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Abstract 

     

    This thesis contains details of all the signal processing work being done on FMCW 

Radar (operating at VHF-UHF band) for the Antarctic Ice Shelf monitoring project 

that has been carried out at UCL.   The system developed at UCL was based on a novel 

concept of phase-sensitive FMCW radar with low power consumption, thus allowing 

data collection for long period of time with millimetre range precision. Development 

of new signal processing method was required in order to process the large amount of 

data, along with the signal processing technique for obtaining the high precision range 

values. This was achieved during the first stage of the thesis, providing accurate ice 

shelf basal layer melt rate values. Properties of the FMCW radar system and 

experimental scenarios posed further signal processing challenges. Those challenges 

were met by developing number of novel algorithms. A novel shape matching 

algorithm was developed to detect internal layers underneath the ice shelf. Range 

migration correction method was developed to compensate for the defocusing of the 

image in large angles due to high fractional bandwidth of the radar system. Vertical 

error correction method was developed to compensate for any vertical displacement 

of the radar antenna during field experiment. Finally, a novel 3-D MIMO imaging 

algorithm for the Antarctic ice shelf base study was developed. This was done to 

process the 8x8 MIMO radar (developed at UCL) data. The radars have been deployed 

in the Antarctica during the Austral summer of each year from 2011-2014. The field 

experiments were done in the Ronne, Larsen-C, Larsen North, George VI and Ross 

ice shelves. The novel signal processing techniques have been successfully applied on 

the real data, allowing better understanding of the Antarctic ice shelf features.  
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Chapter 1 

 

Introduction 

 
   Accurate prediction of sea level rise is very important in the field of climate change 

research. Ice shelves in the Polar Regions have direct correlation with sea level rise. 

An ice shelf is a floating extension of ice sheet. Presence of an ice shelf limits the ice 

flow into the ocean. As ice shelves are already floating in the ocean, a major collapse 

in ice shelf can enhance the level of fresh water into the sea indirectly by speeding up 

the flow of land ice into the ocean [1]. A lot of ice shelves collapsed in the Antarctica 

in the last few decades [1]. Scientists reasoned that this phenomena is due to warmer 

climate [1]. It is therefore of great importance to analyze the pattern of the thickness 

change of the ice shelf over the year with respect to oceanographic data. This would 

give geoscientists an accurate idea about whether the melting of ice shelves from the 

bottom is due to a natural cycle or because of the climate change. 

  

1.1 Aim of the Thesis 

A purpose-built phase-sensitive FMCW radar has been developed at UCL. The 

radar uses phase sensitivity to determine range to high precision. This high precision 

is achieved by using a Vernier-like process that accounts for the fine range 

measurement of the target along with its coarse range. This fine range is attained by 

measuring the phase of the signal in the particular range bin where the coarse range is 

obtained. In order to obtain this, challenges have to be met for both hardware and 

signal processing. A similar phase-sensitive radar system (pRES) had been developed 
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before which also produced satisfactory results [2] [3]. The motivation for this project 

work was to develop an upgraded radar system capable of year-long operation with 

low power consumption while providing high precision data. Link budget modelling 

of the FMCW radar built for this project shows that with very low transmit power (0.1 

W), 3 mm RMS precision at 1800 m range is achievable. The main features of this 

radar are low power consumption, low noise figure (6 dB), lightweight and suitable 

for low temperature operation. For these advantages, it can be used for long term 

continuous data collection in contrast to the pRES system (ice-penetrating radar built 

by British Antarctic Survey, predecessor of the current FMCW radar system), which 

is restricted to operation only during Austral summers and to provide a series of 

snapshots (because the pRES system is based on a general purpose network analyser, 

which has a high power consumption and requires a heavy petrol-generator, thus 

making it impractical for long term data collection). 

The Antarctic Ice Shelf monitoring project involved novel radar hardware 

development as well as novel signal processing algorithm development for Ice Shelf 

profiling and imaging. This thesis work has dealt with the signal processing algorithm 

development part of the project. The main objective is to produce ice shelf range 

profiles of millimetre precision as well as imaging the features underneath the ice 

shelf. The signal processing challenges were to develop suitable algorithms for phase 

sensitive range profiling as well as imaging techniques. As is often the case, specific 

applications require customized techniques for data analysis. This has been the case 

during this thesis as well, as novel radar hardware system required newly developed 

signal processing algorithms. So, along with developing processing algorithms for 

data analysis by using conventional methods (for phased array, SAR, MIMO), new 

techniques have to be developed as well for accurate data processing. The aim of the 
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thesis is to obtain data from both Polar Regions and produce significant results (images 

and profiles) that would help geoscientists to better understand the melting pattern and 

other properties of ice shelves. 

 

1.2 Thesis Outline 

Chapter 1: This chapter gives a brief outline of the thesis by giving an overview of 

the project aim. 

Chapter 2: Theoretical background of the whole research work has been described in 

this chapter along with reviewing the research work done so far for remote sensing of 

ice. 

Chapter 3: This chapter describes the specifics of the thesis work; the main signal 

processing algorithms that are required for polar data analysis. The theory of phased 

array radar, SAR and MIMO signal processing has been discussed in this chapter along 

with theoretical description of the phase sensitive range profiling method. MIMO 

signal processing has been described very briefly as newly developed 3-D MIMO 

imaging technique has been broadly discussed in Chapter 4. 

Chapter 4: This chapter discusses the novel signal processing techniques developed 

for this thesis work. These include: range migration correction for phased array, shape 

matching algorithm for detecting hidden layers, vertical error correction by phase 

calibration and 3 dimensional MIMO imaging algorithm; these four techniques that 

have been developed for FMCW radar data analysis have been thoroughly discussed. 

Chapter 5: Experimental results are shown in this chapter. All the algorithms that 

have been developed and simulated during this thesis were also put to the test by 

applying them to real data. The results are then analyzed and compared with the 

modelled results in this chapter. 



22 
 

Chapter 6: Along with concluding remarks, the overall contribution of the thesis is 

described in this chapter. Achievements and improvements made over the existing 

techniques has been discussed. Also, future work and scope for improvements of the 

developed algorithms are discussed.  
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Chapter 2 

Theoretical Background 

This chapter provides a basic theoretical outline of the whole research work 

starting from the fundamentals of radar. The majority of the discussion on the radar 

basics are based on [6] and [7]. After discussing these basics, FMCW radar theory is 

reviewed as it is the main experimental instrument for this research work. Theoretical 

discussion of Antarctic ice shelves is provided within the context of this particular 

research along with a review of previous research work in this field. This leads to a 

discussion of the need for updating the current technology and a description of the 

FMCW radar that was built at UCL for this particular project. A broad description of 

this Ice Shelf monitoring radar system is provided in the last section of this chapter.  

 

2.1 Fundamentals of Radar 

2.1.1 Basic Concept of Radar 

After the formulation of electromagnetic radiation theory, the basic foundation of 

radio technology was established. The possibility of wireless communication was 

realized by the scientists, as electromagnetic waves propagate at the speed of light. 

‘Radar’ (Radio Detection and Ranging) is a device that uses electromagnetic 

waves for the purpose of acquiring information at a distant location from that device. 

This operation is commonly known as ‘Remote Sensing’. Different bands of the 

electromagnetic spectrum are used in different applications of radar. 
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Figure 2.1 Electromagnetic Spectrum [4]. 

  

From the above figure, it can be seen that Radar just uses ‘light’ of a different 

wavelength. The visible spectrum is detected by the human eye. The advantage of the 

radar system is that it transmits electromagnetic waves, so the target can be detected 

from the reflection of the waves. The basic elements of a radar system are- 

Transmitter- A transmitter produces a suitable amount of energy (usually in 

pulses) with the desired frequency by an oscillator. The transmitter power is radiated 

by an antenna. The antenna sends the signal with a specific directional distribution. 

These transmitted waves are scattered off objects that fall into the area encompassed 

by the antenna beam.  

Duplexer- A duplexer is used in radar as a rapid switch to protect the radar receiver 

when the high-power transmitter is on. The duplexer also ensures the reflected signal 

from the target is channeled to the receiver, not the transmitter. During the reception 

mode, an antenna performs the identical operation in reverse direction. 

Receiver- The receiver then amplifies (with minimal increase in noise) and 

demodulates the signal for subsequent detection and signal processing. Different types 
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of filter, attenuator, mixer and amplifier are used to achieve the desired signal. During 

the signal processing, with the information regarding antenna directivity, the time 

delay and phase/frequency change (with respect to the transmitted signal), the target 

position and/or speed can be determined. 

A radar system includes a transmitter emitting electromagnetic radiation, in the 

form of a radio wave. The radio wave propagates through a medium (i.e. air, ice) and 

gets reflected from a target. The radar receiver collects the reflected wave. This 

reflected wave helps detect the presence of the target. As the speed of the wave 

propagation is known, the time of flight determines the range of the target (distance 

between the radar and the target). A moving target would produce a Doppler shift in 

the received signal, which can be used to calculate the velocity of the target. By using 

directional antennas, the direction of the target with respect to the radar (bearing) can 

also be determined. 

The selection of wavelength for radar operation depends on the application. For 

instance, radar technology was mainly developed during World War II. The main 

objective at that time was to detect airplanes, combat ships or enemy vessels located 

beyond visual range [5]. The main advantage of such a technology is that no one has 

to rely on sunlight, or clear sky. Radar itself is the source of the emitted waves reflected 

by a target. So, radars mainly emit electromagnetic waves at such frequencies which, 

unlike visible light, easily pass through clouds, fogs with attenuation as less as possible 

(some radars use mm wave for high resolution, but signals get highly attenuated at that 

frequency). 

2.1.2 Radar Equations 

One of the most basic aspects of radar theory is the radar range equation, derived 

from the equation for receiver power in relation to transmitted power and antenna gain. 
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A typical radar signal will have a two-way path propagation from transmitter to target 

and then reflected back from target to receiver. Due to this propagation through 3-

dimensional space, the received signal power will depend on the reflectivity of the 

target, directivity of the signal, distance travelled by the signal and the gain of the 

antenna. So, it is very important to calculate the receiver power before performing any 

radar operation. The Radar receiver power equation [6] is as follows: 

                                         𝑃𝑟 =  
𝑃𝑡𝐺𝐴𝑒𝜎

(4𝜋)2𝑟4                                                             (2.1) 

In the above equation, Pt is the transmitted power, G is the maximum gain of 

antenna, Ae is effective area of the receiving antenna, σ is the radar cross section (RCS) 

of the target and r is the distance of the target from the radar receiver or target range. 

Ae is directly related to the physical area of the antenna aperture A where Ae =ρaA, 

where ρa is the efficiency of antenna aperture [6]. To determine the maximum range 

Rmax of the radar, Pr needs to be at least equal to the minimum detectable signal Smin. 

Hence, rearranging Equation (2.1) gives the radar range equation [7]: 

                                    𝑅𝑚𝑎𝑥 = [
𝑃𝑡𝐺𝐴𝑒𝜎

(4𝜋)2𝑆𝑚𝑖𝑛
]

1
4⁄

                                                   (2.2) 

The above equation is also referred as the radar equation or range equation. During 

a radar design for any specific application, target RCS is taken into account to 

determine the choice of parameters, such as operating frequency and transmit power, 

since the reflectivity directly depends on frequency. After determining those, the 

power budget is calculated. 

Another basic factor in radar operation is the range resolution. It determines the 

ability of the radar to distinguish between two targets. Before formulating the range 

resolution, it is necessary to first determine the range of the radar. By considering τ as 

the two-way propagation delay time (time between the emission of the 
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electromagnetic wave from the receiver and the reflected wave coming back to the 

receiver). The propagation delay then can be written as, 

                                      𝜏 =
2𝑟

𝑐
                                                                          (2.3) 

The above equation enables calculation of the radar range, r, where c is the speed 

of light in free space, 3x108 ms-1. In a different medium, the speed of light changes 

which is compensated by taking the dielectric constant of that medium into account. 

In its simplest form, range resolution can be calculated [7] as follows: 

                                         ∆𝑟 =  
𝑐𝜏

2
                                                                    (2.4) 

       In order to obtain two distinct signal returns from two separate targets, the targets 

have to be separated in range by at least half the distance corresponding to the pulse 

width. In most cases, radars send a modulated signal. So, it is more useful to determine 

range resolution in terms of signal bandwidth. That formula can be achieved by using 

the spectral density of the transmitted pulse.    

 

Figure 2.2: (a) Rectangular pulse in time domain; (b) Spectral density of that rectangular pulse 

first null occurring at 1/T. 

 

For a pulsed radar system, the time difference between two distinctly separated 

target echoes would be as follows, 

                                       𝑇 =
2(𝑟+∆𝑟)

𝑐
−  

2𝑟

𝑐
=

2∆𝑟

𝑐
                                              (2.5) 
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Because of the two-way propagation of the signal, the minimum range resolution 

would vary proportionally with one half of the pulse length, T. From the above figure, 

the bandwidth of the pulse can be determined with respect to the location of the first 

null (for a non-modulated signal, bandwidth would be the smallest positive frequency 

where the power spectral density is zero). According to the above figure, where a 

rectangular pulse is considered, the first null occurs at 1/T. So, bandwidth can be 

written as: 

                                            𝐵 ≈  
1

𝑇
                                                                    (2.6) 

Using Equation (2.5) and (2.6), range resolution can be re-written as: 

                                            ∆𝑟 =  
𝑐

2𝐵
                                                                    (2.7) 

      In order to calculate the maximum unambiguous range, the Pulse Repetition 

Frequency (PRF) needs to be considered. This is the rate at which the radar transmitter 

emits signal (in the case of pulsed radar system). If a signal is reflected from a target 

after the transmitter has sent another pulse, then the range of the target cannot be 

unambiguously determined, as the corresponding transmitted pulse is not defined with 

absolute certainty. This maximum unambiguous range, ru, can be mathematically 

expressed as, 

                                                 𝑟𝑢 =
𝑐

2𝑃𝑅𝐹
                                                                (2.8) 

2.1.3 Radar application for remote sensing of the environment 

   Even though radar was originally developed for military purpose during wars, it 

serves as a very important tool for civilian applications as well. The most commonly 

known civilian application for radar is air-traffic control [7]. The widely used Air 

Traffic Control (ATC) radar beacon system and the microwave landing system are 

mainly based on radar technology [7]. Radar is also widely used nowadays for 
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environmental monitoring. For weather observation, the Nexrad system is widely 

known [6]. It is a network of 160 S-band Doppler radars. Along with climatology, the 

precipitation data from Nexrad is used in the field of meteorology and hydrology as 

well [8]. Various SAR systems (both spaceborne and airborne) have been used for 

earth and climate monitoring as SAR images help imaging of the ocean current pattern, 

glacier motion pattern, volcanic movement, geological studies and so on. Examples 

include Magellan (NASA/JPL), RADARSAT-1(Canadian Space Agency), ERS-1/2 

(European Remote Sensing satellite), J-ERS (Japanese Earth Remote Sensing 

satellite), SEASAT (performing first civilian SAR application), and CARABAS [9]. 

   Radars are also used for ship safety [7]. In adverse weather conditions when 

visibility is poor, radars can be used for collision avoidance (with other naval vehicles, 

navigation buoys). Automated radar systems with detection and tracking capacity for 

collision avoidance are commercially available and usually small in size and not costly 

[7].  

   Another significant contribution of radar for remote sensing is the measurement of 

the earth’s mean sea level (geoid- global mean sea level model to precisely measure 

the surface elevations of the earth) [10]. Downward looking spaceborne altimeters 

such as the ERS-1/2 have been used for this purpose [10].   

 

2.2 FMCW Radar 

   Generally, the transmitted radar signal is either a single pulse at a time or it is a 

continuous wave. Radar that uses the first technique is known as pulsed radar. Radar 

that uses the latter technique is known as Continuous Wave radar or CW radar for 

short. Frequency Modulated Continuous Wave (FMCW) radar is a type of CW radar 

that transmits frequency modulated waves, usually with linear frequency modulation. 
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The advantage obtained by modulating the frequency is the ability to determine range 

without requiring a short pulse. Modulation of the transmitted signal provides the 

timing mark which can be used to extract range information. For instance, a frequency 

modulated signal would have various frequency components. So, when a target echo 

is received, those different frequency components will arrive in different time thus 

creating the option for range measurement. The operation principle for FMCW is 

discussed below. 

2.2.1 Linear FM Signal 

    The application and operation of FM signals is widespread in radio broadcasting. 

One advantage can be found in radar over radio broadcasting is that radar does not 

transmit any meaningful message. It just sends a signal in order to get a reflection. So, 

there is no need for complicated manipulation to decode any audio-visual message 

from the signal. A simple pulse containing numerous frequency components would 

suffice. One such simple FM signal is a chirp signal (or sweep signal, both terms are 

used interchangeably). It is basically an FM signal where the frequency is increased 

or decreased with time, just like the chirping noise of birds, or bats. It is simple in 

concept and easy to generate. A chirp signal can be generated in ascending order (up 

chirp) or descending order (down chirp). Also, the frequency differences can be linear 

or exponential. In order to maintain simplicity, most radars use a linear chirp signal. 

The transmitted signal equation is, 

                                               𝑠(𝜏) = 𝑟𝑒𝑐𝑡 (
𝜏

𝑇𝑝
) 𝑒(𝑖2𝜋𝑓𝑐+𝑖𝜋𝐾𝜏2)                                          (2.9) 

   K is the chirp rate which is the ratio of the bandwidth and pulse width 𝐵⁄𝑇𝑝, fc is the 

center frequency and τ is pulse duration. 
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Figure 2.3 Linear FM (chirp) Signal. 

 

 

 

2.2.2 Basic FMCW Radar Operation Principle 

A linear FM chirp signal is used for transmission in FMCW radar. After receiving 

a target echo, the received signal is mixed with the transmit signal. The resultant 

frequency is known as a beat frequency of deramped frequency. This deramped 

frequency is used for calculating the target range. The mathematical depiction of 

FMCW radar operation is given in [11]. For a stationary target, the deramped 

frequency would be a constant value. In order to get an expression for the deramped 

frequency, the mathematical form of the instantaneous FM chirp transmitted signal in 

sinusoidal form can be written as: 

                                 𝑠𝑡𝑟(𝑡) =  𝑎𝑜 sin 2𝜋 [𝑓𝑜𝑡 +  
𝐾𝑡2

2
]                                           (2.10) 

where K is the chirp rate and fo is the centre frequency. The received signal will be a 

time delayed version of the above equation most likely with different amplitude due 
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to attenuation. If the time delay between transmit and receive is τ, then the equation 

for the received signal becomes: 

                                  𝑠𝑟(𝑡) =  𝑏𝑜 sin 2𝜋 [𝑓𝑜(𝑡 − 𝜏) +  
𝐾(𝑡−𝜏)2

2
]                            (2.11) 

The deramped signal sIF(t) is the resultant of the mixing of these two signals: 

                                       𝑠𝐼𝐹(𝑡) =  𝑠𝑡𝑟(𝑡) . 𝑠𝑟(𝑡)                                                   (2.12) 

The deramped signal will consist of both the sum of and difference of two signal 

phases. For FMCW operation, only the difference is required thus the sum is ignored 

or filtered out. Simplification after substituting values from Equation (2.10) and (2.11) 

to Equation (2.12) gives the following equation for the deramped signal: 

                                   𝑠𝐼𝐹(𝑡) =  𝑐𝑜 cos 2𝜋 [𝑓𝑜𝜏 + 𝐾𝑡𝜏 −  
𝐾𝜏2

2
]                              (2.13) 

Here, the second term is the time linear phase term corresponding to the instantaneous 

frequency difference between the transmit signal and receive signal. 

 

Figure 2.4: Plot of FMCW chirp transmit and receive signal to calculate the deramped frequency, 

fd. 

 

From the above figure, the equation for fd can be obtained easily by using simple 

geometry. Here, the blue line is the transmitted chirp and the red line is the received 

signal, which is equal to the transmitted one but delayed by the round trip delay τ. It 

can be seen that the triangle consisting of sides equal to bandwidth B and chirp 

duration T is similar to the triangle consisting of sides fd and τ (they have equal angles). 
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So, the ratio of their corresponding sides will be equal (fd/B = τ/T). Hence, equation 

for the deramped signal can be written as: 

                                                𝑓𝑑 =  
𝐵𝜏

𝑇
                                                           (2.14) 

The round trip delay τ can be written in terms of range R as τ = 2R/c. So, Equation 

(2.14) then becomes: 

                                             𝑓𝑑 =  
2𝐵𝑅

𝑇𝑐
                                                            (2.15) 

It should be noted that in Figure (2.4), only the up-chirp has been used. In FMCW 

operation, it should be sufficient if Doppler information is of no concern. In order to 

extract Doppler information, both up and down chirps would be required. Otherwise, 

range-Doppler cross coupling will occur which can be mathematically seen by 

modifying Equation (2.13) for a moving target. If the target is moving with velocity 

v, then range becomes function of time (R(t) = Ro+vt). So, the equation for round trip 

delay becomes: 

                                                 𝜏 =  
2(𝑅𝑜+𝑣𝑡) 

𝑐
                                                  (2.16) 

The last term is Equation (2.13), which is a small phase offset, is neglected (as τ 

<< T). Combining Equation (2.13) and (2.16): 

                𝑠𝐼𝐹(𝑡) =  𝑐𝑜 cos 2𝜋 [
2𝑓𝑜𝑅𝑜

𝑐
+ (

2𝑓𝑜𝑣

𝑐
+

2𝐾𝑅𝑜

𝑐
) 𝑡 + 

2𝐾𝑣𝑡2

𝑐
]                         (2.17) 

In the above equation, the third term corresponds to range-Doppler coupling. 

   So, when the FMCW radar application consists of a moving target, it uses chirps 

in both directions. The method can be understood from Figure (2.5). It can be seen that 

the deramped frequency will have different values depending on the chirp direction. 

For up and down chirps, equation for deramped frequencies would be as follows: 

                             𝑓𝑑,𝑑𝑜𝑤𝑛 =  
2𝐵𝑅

𝑇𝑐
−  

2𝑓𝑜𝑣

𝑐
                                                        (2.18) 
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                             𝑓𝑑,𝑢𝑝 =  
2𝐵𝑅

𝑇𝑐
+  

2𝑓𝑜𝑣

𝑐
                                                            (2.19) 

 

Figure 2.5: Plot of triangular FMCW transmit signal (blue) and return echo from a moving target 

(red) along with corresponding deramped frequency (black) [12]. 

 

   It should be noted from Figure (2.5) that the deramped frequency of a moving 

target (assuming constant velocity) becomes an oscillating wave. The actual range will 

be the average of these two frequency values. Target velocity can also be obtained by 

substitution. 

 

2.2.3 Advantages of using FMCW radar 

    FMCW radar has the advantage of achieving better range resolution for a given peak 

output power as it is easier to increase the bandwidth of a FMCW radar than to shorten 

the pulse width of a pulse radar. Another very important factor when deramp 

processing is used is that even though FMCW radar operates with a large bandwidth, 

after mixing, the frequency resolution becomes much smaller (1/T). This is the 

equivalent processing gain often known as the time-bandwidth product [12]. The 

application for this specific project requires high precision through a lossy medium in 

order to measure the ice shelf melting rate precisely along with the need for yearlong 

data collection (which means low power transmission is desired). Also, as this is not 
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a military application, there is no concern with jamming or interference as is often the 

case with FMCW radar. Considering these factors, FMCW radar has been chosen for 

this project. 

   From a hardware perspective, the advantage of FMCW radar over conventional 

linear FM pulse compression radar is worth mentioning. In the latter one, good range 

resolution is also achieved by using wider bandwidth. But pulse compression is a time 

domain operation. So, data acquisition hardware is required to be quick enough to 

sample the whole transmit signal bandwidth. FMCW radar systems are able to mitigate 

this hardware constraint. This is because of the use of the deramped signal bandwidth 

instead of the entire transmission bandwidth. In a sense, Fourier transformation of 

deramped signal is equivalent to the matched filtering operation during pulse 

compression. Also, to compensate for the r4 attenuation (r3 for distributed targets), 

conventional pulse radars use gain controls to make sure the dynamic range of the IF 

signal stays within limit. Due to the linear relationship between range and deramped 

frequency, this can be achieved in the frequency domain in FMCW radars. 

 

2.3 Overview of Antarctic Ice Shelf Research 

   Antarctic ice shelf research is a part of environmental monitoring research work. 

One of the main research topics in modern science is the climate change research, 

which has escalated the need for research on worldwide environmental surveillance. 

One of the possible effects due to climate change is sea level rise across the world. 

The repercussion is quite alarming for areas close to oceans and sea shores [13]. So, it 

is of great importance that geoscientists are able to make accurate predictions of the 

sea level rise, as these calculations will have direct social, economic and political 

consequences. In the last 100 years, sea level rise has been approximately 4 to 8 inches 
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[13] which has been at least partly attributed to global warming [14] [15]. The average 

global surface temperature is also rising, which the scientific community attributes to 

man-made causes, such as increase in greenhouse gas. Due to this, polar ice caps and 

glaciers worldwide are showing a rapid melting rate hence contributing directly to sea 

level rise. This is the main incentive for scientific monitoring of Antarctic ice shelves. 

Proper quantification of the role of ice shelves in sea level rise is thus necessary. 

Before discussing the research work performed so far in this field, it would be 

appropriate to describe the basic theory of the ice shelves.   

2.3.1 Ice Shelves in Antarctica 

Ice shelves are floating extensions of ice sheets that link the ocean to the landmass. 

Even though there are ice shelves in the northern hemisphere, most of the ice shelves 

are on the Antarctica. 

Understanding the formation of an ice shelf requires a brief description of an ice 

sheet. An ice sheet is a large chunk of land ice covering most of the Polar Regions. 

 

Figure 2.6: Map of Antarctica. The colored parts are various ice shelves, several of those have 

been used as experimental locations in this project. (Credit: Ted Scambos, NSIDC). 
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Figure 2.7 Ice sheets in both Polar Regions (Credit: NSIDC). 

 

     Large parts of North America and Scandinavia were also covered by ice sheets 

during the last ice age. The ice sheets in Antarctica and Greenland contain 99% of the 

freshwater ice of the whole world [16]. The Antarctic ice sheet extends over almost 

5.4 million square miles, which is the largest single mass of ice in the world containing 

7.2 cubic miles of ice [16]. The ice sheet in Greenland extends almost 656,000 square 

miles [16]. 

Ice shelves are basically floating extensions of ice sheets [1]. They are formed 

when the ice sheet extends to the coast and over the ocean. Through ice streams and 

glaciers, ice from the ice sheet gradually oozes into the sea. Due to differences in 

temperature, newly arrived ice does not melt into water straight away. It starts floating 

like an iceberg. But it also gains size as more ice gets added from behind before the 

small chunk gets the chance to dissolve into the ocean. The very important feature of 

these ice shelves is that they act as the interface between the huge ice sheet and the 

ocean. So, they are able to act as a bottleneck to slow down the ice flow into the ocean. 

This is very important in terms of sea level rise study because the implication is that 

ice shelves are very useful to limit the amount of water in the ocean by inhibiting the 

land ice (glacier and ice sheet) flow into the ocean. If these ice shelves are melting 
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rapidly or collapsing, that would have direct effect on sea level rise. There have been 

studies regarding ice shelf collapses and melting which even gives alarming prediction 

that the ice shelves may disappear within next 200 years [17] [18] [19]. 

 

 

Figure 2.8: Simplified diagram of ice formation in Polar Regions showing the fragmentation from 

ice sheet to ice shelf and then to iceberg. Grounding line is the boundary between floating and 

grounded ice. (Credit: Mark R. Drinkwater; European Space Agency, ESA-ESTEC). 

   

 

2.3.2 Use of remote sensing for Ice Shelf Monitoring  

   In 1933, it was discovered that high frequency radio signals can penetrate snow and 

ice, the foundation for use of remote sensing to study ice was then built [20]. It was 

24 years later though when the first experiment was performed (by Amory Waite) that 

used radio echo-sounder (RES) for measuring ice thickness [20]. In 1963, a VHF 

system for echo sounding was built [21]. That pioneered the research field of RES 

systems for ice measurements. Radars built for this purpose were mostly pulse radars 

operating in the VHF and UHF frequency ranges. These instruments achieved quite 

good success in calculating ice thicknesses in Polar Regions [22]. After a decade, use 

of FMCW radar in this field also started. In 1980, an FMCW system [23] was used to 
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detect and measure water equivalence (amount of water contained in the snowpack) 

and snow stratigraphy (different layers of snow). 

   The current research on ice shelf monitoring is a major collaboration between 

government research organizations from various countries. Following are the names 

of few organizations that are leading the research work: British Antarctic Survey 

(BAS) from UK, National Snow and Ice Data Center (NSIDC) from USA, National 

Institute of Polar Research (NIPR) from Japan, Australian Antarctic Division (AAD) 

from Australia and Canadian Ice Service (CIS) from Canada. 

    Different kinds of radar have been used for ice monitoring. NSIDC have used a 

combination of satellite techniques (Interferometric Synthetic Aperture Radar 

(InSAR), visible-band imagery, and repeat-track laser altimetry) to map ice shelves 

[24]. They mapped the grounding line location of the entire Amery ice shelf. Results 

shown in [24] helped improve the understanding of the dynamic state of the ice shelf. 

Various other papers have been published encompassing analysis of data obtained 

from Ice Shelf measurements [25] [26]. In [27], Wilkins Ice Shelf break-up events that 

occurred in 28 February to 6 March, 27 May to 31 May, and 28 June to mid-July of 

2008, are analyzed with the help of satellite remote sensing observation. The data 

provided great detail of the ice shelf calving while the break up was occurring. It was 

discovered that the break up was due to a unique type of ice shelf calving, referred to 

as ‘disintegration’. The paper also goes into further details of this disintegration 

process. In [28], NSIDC used FMCW radar for ice measurements to study the 

discontinuities in the snowpack. C-Band (2-6 GHz), X-Band (8-12 GHz), and Ku-

Band (14-18 GHz) frequencies were used for measurements (as the snow structure is 

not uniform, reflectivity from different sections of the snowpack for a single frequency 

band will vary. Hence, different frequency bands are used and the results are 
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compared). The magnitude and location of snow pack discontinuities have been 

calculated as function of frequencies to precisely determine snow cover properties 

from monostatic and bistatic radar systems. The experiments revealed that when radar 

operates at 14-18 GHz, it gives better information about the internal features of a dry 

snow pack. On the other hand, due to the high absorption loss in water, in wet snow 

areas, high frequency transmission provides very poor result. For the latter case, lower 

frequencies (2-6 GHz) were required to penetrate wet snow without significant 

attenuation. In [29], Landsat-7 ETM+ images had been used to map blue ice areas in 

Antarctica. In [30], IceBridge Ku-Band Radar altimeter data provides measurements 

from Polar Regions of both hemispheres. Time, latitude, longitude, elevation, and 

surface measurements, as well as flight path charts and echograms images were 

obtained from this radar system. The Ice, Cloud and Elevation Satellite (ICESat) [31] 

is another major project of NSIDC, for studying polar ice. This satellite performs 

operation based on Geoscience Laser Altimeter System (GLAS), a space-based laser-

ranging instrument (LIDAR). It provides year-long data to determine ice sheet mass 

balance along with data of stratospheric clouds (clouds in the winter polar 

stratosphere) that are widespread over polar areas. The second version, ICESat-2, is 

expected to start operation in 2017. 

http://en.wikipedia.org/wiki/Geoscience_Laser_Altimeter_System
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Figure 2.9: A map created from ICESat data demonstrating the extent of ice sheet thinning in 

Greenland and Antarctica [32]. (Credit: British Antarctic Survey/NASA). 

 

   Besides satellite based systems, numerous ground based systems are also used for 

ice monitoring in polar areas. An elaborate description of ground penetrating radar 

(GPR) systems can be found in [33]. Further details of the operating principles of GPR 

may be found in [33]. Figure (2.10) gives an example of processed data from GPR. 

An eskers are long ridges found in the glaciated regions of the northern hemisphere 

(Europe and North America). From Figure (2.10), properties underneath the esker can 

be seen from the GPR data. As it is seen, radar signal passes through the ice easily but 

gets reflected back from others (different types of rocks). Near the surface, reflection 

is coming from boulder and gravel (different classes of rock according to particle size). 

Below the ice, hyperbolic shaped reflections are due to sediment and bedrock. Most 

of the GPR operations are in VHF/UHF frequencies. Even though higher resolution 

can be achieved by using high frequency signals, for ice shelf thickness analysis where 

the depth of ice can be as long as 2 km, high frequency signals can be severely 

attenuated while propagating through the snow and ice [35]. In [36] [37], it was studied 

that ice shelf depth change measured by using satellite altimeters does not directly 
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correspond to the mass imbalance. Mass imbalance is the offset from the net balance 

between the accumulation and ablation of ice. This imbalance was measured by 

satellite altimeters to calculate the change in depth. 

 

Figure 2.10: An example of GPR profile showing underneath the ice cored esker near Carat Lake, 

N.W. T. Canada [34]. 

 

    Instead, thickness change can be attributed to other meteorological conditions that 

affect snow compaction such as densification process that changes snow morphology. 

In [37], GPR was used to measure snow compaction in two Antarctic Ice Shelves 

(McMurdo and Ross), which would compensate for the uncertainties from the 

altimeter data. The GPR operated at UHF band. In [38], GPR was used for crevasse 

detection across the Ross Ice Shelf. Here, the radar transmission frequency was also 

in UHF (400 MHz). In [39], debris characteristics (along with dynamics in the ablation 

region) of McMurdo Ice Shelf were studied using GPR data. 

    The British Antarctic Survey (BAS) have pioneered the use of phase sensitive radar 

for measuring ice shelf thicknesses with millimeter precision. As the image processing 

from the radar data is mainly done by the processing of the received signals, phase 

accuracy of the signals allows for more accurate imaging, hence enhancing the image 

quality. In [3], the potential was first shown of phase sensitive radar for precise 
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measurement of ice shelf basal layer melt rate. The pRES was first deployed at the 

George VI ice shelf to study ice-ocean interaction. The incentive for high precision 

melt rate measurement was that this event plays a major role on Antarctic ice mass 

balance, accounting for more than 20% ice discharge from the ice sheet [40]. Accurate 

study of the melting of the ice shelf basal layer also helps to understand the evolution 

cycle of water mass around polar areas, consequently having an effect on entire global 

water mass [41]. But many of the previous basal layer depth estimations had errors 

even by margins of 50% [42]. The pRES system helped to narrow down the error 

margin significantly. The radar system developed at BAS, known as pRES system, 

was based on the stepped-frequency principle. Stepped-frequency continuous wave 

radars are also FMCW radars where instead of a continuous frequency band sweep, 

the frequency is increased in discrete steps [33]. Advantages and disadvantages of 

stepped frequency radar have been detailed in [42]. Step frequency radars are used in 

glaciology mainly because of high bandwidth, which means high resolution, as well 

as for better signal-to-noise ratio (SNR) [43]. Other main factor is the radar systems 

capture not only amplitude, but also phase information. The amplitude was measured 

directly where the phase was calculated by comparing the reflected signal with the 

output of a precision reference oscillator. The carrier waveform was demodulated in 

both side bands from the centre frequency to the baseband [44]. The pRES system 

consists of a network analyzer (HP8751A). Transmit and receive antennas were 

identical broadband antennas with 10 dBi gain. The system operated at 305 MHz 

centre frequency where bandwidth being 160 MHz. The range plot from radar data is 

the Fourier transformed result of the return signal (in logarithmic scale) shown in 

Figure (2.11). 
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Figure 2.11: Logarithmically scaled amplitude plot after processing pRES data from George VI 

ice shelf, showing basal layer at around 450 meters [3]. 

 

In [2], the pRES system was used for basal layer depth measurement in the Ronne 

Ice Shelf near the grounding line of the Rutford Ice Stream. Here, the ice shelf is 

comparatively very deep (ranging from 1570 to 1940 meters). It was a year-long 

project that consisted of comprehensive analysis of the horizontal deformation, along 

with pRES data of the vertical displacement of the ice shelf base and internal layers. 

Even though in [3], basal melt rate measurement was quite straightforward (measuring 

thickness for 7 days), calculation of the Ronne Ice Shelf melt rate needed few more 

steps. Along with measuring oscillations in vertical strain rate and ice thickness due 

to the fluctuation of the ice shelf on the tide, depth variation measurement of the long-

term strain rate was also done. The latter occurs when ice shelf surface deviates from 

the level of isostatic equilibrium. 

2.3.3 Motivation for the radar system upgrade 

    The pRES system was able to provide very accurate data. But there were several 

limitations. Those are: 

 Being based on a general-purpose network analyzer, the whole system is quite 

bulky, so not suitable for moving from one place to other 

 High receiver noise (noise figure > 30 dB) 

 Hence a long measurement time is required (100-1000s) 
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 High power consumption, requiring a petrol generator 

 Bulky and not suitable for low temperature operation 

 Restricted to operation only during Austral summers and to a series of 

snapshots (due to the factors mentioned above, it is impractical to use the 

system for whole year) 

The need for a new system that would be lightweight, consume low power and 

most importantly, be able to collect data throughout the year on its own has become 

apparent. Also, there was an ever-growing need for making numerous copies of the 

system to deploy simultaneously in various experimental sites. Copying a bulky and 

high power consuming pRES system would be very impractical. Hence, the project 

started by collaboration between BAS and UCL where first objective was to build a 

modified FMCW radar prototype with lower noise figure and power consumption 

along with all the radar components suitable for low temperature operation, hence 

making a year-long operation possible. 

2.3.4 Phase sensitive FMCW radar for Ice Shelf Monitoring built at UCL 

   The FMCW radar built at UCL has the capacity to measure melt rates to mm/year 

precision. The radar is built to maintain this precision up to 1800 metres depth [45]. 

The main features of this radar are low power consumption, low noise figure and hence 

a short measurement time, lightweight and suitable for low temperature operation. The 

radar system is discussed below by using [45] as the main reference.  

    As seen from the Figure (2.12), the phase-sensitive FMCW radar is based on a 

Direct Digital Synthesizer (DDS) linear FM chirp generator. It consists of a low noise 

receiver/downconverter chain. A master clock is used to synchronize the DDS chirp 

generator and the data logger (Analog to Digital Converter (ADC)). This 

synchronization allows for precise phase measurement during processing and the  
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Figure 2.12: Simplified block diagram of the UCL built phase-sensitive FMCW radar [45] 

achieved phase precision exceeds the standard range resolution. It is a low power 

consumption device with 5 W power needed during operation and 1 mW during 

standby. As the noise figure is far less than the pRES system, the signal collection time 

is also much smaller (1 s, as opposed to 100-1000 s for the pRES system). It should 

be noted that, as different gain settings are used during field test and to have the option 

for pulse-to-pulse averaging, the signal collection time is set to 1 min. If one minute 

of data is collected in every six hours (common operating mode), the mean power 

consumption is around 31 mW. So, to collect data for a whole winter, a modest 

accumulator of 40 Ah capacity would suffice. All the RF components of the radar 

system are able to work to temperatures as low as -40o C. The radar system is designed 

for VHF-UHF band operation. The bandwidth is 200 MHz with centre frequency at 

300 MHz. So, for a 1 s pulse duration, the deramped frequency is 2.35 Hz/m (using 

Equation (2.14)). The range resolution becomes 43 cm by considering the dielectric 

constant of the Antarctic ice as 3.1 (value provided by the British Antarctic Survey). 

Measuring the phase of the deramped pulses carefully, millimetre range precision is 
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achieved (discussed more in Chapter 3). Considering the maximum range as 2 km, the 

deramped frequency at this point would be 4.7 kHz. So, a simple data logger with a 

sampling rate of 12 ksamples/s or higher would be sufficient. 

 

Table 1: Parameters of phase sensitive FMCW radar 

Operating frequency (centre), fc 300 MHz 

FM sweep bandwidth, B  200 MHz 

RF power, Pt 20 dBm 

Antenna gains, Gt, Gr  10 dBi 

Noise figure, N  6 dB (F = 4) 

Associated standard range resolution, ΔR 43 cm with εr = 3.1 

Depth precision in phase-sensitive mode 3 mm RMS, provided SNR>21 dB 

Pulse duration, T  1 s 

Total acquisition time Total acquisition time 60 s. Ten pulses each with four RF gain 

values 

ADC sampling rate  >12 ksamples/s 

Ice attenuation  0.015 dB/m 

Maximum operating range, R  2 km 

Reflection coefficient between internal layers −60 to −90 dB 

Reflection coefficient at ice sheet base −2 dB 

 

 

Figure 2.13 Prototype phase sensitive FMCW radar built at UCL [45]. 
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   Figure (2.13) shows the prototype radar system for the Antarctic ice shelf monitoring 

developed at UCL. The system is based on the block diagram shown in Figure (2.12), 

including added front-end filtering and digital clock generation and synchronization. 

The DDS synthesizer used for the system is an Analog Device AD9910. It generates 

a sweep signal of 200-400 MHz with a 1 GHz clock. The radar system is designed to 

provide good performance on data processing for reflections coming from both near 

and far from the radar. Different gain settings have been used for this purpose. A pair 

of Mini-Circuits ZX76-31-PP+ digital step attenuators are used to achieve this. These 

step attenuators have four combinations that set the RF gain values to 4, 16, 28 and 40 

dB. During operation, the gain settings are changed in this sequence for successive 

chirps. A second-order high pass filter in the baseband path is also used in order to 

compensate for the signal attenuation in the ice. Considering the attenuation 

coefficient in the ice as 0.015 dB/m, the reflected signal degrades at a rate of 30 

dB/decade within first 100 m range [45], then degrades more rapidly. The high-pass 

filter has 0 dB gain at frequencies under 50 Hz and the maximum gain is 80 dB at 5 

kHz. It has a fixed slope of +40 dB/decade, over compensating at short ranges but 

undercompensating at longer ranges. This is an acceptable trade off, where the 60 dB 

or greater dynamic range of the ADC should work, which means effective number of 

bits of 10 should be enough. During operation, the system consumes 750 mA at 6 V. 

It consumes 0.24 mA during standby. This is a very low power consumption when 

compared to the pRES system which required hundreds of watts and a petrol generator. 

The reduced noise figure (6 dB) means shorter signal collection time, which saves 

energy consumption even more. During the link budget modelling for the system [45], 

the expected SNR was calculated as greater than 75 dB for ice shelf basal layer not 

exceeding 500 m. After that the SNR drops rapidly due to the inverse-cube dependence 
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and also the ice attenuation. At maximum range (2 km), the SNR is around 14 dB. The 

loop test results of the prototype system are discussed in Chapter 5. 
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Chapter 3  

Signal Processing Algorithms for the Antarctic Data 

Analysis  

 

    This chapter concerns with the details of signal processing algorithms that have 

been used for analysing the FMCW radar data. The first part discusses the phase 

sensitive signal processing method. This method would be used to achieve the 

millimetre precision range values while measuring the ice shelf thickness. The FMCW 

radar has also been used for imaging of ice shelf base. Different experiments have 

been set up at Antarctic sites for imaging the layers underneath ice shelf surface. Three 

different algorithms have been used for image processing; phased array processing, 

SAR processing and MIMO processing. Discussions regarding the basics of all three 

algorithms have been done in this chapter. Along with the basics, simulation results 

for all the algorithms are shown and discussed. Instead of using some open source 

codes for simulation, MATLAB codes were written for all the conventional imaging 

algorithms, along with writing new code for the precision range profiling. One of the 

reasons for this is the received signal characteristics of the FMCW radar built at UCL. 

Usually conventional algorithms process the received signal (i.e. beamforming 

operation in phased array) in time domain. Meanwhile, in the FMCW radar, the 

received signal is mixed with the transmitted signal before the data logger saves it. So, 

the output from the data logger is the deramped signal, which is in frequency domain. 

Most of the open source codes use matched filtering operation to produce the range 

history, which is not the case for this system. A conventional SAR system simulation 
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scenario requires a platform in constant motion for a specific amount of time (which 

determines the Synthetic Aperture length). This constant motion creates the SAR 

Doppler history. The experimental setup used in the Antarctica was not a pure SAR 

system, but a simulated SAR system. The radar was mounted on a sledge and then 

moved in to different positions in a straight line to collect data. SAR signal history is 

obtained by the assumption of an entirely stationary targets within the period of data 

collection (a very assumption in the Antarctic Ice Shelves), so the Doppler information 

is extrapolated by using the phase information and the total data collection time. In 

case of MIMO processing, a conventional MIMO system transmits different 

transmitted signals (usually orthogonal to each other). In case of the Antarctic ice shelf 

monitoring, all the transmitters send same signal. MIMO system scenario is achieved 

by using time switching method. Considering all these factors, along with the need to 

ensure that the algorithms work properly with the FMCW radar system parameters, 

simulations for the conventional algorithms were performed by newly written 

MATLAB codes. 

3.1 Phase Sensitive Range Profiling  

    In [45] [46], techniques for millimetre precision range measurement with FMCW 

radar, along with the hardware design to achieve this, have been discussed. In [45], a 

processing technique for unambiguous range measurement with the newly built phase 

sensitive radar has been thoroughly discussed. The FMCW radar uses phase sensitivity 

to determine the high precision range. This high precision is achieved by using a 

Vernier-like process that accounts for the fine range measurement of the target along 

with its coarse range. The operation principle of a Vernier scale is using a major and 

a minor scale. The major scale gives the coarse length and combining it with the value 

obtained from the minor scale, precise length is measured. Similar approach is used 
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by the phase-sensitive FMCW radar system. This fine range is attained by measuring 

the phase of the signal in the particular range bin where the coarse range is obtained.  

3.1.1 Phase sensitive processing steps     

    The mathematical description of the processing method [45] is given below: 

The instantaneous frequency of the linear chirp transmission can be written as:  

                       𝜔𝑡(𝑡) =  𝜔𝑐 + 𝐾(𝑡 − 𝑇/2)  0 ≤ 𝑡 ≤ 𝑇                                          (3.1) 

where ωc is the centre frequency, T is the pulse duration and K is the chirp rate. It 

should be noted that chirp rate is signal bandwidth divided by time (should be 

multiplied with 2π to get the value in radians). By integrating Equation (3.1), equation 

for instantaneous phase can be obtained: 

                     𝜑𝑡(𝑡) =  𝜔𝑐𝑡 +  
𝐾(𝑡−𝑇/2)2

2
+ 𝑐𝑜𝑛𝑠𝑡  0 ≤ 𝑡 ≤ 𝑇                                 (3.2) 

The equation for the phase of the received signal arriving from range R will be: 

                     𝜑𝑟(𝑡) =  𝜔𝑐(𝑡 − 𝜏) +  
𝐾(𝑡−𝜏−𝑇/2)2

2
+ 𝑐𝑜𝑛𝑠𝑡                                      (3.3) 

Here, τ is the round trip delay which for any range R, τ = 2R√εr/c.  

    Deramped signal phase can be mathematically obtained by subtracting the receive 

signal phase from the transmitted signal phase. So, from Equation (3.2) and (3.3): 

                      𝜑𝑑(𝑡) =  𝜑𝑡 − 𝜑𝑟 =  𝜔𝑐𝜏 + 𝐾𝜏 (𝑡 −
𝑇

2
) − 𝐾𝜏2/2                           (3.4) 

    The first term of the phase is the important phase term used for high precision range 

calculation. Second term is the linear phase term and third one is the phase offset 

(generally negligible). It can be noted that equation for the deramped frequency can 

be obtained by differentiating Equation (3.4), which will be exactly the same as the 

deramped frequency derived in Chapter 2 (Equation (2.12)).  

    The range profile is obtained by Fourier transforming the deramped signal. The 

range bins will have resolution defined in Equation (2.5). The separation of range bins 



53 
 

will be 1/T in frequency. The purpose-built radar uses Vernier-like process to obtain 

high resolution range. Along with measuring the coarse range of a target return, it also 

measures the phase of the range bin where target is located. Cumulating this fine range 

measurement within the range bin with the coarse range provides the millimetre range 

precision. In order to measure the accurate phase, the FM waveform and ADC need to 

be precisely synchronized. 

 

Figure 3.1: High precision range processing method for the phase-sensitive FMCW radar. 

   The synchronization is achieved by generating the FM signal with a frequency 

divided version of the ADC signal. Figure (3.1) shows the basic idea behind the range 

calculation method of this radar. At first, peak amplitude is searched within the range 

bins in the proximity of the expected target range. As can be seen in Figure (3.1), it is 

the range bin ‘b’. Coarse range value with respect to range bin (b-1) is calculated by 

using the generic range formula, Rcoarse = (b-1) c /2B. After that, fine range within the 

range bin ‘b’ is attained from the phase of that range bin. The equation relating the 

instantaneous phase within the range bin and the range value can be found, as follows: 

𝜑𝑑 =  
2𝜋

𝜆
 2𝑅𝑓 
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                                                 =>  𝑅𝑓 =
𝜑𝑑𝜆

4𝜋
                                                         (3.5) 

Here is the instantaneous deramped signal and is the fine range. The factor 2 

accommodates for the two-way travel of the radar signal. So, the final range output by 

this radar of a certain target is, 

                                             𝑅 =  
(𝑏−1)𝑐

2𝐵√𝜀𝑟
+

𝜑𝑑𝜆

4𝜋
                                                       (3.6) 

     εr is the dielectric constant. There are some modifications required during signal 

processing. For instance, the phase variation of the deramped pulse from a target as it 

moves across the total range bin can be defined as: 

                      ∆(𝜔𝑐𝜏) = 𝜔𝑐(2∆𝑅√𝜀𝑟/𝑐) =
𝜔𝑐

𝐵
= 2𝜋𝑓𝑐/𝐵                                     (3.7) 

To ensure phase unambiguously, the phase variation cannot exceed 2π. Equation (3.7) 

shows that for unambiguous phase and hence range indication, the chirp bandwidth 

needs to be at least equal to the carrier frequency. Which means ultra-wideband 

operation would be necessary for the desired performance. But instead of putting strain 

on hardware design, the problem can be easily solved by signal processing. Before 

obtaining the range profile by Fourier transformation, the deramped signal can be zero 

padded, which decreases the range bin spacing by a factor of p to ΔR/p (where ΔR is 

the range resolution and p is the pad factor). A pad factor of 2 would be adequate for 

the current radar, reducing the phase variation from 3π to 1.5π.  

   One other observation can be made from the Equation (3.4). The phase centre of the 

deramped signal is at the centre of the sample, at t = T/2. But after Fourier transform, 

it would be at t=0. So, before calculating the range profile, the deramped signal needs 

to be rotated to align the waveform centre with the starting point of the sample. Figure 

(3.2) provides a visual understanding of the zero padding and rotating process. 
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Figure 3.2: Visual depiction of the zero padding and rotating process for FMCW radar data 

processing [45]. 

 

 

Figure 3.3: Diagram of the phase sensitive FMCW radar range measurement process [45]. 

 

    When a point target return phase is at the centre of the range bin, it would be 

convenient if it is normalized to zero phase. By multiplying the deramped signal with 

the phase conjugate of the estimated phase at the centre of the range bin, return phase 

is normalized. The reference phase would be: 



56 
 

                                        𝑟𝑒𝑓 = 𝑒(−𝑗(𝜔𝑐𝜏−𝐾𝜏2/2))
                                             (3.8) 

3.1.2 Time delay error correction  

One important factor that has to be taken into account is the correction due to mis-

synchronization of the ADC and the FM signal. This will cause a time delay which 

would correspond to a certain phase delay. The quantitative value of the phase delay 

Δϕ is, 2πfdΔt, where fd is the deramped frequency of the target return and Δt is the time 

delay. fd can be expressed in terms of range bin and pulse duration as (𝑏−1)𝑇. The 

threshold of time delay is ±0.75 μs while taking the desired range precision and 

maximum range into account. The value can be calculated by using Equation (3.5). 

The estimated range error due to the delay becomes as follows: 

                                         𝑅𝑒 =
𝜆∆∅𝑑

4𝜋
=  

𝐵𝑅∆𝑡

𝑓𝑐𝑇
                                                    (3.9) 

The value of Δt can be obtained from the above equation by considering maximum 

range for the radar application as 2 km and accepted range accuracy as 1 mm, which 

then becomes 0.75 μs.  

3.1.3 Range calibration with two reference values  

During field operation, the radar will cycle through each 1 minute burst in every 

few hours. Due to the behaviour of the DDS development board, it was discovered 

that the precise timing of the initiation of the DDS chirp was subject to a small 

variation when the radar is turned on again from stand by. This causes a small error in 

timing that cannot be compensated by the time delay correction. The way to get around 

this is performing calibration by using two reference range values in order to correct 

both the timing errors that are independent of range (represented by a) and the phase 

errors that result in range errors linearly-proportional to range (represented by b). This 

method is practically plausible as many ice shelves have internal layers above the base 
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which are always constant in terms of depth. These internal layers (R1 and R2) can be 

taken as references and the range offset for calibration can be calculated as follows: 

∆𝑅1 = 𝑎 + 𝑏𝑅1, ∆𝑅2 = 𝑎 + 𝑏𝑅2 

                                         𝑏 =
∆𝑅2−∆𝑅1

𝑅2−𝑅1
, 𝑎 =

∆𝑅1 𝑅2− ∆𝑅2 𝑅1

𝑅2−𝑅1
                                   (3.10)                   

−(∆𝑅) = −(𝑎 + 𝑏𝑅) 

 

3.2 Phased Array Processing  

Array processing deals with the processing of signals carried out by propagating 

wave phenomena [47]. The radar echo from a target is received by numerous sensors 

collectively referred to as an array. These sensors have a predefined spacing with 

respect to each other. The main goal of array processing is to extrapolate expedient 

features of the received signal field (its signature, direction, speed of transmission) 

[48].  

The different sensors are expected to receive different but coherent signals from a 

target, although that may not be always the case. Receive signals can be non-coherent 

if those are independent of each other. The basic idea for array processing is to use the 

knowledge of sensor spacing and then synthesize the coherent signals from different 

sensors to obtain a combined result. According to the application, arrays are formed 

in different shapes [49] [50]. The simplest and widely used is the linear array, which 

is a collection of sensors in a straight line. 

3.2.1 Developments in Phased Array Radar 

Phased array radar uses the coherent phase change among the array elements of 

the received signal coming from a particular point target. Background on phased array 

radar system development can be found in [51]. The earliest development of phased 

array can be dated back to 1905, when Nobel laureate Karl Ferdinand Braun 
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experimentally proved the use of multiple antennas to dictate the direction of the 

transmitted wave [52]. The first phased array radar was built by Germany during 

World War II, which was named FuMG 41/42 Mammut [53]. It consisted of six or 

eight Freya [54] antennas and operated at VHF band (116-146 MHz). It had a range 

of around 325 metres and was deployed for detecting aerial vehicles of the enemy. 

Research on phased array theory became mainstream in the radar community in 1960s 

[6]. By the 1980s, due to advancement on antenna technology, phased array systems 

were being widely used for various applications and many research works had been 

published describing its working principle [55] [56] [57]. The main feature of a phased 

array system is the ability to electronically steer the beam. As mentioned above, 

phased array systems use antenna spacing information. This information is combined 

with the interference property of electromagnetic waves, eventually providing the 

ability to control the wave direction. It has the obvious advantage over any operation 

that requires to steer the antenna mechanically.  Phased array radar has military 

applications as it is used by naval warships. The navies use it for finding ships on 

water and aircrafts and missiles on the air [58]. Phased array radars are also used for 

obtaining weather data [59] and even space research [60]. In this chapter the main 

focus would be on the signal processing aspect of phased array radar. The process 

phased array radar system uses for transmission or reception of signals from a certain 

desired direction, is known as beamforming. 

3.2.2 Beamforming 

The beamforming technique is used to obtain information from a particular angle. 

It works according to the principle of constructive and destructive interference of 

electromagnetic waves. Due to antenna element spacing, each element will receive a 

signal coming from a certain direction at a slightly different time. This directly 
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corresponds to a phase shift among the signals. As the spacing is predetermined, the 

phase shifts would be coherent. By manipulating the phase, information from a desired 

direction can be achieved by inhibiting signals from all other directions. The process 

can be visualized from Figure (3.4). Assuming a signal arriving from certain angle θ, 

it can be observed from the figure that there is a linear relationship between the times 

of arrival at different elements (as the element spacing being linear). If all the signals 

of antenna elements are added, due to the phase difference, the resultant signal will be 

a combination of both the sum and difference of the signals at various points. In order 

to achieve amplified signal, they all need to be aligned properly so while combining 

all of them, only constructive interference takes place. Thus, improved information 

from a certain direction is achieved by the help of combining signals from more than 

one antenna element. 

 

Figure 3.4: Illustration of basic concept for beamforming utilizing the constructive interference 

properties of waveforms. 
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Figure 3.5: Geometric representation of a linear phased array system to calculate the time (hence 

phase) difference among array elements when arriving signal has an angle with normal to the array. 

 

Figure (3.5) helps to quantify the phase difference between adjacent elements in a 

linear array. In this figure, N is the total number of elements in the array and 

n=0,1,2,3,…,N-1 where d is the spacing between adjacent array elements. As all the 

elements are equally spaced, distance from any element from the reference (the first 

element) can be quantified as nd. Then, from the triangle drawn on Figure (3.5), extra 

path that a signal has to travel at each element due to the incident angle θ, can be 

calculated. Converting the spatial value into phase gives the equation for phase delay: 

                                       ∅𝑠ℎ𝑖𝑓𝑡 =  
2𝜋

𝜆
 𝑛𝑑 sin 𝜃                                               (3.11) 

During beamforming, this equation is used for aligning the signals coming from 

angle θ. 4π should be used instead of 2π to account for the two way signal propagation. 

It is obvious from Equation (3.11) that if the incident signal is parallel to the array 

(θ=0), there is no phase delay, hence just adding the original receive signals would 

give the resultant signal from that angle. 
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Figure 3.6: Beampattern for 25 degrees, without cross range windowing (above) and with cross 

range windowing (below). Blackman windowing has been used in both cases. 

 

So, by delaying the array signals accordingly, scanning through any angle 

(obviously there would be limitation to scanning angle due to antenna beamwidth), 

normal to the array is possible. The beampattern equation for phased array signal 

processing becomes as follows: 

                                          𝐵(𝜃) =  ∑ 𝑤𝑛𝑒
−𝑗2𝜋𝑛𝑑 sin 𝜃

𝜆𝑁−1
𝑛=0                                            (3.12)         

where wn is the weighting coefficient defined by window function. Figure (3.6) shows 

how a signal from certain desired angle is synthesized by suppressing signals from all 

other angles. Here, a simulation is performed to calculate the beampattern for scanning 

angle +45 to -45 degrees. Beampattern is achieved by simulating a receive signal and 

then applying phase delay (θ=25 is used during simulation) to each elements and 

subsequently adding them all according to Equation (3.12). It can be seen from Figure 

(3.6) that signal strength at 25 degrees is around 15 dB higher than signal from other 

angles. It is seen that the peak sidelobe ratio (PSLR) is improved by implementing a 

window function across the array. During this simulation, Blackman window has been 
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used. The main lobe width has increased but this is the usual trade off while using 

window function. 

Other important implication of Equation (3.11) and (3.12) is that the phase delay 

is a function of signal wavelength, hence frequency. So, using phase delay would not 

work properly in a wideband operation where this beam steering vector will not be a 

function of single frequency. So, beamforming in this process makes the beam 

squinted as perfect constructive interference is not achieved due to large number of 

frequency components. To resolve this issue, beamforming can be obtained by time 

delay instead of frequency delay. To convert the phase delay for beam steering into 

time delay one, relation between phase angle φ and time delay Δt can be used which 

is φ=2πf * Δt. Here, f is the signal frequency. Substituting this value with Equation 

(3.10) gives the time delay factor and subsequently the time delay steering vector as 

follows: 

                                              ∆𝑡 =  
𝑛𝑑 sin 𝜃

𝑐
                                                      (3.13) 

                                    𝐵(𝜃) =  ∑ 𝑤𝑛𝑒
−𝑗𝑛𝑑 sin 𝜃

𝑐𝑁−1
𝑛=0                                          (3.14) 

It can be seen that there are no frequency parameters in Equation (3.13) and (3.14). 

 

Figure 3.7: Illustration of grating lobe where on a beampattern for steering vector at 25 degrees, 

another strong signal appears at -38 degrees due to element spacing being more than half the signal 

wavelength. 
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3.2.3 Grating Lobes 

   Phased array operation suffers from grating lobes (strong signal appearing at angles 

other than the beamforming angle) when unintended constructive interference occurs. 

This happens when the separation between antenna elements become quite large. If 

the distance corresponding to phase delay is multiple of the wavelength, combined 

signal cannot suppress the signals from unintended direction due to high correlation. 

To avoid grating lobes, the rule of thumb is to make sure the element spacing is less 

than half the wavelength. 

3.2.4 Phased array imaging simulation 

   A simulation for phased array imaging was performed to validate the ability of the 

algorithm to construct the image properly. The FMCW radar parameters were used 

according to Table 1. The simulation was made to image a point target with a range 

value of 1500 metres and 15 degrees away from the normal of the array. The 

simulation was performed for 36 elements (as in one of the field experiments, 36 

element array was used). Element spacing is 0.25 metres which is well below the 

grating lobe threshold. Figure (3.8) and visually demonstrates the impact of phased 

array processing. As it can be seen, if the signals are added without phase shift, a 

constant signal return is observed throughout the scan. After the phased array 

processing, point target at 15 degree angle becomes properly noticeable. Both range 

and cross range windowing (Hanning window) have been used during simulation. The 

spreading of the point target even after beamforming is due to range migration effect 

which will be discussed in details in next chapter. 
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Figure 3.8: Image formation for a point target at 1500 metres range and 15 degree from the array: 

above one is without implementing beamforming and below one shows the image after applying 

phased array beamforming. 
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3.3 Synthetic Aperture Radar (SAR) Processing 

   SAR signal processing is a 2-dimensional image processing operation. The 

fundamental difference between the conventional optical image processing and 

radar/SAR image processing is the latter one uses distances between the objects and 

the sensor to form an image. On the other hand, optical imaging systems such as 

cameras or optical telescopes use the angular differences of the signals incident upon 

the sensor to create an image. In the Antarctic Ice Shelf application that this thesis 

work concerns, no physical SAR system was deployed. But during the data collection, 

a SAR like experiment was performed by mounting the ice penetrating radar on a 

sledge and moving the sledge in a straight line while the radar collected data. This 

emulated the synthetic aperture. The idea was to analyse and compare the ice shelf 

images obtained from different processing methods (i.e. phased array and SAR). 

3.3.1 SAR geometry and Parameters 

   SAR data acquisition method is similar to normal Radar when each transmitted pulse 

and corresponding reception is considered individually. After all, it is a standard Radar 

that is attached to the platform. However, there is one little assumption that is 

commonly made. Radar signal travels in the speed of light and the platform speed is 

extremely slow compared to light speed. So, during the time the Radar receives the 

reflection from the ground, platform’s movement can be neglected. This is known as 

the ‘start-stop’ assumption [61].  
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Figure 3.9: SAR operation geometry. 

 

As mentioned, SAR typically requires precise positional information of the 

platform during its data gathering period. Method of SAR processing which is 

independent of platform position has also been researched [62]. With the platform 

information, it can calculate the necessary factors that determine the relationship 

between the platform and the target at each moment. These parameters that are 

obtained from the geometry along with the terms that are essential during computation 

are discussed below. 

    Platform velocity: All along the flight path, platform velocity is tried to be kept 

constant. In practical cases, the platform velocity does not remain the same for the 

whole flight. This causes error in computation and has to be accounted for, which is 

known as ‘motion compensation’. 

Integration angle: It is basically the angle measured from the two endpoints of the 

flight path. It determines the eventual synthetic aperture length. The angle is 

determined by the lines drawn from two ends of the flight path joining the point target. 

Thus, Synthetic aperture length (L) can be calculated from the integration angle. 
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Figure 3.10: SAR integration angle and point target. 

 

    Ground range: This is the two dimensional measurement of the distance between 

the point target and a point from the flight path line’s projection on the ground plane 

(Figure (3.9)). 

    Slant range: In the simplest of ways, it is the length of the straight line drawn 

between the platform and the target at each given moment during the flight. This is the 

evident distance travelled by the transmitted pulse from platform to target. As seen 

from Figure (3.9), it is a three dimensional measurement. At each 

transmission/reception period during flight, slant range is been determined. The 

measurement is done by simple Pythagorean geometry. 

 

Figure 3.11: SAR range calculation geometry. 
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While calculating range, along with the known platform parameters, the minimum 

range to the target (ro) is known. An important fact should be known about monostatic 

SAR in terms of minimum range. The target and the platform should be separated by 

at least a distance defined by the time duration of switch of the radar from transmission 

to reception mode. The radar cannot detect target closer to this value as that target 

echo will reach the radar before it is switched into receiving mode. This time delay 

depends on the transmission pulse width as radar cannot switch before the whole pulse 

is been transmitted. From Figure (3.11), the point target has coordinate values in x and 

y axis. As seen from the geometry, xo is just the displacement in x axis from the origin 

and 𝑦𝑜 = √𝑟𝑜
2 − ℎ2. Having vpl and h as the platform velocity and altitude 

respectively, the equation becomes, 

                            𝑅(𝑡) =  √(𝑣𝑝𝑙𝑡 − 𝑥𝑜)
2

+ 𝑦𝑜
2 + ℎ2                                    (3.15) 

3.3.2 SAR Doppler History 

    For a single platform position, SAR signal return is collected. This recording is 

continued throughout the flight. For a given aperture length, the number of recorded 

sample depends on PRF. They are placed in the two dimensional memory of azimuth 

and range. This is the raw SAR signal history which is used for image processing by 

applying suitable algorithms. This is also called as SAR phase history. During the 

flight, range between the platform and target is changed. The range equation is 

hyperbolic, thus SAR signal history is the hyperbolic curve shown in the right side of 

Figure (3.12). The inherent Doppler Effect on SAR signal is apparent from the figure. 

The hyperbolic nature of the range migration curve depends in the integration angle. 

Larger integration angle makes the hyperbolic nature more obvious. During SAR 
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processing, the phase history obtained from the Doppler Effect is stored and used to 

create focused image. 

 

Figure 3.12: SAR signal history stored in a two dimensional memory and the corresponding 

range migration curve. 

 

    SAR treats the receiving echoes as being emitted from a stationary target and 

calculates accordingly for focusing. For a moving target, this coherence is lost and the 

image gets unfocused [63], [64]. 

3.3.3 SAR Image Processing Algorithms 

   SAR raw data is a hyperbolic curve which essentially represents the point target. It 

is the job of the implemented algorithm to translate this spread out data into a focused 

image. Two main factors for selecting an algorithm are accuracy and efficiency. SAR 

can deal with enormous amount of data depending on the integration angle. So, a very 

accurate algorithm might become inefficient in terms of computational load and 

processing time. Inversely, a very swift algorithm is often expected to produce poor 

image resolution. So, a seemingly simple solution for image processing by a 2-

dimensional matched filter is practically not that proficient. Because conventional 

image processing algorithms do not account for the Doppler changes in general. So 

many corrections have to be made continuously to compensate for the induced offset 

due to varying range while progressing in azimuth. So, algorithms have been 
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developed to perform SAR image focusing distinctively. All the developed algorithms 

can be grouped into two main categories in terms of their working domains, Time 

domain algorithms and Frequency domain algorithms. As the signal history is 

obviously in time domain it can very easily be converted into frequency domain by 

performing two-dimensional Fourier transform. Actually, it is quite common in image 

processing field to manipulate images in frequency domain. The reason is its 

mathematical advantages as different features of an image correspond to different 

frequency elements. 

   Time domain algorithms by and large are based on the back-projection principle 

[65]. The concept is very simple. Each signal is back-projected onto the image plane 

according to their direction vector. Same value is assigned throughout that direction. 

The process is carried out for every sample and the summation gives out the final 

image. The most widely used such algorithm is Global Backprojection (GBP) 

algorithm [66]. It provides accurate image but it has high computational cost due to its 

large number of required operation to produce an image. Other algorithms such as Fast 

Backprojection (FBP) [66] or Fast Factorized Backprojection (FFBP) [9] have taken 

mainly developed to reduce this cost. 

   Meanwhile, frequency domain algorithms rely quite understandably on Fourier 

transformation. In fact, they use the Fast Fourier transform (FFT) technique. This 

feature brings the opportunity for speedy computation. These algorithms generally try 

to nullify the Doppler Effect by performing interpolation or complex multiplications 

in frequency domain. Prominent algorithms of this kind are Range Doppler algorithm 

(RDA) [5], Chirp Scaling Algorithm (CSA) [67] and Range Migration Algorithm 

(RMA) [61]. RDA was the first developed algorithm for SAR processing. In this 

algorithm, SAR data is converted into range Doppler domain by azimuth FFT 
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operation. Ensuing operations are performed in this domain to achieve the image. CSA 

is applied in a two-dimensional frequency domain that avoids the use of interpolation. 

This is an advantage because other frequency domain algorithms often require a very 

sophisticated interpolation procedure that inflicts computational cost on the processor. 

RMA on the other hand has the ability to operate with large integration angles and 

does not discard any phase term unlike CSA or RDA. Although, motion compensation 

in frequency domain is not that convenient, especially for large integration angle as it 

further increases the computational cost. In essence, algorithms of both domains 

inherit different features in terms of image quality and processing time [65] [66]. The 

selection of one algorithm will entirely depend on the integration angle, threshold for 

acceptable resolution, and platform parameters. 

3.3.4 Range Migration Algorithm 

    The Range Migration Algorithm (RMA) has been used for SAR data processing 

during the period of the work presented in this thesis. RMA originated from seismic 

signal processing [61]. Seismic data processing can be considered strongly analogous 

to SAR. For seismic data processing, some numbers of geophones are placed along a 

straight line on the ground and a charge is detonated along that straight line. Every 

single geophones uses the received sound echo and the combined results are analyzed 

to figure out ground characteristics. This placement of geophones is similar to specific 

SAR platform positions at any given instance. During the processing of seismic 

received data, the phase function is hyperbolic just like SAR phase data. 

   RMA is a frequency domain algorithm where frequency conversion is applied in 

both azimuth and range axes. The technique that RMA uses to focus the image is based 

on downward continuation i.e. the downward propagation of the wave equation [61]. 

This property has also been drawn from seismic migration. The key feature of RMA 



72 
 

is the change of variable in the range axis. This method was developed by Stolt. He 

developed this variable swap method in frequency domain which is commonly known 

as ‘Stolt mapping’ or ‘Stolt interpolation’ [68]. He implemented this method to 

provide a proper solution for the wave equation for seismic data processing [5]. 

   RMA has four major segments in terms of its functionality. Each has distinct features 

and purposes that sequentially lead to create a focused image of the area viewed by 

the radar aperture during the SAR flight. 

 

Figure 3.13: Block diagram of the Range Migration Algorithm. 

 

The first and last steps are just domain converters. The main algorithm is applied 

to the signal data by the two steps in the middle. It is seen from the Figure (3.13) that 

those steps are performed in frequency domain. Just to set the premise before going 

into comprehensive discussion on these two steps in the middle, the image formation 

process of a single stationary point target will be the basis for the explanation of the 

algorithm. This will elucidate the algorithm at its core. When more point targets are 

added, the algorithm works exactly the same way on each of those point targets in 
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concern. Complex geometry of the scene increases complexity of the computation, not 

the complexity of the algorithm. However, it is prudent to keep in mind that the 

relativistic effect between platform and point target velocities has been ignored. This 

is done because every point target is assumed to be stationary relative to ground. So, 

this approximation of all point targets being stationary will not work while focusing a 

moving target. 

Stolt Interpolation: FFT operation on both the axes of the SAR Doppler history 

turns the axes variables into their corresponding frequency domain variables. The 

coordinates of the SAR signal plot are the azimuth position of the platform and the 

fast time. Fast time is directly proportional to the range, R. So, the range axis variable 

is a time parameter whereas the variable for azimuth axis is spatial. So, the 

corresponding frequency domain representation of the data plane will contain a 

frequency term as well as a wavenumber term. Wavenumber is the spatial version of 

frequency. As frequency is measured in radian/sec, unit for wavenumber is 

radian/meter. Usually, the wavenumber is expressed by 2π/𝜆. What is important here 

is that wavelengths for azimuth and range are direct products of the radar wavelength. 

 

Figure 3.14: Far field radar antenna radiation pattern and its straight line approximation within 

minute area. 
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Figure (3.14) illustrates the wavelength concept of SAR signal. The radar 

wavelength 𝜆 projects to the direction of the wave propagation while 𝜆r is related to 

the ground range. 𝜃 is the squint angle. As wavefronts are parallel to each other, the 

relationship among these three wavelengths can be evaluated from this above simple 

geometry [5]. 

                                        𝜆𝑥 =
𝜆

sin 𝜃
                                                                 (3.16) 

                                        𝜆𝑟 =
𝜆

cos 𝜃
                                                                 (3.17) 

Now, if the frequency domain representation of the azimuth axis spatial variable x 

is denoted as kx, ground range variable r as kr then, 

                                           𝑘𝑥 =
2𝜋

𝜆𝑥
                                                                              (3.18) 

                                           𝑘𝑟 =
2𝜋

𝜆𝑟
                                                                 (3.19) 

The frequency domain representation for the remaining plane, the slant range plane, 

is merely the angular frequency of the signal as it changes proportionally with the fast 

time. Substituting the values of Equation (3.16) and (3.17) into Equation (3.18) and 

(3.19), 

                                                  𝑘𝑥 =
2𝜋

𝜆
sin 𝜃                                                       (3.20) 

                                                  𝑘𝑟 =
2𝜋

𝜆
cos 𝜃                                                      (3.21) 

Squaring the above two equations and adding them together, 

                                                   𝑘𝑥
2 + 𝑘𝑟

2 = (
2𝜋

𝜆
)

2

                                            (3.22) 

Substituting the value of 𝜆 with wavelength ω, 

                                                   𝜔 =
𝑐

2
√𝑘𝑥

2 + 𝑘𝑟
2
                                             (3.23) 
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Equation (3.23) demonstrates the relationship between the frequency domain variable 

of the ground range with the frequency domain variables of the SAR signal history. 

Stolt interpolation uses this equation to change the variable of the range axis. Since 

the phase reference is assigned in closest approach point (between platform and 

target), the Doppler shift at that point is evidently zero. The main goal is to eradicate 

the Doppler shifts of other points taking the closest approach point as reference. In 

zero Doppler position, azimuth spatial frequency kx=0. So, in zero Doppler, a 

relationship exclusively between kr and 𝜔 becomes kr= 2ω/c. This can be exploited to 

make the interpolation more efficient. For every kx, the phase corrected value for 𝜔 

can be found by shifting it with respect to the center frequency. It gives the new value, 

𝜔´ = 𝜔 – 𝜔c (𝜔c is the centre frequency). This new value can be calculated from 

Equation (3.23) where kr is measured according to the new value of kr (with respect to 

reference phase). This whole manipulation produces the new equation: 

                                          𝜔′ =
𝑐

2
√𝑘𝑥

2 + 𝑘𝑟
2 − 𝜔𝑐                                            (3.24) 

By means of the above equation, the effect of the variable change is achieved. 

Interpolation operation is imposed to rectify the values of 𝜔 with corresponding values 

of 𝜔´. What is to observe here is that the Stolt interpolation basically transforms the 

azimuth slant range plane of the raw SAR data into azimuth ground range plane. From 

the geometrical point of view, it can be said that the intrinsic Doppler Effect within 

the signal arises from the non-orthogonality of the two plains comprising the signal 

history. Since azimuth and ground range are orthogonal to each other, the deformation 

gets canceled out and so as the phase shift along the flight path [5] [69]. 
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Figure 3.15: SAR signal energy in 2-dimensional frequency domain and Stolt interpolation’s 

effect on it. 

 

One interesting observation can be made from Figure (3.15) is the circular nature of 

the signal strength after the Stolt interpolation. Recalling Equation (3.23) helps to 

explain this matter. That is a rearranged version of the circle equation. This gives the 

visual representation of how frequency component replacement in range corrects the 

entire image spectrum. In practical cases, this nature hardly becomes apparent in 

narrowband SAR operation [61], but UWB SAR makes this property visually more 

evident because of its large integration angle. 

    Azimuth Compression: Before taking the signal data back into its original domain, 

azimuth compression needs to be performed to create the focused image. The signal 

information of a single point target which is spread out throughout the signal history 

has been taken care of by the Stolt interpolation in terms of phase shift correction. 

Still, the data needs to be converged in azimuth. This step is actually quite simple and 

does not possess any lengthy concept like the Stolt interpolation. An azimuth reference 

function [61] is multiplied with the signal spectrum to congregate the signal data 

smeared along the azimuth axis into the zero Doppler point. This is nothing but a 

matched filtering operation where the signal is correlated with the matched filter 
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function corresponding to the closest approach point. So, this multiplication just 

funnels in all the smeared data into the closest approach point or minimum range, for 

that is the ultimate position considered for the point target. After this compression, all 

the signal energy gets concentrated into this point hence creating the focused image 

(when it is transformed back to time domain). The azimuth reference function is as 

follows, 

                 𝑟𝑒𝑓(𝑘𝑥,𝑘𝑟) =
|𝑘𝑟|

√𝑘𝑥
2+𝑘𝑟

2
𝑒

−𝑗(𝑟𝑜√𝑘𝑥
2+𝑘𝑟

2−𝑟𝑜𝑘𝑟)
                                (3.25) 

The first part of the function is the magnitude which has little effect if integration angle 

is small. Combining the two operations, Stolt interpolation and azimuth compression, 

the raw SAR data is synchronized with the reference point phase, both in azimuth and 

range. In other words, the signal energy is entirely compressed. Now, the focused 

image with its full resolution can be seen simply by performing 2-D inverse Fourier 

transform of the signal spectrum. 

3.3.5 SAR simulation Results 

   Before implementing SAR processing to real data, simulation of the range migration 

algorithm to focus point target was performed to ensure the algorithm was accurately 

translated into software routine (in this thesis work, MATLAB was used). Again, radar 

parameters were set according to Table 1. The simulation was performed to focus a 

point target with a range value of 350 metres (as the target return from SAR field 

experiment was from around that distance). Even though the integration angle in the 

field experiment was quite low (total SAR platform length was 22 metres only), 

simulation was performed for larger integration angle as well to visually observe its 

affect. Platform velocity was assumed to be very slow (1 m/sec.), as that would be the 

case during Antarctic experiment. Figure (3.16) shows the SAR signal history which 
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illustrates the conventional hyperbolic pattern. Figure (3.17) shows the focused point 

target after implementing RMA. Here, the integration angle is 30 degrees. Figure 

(3.18) shows the focused image of the same point target when the integration angle is 

very small (corresponding to 22 metres of synthetic aperture length only). The 

degradation of target focusing quality due to low integration angle can be easily 

compared from Figure (3.17) and (3.18). 

 

Figure 3.16: SAR signal history of a point target return before implementing focusing algorithm 

showing the characteristic hyperbolic curve (image is zoomed in). 
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Figure 3.17: SAR point target image after implementing Range Migration Algorithm with 30 

degree integration angle (image is zoomed in). 

 

Figure 3.18: SAR point target image after implementing Range Migration Algorithm with 3.6 

degree integration angle (image is zoomed in). 
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3.4 MIMO Processing 

     Multiple-input-multiple-output (MIMO) radar is a relatively new technology in the 

radar field. The basic idea is to add waveform diversity to the conventional phased 

array system, obtaining enhanced performance. According to [70], the definition of 

waveform diversity is the ability to adapt and diversify dynamically the waveform to 

the surrounding environment which would deliver enhanced performance compared 

to a non-adaptive system. In [71] [72] [73], the prospect of using multiple signals in 

an array system has been studied. The waveform diversity is also achieved by utilizing 

the antenna element spacing [74]. In various research papers, superiority of MIMO 

radars has been discussed (ability to obtain better resolution [73] [75], better capability 

for slowly moving target detection [76], ability to identify more targets than phased 

array [74], better application for adaptive array techniques [74] [77] [78]). 

 

Figure 3.19: Comparison of (a) MIMO radar and (b) Phased array radar [79]. 
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Figure (3.19) illustrates the fundamental geometric principle of MIMO radar 

compared to conventional phased array radar. It can be seen that MIMO radar uses 

waveform optimization by transmitting different signals from different elements. 

When compared to phased array, the potential to extract more information by MIMO 

can be intuitively understood. As a return echo from a target received by phased array 

system is essentially the same signal with a phase difference, signals on the receive 

side cannot be distinguished in terms of the parent transmitter. On the other hand, in 

MIMO, it can be easily achieved because each individual transmitter emits signals 

unique from the others. This information can be used for obtaining better angular 

information as well as for improved detection performance, resolution and SINR 

(signal to interference plus noise ratio) [80]. MIMO receivers use matched filtering to 

obtain information coming from each individual transmit antennas. The transmitted 

signals in MIMO radar are orthogonal even though it’s not a strict requirement. The 

orthogonality is usually achieved by time or frequency division multiplexing. Also, in 

terms of antenna spacing, MIMO radar system can be collocated or sparse. For further 

details on those can be found in [79]. 

3.4.1 MIMO Virtual Array  

The unique concept of MIMO system is the virtual array configuration. Here, a 

brief understanding of this concept is provided. More elaborate studies on this can be 

found in [75] [76] [81]. 

    Virtual array in MIMO is achieved by utilizing its waveform diversity property. The 

advantage of using virtual array is that during processing, the MIMO array consists of 

elements more than the number of elements that are physically in operation. MIMO 
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virtual array positions are determined by convoluting transmit and receive antenna 

element positions. 

 

Figure 3.20: Illustration of MIMO virtual array positioning by convolution of real and receive 

array. 

   

It can be seen from the above figure that the convolution process increases the 

number of array elements to 9 where there are 6 elements present physically. 

Assuming there are M number of transmit elements and N number of receive elements. 

The signal transmitted by mth antenna is denoted as φm(t). Each transmitting signals 

are orthogonal. At each receive element, M number of matched filters are used to 

extract all orthogonal signals. Which corresponds to total number of receive signals 

equal to product of M and N. This is the total number of virtual array element which 

is NM produced by using N+M number of physical elements. According to the 

geometric position of the real array elements, equation for the target response at nth 

receiver for the signal coming from mth transmitter can be written as [80]: 

                               𝑦𝑛,𝑚(𝑡) = 𝑎 𝑒
(𝑗

2𝜋

𝜆
𝐮𝐭

𝑇(𝐱𝑇,𝑚+𝐱𝑅,𝑛))
                                       (3.26) 

where ut is a unit vector pointing toward the target from the array. xT,m and xR,n are 

the positional vectors for mth transmitter and nth receiver respectively where a is the 

signal amplitude. It should be noted that location of transmission and receive elements 

attribute directly to the obtained phase difference.  
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3.4.2 MIMO Beamforming 

   For a uniform linear array, the location vectors can be defined according to 

Equation (3.11). So, the Equation (3.26) can be written as: 

                               𝑦𝑛,𝑚(𝑡) = 𝑎 𝑒
(𝑗

2𝜋

𝜆
(𝑛𝑑𝑟 sin 𝜃+𝑚𝑑𝑡 sin 𝜃))

                              (3.27) 

where dr and dt are the element spacing for transmit and receive antennas respectively. 

This equation is used to create steering vector for MIMO. One basic difference of 

beamforming in MIMO from phased array beamforming is unlike phased array, virtual 

beamforming can only be achieved in receive side. During the thesis work, MIMO 

imaging simulation was performed to analyze the possibility of using MIMO radar for 

snow Avalanche imaging in Alps. Simulation results concluded that SNR would be 

too low to create any meaningful signal by MIMO transmission, hence the project 

stuck with its previous conventional phased array system. The simulation results are 

added in the appendix. MIMO beamforming and imaging technique developed for 

three-dimensional imaging of Ice Shelf base is described in Chapter 4. 
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Chapter 4 

Novel Signal Processing Techniques for Antarctic 

Data Analysis 

 

     This chapter consists of the signal processing techniques that were developed 

during this thesis work for the Antarctic data analysis. The development of these 

techniques was motivated by the practical necessity stemmed from Antarctic ice shelf 

experiments. The first section describes the Shape matching algorithm that has been 

developed to detect internal layers underneath ice shelves. The second section 

describes the range migration correction for fixed phased array radar. The range 

migration within the array is caused by the high fractional signal bandwidth, which is 

the case with the FMCW radar that has been deployed in Antarctica. Also, adverse 

weather conditions in Antarctica make it very hard to maintain the geometric 

parameters of the experiments accurately. Hence, vertical antenna spacing error 

correction method by using reference phase has been developed. The final section 

encompasses the 3-D MIMO imaging algorithm that has been developed for 3-D 

imaging of the Antarctic Ice Shelf basal layer. 

4.1 Shape Matching Algorithm to Detect Internal Layers 

Due to unavoidable practical reasons, it is very difficult to take precise radar 

measurements in the challenging conditions in Antarctica.  Events such as snowfall, 

heavy wind can change the vertical position of the radar antennas. When the expected 

accuracy is within millimeter range, slightest change of the radar position can become 
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significant. So, it is always desired to have some fixed reference that can be used for 

calibration and to compensate due to the displacement error. 

The internal layer is a feature of the ice shelf that can be used for this calibration 

purpose. Internal layers can be detected by radio waves. Mainly, these are sections 

underneath the ice shelves where there is a contrast in the ice dielectric property [82]. 

Due to this contrast, an ice crystal fabric is formed that reflects radar transmitted 

signal. Most importantly, these layers are prone to have fixed coordinate. They usually 

do not drift vertically hence can be used as a very good reference point. If the radar 

shifts from its initial position, it can be easily determined by the presence of an internal 

layer. By adjusting for these discrepancies using internal layer, very high precision 

results can be achieved from the radar data. Not only for radar data calibration, but 

internal layers also have great interest among geoscientists in their field of study of 

ice in Polar Regions. Even though it is desirable to get an internal layer while profiling 

an ice shelf, it is not that straightforward to detect. Generally, internal layers are 

located close to the ice shelf surface (within 100 meter). Due to antenna direct 

coupling, radar range profiles consist of large returns in close range. These high signals 

tend to obscure return radar signal from any actual ice shelf feature (i.e. internal layer). 

In radar signal processing, it is always a big challenge to detect the presence of a 

target with low signal to noise ratio (SNR) or signal to clutter ratio (SCR). A number 

of research works have been performed to solve these problems [83] [84]. In most 

cases, the problems are application specific, each requiring different modelling and 

assumption of the target scenario. 
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Figure4.1: Range profile of Antarctic ice shelf illustrating basal layer return and strong return in 

short range. 

 

Figure (4.1) illustrates a typical FMCW radar range profile of Antarctic ice shelf. 

In Antarctic ice shelf measurement, the strongest return is expected from the basal 

layer. As it is seen in Figure (4.1), even though the basal layer is quite apparent, the 

profile encompasses high amplitude signals at very close range. These close range 

signals can be attributed to antenna direct coupling and/or clutter in the vicinity of the 

ice shelf surface. Usually, internal layers are expected to be present in that close range 

region. For radar target detection, a cross-correlation method is usually used when 

there is a known target [85]. In the particular case of ice shelves, the assumption is that 

both basal layer and internal layer will give out specular reflections. Hence, intuitively, 

cross-correlation method ought to work for internal layer detection. Meanwhile, it is 

obvious that cross-correlation will be ineffective when the antenna direct coupling 

signals are significantly higher than the actual basal layer return. 

A proposed method to overcome this problem is described below. This shape 

matching algorithm works in following four steps- 
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 Defining the reference signal from the range profile. 

 Amplitude scaling. 

 Point by point difference calculation and ranking. 

 Integration for overall rank 

4.1.1. Defining the reference signal from range profile 

 In shape matching algorithm, the first task is to determine the signal portion that 

is to be matched throughout the profile. In general case, a known expected pattern can 

be used or a copy of the transmitted signal (used in matched filtering). The idea is to 

slide this reference signal over the whole profile just like conventional correlation. In 

this case, the mathematical operation during the sliding would be entirely different. In 

the specific case of ice shelf, return signal from the ice shelf base will be the obvious 

reference. As mentioned before, internal layers are likely to have similar signal shape 

due to same reflection property. So, a portion of the signal from the profile that 

corresponds to basal return is chosen as a reference. Care is needed while selecting the 

reference cut, as that chunk would be the main reference. The more similar a signal 

portion in any other part of the profile is to this reference, the more likely that portion 

would be a radar target rather than clutter/noise. For the derivation, radar received 

signal is defined as s(n) having N number of samples (n=1,2,….,N). Reference signal 

is defined as ref(m) consisting of M number of samples (m=1,2,….,M). 

4.1.2. Amplitude scaling 

The main reason that the generic cross-correlation weighting does not work for 

hidden feature detection is high amplitude values in close range. Amplitude scaling is 

thus performed to eradicate that problem. When ref(m) is being slid over s(n), the 

portion of s(n) that ref(m) is covering will be scaled with respect to ref(m) amplitude. 



88 
 

It can be implemented in terms of average amplitude of the signal portion or the 

maximum amplitude. As the eventual goal of the algorithm is to determine whether 

the compared signal portion matches with the reference, using the maximum 

amplitude would be just fine. The portion of s(n) covered at a moment by ref(n) is 

defined as g(m). It should be noted that g(m) will have less than M samples while 

ref(m) is crossing the edges. This will not hamper the scaling as only the maximum 

value is used. The scaling would be linear hence the scaling factor would be the 

difference between the maximum amplitudes. Thus, the scaling factor sc is, 

                sc = maximum(ref(m)) – maximum(g(m))                                       (4.1) 

Then, ssc(m), which is the scaled version of g(m) would become: 

                ssc(m) = g(m) + sc                                                                            (4.2) 

4.1.3. Point by point difference calculation and ranking 

After the amplitude scaling, the difference between the overlapping points will be 

calculated. This will be done for all the overlapping points (M number of points except 

when ref(m) is at the edge). When the difference is calculated, it should be then ranked 

in terms of likelihood. For instance, if the difference is zero, then it will get highest 

ranking point (1 for normalized calculation). For determining ranking value as zero, a 

threshold will be required. Zero would mean the points do not match at all. Choosing 

the threshold value is quite critical and would depend on the overall amplitude 

distribution of the actual signal. While defining threshold, it is better to calculate the 

amplitude ratio between overall maximum signal amplitude and maximum amplitude 

of the reference. A common case during specifying threshold is the tradeoff. Large 

threshold is likely to help revealing more features but also unwanted signals. On the 

other hand, very small threshold may lead to failed detection of a desired target. 
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If the point to point difference exceeds the threshold, the ranking value for that 

particular point would be assigned as zero. So, if the variable for ranking value is 

defined as rank and threshold is defined as thr, it can be written that if |ssc(m) – ref(m)| 

> thr, then rank=0. Meanwhile, if that is not the case, a positive nonzero value would 

be assigned for rank. The Equation for rank then is as follows: 

                               𝑟𝑎𝑛𝑘 =  (1 −
|𝑠𝑠𝑐(𝑚)−𝑟𝑒𝑓(𝑚)|

𝑡ℎ𝑟
)

2

                                           (4.3) 

Equation (4.3) shows that when there is a perfect match (both the points have same 

values), the value of rank is 1. Absolute value is used as only the difference between 

the two points is of concern, it does not matter which point is greater or smaller. 

Validation of this criterion should also imply that the algorithm focuses solely on how 

similar the shape of the signal portion is to the reference. The squared term in the 

Equation is used to amplify the features, so a significant target return gets visibly more 

apparent than its neighboring points. 

4.1.4. Integration for overall rank 

    When values for rank are calculated for all the points, these values will be then 

added up to get the cumulative ranking value. So, overall ranking value rankcumul for 

this one set of calculation would be, 

                                  𝑟𝑎𝑛𝑘𝑐𝑢𝑚𝑢𝑙 = ∑ 𝑟𝑎𝑛𝑘(𝑚)𝑀
𝑚=1                                          (4.4) 

    It should be noted again that when part of ref(m) is outside s(n), m does not extend 

to M but calculations are carried out in same way. This is performed over the whole 

s(n). ref(m) will slide over s(n) by gradually going forward by one sample point. As 

for every single increment rankcumul is calculated, it will eventually have N+M-1 

values. Plotting all the values of rankcumul (after normalizing) gives the new range 

profile. 
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The shape matching algorithm has been implemented on real Antarctic ice shelf 

data for internal layer location. The processed results are shown and discussed in the 

next chapter. 

 

4.2 Range Migration Processing in FMCW Phased Array Radar 

As discussed in the previous chapter, range migration is a very common feature in 

SAR. This is due to the fact that SAR would usually have a very long synthetic 

aperture [86]. Methods for range migration correction are therefore an essential part 

of SAR research [61] [87]. In SAR, the radar moves along the aperture, so the range 

of particular target keeps changing. This creates migration and also Doppler shift. 

While processing the SAR image, this is taken into account (as the platform velocity 

is known) to create the resultant focused SAR image [88]. 

Meanwhile, in phased array/MIMO radar, the aperture length is very small 

compared to SAR. Also, there is no Doppler shift as the radar is stationary. This is 

why the range migration factor is generally neglected. Even though range migration is 

usually attributed to radar motion or very long aperture (in case of number of 

geophones placed for seismic activity measurement), phased array radar can also face 

range migration effect under certain conditions related to radar system parameters. 

Here, those conditions will be discussed. Along with that, the compensation process 

for range migration in phased array radar system, for instance an FMCW radar with 

deramped processing [11], is comprehensively described. 

4.2.1. Criterion for significant range migration in phased array radar 

   A phased array radar system is considered comprising a receive array with N 

elements of uniform spacing d arranged on a linear baseline, receiving an echo from 
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angle .  The target area is illuminated separately by transmit antenna. In order to 

understand the range migration effect, maximum scanning angle of the phased array 

radar needs to be determined in terms of array element spacing and signal wavelength. 

The equation (taking Nyquist sampling into account) is as follows; 

                                                     sinqmax = lo / 2d                                                 (4.5) 

 

Figure 4.2: Construction used to determine the degree of range migration in a fixed phased array 

radar. 

 

Where o is the wavelength corresponding to the radar centre frequency. Equation 

(4.5) states that the radar may operate without grating lobes over a maximum angular 

range of ±max (for instance, the scanning range is then ±90º if the array elements are 

spaced by half a wavelength). From Figure (4.2), it is evident that signal from non-

zero angles will reach the different elements of the array at different times. Hence 

there will be variation in the signal distance within the array. For a target at the 

maximum scan angle, this path length variation, L, is given by, 

                                         DL = (N -1)dsinqmax º (N -1)lo / 2                     (4.6) 
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The range migration within the array will be equivalent to this (after compensating for 

two-way path). So, 

                           𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =
±∆𝐿

2
= (𝑁 − 1)𝜆𝑜/4                      (4.7) 

Where the expression for L is valid and accurate considering the target range is much 

greater than the array baseline. In cases where this does not apply, the signal distance 

variation within the array should be calculated in terms of exact geometry instead of 

using a sinmax approximation. 

   By considering the general radar resolution, R = c/2B, range migration threshold 

will be twice R (as explained below).  

   The limit on array size beyond which range migration is significant may be 

established, 
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   The above Equation determines the criteria of range migration correction for a 

particular phased array system. It can be seen that a system with high fractional 

bandwidth is prone to suffer from range migration within the array.   

   This gives a very simple expression to determine whether range migration 

processing needs to be applied. It indicates that a phased array radar with a higher 

fractional bandwidth and/or a larger number of elements is more likely to require range 

migration compensation. For instance, a radar with 20% fractional bandwidth may 

have up to 21 elements before range migration will have any effect. On the other hand, 

a phased array radar with 50% fractional bandwidth will cross the threshold if element 
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number is more than 9. Equation (4.8) does not have element spacing as a variable 

because it has direct correlation to the maximum scan angle. 

    To justify the assumption of maximum tolerable range migration being twice the 

range resolution, a point target response of a linear-FMCW range radar is considered, 

[89], with no windowing from a target at range, Ro along the x-axis. This gives the 

familiar result, [6], based on a sinc function: 
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                                                (4.9) 

 

 

Figure 4.3: Illustration of maximum acceptable limit of range migration variation of range resolution, 

±ΔR or 2ΔR. 

 

Equation (4.9) implies that the point target response signal amplitude will fluctuate 

through the array. This is due to change in range, x. As can be seen from Figure (4.3), 

the value is maximum at the array centre of the sinc function and comparatively very 

low at the edges. 

   Therefore, the mean array output can be determined by taking an average across the 

array of the sinc function in Equation (4.9). The average is calculated by considering 
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a target at the maximum scan angle, where range migration threshold ±R. The 

Equation then becomes as follows, 
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Considering both Equation (4.8) and Equation (4.10), it can be deduced that there is a 

4.6 dB reduction in coherent processing gain (CPG) at maximum scanning angle due 

to range migration (for a FMCW radar based operating with linear chirp waveform). 

The decrease in range resolution is √2, which can be determined by a convolution 

process. This deterioration in resolution results in smearing of the point target image 

after processing. It should be said that the acceptable limit for range resolution 

reduction in CPG is dependent on application, but the difference is minimal. For 

instance, by using modified integration limits in Equation (4.10), range migration 

threshold factor in terms of resolution can be determined as 1.6 times instead of 2. 

This is calculated by taking 3 dB decrease in CPG. This is done by using 3 instead of 

4 in Equation (4.8). 

4.2.2. Mitigation of range migration in phased array radar 

    During received signal processing in phased array radar, true time delay processing 

can be used to remove of range migration. It is also commonly known that usual phase 

shifting for beamforming is not applicable in wideband operations nor in post-

deramped FMCW. In [90] [91], it is described how beamforming is achieved in 

wideband systems by correcting the time delay within array elements. This advantage 

is not present for an FMCW/step frequency radar system. This is due to the fact that 
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the received signals in these systems are mixed with replica chirp to obtain the 

deramped signal. As it is known that deramped signal corresponds to frequency shift, 

time delay compensation for raw digitized received data cannot be achieved. Hence, 

time delay processing is not applicable. Instead, the range migration correction needs 

to be implemented by using the frequency shift.  

There are number of papers that deal with the range migration correction. In [92], 

range migration correction is performed in frequency-wavenumber domain for 2-D 

wideband MIMO array where in [93], it is done for FMCW SAR system. In [94], range 

migration correction is also performed in frequency-wavenumber domain for ground 

penetrating radar system. In this thesis work, the range migration correction process 

has been developed for an FMCW/deramped phased array radar system that has been 

built for Antarctic Ice Shelf imaging.  The radar system has quite large aperture due 

to low operating frequency and a wide fractional bandwidth. 

For a phased array radar system that exceeds the criterion given in Equation (4.8) 

and therefore suffers from significant range migration, the obvious remedy is to re-

align the returns from the elements in order to compensate for their displacement due 

to range migration, prior to cross-range processing. This may be achieved by time 

delay equalization in many cases, with the necessary delays easily calculated from 

basic geometry. From inspection of Figure (4.2), the necessary time delay equalization 

can be obtained from Equation (3.12). In the case of an FMCW radar with full-

deramped processing, which is the basis of the experimental system in this thesis work, 

the frequencies of the deramped signals will be shifted by range migration and so it 

will instead be necessary to re-align the signals in the frequency domain. This may be 

affected by frequency-translating the signals from the nth element by the following 

amount: 
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                                     ∆𝑓 =
𝐵

𝑇
∆𝜏 =

𝑛𝐵𝑑 sin 𝜃

𝑐𝑇
                                                 (4.11) 

The FFT resolution and range bin spacing is 1/T (or 1/Tp if zero-padding is used 

to increase the sample length by a factor of p) and so it may be convenient to translate 

the signals at each element by appropriate increments of 1/Tp, which is effectively 

nearest-neighbour interpolation. A pad factor, p, of two or more has been found to 

yield good results.  

In addition to re-aligning the range profiles derived from elements across the array, 

attention must be paid to the relative phases of the signals that have been re-aligned, 

which is considered as follows. From Equation (3.4), deramped phase term, which is 

compensated by normal phased array processing is: 

                                         𝜓 = 𝜔𝑐𝜏 −
𝑘𝜏2

2
                                                       (4.12) 

Equation (3.4) shows that the stationary phase point of the deramped FMCW radar 

signal is in the centre of the pulse, at t = T/2, at which point the signal phase is 

independent of the sweep parameters. An FFT function would normally indicate the 

phase at the beginning of the signal, t = 0, which depends strongly on the sweep 

parameters and will vary if the signal is frequency-shifted to achieve re-alignment in 

order to mitigate range migration. To consider the degree of phase change as a result 

of this re-alignment process, from Equation (3.4) the deramped signal from a given 

point target may be represented as a sinusoid within but not necessarily in the centre 

of a frequency bin, of frequency nωo + Δω, where ωo is the FFT frequency resolution, 

which is equal to 2π/T, with an instantaneous phase as follows, 

                        𝜃𝑑(𝑡) = (𝑛𝜔𝑜 + ∆𝜔)(𝑡 − 𝑇/2) + 𝜓                                      (4.13) 

Where 𝜔𝑜 =
2𝜋

𝑇
 and |∆𝜔| <  𝜋/𝑇 

The FFT (or DFT) term relating to the nth range bin is given by 
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                𝐹𝑛(𝑛𝜔𝑜) = ∫ 𝑒(−𝑗𝑛𝜔𝑜𝑡) .  𝑒𝑗(𝑛𝜔𝑜+∆𝜔)(𝑡−𝑇/2) . 𝑒(𝑗𝜓)𝑑𝑡
𝑇

0
                        (4.14) 

which reduces to the following expression, 

                           𝐹𝑛(𝑛𝜔𝑜) = 𝑇 𝑒(𝑗𝜓) . 𝑒(−𝑛𝜋) . sinc(∆𝜔𝑇/2)                               (4.15) 

The sinc function factor in this expression is always positive, for |Δω| < 2π/T (a 

condition that is easily satisfied), and so this result shows that the phases of the FFT 

components obtained from sinusoids in adjacent range bins will alternate. Thus it is 

crucial that this phase change is corrected when the signals are translated to effect 

range migration mitigation. If zero-padding is used to sinc-interpolate the range profile 

by increasing the length of the time-domain sample by a factor of p, then the FFT 

resolution will be increased by a factor of p and the phase change between adjacent 

range bins will be correspondingly reduced, giving a more general result for the phase 

indicated by the nth range bin: 

                                         ⦟𝐹𝑛(𝑛𝜔𝑜) = 𝜓 −
𝑛𝜋

𝑝
                                              (4.15) 

Thus, in addition to re-alignment of the signals to mitigate range migration it is 

also necessary to correct the phases, in the case of an FMCW radar with full-deramped 

processing. As an alternative, from Equation (3.4) it is clear that rotating the time 

domain signal by –T/2 prior to taking the FFT will allow the phase reference to be 

moved to the centre of the pulse and yield a similar effect. This may be achieved by 

applying the standard Matlab FFTshift function. 

4.2.3 Simulation results 

Simulation was performed to validate the range migration correction. Simulation 

parameters were used according to Table 1. It should be noted that the FMCW radar 

has a high fractional bandwidth (66.7%). Using Equation (4.8), range migration 

processing will be required if the array contains more than 7 elements (which would 
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always be the case during Antarctic experiments). At first, the simulation was 

performed for a single point target to demonstrate the effect of range migration 

processing. Then, contiguous point targets parallel to the base line were simulated and 

imaging results have been shown here. During simulation, 64 elements were used and 

target range was 1500 metres. 

   Figure (4.4) shows the processed point target without applying range migration 

correction. It can be seen the image is smeared out (defocused). Figure (4.5) shows 

the immediate effect of the correction process as the image is now far better focused. 

It should be noted that if the point target is located at normal of the array, then image 

will be focused in the first place as no range migration will occur. Figure (4.6) shows 

the processed image of point targets with same range but instead of one, number of 

closely spaced point targets throughout the scanning angle has been imaged to 

simulate a basal layer return from ice shelf. It can be seen that as the scanning angle 

increases, the image becomes more defocused. Figure (4.7) shows the same image 

after range migration processing but without correcting the phase. It shows even 

though signal energies have converged, the overall image still has not been focused 

properly due to phases not being properly modified. Figure (4.8) shows the processed 

image after fully applying the correction process. Now, the target return looks like a 

straight line parallel to array, exactly the way target locations were defined during 

simulation. 
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Figure 4.4: Point target simulation of a 64 element phased array radar operating with 66.7% 

fractional bandwidth without implementing range migration correction (target has a 330 angle  array 

normal). 

         

Figure 4.5: Point target simulation of a 64 element phased array radar operating with 66.7% 

fractional bandwidth after implementing range migration correction (target has a 330 angle from array 

normal).
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Figure 4.6: Phased array radar image of a target scene comprising a reflecting layer parallel to array at 

1500 m range, without range migration processing. 

 

 
Figure 4.7: Phased array radar image of a target scene comprising a reflecting layer parallel to 

array at 1500 m range, after range migration processing but without phase correction. 
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Figure 4.8: Phased array radar image of a target scene comprising a reflecting layer parallel to 

array at 1500 m range, after range migration processing. 

 

4.3 Vertical Error Correction by Phase Calibration 

 As mentioned in the previous section, the vertical error in the Antarctic data signal 

processing occurs during experiments. An internal layer is hence very useful to resolve 

this but there is no guarantee of an internal layer being present all the time. In that 

case, some other means is required to correct the error to get a properly focused image. 

Radar motion compensation techniques have been well developed in the field of SAR 

[95] [96], or in case where Doppler shift is present due to moving target [97]. In this 

particular scenario of Antarctic Ice Shelf study, everything (radar and the target) is 

assumed to be stationary. So, an appropriate method needed to be developed which 

would enable minimization of the effect of vertical antenna displacement. This 

correction will also compensate for phase error occurred due to near-field effect, as it 

is an exact geometric correction. The main problem is antenna displacement errors 

cannot be determined in post processing if there is no reference present. But what can 

be done is the vertical displacement can be accommodated into the phased 
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array/MIMO beamforming equation. The previous figure shows the geometry of the 

vertical error and simple trigonometry to quantify it. If the vertical displacement is z, 

then by recalling Figure (3.5), extra distance travelled by the signal can be calculated 

as it is shown in Figure (4.9). It can be seen that the offset distance is zcosθ. The total 

extra distance corresponding to phase delay then becomes ndsinθ+zcosθ. So, by 

modifying Equation (3.11), the new beamforming equation becomes: 

                                𝐵(𝜃) =  ∑ 𝑤𝑛𝑒
−𝑗2𝜋(𝑛𝑑 𝑠𝑖𝑛 𝜃+𝑧 cos 𝜃)

𝜆𝑁−1
𝑛=0                                          (4.16) 

 

 

Figure 4.9: Geometry of vertical displacement of element from the array baseline. 

 

The above figure illustrates the effect of vertical errors. Here, the same simulation 

was performed that obtained Figure (4.8), only difference being vertical spacing of the 

array elements has been imposed. 36 array elements are used here as that many 

elements were used during one of the experiments in Antarctica. The resultant image 

is totally defocused as during beamforming, zcosθ has not been taken into account. 

So, the signal phases lost coherence. 
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Figure 4.10: Phased array processed image of a reflecting layer at 1500 metres range without 

accounting for vertical spacing error of antennas. 

 
 

 

Figure 4.11: Phased array processed image of a reflecting layer at 1500 metres range where 

vertical spacing error of antennas has been taken into account. 

 

 

Figure (4.11) shows that proper image is achieved when Equation (4.16) is used 

for creating steering vector, hence compensating for the vertical offset. 
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In practical cases, the value of z will be unknown. The proposed method for 

obtaining the value of z is to use the phase reference at zero degree angle. During post 

processing, the range bin corresponding to zero degree angle return for all the array 

elements can be determined by careful observation 

Then, if phase of that range bin across the array is plotted, it is expected to give a 

flat phase response. This property can be used for estimating z. 

For instance, Figure (4.12) shows the range profile of one of the 36 array elements. 

Here, the spike in range bin number 4001 (corresponding to 1500 metres range) is the 

return from the normal to the array. The trail that follows the spike (up to around range 

bin number 5700) corresponds to returns from other angles. Now, if the phase of the 

range bin number 4001 for the entire array elements (36 in this case) is plotted, more 

or less a straight line is expected as they all have almost same value (a slight difference 

will occur due to interference with contiguous signals from other angles).  

 

 

Figure 4.12: Range profile of one of the array elements showing the zero degree signal return at 

range bin number 4001. 
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It can be seen that phase is quite constant throughout (varying from only 1.95 to 

1.65 radians). If there is any vertical displacement at the antenna elements, this flat 

phase response will not be seen. So, observing the phase response for this range bin 

somewhat gives an idea about the error. 

Figure (4.14) demonstrates exactly that where due to antenna displacement, flat 

phase response is lost. The idea for determining z is using this arbitrary phase response 

and making it flat (assuming vertical displacement is the only/main cause for the phase 

offsets.). During simulation, the first value is taken as reference. 

 

Figure 4.13: Plot of phase response for the zero degree return across the entire array. 



106 
 

 

 

Figure 4.14: Plot of phase response for the zero degree return across the entire array where 

vertical displacement of the elements have been imposed. 

 

Then the phase offset for other elements from that reference is calculated. That 

phase value is then converted into distance offset (dividing the phase by 2π/λ). These 

obtained distance offsets (0 for the first element as that is the reference) are used as 

the value for z at each element. It also implies that if the spacing is larger than the 

wavelength, this calibration method will not work. This obtained matrix of z is then 

used in Equation (4.16) for beamforming. Figure (4.15) shows the image obtained by 

using this method for compensating the vertical error. As can be seen, the result is 

quite promising as there is obvious improvement from Figure (4.10) where the image 

is very well focused and almost same as Figure (4.11). One disadvantage here is that 

target signal is not higher than the side lobes at optimum expected level. Here, the 

target signal strength is around 15 dB higher than the sidelobes.  
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Figure 4.15: Phased array processed image of a reflecting layer at 1500 metres range where 

vertical spacing error of antennas has been compensated by phase calibration with reference to zero 

degree return. 

 

 

4.4 3-D MIMO Imaging Algorithm for Ice Shelf Basal Layer 

   The last signal processing algorithm developed during this thesis work was to create 

a 3-D image of basal layer of the Antarctic Ice Shelves. As the previous signal 

processing with linear phased array radar gave sectoral plots, 3-D image of the base 

would give more opportunity for more in depth analysis of the ice shelves. For this 

purpose, an 8x8 MIMO radar with 2-D array has been built at UCL, which have been 

deployed in Antarctica. It should be noted that no orthogonal waveform for MIMO 

transmission is used in this system (all transmitting antennas emit same waveform). 

The spatial diversity is obtained by time switching the antenna elements. New 

processing method needed to be developed to create proper 3-D images from the radar 

data. 
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    There are research articles studying the 3-D MIMO beamforming technique. In 

[98], a beamforming equation for 2-D MIMO array has been illustrated. In [99] [100], 

3-D imaging techniques have been described by combining MIMO and Synthetic 

Aperture Radar (SAR) geometry. In [101], imaging techniques for FMCW MIMO 

system have been shown, applicable to conventional two-dimensional imaging. In 

[102], a 3-D imaging technique has been described for co-located MIMO radar 

configuration. The paper proposes a 3-D imaging technique by taking one snapshot of 

a moving target, hence evading the need for motion compensation. But as the focus of 

the paper is to image a moving target, beamforming vector corresponds to only one 

direction (as opposed to both in azimuth and elevation). For the purpose of Ice Shelf 

Imaging, where the signal processing is done solely in terms of receive array, two 

dimensional steering vector is required to map the ice shelf base. So, it was necessary 

to create an algorithm for the entire 3-D MIMO image processing (based on FMCW 

radar receive array and focused on imaging base of ice shelf/sheet), which will include 

all the required operations. The steps for 3-D MIMO imaging algorithm developed for 

Antarctic Ice Shelf basal layer imaging are as follows: 

 Range profile for all virtual elements. 

 Applying 2-D window over the planar array. 

 3-D Beamforming (by compensating for phase offset at each elements 

according to azimuth and elevation angles).  

 Range Migration compensation (if required). 

 Selecting the range bin corresponding to zero degree return (using that range 

slice throughout the scan for 3-D basal layer imaging). 

 Compensating for the curvature of the range slice. 
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 Image sidelobe suppression by 2-D correlation  

The first two steps are quite straightforward, which basically deal with preparing the 

raw data before beginning the imaging process. As the algorithm is developed for 

FMCW based radar system, range profile should be obtained by simple FFT of the 

deramped signals (after applying range window to minimize range sidelobes). Also, 

in order to suppress cross range sidelobes, windowing over the arrays should be 

performed which is quite usual in phased array/MIMO processing. As the array is 

planar, the windowing operation needs to be performed on both axes. For instance, for 

an 8x8 array, windowing has to be applied on eight elements of each row as well as 

on each column. 

4.4.1 3-D Beamforming 

   The main objective of a beamforming operation is to find out the signal path offset 

in each element of the array, for every angle. It is determined with respect to a 

reference where the offset is zero. 3-D beamforming process for the imaging here is 

the same as described in Chapter 3, only with an added dimension, hence an added 

angle (instead of one incident angle, in this case both azimuth and elevation angles 

will be taken into account). So, even though the geometry requires a bit more 

visualization, the basic idea here for beamforming is the same as it is for a linear array.      

Figure (4.16) illustrates a geometrical representation of the 3-D beamforming process. 

The red line represents the offset signal distance incident upon X and Y plane 

(corresponding to the X and Y axes of the planar array). ‘θ’ and ‘ϕ’ in the above figure 

define azimuth and elevation angles respectively. So, the beamforming matrix will 

contain a total number of elements equal to the product of azimuth and elevation angle 

sample numbers. 
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Figure 4.16: 3-D MIMO beamforming geometry for planar array. 

 

Figure 4.17: Two dimensional representation of the 3-D MIMO beamforming geometry for the 

purpose of Pythagorean calculation. 
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 In order to determine the value of the signal offset, it will be convenient to draw a two 

dimensional representative diagram of the area of interest from Figure (4.16). As it 

can be seen in Figure (4.17), the red line corresponds to the same offset signal path 

from Figure (4.16). Similarly, the green lines in both figures correspond to same Ysinϕ. 

The green line is simply the path offset at Y axis (where azimuth angle is 0 degree). 

Now, the signal direction would tilt by θ degree when azimuth angle is present. This 

can be visualized from Figure (4.17). The horizontal blue line then would correspond 

to X distance. By using Pythagorean geometry, the values of lines can be defined 

which would lead to the calculation of the eventual distance required for beamforming 

(the red line). Those values are also shown in Figure (4.17). The calculation for 

beamforming distance then becomes as follows: 

𝐵𝑑(𝜃, ∅) = (𝑋 − 𝑌 sin ∅ tan 𝜃) sin 𝜃 +  
𝑌 sin ∅

cos 𝜃
  

= 𝑋 sin 𝜃 +  𝑌
sin ∅

cos 𝜃
(1 − sin2 𝜃) 

                                             = 𝑋 sin 𝜃 + 𝑌 sin ∅ cos 𝜃                                                      (4.17) 

This can be now easily translated into equation for phase compensation during 

beamforming, which is as follows, 

                                      𝐵(𝜃, ∅) =
4𝜋

𝜆
(𝑋 sin 𝜃 + 𝑌 sin ∅ cos 𝜃)                               (4.18) 

4π/λ has been used as the distance to phase conversion factor instead of 2π/λ here, due 

to two way wave propagation (the beamforming is only performed in receive array). 

4.4.2 Range Migration Compensation 

   The effect of range migration has been discussed earlier in this chapter. Equation 

(4.8) gives a proper indication whether a receive array processing would require the 
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migration correction. In order to implement the correction process for planar 2-D 

array, array length actually gets reduced. For instance, a 64 element linear array would 

have 8 times more length than an 8x8 planar array (considering same element spacing 

in both cases), even though in both cases there are there are 64 array elements. So, in 

later case, the condition check from equation (4.8) should be performed for 8 elements, 

instead of 64. 

4.4.3 Selecting the range bin corresponding to zero degree return 

   In 3-D MIMO imaging, the obtained result would be a three dimensional form of the 

usual sectoral image achieved in 2-D phased array/MIMO processing. Imaging the 

whole 3-D image in such a way would be inconvenient for visual representation. So, 

instead of plotting the image for the entire range limit, single range slice is chosen. A 

3-D image of that specific slice is then plotted (in terms of azimuth axis, elevation axis 

and signal strength at each point). In case of Antarctic Ice Shelf study, the range slice 

is chosen by determining the distance of basal layer from the surface. As the surface 

may not be plane (hence the reason for 3-D imaging), a reference point is chosen. 

Simplest way to choose the reference range bin is finding the range return from zero 

degree angle. During post processing, it is quite easy to find the range bin 

corresponding to zero degree return, as the signal strength would be usually quite 

higher. This is due to signal attenuation with distance increased and zero degree return 

being the closest distance. The corresponding range bin is found the same way it has 

been described in section 4.3. 

4.4.4 Compensating for the curvature of the range slice 

   After the selection of the zero degree return range bin, range bins for other angles 

corresponding to the same range from the radar need to be identified. The range 
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changes with angle according to the Pythagorean geometry. Before plotting the image, 

this curvature of the surface need to be corrected.  

 

Figure 4.18: Surface curvature correction for 3-D MIMO imaging of one range slice. 

The process of curvature correction can be visualized from Figure (4.18). It is evident 

from the figure that for each point of the image, the correction should be performed 

by using the Pythagorean cosine formula with respect to the reference range (the range 

obtained from zero degree return). The equation for determining the range bin number 

can be written as, 

                                𝑟𝑎𝑛𝑔𝑒𝑏𝑖𝑛(𝑛, 𝑚) =
𝑅𝑜

cos 𝜃𝑛 cos ∅𝑚∆𝑅
                                        (4.19) 

In the above equation, Ro is the reference range, ΔR is the range resolution, θ and ϕ 

are azimuth and elevation angle respectively. Considering N and M  being the total 

azimuth and elevation sample numbers respectively, n=1,2,3,….,N and m=1,2,3,…,M. 

In practice, the division may provide non integer values, which case it is rounded to 

the nearest integer. 

4.4.5 Image sidelobe suppression by 2-D correlation 

   A major problem faced during 3-D image processing is the sidelobes. In a 

conventional 2-D image, cross range sidelobes are common phenomena. In a 3-D 

image where the scanning is in two directions, sidelobes occur due to both. So, the 

final image quality becomes visually very poor as the sidelobes appear as circular ring 
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patterns (as will be shown in simulation results). To minimize that, 2-D correlation is 

performed over the image. It is done by taking the maximum value as reference in 

each row and column and performing correlation operation on each row and column 

with those references. 

 

Figure 4.19: Sample demonstration of 2-D correlation method used for sidelobe suppression in 3-D 

MIMO image 

Figure (4.19) can be used to visualize the concept being used during reducing the 

circular rings from the image. The table corresponds to the image plane where each 

block represents a specific azimuth and elevation angle combination. The arbitrary 

numbers in the figure represent signal strength corresponding to that block. The blue 

box encases the first row in which 3 is the maximum value. That will be taken as a 

reference and the correlation would be performed over the entire row (within the blue 

box) with respect to the reference. Same thing will be repeated for all the rows. After 

that, this correlation process is applied on all the columns using the same method. In 

practice, instead of taking one value as reference, several values on both sides of the 

maximum value are also included to make a reference for correlation consisting of 

more than one sample. Also, due to correlation process, number of samples in each 

row and column will increase. To have same number of values in all the rows and all 

the columns for processing purpose, interpolation is used to scale that. In real case, the 
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surplus samples are very few in numbers compared to total samples in a row or column 

(as the reference signal size is comparatively very small). So, the change in image due 

to interpolation is negligible. 

4.4.6 Simulation results 

   In order to verify the image processing method, a simulation has been performed in 

MATLAB. The parameters during simulation have been chosen according to the 

specification of the 8x8 FMCW based MIMO radar built at UCL. The radar operates 

at 300 MHz central frequency with 200 MHz bandwidth. The virtual array spacing is 

0.64λ in both axes. For the basic visual understanding of the images, the simulation 

has been performed for point targets. Also, from Equation (4.8), it is found that range 

migration is not going to have much of an effect on an 8x8 array. So, during simulation 

longer array length has been chosen just to validate the need of range migration 

correction for 3-D MIMO image processing algorithm.  

   Figure (4.20) shows the point target image at 1500 metre range and -8 degree angle 

from the array normal (both in azimuth and elevation). The scanning is performed for 

±25º in both directions. It can be seen that the point target image has wide spreading 

due to range migration. In Figure (4.21), the same point target can be seen after 

applying the range migration correction. 



116 
 

     

Figure 4.20: Simulated result of a defocused 3-D MIMO image for a point target (single range 

slice at 1500 m) with ±25º scan angle in azimuth and elevation; for large array length and without 

applying range migration correction. 

 
Figure 4.21: Simulated result of a focused 3-D MIMO image for a point target (single range slice 

at 1500 m) with ±25º scan angle in azimuth and elevation; for large array length and after applying 

range migration correction. 

    

The signals now get more concentrated, hence the point target image gets more 

focused. This justifies the use of range migration correction process for 3-D MIMO 

imaging as well if the planar array length exceeds the condition in Equation (4.8). 
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   Simulation has also been performed to demonstrate the circular patterns in image 

and effect of 2-D correlation to remove it. This has been done by simulating a basal 

layer at 1500 metre range (by simulating very closely spaced targets everywhere 

within ±15º area in azimuth and elevation). The image scanning coverage area is ±20º 

in both directions. Figure (4.22) shows the simulated result where the circular pattern 

is easily visible. Figure (4.23) shows the resultant image after applying the 2-D 

correlation. It can be seen that the ring pattern is removed, giving a smooth 3-D image 

of the 1500 metre range slice. In the next chapter, the resultant images obtained from 

processing the raw Antarctic MIMO radar data are shown and discussed. 

 
Figure 4.22: Simulated result of 3-D MIMO image of very closely spaced targets covering ± 15º 

area in both direction without sidelobe suppression hence showing the ring pattern (scan angle in both 

direction is ±20º). 
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Figure 4.23: Simulated result of 3-D MIMO image of very closely spaced targets covering ± 15º 

area in both direction after applying hence removing the ring pattern (scan angle in both direction is 

±20º). 
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Chapter 5 

Processed Results from Antarctic Ice Shelf 

Experiments 

   

 This chapter demonstrates all the results obtained from processing Antarctic data. The 

signal processing techniques that have been discussed in Chapter 3 and 4, have been 

applied for real data processing. The data was obtained during field expedition 

organized by BAS in Austral summer of 2011-12. During this expedition, BAS 

deployed both their pRES system as well as the phase sensitive FMCW radar built at 

UCL. The FMCW radar was deployed in Larsen–C, Larsen South, Larsen North and 

George VI ice shelves. The pRES system made measurements in Foundation ice 

stream of Ronne Ice Shelf. Along with range profiling of the basal layer of these ice 

shelves, various imaging experiments were also carried out by constructing the array 

geometry. Generally, the radar was mounted on a sledge and then moved around 

carefully according to the specific geometry. Also, the radar performance was tested 

at UCL to validate radar performance, which is shown here. Finally, the 3-D imaging 

results from the Ronne Ice Shelf are also shown. The FMCW based 8x8 MIMO radar 

was deployed in the location in 2014-15 Austral summer. The radar was also taken to 

Greenland by BAS. Raw data from there has also been processed and the resultant 

images have been shown here. 

5.1 Loop Test results at UCL 

   A trial had been conducted at UCL to verify the radar performance with a 240 

meter cable (connecting the two endpoints to the transmitter and receiver). The 
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dielectric constant of the cable is 2.1. Phase sensitive FMCW radar signal processing 

algorithm [45] was implemented in MATLAB during the thesis to analyze the raw 

radar data. The codes were written in such a way so it would be able to segment the 

signals from different attenuator settings automatically and process the whole data file 

at one go. Figure (5.1) shows the received deramped signals for four different 

attenuator settings of the radar (which is to get optimum dynamic range while 

acquiring field data). Figure (5.2) shows the range plots.  

 

Figure 5.1: Raw received deramped signals of the FMCW phase sensitive radar with 4 alternating 

attenuator settings. 

 

The above figure shows the MATLAB plot of the received signal from the FMCW 

radar. It shows 8 chirps (most of the 9th chirp is clipped off). As discussed in Chapter 

2, each successive chirps correspond to four different gain values that change 

sequentially. The alternating attenuator setting allows to achieve the different gains (4, 

16, 28 and 40 dB). The effect of time delay error correction (discussed in Chapter 3)  
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Figure 5.2: Range plots of the 240 meter round trip path through the cable for all 4 gain settings 

of the radar, without time error correction (above) and with time error correction (below). 
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can be visualized as the standard deviation decreases when the correction is applied. 

Even though the pulse duration is 1s, the radar runs for 1 minute as it switched over 

to the 4 attenuator settings. For each attenuator setting, it records 9 pulses as can be 

seen from Figure (5.2). 

5.2 Range Profiling 

   The phase sensitive FMCW radar signal processing method described in Chapter 

3 has been used for obtaining range profiles of radar. Figure (5.3(a)) shows the range 

profile of the Larsen-C ice shelf where the reflection from the basal layer can be seen 

at 362 metres. The high amplitude signal observed at close range is mainly due to 

antenna direct coupling or other features creating reflections. As can be seen from the 

range profile, there is a trail after the sharp peak from the basal layer. This trail 

corresponds to the returns coming from the non-zero angles. This trail is desired as it 

will provide more information about the basal layer when beamforming is applied. A 

shape matching algorithm is used to determine the presence of any feature among this. 

But in this case for Larsen-C ice shelf, a presence of an internal layer at around 77 

metres is known from previous measurements (information obtained from BAS). So, 

the performance of the algorithm can be tested by applying it to the Larsen-C profile 

to see if it can detect the internal layer, which is shown later. Figure (5.3(b)) shows 

the differential plot of the basal layer and the internal layer over 6 days. The radar took 

continuous measurements from 28th November 2011 (10 pm) to 5th December 2011 

(4am). The figure contains plots for measured results from all four attenuator settings. 

The gap seen in the plot is due to data loss during that period (data logger did not 

record any data). Even though there are fluctuations seen on the plot, the overall trend 

is clearly downward which infers the melting of the base. The average gives a melting 
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rate of around 3.3 mm/day. It should be considered that the data was collected for six 

days and during Austral summer, when melting of the ice shelf base is expected. So, 

the melt rate should not be used to calculate the total melting over the year. In order 

to do that, the year-long data needs to be processed. Only then the overall melting 

pattern of the ice shelf can be properly demonstrated. Figure (5.4) shows a continuous 

range plot for a single attenuator. A Total of 130 measurements were taken for 64.5 

hours (1 in every 30 minutes). In the middle of the figure, there is an approximately 5 

mm instant slump in range. That was due to a cable fault during measurement. The 

range return is from 386 metres. It can be seen that there has been a cyclic pattern in 

the range plot indicating ice accumulation and melt both occurring during the 

measurement period. Figure (5.5) shows range plot of Larsen South Ice Shelf where 

495 continuous measurements were taken (1 in every 10 minutes). Within this 82 

hours and 20 minutes, 1.6 mm melting is recorded. It should be noted that this is the 

first time a phase precision radar system is deployed in this area. So, there is no means 

for cross checking the data unless some other researchers take measurement at the 

same place at the same time. The confidence on the radar performance is achieved 

from the loop test results in the lab as it is not possible to place a known target deep 

under the ice shelf. A corner reflector can be used for a ground measurement, but that 

will not validate the radar performance underneath the ice shelf due to the dielectric 

constant factor. As the main goal is to measure the melt rate, the result should be valid 

anyways as long as the offset in measured range (if there is any) is constant. Two 

abrupt plunges in the plot are most probably due to wrong data recording of two 

samples as those two data points clearly seem to be an anomaly. The data is plotted 

for all four attenuator settings. 
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Figure 5.3: (a) Larsen-C range profile showing the ice shelf base at 362 metres (b) Plot of 

difference between measured ice shelf base and the internal layer over 6 days. 
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Figure 5.4: George VI Ice Shelf basal layer range (at 386 metres) plot for 130 continuous 

measurements, corresponding to 64.5 hours.

 
Figure 5.5: Larsen Ice Shelf basal layer plot for 495 continuous measurements (1 in every 10 

minutes), corresponding to 82 hours and 20 minutes. 
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Figure 5.6:  Larsen South Ice Shelf basal layer range (at 361 metres) plot for 495 continuous 

measurements (1 in every 10 minutes) after averaging of 9 chirps of each attenuator setting. 

 

   Figure (5.6) shows the same plot but with chirp averaging (averaging nine pulses of 

each attenuator settings). As it can be seen, no significant difference is observed. 

Hence, chirp averaging can be applied during range profiling. 

    Figure (5.7) shows a range profile of George VI ice shelf (basal layer return from 

386 metres) along with the profile after conventional cross correlation is performed 

upon it. It can be seen that correlation does not help in terms of clutter/antenna direct 

coupling suppression or hidden feature detection. . Figure (5.8) shows the same profile 

but this time with shape matching algorithm implemented plot. The improvement can 

be very clearly observed. The base now has a very sharp high peak as that was the 

main reference (so rank (equation (4.4)) was maximum at that point). 
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Figure 5.7: George VI range profile without cross-correlation (above) and with cross-correlation 

(below) having almost no impact. 

 

 

Figure 5.8: George VI range profile without shape matching algorithm implemented (above) and 

with the algorithm implemented (below) reducing the clutter/noise. 
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Figure 5.9: Normal Larsen ice shelf range profile (above) and the same profile after 

implementing shape matching algorithm showing a more than 50% match at around 77 metres. 

 

Also, the algorithm successfully suppresses the antenna direct coupling/near surface 

clutter that is present throughout first 30 meters or so. However, no hidden feature is 

revealed from the plot. The straightforward implication of this is that there is perhaps 

no internal layer present in this ice shelf (or at least in the region that was covered by 

the antenna beam). Figure (5.9) shows the range profile of the Larsen ice shelf along 

with the profile with the shape matching algorithm processing. Along with close range 

signal attenuation, at around 77 metres, a feature is detected. As mentioned before, it 

is known that an internal layer exists around this region. Without the implementation 

of the algorithm, it is almost impossible to detect with just normal range processing. 

This justifies the algorithms’ application as the processed result by using the shape 

matching algorithm agrees with the previously known result from the Larsen ice shelf. 
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Figure 5.10: Normal Foundation ice stream range profile (above) and the same profile after 

implementing shape matching algorithm. 

 

Figure (5.10) demonstrates a similar profile plot, this time for the Foundation ice 

stream. The basal layer return is coming from 1285 metres underneath the surface. 

Here, the algorithm also suppresses the high amplitude signals, but a feature is 

revealed around 23 meter. This internal layer is used for calibrating the radar data for 

melt rate measurement. 

5.3 Foundation Ice Stream Imaging 

   For imaging Foundation Ice Stream, pRES radar was used. As mentioned earlier, it 

is similar to FMCW radar but during modulation it uses stepped frequency increase 

method. The parameters for the pRES system are given in Table 2. The imaging 

experiment done in this location was a MIMO experiment. Figure (5.11) shows the 
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MIMO array configuration, which is a 6x6 MIMO creating a 36 element linear virtual 

array (virtual array spacing being 0.14 metres).  

 

Table 2: Parameters of pRES radar 

Parameters Value 

Centre frequency, fc 305 MHz 

Step frequency, fstep 32 KHz 

Bandwidth, B 160 MHz 

Pulse duration, T 1s 

Ice dielectric constant, 𝜀𝑟  3.1 

 

Figure 5.11: Foundation Ice Stream imaging experiment setup, comprising six transmitters and 

six receivers, creating 36 linear virtual array elements. 

 

Both range migration algorithm (according to equation (4.8), it needs to be 

applied) and vertical error correction have been implemented during image 

processing. The effects of those on final image are demonstrated here as well. Figure 

(5.12) is the log plot of the range profile showing the basal return from 1285 metres. 

Phases of the corresponding range bin for all 36 elements (shown in figure (5.13)) 

have been used for vertical displacement correction. Figure (5.14) shows the processed 

MIMO image without any correction. As the virtual array is linear, the processing was 

the same as a conventional phased array image processing with ±60 degree scanning. 

The basal layer can be seen from the image clearly. There is another return visible at 
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around 70 metres below the layer which is due to reflections from cables that are 

feeding the antenna. Figure (5.11) shows the image after applying range migration and 

phase correction. Comparing of Figure (5.14) and (5.15) demonstrates the effect of 

correction process for image quality improvement. It can be seen that after the 

correction process, the basal layer feature is now better defined showing more 

consistent intensity across the entire scan. Which means the signal energy has been 

more concentrated than it was before. Same conclusion can also be made by observing 

the clutter structure. In Figure (5.14), clutter is smeared out where in Figure (5.15), it 

is sharper which means energy is not smeared out anymore. As it was discussed in 

Chapter 4, image defocusing due to range migration becomes worse as scanning angle 

increases. Here in Figure (5.15), it is seen that image is better focused at wider angles 

as well where basal layer signal strength is around 15-20 dB higher compared to Figure 

(5.14). By observing Figure (5.12), it can be seen that there is another peak beyond 50 

m from the basal return. This might suggest that there is a sharp slope present in that 

area causing another return, but no such slope is seen on Figure (5.14) and (5.15). This 

may be due to the fact that the antenna beam width was not sharp enough, so after 

beamforming this physical phenomena could not be observed. It can also be an 

artefact, in which case the beamforming will not show any slope which is not present. 

Also, the region between the surface and the base is quite plain, suggesting a 

homogenous ice structure throughout that area.  

During the Foundation Ice Stream expedition, the MIMO experimentation was 

performed twice with a six day time gap. Both measurements were made in exactly 

the same location. So, phase differential was calculated by measuring the phases of 

the two processed images. The idea was to obtain a differential phase interferometry 

like information to observe minute changes in the basal layer during that 6 days. Figure 
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(5.16) shows the result of this attempt. After subtracting signal phase of one image 

from the other, the resultant differential phases were converted into distance values. 

 

 

Figure 5.12: Measured result taken from Foundation Ice Stream, Antarctica showing range 

profile. 

 
Figure 5.13: Measured phase of the range bin corresponding to the basal layer across each of the 

36 array elements, to act as an array phase calibration. 
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Figure 5.14: MIMO image of the Foundation Ice Stream, without range migration processing or 

vertical error correction; the basal layer return echo is at 1285 metres. 

 
 

 
Figure 5.15: MIMO image of the Foundation Ice Stream, using range migration processing and 

phase calibration, showing consistent image intensity at the basal layer and better-defined clutter 

structure. 
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Figure 5.16: Differential phase interferometry image of Foundation ice stream to observe the 

basal layer melt within 6 days using the detected internal layer for calibration. 

 

The figure shows the eventual image where a thin continuous line can be observed 

at basal layer (around 1285 metres). This line corresponds to around 40-50 millimetre 

(around 7-8 mm/day melt rate). It should also be noted that there is no distinct second 

line present in the interferometry image. It suggests that the second peak seen in Figure 

(5.12) is most likely an artefact, which got cancelled out.   

 

5.4 Larsen North Imaging 

   In the Larsen North expedition, the experimental setup was done by mounting 

the FMCW radar on a sledge and taking measurement 109 times along a straight line. 

The objective was to simulate a linear uniform array with 20 cm spacing 

(approximately) between each other. The spacing has been chosen to ensure that no 

grating lobe occurs. A SAR like processing was done by making few assumptions. 

SAR processing requires the antenna aperture to be in constant motion during data 
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acquisition. This assumption can be made for the Larsen North processing as well. 

The fact that the radar was stationary during each element position can be related to 

the usual ‘stop and go’ assumption for the SAR processing. The Range Migration 

Algorithm (RMA) for SAR processing discussed in Chapter 3 is quite suitable for this 

scenario as it stems from seismic data processing technique [53]. 

 

Figure 5.17: SAR processed 2D cross-sectional image of Larsen North ice shelf. 

 

For seismic data processing, some numbers of geophones are placed along a straight 

line on the ground and a charge is detonated along that straight line. Every single 

geophone uses the received sound echo and the combined results are analyzed to figure 

out ground characteristics. This placement of geophones is similar to specific SAR 

platform positions at any given instance, as well as the experimental arrangement of 

Larsen North. 
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Figure 5.18: Measured result taken from Larsen North Ice Shelf, Antarctica showing range 

profile.

 
Figure 5.19: Measured phase to the basal layer across each of the 109 array elements, to act as an 

array phase calibration. 
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Figure (5.17) shows the SAR processed cross sectional image of the Larsen North 

data. Strong reflection from the basal layer can be seen at around 370 metres. It can 

be observed the cross range view is quite smaller (21.6 metres) compared to the depth 

due to very low integration angle relative to basal layer. The strong returns from first 

20-30 metres are due to the direct coupling between transmitting and receiving 

antennas. The Same data was also processed by phased array imaging algorithm which 

would be able to provide larger cross range view compared to SAR. The processing 

technique used for MIMO imaging, was also used for Larsen North.  During this 

processing, the beam has been scanned ±60º. This covers roughly 700 meters in cross 

range, so more features can be seen of the basal layer as well as any other special 

features above if present. Figure (5.18) shows the range profile of Larsen North 

showing the basal layer return from 370 metres. The phase of the range bin 

corresponding to this of each element is plotted in Figure (5.19). This is used for phase 

calibration to compensate for vertical displacement error if there is any. Figure (5.20) 

is the processed image without range migration correction. Figure (5.21) is the image 

after applying the range migration and phase correction. Comparison of Figure (5.20) 

and Figure (5.21) gives same conclusion as it was obtained from Foundation Ice 

Stream image processing. The implementation of the corrections improves the image 

quality by increasing the signal strength which means now there is better coherence. 

Also, Figure (5.21) shows the basal layer having a slope rather than a straight line, 

which is often natural as in reality a basal layer of the ice shelf will not be a horizontal 

base all the way through. Figure (5.22) shows the Larsen North phased array image 

with increased range profile. This is to get a visual observation of the radar signal 

reflecting from the base, coming back and reflected downward again from the surface 

of the ice shelf, then coming back up again and captured by radar. This is known as 
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the double bounce affect. As the signal propagates more distance, it gets attenuated 

quite a lot through ice, which is evident by the lower signal strength of the double 

bounce from the basal return. 

 

Figure 5.20: Phased array image of the Larsen North Ice Shelf, without any correction; the basal 

layer return echo is at 370 metres. 
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Figure 5.21: Phased array image of the Larsen Ice Shelf, using range migration processing and 

phase calibration, showing consistent image intensity at the basal layer and better-defined clutter 

structure. 

 
Figure 5.22: Phased array image of the Larsen North Ice Shelf showing the thin line showing the 

double bounce return coming from twice the basal layer range. 
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5.5 3-D MIMO Imaging of Ice Shelf Base 

 

The 8x8 MIMO radar was deployed in the Ronne Ice Shelf during 2014-15 Austral 

summer. The MIMO array configuration can be seen at Figure (5.23). The physical 

length of the array is 6.42 x 6.47 metres. The 1.08 m gap between the adjacent 

transmitter and the receiver on the top left of the geometry is to get proper antenna 

isolation. As trenches were made to mount each antenna element, some were 5 metres 

deep and some were 10 metres. This has been taken into account during processing. 

The antennas used are bow tie antennas operating at 300 MHz centre frequency with 

200 MHz bandwidth. The radar operation is based on FMCW principle where it 

transmits up-chirp signals (with time switching) and the receiver outputs deramped 

signal after mixing with reference chirp. The radar measurement was taken in two 

different sites in Ronne Ice Shelf, as well as in Greenland. 

 

Figure 5.23: Planar MIMO antenna array geometry for 3-D imaging of Antarctic Ice Shelf. 
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Figure (5.24) shows the processed image of the ice shelf base at 566 metres depth. 

Range slice corresponding to that depth has been imaged here. Scan angle is ±25º both 

in azimuth and elevation. At 566 metres deep, this corresponds to 653.5 x 653.5 square 

metres. Array baseline length is not large enough for range migration to take effect, so 

no correction has been applied. But the image is processed without 2-D correlation. 

The ring patterns in the image are very apparent, which makes it very hard to properly 

visualize and analyze the result. Figure (5.25) shows the same image after the 

correlation is applied. The significant change in the image quality is easily noticeable. 

The curves within the curvature of the basal layer can now be visualized. The image 

shows high signal strength in the middle region and reduced signal strength elsewhere, 

which is expected as the scanning angle increases. The basal layer is not plain and 

regular bumps are observed throughout the scanning area. This suggests that there is 

mass imbalance in the ice shelf causing deformation [103]. Mass imbalance occurs 

when there is a difference between amount of ice accumulation and ablation, causing 

ice flow underneath.  

Figure (5.26) illustrates the processed image at a different site in the same ice shelf 

without the 2-D correction. Here the basal layer is at 514 metres. The scanning angle 

is the same as it was for the previous site, which corresponds to coverage area of 593.5 

x 593.5 square metres. Figure (5.27) shows the same image after suppressing the 

circular rings. Figure (5.28) and (5.29) shows image processed in same method and 

parameters, but with data obtained from Greenland. The basal layer here is at 638 

metres, which means the coverage area is approximately 736.72 x 736.72 square 

metres. Figure (5.29) shows a very plain basal layer compared to the images from the 

Antarctica. This is expected as this is an ice sheet base instead of an ice shelf. Ice 

sheets are more stable than ice shelves which melts rapidly compared to an ice sheet. 
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Figure 5.24: 3-D MIMO image of Ronne Ice Shelf (site1) basal layer at 566 metres (without 2-D 

correlation).

 
Figure 5.25: 3-D MIMO image of Ronne Ice Shelf (site1) basal layer at 566 metres (after 2-D 

correlation). 
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Figure 5.26: 3-D MIMO image of Ronne Ice Shelf (site2) basal layer at 514 metres (without 2-D 

correlation). 

 

Figure 5.27: 3-D MIMO image of Ronne Ice Shelf (site2) basal layer at 514 metres (after 2-D 

correlation). 
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Figure 5.28: 3-D MIMO image of Greenland Ice Sheet basal layer at 638 metres (without 2-D 

correlation). 

 

Figure 5.29: 3-D MIMO image Greenland Ice Sheet basal layer at 638 metres (after2-D 

correlation). 
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Chapter 6 

 

Conclusions and Future Work 

 

6.1 Conclusions 

   The main goal of the thesis work was to develop novel signal processing algorithms 

for phase-sensitive FMCW radar data to profile and image Antarctic Ice Shelves. 

Along with developing new processing techniques, conventional processing methods 

also had to be learned and used for data processing, which are phased 

array/SAR/MIMO imaging and FMCW radar range profiling.  The first part of the 

thesis encompassed mostly studying and implementing those algorithms on raw radar 

data from Antarctica. The algorithms had been implemented in MATLAB in a way 

that they would accommodate the nature of the FMCW radar data. While processing 

the real data, new signal processing challenges had been faced which motivated to 

develop new processing techniques. These techniques had been simulated in terms of 

Antarctic ice shelf experiment scenario at first to validate the principle. The results 

obtained by processing the Antarctic data have validated the use of developed methods 

towards better analysis of the ice shelves. 

   The list of achievements and advances made over the existing techniques during the 

thesis are as follows- 

   Millimetre precision range profiling of the Antarctic dataset- The phase-sensitive 

FMCW radar built for the year-long Antarctic ice shelf monitoring is a novel system. 

In [46], FMCW radar has been used for similar purpose but with no phase processing 

and with reduced resolution (1 m) compared to the radar built at UCL. In [104] [105], 
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large area of the Antarctic ice shelves have been mapped by using satellite radar 

altimeter. The precision achieved from this system is not satisfactory (around 20 cm). 

Also, these are pulsed radar systems which are not favourable for high precision 

measurement in a lossy medium like ice with low power requirements. Hence, new 

signal processing techniques to process the large amount of data at once to obtain the 

ice shelf melt rate over a long period was required. The first achievement during this 

PhD thesis was the MATLAB code written to process the large dataset from the 

Antarctica, which outputs the range profile by calculating the fine range and adding it 

with the coarse range, to get the millimetre range precision. 

   Shape matching algorithm development- Detection of internal layers has been a big 

challenge during the monitoring of the Antarctic ice shelves. There is no literature 

present which deals with this particular issue. The conventional method for finding 

any hidden target is to take some known signal as reference and performing a cross-

correlation along the range profile. Due to the nature of the FMCW radar data, this 

conventional method does not work, as in close range antenna direct coupling 

produces larger amplitudes than the reference signal. So, to solve this problem, shape 

matching algorithm was developed which uses a point by point ranking system instead 

of multiplication, so the amplitude does not have any affect. The validation of this 

developed algorithm could only be made by applying it on a real data obtained from a 

place where there is a presence of a known internal layer. The algorithm was applied 

on such dataset from the Larsen ice shelf and was successfully able to detect the 

internal layer which was not visible from the normal range profile plot. 

   Range migration algorithm for FMCW phased array radar- Range migration 

problem is not usually faced in a phased array system, but due to the system parameters 

of the FMCW radar and the nature of the received data (deramped signal, so time delay 
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beamforming is not possible) for the ice shelf monitoring, this became an issue. The 

system operates with a very high fractional bandwidth, so range migration is occurred 

when beamforming is applied on the received signal at large angles. New 

mathematical concept was developed that shows the relationship between the number 

of array elements and the fractional bandwidth. Also, it was mathematically shown 

how the range migration compensation relates to the signal phase and how to 

compensate for it. This algorithm was applied on the field data from the Antarctica 

and it was successfully able to enhance the phased array image quality at wide angles. 

   Vertical error correction by phase calibration- A very practical consideration in the 

Antarctic field test is the adverse weather, which is disadvantageous to precise radar 

measurement. As this Antarctic ice shelf monitoring radar system was built for 

measuring the melt rate with very high precision, it was a big challenge to compensate 

for any experimental errors. The error correction method was developed that would 

not require any prior knowledge of the vertical displacements of the antenna. The 

method is based on by using phase of the zero degree return from the ice shelf base as 

reference. Applying this method compensated for any ambiguity in range calculation. 

By doing this, it allowed for the accurate calculation of the ice shelf melt rate and 

improved the processed image quality. 

   3-D MIMO imaging of the ice shelf- A planer array MIMO radar system was 

developed at UCL for the 3-D imaging purpose. Considering its application and the 

radar system parameter, an entirely new processing technique was required. During 

the last period of the thesis, this was achieved. There are 3-D MIMO imaging 

techniques developed by other researchers which have been discussed in the previous 

chapters, but those are not suitable for this application, where a large area underneath 

the ice shelf will be imaged, which would create serious sidelobe issues by 



148 
 

conventional processing. So, a step by step method was developed which would take 

into account all the factors regarding the radar system parameters and the experimental 

scenario. The beamforming technique with the 3-D geometry, range migration 

correction requirements, surface curvature correction and sidelobe suppression; all of 

these are sequentially applied to obtain the final image. This algorithm was not only 

successfully applied on the Antarctic ice shelf data, but also on the Greenland ice sheet 

data to visualize the image of the base.    

6.2 Future Works 

   The phase-sensitive radar system requires very rigorous stability in phase. In 

practice, it was observed that the temperature variation within the components in the 

RF chain has effect on eventual range values. 

 

Figure 6.1: Plot of change in range values with respect to the temperature change in the radar 

system 

 The above figure shows the variation in range values when temperature of the radar 

unit is varied. This plot was created by using the data from one of the loop tests with 
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the 240 m cable. In this test, the radar was started from a low temperature (-15o C) and 

was let to operate until it reached around room temperature. A total of 40 bursts were 

recorded along with the radar unit temperature. All the values are for the maximum 

receiver gain setting (i.e. 40 dB). It shows around 1.8 mm range change in range over 

some 35o C temperature swing, 0.05 mm per degree Celsius. Usually, this variation is 

compensated by the time delay error correction and such large temperature variation 

is not common. Still, considering the year-long application of the radar system, such 

extreme condition may occur. As the time delay has a threshold of ±0.75 μs due to 

expected range precision and the maximum range, the correction process will not work 

if the threshold is exceeded. Future researchers can look into this problem and 

development of an internal calibration process within the radar hardware will be a 

good solution (as option for external calibration with respect to some reference may 

not always be available during field experiments in the Antarctica). 

   The developed shape matching algorithm for detecting hidden layers use the shape 

of the basal layer return as reference. This means it will be able to detect a hidden 

target with similar reflection characteristics. Even though this is a valid assumption in 

case of the Antarctic ice shelf data, in extreme case where there are more than one 

internal layers very close to each other, the return signal shape might change. In that 

case, the algorithm may not be able to detect the hidden layer or distinguish between 

one internal layer from the other. Further work can be done to upgrade the algorithm 

which would be able to deal with the non-linear factors arising due to the geophysical 

structure underneath the ice shelf. 

   The vertical error correction method compensates for the antenna spacing errors, but 

there is scope for improving the final image quality. During the modelling of the 

algorithm, it was seen that the target signal strength was around 15 dB higher than the 
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sidelobe. This was good enough during simulation as the modelled basal layer was 

clearly visible. Also, it is expected to provide good results in a relatively low noise 

scenario which is the case in the Antarctica. Further improvement of the sidelobe can 

still be practical, as then it will allow the algorithm to be used in a much noisier 

scenario. 

   In the case of 3-D MIMO imaging, only one range slice was taken as the result was 

supposed to be interpreted on a 2-D plane. As the signal processing results contain 

images of all range slices, a 3-D interpretation method of the whole set can be 

developed. Also, a slice by slice comparison method can be modelled which would 

enable to find out about other features (if present) within the ice shelf. In this way, 

there is opportunity to study the entire ice shelf from surface to base (the volume 

covered by the radar), instead of just the basal layer. By comparing the 3-D data taken 

at different time, the characteristics of the ice between the surface and the base can be 

better understood. It will provide the geoscientists an improved understanding of the 

whole ice shelf underneath the surface. It should be noted that to achieve this, very 

large dataset have to be processed. So, the computational load will be quite heavy 

which should be taken into account. 

   Finally, after the successful operation with the prototype system in the Antarctica, 

the system has been replicated and number of radars have been placed at various ice 

shelves in the Antarctica to obtain data covering the whole year. Processing of a year-

long data will give more in depth knowledge about the melting pattern of the ice 

shelves with respect to the seasonal change in the temperature and the ocean current. 
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Appendix A 

Simulation for MIMO Snow Avalanche Imaging 
    

    Snow avalanches cause significant loss of life around the world. Understanding the 

dynamics of these flows is complex because the majority of the mass is in a thin 

granular layer that is often hidden by a cloud of suspended material. 

   The snow avalanche imaging radar built at UCL was a radar system consisting of 8 

transmitter and 8 receivers. The radar is mounted at the avalanche bunker and looks 

up the path. It has an operating frequency of 5.3GHz which is a long enough 

wavelength to pass through the powder cloud and obtain an image of the denser layers 

of flowing snow beneath. 

   The first idea while the project for upgrading the radar system was to develop an 8x8 

MIMO radar that would create a linear virtual array of 64 elements. There was option 

for using time switching transmitters but it would not have been suitable for imaging 

moving target scenario as avalanche. Hence, for MIMO operation, it was proposed 

that the antennas would transmit coded waveforms. Hence, all the 8 transmitters can 

operate at once. Before hardware implementation, the obvious work was to create a 

simulation of the image processing with the relevant parameters of radar. The main 

concern was the signal leakage due to all antenna elements being switched on at once. 

So, simulation was performed to view the effect of leakage on final image quality. 

   During simulation, Pseudo Random Noise (PN) spreading code was used. A 10000 

point transmit signal was produced by generating a 1000 point random spreading code. 
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It is basically phase coding as the values were randomly either +1 or -1. Then, this 

1000 point code was applied on a sine wave and finally was spread into a 10000 point 

coded signal. All the 8 transmitters had unique codes. In receive side, matched filtering 

(according to the code) was applied to extract signal for every transmitter receiver 

combination. 

 

Figure app.1: Range profile for point target at 1000 metres without any spreading code applied. 

 

 

Figure app.2: Point target image (at 1000 metres range) of a MIMO radar without any spreading 

code applied. 

 

The above two figures demonstrate the results of a point target image without any 

spreading code. Basically, there is no leakage between elements. As it can be seen, the 
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target mainlobe is around 70 dB higher than the sidelobe level, indicating very good 

image quality. 

 

Figure app.3: Range profile for point target at 1000 metres after applying spreading code. 

 
 

 
Figure app.4: Point target image (at 1000 metres range) of a MIMO radar after applying 

spreading code. 

 

The above two figures show the effect of using spreading code signal leakage 

while all array elements are operating at once. It can be seen from the range profile 

that mainlobe is only around 20 dB higher than the sidelobe level and the sidelobe 

level throughout the range is quite visible on the resultant image. Even after the 

matched filtering, the leakage from the other elements attribute to increased sidelobe 

level. It should be noted that this simulation was only performed for a stationary point 
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target. In practical case, the target will be snow avalanche which would be moving 

and distributed. So, it was concluded that MIMO radar development with coded signal 

transmission may become a big risk for snow avalanche imaging as it takes huge 

amount of time and effort to build the hardware. The final decision was to resort to a 

conventional phased array radar development. 
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