. The scrubbing procedure was employed to remove any frames
exhibiting abrupt head motions that could be the source of high-frequency
fluctuation in the filtered time course64. In addition, we confirmed that there was
no statistically significant difference in any of the motion parameters between the
ASD and TD populations (Supplementary Table 6). Thus, the chance that the
classification was influenced by head motion remained minimal.

Selecting FCs as the ASD classifier. Two major challenges exist in constructing a
classifier for ASD. The first challenge is the problem of over-fitting, because of the
small sample size. As previously mentioned, the dimension of the input to the
classifier is M¼ 9,730. However, the amount of data is only N¼ 181. Because N is
much smaller than the dimension of data M, the parameters of the classifier can be
easily over-fitted to the training data. Because of this over-fitting, the constructed
classifier will likely exhibit extremely poor performance with newly sampled test
data, which are not used in training the classifier. Therefore, we need to properly
introduce regularization to identify and utilize only essential FCs to ensure good
generalization of the classifier. Here we adopted a cascade of the L1-regularization
method, a well-known approach for managing the problem of small sample size,
and a sparse estimation method with automatic relevance determination65,66,
as detailed below and in the next two sections.

The second major challenge is related to NVs and is due to the fact that an ASD
classifier is clinically useful and scientifically trustworthy only if it maintains good
performance for MRI data scanned at imaging sites different from the sites where
the training data were collected. This is the so-called generalization capability
across imaging sites. However, in clinical applications, it has often been observed
that a classifier trained using data acquired from a particular site cannot be
generalized to the data scanned at other sites7,8,26. We overcame the second
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challenge by using a wide variety of training data sets obtained at the three imaging
sites, and by the unique combination of two sophisticated machine-learning
algorithms: L1-SCCA and SLR. Through additional analyses, we confirmed that
MRI data scanned from at least three sites, and obtained under a variety of imaging
conditions, are necessary to train a classifier that generalizes across multiple sites
(see Supplementary Table 4 for the results obtained when data from only one or
two sites were used). Furthermore, to extract FCs essential for ASD classification
and to reduce undesirable effects due to different scanning conditions and
demographic distributions at different sites, that is, irrelevant NVs, we adopted the
L1-regularized sparse canonical correlation analysis (L1-SCCA)37 (see also
Supplementary Note 6).

Altogether, the procedure for selecting relevant FCs, training a predictive model
and assessing its generalization ability was carried out as a sequential process of
9� 9 nested feature-selection and leave-one-out cross-validation (see also the
schematic diagram in Supplementary Fig. 2). In each leave-one-out (LOO)
cross-validation (CV) fold, all-but-one subjects were used to train a SLR38 classifier,
while the remaining subject was used for evaluation. SLR has the ability to train a
logistic regression model, while objectively pruning FCs that are not useful for the
purpose of classifying ASD. Before training SLR, it is necessary to reduce the input
dimension to some extent and simultaneously remove the effects of NVs that may
cause catastrophic over-fitting. Therefore, prior to LOOCV, nested FS was
performed using L1-SCCA. L1-SCCA identifies the latent relationships between FCs
and various attributes of each individual, including the diagnostic label, available
demographic information and imaging conditions (see details in the next section).
By selecting FCs that have a connection with a canonical variable related only
to the ‘Diagnosis’ label and not to NVs, we aimed to reduce the interferential
effects of NVs.

The feature (FCs) selection procedure was similar to 9� 9 nested cross-
validation, with the difference being that the test set was never used for validation
or feature (FCs) selection (Supplementary Fig. 2). In this way, L1-SCCA was trained
on different subsamples of the data set, to increase the stability of the selected
features. The ‘test set’ of the outer loop FS process was kept as a testing pool for
LOOCV, whereas the nine folds of the inner loop FS were used to select features.
Consequently, the LOOCV folds that belonged to the same testing pool of the outer
loop FS shared the same reduced features. In the inner loop FS, the L1-SCCA
hyperparameters l1 and l2 were varied independently between 0.1 and 0.9 (l1rl2)
with a step of 0.1. For each instance of L1-SCCA, we found the canonical variables
connected only with the label ‘Diagnosis’ and kept the features associated with
those canonical variables. On average, the number of l combinations that complied
with this constraint was 17.6±5.0% of the total 45 possible combinations. The
features selected at each inner fold and l combination were combined by the union
operation, to include features that are important for any possible subsample (inner
nine folds) of the training data set. This procedure leads to the selection of
4,529±161 FCs (mean and s.d. across outer folds). Once the inner loop FS was
executed, one sample was taken from the testing pool of the outer loop FS, and
used as the test set of the LOOCV. The remaining samples were used to train SLR
on the FCs retained during the inner loop FS. The advantage of this nested FS
procedure was that it used most of the data to train the models (LOOCV),
while performing time-efficient FS (9� 9 nested FS). The FS procedure based on
L1-SCCA is time consuming, and doing it for each fold of the LOOCV is not
computationally feasible. Instead, we kept one of the nine outer folds as a ‘testing
pool’ for the LOOCV and ran L1-SCCA on the remaining eight folds. This means
that we could reuse the selected features for all the samples in the ‘testing pool’,
during the LOOCV. That is, by performing ninefold nested FS we kept the test set
of the LOOCV separate from the data set used to select features. We could
efficiently (from a computational time perspective) avoid information leakage and
over-optimistic results20. It should be noted that, to split the data into nine folds,
we used a stratified approach, so as to keep an equal amount of (diagnosis, gender
and site) combinations per fold.

One of the advantages of the proposed algorithm is that it does not rely
on parameter tuning. Indeed, the L1-SCCA procedure is inspired by the
‘stability-selection67’ approach, where subsampling is combined with selection
algorithms. Specifically, it was designed in such a way that the amount of
regularization is not chosen explicitly based on the L1-penalty tuning, but rather on
concatenation of the features selected by different L1-penalties and subsamples.
In the original ‘stability-selection’ paradigm, features are selected based on the
frequency of selection across subsampling repetitions, which typically requires
threshold tuning by additional cross-validation. In this study, the union of the FCs
selected by L1-SCCA on different subsamples aims to avoid the tweaking of such
additional parameters. Moreover, SLR relies on automatic relevance determination,
a Bayesian procedure that does not require parameter tuning.

To classify the independent cohort data sets (for example, the US ABIDE data
set), we trained the final SLR classifier based on the union of the features selected
throughout the 9� 9 nested FS, using all the Japanese subjects as the training set.

L1-regularized sparse canonical correlation analysis. In general, by employing
canonical correlation analysis (CCA)68, we can identify latent relationship between
paired observations. Specifically, CCA can derive projection vectors so that the
paired projected variables (called canonical variables) have maximum correlation.
Suppose that we have N observations of the paired variables x1 2 Rp1 and x2 2 Rp2 .
Let X1 ¼ x1

1; x2
1; . . . ; xN

1

� �T
denote the N� p1 matrix comprising the first set of

variables, and let X2 ¼ x1
2; x2

2; . . . ; xN
2

� �T
denote the N� p2 matrix comprising the

second set of variables. As we explained in the previous section, we use sparse CCA
with L1-norm regularization, L1-SCCA37. We assume that the columns listing X1

and X2 of the training set have been centred to have zero mean and scaled to have
unit variance. For one canonical variable, L1-SCCA can then be formulated as

max
v1 ;v2

vT
1 XT

1 X2v2 subject to v1k k2
1� l1; v2k k2

1� l2; v1k k2
2� 1; v2k k2

2� 1; ð1Þ

where hyperparameters l1 and l2 indicate the sparseness of the projection vectors
v1 and v2, respectively. Since the maximum number of canonical variables is
q¼min(p1, p2), the projection matrices are defined as V1 2 Rp1�q and V2 2 Rp2�q ,
where each column contains the projection vector that is associated with a
canonical variable.

To identify the latent relationships between demographic information and FC,
we constructed two data matrices. A row of the first data matrix X1 lists the
properties and attributes of a subject, including the diagnosis (ASD or TD), site
information indicating where the brain activities of the subject were scanned,
age, sex, imaging conditions (open or closed eyes) and status of medication
(antipsychotics, antidepressant and anxiolytics, separately) (see Supplementary
Fig. 7). More specifically, the number of columns of the demographic information
data matrix X1 is 10, that is, p1¼ 10. The first column contains either 1 (¼ASD) or
0 (¼TD). The next three columns contain either [1 0 0] (¼ site A), [0 1 0] (¼ site B)
or [0 0 1] (¼ site C). The fifth column contains age value, the sixth column
contains either 1 (¼male) or 0 (¼ female), the seventh column contains either 1
(¼ eye open) or 0 (¼ eye closed) and the last three columns contain status of the
three medications, where each column contains either 1 (¼with medication) or 0
(¼without medication). The second data matrix X2 pools a row-vector form of the
off-diagonal lower triangular portion of a correlation matrix that represents the FC
of a subject. L1-SCCA was applied to the pair of matrices X1 and X2, from which
the sparse projection matrices V1 and V2 were derived. In this study, we defined the
constraint that at least one canonical variable should be associated only with the
diagnostic label, and we called it diagnostic canonical constraint. In addition, we
call canonical variables that are associated only with the diagnostic label as
diagnostic canonical variables. This was achieved by looking at the columns of V1

that had a non-zero element only in the first row (that corresponds to the
diagnostic label). Subsequently, only the columns of V2 corresponding to the
diagnostic canonical variables were used to form the vector vD

2 , by computing the
sum of the absolute value across columns (that is, union of features across
‘diagnostic canonical variables’). Moreover, we obtained the union of features
(that is, vD; union

2 ) across repetitions of the inner loop FS and across l1; l2h i
meeting diagnostic canonical constraint, by computing the sum of all the vD

2
derived in the process. Then, we used vD; union

2 to identify the indices of the
connectivity vector relevant to the diagnosis label. We projected the original
connectivity vector into a subspace defined by the nonzero elements of vD; union

2 .
Here we defined a variable ik to denote the index number of the k-th nonzero
element of vD; union

2 , where 1rkrm and m denotes the number of nonzero
elements. We then considered the projection matrix E ¼ ei1 ; ei2 ; . . . ; eim½ �T to the
subspace, where eik 2 Rp2 is the standard basis vector containing ‘1’ in the ik-th
element and ‘0’ in the other elements. Finally, we derived the vector in the subspace
zARm by projecting the original connectivity vector x2 as

z ¼ Ex2: ð2Þ
By choosing the FCs that corresponded to the canonical variables that are

connected only with the diagnostic label, we could select essential FCs for
classification. Simultaneously, undesirable effects caused by demographic and
imaging differences at different imaging sites, that is NVs, were reduced through
L1-SCCA, as explained in Supplementary Notes 6,4 and Supplementary Fig. 8.
This procedure makes the MRI data from the three imaging sites useful in
constructing a robust classifier that generalizes across ‘foreign’, that is, USA,
imaging sites.

Prediction of the diagnostic label. To predict the diagnostic label from the
extracted feature input z of equation (2) (identified FCs), we employed logistic
regression as the classifier. In logistic regression, a logistic function is used to define
the probability of a participant belonging to the ASD class as

Pðy ¼ 1 j ẑ; wÞ ¼ 1
1þ exp �wT ẑð Þ ; ð3Þ

where y represents the diagnosis class label, that is, y¼ 1 indicates ASD and y¼ 0
indicates the TD class, respectively. ẑ ¼ zT; 1½ �T2 Rmþ 1 is a feature vector with an
augmented input, where the feature vector z is extracted from the connectivity
matrix of one participant’s resting-state MRI sample (for more detail about data
standardization, see Supplementary Note 7). Using the augmented input ‘1’ is a
standard approach to introduce constant (bias) input for the classifier. wARmþ 1 is
the weight vector of the logistic function. To further decrease the dimension of the
feature vector, which was already reduced by L1-SCCA according to equation (2),
we used an SLR method, as described in the next paragraph. SLR automatically
selects the features related to the ASD label as input for the logistic function. In
SLR, the probability distribution of the parameter vector is estimated using the
hierarchical Bayesian estimation approach, in which the prior distribution of each
element of the parameter vector is represented as a Gaussian distribution. Because
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of the automatic relevance determination property of the hierarchical Bayesian
estimation method, some of the Gaussian distributions become sharply peaked at
zero so that the irrelevant features are not used in the classification.

Linear regression to the clinical indices. Using the identified 16 FCs in the
classifier, we predicted the four domain scores of the two standard diagnostic
instruments measured: the ADOS47 and the ADI-R48 (see also Supplementary
Table 3). Specifically, in each domain of an instrument, the score of each individual
was predicted by calculating the linear weighted sum of his/her 16 correlation
coefficients that corresponded to the 16 FCs in the classifier. The set of weights for
this summation was determined through LOOCV, in which the domain scores of
all-but-one participants were linearly regressed using the respective 16 correlation
coefficients as explanatory variables. Because previous studies indicated age- and
sex-related differences in cognition across the lifespan of adult ASDs69,70,
behavioural measures such as ADOS and ADI-R can be assumed to exhibit
dependence on these factors. We therefore incorporated age and sex into the
regression model as additional explanatory variables. The LOOCV was necessary to
avoid any information leakage from the individual to be predicted. The agreement
between the measured and predicted domain scores was evaluated by the Pearson
correlation coefficient and the statistical significance was tested against the null
hypothesis that there is no relationship between measured and predicted scores.
For the domain score with a significance correlation, the reliability of the prediction
was further tested by a bootstrapping analysis (10,000 repetitions) where the
alternative prediction was performed using 16 randomly selected FCs from the
pool of 9,688 (¼ 9,730� 42) FCs, which were not selected by SLR in the LOOCV
procedure for the ASD/TD classification (Supplementary Note 1). At each
permutation, a new regression model was computed for each of the eight domain
scores and the correlation between the predicted and measured domain score was
calculated. The highest of the eight correlations (corresponding to the eight
domains) was then selected and pooled over the permutations. The reliability of the
prediction using the original 16 FCs was evaluated by integrating the normalized
cumulative distribution of the pooled correlation coefficients derived through this
bootstrapping procedure.

Code availability. The classification code and the correlation matrix data used in
the present study are available at a secure server of ATR Brain Information
Communication Research Laboratory. Please contact the server administrator
(asd-classifier@atr.jp) for access.
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