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ceptual level we follow the strategy of the so-called Minlo′ programs. Whereas the existing
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we derive an effective numerical approximation to these ingredients, by imposing unitarity.

This offers a way of extending the Minlo′ method to more complex processes, complemen-

tary to the known route which uses explicit computations of high-accuracy resummation

inputs. Specifically, we have focused on Higgs-plus-two-jet production (Hjj) and related

processes. We also consider how one can cover three units of multiplicity at NLO accuracy,

i.e. we consider how the Hjj-Minlo simulation may yield NLO accuracy for inclusive H,

Hj and Hjj quantities. We perform a feasibility study assessing the potential of these ideas.
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1 Introduction

In recent years, next-to-leading order parton shower (Nlops) matching techniques have

been developed and realized as practical simulation tools, routinely used in LHC data

analysis [1–7]. By now Nlops methods have been applied to many processes involving
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the production of a primary colourless system, e.g. a massive boson, B, in association with

jets (Bnj) [8–12]. A Bnj Nlops simulation yields NLO accuracy for B + n-jet inclusive

observables, and LO accuracy for B + m-jet ones (m = n + 1), while its predictions for

more inclusive observables are divergent. Motivated by the success of leading order ma-

trix element-parton shower multi-jet merging approaches in the earlier part of the last

decade [13–16], it has been considered highly desirable to combine Nlops generators for

Bnj processes corresponding to different jet multiplicity, n, to obtain a unified simulation

output, consistently describing inclusive B, B+ 1-jet (Bj) and B+ 2-jet (Bjj) observables,

simultaneously, with NLO accuracy.

This merging problem has been addressed by a number of groups in the last few

years [17–23]. All of these approaches separate the output of each component simulation

(B, Bj or Bjj) according to the jet multiplicity of the events it produces, discarding those

having a multiplicity for which the generator does not possess the relevant NLO correc-

tions. Having processed the output of each simulation in this way, the event samples are

joined to give an inclusive sample. Loosely speaking, each generator can be regarded as

contributing a single exclusive jet bin to the final inclusive sample, the magnitude of each

bin being predominantly determined by the jet resolution scale used in performing the

merging, the so-called merging scale. Different approaches use different means to mitigate

the dependence on this unphysical scale.

If the merging scale is too high one loses the benefits of the higher multiplicity genera-

tors, describing relatively hard jets with tree-level accuracy, or the parton-shower approx-

imation. If the merging scale is too low, the inclusive sample is dominated by the higher-

multiplicity generators, which in general leads to unitarity violation, whereby more inclusive

quantities like the total inclusive cross section, exhibit spurious differences with respect to

their corresponding conventional NLO predictions. The Geneva approach [22] can com-

pletely avoid unitarity violation, and even the introduction of a merging scale, by employing

very high accuracy resummations. The method has been demonstrated for effectively merg-

ing two units of multiplicity (without a merging scale) in the context of an NNLL′+NNLO

parton shower matched simulation of the Drell-Yan process [24]. In the sense that it pro-

poses to resolve the merging problem through implementing sufficiently high order resum-

mation, Geneva represents the best solution of merging problem. However, details per-

taining to exactly how this is done are subject to debate in the community. In the Unlops

approach [25] unitarity is exactly maintained for sufficiently inclusive quantities, through

what the authors refer to as ‘subtract-what-you-add’ approach. Nevertheless, the Unlops

method is affected by other complications connected to the presence of a merging scale.

In the Minlo framework [26], fully differential NLO cross sections for processes of

type B + n − jets are matched onto a leading log resummation of the exclusive n−jet

cross section, as defined by the kt-jet algorithm, with B here referring typically to a given

collection of colourless final-state particles. This is the generalization, to the NLO level,

of the resummation applied in the Ckkw formalism [14, 27] to the highest multiplicity

tree level matrix element [16]. Essentially the n-hardest pseudopartons found by the kt-jet

algorithm have a distribution which is equivalent to that of a parton shower simulation of

B-production with, in addition, matching to the exact NLO Bnj matrix elements.
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Whereas previously the leading order parts of these cross sections themselves would

exhibit unphysical divergences when the Born partons became soft and/or collinear to one

another, with the Minlo prescription applied their behavior is instead regular, physical

and sensible, i.e. Bnj computations with the Minlo prescription also yield physical results

for Bmj (m < n) and even fully inclusive B-production observables. In the case of Bj,
with B a W/Z/Higgs boson, it was found that the standard Minlo procedure yielded

results for inclusive B production observables equivalent to conventional NLO ones up to

terms O(α
3/2
S ) relative to the LO component [28]. In the same article it was proven how,

by delicate adjustment of the Minlo Sudakov form factor and clustering procedure, the

spurious O(α
3/2
S ) terms could be eliminated, with the subsequent Bj-Minlo′ calculations

achieving NLO accuracy for both B and Bj inclusive observables; in the following we call

the improved Minlo procedure of ref. [28] Minlo′ to distinguish it from the original Minlo

prescription [26]. Thus one obtains, from the single NLO calculation of Bj production, also

the fully differential NLO calculation of B production. The Minlo′ calculation can then

be matched to a parton shower using the standard techniques [1–3]. When viewed in the

context of the recent work in merging multiple NLO calculations together this amounts to

merging without any unphysical merging scale. It was also demonstrated in refs. [29–31]

how to promote the Minlo′ simulations to Nnlops simulations.

While the modifications made in going from Minlo to Minlo′ involve including higher

order terms in the Sudakov form factor, and lead to the recovery of NLO accuracy also

for inclusive B observables, the related resummation is not improved in accuracy. The

resummation of the B system’s transverse momentum is NNLLσ accurate1 [32, 33] before

and after the inclusion of the latter terms in the Sudakov form factor [28] (and before

Nlops matching adds ambiguities). Thus, Minlo′ amounts to the Minlo method with

additional, subtle, unitarization. This is in difference to the Geneva approach, wherein

higher order resummation is taken as the main defining specification, with unitarization

coming ‘for free’ along with the latter [22, 24, 34]. In this sense Minlo′ is, minimally, the

same as the Powheg method. Indeed, in the Powheg method a very specific Sudakov

form factor is required to achieve an exact unitarization, needing terms in the exponent

that are sub-leading with respect to the resummation accuracy to do so, including even

power suppressed terms that are nothing to do with resummation.

To realize the Minlo′ method one needs to know the v → 0 singular part of the Bj
cross section differential in the underlying Born variables, ΦB, describing the kinematics of

the produced B-final state, where v is a variable measuring radiation hardness, at NLO; this

information may be obtained from suitably integrated NLO predictions for the spectrum,

or from fixed order expansion of N3LLσ resummation. In the case of ref. [28] v was given

by the transverse momentum of the produced W/Z/Higgs boson, for which the latter NLO

distributions have long been known in the literature [35–37]. Recently these distributions

have also become available to the same level of accuracy for the transverse momentum of

the hardest produced jet [38–44], with which an equally accurate Minlo′ calculation could

1LLσ refers to the resummation of the leading log tower in the spectrum, containing terms ᾱnSL
2n−1,

NLLσ refers to the next-to-leading log tower, ᾱnSL
2n−2, and NNLLσ the next-to-next-to-leading log series,

ᾱnSL
2n−3.
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have been developed. For more complicated observables, such as those which might be

used for implementing the Minlo′ method in the context of higher-multiplicity processes,

with the exception of the N -jettiness variable [45–52], these distributions are (so far) not

available in the literature. We note, however, that important progress is being made in the

direction of automated approaches to final-state resummation at NNLL [53], valid for broad

classes of observables, including those we consider in the present work. Whenever these

theoretical ingredients become available, the Minlo′ method is in principle straightforward

to apply, to make a NLO Bnj calculation simultaneously NLO accurate for Bmj (m = n−1)

observables etc; many of the details for that are clarified by the present work.

Nevertheless, even when all the necessary theoretical ingredients are at hand, experi-

ence with the Bj-Minlo′ calculations tells that the results of implementations are some-

times not as ideal as one might have liked. The Minlo′ codes are proven to return con-

ventional NLO results for inclusive B and Bj observables up to NNLO sized ambiguities

and power corrections. In practice the Hj-Minlo′ calculation was found to give very satis-

factory agreement with the regular NLO predictions for inclusive Higgs boson production.

On the other hand, comparing Wj-Minlo′ and Zj-Minlo′ predictions for inclusive W and

Z production to those of regular NLO calculations, one can see numerical differences be-

tween the two sets of formally equivalent results, which don’t really sit easily with the fact

that the two formally agree up to NNLO-sized ambiguities. In the Wj-Minlo′ case, the

inclusion of the relevant NNLL terms in the Sudakov form factor do not lead to noticeably

better agreement with the conventional NLO cross sections than those obtained with the

original Minlo prescription. We also point out that the true NNLO corrections to Higgs

boson production are large, ∼ 20− 30%, thus the almost perfect agreement of Hj-Minlo′

with conventional NLO calculations for inclusive Higgs boson production — which looks to

be a striking vindication of the theoretical framework — should be considered fortuitous.

Some people (like us) may be dismissive of numerical disagreement between Bj-Minlo′

and standard NLO predictions for fully inclusive observables, since the Minlo′ method

has been rigorously proven. Others may be less comfortable accepting the fact that these

differences arise from contributions beyond the formal accuracy of either type of calculation,

given their size in some cases. If 5 − 6% differences can be found in total inclusive cross

sections for inclusive W and Z production, it does not seem unreasonable to expect that

larger differences may be found in more complex processes, with more powers of the strong

coupling associated to the LO contribution and a richer kinematic content. Assuming one

is content to dismiss differences due to higher order ambiguities, for complex processes,

with even more complex calculations underlying them, it will be difficult to satisfy oneself

that the level of numerical disagreement is of this kind.

A final motivation for considering to extend the reach of the Minlo′ method is that of

merging NLO calculations differing by more than one unit of jet multiplicity. Specifically,

one would ultimately like a Minlo′ procedure applied to Bjj-Minlo such that it retrieves

NLO accuracy for inclusive B, Bj and Bjj observables. Naive extension of the Minlo′

method then implies having a N3LLσ-accurate nested resummation with which to base it

on. While the resummation community is making impressive progress in recent years [54],

the prospects for obtaining the high-accuracy ingredients needed to tackle this issue in the

near future are unclear to us.
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Noting these desirable and undesirable features of the existing Minlo′ method, we

investigated extending it in a number of ways:

1. The Minlo′ specification can be reached with only limited knowledge of the required

Sudakov form factors (at least NLLσ).

Thus, one can begin to make Minlo′ simulations for more complex processes.

2. Bjj/Bj-Minlo′ predictions for Bj/inclusive B observables agree precisely with those

of the corresponding conventional NLO calculations.

Numerical ambiguities between conventional inclusive NLO predictions and the as-

sociated Minlo′ ones can be largely eliminated.

3. NLO Bjj calculations can yield simultaneously NLO predictions for Bj and inclusive

B production observables.

The method to produce Nnlops simulations of B production can follow exactly as

in ref. [29].

In the present work we suggest an alternative approach to Minlo′, meeting the objec-

tives listed overhead, and we present a feasibility study confirming its potential. The basic

concept is very close to that of the original Minlo′ method and, more broadly speak-

ing, the Powheg approach itself. As with the original Minlo′ formulation, we attribute

discrepancies of Bmj-Minlo predictions for Bnj (m = n + 1) inclusive quantities, with

respect to conventional fixed order results, as owing to deficiencies in the Sudakov form

factor employed in the former. In the existing Minlo′ framework, the correction to the

Sudakov form factor which leads to the elimination of these discrepancies, is derived from

highly intricate, third-party, analytic computations, of the NLO Bmj radiation spectrum.

Here, instead, we determine the relation between Bmj-Minlo predictions for Bnj Born

kinematics and those of conventional (N)NLO, in terms of the a priori unknown correction

factor to the Bmj-Minlo Sudakov form factor. Since both the Bmj-Minlo and conven-

tional fixed order predictions for the Born kinematics are to-hand, we can then solve this

relation for the unknown Sudakov correction, numerically, to sufficent accuracy, bringing

the Bnj Born kinematics of Bmj-Minlo into complete agreement with regular (N)NLO

predictions. This then renders Bmj-Minlo (N)NLO accurate for Bnj inclusive observ-

ables, while maintaining NLO accuracy for Bmj ones. We arrive at the aforesaid defining

equation for our method by manipulating the original Minlo′ computation, neglecting

terms which lead to irrelevant higher order ambiguities (sections 2.4–2.6). With such an

approach the Minlo′ and Nnlops methods become much more easily/widely applicable

than before, being no longer contingent on the existence of high accuracy, observable- and

process-dependent analytic ingredients. To implement this approach it is sufficient to have

only NLLσ accuracy in the initial, uncorrected, Minlo simulation and an NLO (or NNLO)

prediction for the Born kinematics of the associated lower multiplicity process. At the same

time, residual ambiguities between Minlo′ predictions and conventional NLO/Nlops are

brought under much tighter control, and can be completely removed, if so desired.
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We do not propose to replace the existing Minlo′ method, but rather to supplement

it and, as such, we don’t question the importance of efforts to provide further resummation

input which that fundamentally needs — on the contrary, it’s clear that work is, at the

very least, complementary to the improvements discussed here. The study of the problem

of combining multiple NLO simulations together is not long started though, so we consider

more options, understanding and investigations in this direction, to be still welcome.

In section 2 we discuss the Minlo procedure and its extension(s), in the context of

recovering NLO accuracy for Bmj processes from NLO Bnj calculations, m = n−1, without

any merging scale, focusing on Bj and Bjj. We derive NNLLσ resummation formulas from

the Caesar formalism [55] and compare these to the equivalent Minlo/Ckkw results.

This reveals conventional ways in which to improve the Bjj-Minlo procedure, in particular

it gives details for improving the accuracy of the Sudakov form factor to NNLLσ; we leave

the implementation of such improvements for future work. With the true resummation

clarified at NNLLσ, by the latter comparison to Caesar, we proceed with clarity to propose

how one could infer an effective approximation to higher order Sudakov terms, needed by

Minlo′, by imposing unitarity. In section 3 we propose that the latter method can also be

used for the purposes of rendering Bjj Minlo simulations simultaneously NLO accurate

in the description of inclusive B and Bj production. Section 4 presents a feasibility study

assessing the potential of these ideas. We summarize our findings and conclude in section 5.

2 Merging two units of multiplicity

In the following we ultimately present a method for merging Nlops simulations of B- and

Bj-production and, separately, Bj- and Bjj-production without any actual merging. More

precisely, the improved Minlo procedure will render the Bj simulation also NLO accurate

for B-production and, in the case of Bjj it will build in NLO precision for Bj.
We remind that in this work we refer to the leading tower of logarithms in the spec-

trum, terms O(ᾱnSL
2n−1), as LLσ, with NLLσ denoting the next-to-leading log tower,

O(ᾱnSL
2n−2), NNLLσ for the next-to-next-to-leading log tower O(ᾱnSL

2n−3), and so forth.

In section 2.1 we introduce preliminary notation and definitions, in particular regard-

ing the clustering variables which the Minlo procedure is to resum, and the so-called

underlying Born kinematics that the resummation is performed about. In section 2.2 we

present a formula for NNLLσ resummation of these clustering variables (kt-jet resolutions)

based on the Caesar resummation framework [55]. The Sudakov form factors of the latter

are compared to the corresponding Minlo formulae in section 2.3. In section 2.4 we derive

the fixed order expansion of the NNLLσ Caesar formula and from this we show how our

Minlo procedure applied to the Bj(j) NLO computations returns a matched, resummed,

NLO accurate jet resolution spectrum. In doing so, we also assume that spurious, un-

known, NNLLσ or N3LLσ terms may arise in the Minlo resummation, owing to a lack of

understanding of the true N3LLσ spectrum truncated at NLO, and we closely monitor how

these propagate through the Minlo procedure, to better understand and eradicate them,

as needed. In section 2.5 we integrate over the Minlo jet resolution spectrum, determin-

ing that the distribution of the Born kinematics differs from that of conventional NLO

– 6 –
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owing to the latter spurious terms, which we have tracked and quarantined. In section 2.6

we first demonstrate how the original Minlo′ approach removes such terms, by explicitly

correcting the Minlo Sudakov form factor, leading to NLO accurate Born kinematics. In

the second part of section 2.6, we present our new proposal. Over-simplifying somewhat,

this amounts to using the constraint that the corrected Minlo predictions must recover

NLO (or NNLO) results for the inclusive Born kinematics, as a defining equation for the

elusive Sudakov correction factors, needed to promote Minlo to Minlo′. This equation

can no doubt be solved for the latter in several ways, and we present one basic, simple,

way to do so. In order to maintain NLO accuracy in the higher multiplicity phase space, it

is necessary that the initial Minlo resummation be at least NLLσ accurate, however, this

is an easily obtainable threshold by today’s standards.

We underline now that it is a working assumption of the Caesar framework, that the

underlying Born kinematics, about which the resummation of soft radiation is carried out,

are not themselves associated with large logarithmic corrections, i.e. it is assumed that the

radiating particles in the hard underlying Born kinematics are well separated. For the case

of B production, with only two radiating particles in the initial-state, the latter criterion

is fulfilled automatically. On the other hand, for Bj production it implies that we have

to restrict ourselves to a regime in which the final-state (pseudo-)parton in the underlying

Born has transverse momentum of order the mass of B, or greater. In other words, in

this section 2 it should be understood that the y12 resummation in Bj-production assumes

y01 & O(m2
B). Only in section 3 will we consider extending down into the region where the

transverse momentum of the final-state Born (pseudo-)parton is small.

2.1 Definitions: jet resolutions and underlying Born kinematics

Since it is underlies the whole discussion we first quickly present a reminder of the exclusive

kt-jet clustering procedure (for brevity we henceforth refer to pseudopartons obtained in

the clustering sequence as just partons):

1. In an n-parton final-state we determine the smallest distance

d(n) = min ({dij} , {diB}) ,

where {dij} is the set of measures

dij = min(k2
t,i, k

2
t,j) ((yi − yj)

2 + (φi − φj)2)/R2 ,

obtained by considering all pairwise combinations of final-state partons i and j, with

kt,i, yi and φi being, respectively, the transverse momentum, rapidity and azimuth

of parton i, and {diB} the set of all final-state transverse momenta:

diB = kt,i .

R is the so-called jet radius parameter which we take equal to be 1.

2. If d(n) = dij partons i and j are replaced in the event by a single mother parton with

four momentum pi + pj , otherwise, if d(n) = di, particle i is considered to have been

similarly absorbed in one of the beam jets and is deleted from the event.

– 7 –
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3. If further partons remain return to step 1, otherwise the clustering sequence termi-

nates.

In order to have the Bj-Minlo calculation return NLO accuracy for inclusive B production

and Bjj-Minlo likewise reproduce NLO accuracy for Bj quantities, we are interested to

resum the kt-jet resolution variables y01 and y12, which we here define as

y01 = max
n≥1
{d(n)} , v01 = y01/Q

2
B ,

y12 = max
n≥2
{d(n)} , v12 = y12/Q

2
BJ ,

where QB and QBJ are, in the context of the Caesar resummation framework [55], the

hard scales of the problem, largely determined by the respective Born kinematics. We take

Q2
B = m2

B, where mB is the invariant mass of the system B, and Q2
BJ = Q2

Bv01 = y01. With

this definition the resummation of y12 amounts to — up to corrections owing to the lack

of monotonicity of the clustering sequence in d(n), which we neglect — a resummation of

large logarithms of the transverse momentum of the second hardest relative to the hardest

branching in the event. For what follows we notate these large logarithms

L01 = log
1

v01
, L12 = log

1

v12
.

In discussions and formulae that apply equally well to the Bj-Minlo and Bjj-Minlo

computations we simply use L to refer to either L01 or L12. Equally, we will use y to

ambiguously mean y01 and y12, and v to mean v01 and v12, when safe to do so.

We now introduce the kinematic variables specifying the hard configurations about

which we intend Minlo to resum the y01 and y12 variables. First consider applying the kt-

jet algorithm to events such that they are clustered to the point of containing just a single

jet (pseudoparton) and the system/particle B. We define directly from such ensembles

Bj underlying Born variables, ΦBJ = {Φ̂B, yB, yJ, p
J
T, φJ}, where the set Φ̂B specifies the

configuration of B in its rest frame, including its invariant mass,2 yJ is the rapidity of the

jet, yB is the rapidity of B, pJ
T the transverse momentum of the jet, and φJ its azimuthal

angle. After a subsequent clustering with the kt-jet algorithm the jet/pseudoparton is also

removed leaving just the system B, for which we further define B underlying Born variables

ΦB = {Φ̂B, yB}. Thus we can also write ΦBJ = {ΦB, yJ, p
J
T, φJ}.

The definitions of ΦBJ and ΦB can also be considered as projections from real (or

multiple emission) kinematics onto Born kinematics for Bj and B final-states respectively;

note that, strictly speaking, in that context the jet in the projected Bj kinematics should be

understood as being massless. The choices of yB and yJ are motivated by our expectation

that even basic formulations of the Bj- and Bjj-Minlo′ calculations will reproduce well the

shapes of these quantities, as they are predicted in the respective (conventional) NLO B and

Bj computations. Our choosing of pJ
T in ΦBJ is made in light of the fact that this variable,

as defined here, is equal to
√
y01, which we expect to greatly increase the consistency

2If B is a single particle, as in the case of Higgs boson production, Φ̂B, is just the invariant mass of the

particle.
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between the Bj-Minlo′ (which resums precisely v01) and the Bjj-Minlo′ calculations,

which we intend to have identically reproduce NLO Bj predictions such as pJ
T, as defined

here, according to the exclusive kt-jet clustering algorithm. The latter consideration is

important in the context of nesting the v01 and v12 resummations, with a view to having a

Bjj-Minlo′ simulation NLO accurate for Bjj, Bj, and inclusive B production processes.

2.2 NNLLσ resummation

By differentiating and expanding the master resummation formula in ref. [55], we are

able to derive simultaneously LL and NNLLσ accurate expressions for the v01 and v12

spectra in B and Bj production processes respectively. In a nutshell, one takes the NLL

resummation of ref. [55], matched to NLO, and proceeds to omit NLL terms O(ᾱ3
S) and

beyond in the resummed exponent, specifically those due to observable-dependent multiple

emission effects. Details on these manipulations can be found in appendix A.1. The general

expression we derive can be written simply in the form [56]:3

dσR
dΦdL

=
dσ0

dΦ

[
1 + ᾱS

(
µ2
R

)
H1

(
µ2
R

)] d

dL
[exp [−R (v) ] L ({x`} , µF , v)] , (2.1)

where L is our luminosity factor

L ({x`} , µF , v) =

ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

[
1 +

ni∑

`=1

ᾱS

(
µ2
Rv
)
[
C1 ⊗ q(`)

]
i

(
x`, µ

2
Fv
)

q(`) (x`, µ2
Fv)

]
. (2.2)

Since this form applies to both jet resolutions in B and Bj production, the components

inside it should be understood as referring to one of these two processes, e.g. Φ and L refer

to ΦBJ and L12 in the Bj case, and ΦB and L01 in B-production. Equally, v refers to v01

in the latter case and v12 in the former.

First let’s overview the resummation formula, eq. (2.1), before disappearing into the

details. The first factor in eq. (2.1), dσ0/dΦ, denotes the leading order cross section for

B or Bj processes as appropriate. Within dσ0/dΦ the scale used for the evaluation of the

parton distribution functions is µF and the scale in any implicit strong coupling constant

factors is µR. The function H1 includes hard virtual corrections to dσ0/dΦ. The Sudakov

form factor is present in eq. (2.1) as exp [−R (v)]; here we have made a simplification with

respect to the notation of ref. [55], including in its definition contributions from soft-wide

angle radiation and observable-dependent multiple emission corrections. The q(`)
(
x`, µ

2
)

terms in the luminosity factor, eq. (2.2), are parton distribution functions (PDFs), for a

given incoming leg, `, with momentum fraction x`, evaluated at scale µ. The product of

PDF ratios runs over ni = 2 incoming legs. The functions C1 involved in convolutions

with PDFs in the luminosity factor, L, are due to universal hard-collinear corrections. The

renormalization and factorization scales µR and µF are understood as being ∼ Q [55].

To try to lighten the formulae we use the following abbreviations,

ᾱS =
αS

2π
, β0 =

11CA − 2nf
12π

, β̄0 = 2πβ0 . (2.3)

3The subscript R is used here to distinguish the cross section as the resummed cross section.
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The Sudakov form factor exponent in the NNLLσ differential cross section formula

(eq. (2.1)) is given by

−R (v) =

∫ L

0
dL′

[
ᾱS

(
y′
) [

2G12 L
′ +G11 + 2S1

]
+ ᾱ2

S

(
y′
)

2G12 [K + 4F2G12] L′
]
.

(2.4)

The Gij contributions are due to independent soft-collinear / collinear emission contribu-

tions, they are given by

G12 = −1

2

∑

`

C` , G11 = −2
∑

`

B`C` , (2.5)

where
C` = CF
B` = −3

4

}
for a quark leg ,

C` = CA

B` = − β̄0

2CA

}
for a gluon leg. (2.6)

The sum,
∑

`, runs over all n hard colour-charged legs ` — n = 2 for B-production, n = 3

for Bj. Single logarithmic soft-wide angle emission contributions are included via the S1

term. Soft-wide angle radiation is obviously sensitive to the structure of the underlying

hard event on large angular scales, so in contrast to the collinear contributions above, this

piece is sensitive to the orientation of the hard external legs and not just their charges. For

B (n = 2) and Bj(n = 3) processes we have

n = 2 : S1 = −
(
Cq + Cq′

)
ln
Qqq′

QB
, (2.7)

n = 3 : S1 = −1

2

(
Cq + Cq′

)
ln
Q2
B

y01
+

1

2

(
Cq + Cq′

)
ln

m2
B

Q2
qq′
− 1

2
Cg ln

Q2
qgQ

2
q′g

Q2
qq′y01

(2.8)

−1

2

(
Cq + Cq′

)
ln
m2
B

Q2
B
− 1

2

∑

`

C` ln
y01

Q2
BJ

.

where Qij =
√
|2pi.pj |. For the case of two/three hard gluon legs, we simply replace CF

by CA in S1 and, in addition, q, q′, g with g1, g2, g3 (see bottom of pg. 38 in ref. [55]).

By writing S1 in this form for the n = 3 case one can already glimpse, in the first term,

its interpretation in terms of coherent emission from the n = 2 kinematic underlying the

n = 3 one; we discuss this in more depth later on.

The K in the O
(
ᾱ2

S

)
part of R is the two-loop cusp anomalous dimension

K = CA

(
67

18
− π2

6

)
− 5

9
nf . (2.9)

Concerning the Sudakov form factor, the only remaining part needing introduction

is F2. The F (R′) function of ref. [55] accounts for NLL corrections arising from a re-

summed observable’s sensitivity to multiple emission effects; for observables whose behav-

ior is largely dictated by the leading single emission F (R′)→ 1. The Caesar F (R′) factor

is understood to depend only on the flavours of the particles entering and exiting the hard

scattering and the multiple emission properties of the observable, it does not depend on the
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kinematics of the underlying hard scattering (Φ) [57]. To NLL/NNLLσ accuracy F (R′) = 1

for the v01 resummation (B-production). The combination of factors F2 (2G12)2 ᾱ2
SL

2 is

the next-to-leading term4 in the fixed order expansion of the F (R′) function and as such

defines F2. From refs. [38, 57, 58] we derive the following process-independent expression

for F2, for jet rates in the exclusive kt algorithm

F2 = −π
2

16

∑n
`=1C

2
` −

∑ni
`=1C

2
`

(
∑n

`=1C`)
2 , (2.10)

We have tested this expression using the numerical implementation of the Caesar for-

malism for resummation of y23 in hadronic jet production and y12 in hadronic Z boson

production. With the exception of the qg and gq channels in Z production, for which only

3% differences were found, our F2 expression yielded agreement with the Caesar program

at the per mille level in all tested processes and channels.

In the resummation formula, eqs. (2.2)–(2.1), for the PDF dependent pieces we have

adopted the notation

q
(
x, µ2

F

)
=




qu
(
x, µ2

F

)

qū
(
x, µ2

F

)
...

g
(
x, µ2

F

)



, P (x) =




P
(0)
qq (x) 0 · · · P (0)

qg (x)

0 P
(0)
qq (x)

...
. . .

P
(0)
gq (x) P

(0)
gg (x)



, (2.11)

where P
(0)
ij (x) are the regularized leading order Altarelli-Parisi splitting functions (see

e.g. appendix A.3 of ref. [55]). We also identify q(`)
(
x`, µ

2
)

= q
(`)
i

(
x`, µ

2
)
, with i the

flavour of the hard parton with momentum p`, and we employ the following notation to

denote matrix multiplication and convolution in x-space

[ P⊗ q ]i
(
x, µ2

)
=

∫ 1

x

dz

z
Pij

(x
z

)
qj
(
z, µ2

)
=

∫ 1

x

dz

z
Pij (z) qj

(x
z
, µ2
)
. (2.12)

The last things we need to introduce in our resummation formula, eq. (2.1)–(2.2),

are the H1 and C1 terms. To this end we first define the cumulant, ΣR, of the NNLLσ
resummed spectrum as

dΣR (L)

dΦ
=

∫ L

∞
dL′

dσR
dΦdL′

. (2.13)

Since dσR is expressed as a total derivative we quickly find the following approximation to

the NLO B/Bj production cross section:

dΣR,1 (L)

dΦ

∣∣∣∣
H1,C1→0

=
dσ0

dΦ

[
1 + ᾱS G12 L

2 + ᾱS

[
G11 + 2S1 −

ni∑

`=1

[
P⊗ q(`)

]
i

q(`)

]
L

]
.

(2.14)

The cross section dΣR,1/dΦ|H1,C1→0
, essentially by definition, contains all of the loga-

rithmically enhanced contributions to the exact NLO B/Bj production cross section.

4The leading term in the expansion is just 1. By only including the leading and next-to-leading terms

for F (R′) we break the NLL/NNLLσ accuracy down to LL/NNLLσ.
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The only parts of the exact NLO B/Bj production cross section not accounted for by

dΣR,1/dΦ|H1,C1→0
are finite, unenhanced, parts for v → 0. These unenhanced parts of the

NLO contribution have two sources: finite virtual corrections and contributions to the real

emission part of the cross section which are regular as v → 0 (terms of collinear origin).

Thus we can write

dΣNLO (L)

dΦ
=
dΣR,1 (L)

dΦ

∣∣∣∣
H1,C1→0

+

∫ L

∞
dL′

[
ᾱSχ̄1 (Φ)

dσ0

dΦ
δ
(
L′ −∞

)
+

dσF,1
dΦdL′

]
, (2.15)

where χ̄1 (Φ),5 being localized at v = 0, encodes the regular virtual and the hard collinear

contributions, with dσF,1 being the real emission contribution to dΣNLO (L), with its v → 0

end-point subtracted and included in χ̄1. From eq. (2.15) we obtain directly

ᾱSχ̄1 (Φ) = lim
L→∞

(
dΣNLO (L)

dΦ
− dΣR,1 (L)

dΦ

∣∣∣∣
χ̄1→0

)
/
dσ0

dΦ
. (2.16)

We separate hard-virtual and hard-collinear corrections in χ̄1 as follows:

χ̄1 (Φ) = H1

(
Φ, µ2

R, Q
2
)

+

ni∑

`=1

[
C1 ⊗ q(`)

]
i

(
x`, µ

2
F

)

q(`) (x`, µ2
F )

, (2.17)

where the C1 terms represent the contribution due to hard-collinear splitting in the initial-

state and H1 is the remainder, including the hard-virtual component. H1 contains terms

canceling the µR dependence, while C1 has terms which correspondingly compensate the

µF dependence, of dσ0/dΦB. The precise details of these terms are irrelevant for the imple-

mentation of the method being proposed (this can be considered one of its advantages), so

we can safely leave further specification of them to appendix A.1. We only stress that in

the C1 function, in eq. (2.2), which is convoluted with a PDF evaluated at scale µF
√
v, the

explicit factorization scale is µF , not µF
√
v, i.e. C1 in eq. (2.2) is precisely as it is written

in eq. (A.13), so the derivative with respect to L in eq. (2.1) passes through C1, only acting

on whatever follows it.

The structure of eq. (2.1) with regard to the inclusion of the χ̄1 term, can be intuitively

understood by considering that the Sudakov and PDF factors in eq. (2.1) are resumming

the effects of all orders soft/collinear radiation around the hard scattering, described by

dσ0 in the case of the leading term, and, that the same pattern of radiation also occurs

with respect to the hard scattering including hard radiative effects dσ0 χ̄1. In other words,

one can view the resummation as being taken with respect to essentially two separate

processes and then adding these two resummations together, one process being the higher

order analogue of the other. The fact that the resummation should be identical with respect

to either process can be understood by considering that the soft long-wavelength radiative

corrections — encoded by the Sudakov form factor, running coupling and PDFs — will

not be able to probe the internal details of the hard scatterings they attach to.

5What we have denoted χ̄1 (Φ) ref. [59] denotes as C
(δ)
1,B.
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2.3 Comparison to Ckkw/Minlo

Before continuing, it is worth comparing the formulae presented here to those of

Ckkw/Minlo [14, 26], in particular the Sudakov form factors. The Sudakov form fac-

tor exponent in the latter articles6 for a collection of (pseudo-)partons (indexed by `)

evolving from some scale Q down to a resolution scale y, is given by

∑

`

ln ∆`

(
y,Q2

)
= −R (v)−

∫ L

0
dL′

[
ᾱS

(
y′
)

[2S1] + ᾱ2
S

(
y′
)

2G12 [4F2G12] L′
]
. (2.18)

The integral on the right-hand side of eq. (2.18) is the difference between the total Sudakov

form factor exponents used in the Ckkw/Minlo prescription and that proposed here based

on Caesar (−R (v)).

For B production F2 = 0 and S1 ∝ ln mB
QB

, with QB set equal to mB in the original

Minlo proposal, hence, in this case, the second term on the right of eq. (2.18) vanishes.

Thus, in B production the Sudakov form factor of the original Minlo procedure is fully

consistent with that prescribed by Caesar.

For the Bj case, not forgetting that here in section 2 we are restricting ourselves to

considering the region y01 & O(m2
B), F2 is not zero, and S1 has non-trivial dependence on

the underlying Bj kinematics. Therefore, in the region where our Caesar-based formula

is strictly valid we have a discrepancy between what is suggested by it and by Minlo. In

particular the original Minlo proposal has omitted NNLLσ terms due to multiple emis-

sion corrections (F2) and, more importantly, NLLσ contributions due to soft-wide-angle

radiation (S1). Thus, in the region y01 & O(m2
B) Bjj-Minlo, implemented according to

the original proposal in ref. [26], would formally not be LO accurate in the description of

Bj-inclusive quantities, with ambiguities arising between it and conventional LO of order√
ᾱS times the leading order term. With the benefit of hindsight it is perhaps obvious that

the original Minlo procedure would have this problem in this region, since we know that

its Sudakov form factors contain only soft-collinear and collinear terms, yet soft-wide-angle

radiation from a Bj state will be logarithmically enhanced too, even if the underlying Born

partons are widely separated.

In section 3 we also consider this comparison (for Bjj-Minlo) in the region

y01 < O(m2
B).

2.4 Minlo jet resolution spectra

In the Minlo framework, in all cases, we start with an NLO cross section: for the v01

resummation in B-production our fundamental ingredient is the NLO Bj cross section, while

for v12 resummation in Bj-production it is that for NLO Bjj. We write these cross sections

as a sum of a part which is finite as v → 0, dσF , plus a singular part obtained by expanding

the NNLLσ resummation formula (eq. (2.1)) dσS , and a further singular-remainder piece,

dσSR, which is defined as all singular terms which were not already contained in dσS :

dσ = dσS + dσSR + dσF . (2.19)

6Specifically eqs. 2.8 and 2.9 of ref. [14], and eqs. A.1-A.3 of ref. [26].
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Expanding the resummed differential cross section up to and including O
(
ᾱ2

S

)
terms, we

obtain

dσS
dΦdL

=
dσ0

dΦ

2∑

n=1

2n−1∑

m=0

Hnmᾱ
n
S

(
µ2
R

)
Lm , (2.20)

where the explicit Hnm coefficients are documented in the appendix A.2. Since the resum-

mation formula we used to derive this fixed order expansion was NNLLσ accurate, it only

predicts part of the full N3LLσ coefficient, ∼ ᾱ2
S, thus we have a singular remainder term,

dσSR
dΦdL

=
dσ0

dΦ
ᾱ2

S

(
µ2
R

) [
L R̃21 + R̃20

]
, (2.21)

where R̃21 = 0 and we proceed under the assumption that the coefficient R̃20 is generally

unknown to us. We introduce the strange R̃21 = 0 term here in order to make the transition

to the discussion on merging by three units of multiplicity, in section 3, a little bit cleaner;

there our formulae are applied in regions where they lose NNLLσ accuracy. The dσSR term

can be considered as a valid parametrization of our ignorance of the v → 0 singular part

of the NLO cross section. Importantly, since dσS alone is invariant under µR/µF shifts, up

to NNLO terms, R̃21 and R̃20 have no µR or µF dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightfor-

ward, operations on the fully differential input NLO calculations. These can be summarized

as renormalization and factorization scale setting, together with matching to the Sudakov

form factor (exp [−R (v) ], eq. (2.4)). To ease readibility, we have deferred the precise

details of these steps to the appendix A.3. We suffice to say that if one carefully traces

the effects of the latter operations on the NLO cross section, in particular on the singular

parts, dσS and dσSR, neglecting O
(
N4LLσ

)
terms, one finds the resulting Minlo cross

section can be written as

dσM = dσR + dσMR + dσF , (2.22)

where dσR is the resummation cross section, eq. (2.1), a total derivative, and dσMR holds

all remaining large logs:

dσMR
dΦdL

=
dσ0

dΦ
exp[−R (v)]

ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

[
ᾱ2

S

(
K2
R y
) [
R̃21 L+R̃20

]
+ᾱ3

s

(
K2
R y
)
L2 R̃32

]
,

R̃32 = 2G12β̄0H1

(
µ2
R

)
. (2.23)

In eq. (2.23) the KR/F ∈
[

1
2 , 2
]

denote rescaling factors applied to the renormalization and

factorization scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details),

for the purposes of assessing scale uncertainties. The last term in eq. (2.22), dσF , is more

precisely dσMF , the replacement dσMF → dσF being made on the grounds that the Minlo

operations preserve the fixed order expansion up to and including NLO terms, as well as

the fact that dσF (and dσMF) is finite for v → 0.

Since R̃21 = 0, the Minlo jet resolution spectra in eqs. (2.22) are equal to the NNLLσ
jet resolution spectrum in section 2.2 (dσR) up to N3LLσ differences.
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2.5 Integrated Minlo jet resolution spectra

Making use of the fact that dσR is a total derivative with respect to L (eq. (2.22)), and

the definitions of χ̄ in terms of H1 and C1, it is fairly straightforward to show7 that on

integrating over all v

dσM
dΦ

=
dσNLO

dΦ
+

∫
dL′

dσMR
dΦdL′

+O
(
ᾱ2

S

)
. (2.24)

The contaminating
∫
dσMR term consists of a N2LLσ piece, ∝ R̃21, and N3LL piece ∝

R̃20 − β̄0H1. For the regions in which the Caesar formalism holds R̃21 = 0, as discussed

under eq. (2.21).

If we assume that we were ignorant of the value of R̃21, dropping terms over which

we have no control, i.e. beyond NNLLσ order, we can neglect the L dependence of ᾱS and

PDFs in dσMR, and all but the leading term in the Sudakov form factor exponent ∝ G12.

With these approximations the dσMR integral becomes:

∫
dL′

dσMR
dΦdL′

= −dσ0

dΦ
R̃21

1

|2G12|
ᾱS

(
1 +O

(√
ᾱS

))
. (2.25)

The O(ᾱ
3/2
S ) ambiguity in eq. (2.25) attributes to neglect of N3LLσ terms. So, if our knowl-

edge of R̃21 be wrong, for whatever reason, the Minlo inclusive cross section would deviate

from the exact NLO one by terms of order O (ᾱS) relative to the LO contribution (dσ0).

Sticking to the regions for which the Caesar formalism holds, our starting resum-

mation formula and the Minlo cross section formulated with it is NNLLσ accurate,

i.e. R̃21 = 0 and our ignorance is located downstream in the N3LLσ terms ∝ R̃20 − β̄0H1.

Dropping terms now only of N4LLσ accuracy we can again neglect the L dependence of the

coupling constant and PDF terms, and all but the leading double log term in the Sudakov

form factor, giving

∫
dL′

dσMR
dΦdL′

= −dσ0

dΦ

[
R̃20 − β̄0H1

(
µ2
R

)] √π

2

1

|2G12|1/2
ᾱ

3/2
S

(
1 +O

(√
ᾱS

))
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms

of order O(ᾱ
3/2
S ) relative to the LO contribution; for the Minlo cumulant cross section to

be certified NLO accurate it needs to agree with conventional NLO up to relative O(ᾱ2
S)

(NNLO) ambiguities.

2.6 Removal of spurious terms in the Minlo integrated cross section

Original Minlo′ approach. If we replace the Minlo Sudakov form factor exponent in

step 4 according to

−R (v)→ −R (v)−∆R (v) , −∆R (v) =

∫ L

0
dL′ ᾱ2

S

(
y′
) [
R̃21 L

′ + R̃20 − β̄0H1

(
µ2
R

)]
,

(2.27)

7For more details see appendix A.4.
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we find, neglecting N4LLσ terms,

dσM →
dσ0

dΦ

d

dL

[[
1 + ᾱS

(
µ2
Rv
)
H1

(
µ2
R

)]
exp [−R (v) −∆R (v)] L ({x`} , µF , v)

]
+

dσF
dΦdL

.

(2.28)

All large logarithms in this modified Minlo spectrum, eq. (2.28), are wrapped up as a

total derivative and it’s trivial to verify (more-or-less exactly as in appendix A.4) that the

integral over all v (L) gives the conventional NLO cross section without any spurious terms,

as were examined in section 2.5.

Thus we interpret the spurious terms that arise on integration in section 2.5, as being

due to neglect of any NNLLσ (for the scenario R̃21 6= 0) and N3LLσ terms in our Minlo

Sudakov form factor (eq. (2.4)). To remove the spurious terms and recover NLO accuracy

on integration over L we should try and include these terms in the latter. The Minlo′

approach of ref. [28] does this explicitly, as in eq. (2.27), extracting all relevant ingredients

from known analytic results for the full NLO singular behaviour of the Higgs/vector-boson

transverse momentum spectrum.

Neglecting N4LLσ terms, the modification to the Sudakov form factor in eq. (2.27), to

be used in step 4 of section 2.4, can be equivalently written as

exp [−R (v)]→ exp [−R (v)] (1−∆R (v)) , (2.29)

with −∆R (v) exactly as in eq. (2.27), leading to

dσM→
dσ0

dΦ

d

dL

[[
1+ᾱS

(
µ2
Rv
)
H1

(
µ2
R

)]
exp [−R (v)] (1−∆R (v)) L ({x`} , µF , v)

]
+

dσF
dΦdL

.

(2.30)

The modification to the Sudakov form factor in eq. (2.27) is equal to that in eq. (2.29)

with differences only starting at the N4LLσ level. Thus, in this modified Minlo spectrum,

eq. (2.30), the integral over all v (L) gives the conventional NLO cross section without any

spurious terms.

Alternative approach to Minlo′. The message from eqs. (2.27)–(2.28) and eqs. (2.29)–

(2.30) is the same: including the appropriate corrective factor on top of the default Minlo

Sudakov form factor, exp [−R (v)], we recover from Bnj-Minlo NLO accuracy also for Bmj

inclusive observables (m = n− 1). We now suggest to turn around the latter fact and use

unitarity to effectively determine the missing piece of the Sudakov factor, exp [−∆R (v)],

at a level of accuracy sufficient for our aims.

Minded by the equivalence between the Minlo′ formulations in eqs. (2.27)–(2.28) and

eqs. (2.29)–(2.30), we describe now how to implement, approximately, the 1−∆R (v) factor

of the latter, without explicit knowledge of the R̃21, R̃20 and H1 terms. We define what

we consider to be the discrepancy in the Sudakov form factor at NNLLσ as:

δ(Φ) =

(
dσM
dΦ
− dσNLO

dΦ

)
/

∫
dLh (L)

dσM
dΦdL

, (2.31)

h (L) = ᾱS

[
ᾱSL

2Θ
(
ρ− ᾱSL

2
)

+ ρΘ
(
ᾱSL

2 − ρ
) ]

. (2.32)
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In eqs. (2.31)–(2.32) we abbreviated ᾱS

(
Q2
)
→ ᾱS. The leading term in the integrand of

the denominator of δ(Φ) is ∼ ᾱ3
SL

3 (NNLLσ). The choice of the h (L) function in eq. (2.31)

is not a rigid one, as we comment on later. The freezing parameter ρ in eq. (2.32) is taken

to be ∼1 by default. From eqs. (2.24)–(2.25) we get an expression for the numerator of

δ(Φ), and by similar approximations to those used for the latter, an expression for the

denominator (appendix A.5), giving overall

δ(Φ) = −1

2
R̃21 (1− exp [G12ρ])−1 (1 +O

(√
ᾱS

))
. (2.33)

Since δ(Φ) is an order one quantity (provided ρ & 1) we can safely define the following

modification of the original Minlo distribution

dσ′M
dΦdL

=
dσM
dΦdL

(1−∆R (v)approx) , with −∆R (v)approx = −h (L) δ(Φ) . (2.34)

To help appreciate the correspondence between eq. (2.34) and eqs. (2.29)–(2.30) (and hence

also back to the original Minlo′ approach of eqs. (2.27)–(2.28)) setting ρ = ∞ we point

out that

∆R (v)approx = ∆R (v) + N3LLσ . (2.35)

Inserting our definition for δ(Φ), eq. (2.31), into eq. (2.34) we find the identity

dσ′M
dΦ

=
dσNLO

dΦ
, (2.36)

i.e. the corrected Minlo distribution precisely returns the true NLO inclusive cross section

on integrating out the radiation, unambiguously. This correction is achieved while leaving

the NLO accuracy of the input cross section intact; the weighting factor in square brackets

in eq. (2.34) being . 1 +O(ᾱ2
S). The modification in eq. (2.34) also does not interfere with

the Minlo cross section at NLLσ.8

The ρ parameter guards against the 1 − ∆R (v)approx factor in eq. (2.34) becoming

negative, which can happen in the region ᾱSL & 1, if δ (Φ) is positive, leading to an

unphysical spectrum at v → 0. We remind that the region ᾱSL & 1 has been anyway, from

the beginning, outside the control of our calculational setup, which is only adequate down

to the region ᾱSL
2 ∼ 1. Introducing ρ also tames the integrand in the denominator of δ (Φ),

so it can be determined/applied by simply weighting events appropriately in analysis of

the original dσM distribution, without issues of numerical convergence.

To provide some advance reassurance, should any be needed, in our feasibility study in

section 4 we carry out what we consider to be broad variations of the ρ parameter, finding

our results exhibit marginal sensitivity to it, in regions of practical interest.

In the region of applicability of Caesar, our knowledge of the spectrum is complete

at NNLLσ, i.e. we know that if the Sudakov form factor in eq. (2.4) is implemented in

Minlo, R̃21 = 0. All equations and analysis above remain valid for R̃21 = 0 though. The

latter implies δ (Φ) (eq. (2.33)) is merely O(
√
ᾱS) instead of O(1), meaning the correction

factor, eq. (2.34), has effectively less work to do. For R̃21 6= 0 the latter correction factor

8To see this consider re-expressing the square bracket term in eq. (2.34) as an exponential.
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clearly affects the spectrum at NNLLσ. However, we argue that since, for R̃21 = 0,

the coefficient of the correction in eq. (2.34) is O(
√
ᾱS), not O(1), the effect is really

O(N3LLσ), i.e. it would not spoil NNLLσ were it already in place. Since R̃21 = 0 for the

domain of validity of the Caesar formalism, it may have seemed more natural to have

made h (L) ∼ ᾱ2
SL in our discussion here, instead of ∼ ᾱ2

SL
2, however, for the formal

reasons just discussed, we see no great advantage in doing so. Furthermore, we plan to

employ the method also in the region where Caesar is not valid, in the next section, so

having a more widely applicable h (L) function, which nominally assumes the distribution

it is correcting is NLLσ accurate, is preferable.

It may be tempting to think that one can also apply this procedure even if the initial

input Minlo distribution was only LLσ accurate, supplying, in that case, the h (L) function

with one more power of L, in order to keep δ (Φ) ∼ O (1). While this appears compatible

with the recovery of NLO Born kinematics, maintaining also NLO accuracy of the initial

Minlo simulation, the expansion of the product of the latter factor and the initial LLσ
Sudakov form factor has a different functional form to that of a NLLσ Sudakov form factor.

In other words, one cannot then view the resulting correction (eq. (2.34)) as approximating

missing higher order pieces of the Sudakov form factor, which was has been our guiding

principle throughout. This conflict can only be resolved by making h (L) ∼ ᾱSL, however,

in that case the correction factor (eq. (2.34)) will clearly violate NLO accuracy of the initial

Minlo program. We therefore consider it a requirement that the relevant resummation in

the initial, uncorrected, Minlo program be at least NLLσ. Fortunately, this is a rather low

theoretical threshold to cross by today’s standards, and really the only non-trivial NLLσ
ingredients required are the (soft-wide-angle) S1 Sudakov coefficients (eqs. (2.4)–(2.7)). It is

well understood how to obtain the latter soft-wide-angle pieces, and it is not a particularly

onerous task to do so nowadays. Indeed there is much publicly available, automated,

machinery which can be straightforwardly adapted to this end, e.g. in Powheg-Box [4]

and Madgraph5 aMC@NLO [7]. Finally, it is also the case that the aforementioned S1 terms

are trivial for processes where the underlying Born comprises only two or three coloured

partons (e.g. Bj- and Bjj-Minlo).

There are numerous possible variations, tangents and refinements one can explore

along the lines presented here, all leading to eq. (2.36), with or without ambiguities. For

example, one can easily enough conceive of modifications which avoid the introduction of

the parameter ρ. Equally, there are other ways to view the formulae in this section, most of

which are obvious. We do not want to digress, to avoid diluting the basic idea and straying

too far from the goals in the introduction. In particular, we choose not to discuss to what

extent we have formally improved the description of the resummation region, but rather

we now get on with demonstrating the practicality of the above, and its extension beyond

the merging of two units of multiplicity.

3 Merging three units of multiplicity

We now turn to address the problem of getting the Bjj-Minlo calculation to return

NLO predictions for inclusive B-production observables, as well as Bj and Bjj inclusive

quantities.
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Since Bj-Minlo contains at most one final state parton with NLO accuracy, from now

on we discuss modifications to Bjj-Minlo only. Furthermore, we focus on modifications

needed to address the remaining problematic region y12 � y01 � m2
B, with y01 & m2

B

having been covered in section 2.

Where necessary, we use a superscript [01]/[12] on quantities Gij , S1 etc to distinguish

those associated to the y01 resummation, from those associated to that of y12.

The basic idea here is simple and can easily be improved; we briefly discuss such

refinements later on, with a view to future work. We require that a lower multiplicity Bj-
Minlo′/Nnlops simulation has already been built, e.g. with the procedure of section 2.6,

or along the lines of ref. [28], recovering NLO accuracy for Bj- and (NNLO) B-inclusive

observables. We propose to apply method of section 2.6 to the Bjj-Minlo simulation,

with the obvious replacement dσM → dσBJJ
M therein, but also with the conventional fixed

order distribution dσNLO replaced by dσBJ ′
M . It then follows, trivially, that

dσBJJ ′
M

dΦBJ

=
dσBJ ′
M

dΦBJ

. (3.1)

Thus, the resulting Bjj-Minlo′ distribution is targeted onto the Bj-Minlo′ inclusive ΦBJ

distribution, without diminishing its own NLO accuracy. In this way the Bjj-Minlo′

simulation can be made NLO accurate for Bj- and (NNLO) B-inclusive observables.

The essential point one needs to prove for the self-consistency of the method in this

context is the same one as in section 2.6, i.e. that the δ(ΦBJ) that gets extracted does not

blow up and risk breaking the NLO accuracy of the initial uncorrected Bjj-Minlo. This

basically boils down to saying that the existing Minlo procedure resums v12 and v01 both

with NLLσ accuracy. As discussed at the end of section 2.6, if all we cared about was

unitarizing the cross section, this requirement could be loosened to that of having just LLσ
accuracy in place, including a further power of L in h (L). The price of that ignorance

would be that the correction can no longer be interpreted as an approximation to missing

higher order contributions in the Sudakov form factor, i.e. one essentially gives up on a

physical interpretation of the mechanism of unitarity violation and, correspondingly, one

begins to warp the spectrum by higher order ambiguities that bear no relation to any kind

of resummation. However, as we go on to explain, we understand the Bjj-Minlo cross

section meets already the above NLLσ specification, with the exception of a sub-leading

kinematic region, which should not be difficult to accommodate.

3.1 NLLσ resummation

It is a general underlying assumption of the Caesar formalism that the Born configurations

(ΦBJ in this case) consist of hard, well-separated, partons. So the NLL/NNLLσ theoretical

framework from which we derived the resummation formula, that was the starting point

for section 2, is not guaranteed to hold here, where we also need control v12 resummation

in the region
√
y01 � mB.

In section 3.1.1 we argue that the Caesar resummation formula for v12 = y12/y01

resums large logarithms ᾱnSL
m
12, m ≥ 2n − 1, independently of the value of v01 = y01/m

2
B,

i.e. even in the region y01 � m2
B. This is based on the following two considerations:
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i.) it is straightforward to show that the Caesar Sudakov form factor for v12 resumma-

tion is equivalent to that prescribed by the coherent parton branching formalism at

NLLσ, except for a sub-dominant subset of soft wide-angle radiation contributions,

beyond the accuracy of the latter formalism;9

ii.) the leading NLLσ terms in the expansion of the Caesar v12 cumulant distribution,

are determined by integrating the radiation pattern of a single soft/collinear emis-

sion relative to an emitting BJ state, over the ordered region y12 < y01, and this

pattern/integral derives independently of whether y01 . m2
B or not.

In i.) we are saying that the Caesar Sudakov form factor must be at least LL accurate

for v12, since it agrees with the analogous expression derived from the coherent branching

formalism, which is understood to have at least that accuracy, regardless of the value of

the underlying ΦBJ configuration.10 Accepting i.) and ii.) together then implies that

the Caesar resummation formula is NLLσ regardless of the value of the underlying ΦBJ

configuration: since the Sudakov form factor is present in the resummation formula as an

overall factor, if the expansion of the formula generates just the leading NLLσ terms in the

cross section correctly, it generates all of them correctly.

For the reader who is willing to accept the statements above without detailed expla-

nation (the first of which is not obvious) we recommend skipping 3.1.1.

In section 3.1.2 we go on to include v01 resummation at NLLσ. To this end we notice

how, if we include on top of the Caesar v12 resummation formula, matched to leading

order Bjj, also the v01 Sudakov form factor, on integrating out y12 we obtain the Bj-
Minlo distribution to NLLσ. The analysis in section 2.4 has made it clear already that

this Bj-Minlo distribution recovers the Caesar v01 resummation formula on further

integration over the rapidity, yJ, and azimuth, φJ, of the remaining pseudoparton.

With the latter modification we come full-circle: by concatenating the two Caesar

resummations we get the same resummation as the original Ckkw [14, 27] and Minlo ar-

ticles [26], to NLLσ, modulo the terms in the v12 Sudakov form factor mentioned overhead

in item i. If we restrict ourselves to the same accuracy remit as the coherent branching

formalism aims at, the only part of our prescription not already specified in the original

Ckkw paper [14], is the inclusion of the PDFs. Again, our argument to extend the pre-

scription to include PDFs (and also the aforementioned wide angle terms) is based on the

idea that if the resummation formula carries an overall LL accurate Sudakov form factor

and reproduces just the leading NLLσ terms correctly, it surely reproduces all of the NLLσ
terms in the cross section. It is reassuring then that our extension, in that respect, to take

into account the PDF effects, is also consistent with that of the Ckkw paper on hadronic

collisions [27], and the original Minlo prescription [26].

While the arguments behind our nested resummation are strong enough to convince

us of its correctness, we do not consider that we have definitively proven it.

9In other words the Caesar Sudakov form factors capture the same leading soft wide-angle terms as

those in the coherent branching formalism, as well as sub-leading ones which the latter discards.
10This statement also holds regardless of PDF considerations, since LL effects only pertain to soft-collinear

emissions.

– 20 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
2

Since it can lead to confusion, in reading this subsection 3.1, the sole goal of which

is to give a conjectured NLLσ resummation formula, we advise the reader to temporarily

abandon all thoughts about matching to NLO, and imagine instead just matching to LO

Bjj cross sections.

3.1.1 y12 resummation when y01 . m2
B

For what concerns this subsection we focus on large L12 logarithms relative to a given Bj
state. Large L01 logarithms are discussed next in section 3.1.2. The statements we make

regarding L12 resummation should hold independently of the behaviour of the dσ/dΦBJ

underlying Born cross section, be it pathological or otherwise. However, should reassur-

ance be needed already, the divergent y01 → 0 behaviour of dσ/dΦBJ is ultimately tamed

by inclusion of a Sudakov form factor consistent with Caesar and the coherent parton

branching formalism.

We now specify the connection between the Sudakov form factors in the Caesar

approach and those used for the coherent parton branching formalism/Ckkw [60–71].

The latter formalism is capable of resumming v12 logarithms also in the small v01 region.

The key point that comes out of this analysis, in regards to making the case for the nested

resummation, is that (ignoring potentially enhanced ln z terms11) the Sudakov form factors

associated with the y12 resummation in both approaches are the same to NLLσ.

For processes with n = 3 hard legs, all S
[12]
1 coefficients (eq. (2.8)) can be written, with-

out approximations, as a piece containing a logarithm of y01 plus a remainder term, ∆S1,

which, crucially, for QB = mB, QBJ =
√
y01, has no large-logarithmic dependence on y01:

S
[12]
1 = G

[01]
12 L01 + ∆S1 . (3.2)

Rewriting S [12]

1 as in eq. (3.2) is the key to understanding the connection between Ckkw

and Caesar here. In eq. (3.2) the G
[01]
12 coefficient is that which one would write down

for the n = 2 process underlying the n = 3 one; qq′ →W/Z and gg → H for jet-associated

W/Z and Higgs boson production processes. Explicit expressions for ∆S1 are given in

appendix A.6.

While ∆S1 is free of large y01 logarithms, it is not zero. In the n = 3, 2 → 2, hard

configurations with a gluon in the final-state, ∆S1 contains terms proportional to ln z,

where z = m2
B/ŝ, with ŝ the invariant mass of the 2→ 2 collision. In the n = 3, 2→ 2, hard

configurations with a fermion emitted in the final-state, also terms proportional to ln (1 − z)

are present in ∆S1. Such terms are thrown out in the coherent parton branching formalism

as being beyond the accuracy aimed at there for exclusive quantities, namely, control of all

terms ᾱnSL
p
01L

q
12, p+ q ≥ 2n− 1; heuristically, that accuracy implies a resummation of an

infinite number of soft and collinear emissions with, in addition, up to one soft-wide-angle,

or hard-collinear emission. Thus, in order for soft-wide-angle emissions, which the S [12]

1

terms are to account for, to be within the accuracy remit they must have been emitted

from an underlying Bj state for which z → 1. Equally, in the case of the n = 3 reactions

with a fermion in final-state of the underlying Born, the fact that the n = 3 state is arrived

11The Caesar framework (like many other works) neglects the potential small x problems anyway.
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at by fermion emission, means that further radiation must be soft-collinear to register

within the formalism’s accuracy. Thus the ∆S1 terms are (so far) outside the scope of the

coherent parton branching framework, indeed, they would appear to exactly the kind of

“large angle soft gluon contributions of order αnSL
2n−2” which the formalism neglects in

the case of multi-jet distributions (pg. 11, ref. [65]).

In comparing the Caesar formulas to those of the coherent parton branching frame-

work we therefore now drop ∆S1 terms, and those contributing beyond NLLσ, in the

Sudakov form factors, leading to the replacements

−R (v01)→ −R̄ (v01) =

∫ Q2
B

y01

dy′

y′
ᾱS

(
y′
) [

2G[01]

12 ln
m2
B

y′
+G[01]

11

]
, (3.3)

−R (v12)→ −R̄ (v12) =

∫ y01

y12

dy′

y′
ᾱS

(
y′
) [

2G[01]

12 ln
m2
B

y′
+G[01]

11

]
(3.4)

+

∫ y01

y12

dy′

y′
ᾱS

(
y′
) [

2
(
G[12]

12 −G[01]

12

)
ln
y01

y′
+
(
G[12]

11 −G[01]

11

) ]
.

Translating eqs. (3.3)–(3.4) in terms of the notation of the coherent parton branching

formalism we get, without approximations,

e−R̄(v01) =
∏

`∈[01]

∆` (
√
y01,mB) , e−R̄(v12) =

∏
`∈[01]

∆`

(√
y12,mB

)
∏
`∈[01]

∆`

(√
y01,mB

)
∏
`∈[12]

∆`

(√
y12,
√
y01

)
∏
`∈[01]

∆`

(√
y12,
√
y01

) .

(3.5)

where ` ∈ [01] means one of the two coloured legs ` which directly attaches itself to B,12

while ` ∈ [12] means any of the three coloured legs external to the Bj state. Definitions of

the Sudakov form factors ∆` are given in appendix A.7, they are the same as those used

widely in the literature on the coherent parton branching formalism/Ckkw (e.g. ref. [14]).

Observe how the form of the product of the two Caesar-style Sudakov form factors gives

the breakdown one expects in terms of the Sudakov form factors employed by the coherent

parton branching formalism/Ckkw method. Continuing to neglect ∆S1 terms, the y12

Sudakov form factor can be rewritten without further approximation as

e−R̄(v12) = exp

[∫ L12

0
dL′12 ᾱS

(
y′
)

2S
[12]
1

] ∏

`∈[12]

∆` (
√
y12,
√
y01) , (y′ = y01 exp

[
−L′12

]
) ,

(3.6)

making clear the difference between it and what one might have expected based on a

naive transverse momentum ordering, i.e. the same expression without the first exponential

accounting for coherent soft-wide-angle emission.

Finally, we have that the coherent parton branching formalism and the Caesar y12

resummation formula are consistent in regards to the Sudakov form factors they would

assign for the y12 (and y01) resummations, at the level to which the former is accurate.

Caesar’s accounting for soft-wide angle resummation, via the leading part of its S [12]

1

12In the cases at hand ` ∈ [01] then means ` is always a quark if B is a vector boson, it is always a gluon

if B is the Higgs boson.
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term (eq. (3.2)) is essential for this non-trivial agreement. Beyond the domain of validity

of the coherent branching formalism we only have LL agreement with the coherent parton

branching formalism in the Caesar Sudakov form factor for y12 resummation.

Following the argument laid out surrounding bullets i.) and ii.) in section 3.1, we

therefore consider the Caesar y12 resummation formula to be NLLσ accurate also in the

region y01 . m2
B. For this to be false requires either: i.) the statement that the y12

resummation formula is not LL accurate for arbitrary ΦBJ to be false, which conflicts with

the coherent parton branching formalism; ii.) the leading NLLσ terms in the expansion of

the Caesar y12 cumulant in the region y01 . m2
B do not follow directly from integrating

the soft/collinear radiation pattern of a single emission with respect to the emitting Bj
configuration, over the region y12 < y01.

3.1.2 y01 resummation

Going back to our initial resummation formula of section 2, neglecting higher order terms,

we now understand the following resummation formula to be NLLσ independently of ΦBJ,

dσBJJ
R

dΦBJdL12
=
dσBJ

0

dΦBJ

d

dL12

[
e−R(v12)

ni∏

`=1

q(`)
(
x[12]

` , y12

)

q(`)
(
x[12]

` , y01

)
]
, (3.7)

where x[12]

` refers to the momentum fractions of the incoming partons colliding to make

the Bj system. Integrating this formula over y12 we obtain the leading order ΦBJ distribu-

tion, dσBJ
0 /dΦBJ, up to NLO-sized ambiguities. The renormalization scale in the coupling

constants in dσBJ
0 is µR and the factorization scale in the PDFs is µF . It then follows

directly (given the correspondence between the Minlo procedure in section 2.4 and the

initial resummation formula eq. (2.1)) that for µF =
√
y01 in dσBJ

0 , if we include a factor

W [01] in the form

dσ̄BJJ
R

dΦBJdL12
=W [01] dσBJJ

R

dΦBJdL12
, W [01] = exp [−R (v01)]

ᾱS (y01)

ᾱS (µR)
, (3.8)

we reproduce the Bj-Minlo distribution, and hence also the Caesar y01 resummation

formula, to NLLσ accuracy. We conclude that dσ̄BJJ
R in eq. (3.8) above, is NLLσ accurate

in the resummation of L12 for arbitrary given ΦBJ, and that it reproduces, on integration,

the L01 resummation to the same precision.

3.2 Bjj-Minlo jet resolution spectra

Expanding the conjectured resummation formula in ᾱS to give the associated NLO approx-

imation for the Bjj cross section, we get

dσ̄BJJ
S

dΦBJdL12
=
dσBJ

0

dΦBJ

[
1 +

2∑

m=1

R[01]

1mᾱSL
m
01

] [
2∑

n=1

2n−1∑

m=2n−2

H [12]
nmᾱ

n
SL

m
12

]
, (3.9)

where the coefficients H [12]
nm have the same form as those introduced in section 2.4, with the

renormalization and factorization scales µR = mB and µF =
√
y01 throughout;13 explicit

13Including inside the PDF factors of the dσBJ
0 term.
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expressions for these can be found in appendix A.8. If we now trace the effects of the

Minlo procedure on this fixed order expansion, by analogy to the exercise of section 2.4,

we find that the final Minlo cross section is in agreement with the resummation formula,

eq. (3.8), up to sub-leading terms outside the control of the latter. Specifically, here the

Minlo procedure for the NLO Bjj cross section is:

1. Set µR and µF according to,

dσ → dσ′ = dσ (µR → mB, µF →
√
y12) .

2. Multiply the LO component by the O (ᾱS) expansion of the inverse of the product of

y01 and y12 Sudakov form factors times ᾱs (y01) /ᾱs
(
µ2
R

)
and ᾱs (y12) /ᾱs

(
µ2
R

)
(terms

beyond NLLσ accuracy):

dσ′ → dσ′′ = dσ′ − dσ′
∣∣
LO
ᾱS

(
µ2
R

) (
G[01]

12 L2
01 +

(
G[01]

11 + 2S [01]

1 + 2β̄0

)
L01

)

− dσ′
∣∣
LO
ᾱS

(
µ2
R

) (
G[12]

12 L2
12 +

(
G[12]

11 + 2S [12]

1 + β̄0

)
L12

)
.

3. Multiply by the Minlo Sudakov form factors and ᾱS ratios:

dσ′′ → dσBJJ
M = e−R(v01) ᾱs (y01)

ᾱs (µ2
R)

e−R(v12) ᾱs (y12)

ᾱs (µ2
R)
dσ′′ . (3.10)

With these operations we find we can write dσBJJ
M = dσ̄BJJ

R , as in eq. (3.8), neglecting

sub-leading terms unaccounted for by the dσ̄BJJ
R formula.

Recalling that the product of the Caesar Sudakov form factors is equivalent at NLLσ
accuracy to the product of those prescribed in the Ckkw method and the original Minlo

procedure [26], modulo the ∆S
[12]
1 soft-wide angle contributions, already elaborated on.

The only other difference between the original Minlo procedure and that enumerated

above is the prescription for the scale to use in the addition factor of ᾱS accompanying

the NLO corrections — the original Minlo procedure suggests to use the arithmetic mean

of all other ᾱS factors, on an event-by-event basis — a difference affecting terms beyond

level of accuracy needed here. In conclusion, then the Minlo procedure outlined above,

deriving from joining the Caesar y01 and y12 resummations, boils down to the original

Minlo prescription at the NLLσ level specified at the end of section 3.1.2, excepting the

sub-dominant wide-angle ∆S
[12]
1 Sudakov form factor terms. As indicated already in the

introduction to this section, the ‘product’ of the two Caesar resummations has returned

us, somewhat remarkably, almost exactly back to the Ckkw/Minlo recipe.

3.3 Integrated Bjj-Minlo jet resolution spectra

Granted that the Bjj-Minlo procedure is NLLσ accurate for the v12 resummation and

NLLσ for v01 when y12 is integrated out, it follows that

δ(ΦBJ) =

(
dσBJJ
M

dΦBJ

− dσBJ ′
M

dΦBJ

)
/

∫
dL12 h (L12)

dσBJJ
M

dΦBJdL12
=
∞∑

n=0

en(ΦBJ) ᾱ
n/2
S Ln01 , (3.11)
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where the en coefficients are O (1). The en coefficients carry no divergent 1/y01 factors —

these cancel between the numerator and denominator of δ14 — equally, they contain no

large L01 factors.15 Thus δ(ΦBJ) is formally also O (1), neglecting deep Sudakov regions

where ᾱSL
2
01 & 1. This means that we are justified in applying the procedure of section 2.6

with the replacements dσM → dσBJJ
M , dσNLO → dσBJ ′

M , leading to eq. (3.1), and hence recover

also NLO accuracy for B-inclusive quantities, or NNLO accuracy, should the Bj-Minlo′

distribution have been reweighted to NNLO [29].

4 Feasibility study

In the following we show how the above merging of three units of multiplicity works in

a practical implementation. For this we consider Higgs production at the LHC, with

a collision energy of 8 TeV. We ‘merge’ the Hjj-Minlo simulation to an existing Hj-

Minlo′ simulation reweighted to NNLO according to the prescription of ref. [29]. In the

following we therefore make predictions that are NNLO accurate for inclusive Higgs boson

production, and NLO accurate for Hj and Hjj observables. The inclusive matrix element

predictions are matched to the parton shower using the Powheg method.

4.1 Implementation

In order to simplify the implementation and require no changes to the existing Hjj and

Hnnlops processes in the Powheg-Box, we have chosen to work at the level of the Les

Houches events (LHE). The distributions formed from LHE in Powheg are NLO accurate,

i.e. differences with a fixed order NLO computation are beyond NLO accuracy. Relatedly,

they respect the NLLσ accuracy of Minlo: the difference in phase space w.r.t. the matrix

elements is beyond LL and the matching to NLO is then enough to preserve distributions

at the NLLσ level. We consider that working at the level of the LHE also simplifies the

generation of the final results: we have written an independent code that reads in Hjj and

Hnnlops LHE files and writes out a reweighted Hjj LHE file to achieve the results of the

three units of multiplicity merging.

As described in section 2.6, we need to correct the
dσHJJ
M

dΦHJdL12
in such a way that when

integrated over L12 it returns the Hj-Minlo′/Hnnlops ΦHJ distribution. This can be done

by multiplying the fully differential Hjj calculation by the (1−∆R(v12)approx) factor as de-

scribed in eq. (2.34). This factor can only be computed after integration over L12, as is clear

from eq. (2.31). To avoid performing the complete L12 integration for every ΦHJ phase-space

point, and given that this integral is too complicated to perform analytically, we instead

have chosen to setup three three-dimensional interpolation grids for the three contributions

to δ(ΦHJ): the two terms in the numerator and the term in the denominator, respectively.

The three dimensions are the rapidity of the Higgs boson, the rapidity of the hardest jet

and the transverse momentum of the hardest jet. These being the dimensions making up

the non-trivial part of the Hj phase space ΦHJ; the dependence on the azimuthal angle,

φJ, is completely flat. Indeed these interpolation grids can be filled quickly with the LHE

14Both terms in the numerator of δ (ΦBJ), and the denominator, are proportional to the Born dσBJ
0 /dΦBJ.

15The en coefficients do contain powers of ᾱSL01 and other subleading contributions.
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from the existing Hjj and Hnnlops implementations in the Powheg-Box framework. We

have generated the interpolation grids using rigid binning as well as a method based upon

Parni [72] to dynamically create hypercubes in the three dimensions; we did not see appre-

ciable improvements using the more involved Parni method and the results we present here

are therefore based on the implementation using the simpler fixed interpolation grid bins.

In implementing the h (L) function of eq. (2.32), we have softened the abrupt transition

at the freezing scale, manifested by the step functions. Specifically we implement h (L) as

h (L) = ᾱS

[
ᾱSL

2h0 (L) +
ρ

2 |G12|
[1− h0 (L)]

]
, (4.1)

h0 (L) = ργ/
[
ργ −

(
2 |G12| ᾱSL

2
)γ]

, (4.2)

taking γ = 5. As γ → ∞ the h (L) function becomes exactly that of eq. (2.32), but for

a rescaling ρ → ρ/(2 |G12|). Thus, h (L) becomes frozen in the region where the leading

double log term in the Sudakov exponent is ≈ ρ. We probe the sensitivity of our results

to ρ (and therefore, indirectly, also γ) by computing predictions with ρ = 1, 3, 9, 18 and

27, with the central renormalization and factorization scale choices. To avoid confusion,

we already remark that the results in the next section prove to be quite robust against

variations of ρ: for quite a number of observables it appears there is no visible variation at

all, although, for sufficiently inclusive observables, that is not unexpected.

Because we have chosen not to change the existing Minlo implementation of the

Hjj process, the ∆S1 terms, as introduced in eq. (3.2), are not included in our Sudakov

exponents. Recall that these NLLσ terms only become relevant for ΦBJ configurations where

the leading pseudoparton is hard-collinear. Furthermore, the region where y01 & O(m2
H), is

beyond the scope of the coherent parton branching formalism, because the first emission,

i.e. the one entering y01, is not enhanced by any large logarithm in that case. As clarified

in section 2.3, it follows that Ckkw/Minlo does not lead to the correct Sudakov factors

at NLLσ accuracy in the y12 variable, in this region of phase-space: they miss the S1

contribution due to soft-wide-angle radiation. In this feasibility study we chose to ignore

these facts, with the expectation that technical issues might well instead present us with

more serious, immovable obstacles. Formally, if these missing contributions would turn out

to be important, δ(ΦHJ), with the definition of h(L12) as in eq. (2.31), would no longer be

an order one quantity, cf. eq. (2.33). It is not difficult to include these terms in the Minlo

framework, indeed one of the results of this work has been to pinpoint these and other

terms, which can improve the quality of the resummation. We leave the implementation of

such terms to future work, although all indications from the following results suggest that

this stands to be, fortunately and unfortunately, a null exercise. We have checked that

in all of phase-space δ(ΦHJ) remains within the range of values associated to resummation

constants used in Higgs boson transverse momentum resummation.

Lastly we comment that we work in the SM theory in which the top quark is integrated

out. This results in a well-known Higgs effective theory with tree-level interactions between

the Higgs boson and gluons. This approximation breaks down if the Higgs or the gluons

carry enough energy to resolve the shrunk top quark loop, e.g., when the leading jet

transverse momentum exceeds the top quark mass. We also do not include b quark mass
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effects, setting the b quark mass and Yukawa coupling to zero. Accounting for these finite-

quark mass effects at the Born level in the Hjj Powheg generator could be done in an

analogous way to ref. [73].

4.2 Results and testing

In the hard matrix elements we set the Higgs mass to mH = 125 GeV and keep it stable

throughout the simulation. The LHE are showered with Pythia6 [74], using the Peru-

gia 0 tune [75] but with hadronization and multiple-parton interactions turned off. The

central renormalisation and factorization scales are set according to the Minlo procedure.

To assess the scale dependence in Hjj-Minlo we vary the renormalisation and factorization

scales independently, by a factor two around their central values, omitting the two values

where the scales are changed oppositely. This results in 7 curves, whose envelope gives

the uncertainty band. For the Nnlops we use procedure advocated in ref. [29], resulting

into 21 curves. In the merging of the new improved Hjj-Minlo results we keep the scales

used in the input Hjj and Hj (which on its own is an input to Nnlops) calculations cor-

related. Hence, this also results in 21 curves, the envelope of which defines the uncertainty

band. We employ the MSTW2008nnlo PDF set [76] for all contributions and refrain

from showing uncertainties of PDF origin.

All figures that we present here have the same layout. They contain a main panel on

the left and three ratio plots on the right-hand sides. In the main panel, we show the central

values for the Nnlops predictions for inclusive Higgs boson production in green (Nnlops),

the pre-existing Hjj-Minlo ones in blue (Hjj), and the predictions of our new improved

Hjj-Minlo procedure in red (Hjj?), together with its scale uncertainty band. The right-

hand plots display the ratio of these predictions, from top to bottom, with respect to the

Hjj?, Nnlops and Hjj results. The coloured band in each of the latter plots shows the

scale uncertainty associated to the prediction in the denominator of the corresponding ratio.

In the upper right-hand panel we also show, in all cases, superimposed on top of the

light-red scale uncertainty band, a much darker red uncertainty band, formed by varying

the ρ parameter of the correction procedure (see again sections 2.6 and 4.1). The precise

implementation of the h (L) function, through which dependence on this parameter enters,

was described in the previous section, surrounding eq. (4.1). We re-iterate that the dark-red

band, depicting uncertainty due to this ρ parameter, was formed by taking the envelope

of predictions made with ρ = 1, 3, 9, 18 and 27, using the central renormalization and

factorization scale choices.

We remind that the correction procedure, as described in sections 2.6 and 3, should

function such that quantities which are fully inclusive with respect to the y12 variable

have no sensitivity to ρ at all. Thus, for at least the first few figures we look at in this

section, focusing on fully inclusive and Hj-inclusive observables, the aforementioned dark-

red band should be (and is) invisible, being obscured by the horizontal black reference

line. Moving on to more interesting observables, particularly probing the behaviour of

the second jet/second pseudoparton in the event, the dark-red ρ-parameter band starts to

emerge, but it is generally quite elusive.
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Figure 1. Rapidity of the Higgs boson as predicted by the Hjj-Minlo (Hjj, blue), Nnlops (dark

green) and improved Hjj-Minlo (Hjj?, red) generators.

We do not claim that variation of ρ, together with the renormalization and factor-

ization scales, gives a realistic estimate of theoretical uncertainties in regions where large

Sudakov logarithms occur. We content ourselves to say that ρ is an unphysical technical

parameter introduced in our procedure, with systematics associated to it. We believe our

variation of ρ, as described above, is a conservative estimate of these systematics, and we

find them to be very much negligible.

Finally, statistical uncertainties are shown as vertical lines, however, for the most part

these are negligible to the point of being invisible.

Inclusive quantities. In figure 1 we plot the rapidity of the Higgs boson; no cuts have

been applied to the final state. The Hjj? and Nnlops central predictions agree with one

another to within 2%, with their uncertainty bands exhibiting a similar level of agree-

ment. This indicates that the method and its implementation are performing as expected

(eqs. (2.36)–(3.1)). The uncorrected Hjj-Minlo prediction in blue is 10% away from the

central Nnlops results, but this is fortuitous given that the scale uncertainty on the former

is ∼ 30%. Moreover, given our theoretical analysis in the preceding sections of this paper,

neglecting the sub-leading NLLσ ∆S1 terms, we expect the Hjj-Minlo prediction here is

only LO accurate, so the ∼ 30% uncertainty assigned to it is arguably too small. The un-

certainty band associated to varying the ρ parameter as described at the beginning of this

subsection 4.2 is so small that it is concealed within thickness of the black reference line in

the upper right plot; indeed since this quantity is fully inclusive in L12, by construction of

the procedure (section 2.6), the only way any such uncertainty could manifest here is as a

result of technical problems and/or some statistical issues.

In figure 2 we plot the Higgs boson transverse momentum spectrum. As with the Higgs

boson rapidity distribution no cuts have been applied to the final state. Exceptionally,

in this figure we compare Hjj? and Hjj to the NNLL+NNLO predictions of the Hqt

program [77–81], instead of Nnlops. Comparing Nnlops (not shown) and Hjj? we find

the two generators agree with one another to within 3% throughout the spectrum, except

for the region pT . 5 GeV, where the difference rises up to 15% in the pT < 2 GeV region.
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Figure 2. Transverse momentum of the Higgs boson as obtained from the Hjj-Minlo (Hjj,

blue) and improved Hjj-Minlo (Hjj?, red) generators, together with the associated NNLL+NNLO

computation from the Hqt program (dark green) [77–79].

The latter differences owe to the finite size of the bins in our interpolation grids, coupled

with the fact that the distribution is changing very rapidly for pT . 5 GeV. Given this

technicality, and the fact that this region is under poor theoretical control anyway, the

conclusion, again, is that the method and its implementation work well. Turning then to

the comparison with Hqt in figure 2, we see, pleasingly, that the method substantially

corrects the shape of the pre-existing Hjj-Minlo simulation, with the resulting Hjj?

prediction agreeing very well with Hqt in the region where the latter is undeniably the

superior calculation (pT . 100 GeV).16 In the high transverse momentum tail both Hjj?

and Hqt computations have the same NLO accuracy for this distribution. Differences

between Hjj? and Hqt occur there due to the different choice of scales in each code,

roughly, pH
T in the case of Hjj?, compared to 1

2mH in Hqt. The same comments made

above for the Higgs boson rapidity distribution in regards to the uncertainty associated

with the ρ parameter apply equally well again here.

Jet cross sections. In figure 3 we compare predictions for inclusive jet cross sections,

between the Hjj (blue), Nnlops (dark green) and Hjj? (red) generators, defined according

to the anti-kt-jet algorithm [82] with radius parameter R = 0.4, for jet transverse momen-

tum thresholds of 25, 50 and 100 GeV. In figure 4 we show the analogous set of plots for

the corresponding exclusive jet cross sections. No rapidity cuts have been applied to the

jets in making these plots.

First we discuss the inclusive jet cross sections in figure 3. For the 0-jet inclusive cross

sections, the improved Hjj? results are indistinguishable from the Nnlops ones, shifted

upwards by 10% with respect to the original Hjj-Minlo predictions (Hjj). The 1-jet

inclusive predictions show the Hjj? results agreeing with the Nnlops ones to within 2%.

16In Hqt we have used the ‘switched’ mode and taken the central renormalization, factorization and

resummation scales to be 1
2
mH. The uncertainty band comprises the envelope of a 7-point variation of the

first two scales: µR → KRµR, µF → KFµF , with KR/F = 1
2
, 1, 2, omitting the two combinations for which

KR and KF differ by more than a factor of two.
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Figure 3. Inclusive jet cross sections, for jets defined according to the anti-kt-jet algorithm [82] with

jet radius R = 0.4. In the upper, middle and lower plots jets are defined for transverse momentum

thresholds of 25, 50 and 100 GeV, respectively. In each case we compare output from the Hjj-Minlo

(Hjj, blue), Nnlops (dark green) and improved Hjj-Minlo (Hjj?, red) generators.

– 30 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
2

Unlike the case of the 0-jet bin, in the 1-jet bin, for 25 and 50 GeV jet pT thresholds, the

unimproved Hjj-Minlo result was already in agreement with the Nnlops at the level of

5% or better. So, for the 1-jet inclusive cross sections the room for improvement is very

much smaller, with only a small amount visible in the case of the 50 GeV pT cut. For the

case of the 100 GeV jet pT threshold the unimproved Hjj-Minlo prediction is 10-15% away

from the Nnlops one, whereas the improved Hjj? result sits on top of it. Looking to the

higher multiplicity bins, involving at least two jets, we see, as desired, the Hjj? predictions

and those of the parent, unimproved, Hjj-Minlo simulation are in perfect agreement, but

for a statistical fluctuation in the 4-jet inclusive cross section with a 100 GeV jet pT cut.

We remind that the vertical error bars indicate statistical errors, which are rarely visible,

whereas the shaded bands indicate theoretical uncertainties.

The behaviour seen in all of the inclusive jet cross sections of figure 3, is as we would

naively expect it to be. By construction, our improved Minlo method should reproduce

Nnlops results essentially identically for 0- and 1-jet inclusive quantities (eqs. (2.36)–

(3.1)), while observables that receive their leading contributions from higher jet multiplic-

ities are to be described as in the original Hjj-Minlo generator, which yields the more

accurate predictions for those observables.

Given that our Minlo improvement method is intended to return the 0-jet and 1-jet in-

clusive results of its ‘target’ Nnlops simulation, essentially without ambiguities, one might

be tempted to ask why we can see even 2% differences between the Nnlops and Hjj? pre-

dictions for the 1-jet inclusive cross sections. What the improvement procedure precisely

does, without ambiguities, assuming a perfect implementation, is to have the improved Hjj?

result reproduce the Nnlops underlying Born kinematics ΦBJ (eqs. (2.36)–(3.1)) which are

defined by clustering events with the exclusive kt-jet algorithm, with R = 1.0. What is

plotted in the 1-jet bins of figure 3 is therefore not in one-to-one correspondence with the

kinematics ΦBJ (consisting of a Higgs boson and a single pseudoparton in the final-state) but

rather it is something which is also sensitive to additional radiation. The Hjj? and Nnlops

generators are further in agreement as to the relative distribution of this additional radia-

tion at the level of ᾱ4
S terms, i.e. at the level of NLO corrections to Hj, however, at O(ᾱ5

S)

differences do enter. Hence, even if the implementation were a perfect representation of our

method, with infinite resolution in the ΦBJ grids, we can still expect to see differences be-

tween the Nnlops results and Hjj?, for the 1-jet inclusive cross section, which are formally

NNLO-sized in the context of the inclusive 1-jet calculation. This being the case, one can be

quite satisfied with only 2% differences between the Nnlops and Hjj? predictions for the

1-jet inclusive cross sections. In fact, we examined the 0- and 1-jet inclusive cross sections,

with a 25 GeV jet pT threshold, prior to interfacing with the parton shower, whereupon we

found the 0-jet and 1-jet Hjj? cross sections to be indistinguishable from their Nnlops

counterparts, while the 2- and 3-jet bins remained identical to those of Hjj-Minlo.

Let us now turn our attention to the exclusive jet cross sections of figure 4. First, for

the high multiplicity bins, involving two or more jets, the Hjj? results are in complete agree-

ment with those of its parent unimproved Hjj-Minlo generator (up to a single statistical

fluctuation). The Nnlops predictions are nominally only LO accurate for the 2-jet bins,

whereas for higher jet multiplicity bins the simulation relies entirely on the parton shower

– 31 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
2

10−1

100

101

102

=0 =1 =2 =3 =4

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 25 GeV

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 25 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 25 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 25 GeV

HJJ⋆

NNLOPS

HJJ 0.7

1.0

1.3

=0 =1 =2 =3 =4

0.7

1.0

1.3

0.7

1.0

1.3

10−2

10−1

100

101

102

=0 =1 =2 =3 =4

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 50 GeV

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 50 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 50 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 50 GeV

HJJ⋆

NNLOPS

HJJ 0.7

1.0

1.3

=0 =1 =2 =3 =4

0.7

1.0

1.3

0.7

1.0

1.3

10−3

10−2

10−1

100

101

102

=0 =1 =2 =3 =4

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 100 GeV

Njets

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 100 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 100 GeV

σ
[p
b
]

#
/H

J
J

#
/H

J
J
⋆

#
/N

N
L
O
P
S

Anti−kT

R=0.4

pT > 100 GeV

HJJ⋆

NNLOPS

HJJ 0.7

1.0

1.3

=0 =1 =2 =3 =4

0.7

1.0

1.3

0.7

1.0

1.3

Figure 4. Exclusive jet cross sections, for jets defined according to the anti-kt-jet algorithm [82]

with jet radius R = 0.4. In the upper, middle and lower plots jets are defined for transverse

momentum thresholds of 25, 50 and 100 GeV, respectively. In each case we compare output from

the Hjj-Minlo (Hjj, blue), Nnlops (dark green) and improved Hjj-Minlo (Hjj?, red) generators.
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approximation. The Hjj and Hjj? predictions, on the other hand, are expected to be NLO

accurate for the 2-jet bins, LO for the 3-jet bins, only resorting to the parton shower approx-

imation in the 4-jet bins. Hjj? being in perfect agreement with Hjj-Minlo for the latter

cross sections is, of course, the desired behaviour from our improved Minlo prediction.

For the 0-jet exclusive cross sections in figure 4 we see nice agreement between the Hjj?

and Nnlops predictions at the 1-2% level or better, as is to be expected by construction

of our method. To explain the 1-2% differences that can be seen we tender again the same

theoretical explanation as above (the Nnlops and Hjj? results differ, by construction,

at the level of O(ᾱ5
S) terms), however, with such small differences we also cannot rule

out imperfections in the implementation, e.g. artefacts due to the finite granularity of the

grids and grid interpolation. We suffice to say that the differences between the Hjj? and

Nnlops computations of the 0-jet exclusive cross sections are negligibly small, while the

unimproved Hjj-Minlo result sits 10-15% below them.

Lastly, we look to the the 1-jet exclusive cross sections. The plots in this case read

that the Hjj? prediction is different from the Nnlops one by 7% for the 25 GeV jet pT

threshold, 5% for the 50 GeV threshold, and ∼ 0% for the 100 GeV threshold. Meanwhile,

the unimproved Hjj-Minlo prediction is in agreement with the Nnlops prediction at the

level of ∼ 0%, 10%, and 15%, for the same pT thresholds, respectively.

Since the Minlo improvement method we propose works to correct the inclusive 0- and

1-jet Hjj-Minlo cross sections to be equal to those of the target Nnlops generator, while

leaving inclusive 2-jet observables basically untouched, we consider it can be useful to think

of the exclusive 1-jet cross section as the difference of the inclusive 1- and 2-jet cross sections:

σ (= 1− jet) = σ (≥ 1− jet)− σ (≥ 2− jets). Clearly if σ (≥ 1− jet)� σ (≥ 2− jets) dif-

ferences in the latter will have limited impact on the exclusive 1-jet cross section. The latter

scenario is enhanced by increasing the jet pT threshold and, sure enough, the pattern of the

exclusive jet-cross sections seen in the case of the 100 GeV pT threshold, mirrors well what

we see in the analogous inclusive jet cross section case, discussed overhead. To explain then

the differences seen between the Nnlops and Hjj? generators at the 25 GeV and 50 GeV

jet pT thresholds, we note that the Nnlops exclusive 1-jet cross section is given by its

inclusive 1-jet cross section minus its inclusive 2-jet cross section, on the other hand, by

design, as can be verified in figure 3, the Hjj? exclusive 1-jet cross section is basically given

by the Nnlops inclusive 1-jet cross section minus the Hjj-Minlo inclusive 2-jet cross sec-

tion. Since the Hjj-Minlo inclusive 2-jet cross section at the 25 GeV jet pT thresholds is

10% lower than the Nnlops one, while the ratio of the inclusive 1-jet to 2-jet cross sections

is roughly two, it follows that one can expect the Hjj? 1-jet exclusive cross section to be 5%

higher than the corresponding Nnlops one. Adding in the fact that the Hjj? 1-jet inclusive

cross section was already 1-2% above the corresponding Nnlops one, the 7% excess is ac-

tually very much in line with expectations based on how the method is intended to work, in

particular, its preserving of the inclusive cross sections. A similar explanation holds for the

50 GeV jet pT threshold result, however, there the fact that the 2-jet inclusive cross section

of Hjj-Minlo is low does not imply as big an increase is needed in the 1-jet exclusive bin to

recover the 1-jet inclusive Nnlops result, since for that higher pT threshold σ (≥ 1− jet)�
σ (≥ 2− jets). We also remark that the Hjj? exclusive 1-jet cross section results all agree

with those of the Nnlops generator to within the thickness of the scale uncertainty bands.
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Figure 5. Leading jet transverse momentum spectrum, for anti-kt-jets with radius parameter

R = 0.4.

We finally note that the dark-red scale uncertainty band associated to variation of the

ρ parameter, as described in sections 4.1–4.2, is invisible here: the effect of varying this

parameter on these distributions is totally negligible.

To conclude the discussion on jet cross sections, we can say that all of the results we

find are very much in line with expectations regarding how our method should function,

all vindicating the method and its implementation.

Leading jet. In figures 5–9 we plot various quantities relating to the kinematics of the

leading jet. In all of these figures jets have been defined according to the anti-kt clustering

algorithm, with jet radius R = 0.4; no rapidity cuts have been applied to the jets. For

figures 7, 8, 9 jets were further defined as having a transverse momentum of at least 25 GeV.

The results for the leading jet transverse momentum spectrum in figure 5 read simi-

larly to those reported for the Higgs boson transverse momentum spectrum (figure 2). The

Nnlops and Hjj? predictions agree very well throughout the spectrum, with the pro-

cedure correcting well for substantial (±15%) shape differences between the unimproved

Hjj-Minlo result and the more accurate Nnlops prediction. Regarding differences be-

tween the Nnlops and Hjj? results in the pT . 5 GeV region, the explanation here is the

same as for the case of the Higgs boson pT spectrum, namely, that the granularity in our

discretized implementation of the ΦBJ phase space is not sufficiently fine to cope with the

rapidly changing distribution for pT . 5 GeV. We reiterate that this region is under lim-

ited theoretical control anyway. Indeed, rather than seek improved agreement of Nnlops

and Hjj? in the latter murky region, we might prefer to lessen the 3-5% deviation in the

neighbourhood 60 ≤ pT ≤ 80 GeV. This region, where the Hjj-Minlo and Nnlops lines in-

tersect, appears to be where the pT derivative of the difference between the two predictions

is changing most rapidly, i.e. the numerator of δ (ΦBJ) in eq. (2.31)/(3.11). It should there-

fore be possible to improve agreement between the Nnlops and Hjj? results in this region

by, for example, making use of (irregular) optimized grids and interpolation methods which

can work on them. Overall, notwithstanding our unsophisticated implementation, agree-

ment between the Nnlops and Hjj? predictions is very satisfactory, providing significant

improvement across the whole pT spectrum relative to the original Hjj-Minlo generator.
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Figure 6. The jet veto efficiency, ε(pT,veto), is defined as the cross section for Higgs boson production

events containing no jets with transverse momentum greater than pT,veto, divided by the respective

total inclusive cross section. Jets are defined here according to the anti-kt-jet algorithm with

R = 0.4. On the left, in the red shaded area, one can see the scale uncertainty band obtained

from the improved Hjj-Minlo (Hjj?) simulation, with the NNLL+NNLO prediction from the

JetVHeto program [38, 41] overlaid in green, and that of the original Hjj-Minlo program in

blue. The lower pane displays the same quantities as a ratio with respect to the central Hjj?

prediction. On the right we display instead the corresponding uncertainty band obtained from

JetVHeto (i.e. renormalization and factorization scale variations only), with the central value of

the JetVHeto prediction defining the reference line in the associated ratio plot.

In figure 6 we plot Hjj, Hjj? and NNLL+NNLO JetVHeto [38, 41] predictions for the

jet veto efficiency, ε(pT,veto), defined as the cross section for Higgs boson production events

containing no jets with transverse momentum greater than pT,veto, divided by the respective

total inclusive cross section. In the left-hand column, in the red shaded area, we show the

scale uncertainty band predicted by the Hjj? simulation, with the central NNLL+NNLO

resummed prediction of JetVHeto superimposed in green (matching scheme-(a), µR =

µF = µQ = mH, µQ being the resummation scale). The lower panel shows the ratio with

respect to the Hjj? prediction obtained with its central scale choice. On the right we have

made the same plots as on the left but with the JetVHeto predictions replacing those of

the Hjj? and vice-versa. The uncertainty band in the JetVHeto results is the envelope of

a seven point variation of µR and µF by a factor of two. This is in contrast to the band asso-

ciated with it in ref. [41], where additionally resummation scale and matching scheme vari-

ations were included in the envelope. Thus the JetVHeto error band here is considerably

smaller than that shown in ref. [41]. We restricted the JetVHeto uncertainty estimate to

the same class of variations so as to have a more like-for-like comparison to the Hjj? band.

The Hjj? and JetVHeto predictions agree within the Hjj? uncertainties, but not

quite to within the thickness of the restricted JetVHeto band, in which case the central

Hjj? prediction is 1-2% below the lower edge of the uncertainty band. Nevertheless, con-

sidering the JetVHeto calculation has superior accuracy to both the Hjj? and Nnlops

predictions, through its high accuracy resummation, the level of agreement we find should

be understood as being, again, quite satisfactory: the Hjj? prediction is always within 5%

of the JetVHeto result, moreover, for the region pT,veto > 25 GeV, it is within 3% of the
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Figure 7. Leading jet rapidity for anti-kt-jets with radius parameter R = 0.4 and a transverse

momentum threshold of 25 GeV.

JetVHeto prediction. We also observed that if we compare to the JetVHeto results

with the same uncertainty prescription as ref. [41] (not shown), the central Hjj? prediction

lies within half the thickness of the more conservative error band that results in that case.

In ref. [29] we presented results showing the Nnlops prediction lying within 1-2% of

the JetVHeto prediction, over the full pT,veto range. Some degree of that good agreement

stemmed from exploiting freedom in the distribution of the NNLO-to-NLO inclusive K-

factor across the leading jet pT spectrum, to ‘tune’ the Nnlops result. We expect that

the slightly less good agreement in the Hjj? result here is correlated with the percent level

differences seen above in our jet pT spectrum, between Hjj? and Nnlops. We remind

that these differences are technical in origin, and should be entirely removable with a more

refined implementation of our method.

Lastly, we remark that the unimproved Hjj-Minlo results for the jet veto efficiency

are, somewhat surprisingly, also quite good. This good agreement of unimproved Hjj-

Minlo and JetVHeto is, however, rather fortuitous. The 0-jet cross section in the

numerator of the definition of the jet veto efficiency, is equal to the pT integral of the

leading jet transverse momentum spectrum from pT = 0 GeV up to pT = pT,veto. One

can clearly see from figure 5 that the leading jet transverse momentum spectrum from the

unimproved Hjj-Minlo generator is, in general, quite different with respect to the Nnlops

and improved Hjj? results. For the region pT,veto . 30 GeV the Hjj? and unimproved Hjj-

Minlo jet pT spectra, while clearly different in normalization, are actually not so different

in shape. By definition, the jet veto efficiency, ε(pT,veto), divides out the respective total

cross sections, and hence it is therefore reasonable to expect ε(pT,veto) is not so different in

the Hjj? and unimproved Hjj-Minlo predictions for the latter pT,veto region. Moreover,

since the numerator of ε(pT,veto) is the cumulant of the leading jet transverse momentum

spectrum, which receives, by far, its main contribution from the low pT region, it follows

that the behaviour of ε(pT,veto), for pT,veto & 30 GeV, is less sensitive to differences in the

latter spectrum in this region, with all predictions converging steadily towards ε(mH) ≈ 1.

Figure 7 shows the rapidity of the leading R = 0.4 anti-kt jet, with a 25 GeV cut

on the jet transverse momentum. Broadly speaking the structure of the results in this
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distribution, in particular their normalization, can be explained in terms of the inclusive

1-jet cross section with the same jet pT threshold; the uppermost plot at the top of figure 3.

We remind that the Hjj-Minlo prediction for this observable is nominally LO, whereas

the Nnlops and Hjj? results are NLO accurate. This being the case, it is a remarkable

coincidence that the unimproved Hjj-Minlo result only exhibits very small differences

with respect to the other two predictions, at the level of about 5%.

The Nnlops and Hjj? results are almost indistinguishable in the central rapidity re-

gion, with the Hjj? prediction improved in this aspect, relative to its parent Hjj-Minlo

simulation. Towards the higher rapidity regions, differences in the Nnlops and Hjj? re-

sults, on the level of ∼ 5%, become visible. Generally speaking the yJ1 distributions of Hjj?

and its parent Hjj-Minlo generator, exhibit very slight, and very similar, ‘smiles’ with re-

spect to the Nnlops distribution. In the Hjj-Minlo case the ‘smile’ feature coupled with

its smaller inclusive 1-jet cross section conspires to make it agree very well with the Nnlops

prediction in the high rapidity regions, where the improved Hjj? program is off by 5%.

We refer back to the discussion of the inclusive 1-jet cross section, surrounding figure 3,

for comments on why one can expect to see small deviations between the Hjj? result and the

target Nnlops distribution for general inclusive 1-jet quantities, starting at the level of ᾱ5
S

terms. Our initial reaction, to seeing the difference in shape between the yJ1 distributions

of the Hjj? and Nnlops results, was to interpret it as being due to a weakness in our

implementation of our method. Re-making this distribution at the level of the Hjj? and

Nnlops LHE events reveals, however, that the two are actually indistinguishable from one

another (the distributions agree at the sub-percent level). Moreover, at the LHE level, the

unimproved Hjj-Minlo code is more clearly out of agreement with both of the latter and,

in particular, it does no longer agree so well with and the Nnlops in the high rapidity

region; the difference being at the level of 5%.

It follows that our implementation of the method actually works perfectly as intended,

and that the small features above which were counter to naive expectations, are actually

fully attributable to the attachment of the parton shower. The parton shower generates the

3rd hardest radiation and beyond in the Nnlops generator, while it starts by generating

the 4th hardest radiation in the case of Hjj-Minlo and Hjj?. Naturally then the effect of

the parton shower on the yJ1 distribution in the Nnlops case is greater, acting to deplete

the cross section in the high rapidity side bands relative to the Hjj-Minlo and Hjj? results.

Given that the difference between the theoretically superior Hjj? and Nnlops results in

these high rapidity regions has been traced to the effects of the 3rd hardest emitted parton

(i.e. an ᾱ5
S effect), we cannot say one result is better than the other. We suffice to say that

the difference is in any case small, in a region where theoretical control is not as high as in

other places, and it is very much contained within the scale uncertainty bands.

Figure 8 shows the transverse momentum spectrum of the leading jet, in events contain-

ing at least two R = 0.4 anti-kt jets, with transverse momenta above 25 GeV. Ostensibly,

this is a rather everyday observable, but it nevertheless probes Sudakov effects on the y12

distribution. So, it is really the first distribution we have shown so far which is sensitive to

non-trivial workings of our method. Towards the low end of the spectrum, pJ1
T . 75 GeV,

there is essentially not enough phase space available to generate large L12 logarithms. By
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Figure 8. Leading jet transverse momentum in events with two or more jets; jets are here defined

according to the anti-kt algorithm with radius R = 0.4 and a transverse momentum threshold of

25 GeV.

contrast, at the high pJ1
T end, one can expect large L12 logarithms, with a significant con-

tribution from events for which
√
y12 & 25 GeV and

√
y01 is of the order of pJ1

T . So, even

though the distribution is defined on 2-jet events, in the high pJ1
T limit, the second jet

should generally be considered as secondary, soft, radiation emitted from a hard, high-pT,

Higgs-plus-jet system.

By construction our method will only act to correct the Hjj-Minlo distribution for

y01 � y12, leaving regions where there is no such strong scale hierarchy untouched. Thus,

in figure 8, at low transverse momentum, we see the Hjj? distribution agrees identically

with Hjj-Minlo. This is, of course, the desired behaviour, since in this region, for this (2-

jet) observable, Hjj-Minlo is nominally NLO accurate, whereas Nnlops is only LO. We

remind that, the analogous inclusive leading jet transverse momentum spectrum, figure 3,

displays significant deviations in shape between Nnlops/Hjj? and Hjj-Minlo in this

same pT region, while Nnlops and Hjj? are in near perfect agreement.

Turning instead to the high pJ1
T region, the three predictions are in good agreement with

one another. In the high pJ1
T region there is perhaps a faint hint of the Hjj? result tending to

that of the Nnlops. We assert that the latter tendency would be the correct and desirable

result there. Should the transverse momentum of the leading jet enter a high enough pT

regime, a 25 GeV jet-defining pT cut for the second jet will correspond to a cut deep in the

Sudakov region of the corresponding
√
y12 distribution, in which case, the leading jet pT

spectrum in two-jet events increasingly corresponds to the inclusive leading jet pT spectrum.

Finally for figure 8, we notice that the dark red band, depicting uncertainty due to

variations of the technical ρ parameter, has become visible for the first time in this section

(in the upper-right ratio plot, at high transverse momentum). This technical systematic

is, however, seemingly limited to a ±2% uncertainty, which is dwarfed by the conventional

theoretical uncertainty coming from the renormalization and factorization scale variations

(the significantly larger light-red band).
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Figure 9. Leading jet rapidity in events with two or more anti-kt, R = 0.4, pT ≥ 25 GeV jets.
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Figure 10. Transverse momentum spectrum of the second jet.

The last distribution we present showing the behaviour of the leading jet is that of its

rapidity in events with at least two-jets, figure 9. This distribution is rather unremarkable

given what we have shown immediately before, for the leading jet transverse momentum

spectrum in the same class of events (figure 8). Here, as in figure 8, the distribution shows

that the Hjj? distribution overlaps the Hjj-Minlo prediction, which is NLO accurate in

the descriptions of this observable, while the Nnlops result is only LO. This is the expected

and, of course, the desired behaviour of our improved Hjj? simulation.

Second jet and third hardest jets. In this subsection we move to present plots of

distributions probing directly the behaviour of the second and third hardest jets produced

in association with the Higgs boson. As before, jets have been defined according to the

anti-kt clustering algorithm, with the jet radius parameter R = 0.4. Additionally, for

the case of jet rapidity distributions, in figures 12 and 13, the jets are required to pass a

transverse momentum threshold of 25 GeV.

The transverse momentum spectrum of the second hardest jet is plotted in figure 10.

In all simulations, before (not shown) and after showering, the distribution peaks in the

bin at 3 GeV ≤ pJ2
T ≤ 6 GeV. Moving upwards from the first bin at pJ2

T = 0 GeV the Hjj?
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Figure 11. Third jet transverse momentum spectrum.

(red) and Hjj-Minlo (blue) predictions start off with a 20% difference, which smoothly

and monotonically diminishes, with the two distributions coalescing at pJ2
T ≈ 20 GeV. For

higher transverse momenta, the Hjj? and Hjj-Minlo histograms become indistinguishable

from one another. Meanwhile, in the same region, the Nnlops result starts off with a 15%

discrepancy between it and the latter simulations, which rises with the transverse momen-

tum. Nevertheless, the Nnlops prediction is within the margins set by all renormalization

and factorization scale uncertainty bands.

The behaviour of the Hjj? and Hjj-Minlo predictions relative to one another is as

intended. In general, the Hjj-Minlo prediction is NLO accurate in the description of

pJ2
T , and so it is of course desirable that the Hjj? tends to that result in regions where

Sudakov logarithms at higher orders are not large, i.e. away from the Sudakov peak.17 In

the vicinity of the peak, large logarithms enter at every order in perturbation theory. In

this feasibility study we claim to control these large logarithms nominally at just LL/NLLσ
accuracy. The improved Hjj? prediction works so as to implement unitarity for the 0- and

1-jet inclusive cross sections by ascribing the mismatch there to missing NNLLσ Sudakov

logarithms beyond NLO. The increasing difference of Hjj? with respect to Hjj-Minlo in

the region pJ2
T ≤ 20 GeV, up onto the Sudakov peak, roughly reflects this NNLLσ ‘profiling’

of the ∼10-12% excess in the Nnlops total inclusive cross section over that of Hjj-Minlo

(see e.g. figures 1–3).

In figure 11 we plot the transverse momentum of the third jet. In this case there is,

coincidentally, good agreement of all predictions in the moderate to high pT domain. This

is somewhat fortuitous in the context of the Nnlops simulation, since the third jet in that

simulation is generated exclusively in the parton shower approximation, whereas in Hjj?

and Hjj-Minlo it has a matched matrix element-parton shower description. With a view

to validating our ideas, what is more relevant is the observation of the relative behaviour of

Hjj? and Hjj-Minlo. Here we see, essentially, exactly the same trend as found in the case

of pJ2
T , specifically, identical agreement for pJ2

T & 10 − 15 GeV, with a steadily increasing

17In such regions where it is meaningful to quantify accuracy in the context of just fixed order perturbation

theory, we remind that the Nnlops prediction for pJ2
T is, by contrast, only LO accurate.
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Figure 12. Rapidity of the second hardest jet.
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Figure 13. Rapidity of the third hardest jet.

excess of Hjj? over Hjj-Minlo as one looks towards zero transverse momentum. These

aspects are also fully explained and intended, with the same reasoning as for pJ2
T . The only

slight difference here is that the third jet being, by definition, softer than the second jet,

implies that the excess of Hjj? over Hjj-Minlo is confined to a slightly lower region of

the pJ3
T distribution, than one finds in the pJ2

T case.

Figures 12 and 13 show, respectively, the rapidity spectra of the second and third

hardest R = 0.4 anti-kt jets, with pT ≥ 25 GeV. Both figures reveal the Hjj? results agreeing

perfectly with those of the ‘parent’ Hjj-Minlo simulation. The Nnlops predictions clearly

differ in shape and normalization with respect to the latter but, nevertheless, they remain

within the renormalization and factorization scale uncertainty bands. For what concerns

the normalization of the distributions, the perfect agreement between Hjj? and Hjj-Minlo

was to be expected, based on that seen already in the related 2-jet inclusive cross sections

(figure 3). As with the pJ2
T and pJ3

T spectra, for modest values of the transverse momentum,

the tendency of Hjj? to reproduce Hjj-Minlo here is as intended and desired; the latter

being NLO accurate for yJ2 and LO accurate for yJ3, in contrast to the LO and parton

shower accuracy, respectively, afforded by the Nnlops.
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Figure 14. In the upper plots we display the log10
√
y01 differential jet rate on the left, while

on the right we show the various predictions relative to the central improved Hjj-Minlo (Hjj?),

Nnlops and original Hjj-Minlo (Hjj) ones, respectively, in the top, middle and bottom panels.

In the lower plots we display the corresponding set of distributions for the log10
√
y12 differential

jet rate. In the making of these plots jets have been clustered according to the kt-jet algorithm,

with radius parameter R = 1.

Jet rates. In figures 14 and 15 we present differential jets rates obtained from the ex-

clusive kt-jet clustering algorithm with radius parameter R = 1. Figure 14 shows the

log10
√
y01 and log10

√
y12 jet rate distributions, while figure 15 shows log10

√
y23 and

log10
√
y34.

The log10
√
y01 distribution in figure 14 is equivalent to a plot of the transverse

momentum of the leading jet in the event, defined according to the kt-jet clustering

algorithm with R = 1. It is therefore not surprising to find that the results for this

distribution have a markedly similar structure to those for the leading jet transverse

momentum spectrum in figure 5; notwithstanding the fact that in the latter case the

jets were defined according to the anti-kt jet algorithm, with radius parameter R = 0.4.

We therefore refer the reader back to the discussion surrounding figure 5, for further

explanation regarding the features of the log10
√
y01 distribution.

The log10
√
y12 in figure 14 is more interesting, since this distribution is directly af-

fected by our proposed Minlo improvement procedure. One can relatively quickly gain an
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appreciation for the pattern of the results here by noting that there is some reasonable de-

gree of correspondence to be expected between
√
y12 and pJ2

T , based on how
√
y12 is defined;

if all the jet clustering algorithm did was initial-state clusterings, they would indeed be

exactly the same thing. Despite seeming like an over-simplification, it is nevertheless the

case that the relative behaviours of the three predictions here are in very good agreement,

quantitatively, with that discussed earlier for the pJ2
T spectrum (figure 10).

As in pJ2
T we see an excess of Nnlops with respect to Hjj? and Hjj-Minlo of ∼ 12%

in the region 20 GeV .
√
y12 . 100 GeV, with the latter pair of simulations in perfect

agreement. For
√
y12 . 20 GeV, as in the corresponding region of the pJ2

T distribution,

the Hjj? and Hjj-Minlo predictions become increasingly separate, with the former

increasing over the latter, manifesting the restorative effect of the correction procedure

to recover the inclusive 0- and 1-jet Nnlops cross sections. Even the crossing over of

the Nnlops and Hjj? distributions appears to occur at exactly the same place in the

pJ2
T and log10

√
y12 distributions (

√
y12 ∼ 9 GeV). In contrast to the pJ2

T distribution, the

log10
√
y12 plot makes it clearer when, and to what extent, the correction kicks-in. One

can see that the correction turns on smoothly just before the Sudakov peak, starting at

log10
√
y12 ≈ 1.25, (

√
y12 ≈ 18 GeV), leading to a 7% increase in Hjj? over Hjj-Minlo on

the Sudakov peak, and ranging up to 25% at
√
y12 = 1 GeV.

Lastly, this log10
√
y12 distribution shows the first real evidence, so far, of some sen-

sitivity in the Hjj? results to the technical ρ parameter. The conservatively estimated

systematic uncertainty owing to ρ is depicted by the dark-red band, seen superimposed on

the light-red band, in the uppermost ratio plot. This sensitivity to ρ is, however, rather

contained at the level of ±10−15%, moreover, it is basically negligible above
√
y12 = 3 GeV.

Moving on, in the upper half of figure 15 we have the log10
√
y23 distribution. The cor-

respondence of
√
y12 with pJ2

T , which helped to quickly understand the log10
√
y12 results

above, has an analogon here, namely, that neglecting final-state clusterings by the jet al-

gorithm,
√
y23 becomes equal to pJ3

T . This analogy continues to appear to hold remarkably

well, for describing the features of log10
√
y23 in terms of those found in the pJ3

T distribution

of figure 11. The arrangement of the three predictions relative to one another, throughout

the log10
√
y23 distribution, is very much in direct correspondence with what one can see

in the pJ3
T distribution. For example, all three predictions even cross at the same point

in the log10
√
y23 and pJ3

T distributions:
√
y23 ≈ 50 GeV in figure 15 and, correspondingly,

pJ3
T ≈ 50 GeV in figure 11. As was noted in comparing the pJ2

T and pJ3
T distributions before-

hand (figures 10–11), the effect of our corrective procedure in lifting the Hjj? distribution

above that of its ‘parent’ Hjj-Minlo simulation, in the region log10
√
y12 < 1.25, directly

percolates into the same lower reaches of log10
√
y23 (and also log10

√
y34). The extent of

this lifting in log10
√
y12 and log10

√
y23, is quantitatively compatible with that seen in pJ2

T

and pJ3
T , both in terms of its magnitude and the phase space domain over which it occurs;

in particular we note that the separation of the Hjj? and Hjj-Minlo distributions starts

at a very slightly higher value of y12 than y23, the latter being, by definition, smaller than

the former. As with the discussion of the preceding jet rate variables and transverse mo-

mentum spectra, the effect of the correction procedure is rather modest and it is limited

to a region of phase-space for which all-orders large logarithmic corrections are significant.
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Figure 15. In the upper-left plot we show the log10
√
y23 jet rate, while on the right we show the

various predictions again as ratios with respect to one another. In the lower plots we display the

corresponding set of distributions for the log10
√
y34 jet rate. Jets have been constructed using the

kt-jet algorithm, with R = 1.

In the lower half of figure 15 we show the log10
√
y34 distribution. In order to have

a non-zero contribution to this observable events must contain at least four partons. So,

in the case of Hjj? and Hjj-Minlo this distribution directly probes, for the first time,

radiation which is exclusively due to the parton shower interfacing. The distribution is

plainly smooth and exhibits no irregularities that might otherwise signal some problem in

that interfacing. The same comments apply here as above, in regards to the lifting of the

Hjj? distribution with respect to Hjj-Minlo, due to the action of our correction procedure

on the y12 distribution and the associated feed-down from that onto the higher multiplicity

differential jet rates.

The penultimate set of differential jet rates we wish to present are given in figure 16.

Here we examine the key jet rate of interest to our studies, given its role in the proposed

correction procedure, log10
√
y12, but now subject to additional cuts in the

√
y01 jet rate

variable. These cuts are intended to bring to the fore events for which there is a hierarchy

y12 � y01 and associated large logarithm L12. This aspect is indeed manifested in both

log10
√
y12 distributions in figure 16 through the Sudakov peak shifting to higher y12 values.
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Figure 16. The log10
√
y12 differential jet rates, defined according to the kT-jet algorithm with jet

radius parameter R = 1, and with cuts of 10, 50 and 200 GeV imposed on
√
y01.

The Sudakov peak in the inclusive distribution of figure 14 is centred around log10
√
y12 = 1

(
√
y12 = 10 GeV), moving up to log10

√
y12 ≈ 1.5 (

√
y12 ≈ 30 GeV) on imposing the

√
y01 >

50 GeV cut, as shown in the uppermost plot in figure 16, and further to log10
√
y12 ≈ 1.75

(
√
y12 ≈ 55 GeV) on imposing the

√
y01 > 200 GeV cut. The shifting of the peak to higher

y12 values is a manifestation of the fact that the cuts imply a proportionate increase in the

available phase space for high pT emission of the second pseudoparton.

One of the easiest features to make sense of in figure 16, is the excess of the Nnlops

results over Hjj? and Hjj-Minlo predictions in the high
√
y12 region, with the latter pair

of results being indistinguishable there. This attribute is consistent with the enhancement

of the Nnlops cross section over the corresponding Hjj-Minlo and Hjj? results, in both

the inclusive 2-jet cross section, with high jet pT thresholds (figure 3), and the transverse

momentum spectrum of the second hardest jet (figure 10). In the latter distribution the

discrepancy increases with radiation hardness, as it does in figure 16. Technically, the

agreement of Hjj? and Hjj-Minlo in this limit is also easy to understand, since in these

regions L12 is not large and the Minlo correction procedure ‘switches off’, with the Nnlops

prediction being categorically inferior to Hjj-Minlo there. Specifically, the h(L12) function

(eq. (2.32)) tends to zero.
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Looking towards the Sudakov peak regions in figure 16, where the great bulk of the

cross section is centred, one expects, by virtue of the fact that our method is to return

inclusive 0- and 1-jet Nnlops predictions, the Nnlops and Hjj? predictions to agree well

there. The results in figure 16 support this simple reasoning quite well.

Turning back to the 1-jet inclusive cross section predictions in figure 3, with a 50 GeV

jet pT threshold, there is a relatively small difference between Hjj-Minlo and Nnlops

predictions, this implies that, on average, the δ(ΦBJ) term in eq. (2.31) is very small in

the context of that observable, which is in some reasonable degree of correspondence with

the cumulant of the first distribution in figure 16 (
√
y01 > 50 GeV). Granted this point,

it is then no surprise to observe that the Hjj? and Hjj-Minlo predictions are essentially

in perfect agreement all the way down to
√
y12 ∼ 3 GeV, exhibiting only small differences

beyond that point.

The difference in normalization of the Hjj-Minlo and Nnlops predictions in the

case of the
√
y01 > 200 GeV cut, can be anticipated by looking at the difference in the

respective leading jet pT spectra for pT > 200 GeV (figure 5), revealing a fairly flat 15%

surplus of Hjj-Minlo over Nnlops. Indeed a 15% excess of Hjj-Minlo over Nnlops is

what we also see here in the vicinity of the Sudakov peak, in the lower plot of figure 16. In

this region and that below, both dominated by large logarithmic corrections, one sees the

improved Hjj? result nicely following the Nnlops results.

Before leaving the discussion of figure 16 we must remark on the systematic uncer-

tainty coming from the ρ parameter (dark-red band). Indeed these observables have been

mainly studied to try to expose and stress-test this aspect. The predictions of fig 16 show

the biggest ρ dependence of any in this paper. Sure enough, demanding that
√
y01 be 50 or

200 GeV and then looking down at the 1 GeV ≤ √y12 ≤ 3 GeV (i.e. 0 ≤ log10
√
y12 ≤ 0.5)

we see what looks like a sizable ρ uncertainty. In the
√
y01 > 50 GeV case we see this

uncertainty rises up to +50%
−20% at

√
y12 ≈ 1.5 GeV. In the same region of the

√
y01 > 200 GeV

distribution we see an uncertainty similar in magnitude, however, for this plot the conclu-

sion is less precise, due to the appearance of large statistical uncertainties. Taking together

the following points, we believe we can now conclude that the uncertainty due to our ρ pa-

rameter is in general negligible: i.) we took a rather conservative approach to assessing the

uncertainty due to ρ, varying it from 1 to 27, ii.) we constructed observables to isolate and

expose potential problems owing to ρ, we found no pathologies, and the latter uncertainty

only showed up in the very deep Sudakov region, where theoretical control is very limited.

We conclude the presentation of results on jet rates with the
√
y12/y01 distributions in

figure 17. The latter quantity is precisely that which our Minlo improvement procedure

directly modifies, in order to achieve agreement with the inclusive ΦBJ distribution of

the Nnlops (see again sections 2.6 and 3). The three
√
y12/y01 plots in figure 17 are

also in rough correspondence with those for log10
√
y12 in figures 14 and 16. Indeed, the

arrangement of the three predictions relative to one another in figure 16, for the
√
y01 >

50 GeV and
√
y01 > 200 GeV cuts, is essentially the same as that which one finds for the

same
√
y01 cuts applied to the

√
y12/y01 distribution in figure 17. This correspondence

is to expected, if one assumes that the bulk of events making the distributions in both

cases (log10
√
y12 and

√
y12/y01) is dominated by those having

√
y01 close to the cut; this
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Figure 17. Ratios of differential jet rates,
√
y12/y01, defined according to the kT-jet algorithm

with jet radius parameter R = 1, and with cuts of 10, 50 and 200 GeV imposed on
√
y01.
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Figure 18. Azimuthal angle between the Higgs boson and leading jet, with jets defined according to

the anti-kt algorithm with a 25 GeV transverse momentum threshold and radius parameter R = 0.4.

assumption is reasonably fair, given that
√
y01 falls off quickly, like the leading jet pT

spectrum. Crudely speaking, this makes the denominator of
√
y12/y01 a constant and, by

implication,
√
y12/y01 tends to look the same as scaled a plot of

√
y12. We also consider

that the
√
y12/y01 distribution for

√
y01 > 10 GeV bears a considerable resemblance to

that of the inclusive log10
√
y12 one in figure 14. This makes sense on the basis that the√

y01 cut on the former distribution is loose to the point of being no cut at all. This being

the case, we refer back to our discussion on the features of the aforementioned log10
√
y12

plots, for explanation of the structures in the
√
y12/y01 ones.

Higgs-jet and dijet correlations. In this subsection we move to check observables

more sensitive directional correlations between the Higgs boson and jets in the event. Such

variables are routinely encountered in experimental analysis relating to Higgs production

via vector boson fusion. In leaving the jet rate variables behind, we return again to define

all jets according to the anti-kt clustering algorithm with radius parameter R = 0.4, for all

of the remaining numerical results in this work.

We start with the azimuthal separation of the Higgs boson and the leading jet, ∆φHJ,

for events containing at least one jet, in figure 18. The region ∆φHJ ≈ π is dominated

by configurations consisting of a hard underlying Higgs-plus-one jet configuration, accom-

panied by additional soft radiations. Decreasing ∆φHJ implies an increased amount of

radiation beyond that in the hard underlying Higgs-plus-one jet configuration (to balance

momentum in the transverse plane). Indeed, if we assume that this extra radiation is colli-

mated into a single would-be jet, then already in the vicinity of ∆φHJ ≈ 2.1 the distribution

is becoming dominated by Mercedes-star configurations of the Higgs, jet and the would-be

jet, as well as others involving yet greater angular separation of the leading jet and would-

be jet. Bearing in mind the latter point, the near perfect agreement of the Hjj-Minlo and

Hjj? predictions for ∆φHJ . 2.1 is expected and desired; both being NLO accurate in the

description of 2-jet observables. In the region ∆φHJ > 2.1 we see the Hjj? result gently lifts

off the Hjj-Minlo one. This lift-off is qualitatively expected, on the basis that the integral
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Figure 19. Azimuthal (top) and rapidity (bottom) separation between the two leading jets, with

jets defined according to the anti-kt algorithm with a 25 GeV transverse momentum threshold and

radius parameter R = 0.4.

of this distribution must equal the inclusive 1-jet cross section, with a 25 GeV jet transverse

momentum cut, and we know that the inclusive 1-jet cross section from Hjj? (and to a lesser

extent Nnlops) exhibits a 5% enhancement over that of Hjj-Minlo (see again figure 3).

In figure 19 we display the azimuthal separation of the two leading jets in the uppermost

plot and their rapidity separation in the lower one. In figure 20 we have further plotted the

invariant mass of the two leading jets, for events in which they are separated by at least four

units of rapidity. All of these distributions demand the presence of at least two jets in the

final state. From the analysis of our foregoing results, we understand that for a global jet pT

threshold of 25 GeV, we can expect that 2-jet inclusive observables, such as these, are domi-

nated by events with no strong hierarchy of scales y12 � y01. Consequently, we expect, and

we find, that our corrective procedure has no effect, with the Hjj? and Hjj-Minlo results

being indistinguishable from one another throughout. This is again our desired behaviour

given that the Hjj-Minlo prediction is nominally NLO accurate for these observables,

while the Nnlops is similarly just LO. Lastly, we add that the same conclusions hold for

the mJJ distribution when the |∆yJJ| > 4 rapidity separation cut is not imposed, in particu-

lar, the Hjj? and Hjj-Minlo results remain indistinguishable, with the Nnlops continuing

to exhibit the same relative discrepancy (albeit within a smaller scale uncertainty band).
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Figure 20. In this plot we show the invariant mass of the two leading jets, for events in which

they have a rapidity separation greater than four. The jets have been defined according to the

anti-kt clustering algorithm, with radius parameter R = 0.4, and with a transverse momentum

threshold of 25 GeV.

Jet binned Higgs boson transverse momentum distribution. The final results we

present, in figures 21–22, are of the Higgs boson transverse momentum spectrum, in events

with a given exclusive jet multiplicity. The jets in question were defined according to the

anti-kt jet algorithm with R = 0.4 and a jet transverse momentum threshold of 30 GeV.

Figure 21 shows the Higgs boson’s transverse momentum in 0-jet events in the upper

plot and in 1-jet events in the lower one. In the case of the 0-jet events we see the Hjj?

prediction aligns itself with the superior (NNLO) Nnlops result in the low transverse

momentum domain. On the other hand, as soon as the Higgs boson has reaches a transverse

momentum in excess of that of the jet defining pT threshold, we see that Hjj? quickly comes

into agreement with Hjj-Minlo. This behaviour is also as intended, since in the latter

region, momentum conservation combined with the requirement that there be no resolved

jets, dictates that the Higgs boson must be considered as recoiling against multiple hard

radiations which are widely separated in angle from one another, all with pT < 30 GeV.

The latter class of ‘hedgehog’ configurations is described more accurately by the higher

multiplicity Hjj-Minlo simulation.

Turning to the Higgs transverse momentum in the 1-jet events, we see the results we

naively expect in the region pH
T > 100 GeV, with Nnlops and Hjj? in very good agreement.

In the region surrounding the peak of the distribution at pH
T ∼ 50 GeV, Hjj? continues to

agree well with Hjj-Minlo, but not quite as nicely as before. The slight excess of the

Hjj? prediction over the Nnlops around this peak follows the same explanation as for the

similarly sized enhancement of the exclusive 1-jet cross section of the former over the latter,

in the discussion surrounding figure 4. There we explained that our correction procedure

led to an enhanced 1-jet exclusive cross section, by acting to recover the inclusive 1-jet

cross section of the Nnlops, while maintaining the 2-jet inclusive cross section of Hjj-

Minlo; since the 2-jet inclusive cross section of Hjj-Minlo was low with respect to that of

the Nnlops, the Hjj? 1-jet exclusive cross section therefore had to be high. Remarkably,

on the other hand, we note that for the lowest bin in the Njets = 1 pH
T plot, it is in fact
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Figure 21. In the upper plot we show the transverse momentum distribution of the Higgs boson

in 0-jet events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius

parameter R = 0.4. Jets are required to have transverse momentum pT ≥ 30 GeV and rapidity

|y| ≤ 4.4. The corresponding distribution in the case of 1-jet events is shown below.

natural and correct that the Hjj? distribution is found to be in complete agreement with

Hjj-Minlo, for in that region the recoil of the leading jet can no longer be balanced by

the Higgs boson, and instead extra radiation must be present to this end.

Lastly, we look to the Higgs boson transverse momentum distributions in the exclusive

2-jet events and inclusive 3-jet events, in the upper and lower plots of figure 22. For both

the exclusive 2-jet and inclusive 3-jet pH
T spectra, we see that Hjj? agrees perfectly with the

Hjj-Minlo generator in the low transverse momentum domain. In the high transverse mo-

mentum regions we find that all three predictions agree rather well with one another. In the

exclusive 2-jet case at high pH
T, we can, however, clearly see that the correction procedure has

driven Hjj? to reproduce Nnlops rather than Hjj-Minlo. We believe that this too is again

the desired result and that the Nnlops prediction is superior to that of Hjj-Minlo in this

particular kinematic domain. This assumption is based on the fact that in high pH
T Njets = 2

events, the leading jet has a transverse momentum which is bounded from below by approx-

imately half that of the Higgs boson, moreover, it will tend to have a transverse momentum

close to that of the Higgs. Thus, the pH
T ∼ 200 GeV region of the Njets = 2 events pH

T spec-
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Figure 22. In the upper plot we show the transverse momentum distribution of the Higgs boson

in 2-jet events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius

parameter R = 0.4. Jets are required to have transverse momentum pT ≥ 30 GeV and rapidity

|y| ≤ 4.4. The corresponding distribution in the case of ≥ 3-jet events is shown underneath.

trum, will be dominated by events with
√
y01 ∼ 200 GeV. Referring back to the log10

√
y12

plot of figure 16, with the
√
y01 > 200 GeV cut imposed, we can then understand that

nearly all such events will come with a second pT > 30 GeV jet ‘for free’, i.e. the pH
T spectrum

with Njets = 2, for pH
T & 200 GeV, becomes essentially the Njets ≥ 1 pH

T distribution. Hence,

we believe the Nnlops/Hjj? prediction to be more accurate than Hjj-Minlo in this case.

5 Conclusion

In this work we have revisited the Minlo and Minlo′ frameworks. Our main aim has

been to address the issue of how to extend the accuracy of existing Minlo simulations up

to that of Minlo′. We focused on Minlo simulations of B+2-jet production (Bjj), with

B a colourless system, as prototypical ‘complex processes’, however, our ideas are more

widely applicable. For the latter generators, which are NLO accurate in the description

of B+2-jet (Bjj) inclusive observables, promotion to Minlo′ accuracy amounts to the

requirement that B+1-jet (Bj) inclusive quantities also be recovered at NLO. We have also
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considered how to go further in this framework, and obtain (N)NLO accuracy for inclusive

B-production observables from Bjj-Minlo.

In existing Minlo′ simulations the two-fold NLO accuracy is obtained by constructing

a Sudakov form factor which returns the relevant inclusive NLO Bmj cross sections, dif-

ferential in the underlying Born phase space, starting from NLO Bnj cross sections, with

m = n−1. While the form factors are explicitly constructed from high-order resummation

ingredients, the accuracy of the resummation in the resulting Minlo′ simulation is the

same as in the initial Minlo one. The net effect of the modifications is to carefully unita-

rize the inclusive cross section, differential in the Born kinematics. This is very similar to

the working of Powheg Sudakov form factors in Nlops matching.18 The latter contain

NLL and even power suppressed terms in the exponent in order to recover NLO accuracy,

despite being, in general, just LL accurate.

We started in this work by trying to clarify to what extent the Bjj-Minlo simulations

already achieve the aforementioned Minlo′ accuracy, and to see how to improve them in

this direction by better understanding the relevant resummation. We used the Caesar

formalism to derive a NNLLσ resummation formula for the 0 → 1-kt-jet rate y01 and,

separately, the 1 → 2 jet rate y12; including leading multiple emission corrections in the

exclusive kt-algorithm. The NNLLσ formula reveals existing Bjj-Minlo simulations miss

NLLσ terms in their y12 Sudakov form factor exponents, associated to soft-wide angle gluon

emission from the underlying Bj state in the kinematic domain where Caesar is valid,

y01 & m2
H. The Sudakov form factors in existing Bjj-Minlo codes also miss the NNLLσ

multiple emission corrections in the resummation formula. With these clarifications one

could formally improve Bjj-Minlo codes towards Bjj-Minlo′, implementing improved

Sudakov form factors to that end.

We derived the fixed order expansion of the NNLLσ Caesar formula and from this

we showed how our Minlo procedure applied to the Bj(j) NLO computations returns a

matched, resummed, NLO accurate jet resolution spectrum. In doing so we also assumed

the presence of unknown N3LLσ and NNLLσ terms in our initial fixed order expansion

formula; the former owe to the limitations of our initial resummation formula truncated at

NLO, while we allowed for the presence of the latter in anticipation of a breakdown of the

Caesar framework in considering the region y01 � m2
H later on. Upon integration over the

Minlo jet resolution spectrum, we determine how the distribution of the Born kinematics

differs from that of conventional NLO on account of those unknown terms, which were

tracked and contained. We demonstrate how such unwanted terms are removed in the

original Minlo′ approach and, based on that, we introduced an approximately equivalent

procedure, which promotes the Minlo simulations to Minlo′ accuracy without the need

of analytic expressions for higher order terms in the Sudakov form factor — terms which

are in general unknown. To this end we solve the condition that the missing higher order

Sudakov contribution must be such that Bmj-Minlo recover the (N)NLO results for Bnj
Born kinematics, when suitably integrated, to determine a numerical approximation to the

18Indeed, in formulating the original Minlo′ method, the Minlo cross section was initially cast in the

form of the Powheg hardest emission cross section.
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former. The Sudakov correction so-derived renders Bmj-Minlo (N)NLO accurate for Bnj
inclusive observables, while maintaining NLO accuracy for Bmj ones.

This procedure is a useful extension of the Minlo framework. Despite the fact that

Minlo′ is proven to recover conventional NLO results for inclusive quantities up to NNLO

ambiguities, in the original Minlo′ paper modest numerical disagreements were found,

between the predictions of Bj-Minlo′ and conventional NLO, for W and Z production.

With the suggested extension of the Minlo method in this paper, by construction, the

predictions for fully inclusive observables become essentially identical to the standard NLO

predictions.

A more important benefit of the proposed extension is that one can begin to make

Minlo′ simulations, merging two units of multiplicity at NLO, or one NLO and one NNLO,

without a merging scale, for complex processes, provided the resummation in the Minlo

program entering the correction procedure is NLLσ accurate. The main limitation to be

faced in practice will occur for processes in which the dimensionality of the underlying Born

phase space is high; in this case the numerical determination of the δ (Φ) term (eq. (2.31))

which corrects the Sudakov form factor will become challenging. We should be clear though

that, broadly speaking, the main objective in this work has been to demonstrate that one

can use precision inclusive cross sections to determine approximate corrections to the Su-

dakov form factor of Minlo simulations, such that they return the correct (N)NLO Born

kinematics; this in turn leads to (N)NLO accuracy for arbitrary infrared-safe observables

which nominally receive their leading contributions from parton multiplicities lower than

that included in the initial Minlo simulation. The precise way we have done this, discussed

in the second part of section 2.6, and our implementation of it, is undoubtedly just one op-

tion out of many, and can be simply considered as a practical, working, proof-of-concept at

this point. Even in the worst case, should the dimensionality of the Born kinematics become

too much, the method here still has the potential to greatly improve results, in approxi-

mating the full δ (Φ) term of eq. (2.31) by a carefully dimensionally reduced version of it.

The loose requirement on the accuracy of the Minlo resummation has an additional

useful property: the method can be applied in regions of phase-space where the underlying

Born itself has disparate kinematic scales associated with it; in such regions achieving high

accuracy resummation is currently a formidable challenge. In particular, our improvement

procedure remains valid for Bjj-Minlo in regions of phase-space where y01 is much smaller

than m2
B, where both large logarithms of m2

B/y01 and y01/y12 require resummation. To

this end we first argued that the Caesar y01/y12 resummation remains NLLσ accurate

in the region y01 � m2
B. Our argument is largely based on the finding that the Caesar

Sudakov form factor for this variable is the same as that prescribed by the coherent

branching formalism at NLLσ (except for a subset of the soft-wide-angle radiation, which

is beyond the accuracy of the latter). We also note that the leading NLLσ terms in the

fixed order expansion of the Caesar resummation formula are obtained by integrating

a single soft/collinear emission over the region y12 < y01, i.e. they are the same whether

y01 � m2
B, or not. Taking the latter two points together, it follows that the Caesar

y01/y12 resummation must hold at the NLLσ level, even in the difficult regions.

– 54 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
2

The fact that y12 resummation works in all regions of phase-space implies one can do

a ‘nested’ Minlo′ simulation with the help of our proposed extension: instead of using

unitarity such that partially integrated Bjj distributions become equal to the NLO Bj
distributions, we train them on Minlo′ Bj distributions. This makes them also NLO

correct in inclusive B distributions, since the latter are obtained on suitably integrating

over radiation in Bj-Minlo′. In this way the extension of the Minlo′ method to the

merging of more than two multiplicities is realised.

As a feasibility study for the latter, we have applied our correction procedure to Hjj-

Minlo. We start from a LHE event file for the Hjj-Minlo simulation and reweight the

events such that distributions differential in ΦHJ become equal to the existing NNLO-

improved Hj-Minlo′ calculation, without hampering the formal accuracy of the Hjj-

Minlo simulation. We therefore made predictions that are NNLO accurate for inclusive

Higgs boson production, and NLO accurate for Hj and Hjj observables. Since the LHE

events are ultimately generated according to the Powheg Nlops matching procedure they

may, of course, be showered in the usual way. Our numerical results are very encouraging:

for inclusive observables in H and Hj production, we recover the results of the Hnnlops

simulation, while for observables in which y12 ∼ y01 we recover the Hjj-Minlo predictions,

with smooth interpolation between them.

There is ample freedom in the functional form of the reweighting factor which is for-

mally beyond the accuracy of the method. We have explored (some of) its dependence

and seen essentially no visible effects of it in the many distributions we have examined.

The distribution which displayed most sensitivity to this ambiguity was, unsurprisingly,

log10
√
y12. Even for this variable, the sensitivity is located in the deep Sudakov region,

mostly well-below the Sudakov peak, a region which is anyway very sensitive to higher

order resummation and non-perturbative effects.

There are a number of aspects of this work which can be explored further and refined.

It is clear, for example, that it is interesting to consider our approach in application to other

processes. We have shown the method can work well for a process with 3 final-state particles

(Hjj), thus it seems reasonable to expect similar quality results in application to processes

with equal multiplicity, e.g. trijet, and jet-associated single-top/top-pair production (with

some approximation in the handling of top decays). In fact these processes are in one sense

less demanding than that which we demonstrated, in so far as we dealt with a process for

which two jets could become unresolved, moreover, this was handled while mapping onto an

NNLO calculation of Higgs production. On the other hand, for high multiplicity processes

like VBF Higgs-plus-3-jet production, the dimensionality of the phase space combined with

the problems to be anticipated in obtaining high statistics for determining δ (Φ), would

likely prove too cumbersome in practice, at least for our proof-of-concept implementation.

Nevertheless, in the absence of a better alternative, we would still advocate trying the latter

method in some approximate form, e.g. applying it on only a carefully selected subset of

the variables which parametrize the underlying Born kinematics. Depending on the initial

circumstances this may lead to very desirable improvements.

Relatedly, on a technical level it is worth considering a more sophisticated approach

to our implementation, e.g. using an adaptive, optimised, grid parametrization procedure
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for the underlying Born phase space, together with advanced interpolation procedures for

computing δ (Φ). Having said that, it is perhaps a good indicator of the potential of this

approach, that it appears to have worked remarkably well even with just a basic imple-

mentation using hand-made rigid grids. From a theoretical perspective, one may wish to

consider improvements to the Bjj-Minlo′ codes based on our comparison of their inherent

resummation and that of the Caesar framework, such as inclusion of soft-wide-angle

(∆S1) and multiple emission (F2) terms in the Sudakov form factors. Our numerical studies

in this paper suggest that these inclusions would be of really quite limited interest though.

A further investigation would be to consider the effect of breaking the reweighting

procedure for Bjj-Minlo into two phases: in the first stage just the inclusive ΦB distribu-

tion of Bjj-Minlo is corrected to that of Bj-Minlo′, by adjusting the y01 distribution; in

the second stage the procedure is applied to the Bjj-Minlo output from the first stage,

in exactly the same way as set out in sections 3–4. At the NLLσ level, there is no dis-

tinguishing between the latter approach and that which we carried out. On the other

hand, it is clear that, at some level, the effective Sudakov form factor correction that we

derive for the y01/y12 resummation will make up for what might better be considered as

deficiencies in the y01 Sudakov form factor. Nevertheless, from our numerical studies here,

we expect that this change would only register much like the ρ-parameter variations that

we assessed, i.e. we believe it will only become visible in y12 regions which are under poor

theoretical control (the deep Sudakov region). It is also important not to over emphasise

this point in view of the fact that the correction procedure obtains the ΦB, y01 and yJ

distributions of Bj-Minlo′, by construction, in any case. Nevertheless, this alternative

may prove advantageous in other applications of the method.
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A Supplementary technical details

A.1 Derivation of LL/NNLLσ jet resolution spectra

In this appendix we give details on how our general NNLLσ jet resolution spectrum is

arrived at from the results of refs. [55] and [59].

In eqs. (3.14)–(3.17) of ref. [59] the NLL resummed cumulant cross section, matched

to NLO, to yield also NNLLσ accuracy is given as

dΣR (L)

dΦ
=
dσ0

dΦ
(1 + αSC1) f (v) , (A.1)

with dσ0/dΦ the leading order cross section fully differential in the Born kinematics (de-

noted B in [55, 59]), and with f (v) encoding the resummation. The term αSC1 is the

matching coefficient defined by (eq. 3.16 of ref. [59])

αSC1 = lim
L→∞

(
dΣNLO (L)

dΦ
− dΣR,1 (L)

dΦ

∣∣∣∣
χ̄1→0

)
/
dσ0

dΦ
, (A.2)

where the dΣNLO (L) in our notation corresponds to dΣ1 (v) of [59], and with our dΣR,1 (L)

corresponding to dΣr,1 (v) of [59]. Thus the matching coefficient of [59] is in our notation

αSC1 = ᾱSχ̄1 (Φ). The function f (v) is the main result of ref. [55] (see eq. 3.6 therein) and

is comprised as follows (taking b` = 0, a` = 2, d` = g` = 1, and hence d̄` = 1, as appropriate

for the kt-jet resolution variables considered in our work, namely, V ({p̃} , k) = (k
(`)
t /Q)2):

f (v) = F
(
R′
)
S

(
T

(
L

2

))
exp

[
−

n∑

`=1

[
C`r` (L) +B`C`T

(
L

2

)]] ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

.

(A.3)

In ref. [55], between eqs. A 1.18 and A 1.19, it is stated that for processes with less than

four colour-charged legs in the hard underlying Born kinematics, S (t) = exp [S1t], with S1

as given in our eqs. (2.7), (2.8).

From ref. [55] eqs. (2.21)–(2.22), (taking b` = 0, a` = 2, d` = g` = 1, and hence d̄` = 1),

we also have

r` (L) =

∫ Q2

y

dk2
t

k2
t

ᾱS,CMW

(
k2
t

)
ln
Q2

k2
t

, and T

(
L

2

)
=

∫ Q2

y

dk2
t

k2
t

2ᾱS

(
k2
t

)
, (A.4)

where ᾱS,CMW is the so-called Bremsstrahlung (CMW) scheme for the strong coupling con-

stant (as written on pg. 17 in [55])

ᾱS,CMW = ᾱS,MS +Kᾱ2
S . (A.5)

Inserting the expressions for ᾱS,CMW, r` (L), T
(
L
2

)
, S
(
T
(
L
2

))
into that for f (v) gives, with

no approximations,

f (v)=F
(
R′
)

exp

[
−
∫ L

0
dL′ ᾱ2

S

(
y′
)

2G12 [ 4F2G12 ]L′
] [

exp [−R (v)]

ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

]
.

(A.6)

with −R (v) here as given in our eq. (2.4).
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Now we start to make approximations and deviate from ref. [55], breaking the NLL

resummation by N3LLσ terms. Consider that F (R′) resums single log terms as

F
(
R′
)

= 1 + F2R
′2 + . . .+O

(
FnR′n

)
+ . . . , (A.7)

R′ = ∂LR (v) and so R′n is O (ᾱnSL
n). Neglecting terms of N3LLσ accuracy we can simply

replace R′ = ᾱS (y) 2G12 L

F
(
R′
)

= exp

[ ∫ L

0
dL′ ᾱ2

S (y) 2G12 [ 4F2G12 ] L′
]
, (A.8)

and hence

f (v) = exp [−R (v)]

ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

+ O
(
N3LLσ

)
. (A.9)

We then have the LL/NNLLσ resummed cumulant expression

dΣR (L)

dΦ
=
dσ0

dΦ

(
1 + ᾱS

(
µ2
R

)
χ̄1 (Φ)

)
[

exp [−R (v)]

ni∏

`=1

q(`)
(
x`, µ

2
Fv
)

q(`) (x`, µ2
F )

]
. (A.10)

Recall that χ̄1 encodes hard-virtual and hard-collinear splitting corrections, and that

these contributions contain terms which cancel the µR and µF dependence of dσ0/dΦB. We

may separate these parts as follows:

χ̄1 (Φ) = H1

(
Φ, µ2

R, Q
2
)

+

ni∑

`=1

[
C1 ⊗ q(`)

]
i

(
x`, µ

2
F

)

q(`) (x`, µ2
F )

, (A.11)

where

H1

(
Φ, µ2

R, Q
2
)

= H1 (Φ) + 2qβ̄0 ln
µR
Q

+

[
G11 + 2S1 − 2G12 ln

Qqq′

Q
− qβ̄0

]
2 ln

Qqq′

Q
,

(A.12)

and

C1,ij

(
z, µ2

F , Q
2
)

= C1,ij (z)− 2 ln
µF
Q
Pij (z) , C1,ij (z) = −P εij (z)− δijδ (1− z)Aij

π2

12
.

(A.13)

We underline that in the relation between χ̄, H and C1, eq. (A.11), the renormalization scale

in H1 is set to µR and in C1, which is convoluted with a PDF, the explicit factorization scale

therein is µF , i.e. C1 in eq. (A.11) is precisely as it is written in eq. (A.13). Equation (A.12)

basically defines H1 as what remains of H1 when its Q and µR dependence is removed, q

being the number of powers of ᾱS associated to the Born process. The P εij (z) terms are

the O (ε) parts of the LO splitting function Pij (z) :

P εqq (z) = −CF (1− z) , Aqq = CF ,

P εgq (z) = −CF z , Agq = 0 ,

P εqg (z) = −z (1− z) , Aqg = 0 ,

P εgg (z) = 0 , Agg = CA .

(A.14)
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Equations (A.11) and (A.12) serve to define H1. Whereas H1 is dependent on the virtual

corrections to the underlying hard scattering process, the C1 pieces are due to collinear

splitting and only depend on the flavour of the (incoming) legs in the Born configuration.

While we strictly only aim for NNLLσ accuracy in our initial resummation formula, to bet-

ter enable comparison/extension with existing NNLL work, without affecting any NNLLσ
terms, we opted to replace in our resummation formula (eq. (A.10))

1 + ᾱS

(
µ2
R

)
χ̄1 (Φ)→

[
1 + ᾱS

(
µ2
R

)
H1

(
µ2
R

)]
[

1 +

ni∑

`=1

ᾱS

(
µ2
Rv
)
[
C1 ⊗ q(`)

]
i

(
x`, µ

2
Fv
)

q
(`)
i (x`, µ2

Fv)

]
.

(A.15)

Note in particular the introduction of the v dependence in the renormalisation and factori-

sation scales in the final term. From here eq. (2.1) follows immediately on differentiation

with respect to L.

A.2 Fixed order expansion of resummation and Minlo formulae

Here in eqs. (A.16)–(A.19), we record the Hnm coefficients of the ᾱnSL
m, v → 0 singular,

terms in the NLO cross section, eqs. (2.19), (2.20), obtained by expanding the NNLLσ
resummation formula eq. (2.1):

H11 = 2G12 , H10 = G11 + 2S1 −
ni∑

`=1

[
P⊗ q(`)

]
i

q(`)
, (A.16)

H23 = 2G2
12 , H22 = β̄0H11 + 3G12H10 , (A.17)

H21 =

[
K + 4F2G12 + 2β̄0 ln

µR
Q

]
H11 + [G11 + 2S1]2 + χ̄1H11 + β̄0H10 (A.18)

−2 (G11 + 2S1)

ni∑

`=1

[
P⊗ q(`)

]
i

q(`)
+ 2

ni∑

`1

ni∑

`2<`1

[
P⊗ q(`1)

]
i

q(`1)

[
P⊗ q(`2)

]
j

q(`2)

+

ni∑

`=1

[
P⊗P⊗ q(`)

]
i

q(`)
,

H20 = H10

[
H1

(
µ2
R

)
+ 2β̄0 ln

µR
Q

]
+ [G11 + 2S1]

ni∑

`=1

[
C1 ⊗ q(`)

]
i

q(`)
(A.19)

−
ni∑

`=1

[
P2 ⊗ q(`)

]
i

q(`)
− 2β̄0 ln

Q

µF

ni∑

`=1

[
P⊗ q(`)

]
i

q(`)

+β̄0

ni∑

`=1

[
C1 ⊗ q(`)

]
i

q(`)
−

ni∑

`=1

[
C1 ⊗P⊗ q(`)

]
i

q(`)

−
ni∑

`1

ni∑

`2<`1

([
P⊗ q(`1)

]
i

q(`1)

[
C1 ⊗ q(`2)

]
i

q(`2)
+

[
P⊗ q(`2)

]
j

q(`2)

[
C1 ⊗ q(`1)

]
i

q(`1)

)
.

The factorization scale in C1 in eqs. (A.18)–(A.19) (including the C1 implicit in χ̄) is set

to µF ; it is exactly as written in eq. (A.13). We point out that for the regime y01 � m2
B,
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in Bjj-Minlo, the virtual corrections, H1, will contain large logarithms of ratios of scales

deriving from the related underlying (Bj) Born kinematics approaching a singular region.

The dσS expansion of eq. (2.20), with Hnm as given in eqs. (A.16)–(A.19), is invariant

under µR and µF variations up to higher order terms (∝ dσ0ᾱ
3
S) beyond NLO accuracy.

Also dσS with these Hnm is invariant under variations of the resummation scale, Q, up to

and including NNLLσ terms. To make dσS invariant under resummation scale variations

also at the N3LLσ level, requires modifying H20 → H20 + [K + 4F2G12] H11 ln(Q2
qq/Q

2)

only. Such a modification could be easily generated by simple adjustment of our initial

resummation formula, however, since the latter is only guaranteed to reproduce terms to

NNLLσ accuracy anyway, we do not consider this.

We have compared our expansion formula, eq. (2.20), to known results for the W/Z and

Higgs boson transverse momentum spectra [35, 37], as well as to those of the associated

leading jet (derived by expanding the NNLL resummation of Banfi et al [41]). To ease

comparisons, we note the following relations between our notation and refs. [35, 37, 41]:

2G12 = −A(1) , G11 = −B(1) , 2G12K = −A(2) , (A.20)

where A(1), B(1) and A(2) are used in the latter articles. We also point out that for B
production F2 = 0 in both the B transverse momentum spectrum and that of the leading

jet (eq. (2.10)). Lastly, in the results of refs. [35, 37] the resummation scale is set to the

invariant mass of B, i.e. Q = Qqq′ in our notation, leading to S1 → 0 here, as well as

simplifications in the χ̄ and H1 functions.

With the correspondence in notation understood, we find complete agreement between

our singular NLO expansion formula, eqs. (2.19)–(2.20), and those of refs. [35, 37, 41], up

to and including NNLLσ terms. To also have agreement with refs. [35, 37] for the N3LLσ
terms in the Higgs/vector boson transverse momentum spectrum, we need only add to H20,

in eq. (A.19),

R̃20 = −
[
B(2) + 2ζ3

[
A(1)

]2
]
, (A.21)

with B(2) as given in ref. [41]. For full agreement with ref. [41], including N3LLσ terms,

we only have to add to H20, in eq. (A.19),

R̃20 = −
[
B(2) − 8C

(
f clust + f correl

)]
, (A.22)

where f clust and f correl are corrections due to jet radius dependent clustering/correlated

emission effects, as given in ref. [41]. We point out that the needed/missing R̃20 term here

(eqs. (A.21)–(A.22)), for B-production, is just a number with no dependence on kinematics.

A.3 Basic Minlo prescription for merging two units of multiplicity

In discussing the merging of two units of multiplicity (section 2), the basic Minlo pre-

scription amounts, in practice, to the following sequence of operations applied to the input

NLO calculation

0. Define µR = KR max(QB, QBJ) and µF = KFQ, where KR/F ∈
[

1
2 , 2
]
.19

19This is the definition of QB given in section 2.1.
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1. Set µR everywhere it occurs and, likewise, for all µF set µF → µF
√
v:

dσ → dσ′ = dσ (µR = KR max(QB, QBJ), µF → KF

√
y) . (A.23)

2. Replace the additional power of ᾱS that accompanies the NLO corrections according

to

dσ′ → dσ′′ = dσ′
(
ᾱNLO

S

(
µ2
R

)
→ ᾱS

(
K2
R y
))
. (A.24)

3. Multiply the LO component by the O (ᾱS) expansion of the inverse of the Sudakov

form factor times ᾱs
(
K2
R y
)
/ᾱs

(
µ2
R

)
:

dσ′′ → dσ′′′=dσ′′− dσ′′
∣∣
LO
ᾱS

(
K2
R y
)(

G12L
2+
(
G11+2S1+β̄0

)
L+2β̄0 ln

µR
KRQ

)
.

(A.25)

4. Multiply by the Sudakov form factor times ᾱs
(
K2
R y
)
/ᾱs

(
µ2
R

)
:

dσ′′′ → dσM = exp [−R (v)]
ᾱs
(
K2
R y
)

ᾱs (µ2
R)

dσ′′′ . (A.26)

Precisely, the steps outlined above are those used in the construction of the Bj-Minlo′

simulation of ref. [28], adopting the general notation of section 2, so that they apply

equally to Bjj-Minlo′ — at least for what concerns the discussion on merging two units

of multiplicity.

A.4 Integral of Minlo v spectrum

The Minlo cumulant cross section below v is defined

dΣM (L)

dΦ
=

∫ L

∞
dL′

dσM
dΦdL′

. (A.27)

We are interested in the expansion of the latter up to and including NLO terms. Noting

that dσR is a total derivative with respect to L, and using the definitions of χ̄ in terms of

H1 and C1, we have

dΣM,1 (L)

dΦ
=

dΣR,1 (L)

dΦ

∣∣∣∣
χ̄1→0

+
dσ0

dΦ
ᾱSχ̄1+

∫ L

∞
dL′

dσF,1
dΦdL′

+

∫ L

∞
dL′

dσMR
dΦdL′

+O
(
ᾱ2

S

)
, (A.28)

=
dΣNLO (L)

dΦ
+

∫ L

∞
dL′

dσMR
dΦdL′

+O
(
ᾱ2

S

)
. (A.29)

In determining the equality in eq. (A.28) we have made use of the relation in eq. (2.14).

In going from eq. (A.28) to eq. (A.29) we have made use of the χ̄1 definition in eq. (2.15).

A.5 δ (Φ) denominator

Neglecting N3LLσ terms (as in section 2.6) we obtain for the denominator of δ (Φ) in

eq. (2.31)
∫
dLh (L)

dσM
dΦdL

=
dσ0

dΦ

1− exp [− |G12| ρ]

|G12|
ᾱS

(
1 +O

(√
ᾱS

))
, (A.30)

where the O (
√
ᾱS) comes from N3LLσ terms in the integrand.
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A.6 n = 3 soft wide angle radiation coefficient S1

Hadronic initial-state. For hadronic initial-states, plugging in Q2
B = m2

B and Q2
BJ = y01,

eq. (2.7) for n = 2 hard legs in the Born process gives simply S1 = 0, while eq. (2.8) for

n = 3 hard legs in the Born process gives

qq′ → V g : S1 = −1

2

(
Cq + Cq′

)
L01 + ∆S1 , (A.31)

∆S1 = +
1

2

(
Cq + Cq′

)
ln

m2
B

Q2
qq′

, (A.32)

= +
1

2

(
Cq + Cq′

)
ln z , (A.33)

qg → V q′ : S1 = −1

2

(
Cq + Cq′

)
L01 + ∆S1 , (A.34)

∆S1 = +
1

2

(
Cq + Cq′

)
ln
m2
B

Q2
qg

+
1

2

(
Cq + Cq′ − 2Cg

)
ln
Q2
qg

Q2
qq′

, (A.35)

lim
Qq′g→0

∆S1 = +
1

2

(
Cq + Cq′

)
ln z − 1

2

(
Cq + Cq′ − 2Cg

)
ln (1− z) , (A.36)

qg → Hq′ : S1 = −1

2
(Cg + Cg)L01 + ∆S1 , (A.37)

∆S1 = +
1

2
(Cg + Cg) ln

m2
B

Q2
qg

− 1

2

(
Cq + Cq′ − 2Cg

)
ln
Q2
qg

Q2
q′g

, (A.38)

lim
Qqq′→0

∆S1 = +
1

2
(Cg + Cg) ln z +

1

2

(
Cq + Cq′ − 2Cg

)
ln (1− z) , (A.39)

where V refers to a W/Z vector boson and z ≡ m2
B/ŝ. For convenience we note that in

the qq′ → V g channel, without approximations, y01 = Q2
qgQ

2
q′g/Q

2
qq′ , while in qg → V q′

and qg → Hq′, also without any approximation, y01 = Q2
qq′Q

2
q′g/Q

2
qg. For the gg → Hg

process S1 is exactly as in eq. (A.31) with the replacements {q, q′, g} → {g1, g2, g3}, where

g1 and g2 refer to the two incoming gluons; it follows that in gg → Hg we have exactly

y01 = Qg1g3Qg2g3/Qg1g2 .

Lastly we note the following approximations used in arriving at the limit Qq′g → 0 in

eq. (A.36)

ŝ = Q2
qg , t̂ = −Q2

q′g → −p2
T

1

1− z , û = −Q2
qq′ → −m2

B
1− z
z

, (A.40)

and for the limit Qqq′ → 0 used in eq. (A.39)

ŝ = Q2
qg , t̂ = −Q2

qq′ → −p2
T

1

1− z , û = −Q2
q′g → −m2

B
1− z
z

. (A.41)

A.7 NLLσ resummation formula in Ckkw notation

In the notation commonly used for the coherent parton branching formalism and Ckkw

method, Sudakov form factors for quark and gluon evolution are typically written as

∆q (q,Q) = exp

[
−
∫ Q

q
dq Γ′q (q,Q)

]
, ∆g (q,Q) = exp

[
−
∫ Q

q
dq Γ′g (q,Q)

]
, (A.42)
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with Γ′q/g given by

Γ′g (q,Q) = Γg (q,Q) + Γf (q) , Γ′q (q,Q) = Γq (q,Q) , (A.43)

and Γq/g/f functions therein defined as

Γg (q,Q) =
2

q
ᾱS (q)

(
C` ln

Q2

q2
+ 2B`C`

)
− Γf (q) , Γf (q) =

2

q
ᾱS (q)

Nf

3
, (A.44)

Γq (q,Q) =
2

q
ᾱS (q)

(
C` ln

Q2

q2
+ 2B`C`

)
. (A.45)

A.8 Expansion of NLLσ formula

The coefficients for the fixed order expansion of our conjectured resummation formula in

section 3.2 (eq. (3.9)) are given by

R[01]

12 = G[01]

12 , R[01]

11 = 2β̄0 +G[01]

11 + 2S [01]

1 , (A.46)

H [12]

11 = 2G[12]

12 , H [12]

10 = G[12]

11 + 2S [12]

1 −
ni∑

`=1

[
P⊗ q(`)

]
i

(
x[12]

` , y01

)

q(`)
(
x[12]

` , y01

) , (A.47)

H [12]

23 = 2G[12]2
12 , H [12]

22 = β̄0H
[12]

11 + 3G[12]

12 H [12]

10 . (A.48)
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