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Abstract 

Psychotic disorders, including schizophrenia and bipolar disorder, are amongst the 

most severe and enduring mental illnesses. Recent research has identified several 

genetic variants associated with an increased risk of developing psychosis; however, 

it remains largely unknown how these lead to the illness. This is where 

endophenotypes – heritable traits associated with the illness and observed in 

unaffected family members of patients – could be valuable. Endophenotypes are 

linked to the genetic underpinnings of disorders, and can help elucidate the 

functional effects of genetic risk variants. 

This thesis investigates endophenotypes for psychosis, with the overall aim of 

identify such biological markers, as well as to examine the relationships between 

different endophenotypes and their associations with genetic risk for psychosis. A 

family design has been used throughout, including patients with psychosis, their 

unaffected first-degree relatives, as well as healthy controls. 

In chapter 1, I review the endophenotype approach and those markers proposed for 

psychosis genetic research. Chapters 2 and 3 investigate whether different 

neurophysiological measures are potential endophenotypes for psychosis. In 

chapter 2, resting state EEG was studied and it was shown that risk groups, 

including unaffected relatives and people with an at-risk mental state, presented no 

abnormalities. This suggests that – rather than endophenotypes – the low 

frequency electrophysiological abnormalities seen in chronic patients in this study 

might be related to illness progression or long-term medication effects, and be 

more useful as biomarkers in non-genetic research. 

In chapter 3, I used dynamic causal modelling to investigate effective connectivity – 

the influence that one neuronal system exerts over another – underlying the 

mismatch negativity evoked potential, a marker of pre-attentive auditory 

perception. Results indicate that, compared to controls, both patients and their 
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relatives show abnormalities of the excitability of superficial pyramidal cells in 

prefrontal cortex. Hence, this appears to be linked to the genetic aetiology of 

psychosis, and constitutes a potential endophenotype. 

Chapters 4 and 5 investigate several pre-identified endophenotypes for psychosis: 

Electrophysiological (the P300 event related potential), cognitive (working memory, 

spatial visualisation, and verbal memory), and neuroanatomical (lateral ventricular 

volume). In chapter 4, the associations between these endophenotypes were 

examined. Results showed that the P300 amplitude and latency are independent 

measures; the former indexing attention and working memory and the latter 

possibly a correlate of basic speed of processing. Importantly, individuals with 

psychosis, their unaffected relatives, and healthy controls all showed similar 

patterns of associations between all pairs of endophenotypes, supporting the 

notion of a continuum of psychosis across the population. 

Lastly, in chapter 5, polygenic risk scores – a measure of the combined effect of a 

large number of common genetic risk variants – were used to investigate the 

relationships between genetic risk for schizophrenia and bipolar disorder, and the 

endophenotypes studied in the previous chapter. Results showed that higher 

polygenic score for schizophrenia nominally predicts poorer performance on a 

spatial visualisation task; providing some evidence that the two traits share genetic 

risk variants as hypothesised. No other associations approached significance, 

possibly due to insufficient statistical power. However, as discovery samples grow, 

the use of polygenic scores is promising. 

This thesis has thus contributed to the field of mental health research by 

investigating key electrophysiological, cognitive and imaging endophenotypes for 

psychosis, as well as their genetic influences. Well defined and reliably measured 

endophenotypes are valuable in mental health research by clarifying the functional 

effects of identified genetic risk factors, and by providing ways of identifying groups 

of people with similar abnormalities, both within and between current diagnostic 

categories. 
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 Introduction Chapter 1:

1.1 Psychosis 

Psychotic disorders are amongst the most severe and enduring mental illnesses, 

characterised by a distorted sense of reality; an inability to distinguish subjective 

experiences from objective reality. Disorders where psychosis is commonly 

experienced include, amongst others, schizophrenia, bipolar disorder, and 

schizoaffective disorder. The lifetime prevalence of psychotic illnesses is 

approximately 4% (Bogren et al., 2009; Kendler, 1996; Perälä et al., 2007), and the 

typical age of onset is in adolescence or early adulthood (Messias et al., 2007). 

These disorders are disruptive and often life-long, and associated with great 

personal, familial and societal costs (Knapp et al., 2004; Saunders, 2003; WHO, 

2008). Psychosis is considered amongst the leading causes of disease burden, 

accounting for 2.5% of the total disability-adjusted life years and 4.5% of the total 

years lost due to disability in 15-44 year olds (WHO, 2001). Individuals with 

psychotic illnesses have between 10 and 20 years reduced life expectancy 

compared to the general population, due to both physical health problems and 

suicide (Chang et al., 2011; Hannerz et al., 2001; Healy et al., 2012; Laursen et al., 

2012). 

Psychotic disorders are characterised by significant abnormalities in perception, 

cognition, speech, affect, behaviour, and insight (NICE, 2014) – which leads to a 

range of symptoms such as hallucinations and delusions (i.e. positive symptoms), 
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cognitive deficits, as well as a lack of motivation and interest (i.e. negative 

symptoms) (APA, 2013; Crow, 1981; NIMH, 2009). These symptoms are seen in 

several psychotic illnesses, including schizophrenia and bipolar disorder, and 

although certain features of these illnesses are distinct, there is ample evidence of 

many shared epidemiological and genetic risk factors (Bramon and Sham, 2001; Lee 

et al., 2013; Murray et al., 2004; Smoller et al., 2013). Hence, in this thesis, I will use 

the term ‘psychosis’ to include a broadly defined phenotype, comprising patients 

diagnosed with a psychotic illness – including, but not limited to, schizophrenia, 

bipolar disorder, and schizoaffective disorder. All patients studied here have 

experienced symptoms of psychosis as part of their illness. 

Despite extensive research over the past 20 years, the understanding of the 

aetiology of psychotic disorders remains limited (Jablensky, 2010; Matheson et al., 

2014). Consequently, there is a lack of objective diagnostic tests, and diagnoses are 

today still made based on descriptive clinical criteria (APA, 2013; Insel, 2010; Light 

and Makeig, 2015; WHO, 1992). Furthermore, although current antipsychotic drugs 

often manage positive symptoms, they frequently have distressing side effects 

(Leucht et al., 2012; Staring et al., 2009) and only limited benefits towards negative 

symptoms (Lieberman et al., 2005; NICE, 2014). Hence, there is a pressing need to 

improve our understanding of the biological basis of psychosis, to be able to 

develop treatments that are more effective, as well as better diagnostic tools and 

earlier detection of these illnesses. 

It is well known that psychosis is highly heritable; twin studies show that the 

estimated heritability lies between 60-85% (Cardno and Gottesman, 2000; Smoller 

and Finn, 2003; Sullivan et al., 2003), and population-based studies show around 

65% heritability (Lichtenstein et al., 2009; Wray and Gottesman, 2012). This clearly 

suggests that the aetiology of psychosis is partly due to genetic risk variants (in 

combination, of course, with numerous interacting environmental factors); 

however, unravelling the complex genetics of psychosis has proven more 

challenging than first anticipated (Hardy et al., 2008; Maher, 2008; Manolio et al., 

2009). 
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Nonetheless, with great technological advances and large international 

collaborations, recent research has identified several genetic loci associated with an 

increased risk of psychosis (Doherty et al., 2012; Geschwind and Flint, 2015; Sullivan 

et al., 2012). This includes a large number of common single subunit changes in the 

DNA sequence (i.e. single nucleotide polymorphisms; SNPs) of very small individual 

effects (Lee et al., 2013; Purcell et al., 2009; Ripke et al., 2013, 2014; Sklar et al., 

2011), as well as rare risk factors like structural changes of the DNA (such as copy 

number variants; CNVs) of  larger effects (Green et al., 2015; Grozeva et al., 2011; 

Stefansson et al., 2008; Stone et al., 2008; Walsh et al., 2008; Xu et al., 2008). 

Although efforts are underway (e.g. O’Dushlaine et al., 2015; Ripke et al., 2014), it is 

still largely unknown exactly how these genetic risk factors lead to the illness and 

what mechanisms are involved that lead to an increased risk of developing a 

psychotic illness. An important goal of psychiatric genetic research is therefore to 

clarify the functional effects of the genetic risk variants that have been identified 

(Geschwind and Flint, 2015; Gurung and Prata, 2015; Hall and Smoller, 2010).  

1.2 Endophenotypes  

The use of endophenotypes can help bridge this gap, and has been proposed as an 

alternative solution for increasing the understanding of complex disorders including 

psychosis, by providing intermediate phenotypes potentially linking genetic risk 

variants to the illness (Figure 1-1) (Geschwind and Flint, 2015; Gottesman and 

Shields, 1973; Hall and Smoller, 2010; Wickham and Murray, 1997).  

Gottesman and Gould (2003) defined endophenotypes as heritable traits that are 

associated with the illness, state independent (i.e. observed in an individual 

regardless of whether the illness is active of not), co-segregated with the illness 

within families, and observed in non-affected family members at a higher rate than 

in the general population. Hence, endophenotypes can be considered a subset of 

biological markers that are linked to the genetic underpinnings of disorders 

(Gottesman and Gould, 2003). They are quantitative measures that are objectively 
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and reliably obtained with laboratory-based methods rather than using clinical 

observations (Braff et al., 2007; Glahn et al., 2014). 

 

Figure 1-1. Endophenotypes. 

Endophenotypes are quantitative traits on the pathway between genetic risk 
variants and the disorder.  

These measures are thought to lie on the pathway between genes and behaviours, 

and are potentially a more direct expression of gene effects than the disorder itself 

(Gottesman and Shields, 1973; Light et al., 2014). It was originally proposed that 

endophenotypes might be influenced by fewer genetic variants compared to the 

disorder, and that identifying reliable endophenotypes could facilitate the search 

for risk genes (Gottesman and Gould, 2003). This approach has been successful in 

other complex diseases such as obesity (e.g. Willer et al., 2009), diabetes (e.g. 

Mitchell et al., 2000), as well as in gene identification for alcoholism (Dick et al., 

2006).  

In psychosis, however, endophenotypes have been of little use in identifying novel 

risk genes (Glahn et al., 2014), and it is now clear that the genetic architecture of 
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endophenotypes most commonly studied in psychiatric research – such as 

neuroimaging and cognitive measures – are likely to be just as complex as that of 

the disorder (Davies et al., 2015; de Geus, 2010; Munafò and Flint, 2014; Preston 

and Weinberger, 2005; Walters and Owen, 2007). Indeed, results from the 

Minnesota Twin Family study investigating several psychophysiological 

endophenotypes indicate that these are polygenic in nature, likely involving a large 

number of both common and rare genetic risk variants, similarly to psychiatric 

disorders themselves (Iacono et al., 2014; Malone et al., 2014a, 2014b). However, 

as mentioned above, with several genetic variants now identified that increase the 

risk of developing psychosis, the endophenotype approach can be useful in 

providing insight into the mechanisms linking these genetic risk variants to the 

disorder (Flint et al., 2014; de Geus, 2010; Glahn et al., 2014; Hall and Smoller, 

2010; Iacono et al., 2014; Meyer-Lindenberg and Weinberger, 2006; Munafò and 

Flint, 2014). For example, investigating associations between identified risk genes 

for schizophrenia and endophenotypes, Lencz et al (2010) found an association 

between the ZNF804A gene and brain volume in healthy individuals, and Hall and 

colleagues (2014) saw an association between the TCF4 gene and the P300 event 

related potential in a sample of patients with psychosis and controls. 

Identifying reliable endophenotypes can also help define more homogenous 

subgroups within diagnostic classes, as well as groups of patients with similar 

characteristics across different diagnostic categories (Braff, 2015). This could in 

future lead to an enhanced understanding of the molecular and genetic aetiology of 

disorders, and to improved treatment options (by identifying novel treatment 

targets), as well as to better prediction of treatment outcomes (for both 

pharmacological and psychological treatments), earlier identification of risk groups, 

and improved diagnostic tools (Berrettini, 2005; Braff et al., 2007; Hall and Smoller, 

2010; Preston and Weinberger, 2005). 

Candidate endophenotypes for psychosis include a wide range of measures – the 

most common being neuroanatomical, cognitive and electrophysiological – that 

have been found to be heritable, and abnormal in patients as well as in their 
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unaffected first degree relatives. This includes, for example, changes in grey and 

white matter volumes (Baaré et al., 2001; Hasler et al., 2006; McDonald et al., 

2004), neuropsychological abnormalities of executive functioning, working memory 

and attention (Burdick et al., 2006; Glahn et al., 2004; Horan et al., 2008; Snitz et al., 

2006), as well as neurophysiological measures such as event related potentials 

(Bramon et al., 2005; Ethridge et al., 2015; Hall et al., 2009; Olincy et al., 2010; 

Schulze et al., 2007; Thaker, 2008).  

In this thesis, several of these will be discussed. However, the focus will be on the 

latter, neurophysiological endophenotypes identified using electroencephalography 

(EEG).  

1.3 Electroencephalography (EEG)  

Following on from pioneering work in animals by Richard Caton (1842-1926), the 

human EEG was first recorded in 1924 by the German psychiatrist Hans Berger 

(1873-1941), who described different brain rhythms such as alpha and beta waves, 

as well as the major features of normal, abnormal and sleep EEG (Berger, 1929, 

1969). Since the 1930s, EEG has been key for the clinical diagnoses of seizure 

disorders (Gibbs et al., 1935), and is today still widely used in clinical practice to 

also, for example, monitor sleep disorders and response to anaesthesia (Emerson 

and Pedley, 2012).  

EEG is a direct measure of ongoing electrical brain activity resulting from neuronal 

communication. Since the electrical field quickly becomes weaker over distance, 

scalp electrodes are thought to measure activity originating from cortical neurons 

(Kropotov, 2009; Whittington et al., 2000). Furthermore, the activity of a single 

neuron is too weak to be picked up, so the activity measured by EEG is thought to 

reflect the synchronous activity of thousands or even millions of neurons. 

Specifically, superficial pyramidal cells are thought to be the main generators of 

scalp EEG activity; because these neurons are large with an elongated shape that 

creates an electrical dipole, and they are aligned in parallel to each other, creating 
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an electrical field that can be detected on the scalp. In contrast, the electrical fields 

of spherically shaped dendritic trees of, for example, interneurons will cancel out 

because of the random orientation of the dipoles (Baldeweg and Boyd, 2008; 

Cohen, 2014; David and Friston, 2003; Lopes da Silva, 2013; Luck, 2005). Hence, 

when superficial pyramidal neurons fire synchronously the electrical signal gets 

amplified and can be detected by electrodes on the scalp (see Figure 1-2).  

 

Figure 1-2. Scalp recorded EEG activity. 

Superficial pyramidal cells are thought to be the main generators of scalp 
recorded EEG activity. 

EEG activity is often measured in terms of the amplitude of oscillations at different 

frequencies – ranging from 0 to 100 Hz, commonly grouped into specific bands – or 
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the amplitude and latency of activity that is time and phased locked to a particular 

stimulus (i.e. event related potentials; ERPs). Changes of such measures are 

associated with variations in overall arousal levels, as well as with perceptual and 

cognitive processes (Baldeweg and Boyd, 2008; Buzsaki, 2006). 

Importantly, EEG has excellent temporal resolution. Because electricity travels very 

fast, nearly at the speed of light, the activity recorded at the scalp represents brain 

activity at that moment in time (Cohen, 2014; Luck, 2005). For this reason, EEG is 

well suited to study the rapidly changing neural activity related to human cognition 

(Baldeweg and Boyd, 2008; Phillips and Uhlhaas, 2015). Other advantages of EEG 

include the relative ease with which it is assessed, the cost-effectiveness of the 

technique, and the fact the EEG can be obtained in a wide variety of clinical settings. 

Further, EEG is non-invasive, safe, and well tolerated by most patients (McLoughlin 

et al., 2014; Winterer et al., 2001). Because of these advantages, EEG is well-suited 

for studying brain activity in individuals who might be vulnerable, including 

psychiatric populations, as well as infants (Boutros, 2013; De Haan, 2013; Hoehl and 

Wahl, 2012; Saby and Marshall, 2012). 

A limitation of EEG is its spatial resolution. It is well established that electrical fields 

in the brain do not flow directly upwards but get distorted and spread, and that 

each scalp electrode picks up the summed activity not only from spatially close 

cortical sources, but from nearly every source area in the brain (Baldeweg and 

Boyd, 2008; Light and Makeig, 2015; Luck, 2005). Hence, each pattern of scalp 

activity can originate from a large number of possible sources, making the 

reconstruction of cortical generators difficult. However, with high-density EEG 

recordings and novel analysis methods, there are now ways of reducing this 

problem, and high quality source localisation is now possible with EEG data (Bathelt 

et al., 2014; Cohen, 2014; Michel and Murray, 2012; Phillips and Uhlhaas, 2015). 
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1.4 EEG measures as endophenotypes  

As discussed above, candidate endophenotypes should be reliably measured and 

heritable (Glahn et al., 2014; Gottesman and Gould, 2003). Research has found EEG 

measurements to have strong psychometric properties, with high test-retest (i.e. 

stability over time1) and split-half (i.e. internal consistency) reliabilities (Boyd et al., 

2014; Gudmundsson et al., 2007; Hall et al., 2006; Hämmerer et al., 2013; Kondacs 

and Szabo, 1999; Salinsky et al., 1991). Furthermore, individual differences in EEG 

parameters have been shown to be highly heritable, with estimates of up to 80% 

(van Beijsterveldt and van Baal, 2002; Enoch et al., 2008; Hall et al., 2009; Smit et 

al., 2005).  

Several EEG parameters have been shown to be promising endophenotypes for 

various psychiatric disorders, including psychosis, with measures associated with 

the illness and observed in unaffected relatives of probands. Many of these are not 

specific to diagnostic categories, but common amongst several illnesses. An 

example is the P300 event-related potential, which is elicited using an oddball 

paradigm, where the person is asked to respond to an infrequent target stimuli 

embedded in a series of frequent non-targets. The P300 is thought to reflect 

attention and working memory processes, and is a candidate endophenotype for 

substance use disorder (Euser et al., 2012; Singh and Basu, 2009) as well as for 

psychosis (Bestelmeyer et al., 2009; Bramon et al., 2005; Schulze et al., 2008).  

As mentioned, endophenotypes should be observed in unaffected relatives of 

patients as well as in probands themselves, and to confirm whether this is the case, 

an experimental design including families is thus required. An important aspect of 

this thesis is that the sample studied here includes patients as well as their 

unaffected first degree relatives.  

                                                      
1
 Stability over time is mostly measured across several weeks, or up to 2-5 years. However, there are 

significant ageing effects in EEG measures, with great changes during development and across the 
lifespan (e.g. Kok, 2000; Kügler et al., 1993).  
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It is advantageous to study unaffected family members for several reasons. First, 

since they are related to the patient they have an increased genetic risk for the 

disorder; patients and relatives will share some genetic risk factors that might 

influence the phenotype of interest. It is generally expected that relatives will show 

abnormalities that are intermediate between patients and healthy controls, which 

indicates a genetic basis of that phenotype (Cannon, 2005). Second, and 

importantly, because these individuals are unaffected they are not prescribed 

psychotropic medication. These drugs are known to alter brain function (Goozée et 

al., 2014; Radua et al., 2012), and this significant confounder can thus be eliminated 

by studying unaffected family members of patients. In short, studying unaffected 

relatives of patients allows us to examine the effect of carrying increased genetic 

risk without the confounding effects of the disease itself.  

1.5 Thesis aims and hypotheses 

This thesis aims to identify new psychosis endophenotypes, explore how 

established endophenotypes co-relate and to investigate their genetic influences. 

All studies presented here use EEG to investigate brain function, and all include 

unaffected family members of patients as well as probands themselves. 

There are four specific aims of this thesis, which correspond to four experimental 

chapters. These are: 

i) To investigate whether power of different frequency bands obtained 

during resting state EEG are suitable endophenotypes for psychosis genetic 

research (chapter 2);  

ii) To investigate neural connectivity underlying the mismatch negativity 

event related potential, using dynamic causal modelling, and whether 

these measures qualify as  potential endophenotypes for psychosis 

(chapter 3); 
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iii) To investigate the associations between different endophenotypes for 

psychosis – including electrophysiological, neuroanatomical and 

neurocognitive – and especially to characterise sub-components of the 

P300 event-related potential (chapter 4); 

iv) To investigate the associations between genetic risk for schizophrenia and 

bipolar disorder and several multi-modal endophenotypes for psychosis, 

using polygenic risk scores (chapter 5). 

The following hypotheses will be tested: 

1) Compared to controls, resting state EEG activity of delta and theta activity will 

be increased, alpha activity will be reduced, and beta activity will be altered in 

patients with psychosis and to a lesser degree in at-risk populations. 

2) Compared to controls, both individuals with psychosis and (to a lesser extent) 

their first degree relatives will show altered effective connectivity (specifically, 

the excitability of superficial pyramidal cells) in response to the mismatch 

negativity paradigm. 

3) A range of multi-modal endophenotypes will be associated with each other: (i) 

All cognitive measures will be positively correlated; (ii) higher cognitive 

performance will be associated with larger P300 amplitude and shorter P300 

latency; (iii) larger P300 amplitude will be associated with shorter P300 latency 

and; (iv) larger lateral ventricular volumes will be associated with poorer 

performance on the cognitive tasks and more impaired P300 (reduced 

amplitude and longer latency). 

4) Higher polygenic risk scores for both schizophrenia and bipolar disorder will be 

associated with (i) poorer cognition, (ii) altered brain anatomy (larger lateral 

ventricular volume), and (iii) impaired P300 (reduced amplitude and delayed 

latency). 
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 Resting EEG in psychosis Chapter 2:

– a possible endophenotype? 

2.1 Introduction 

This chapter will investigate resting state EEG activity, aiming to explore whether 

this could act as a potential endophenotype for psychosis. Background EEG 

oscillations have been associated with overall arousal levels, and with perceptual 

and cognitive processing as well as task performance (Baldeweg and Boyd, 2008; 

Finnigan and Robertson, 2011; Kam et al., 2013; Malone et al., 2014a; Stam et al., 

2002). Hence, abnormal resting state EEG activity could lead to disturbances in 

perceptual and cognitive processing and is important to study.  

The human EEG measures the brain’s spontaneous electrical activity, which 

contains signals with a range of frequency bands. The slowest EEG frequencies in 

humans – delta (1-4Hz) and theta (4-8Hz) activity – are important in infancy and 

during deep sleep in adults (Baldeweg and Boyd, 2008; Hong et al., 2012b). The 

functional significance of resting state delta and theta activity in the waking brain is 

not yet fully understood, although it is thought to be a measure of neural inhibition 

(Spironelli et al., 2011). Delta oscillations are also thought to be involved in 

motivation, and have been found to be increased during hunger and sexual arousal 

in healthy individuals, as well as in substance users (Knyazev, 2012). Further, 

increased delta activity has been associated with salience detection and attention. 
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All such processes are thought to be evolutionary old and basic, and in adults who 

are awake, delta and theta oscillations may be overshadowed by higher frequency 

EEG activity associated with higher cognitive functions (Baldeweg and Boyd, 2008). 

This includes alpha activity (8-13Hz), which has been associated with a state of 

relaxation without attention or concentration (Niedermeyer, 1999). Alpha activity is 

the most prominent human EEG rhythm during wakefulness and is best observed 

with eyes closed (Knyazev and Slobodskaya, 2003). With mental activation and 

attention, alpha activity is usually reduced, and higher frequencies such as beta 

oscillations (13-21Hz) become more prominent (Knyazev, 2012). Beta activity is 

seen in most healthy adults, and has been associated with active thinking and 

attention, a focus on the outside world, and problem solving (Niedermeyer, 1999). 

Beta activity is, thus, important in many higher cognitive processes, as well as 

attention, and cognitive integration and communication between spatially distinct 

areas of the brain (Benchenane et al., 2011; Brenner et al., 2003). 

Resting EEG is heritable, with estimates of around 80% (van Beijsterveldt et al., 

1996; Enoch et al., 2008; Malone et al., 2014a; Smit et al., 2005; Tang et al., 2007), 

and psychiatric populations often show subtle alterations of background activity 

compared to healthy controls (Boutros et al., 2008; Hughes and John, 1999). 

Patients with psychosis generally exhibit increased slow wave activity in the delta 

and theta bands and decreased alpha activity (Begić et al., 2011; Galderisi et al., 

2009; Gattaz et al., 1992; Harris et al., 2006; Hong et al., 2012b; Karson et al., 1988; 

Kirino, 2004; Sponheim et al., 1994, 2000; Venables et al., 2009; Winterer et al., 

2001). In terms of resting beta activity, studies have reported both decreased  (John 

et al., 1994) and increased (Begić et al., 2011; Wuebben and Winterer, 2001) 

activity, as well as no abnormalities in patients with psychosis (Hong et al., 2012b; 

Mientus et al., 2002; Sponheim et al., 1994; Winterer et al., 2001). Abnormalities in 

psychosis, furthermore, are not specific to these illnesses, but also observed in 

other psychiatric disorders such as depression and attention deficit disorder (e.g. 

Barry et al., 2003; Begić et al., 2011; Gauthier et al., 2009; Saletu et al., 2010).  
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When it comes to studies investigating resting state EEG activity in populations at-

risk for psychosis, including unaffected family members of patients, relatively little 

research has been conducted and results have been inconsistent and sometimes 

even contradictory. Increased activity of all frequency bands have been observed, 

as well as no alterations compared to controls (Alfimova and Uvarova, 2003; 

Clementz et al., 1994; Hong et al., 2012b; Itil, 1977; Narayanan et al., 2014; 

Venables et al., 2009; Winterer et al., 2001). Hence, although resting EEG activity 

appears to be heritable, and there are abnormalities in patients – particularly of the 

lower frequencies – it is unclear whether resting EEG represents a useful 

endophenotype for psychosis, which speaks to the need for further research in this 

area.  

The aim of this study was to investigate the role resting EEG abnormalities play in 

the aetiology of psychosis, and whether it can provide an endophenotype for the 

illness. Quantitative EEG amplitudes at rest were compared across four frequency 

bands (delta, theta, alpha and beta), between five groups; chronic patients with 

psychosis, first episode patients, individuals at-risk of developing psychosis, 

unaffected relatives of patients, and healthy controls. 

Based on past findings, it was hypothesised that amplitudes in delta and theta 

frequency bands would be increased, and amplitude in the alpha band would be 

reduced, in patients with psychosis as well as in populations at risk, compared to 

healthy controls. In the beta frequency band, no direction of abnormalities was 

predicted. Impairments were predicted to be most severe in patients.  

2.2 Methods 

2.2.1 Sample and clinical assessments 

The total sample of 279 participants was recruited from the South London and 

Maudsley NHS Foundation Trust (including “Outreach and Support in South 

London” and the Lambeth Early Psychosis Intervention service), as well as through 
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collaboration with the charity Re-Think (www.rethink.org), and advertisements in 

the local and national media.  

All participants were clinically interviewed to confirm or exclude a Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; APA, 1994) 

diagnosis. The interview instruments used were the Structured Clinical Interview for 

DSM Disorders (SCID; First et al., 1995) or the Schedule of Affective Disorders and 

Schizophrenia Lifetime Version (SADS-L; Endicott and Spitzer, 1978), and the 

Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987). Information 

regarding psychiatric diagnoses of family members not directly assessed was 

collected from the most reliable informant(s) with the Family Interview for Genetic 

Studies (FIGS; Maxwell, 1992). Additional information was collected from medical 

notes where available. Participants were excluded if they had a diagnosis of alcohol 

or substance dependence in the 12 months preceding study entry, any neurological 

disorders, or head injury with loss of consciousness for more than a few minutes.  

Information regarding ethnicity and education for each participant was collected as 

part of our extensive semi-structured clinical interviews that were conducted by 

trainee or qualified psychiatrists. These measures were thus self-report in nature as 

is common in similar studies, including in previous publications from the group 

(Bramon et al., 2005; Dutt et al., 2011; Schulze et al., 2008; Shaikh et al., 2013). 

The total sample included five groups. At the time of testing, chronic patients 

(N=48) had been ill for more than three years, and first episode patients (N=46) less 

than three years. The cut-off of 3 years reflects the maximum amount of time the 

local Early Intervention Service – where the first episode patients were recruited 

from – followed up their patients. This is comparable to other early psychosis 

research (Saleem et al., 2013; Singh et al., 2011). A full breakdown of the diagnoses 

in these two patient groups can be found in Table 2-1. Individuals with an “at risk 

mental state” (ARMS, N=33) were assessed using criteria in the Comprehensive 

Assessment for At Risk Mental State (Morrison et al., 2006; Yung et al., 2005). In 

this sample, 67% had attenuated psychotic symptoms, 10% brief limited 

intermittent psychotic symptoms (BLIPS), 10% BLIPS and attenuated symptoms, 3% 

http://www.rethink.org/
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genetic risk with a decline in function, and 10% genetic risk with a decline in 

function and attenuated symptoms. 

Unaffected first-degree relatives of chronic patients (N=45) had no personal history 

of any psychosis spectrum illness. Healthy controls (N=107) had no personal or 

family history of any psychotic disorders. Having a personal history of other non-

psychotic psychiatric illnesses did not constitute an exclusion criteria for relatives or 

controls, provided they were well and not taking any psychotropic medication at 

the time of testing and for the preceding 12 months. This was to avoid recruiting 

biased control groups, unrepresentative of the local population. 

After a complete description of the study, all participants gave their written 

informed consent. The study was approved by the Research Ethics Committee at 

the Institute of Psychiatry, King's College London. 

2.2.2 EEG data acquisition 

Resting EEG data was collected using either a 64-channel Synamps or a 40-channel 

Nuamps amplifier and respectively 64 or 40 channel quick caps with sintered 

silver/silver-chloride electrodes, placed according to the International 10/20 system 

(Jasper, 1958). All data were continuously digitised at 1000 Hz, with a 0–200 Hz 

band-pass filter. Electrode impedances were kept below 5 kΩ (Bramon et al., 2008; 

Shaikh et al., 2013).  

For EEG data collected from 40 channels, unipolar electrodes placed on the outer 

canthi of both eyes, and above and below the left eye monitored eye movements. 

Linked ear lobes served as reference, and FPZ was the ground (Frangou et al., 

1997a). For EEG data collected using 64 channels, bipolar vertical and horizontal 

electro-oculographs monitored eye movements. Bilateral mastoids served as 

reference, and AFZ was the ground (Bramon et al., 2008; Shaikh et al., 2012).  

EEG recordings were collected in a quiet room with participants sitting down 

comfortably. They were asked to keep their eyes closed for 20 seconds and then 
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open for 20 seconds, during a total of 5 minutes. Resting EEG data collection was 

followed by other EEG procedures reported elsewhere (e.g. Dutt et al., 2012; 

Schulze et al., 2008; Shaikh et al., 2011). 

2.2.3 EEG data processing 

Signal processing was conducted using Neuroscan 4.3 software and MATLAB. 

Sequential epochs of 2048 ms were created from the continuous EEG files, 

separately for eyes-open and eyes-closed conditions. Automatic artefact detection 

rejected sweeps with activity exceeding ±100 μV (Reinhart et al., 2011). EEG 

amplitude (μV) was calculated using the Fast Fourier Transformation using a 

Hanning window with 10% taper length. To suppress the effect of ocular artefacts, 

only the EEG segments acquired under eyes-closed conditions were included in 

further statistical analyses (Lavoie et al., 2012; Zimmermann et al., 2010). After 

artefact rejection and exclusion of eyes open data, on average 101 seconds 

remained per subject for analysis (mean = 101.20, SD = 29.33). This did not differ 

between groups.  

Amplitude was analysed for four individual segments of the EEG spectrum; delta 

(1.95–3.90 Hz), theta (4.39–7.32 Hz), alpha (8.30–12.70 Hz), and beta (13.20–21.00 

Hz). These frequency bands are typical of similar research (Boutros et al., 2008), 

except that frequencies above 21 Hz were not analysed. This was due to 

accumulating evidence that frequencies above 21 Hz can still be substantially 

contaminated by scalp electromyogram activity (EMG), even after rejection of large 

EMG bursts (Nottage et al., 2013; Shackman et al., 2010; Whitham et al., 2007). 

For data-reduction purposes (to minimize type I error), only the three midline EEG 

channels, frontal (FZ), central (CZ), and parietal (PZ), were chosen for statistical 

analysis (Harris et al., 2006). 
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2.2.4 Statistical analysis 

Mixed effects linear regression models were used to examine EEG amplitude (log 

transformed to ensure normality), separately for each frequency band, with fixed 

effects of clinical group and scalp site, and random effects of family and subject. 

Hence, correlations between members of the same family were modelled, to 

maintain correct type 1 error rates. The dependent variable was EEG amplitude at 

each of the four frequency bands (delta, theta, alpha, and beta). The independent 

variables were participant group – a between-subjects variable with five levels 

(chronic patients, first episode patients, ARMS, relatives, and controls), and region – 

a within-subjects variable with three levels (FZ, CZ, and PZ). Age and gender were 

controlled for (as nuisance regressors) in all analyses. Since EEG data were collected 

using two different laboratories, due to an upgrade of the EEG equipment, this was 

also controlled for by including a binary regressor in the analysis. The control group 

and FZ were used as reference categories in all inferential tests. 

A Bonferroni correction for four tests (delta, theta, alpha, and beta frequency 

bands) was applied, with the significance threshold thus set to p = 0.05/4 = 0.0125. 

Statistical analyses were performed using STATA version 11.2 and SPSS version 17.1. 

2.3 Results 

2.3.1 Sample characteristics 

Demographic data for the entire sample is provided in Table 2-1. T tests showed 

that each group differed significantly from the control group in mean age, with the 

chronic patients and relatives being older (both groups p<0.001), and the first 

episodes and at-risk mental state (ARMS) individuals being younger (p<0.001) than 

controls. Chi square tests indicated that there were significantly more males in the 

first episode group in comparison to the control group (p=0.05). No other group 

differed in gender distribution compared to controls. To control for any age or 

gender effects on the resting EEG, these effects were included as covariates in all 
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analyses. As described in Table 2-1, the majority of chronic and first episode 

patients were taking antipsychotic medication at the time of testing, whereas the 

relatives, ARMS and controls were free of any psychotropic medication at the time 

of testing.  

The mean EEG amplitudes (μV) for each group, in the four frequency bands, are 

shown in Table 2-2. Correlations between EEG amplitude in the four frequency 

bands and the three scalp sites were all significant, with correlation coefficients 

ranging between 0.28 and 0.99 (see Appendix A). Nevertheless, all analyses were 

adjusted for multiple testing (4 tests). 

Most participants (first episodes, ARMS, and controls) were recruited individually, 

but the chronic patients and their relatives were recruited as part of a family study. 

Of the 279 participants, 174 (62.37%) were singletons, 72 (25.81%) were part of 

families with two members in the study, 21 (7.53%) were in three-person families, 

and 12 (4.30%) were part of families with four members participating. 
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Table 2-1. Sample demographics (N=279). 

 
Chronic 
patients 

First 
episode 
patients 

“At-risk 
mental 
state” 

Relatives Controls 

N (%) 
48  

(17.2%) 
46  

(16.5%) 
33  

(11.8%) 
45  

(16.1%) 
107  

(38.4%) 

Age (mean years ±SD) 41.8 ±11.3 25.0 ±3.9 23.8 ±4.0 48.8±16.1 31.6 ±13.3 

Statisticsa 
t=-4.6 

p<0.001 
t=4.7 

p<0.001 
t=5.4 

p<0.001 
t=-6.3 

p<0.001 
- 

Gender (% female) 35.4% 30.4% 39.4% 55.6% 48.6% 

Statisticsa 
χ2=2.3 
p=0.16 

χ2=4.3 
p=0.05 

χ2=0.9 
p=0.43 

χ2=0.6 
p=0.48 

- 

Diagnoses (N, %)      
Schizophrenia 33 (68.8%) 12 (26.1%) - - - 
Schizoaffective disorder 8 (16.7%) 1 (2.2%) - - - 
Brief psychotic disorder 1 (2.1%) - - - - 
Schizophreniform 
psych. 

- 26 (56.5%) - - - 

Bipolar I Disorder 5 (10.4%) 4 (8.7%) - - - 
Psychotic disorder NOS 1 (2.1%) 3 (6.5%) - - - 
ARMS - - 33 (100%) - - 
Depressive illness - - 9 (27.3%) 17 (37.8%) 7 (6.5%) 

Anxiety disorder - - 3 (9.1%) 5 (11.1%) - 
Substance Abuse - - 4 (12.1%) - 1 (0.1%) 
Personality Disorder - - 2 (6.1%) - - 
No psychiatric illness - - - 23 (51.1%) 99 (92.5%) 

Medication (N, %)b      
No psychotropic 
medication 

5 (10.4%) 6 (17.1%) 
33  

(100%) 
45  

(100%) 
107 

(100%) 
Amisulpiride 5 (10.4%) 1 (2.9%) - - - 
Aripiprazole 4 (8.3%) 5 (14.3%) - - - 
Clozapine 7 (14.6%) - - - - 
Flupentixol 4 (8.3%) - - - - 
Olanzapine 14 (29.2%) 10 (28.6%) - - - 
Quetiapine 3 (6.3%) 1 (2.9%) - - - 
Risperidone 5 (10.4%) 11 (31.4%) - - - 
Other antipsychotic 9 (18.8%) 1 (2.9%) - - - 
Lithium or Sodium 
Valproate 

9 (18.8%) 6 (17.1%) - - - 

Antidepressant 17 (35.4) 4 (11.4%)    

Education  
(mean years ±SD)c 12.9 ± 2.2 14.4 ± 2.9 14.1 ± 3.1 12.5 ± 2.2 14.4 ± 2.6 

Ethnicity (N, %)      
Caucasian 44 (91.7%) 8 (17.4%) 20 (60.6%) 43 (95.6%) 76 (71.0%) 
African/Caribbean 2 (4.2%) 30 (65.2% 8 (24.2%) 1 (2.2%) 25 (23.5%) 
Other/Mixed 2 (4.2%) 8 (17.4%) 5 (15.2%) 1 (2.2%) 6 (5.6%) 
SD = Standard Deviation; ARMS = At risk mental state; NOS = not otherwise specified; 

a
 t-tests for 

age and χ
2
 tests

 
for gender, each group compared against controls; 

b
 Data available for 76.1% of 

first episode group, % of those with information available reported; 
c
 Data available for 78.9% of 

the total sample. 
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Table 2-2. Average resting EEG amplitudes.  

  
Chronic 
patients 

First episode 
patients 

At risk 
mental state 

(ARMS) 

Unaffected 
relatives 

Controls 

Delta 9.03 ± 2.63 8.08 ± 2.34 8.29 ± 2.05 7.17 ± 1.65 8.00 ± 1.94 

Theta 12.10 ± 5.28 9.57 ± 3.72 9.38 ± 3.29 8.49 ± 3.24 8.95 ± 2.81 

Alpha 8.57 ± 3.04 8.78 ± 4.44 8.60 ± 5.06 7.51 ± 3.84 8.95 ± 4.13 

Beta 11.73 ± 3.49 9.21 ± 3.30 10.23 ± 3.65 11.23 ± 5.46 10.56 ± 3.35 

Average resting EEG amplitudes (micro volts ± standard deviations) across FZ, CZ and PZ, for all 
participant groups and frequency bands, uncorrected for covariates. 

2.3.2 Mixed effects linear regression 

Four mixed effects linear regression models were analysed, see Table 2-3 and Figure 

2-1. In the delta band, chronic patients had on average 0.208 μV greater amplitude 

than controls, which was statistically significant (p<0.001). No other group differed 

significantly from the control group in resting delta EEG amplitude. In the theta 

frequency band chronic patients had significantly greater resting amplitude 

compared to controls (p<0.001), with a 0.368 μV average increase in amplitude. No 

other group differed significantly from the controls in resting theta activity. 

In the alpha and beta frequency bands, the control group did not differ significantly 

from any other group in resting EEG amplitude. Full details of these results, 

including main effects of covariates, can be found in Appendix A. Importantly, the 

effect of the two different EEG laboratories used for data collection was not 

significant in any frequency band, justifying pooling the two datasets in one 

analysis. 
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Table 2-3. Linear regression results. 

Delta frequency band 

Controls vs. β p-value 95% confidence interval 

Unaffected Relatives 0.001 0.746 -0.033 0.046 

“At-Risk Mental State”  -0.011 0.621 -0.053 0.032 

First Episode Patients 0.005 0.800 -0.034 0.044 

Chronic Patients 0.082 <0.001 0.045 0.119 

Theta frequency band 

Controls vs. β p-value 95% confidence interval 

Unaffected Relatives 0.013 0.637 -0.044 0.072 

“At-Risk Mental State”  0.004 0.891 -0.056 0.064 

First Episode Patients 0.012 0.679 -0.044 0.067 

Chronic Patients 0.136 <0.001 0.083 0.190 

Alpha frequency band 

Controls vs. β p-value 95% confidence interval 

Unaffected Relatives -0.026 0.486 -0.100 0.048 

“At-Risk Mental State”  -0.045 0.254 -0.122 0.032 

First Episode Patients 0.008 0.829 -0.063 0.079 

Chronic Patients 0.035 0.310 -0.034 0.104 

Beta frequency band 

Controls vs. β p-value 95% confidence interval 

Unaffected Relatives 0.034 0.232 -0.022 0.089 

“At-Risk Mental State”  -0.022 0.457 -0.079 0.034 

First Episode Patients -0.013 0.644 -0.066 0.041 

Chronic Patients 0.062 0.018 0.010 0.113 
Mixed effects linear regression models on log transformed amplitudes with group (patient, 
relative, controls) and scalp site (FZ, CZ, PZ) as fixed effects, and family and subject as random 
effects. Covariates of age, gender and EEG laboratory included.  
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Figure 2-1. Resting EEG amplitudes. 

Estimated mean resting EEG amplitudes (log transformed) with 95% confidence 
intervals, in the four frequency bands and the five participant groups. Adjusted for 
covariates of age, gender and EEG laboratory. 

Since a broad definition of psychosis was used in this study, the analyses were 

repeated using a narrow definition of schizophrenia and schizophreniform 

psychosis, to investigate whether this would affect the results. Patients were 

excluded is they had a diagnosis of schizoaffective disorder, brief psychotic disorder, 

bipolar I disorder, and psychotic disorder not otherwise specified (15 chronic and 8 

first episode patients), as well as their relatives (14). These analyses led to results 

very similar to those using the full dataset, and have not been reported further. 

To further investigate potential differences in resting EEG between the groups, the 

4 regression models were repeated post-hoc, using the chronic patient group as the 

reference category. This did not change the overall conclusions, and results are 

presented in Appendix A.  
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2.4 Discussion 

The aim of this study was to compare EEG activity at rest in four frequency bands, in 

patients with psychosis, two populations at-risk of the disease, and healthy controls, 

to investigate whether these measures could be used as possible endophenotypes 

for the illness. The a-priori hypotheses were partly supported; chronic patients 

showed significantly increased resting delta and theta activity compared to healthy 

controls. However, first episode patients, individuals with an at-risk mental state 

(ARMS), and unaffected relatives of chronic patients did not differ from controls in 

these frequencies. Furthermore, there were no significant group differences in 

resting alpha or beta EEG activity. 

Increased slow wave resting EEG activity in delta and theta bands in chronic 

patients with psychosis appears to be well replicated across studies (Begić et al., 

2011; Boutros et al., 2008; Galderisi et al., 2009; Harris et al., 2006; Hong et al., 

2012b; Kim et al., 2015b; Kirino, 2004; Narayanan et al., 2014; Omori et al., 1995; 

Sponheim et al., 2000, 1994; Winterer et al., 2001), and supported by these current 

results. However, this study did not find any significant differences in delta or theta 

resting activity between the control group and first episode patients or at-risk 

populations (including both clinically at-risk and genetically predisposed groups). 

Previous studies on such groups are limited, with inconclusive findings. 

Abnormalities similar to chronic patients have been observed in first episode 

patients (Clementz et al., 1994; Sponheim et al., 1994), ARMS (Gschwandtner et al., 

2009) and unaffected relatives (Alfimova and Uvarova, 2003), but several studies 

have also failed to show abnormalities in these populations (Harris et al., 2006; 

Winterer et al., 2001; Wuebben and Winterer, 2001). John et al (1994) found, 

similarly to current results, that chronic but not first episode schizophrenic patients 

had increased delta and theta resting activity. 

In comparison to the slower frequencies, less research has been conducted on 

resting alpha EEG activity in psychosis. As in this study, Mientus et al. (2002) 

reported no evidence of alpha impairments in patients. However, several previous 
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studies on resting alpha have found a decrease in activity in psychotic patients 

compared to healthy controls (Begić et al., 2011; Harris et al., 2006; Omori et al., 

1995; Sponheim et al., 2003). Reduced alpha activity has been associated with 

negative symptoms of schizophrenia (Merrin and Floyd, 1996), although the clinical 

significance of altered alpha activity is not well understood (Sponheim et al., 2000). 

Similarly to delta and theta EEG activity, abnormalities in alpha activity are not 

specific to psychosis, but commonly found in other disorders, for example in 

depression (Begić et al., 2011). 

One potential reason for the lack of significant findings in this study might be that 

alpha activity is most prominent during eyes closed, and here participants were 

asked to keep their eyes open for 20 seconds, then closed for 20 seconds, and this 

was repeated during 10 minutes. This approach was taken to prevent participants 

from falling asleep during the experiment. Previous studies finding reduced alpha 

activity (Begić et al., 2011; Harris et al., 2006; Omori et al., 1995; Sponheim et al., 

2003) asked participants to keep their eyes closed for the duration of the recording. 

This difference in methodology might explain our lack of findings in the alpha band. 

Future studies should investigate this further by conducting resting EEG 

experiments in large samples, including at-risk populations, and using methodology 

fully comparable to past findings.  

In the beta frequency band, no significant group differences were found in resting 

EEG activity. However, a slight increase of activity was observed in chronic patients 

compared to controls (not reaching significance after correction for multiple 

testing), and post-hoc comparison between chronic and first episode patients 

revealed a slight increase of beta activity in the former group. Together this might 

indicate an abnormality in chronic psychotic patients, although more research is 

needed to confirm if this is the case. Whereas negative symptoms of psychosis have 

been largely associated with slow wave EEG activity, positive symptoms may be 

closer related to fast wave beta activity (Lavoie et al., 2012). Beta activity is thought 

to be involved in the synchronisation of activity of spatially distant brain regions; in 

functional connectivity (Whittington et al., 2011). Further, beta activity is thought to 
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be involved in a range of cognitive functions that are known to be impaired in 

psychotic disorders, such as attention, memory, and primary sensory processing 

(Kwon et al., 1999; Whittington et al., 2011). 

The literature on resting beta activity in psychosis is inconsistent, with several 

studies reporting no resting beta abnormalities in psychotic patients (Hong et al., 

2012b; Mientus et al., 2002; Sponheim et al., 1994; Winterer et al., 2001), although 

both decreased (John et al., 1994) and increased (Begić et al., 2011; Wuebben and 

Winterer, 2001) activity has also been observed. Finally, this study did not find any 

differences in beta amplitude between controls and first episode patients or at-risk 

populations. Past research on such populations has also largely failed to find 

significant impairments in these groups (Harris et al., 2006; Hong et al., 2012b; 

Sponheim et al., 1994; Winterer et al., 2001).  

Taken together, the current results did not show any statistically significant 

differences in resting EEG activity of any frequency band between controls and first 

episode patients or at-risk populations, including ARMS and unaffected relatives of 

patients with psychosis. This indicates, as also argued by Winterer et al. (2001), that 

low frequency EEG abnormalities seen in chronic psychotic patients are likely 

related to the illness process, or to long-term effects of treatments, rather than to 

genetic risk for the disorder. Hence, resting EEG activity (of the four frequency 

bands examined) does not appear to be promising candidate endophenotypes for 

genetic research in psychosis.  

Nevertheless, low frequency resting EEG abnormalities, in the delta and theta 

bands, were observed in chronic psychotic patients compared to healthy controls. 

Increased low frequency activity has been linked to negative symptoms of psychosis 

(Lavoie et al., 2012), as well as to cognitive deficits (Spironelli et al., 2011). It has 

been hypothesised that an increase in slow wave activity in psychosis could reflect a 

lack of motivation and anhedonia (Knyazev, 2012), since this type of brain activity 

has been shown to be important in such information processing in healthy 

individuals (Hong et al., 2012b; Knyazev, 2012).  
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This could then be a useful biomarker in non-genetic research, perhaps 

investigating chronicity of the illness or cognitive deficits characterising psychosis, 

which are often associated with an enduring illness (Hyman and Fenton, 2003; Insel, 

2010), or research into prediction of medication-responses. More research is 

needed to investigate this. 

From an aetiological perspective, these findings of increased low frequency activity 

(and previous reports of similar abnormalities) are consistent with recent 

theoretical treatments of psychosis as false perceptual inference (Adams et al., 

2013; Fletcher and Frith, 2009). In this formulation, acute psychotic symptoms are 

regarded as a compensation for a failure of sensory attenuation. In other words, 

psychotic symptoms arise due to assigning too much salience or precision to high 

level representations to compensate for precise sensory (low level) inputs (c.f., 

aberrant salience; Howes and Kapur, 2009). In this setting, negative symptoms or 

chronic states are seen as a decompensation, with a relative loss of precision at 

higher levels of the neuronal hierarchy. In this context, precision corresponds to the 

post-synaptic gain of pyramidal cells reporting prediction errors in hierarchical 

predictive coding (Adams et al., 2013; Bastos et al., 2012). This is important because 

a decrease in postsynaptic gain or efficacy leads to a preponderance of lower 

frequencies relative to higher frequencies in endogenous or resting state activity 

(Kilner et al., 2005). In short, the chronic group in this sample may be evidencing 

reduced synaptic gain at higher hierarchical levels and a shift in the characteristic 

frequencies of neuronal fluctuations to lower frequencies. Whether this is a primary 

aetiological factor, a characteristic part of the disease process, or a response to 

medication remains an open question. 

Importantly, since antipsychotic drugs cross the blood–brain barrier and influence 

many parameters of brain function (e.g. Joutsiniemi et al., 2001; Knott et al., 2001), 

it is possible that these medications contribute or lead to resting EEG abnormalities 

observed in psychotic patients. In fact, several studies have found that the use of 

antipsychotic medication, especially clozapine, might lead to a slowing in the EEG 

signal, with increased low frequency (delta and theta) activity (Centorrino et al., 
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2002; Hubl et al., 2001; Hyun et al., 2011; Joutsiniemi et al., 2001; Knott et al., 

2001). This could be an important confounder in these current findings, suggesting 

that true illness-related effects on resting EEG are nuanced by medication. 

However, it has also been argued that antipsychotics are unlikely to account for EEG 

abnormalities seen in chronic patients, since such alterations have also been found 

in unmedicated patients (Boutros et al., 2008; Kim et al., 2015b; Merrin and Floyd, 

1996; Omori et al., 1995; Wuebben and Winterer, 2001). Since both the chronic and 

the first episode patient groups were medicated in the current sample, medication 

effects alone do not appear to fully explain why no abnormalities were observed in 

the latter group. Nevertheless, with my cross-sectional design it is difficult to 

disentangle true illness effects form effects of medication, and it is possible that the 

long-term effect of treatment is a confounding factor when interpreting these 

results. The effects of antipsychotic drugs on resting EEG activity need further 

investigation in longitudinal studies. However, such studies are very difficult to 

conduct since it is difficult to obtain EEG recordings from unmedicated patients who 

are often agitated and anxious. To delay treatment to allow EEG testing would have 

obvious ethical and practical challenges, and be hard to conduct, especially in the 

UK where patients are treated rapidly and efficiently.  

Important considerations of statistical power need to be acknowledged. 

Calculations of effect sizes are hampered by the few studies available looking at 

populations at-risk of developing psychosis. Deficits in such populations are likely to 

be subtler than those in chronic patients. This has been shown to be true for, for 

example, the P300 event related potential (ERP) peak amplitude (Bramon et al., 

2005) and the error-related negativity ERP (Simmonite et al., 2012), and 

electrophysiological measures of cortical inhibition (Hasan et al., 2012). 

Furthermore, only a minority of individuals with an at-risk mental state will go on to 

develop psychosis (Fusar-Poli et al., 2012a; Morrison et al., 2012; Simon et al., 

2011), making abnormalities in this population difficult to detect. This was clearly 

observed in a study by Bodatsch et al. (2011) where only at-risk individuals who 

later converted to psychosis showed EEG abnormalities compared to healthy 

controls, whereas, similarly to these findings, the overall at-risk group did not differ 
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from controls. Hence, it may be assumed that effect sizes for possible resting EEG 

abnormalities in at-risk populations are smaller than those in patients. This, in turn, 

suggests that the current study might have been underpowered to detect true yet 

subtle differences between healthy controls and at-risk groups. Furthermore, this 

might also be true for previous studies investigating resting state EEG in at-risk 

populations, and it can be argued that findings of no abnormalities in such groups 

should not be interpreted as true until further research has been conducted. Future 

studies should address this issue by including large samples of individuals at-risk, 

including unaffected relatives, and by including comprehensive power calculations 

prior to conducting the study. At risk individuals are not easy to recruit and mega-

analyses and meta-analyses offer a solution to increase sample sizes and integrate 

the growing number of small studies available. 

In conclusion, the aim of this study was to characterise resting EEG oscillations in 

psychosis and populations at risk for this disease and particularly, whether such 

measures could act as endophenotypes for the illness. These results provide 

evidence that chronic psychotic patients exhibit resting EEG abnormalities in low 

frequencies. However, no abnormalities were observed in first episode patients or 

at-risk populations, suggesting that resting EEG activity is not likely to be related to 

genetic risk for the illness. Instead, abnormalities observed in chronic patients may 

be related to the illness process, or to long-term effects of treatment. Hence, results 

from this study indicate that resting EEG activity is not an appropriate candidate 

endophenotype for genetic research in psychosis, although low frequency activity 

could be a potential biomarker for non-genetic research, for example as prognostic 

or medication-response predictors. 
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 Effective connectivity Chapter 3:

underlying the mismatch negativity – 

a psychosis endophenotype? 

3.1 Introduction   

This chapter will investigate brain connectivity underlying the mismatch negativity 

(MMN) event related potential and whether this could act as an endophenotype for 

psychosis. The MMN is a pre-attentive brain response to a discriminable change in 

auditory stimulation (Duncan et al., 2009; Näätänen, 1992; Todd et al., 2013; 

Umbricht et al., 2005). Reduced MMN amplitude is one of the most reliable findings 

in schizophrenia research, and since the first publication by Shelley et al (1991) over 

100 papers have commented on this reduced amplitude (e.g. Baldeweg and Hirsch, 

2015; Shaikh et al., 2012; Todd et al., 2013), with a mean effect size of 0.99 

(Umbricht et al., 2005). The MMN is abnormal in clinical risk groups as well as in 

patients, and is a promising biomarker for psychosis prediction (Bodatsch et al., 

2014; Nagai et al., 2013). Furthermore, the MMN has been proposed as a potential 

endophenotype, because it is heritable (Hall et al., 2006, 2009; Hong et al., 2012a), 

and abnormal in first degree relatives of patients, who have an increased genetic 

risk for psychosis (Jessen et al., 2001; Michie et al., 2002). However, not all studies 

in unaffected relatives have found MMN abnormalities (Bramon et al., 2004; Hong 

et al., 2012a; Kim et al., 2014). 



Page | 50  

 

Most previous studies of the MMN use classical EEG analysis methods that 

investigate the observed amplitude of the event related potential at the sensor 

level. However, abnormal functional integration among brain regions, or 

‘dysconnection’, has been proposed as a core pathology of psychosis (Friston, 1998; 

Stephan et al., 2006). Motivated by this hypothesis, the MMN was investigated in 

terms of the underlying neuronal connectivity. Dynamic causal modelling (DCM) 

was used, which explains EEG data using a hierarchical network of dynamically 

coupled sources, and estimates effective connectivity – the influence that one 

neuronal system exerts over another – using Bayesian model comparison and 

inversion (David et al., 2006; Friston et al., 2003). Several previous DCM studies 

have found abnormal effective connectivity in psychosis, both using EEG/MEG 

(Dima et al., 2010, 2012; Fogelson et al., 2014; Roiser et al., 2013) and fMRI 

methods (Crossley et al., 2009; Deserno et al., 2012; Dima et al., 2009; Mechelli et 

al., 2007; Schmidt et al., 2014). However, this was the first DCM study investigating 

the MMN paradigm in patients as well their unaffected relatives, with a view to 

examine whether abnormal effective connectivity (and its modulation) could act as 

an endophenotype for psychosis. 

The hypothesis is based on current theories of psychosis that implicate the 

neuromodulation of postsynaptic excitability, or cortical gain control (Harrison et 

al., 2011; Lisman et al., 2008; Phillips and Silverstein, 2013; Stephan et al., 2006). 

The most ubiquitous neurotransmitter receptor involved in gain modulation is the 

glutamatergic N-methyl-D-aspartate receptor (NMDA-R), which is expressed more 

densely in superficial cortical layers (Friston, 1998; Gonzalez-Burgos and Lewis, 

2012; Lakhan et al., 2013). NMDA-R hypofunction is known to be associated with 

psychosis; it is for example well established that NMDA-R antagonists such as 

ketamine or phencyclidine produce psychotomimetic symptoms in healthy 

individuals and worsen symptoms in patients with schizophrenia (Gilmour et al., 

2012; Javitt and Zukin, 1991; Kantrowitz and Javitt, 2010; Krystal et al., 1994; Lahti 

et al., 1995; Malhotra et al., 1996; Pilowsky et al., 2006). Recent genetic association 

studies also implicate the NMDA-R and its post-synaptic signalling cascade in the 

disorder (Purcell et al., 2014; Ripke et al., 2014). Furthermore, the hypofunctioning 
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of NMDA-Rs on inhibitory GABAergic interneurons is also thought to contribute to a 

loss of balance between excitation and inhibition, which has been implicated in the 

neuropathology of psychosis (Gonzalez-Burgos and Lewis, 2012). Lastly, reduced 

MMN amplitudes have been observed in healthy volunteers after NMDA-R 

blockade, for example by administration of ketamine (Javitt et al., 1996; Näätänen 

et al., 2012; Schmidt et al., 2012a; Umbricht et al., 2000). From a theoretical 

perspective, this loss of gain control or excitation-inhibition balance fits comfortably 

with hierarchical predictive coding models of psychosis and false inference – that 

rest on the abnormal encoding of uncertainty or precision by the gain of (superficial 

pyramidal) cells reporting prediction errors (Adams et al., 2013). 

Given the prominence of NMDA-Rs in superficial cortical layers, it is unsurprising 

that the gain of superficial pyramidal cell populations is strongly affected by NMDA-

R function (Fox et al., 1990; Pinotsis et al., 2014). In DCM, this gain is parameterized 

as the inhibitory self-connectivity (or ‘intrinsic connectivity’) of superficial pyramidal 

cells within a cortical source (Friston, 2008). The aim of this study was to investigate 

group differences in MMN responses of patients with psychosis, their unaffected 

relatives, and healthy controls, and test whether these are best explained by 

modulations of synaptic gain at different levels of the cortical hierarchy. It was 

hypothesised that – compared to controls – both individuals with psychosis and (to 

a lesser extent) their first degree relatives would show abnormal cortical gain 

control.  

3.2 Methods  

3.2.1 Sample and clinical assessment 

The total sample of 84 participants included 24 patients with a psychotic illness 

(75% schizophrenia, no comorbid diagnoses; see breakdown in Table 3-1), 25 

unaffected first degree relatives of psychosis sufferers (without any personal history 

of a psychotic illness), and 35 unrelated controls (without any personal or family 

history of psychotic illnesses).  
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A personal history of non-psychotic psychiatric illnesses did not constitute an 

exclusion criterion for relatives or controls, provided they were well and not taking 

any psychotropic medication at the time of testing and for the preceding 12 

months. This was to avoid recruiting biased control groups, unrepresentative of the 

general and local populations. 3 relatives (12%) and 1 control (3%) had a history of 

major depressive disorder. 

Patients with psychosis and relatives were recruited through voluntary 

organisations, advertisements in the local press and from clinical teams at the South 

London and Maudsley NHS Foundation Trust. Controls were recruited by 

advertisements in the local press and job centres. Participants were excluded if they 

had a diagnosis of alcohol or substance dependence in the last 12 months, 

neurological disorders, or a previous head injury with loss of consciousness longer 

than a few minutes.  

All participants were clinically interviewed to confirm or exclude a Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; APA, 1994) 

diagnosis. Instruments used included the Schedule for Affective Disorders and 

Schizophrenia – Lifetime version (SADS-L; Endicott and Spitzer, 1978) and the 

Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987). Information 

regarding psychiatric diagnoses of family members not directly assessed was 

collected from the most reliable informant(s) with the Family Interview for Genetic 

Studies (FIGS; Maxwell, 1992). 

All participants gave informed written consent to participate, and the study was 

approved by the Institute of Psychiatry Research Ethics Committee, conforming to 

the standards set by the Declaration of Helsinki. This sample is part of the larger 

Maudsley Family Study of Psychosis (e.g. Dutt et al., 2012; Ranlund et al., 2014; 

Schulze et al., 2008; Shaikh et al., 2013). 
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3.2.2 EEG data acquisition  

Electroencephalogram (EEG) was collected from 17 scalp sites according to the 

10/20 International system (FP1, FP2, F7, F8, F3, F4, C3, C4, P3, P4, FZ, CZ, PZ, T3, 

T4, T5, T6), grounded at Fpz using silver/silver-chloride electrodes (Jasper, 1958). 

Vertical, horizontal, and radial electro-oculographs monitored eye movements, and 

the left ear lobe served as reference. Data were continuously digitised at 500 Hz 

with a 0.03–120 Hz band-pass filter (24 dB/octave roll-off). Impedances were kept 

below 5kΩ (Bramon et al., 2004, 2005).  

3.2.3 MMN paradigm 

This was a duration-deviant auditory two tone paradigm. The stimuli were 1200 

tones (80 dB, 1000 Hz, 5 ms rise/fall time), with a 300 ms inter-stimulus interval, 

presented in three blocks of 400 stimuli through bilateral intra-aural earphones. 

85% of the tones were “standards” (25 ms duration), and 15% were “deviants” (50 

ms duration). Participants were sitting comfortably in an armchair, and were 

instructed to keep their eyes open, fixate on a point in front of them, and disregard 

the sounds presented. The total duration of the experiment was about 10 minutes 

(Hall et al., 2009; Shaikh et al., 2012). 

The classical group comparisons of the MMN amplitude in this sample have been 

reported in a previous study (Bramon et al., 2004). Here a new analysis of effective 

connectivity during the MMN task was conducted. 

3.2.4 EEG data pre-processing 

Signal processing was conducted using SPM 12b (Litvak et al., 2011) and FieldTrip 

(Oostenveld et al., 2011) in MATLAB R2013b.  

The raw EEG data were converted to SPM format, and re-referenced to the 

common average. A high-pass filter of 0.5 Hz was applied, followed by a low-pass 70 

Hz filter. A stop-pass (49-50 Hz) filter was also applied, to remove line noise. The 
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data were then downsampled to 200 Hz, and epoched with a peristimulus window 

of -100 to 300 ms. Baseline correction was performed using the 100 ms before 

stimulus onset. 

Independent Component Analysis was used to correct for ocular artefacts in the 

data, and the EEG activity was decomposed into 17 independent components. 

When inspecting the ICA components for each participant, more than 2 that clearly 

corresponded to eye movements were not observed for any subject. For the 

majority of participants, 1 component was rejected, and for 8 participants (9.5%), 

two components were rejected. Additional automatic artefact rejection was then 

conducted, removing any trials whose activity exceeded ±70 μV across all channels. 

This resulted in an average of 45 trials (3.7%) being rejected per participant, which 

did not differ between the three groups (F(2,81)=1.1, p=0.3). 

The EEG data were then averaged using robust averaging in SPM. This procedure 

produces the best estimate of the average by weighting data points as a function of 

their distance from the sample mean, so that outlier values have less influence on 

the overall mean (Wager et al., 2005). This was followed by an additional low-pass 

filter of 70 Hz, as recommended with robust averaging (Litvak et al., 2011).  

The grand average event related potential waveforms across subjects were 

computed for patients, relatives and controls separately. The use of grand average 

waveforms ensures cleaner (almost noiseless) data for each group and condition. 

Grand averages retain features that are conserved within groups, and suppress 

individual differences (Fogelson et al., 2014). These grand averages constitute 6 

event related potentials – one for each group and stimulus condition (standard and 

deviant tones) – that were characterised in the subsequent DCM analysis. 

3.2.5 Dynamic causal modelling  

Dynamic causal modelling (DCM) explains measured data using a hierarchical 

network of dynamically interacting sources, and estimates effective connectivity 

(the influence that one neuronal system exerts over another), using Bayesian model 
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inversion (Friston et al., 2007). DCM was originally developed for fMRI (Friston et 

al., 2003) and was subsequently generalised to other modalities, including evoked 

responses measured by EEG (David et al., 2006). 

DCM permits source reconstruction whilst incorporating biological constraints on 

neuronal dynamics and coupling (David et al., 2005; Kiebel et al., 2009; Pinotsis et 

al., 2012). The neuronal model makes predictions about the dynamics of each 

source based on the underlying anatomy and biology. The canonical microcircuit 

neural mass model (Bastos et al., 2012) was used, in which each neural source 

comprises four cell populations: Superficial and deep pyramidal cells, spiny stellate 

cells and inhibitory interneurons. Each source is connected to other sources via 

extrinsic excitatory connections, and cell populations within sources are connected 

to each other via intrinsic connections (Pinotsis et al., 2013). The focus of this study 

was the self-inhibition of superficial pyramidal cell populations (see Appendix B), 

because the strength of this connection reflects the gain (or excitability) of this 

population, which is linked to NMDA-R function. 

Each source (i.e. each node in the network) was modelled with a single equivalent 

current dipole under bilateral symmetry assumptions (Kiebel et al., 2006). A 

boundary elements head model was used (Fuchs et al., 2001) to approximate the 

brain, cerebrospinal fluid, skull and scalp surfaces. A canonical MRI head model was 

used, and coregistration of electrode positions and head model was performed for 

each subject to map the Montreal Neurological Institute coordinates to points on 

the head.  

Following standard practice, the EEG data were projected onto eight spatial modes 

to ensure more robust model inversion and dynamical stability. These are the eight 

principal components or modes of the prior predictive covariance in sensor space 

(Fastenrath et al., 2009). Responses from 0 to 250 ms post stimulus onset were 

modelled, to ensure selective modelling of the MMN response per se, rather than 

later components (Garrido et al., 2008).  
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3.2.6 DCM specification 

In DCM, Bayesian inference is used to optimise neural source dipoles based on a 

priori information about their locations. This information is available from studies 

investigating the sources underlying the MMN – using fMRI (Molholm et al., 2005; 

Rinne et al., 2005; Schönwiesner et al., 2007), PET (Dittmann-Balçar et al., 2001; 

Müller et al., 2002), EEG/MEG (Deouell et al., 1998; Fulham et al., 2014; Jemel et al., 

2002; Rinne et al., 2000; Tiitinen et al., 2006), and DCM (Garrido et al., 2007, 2008, 

2009a) – showing that the MMN is generated by temporal and frontal sources. 

Using DCM, the model with the most evidence consists of a three-level hierarchy 

comprising bilateral primary auditory cortices (Heschl’s gyrus, A1), bilateral superior 

temporal gyri (STG), and the right inferior frontal gyrus (rIFG). The frontal source is 

lateralised to the right hemisphere for auditory paradigms (Garrido et al., 2009a; 

Levanen et al., 1996).  

Following Garrido et al (2008), the following five sources were included, with prior 

source locations in the DCM analysis (in Montreal Neurological Institute 

coordinates): Left A1 (-42, -22, 7), right A1 (46, -14, 8), left STG (-61, -32, 8), right 

STG (59, -25, 8), and right IFG (46, 20, 8), illustrated in Figure 3-1A. DCM 

incorporates source reconstruction, and the inversion algorithm provides efficient 

Bayesian estimates of dipole sources that optimises these (David et al., 2005; Kiebel 

et al., 2009). 

The DCM model used here assumes the existence of extrinsic (forward and 

backward) connections between, and intrinsic (inter- and intra-laminar) connections 

within the specified sources. This has been supported by previous MMN research 

(Dietz et al., 2014; Garrido et al., 2007, 2008, 2009a). Lateral connections linking left 

and right A1 and STG were also included (Schmidt et al., 2012b). Auditory stimuli 

were modelled as direct input, entering bilateral A1. This model is shown in Figure 

3-1B. 
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Figure 3-1. Dynamic Causal Modelling specifications. 

Image showing A) the prior source locations (overlaid on an MRI image of a 
standard brain), and B) the structural model used for dynamic causal modelling. 
The sources are linked by extrinsic (forward, backward and lateral) connections, 
and each source has intrinsic inhibitory self-connections. A1 = primary auditory 
cortex; STG = superior temporal gyrus; IFG = inferior frontal gyrus; l = left 
hemisphere; r = right hemisphere. 

3.2.7 Experimental effects 

Condition-specific grand averaged data over all subjects within each group was 

used, allowing testing of the effect of group directly, as well as the effect of 

condition by group interactions (e.g. Fogelson et al., 2014; Kiebel et al., 2007). In 

other words, the grand averages were treated as the six cells of a 2 x 3 factorial 

design, with two levels of ‘condition’ (standard and deviant tones) and three levels 

of ‘group’ (controls, relatives and patients with psychosis).  
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Group effects were defined as i) having a genetic risk for psychosis (controls versus 

relatives and patients combined) and ii) having a diagnosis of a psychotic illness, 

irrespective of genetic risk (relatives versus patients). Main effects of diagnosis and 

genetic risk on effective connectivity were investigated, and their interactions with 

the effect of condition (standard versus deviant tones). The interactions reflect a 

diagnosis or risk effect on deviant-related changes in effective connectivity or 

postsynaptic sensitivity. 

Bayesian model selection was used to find the model with the largest (free energy 

approximation to the) log model evidence, among the models tested, where models 

are penalised for increased complexity (Penny et al., 2004). A difference in log 

evidence of three or more is considered strong evidence in favour of a model, 

corresponding to an odds ratio of about 20:1 (Friston and Penny, 2011). 

Before testing for the effects of genetic risk and diagnosis, the best model to explain 

the effect of the deviant stimulus across all three groups was established. Eight 

candidate models were considered, with modulations of forward, backward and/or 

intrinsic connections. The model that allowed for modulations of intrinsic 

connections (self-inhibition of superficial pyramidal populations) only had the 

highest evidence, and was used in all subsequent analyses (see Appendix B).  

To study the effects of genetic risk and diagnosis Bayesian model selection was used 

to establish where in the hierarchy synaptic gain – intrinsic (self-inhibitory) 

connectivity – was modulated. The model space consisted of models with 

modulations of intrinsic connections at each of the hierarchical levels (A1, STG, 

rIFG), and all combinations of these. A total of 8 models were thus compared, 

shown in Figure 3-2.  

Having established the model with the greatest evidence, the posterior estimates of 

the effective connectivity under this model were examined (Friston and Penny, 

2011). The focus was on changes in intrinsic connectivity induced by the mismatch 

negativity, to identify any differences between patients with psychosis, unaffected 

relatives and controls.  
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Figure 3-2. Dynamic Casual Modelling model space. 

Dynamic Causal Modelling model space; identifying group differences in intrinsic 
(self-inhibitory) connectivity. Red arrows indicate a modulated connection. A1 = 
primary auditory cortex; STG = superior temporal gyrus; IFG = inferior frontal 
gyrus; l = left hemisphere; r = right hemisphere. 

3.3 Results 

3.3.1 Sample demographics 

The demographic and clinical characteristics of the sample are detailed in Table 3-1. 

All participants were of European Caucasian ethnicity. Patients were significantly 

younger than controls (t=2.14, p=0.04) and relatives (t=2.60, p=0.01), and this group 

also contained more males compared to controls (χ2=4.1, p=0.04) and relatives 

(χ2=3.8, p=0.05). Controls and relatives did not differ significantly in age (t=0.51, 

p=0.61) or gender (χ2=0.002, p=0.97) distributions. Importantly, patients and 

relatives together (i.e. the genetic risk group) did not differ from controls in age (t = 

-0.83, p=0.41) or gender (χ2=1.33, p=0.27) distributions. Years in education did not 

differ between groups (F=0.40, p=0.67). 
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Table 3-1. Sample demographics (N=84). 

  
Patients with 

Psychosis  
Unaffected 
Relatives  

Controls  

  N=24 N=25 N=35 

Mean age (years, ±SD) 34.6 (±9.3) 43.7 (±14.5) 41.8 (±14.5) 

Age range (years) 23 – 54 16 - 62 19 - 69 

Gender (% female) 25%  52% 51% 

Education (mean years, ±SD) 13.6 (±2.8) 14.0 (±3.1) 14.4 (±3.7) 

Diagnosis (N, %)       

Schizophrenia 18 (75%) - - 

Schizoaffective disorder 3 (13%) - - 

Psychosis NOS 1 (4%) - - 

Bipolar I disorder (w. psychosis) 2 (8%) - - 

Major Depression - 3 (12%) 1 (3%) 

No psychiatric illness - 22 (88%) 34 (97%) 

Illness duration (mean years, SD) 12.1 (8.4) NA NA 

Psychotropic medication (N, %) 23 (95.8%) NA NA 

CPZ equivalent (mean, min-max) 549.4 (30-1100) NA NA 

Years medicated (mean, ±SD) 10.6 (±8.6) NA NA 

First medicated (mean years, ±SD) 24.4 (±7.2) NA NA 

PANSS (mean, ±SD)§    

Positive 12.5 (±4.6) 7.2 (±0.6) 7.0 (±0.0) 

Negative  14.9 (±5.5) 7.2 (±0.6) 7.0 (±0.0) 

General  24.3 (±4.9) 17.5 (±2.0) 16.1 (±0.4) 

Relationship to proband (N, %)       

Mother NA 4 (16.0%) NA 

Father NA 9 (36.0%) NA 

Sister NA 8 (32.0%) NA 

Brother NA 3 (12.0%) NA 

Daughter NA 1 (4.0%) NA 
NA = not applicable; SD = standard deviation; NOS = not otherwise specified; CPZ equivalent = 
average chlorpromazine equivalent dosage (mg) for those taking antipsychotic medication (N=18); 
§
PANSS = Positive and Negative  Syndrome scale, positive and negative scores range from 7 to 49, 

PANSS general scores range from 16 to 112 

The sample comprised 63 families, each including between 1 and 4 individuals. 49 

participants (58.3%) were singletons, 18 (21.4%) were part of families with two 

members in the study, 9 (10.7%) were in three-person families, and 8 (9.5%) were 

part of families with four members participating. All unaffected relatives had a first-

degree relative with a psychotic illness, although 8 (32%) did not have a proband 

participating in this study. 
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3.3.2 Mismatch negativity group differences 

The grand averaged event related potential waves for patients, relatives and 

controls are shown in Figure 3-3. Group differences in the amplitude of the MMN 

wave of this sample have been reported in a previous paper (Bramon et al., 2004): 

Patients with psychosis had significantly reduced MMN amplitude compared to 

both relatives and controls. The relatives did not differ significantly in MMN 

amplitude compared to the controls.  

 

Figure 3-3. EEG activity to standard and deviant tones. 

Grand average (across subjects) EEG amplitudes to standard and deviant tones for 
each group (patients, relatives, and controls), at channel FZ. 

3.3.3 Dynamic causal modelling results 

The Bayesian model selection results are presented in Figure 3-4A, showing model 

evidences relative to the null model (with no intrinsic modulations). The model that 

best explained the differences between groups allowed modulations of intrinsic 
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connectivity in bilateral A1 and rIFG. The difference in model evidence between the 

winning model and the runner-up was 80. This is significant seeing as a difference of 

3 (corresponding to an odds ratio of 20:1) is considered strong evidence in favour of 

the winning model (Friston and Penny, 2011). 

Figure 3-4B shows the posterior estimates of the modulations of intrinsic 

connectivity in the winning model for each group (controls, relatives, and patients) 

and condition (standard and deviant trials). Note that because the intrinsic self-

connectivity is inhibitory, increased values correspond to reduced neural 

excitability, and vice versa. Posterior estimates of the modulations are also shown in 

Figure 3-5, for each source and experimental effect. 

The largest effects are observed at the high-level frontal source (rIFG), where there 

are striking group differences. First, both relatives and patients show reduced self-

inhibition (increased excitability) across task conditions compared to controls (i.e. a 

main effect of having a genetic risk for psychosis). Second, patients with psychosis 

show an additional reduction in self-inhibition compared to relatives, across task 

conditions (i.e. a main effect of diagnosis).  

Third, there is a clear interaction between having a genetic risk for psychosis and 

task condition in rIFG; both relatives and patients show the opposite pattern of 

responses to the task compared to controls. While controls demonstrate reduced 

inhibition (i.e. increased excitability) in response to deviants compared to standard 

tones, the two groups with a genetic risk showed decreased excitability in response 

to changes in stimulus regularities.  

At the sensory level (left and right primary auditory cortices, A1), all three groups 

show similar responses to the MMN task conditions: Increased excitability in 

response to deviant compared to standard tones.  



Page | 63  

 

 

Figure 3-4. Dynamic Causal Modelling results. 

A) Bayesian model selection results investigating intrinsic (inhibitory) modulations 
at different levels of the hierarchy. Log model evidences relative to the null model 
are shown. The winning model has modulations at A1 and IFG, and the difference 
in log evidence between this and the runner-up is 80. B) Changes in intrinsic 
connectivity strengths under the winning model, at each source, for patients, 
relatives and controls, and for standard (std.) and deviant (dev.) trials. A1 = 
primary auditory cortex; STG = superior temporal gyrus; IFG = inferior frontal 
gyrus; l = left hemisphere; r = right hemisphere. 



Page | 64  

 

 

Figure 3-5. Posterior estimates of intrinsic connectivity. 

Posterior estimates of the (log scaling of) intrinsic connection parameters and 
their 95% confidence intervals, for each source and experimental effect 
investigated. A1 = primary auditory cortex; IFG = inferior frontal gyrus.  

3.4 Discussion 

The aim of this study was to investigate whether, compared to controls, patients 

with psychosis and/or their unaffected relatives show altered cortical gain control 

(intrinsic connectivity) within cortical sources during the mismatch negativity 

(MMN) paradigm. DCM was used, where intrinsic connectivity is a parameterisation 

of the (to some extent NMDA-R mediated) excitability of superficial pyramidal cells, 

which is thought to be abnormal in psychosis (Stephan et al., 2006). 

The main findings were that; i) the largest differences in cortical responses between 

controls and the other groups were expressed at the top of the cortical hierarchy in 

the right inferior frontal gyrus (rIFG), rather than in primary sensory areas (A1); ii) in 

rIFG, both groups with an increased genetic risk for psychosis (patients and their 

relatives) demonstrated an increase in cortical excitability across task conditions 

(with an additional increase in patients compared to relatives); iii) the two groups 

with a genetic risk for psychosis also showed a reversal of the normal pattern of 

increased excitability to deviant tones in rIFG.  
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The finding of reduced self-inhibition within rIFG across task conditions in those 

with a genetic risk for psychosis – as well as an additional reduction in patients with 

psychosis compared to relatives – is in line with theories of NMDA-R hypofunction 

in psychosis (Abi-Saab et al., 1998; Corlett et al., 2011; Goff and Coyle, 2001; Olney 

et al., 1999; Stephan et al., 2006). Specifically, NMDA-R hypofunction on 

parvalbumin positive inhibitory interneurons results in decreased inhibitory γ-

aminobutyric acid (GABA) input to (and therefore disinhibition of) pyramidal cells 

and hence a loss of balance between excitation and inhibition in prefrontal cortex 

(Lewis et al., 2012; Murray et al., 2014; Pinotsis et al., 2014). These abnormalities 

may be linked to neurophysiological disorganisation (Díez et al., 2014), cognitive 

dysfunction, and the development of symptoms of psychosis (Ahn et al., 2011; 

Lewis et al., 2008; Spencer et al., 2004). 

Crucially, patients with psychosis and relatives show the opposite pattern of rIFG 

responses to deviant and standard tones, compared to controls. Controls show 

reduced self-inhibition (increased excitability) in response to deviants, whereas 

both patients and relatives show a reduction in excitability in this condition. This 

indicates that those with an increased genetic risk for psychosis (including both 

relatives and patients) fail to adjust or optimise the excitability of superficial 

pyramidal cells in response to changes of stimulus regularities. 

In a visual target detection task, in which subjects had to respond to target 

appearances that were either predictable or unpredictable, Fogelson et al (2014) 

also investigated differences in intrinsic connectivity in patients with schizophrenia 

and healthy controls using EEG and DCM. They found that changes in intrinsic self-

inhibition in response to predictable stimuli were significantly attenuated in 

patients; this is further evidence that patients with schizophrenia fail to adjust 

neuronal connectivity in response to the context of incoming stimuli. 

These results can be interpreted in the context of predictive coding theories of 

brain function, in which the brain infers the causes of its sensory data using 

Bayesian inference by minimising prediction errors throughout the cortical 

hierarchy (Friston, 2008; Rao and Ballard, 1999). Predictive coding can be 
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implemented neurobiologically by deep pyramidal cells sending top-down 

predictions about lower level representations, and superficial pyramidal cells 

sending bottom-up prediction errors (the difference between the actual and 

predicted activity) back up the hierarchy, in order to update the higher level 

representations (Friston, 2008). These neurobiological details are important, 

because superficial pyramidal cells – i.e. prediction error units – make the primary 

contribution to event related potentials (Garrido et al., 2009b; Lieder et al., 2013). 

Crucially, the influence of ascending prediction errors on higher representations 

depends upon their precision, which is thought to be encoded by the gain or 

excitability of superficial pyramidal cells. In this setting, precision (inverse variance) 

corresponds to the confidence or reliability attributed to prediction errors at each 

level of the cortical hierarchy (Adams et al., 2013; Feldman and Friston, 2010). 

In this MMN data, controls show increased synaptic gain (diminished intrinsic self-

inhibition) in all cortical sources in the deviant condition – i.e. their prediction error 

responses to deviant tones are processed as being unduly precise and are therefore 

less easily suppressed. This is also the case for all individuals with a genetic risk for 

psychosis at the primary sensory level, but in rIFG the opposite pattern is seen. This 

indicates an abnormal influence of context on prediction error responses in this 

group, as has been seen not only in perceptual paradigms like the MMN, but also in 

reward learning and causal inference paradigms (Corlett et al., 2007; Murray et al., 

2008). This also links to reward learning and the aberrant salience hypothesis, 

where symptoms of psychosis are attributed to assigning attention or salience to 

irrelevant perceptions or experiences (Howes and Kapur, 2009; Kapur, 2003). 

Results from the current study suggest that controls show precise prediction error 

responses to deviant tones (i.e. they are attending to these unexpected events). 

However, both patients with psychosis and their unaffected relatives show 

abnormalities here, suggesting they are not assigning salience to events in the 

environment correctly.  

In computational modelling work, it has been shown that a loss of precision at 

higher levels of a hierarchical model can explain a loss of influence of context 
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(Adams et al., 2013). Predictive coding simulations show that aberrant precision or 

gain control can reproduce classic findings in the schizophrenia literature, including 

a reduced MMN response (Adams et al., 2013). NMDA-R hypofunction could 

confound precision or gain control in two ways, either by directly lowering synaptic 

gain in superficial pyramidal cell populations, or by reducing the excitability of 

GABAergic interneurons, thereby impairing sustained oscillatory firing of pyramidal 

cells and reducing their influence on lower areas (Adams et al., 2013). These current 

results lend more support to the latter mechanism, and it would be interesting to 

test this hypothesis directly by using DCM to assess the relative model evidences for 

psychosis altering the excitability of superficial pyramidal cell versus inhibitory 

interneuron populations. 

Importantly, these results suggest that both patients and their first degree relatives 

have similar alterations in the excitability of superficial pyramidal cell populations, 

compared to controls. This indicates that these changes are linked to genetic risk 

factors, and are not merely a consequence of the illness state or antipsychotic 

medication. This alteration in the gain of superficial pyramidal cells could therefore 

be a potential endophenotype for psychosis. The use of endophenotypes might help 

clarify the functional effects of genetic risk variants identified (Bramon et al., 2014; 

Hall and Smoller, 2010), and further research could investigate whether deviant-

related changes in excitability can predict genotype; for example, looking at 

candidate genes linked to NMDA-R function. Other studies investigating effective 

connectivity in psychosis have also observed abnormalities in relatives of patients, 

including children of probands (Diwadkar et al., 2012, 2014; Winterer et al., 2003a), 

and a previous study by Dima et al (2013) observed associations between fMRI 

derived measures of effective connectivity and risk genes linked to GABAergic 

interneuron function in patients with bipolar disorder. 

These results also suggest that patients show a further increase in excitability in 

rIFG across task conditions compared to unaffected relatives. This may indicate that 

– at least in prefrontal cortex – there are quantitative, rather than qualitative, 

differences between those with and without a diagnosis of a psychotic illness but at 
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elevated genetic risk. Alternatively, this difference could be due to the effects of 

antipsychotic medication, which is known to influence brain function (e.g. 

Joutsiniemi et al., 2001; Knott et al., 2001). The exact effects of psychotropic drugs 

on effective connectivity remain unclear; however, a study investigating effective 

connectivity in schizophrenia found abnormalities in an unmedicated at-risk group 

but not in first episode patients (prescribed antipsychotics), suggesting that 

medication might potentially normalise abnormalities (Schmidt et al., 2013). Future 

longitudinal studies and research in unmedicated patient populations are needed to 

address this important issue.  

It should be noted that the amplitude of the MMN wave did not differ between 

unaffected relatives and controls in this sample, as has been published previously 

(Bramon et al., 2004). Findings in the literature are somewhat inconsistent with 

some reporting abnormalities in relatives (Jessen et al., 2001; Michie et al., 2002), 

where others do not (Hong et al., 2012a; Kim et al., 2014). It is also interesting to 

note that although the amplitude of the MMN wave at sensor level did not differ 

between unaffected relatives and controls in my sample, the latter group showed 

abnormal source level connectivity compared to controls. This might seem 

contradictory, however, these two analyses differ in some key aspects: Firstly, the 

source level analysis of the MMN wave takes into account activity from all 

electrodes, whereas the sensor level analysis only investigating activity at two 

frontal locations (F3 and F4). Secondly, this DCM analysis was conducted on the 

averaged activity across all individuals within each group (the peak of the averaged 

group wave), whereas the study by Bramon et al (2004) looked at the amplitude of 

the MMN wave for each individual separately (the average of individual peak MMN 

waves). These differences could contribute to the apparent discrepancy in the 

findings. Furthermore, because these analyses are focusing on very different 

aspects of the data, it is also entirely possible that although the amplitude of the 

wave at the sensor level does not differ between relatives and controls, the source 

level measure of connectivity – the excitability of superficial pyramidal cells – is 

abnormal in unaffected relatives. Taken together, based on findings from this 

sample (i.e. from both sensor and source level analyses) it can be hypothesised that 
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source level connectivity of the MMN might be a more sensitive endophenotype for 

psychosis compared to sensor level activity. 

A limitation of the current study is that the groups differed slightly in age and 

gender distributions. There is evidence for both age (Cooper et al., 2006; Cooray et 

al., 2014; Kiang et al., 2009; Näätänen et al., 2012) and gender (Brossi et al., 2007; 

Matsubayashi et al., 2008) effects on MMN responses, although a DCM study did 

not find significant effects of aging on intrinsic connectivity (Moran et al., 2014). 

Importantly, however, the most significant effects were found when comparing 

those with a genetic risk for psychosis (i.e. both relatives and patients) with 

controls, and since these two groups did not differ in age or gender distributions, 

the main findings of this study are unlikely to be influenced by such confounds.  

Another potential limitation is the experimental procedure used to elicit the MMN 

response. Because the MMN is a pre-attentive response not depending on the 

person paying attention to the sounds, it has been suggested that using a distractor 

task (such as watching a silent video or reading a book) can be advantageous 

(Duncan et al., 2009; Lang et al., 1995). In this study no distractor task was 

administered, and participants were instructed to disregard the sounds presented 

to them. It was therefore not possible to control whether participants were paying 

attention to the task or not. Nevertheless, this distractor-free design has been used 

previously and has been shown to generate clear MMN responses (Bramon et al., 

2004; Haenschel et al., 2000; Javitt et al., 1998; Juckel et al., 2007). Furthermore, 

attention has been found to modulate the MMN response suggesting this ERP might 

not actually be independent of attention (Auksztulewicz and Friston, 2015; Sussman 

et al., 2014; Woldorff et al., 1991). 

Patients with psychosis consistently show alterations in brain volumes compared to 

healthy individuals, including increased ventricular volumes (Boos et al., 2007; 

Crespo-Facorro et al., 2009; Fannon et al., 2000; Fusar-Poli et al., 2013; Kempton et 

al., 2010; Kumra et al., 2014; McDonald et al., 2002, 2006; Sharma et al., 1998; 

Shenton et al., 2001; Strasser et al., 2005; Wright et al., 2000). An issue that should 

be considered when interpreting findings from brain connectivity analyses such as 
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the ones presented here is if and how such differences between patients and 

controls might influence results. If patients have enlarged ventricles, then maybe 

the prior source locations defined are not as suitable for patients as they are for 

controls. However, it is important to note that DCM incorporates source 

reconstruction, and that the inversion algorithm provides efficient Bayesian 

estimates of the dipole sources that optimise these (David et al., 2005; Kiebel et al., 

2009). Hence, should the prior source locations be inappropriate for some subjects, 

DCM is robust enough to deal with this. Furthermore, these results indicate that 

effective connectivity abnormalities are also present in unaffected relatives of 

patients, and although not directly investigated here, a meta-analysis found that 

enlarged ventricles are not observed in relatives of patients with schizophrenia 

(Boos et al., 2007). This suggests that abnormalities of effective connectivity in this 

group are unlikely to be explained by changes in brain volume associated with 

psychosis, and support the conclusion that this is due to an underlying genetic 

liability. Nevertheless, this is an issue that should be explicitly investigated using 

DCM. Future studies should employ individual MRI images for each participant, 

rather than a template MRI image as used in this study.  

A further potential limitation of this study is the use of the average reference with 

this data. The use of an average reference across all electrodes is only ideal if the 

head was a sphere and electrodes were placed all around it. However, with a 

relatively small number of electrodes (17 here), and furthermore when the occipital 

areas are not covered, the signal might be distorted with the use of the average 

reference (Kropotov, 2009; Luck, 2005). This would however distort the signal for all 

subjects equally, and will not have influenced the group differences observed.  

The Bayesian model selection result indicates that both bilateral A1 and rIFG are 

important in explaining group differences in modulations of intrinsic connectivity in 

response to deviant tones. However, modulations of self-inhibition in STG do not 

seem to be so important (and were not included in the winning model). 

Importantly, this does not mean that the STG makes no contribution to group 

differences in responses, but merely suggests that including modulations in this 
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region did not increase the evidence for the model sufficiently to justify the 

increased complexity. These results furthermore suggest that group differences are 

most pronounced in rIFG. This is in line with past research suggesting that psychosis 

is associated with abnormalities at high hierarchical levels, including the prefrontal 

cortex (reviewed in Adams et al., 2013; Harrison et al., 2011). 

In this study, condition-specific grand average responses for each group were 

calculated, an approach that has been used previously (e.g. Fogelson et al., 2014). 

While this produces cleaner data features by reducing noise and enhancing features 

that are conserved over subjects, it eliminates potentially interesting individual 

differences. Future work could obtain subject-specific DCM estimates, allowing the 

investigation of individual differences within groups, and correlations between 

effective connectivity parameters and various clinical and cognitive measures, as 

well as with genotypes.  

In summary, my main finding is that patients with psychosis as well as their 

unaffected first-degree relatives show increased excitability in the rIFG across task 

conditions, relative to controls, and crucially, a loss (reversal) of the normally 

increased excitability in deviant trials. Hence, these results suggest that psychosis is 

associated with abnormalities of the sensitivity (gain) control of superficial 

pyramidal cell populations, which might be influenced by NMDA-R hypofunction in 

prefrontal cortex. These results are in line with theories about the neuropathology 

and pathophysiology of psychosis. Importantly, abnormalities in unaffected 

relatives of patients suggest that these alterations are potentially related to genetic 

predisposition to psychosis, and are therefore potential endophenotypes for the 

illness.  
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 Associations between Chapter 4:

endophenotypes across brain functional, 

structural and cognitive domains 

4.1 Introduction 

Moving away from the identification of endophenotypes, in this chapter I will 

investigate a range of known endophenotypes for psychosis, obtained through 

different techniques. To optimise the use of these measures for future genetic 

analyses, they need to be carefully characterised, for example by assessing the 

relationships between different endophenotypes. Previous research has focused on 

investigating biomarkers within one method, especially the associations between 

different cognitive measures (Dickinson et al., 2002, e.g. 2006; Gladsjo et al., 2004; 

Seidman et al., 2015; Sheffield et al., 2014; Sullivan et al., 2003; Toomey et al., 

1998), but there is a lack of literature examining brain structural – cognitive and 

physiological – cognitive pairings using multiple methods and across domains of 

brain function and structure. Crucially, the inclusion of unaffected relatives in these 

kinds of analyses has been rare, but the performance of relatives who carry 

increased genetic risk but have no illness or treatment confounding factors is crucial 

for establishing the utility of these markers in genetic studies. 

In this study, the aim was to investigate the relationship between a range of multi-

modal endophenotypes for psychosis genetic research, including 
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electrophysiological, neurocognitive, and neuroanatomical measures. These were 

selected as they are putative endophenotypes for psychosis and because they were 

compatible across centres reaching a substantial sample size. The endophenotypes 

included were: 

 Changes in the P300 event-related potential measured by EEG: Reduced 

amplitude and prolonged latency of the P300 have consistently been found in 

patients with psychotic illnesses as well as in unaffected relatives, compared to 

controls (Bestelmeyer et al., 2009; Blackwood et al., 1991; Bramon et al., 2005; 

Pierson et al., 2000; Price et al., 2006; Schulze et al., 2008; Turetsky et al., 2014; 

Weisbrod et al., 1999; Winterer et al., 2003b). The amplitude is thought to be a 

correlate of attention and working memory (Ford, 2014; Näätänen, 1990), and 

although the latency has been less precisely outlined, it is thought of as an 

index of classification speed (Polich, 2007, 2011). However, there is an 

increasingly recognised need for greater precision in the theoretical significance 

of electrophysiological markers including the P300 (Polich, 2011). 

 Changes in cognition measured by neuropsychological tests: Deficits on the 

cognitive tests digit span (measuring working memory), block design 

(measuring spatial visualisation and problem solving abilities), and the Rey 

Auditory Verbal Learning Task (RAVLT) immediate and delayed recall 

(measuring short and longer term verbal memory, respectively) are common 

and persistent across psychotic illnesses (Bora and Pantelis, 2015; Bora et al., 

2009; Gur et al., 2007; Heinrichs and Zakzanis, 1998; Kim et al., 2015c). 

Abnormalities are often observed before the onset of the illness as well as in 

unaffected relatives (Birkett et al., 2008; Forbes et al., 2009; Glahn et al., 2006; 

Ivleva et al., 2012; Park and Gooding, 2014; Reichenberg et al., 2010; Saperstein 

et al., 2006; Snitz et al., 2006). 

 Changes in brain structure obtained by magnetic resonance imaging (MRI): 

Increased lateral ventricular volume is consistently found in patients with 

psychosis compared to controls (Boos et al., 2007; Crespo-Facorro et al., 2009; 
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Fannon et al., 2000; Fusar-Poli et al., 2013; Kempton et al., 2010; Kumra et al., 

2014; McDonald et al., 2002, 2006; Sharma et al., 1998; Shenton et al., 2001; 

Strasser et al., 2005; Wright et al., 2000). This enlargement has been attributed 

to neurodevelopmental difficulties, disease progression, or the effects of 

antipsychotic medications (Gogtay et al., 2003; McDonald et al., 2006; Pilowsky 

et al., 1993). Lateral ventricular volume comparisons between unaffected 

relatives and controls have been less consistent, and the latest meta-analysis 

did not find an effect despite many other conflicting reports (Boos et al., 2007).  

The present study includes, to our knowledge, the largest sample of individuals with 

psychosis, their unaffected first-degree relatives, and controls to investigate the 

relationships between this wide range of multi-modal endophenotypes. The main 

objective is to facilitate the use of endophenotypes for genetic research into 

psychosis, which requires well defined and characterised measures. The aim of this 

study was therefore to examine the relationships between different 

endophenotype pairs, and in particular, to characterise sub-components of the 

P300 event related potential in the context of well-defined cognitive markers. 

4.2 Methods 

4.2.1 Sample and clinical assessments 

The total sample included 8754 participants: 2212 individuals with a diagnosis of a 

psychotic disorder, 1487 of their unaffected first-degree relatives (with no personal 

history of psychosis), and 5055 healthy controls (with no personal or family history 

of a psychotic illness). Psychotic illnesses were defined broadly to include 

schizophrenia, schizoaffective disorder, bipolar disorder with psychotic symptoms 

and other less common forms of psychosis (see Table 4-1 for a breakdown of 

diagnoses, and see Appendix C for diagnoses across the participating study centres). 

Multiply affected families often include individuals with different diagnoses. 
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Relatives and controls were not excluded if they had a personal history of non-

psychotic psychiatric illnesses (such as depression or anxiety), provided they were 

well and off psychotropic medication at the time of testing and for the preceding 12 

months. This was to avoid recruiting biased control groups, unrepresentative of the 

general population. 

To confirm or rule out a DSM-IV (APA, 1994) diagnosis, all participants underwent a 

structured clinical interview with either the Comprehensive Assessment of 

Symptoms and History (Andreasen et al., 1992), the Structured Clinical Interview for 

DSM Disorders (Spitzer et al., 1992), the Schedule for Affective Disorders and 

Schizophrenia (Endicott and Spitzer, 1978) or the Schedule for Clinical Assessment 

in Neuropsychiatry, Version 2.0 (Wing et al., 1990). Participants were excluded if 

they had a history of neurologic disease or a loss of consciousness due to a head 

injury.  

Recruitment occurred across 11 locations in Australia and Europe (Germany, 

Holland, Spain, and United Kingdom). See Appendix C for a summary of the data 

collected from each site. Participants provided written informed consent, and the 

study was approved by the respective ethical committees at each of the 11 

participating centres. 

4.2.2 Neuropsychological assessments  

Cognitive data were provided by 10 sites and full methodology for each is reported 

elsewhere (Crespo-Facorro et al., 2007; González-Blanch et al., 2007; Johnstone et 

al., 2005; Korver et al., 2012; Toulopoulou et al., 2010; Walters et al., 2010; Waters 

et al., 2009). 

The Wechsler Adult Intelligence Scale, revised version (WAIS-R; Wechsler, 1981) or 

third edition (WAIS-III; Wechsler, 1997), was administered to participants. 

Performance on two subtests was used for analyses; the forward and backward 

digit span (measuring attention and working memory) and block design (measuring 
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spatial visualisation). For both subtests, the percentage of the maximum score for 

each individual was calculated to correct for test version. 

The Rey Auditory Verbal Learning Test (RAVLT; Rey, 1964), assessing verbal 

memory, was also administered, including both immediate and delayed recall. Total 

scores, corrected for number of trials, were calculated for each individual, hence 

accounting for different test versions. 

4.2.3 EEG data collection and processing 

Electrophysiological data were obtained from three sites, the full methods for each 

site are reported elsewhere (Bramon et al., 2005; Hall et al., 2006; Price et al., 2006; 

Waters et al., 2009; Weisbrod et al., 1999). 

In summary, EEG was collected from 17 to 20 electrodes placed according to the 

International 10/20 system (Jasper, 1958). The P300 event related potential was 

obtained using a standard two-tone frequency deviant auditory oddball paradigm, 

with standard (‘non target’) tones of 1000Hz and rare (‘target’) tones of 1500Hz. 

The number of tones presented varied from 150 to 800, the tones were 80dB or 

97dB, lasted for 20-50ms, and the inter-stimulus interval was between 1 and 2 

seconds. The majority of participants (93.4%) were asked to press a button in 

response to ‘target’ stimuli, but a subset were asked to close their eyes and count 

‘target’ stimuli in their heads.  

The data were continuously recorded in one of three ways: 500Hz sampling rate 

and 0.03-120Hz band pass filter; 200Hz sampling rate and 0.05-30Hz band pass 

filter; or 400Hz sampling rate and 70Hz low-pass filter. Linked earlobes or mastoids 

were used as reference and vertical, and in most cases also horizontal, electro-

oculographs were recorded at each site and used to correct for eye-blink artefacts 

using regression based weighting coefficients (Semlitsch et al., 1986). After 

additional manual checks, artefact-free epochs were included and baseline 

corrected before averaging. The averaged waveforms to correctly detected targets 

were then filtered using 0.03 or 0.05 Hz high-pass and 30 or 45 Hz low-pass filters. 
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The peak amplitude and latency of the P300 were measured at electrode location 

PZ, within the range of 250-550ms post-stimulus. 

4.2.4 MRI data collection and processing 

MRI data acquisition and image processing varied between sites; methods for each 

are referenced and outlined briefly below. Lateral ventricular volumes were 

measured using automatic or semi-automatic region of interest analyses, and 

included the body, frontal, occipital and temporal horns. 

Edinburgh 

Scanner used: 1 Tesla (T) Siemens Magnetom (Erlangen, Germany). Acquisition 

sequence: Magnetisation prepared rapid acquisition gradient echo (MPRAGE). 

Acquisition protocol: Flip angle = 12°, repetition time (TR) = 10 ms, echo time (TE) = 

4 ms. Images were analysed using a regions of interest analysis using the semi-

automated programme Analyze, and lateral ventricular volume was defined by the 

autotrace and included frontal, occipital and temporal horns. For full details see 

(Lawrie et al., 1999; Steel et al., 2002; Whalley et al., 1999). 

Heidelberg 

Scanner used: 1.5 T Phillips. Acquisition sequence: Magnetisation prepared rapid 

acquisition gradient echo (MPRAGE). Acquisition protocol: Flip angle = 15°, TR = 

11.4 ms, TE = 4.4 ms. Images were analysed using a region of interest tool in the 

software Analyze, and lateral ventricular volume was defined according to borders 

described in the literature (Shenton et al., 2001). For full details see (Wobrock et al., 

2009). 

London 

Scanner used: 1.5 T General Electric (USA) Signa System. Acquisition sequence: 

Spoiled gradient recall (SPGR) echo. One of the following acquisition protocols was 

used: Flip angle = 35°, TR = 35 ms, TE = 5 ms; Flip angle = 20°, TR = 14.7 ms, TE = 3.7 
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ms; Flip angle = 20°, TR = 9.8 ms, TE = 2.3 ms; or Flip angle = 20°, TR = 13.1 ms, TE = 

5.8 ms. Images were analysed using MEASURE, an image analysis program that uses 

stereologically unbiased estimation of volume. Lateral ventricular volume included 

the body, frontal, occipital and temporal horns, and choroid plexus where visible. 

For full details see (Dutt et al., 2009; Frangou et al., 1997b; McDonald et al., 2002; 

Schulze et al., 2006). 

Maastricht 

Scanner used: 3 T Siemens (Erlangen, Germany). Acquisition sequence: Either a 

modified driven equilibrium Fourier transform (MDEFT), or a magnetization 

prepared rapid acquisition gradient echo (MPRAGE). Acquisition protocol either; i) 

Flip angle = 15°, TR = 7.92 ms, TE = 2.4 ms, or ii) Flip angle = 9°, TR = 2250 ms, TE = 

2.6 ms. Images were analysed using Freesurfer. Automatic labelling of each MRI 

voxel was carried out based on probabilistic information derived from training on a 

manually labelled dataset (Fischl et al., 2002). For full details see (Collip et al., 2013; 

Habets et al., 2011). 

Santander 

Scanner used: 1.5 T General Electric Signa System (GE Medical Systems, Milwaukee, 

WI). Acquisition sequence: Spoiled gradient-recalled acquisition in the steady state 

(GRASS) (SPGR). Acquisition protocol: Flip angle = 45°, TR = 24 ms, TE = 5 ms. Images 

were analysed using the software BRAINS2, including automatic measurements of 

brain areas. For full details see (Crespo-Facorro et al., 2009; Mata et al., 2009). 

Utrecht  

Scanner used: 1.5 T Philips NT. Acquisition sequence: Fast field echo (FFE). 

Acquisition protocol: Flip angle = 30°, TR = 30 ms, TE = 4.6 ms. Images were 

analysed using a Histogram method validated previously by the research group 

(Schnack et al., 2001b). For full details see (Hulshoff Pol et al., 2002; Schnack et al., 

2001a). 
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4.2.5 Statistical methods 

Endophenotype measures were standardised for each site separately (using the 

overall means and standard deviations within each site) to control for differences 

between the centres. 

First, regression analyses were used to establish if there were differences between 

the three clinical groups on the endophenotypes. Each regression model had 

“group” as a categorical predictor with three levels (patient, relative, control). The 

outcome was each relevant endophenotype, and covariates included age, gender 

and study site. Considering the sample includes related individuals, robust standard 

errors were used in order to counteract effects of clustering within families.  

Before investigating the associations between each pair of endophenotypes 

amongst the entire sample, the impact of group membership (patient, relative, 

control) on each interrelationship was investigated. Potential group differences 

were assessed by entering interaction terms between group and the predictor in 

the endophenotype pair. 

For the relationships between pairs of endophenotypes which were not strongly 

impacted by group, the associations were investigated using linear regression in the 

whole sample, adjusting for between group differences along with age, gender and 

study site, and using robust standard errors.  

For the pairs of endophenotypes that were impacted by group, the regressions with 

group specified in an interaction term have been reported, with the estimated 

difference in increase of association from controls in each group. As before, these 

regressions included the covariates age, gender and study site, and robust standard 

errors were used.  

Although the tables report uncorrected p-values, the results discussed survived an 

adjustment for multiple testing. Because scores within measurement domains are 

expected to be highly correlated, I adjusted for three domains (EEG, MRI and 

cognition), and a total of 6 tests (group differences within each of the three 
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domains and their associations with each other). The significance threshold was 

thus set to p = 0.05/6 = 0.008. All analyses were conducted using STATA version 13. 

4.3 Results 

4.3.1 Sample characteristics 

The sample characteristics are summarised in Table 4-1. Two-tailed t-tests showed 

that relatives were similar to controls on age (t = -1.07, p = 0.303), but patients 

were younger compared to both relatives (t = 27.67, p < 0.001), and to controls (t = 

30.14, p < 0.001). Chi squared tests demonstrated that the patient group had a 

greater proportion of males to females when compared with controls (χ2 = 234.32, 

p < 0.001) and relatives (χ2 = 234.44, p < 0.001). Conversely, there were fewer males 

than females in the relatives group compared to controls (χ2 = 19.04, p < 0.001). In 

order to account for effects of age and gender, these were entered as covariates 

into all analyses. A total of 6601 families were included in this sample, with 1 – 11 

members per family; 37% of individuals had at least one relative participating (see 

Appendix C).  
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Table 4-1. Sample characteristics (N=8754). 

  
Patients w. 
psychosis 

Unaffected 
relatives 

Controls 
Total  

sample 

Sample size, N (%) 2212 (25.3%) 1487 (17.0%) 5055 (57.7%) 8754 

Age, mean years (SD)† 33.6 (10.6) 46.0 (15.8) 45.5 (16.2) 42.6 (15.8) 

Age range (years) 16 – 79 16 – 85 16 – 89 16 – 89 

Gender (% female)† 32.10% 58.00% 51.50% 47.70% 

Diagnoses; N (%) 
    

Schizophrenia 1396 (63.1%) - - 1396 (15.9%) 

Bipolar I Disorder 135 (6.1%) - - 135 (1.5%) 

Psychosis NOS 168 (7.6%) - - 168 (1.9%) 

Schizophreniform Disorder 158 (7.1%) - - 158 (1.8%) 

Schizoaffective Disorder 124 (5.6%) - - 124 (1.4%) 

Brief Psychotic Disorder 56 (2.5%) - - 56 (0.6%) 

Other psychotic illness 175 (7.9%) - - 175 (2.0%) 

Depression 
 

246 (16.5%) 232 (4.6%) 478 (5.5%) 

Anxiety 
 

47 (3.2%) 24 (0.5%) 71 (0.8%) 

Other non-psychotic illness 
 

62 (4.2%) 106 (2.1%) 168 (1.9%) 

No psychiatric illness 
 

1132 (76.1%) 4693 (92.8%) 5825 (66.5 %) 

Endophenotypes;  N, Mean (SD)* 
   

P300 amplitude  
(μV) 

N=397  
10.5 (6.1) 

N=379  
11.0 (6.7) 

N=313  
13.7 (7.0) 

N=1089  
11.6 (6.7) 

P300 latency  
(ms) 

N=401  
382.6 (55.3) 

N=386  
390.8 (56.1) 

N=315  
356.9 (39.1) 

N=1102 
378.2 (53.3) 

Lateral Ventricular 
Volume  
(cm3) 

N=700  
17.9 (9.9) 

N=337  
18.7 (11.2) 

N=684  
15.8 (8.8) 

N=1721  
17.1 (9.8) 

Block Design  
(% of max. score) 

N=850  
49.9 (27.9) 

N=895 
47.4 (25.6) 

N=3746  
60.4 (21.2) 

N=5491  
56.6 (23.8) 

Digit Span  
(% of max. score) 

N=460  
47.4 (15.9) 

N=136  
40.0 (4.5) 

N=2531  
51.5 (14.5) 

N=3127  
50.4 (14.9) 

RAVLT immediate recall  
(No. of words recalled) 

N=1232  
7.6 (2.2) 

N=934 
8.4 (2.1) 

N=1377  
8.7 (2.0) 

N=3543  
8.2 (2.2) 

RAVLT delayed recall 
(No. of words recalled) 

N=1224  
2.1 (1.0) 

N=927  
2.9 (1.0) 

N=1358  
2.9 (0.9) 

N=3509  
2.6 (1.0) 

SD = Standard deviation; NOS = Not otherwise specified; RAVLT = Rey Auditory Verbal Learning 
Task; † Missing data for 717 ages and 6 gender; * Raw scores, unadjusted for covariates, are 
presented here. 

Differences between the three groups (patients, relatives, and controls) on the 

different endophenotypes were in the anticipated directions, following the pattern 

controls > relatives > patients, or vice versa (presented in Table 4-2 and Figure 4-1). 
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Patients differed significantly from controls on all measures, and relatives differed 

significantly from controls on the P300 amplitude and latency, digit span, and block 

design. Lateral ventricular volume and RAVLT immediate and delayed recall showed 

no significant differences between relatives and controls. 

Table 4-2. Group differences on endophenotype scores. 

 
Total 

Sample 
Patients – 
Controls 

Patients – 
Relatives 

Relatives – 
Controls 

Endophenotype: 
Global 
p-value 

Mean difference 
(95% CI) 

Mean difference 
(95% CI) 

Mean difference 
(95% CI) 

P300 amplitude  < 0.001 
-0.53  

(-0.70 to -0.36)  
p < 0.001 

-0.18  
(-0.33 to 0.04)  

p = 0.013 

-0.35  
(-0.52 to -0.17)  

p < 0.001 

P300 latency   < 0.001 
0.47  

(0.33 to 0.61)  
p < 0.001 

0.03  
(-0.14 to 0.19)  

p = 0.749 

0.44  
(0.33 to 0.61)  

p < 0.001 

Lateral 
Ventricular 
Volume  

= 0.006 
0.20  

(0.08 to 0.32)  
p = 0.001 

0.09  
( -0.05 to 0.24) 

p = 0.210 

0.11  
(-0.04 to 0.25)  

p = 0.163 

Digit Span  < 0.001 
-0.72  

(-0.88 to -0.55)  
p < 0.001 

-0.14  
(-0.32 to 0.05)  

p = 0.141 

-0.58  
(-0.77 to -0.39)  

p < 0.001 

Block Design  < 0.001 
-0.55  

(-0.64 to -0.46)  
p < 0.001 

-0.22  
(-0.31 to -0.14)  

p < 0.001 

-0.32  
(-0.40 to -0.23)  

p < 0.001 

RAVLT  
immediate recall 

< 0.001 
-0.75  

( -0.83 to -0.67)  
p < 0.001 

-0.65  
(-0.74 to -0.56)  

p < 0.001 

-0.1  
(-0.18 to -0.01)  

p = 0.026 

RAVLT  
delayed recall 

< 0.001 
-0.65  

( -0.73 to -0.57)  
p < 0.001 

-0.62  
(-0.71 to  -0.53)  

p < 0.001 

-0.03  
(-0.11 to 0.06)  

p = 0.545 

Regression models adjusted for age, gender and study site, with robust standard errors, and using 
standardised scores. RAVLT = Rey Auditory Verbal Learning Task. 
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Figure 4-1. Endophenotype scores across groups. 

Endophenotype (standardised) scores, estimated marginal means with 95% 
confidence intervals, across clinical groups (patients, relatives, and controls). 
Adjusted for age, gender, and study site. RAVLT = Rey Auditory Verbal Learning 
Task. 
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4.3.2 Associations between endophenotype pairs  

Each relationship between pairs of endophenotypes was checked for interaction 

effects with group to determine if there are strong differences between patients, 

relative and controls in the relationships. This informed whether the relationship 

was examined in the whole sample combined, or by subgroup. For the majority of 

the associations, group did not have an interaction effect (p>0.008); these are 

reported in the next section. For two cognitive pairs, however, there were strong 

evidence of interactions with group, and these are reported in the subsequent 

section. 

Associations between endophenotype pairs in the whole sample 

Associations between different endophenotype pairs in the whole sample are 

reported in Table 4-3. The P300 amplitude and latency were not significantly 

associated with each other. The P300 amplitude was positively associated with digit 

span and block design performances (the former at a trend level), but not with 

either of the RAVLT measures. The P300 latency and lateral ventricular volumes 

were not significantly associated with any of the other measures. The strongest 

relationships were found between different cognitive measures, this was also 

reflected in the subgroup analysis reported below. All cognitive pairings were 

significantly positively associated across groups.  
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Table 4-3. Associations between endophenotypes in the whole sample. 

 Outcome: 

Predictor: 

P300 
amplitude 

P300 
latency 

Digit  
Span 

Block 
Design 

RAVLT 
immediate 

recall 

RAVLT  
Delayed 

recall 

P300 
amplitude  

- 

-0.06 
(-0.12 to 

0.01) 
p = 0.060 

0.15 
(0.04 to 

0.26) 
p = 0.009 

0.19 
(0.10 to 

1.28) 
p < 0.001 

0.11 
(-0.02 to 

0.25) 
p = 0.102 

0.08 
(-0.06 to 

0.22) 
p = 0.281 

P300 
latency  

- - 

-0.15 
(-0.28 to -

0.03) 
p = 0.017 

-0.04 
(-0.12 to 

0.04) 
p = 0.333 

0.03 
(-0.09 to 

0.15) 
p = 0.699 

0.03 
(-0.07 to 

0.14) 
p = 0.501 

Lateral 
Ventricular 
Volume  

0.05 
(-0.07 to 

0.16) 
p = 0.393 

0.02 
(-0.10 to 

0.14) 
p = 0.712 

-0.02 
(-0.04 to 

0.08) 
p = 0.507 

0.07 
(-0.09 to 

0.23) 
p = 0.380 

-0.04 
(-0.13 to 

0.06) 
p = 0.479 

-0.02 
(-0.12 to 

0.08) 
p = 0.738 

Digit  
Span  

- - - - 

0.39 
(0.28 to 

0.49) 
p < 0.001 

0.31 
(0.20 to 

0.42) 
p < 0.001 

RAVLT 
immediate 
recall 

- - - 

0.25  
(0.21 to 

0.30)  
p < 0.001 

- 

0.76 
(0.74 to 

0.78) 
p < 0.001 

Regression models using standardised scores, adjusted for age, gender, study site and group using 
robust standard errors. Statistics reported are difference in mean estimate (95% confidence 
intervals) and p-values. RAVLT = Rey Auditory Verbal Learning Task. 

Associations between endophenotype pairs by group 

For two associations between pairs of cognitive endophenotypes, evidence of 

interactions with group was found. This indicates that the relationships between 

these endophenotype pairs differ between patients, relatives and controls, as 

reported in Table 4-4 and Figure 4-2. Importantly, these results show that the 

nature of the relationship between the pairs of cognitive endophenotypes were 

similar across all three groups; differing only in strength.  

There were strong relationships between each of the cognitive measures in the 

control group. Both digit span and RAVLT delayed recall were positively associated 

with scores on the block design task, and patients showed the same pattern as 
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controls but to a significantly greater extent. Relatives did not differ significantly 

from controls in these associations. 

Table 4-4. Group interactions on associations between endophenotypes. 

Endophenotype 
relationship 

Overall 
test of 

interaction 
effect 

Controls  
Est. increase in 

association (95% 
CI) 

Relatives  
Est. difference 
from controls 

(95% CI) 

Patients  
Est. difference 
from controls 

(95% CI) 

Digit Span x  
Block Design 

p < 0.001 
0.30 

(0.27 to 0.34)  
p < 0.001 

0.18  
(0.02 to 0.35)  

p = 0.028 

0.28  
(0.19 to 0.38)  

p < 0.001 

RAVLT del x  
Block Design 

p < 0.001 
0.21  

(0.15 to 0.26)  
p < 0.001 

-0.04  
(-0.14 to 0.05)  

p = 0.390 

0.19  
(0.09 to 0.29)  

p < 0.001 

Regressions on standardised scores including interactions terms between group (patient, relative, 
controls) and predictor, adjusted for covariates (age, gender and study site), using robust standard 
errors. RAVLT del = Rey Auditory Verbal Learning Task delayed recall; CI = Confidence Interval. 

 

Figure 4-2. Interactions between endophenotype scores and group. 

Interactions between group (patient, relative and control) and endophenotype 
pairs (standardised scores). Graphs are adjusted for covariates (age, gender and 
study site), and include 95% confidence intervals. RAVLT = Rey Auditory Verbal 
Learning Task.  
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4.4 Discussion 

In this study, the relationships between different endophenotypes for psychosis 

were examined in a large sample of patients, their unaffected first-degree relatives, 

and controls. In particular, by exploring markers across brain anatomy and brain 

functional domains my aim was to characterise the amplitude and latency of the 

P300 event related potential in the context of well-defined cognitive markers.  

Results showed that (i) the P300 amplitude and latency are distinct features, and 

the former associated with some of the cognitive measures; (ii) lateral ventricular 

volume is not significantly associated with any of the cognitive or brain functional 

measures; (iii) the cognitive endophenotypes were associated with each other in 

the expected directions; and (iv) individuals with psychotic illnesses, their 

unaffected relatives, and healthy controls all showed similar patterns of 

associations between all pairs of endophenotypes. These findings are discussed in 

turn. 

Both patients and relatives showed reduced amplitudes and prolonged latencies of 

the P300, compared to controls, replicating past findings in this large multi-centre 

study, and providing further evidence that these are endophenotypes for psychosis 

(Bestelmeyer et al., 2009; Bramon et al., 2005; Price et al., 2006; Schulze et al., 

2008; Thaker, 2008; Turetsky et al., 2000). Since the P300 is thought to be closely 

related to attentional mechanisms, it is not surprising that abnormalities of this 

event-related potential are not specific to psychosis, but also observed in other 

psychiatric illnesses associated with impaired attention (Duncan et al., 2009). The 

P300 has been suggested as an endophenotype for substance use disorder, 

including use of both alcohol and cocaine, where patients and their unaffected 

relatives show reduced amplitudes (Euser et al., 2012; Singh and Basu, 2009). 

Furthermore, patients with dementia generally show prolonged latencies (Gironell 

et al., 2005; Polich and Corey-Bloom, 2005), and attention-deficit hyperactivity 

disorder is associated with reduced amplitudes of the P300 (Barry et al., 2003).  
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The P300 amplitude and latency were not associated with each other, highlighting 

that this relationship is of very small predictive value, and suggests a considerable 

degree of independence between the P300 amplitude and latency, as argued by 

others (van Dinteren et al., 2014). 

The associations between the P300 amplitude and both digit span (at a trend level) 

and block design are supported in the literature (Dong et al., 2015b; Fjell and 

Walhovd, 2001; Hermens et al., 2010; Kaur et al., 2011; Polich et al., 1997; Souza et 

al., 1995). According to the context-updating theory (Heslenfeld, 2003; Kujala and 

Naatanen, 2003), the P300 amplitude indexes an attention-driven, context-updating 

mechanism facilitated by working memory, which subsequently feeds into memory 

stores (Polich, 2007, 2011). Hence, one would expect the amplitude to be 

associated with cognitive tasks that utilise attention and working memory processes 

(Baddeley, 1992; Ford, 2014; Näätänen, 1990), and my results support this. The 

context-updating theory also provides a possible account of the specific mechanism 

driving the strong association between P300 amplitude and block design; this task 

requires a participant to constantly update their mental representation of the 

blocks in the context of the representation of the template stimulus, in order to 

physically ‘update’ the block pattern (Polich, 2007, 2011). The lack of associations 

between P300 amplitude and the RAVLT tests support the idea that the 

impairments patients show on verbal recall memory are part of a distinct 

mechanism from that which underlies the reduction in P300 amplitude. This is in 

line with the characterisation of the P300 amplitude emphasising that the process 

may be associated with recognition memory, rather than the recall memory 

assessed by the RAVLT (Polich, 2011). 

Turning to the latency of the P300, this was not significantly associated with any of 

the measures investigated here. Previous studies investigating associations 

between cognition and the latency of the P300 are less consistent compared to 

studies of the P300 amplitude; some have found associates with attention and 

working memory tasks (Polich et al., 1983) whereas others have not (Dong et al., 

2015b; Fjell and Walhovd, 2001; Walhovd and Fjell, 2003). The P300 latency has 
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been conceptualised as a measure of the classification speed (van Dinteren et al., 

2014; Polich, 2011). As such one would expect timed tasks such as digit span and 

block design to be associated with the P300 latency. However, no such associations 

were found in this sample. Investigating the relationship between behavioural 

reaction times (i.e. the speed of button press in the task) and the P300 latency, 

some have found associations (Bashore et al., 2014) whereas other have not 

(Ramchurn et al., 2014). However, there is substantial research showing that the 

P300 latency as well as reaction times increase with ageing in healthy participants 

(Chen et al., 2013; Polich, 1996). It is possible, based on these findings, that the 

P300 latency is a specific measure of processing speed at a basic neuronal level. In 

contrast, digit span and block design – while influenced by processing speed – 

reflect wider cognition including memory and spatial abilities. The more complex 

elements to these tasks may therefore obscure effects of a simple processing 

speed, and hence explain the lack of effect with P300 latency. 

In terms of lateral ventricular volume, there was no evidence of relationships with 

any other endophenotype investigated. This is consistent with some previous 

research (Bornstein et al., 1992; Ortiz-Gil et al., 2011), however Keilp et al (1988) 

found an association with verbal memory. Furthermore, several studies have found 

enlarged lateral ventricles associated with poorer motor speed (Antonova et al., 

2004; Dong et al., 2015a; Hartberg et al., 2011), which was not directly measured in 

this study. One must interpret these negative results bearing in mind the 

heterogeneity of the MRI methodology between study sites, a limitation of the 

present study that might have obscured any true effects. Furthermore, although 

patients showed enlarged ventricles compared to controls, which is a very well 

supported finding in the literature (Cahn et al., 2009; Kempton et al., 2010; Steen et 

al., 2006; Wright et al., 2000), no differences were observed between relatives and 

controls. This is consistent with the latest meta-analysis of brain structure in 

relatives of patients with schizophrenia (Boos et al., 2007), and suggests that 

enlarged ventricles in patients are not related to genetic risk for psychosis. Instead, 

this might be due to illness progression, or to effects of antipsychotic medication, as 
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has been observed in animal models of antipsychotic exposure (Dorph-Petersen et 

al., 2005; Konopaske et al., 2007). 

For all cognitive measures, there were clear group differences with patients 

consistently performing less well compared to controls, consistent with a wealth of 

research (Ayres et al., 2007; Bora and Murray, 2014; Bora et al., 2010, 2014; 

Fatouros-Bergman et al., 2014; Fusar-Poli et al., 2012b). For the digit span and block 

design, there were also significant differences between relatives and controls, 

indicating an effect of increased genetic risk for psychosis. However, this was not 

seen for the immediate or delayed recall of the RAVLT task, where controls and 

relatives did not differ significantly. Although many have found impairments in 

verbal memory in unaffected relatives (Massuda et al., 2013; Sitskoorn et al., 2004; 

Wittorf et al., 2004), this has not always been seen (Kim et al., 2015a; Üçok et al., 

2013). These findings suggest that working memory and spatial visualisation might 

be more promising endophenotypes for psychosis than verbal memory is. 

That working memory is abnormal in both patients with psychosis and their 

unaffected relatives is a consistent finding in the literature (Bora et al., 2009; Botero 

et al.; Egan et al., 2001; Park and Gooding, 2014; Saperstein et al., 2006), and 

replicated here in this  very large sample. Furthermore, working memory 

abnormalities also meet the additional endophenotypic criteria, being both 

heritable and state independent (reviewed in Park and Gooding, 2014). Hence, 

working memory appears to be a robust endophenotype for psychosis. It is worth 

noting, however, that studies have found schizophrenia to be more strongly 

associated with working memory impairments compared to bipolar illness, 

suggesting this might be a more suitable endophenotype for the former (Burdick et 

al., 2009; Park and Gooding, 2014). Working memory is generally defined as a 

limited-capacity system that temporarily maintains and stores information 

(Baddeley, 2003). Because working memory is crucial for all forms of learning, 

including language, abnormalities can have severe consequences, and are likely to 

influence all aspects of cognitive functions, including social interactions (Park and 

Gooding, 2014).  
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These findings are also consistent using other methodologies, such as functional 

magnetic resonance imaging (fMRI), where abnormalities in both patients with 

psychosis and their relatives during working memory tasks have been observed 

(Dutt et al., 2015; MacDonald et al., 2009; Pearlson and Calhoun, 2009; Thermenos 

et al., 2004). Working memory tasks performance rely on activation of a network of 

brain regions, including the dorsolateral prefrontal cortex, and this network has 

been shown to perform less efficiently in psychosis (Pearlson and Calhoun, 2009; 

Scognamiglio and Houenou, 2014; Thermenos et al., 2013; Waters-Metenier and 

Toulopoulou, 2010). This is consistent with the dysconnection hypothesis (Friston, 

1998; Stephan et al., 2009) and effective connectivity abnormalities in psychosis 

discussed in chapter 3 of this thesis.  

Investigating the relationships between pairs of cognitive measures, this data 

provide strong evidence for associations in the expected directions, and past 

research is consistent with these findings (Dickinson et al., 2002; Gladsjo et al., 

2004; Seidman et al., 2015; Sheffield et al., 2014; Sullivan et al., 2003). It is 

interesting to note that for some cognitive measures, the relationships interacted 

with group, although the direction of the effect remained the same across patients, 

relatives and controls. This is likely to reflect artefacts of the group differences on 

the individual endophenotypic measures. If a participant performs well on one 

cognitive test they will perform well on another, and vice versa. However, within 

the patient sample there is a greater range of scores, and thus individuals who 

perform less well facilitate a greater within-group contrast and a steeper gradient 

than seen in the control sample. The interaction effects with group were found 

exclusively amongst the cognitive measures, and not in any of the other sets of 

relationships. This is possibly due to the greater sample sizes for these measures, 

with greater statistical power enabling the detection of interaction effects which 

tend to be subtle. 

Both the lack of interaction effects for most associations investigated, and the 

gradient effects identified where there was an interaction, support the conclusions 

of previous research that there are similar cognitive structures common both to 
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people with psychotic illnesses and controls (Dickinson et al., 2006). This is 

consistent with the idea that psychosis is part of a continuum with the healthy 

population (Allardyce et al., 2007; DeRosse and Karlsgodt, 2015; Esterberg and 

Compton, 2009; Ian et al., 2010; Johns and van Os, 2001; Wiles et al., 2006).  

The main limitation of this study was the heterogeneity of methods between study 

sites. Differences in cognitive test versions, variation on the EEG protocols, as well 

as the large range of MRI protocols (including the use of scanners with different 

field strengths) all introduce noise into the data. However, if imaging biomarkers 

are to be used in genetic research the only way forward is to combine data from 

multiple centres. No individual centre alone has as yet collected a sample large 

enough to conduct independent large genome wide association studies. The noise 

introduced by multiple scanners makes it less likely to identify an association; 

therefore it does not increase type 1 errors. The potential gain in sample size offsets 

the limitation of scanner-variability.  

Indeed, the large sample size acquired from multiple sites is one of the biggest 

strengths of the current study, as studies of endophenotypes for psychosis often 

have been limited by small sample sizes. As the Psychiatric Genomics Consortium’s 

work shows, large international collaborations are essential in certain fields such as 

genetic studies of common diseases and traits (Lee et al., 2013; Ripke et al., 2014; 

Sklar et al., 2011; Smoller et al., 2013). Methodologically, another strength of this 

study has been the use of regressions as opposed to the correlations frequently 

seen in the literature (Breteler et al., 1994; Brewer et al., 1970; Brillinger, 2001; Kim 

et al., 2003; Polich et al., 1983, 1997). Not only did this approach avoid vulnerability 

to spurious correlations, but it allowed inspection of interaction effects across 

groups. 

Another limitation of this study was that behavioural performance, including 

number of correct responses and reaction times, during the P300 experiment was 

only available for a subset of participants. The P300 experiment is designed to be an 

easy task, aimed at capturing the brain response to oddball tones that are correctly 

identified as such, and here a standard version of the P300 task was used, that has 
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been used in many previous publications (Bramon et al., 2005; Doege et al., 2009; 

Hall et al., 2006; Horovitz et al., 2002; Pan et al., 2000; Price et al., 2006; Waters et 

al., 2009; Weisbrod et al., 1999). Hence, the vast majority of participants have very 

high accuracy, and furthermore, only trials with correct responses were included in 

the analysis. It is a limitation of this study that reaction times during the P300 task 

was not available for the whole sample. It would have been of interest to 

investigate associations between reaction times in this task and the cognitive 

measures and also between the EEG and behavioural parameters. 

In summary, this study has investigated the relationship between endophenotypes 

for psychosis – including measures of cognition, electrophysiology, and brain 

structure – with the aim of, in particular, characterising the P300 event-related 

potential. I have provided support for the notion that the amplitude and latency of 

the P300 are independent markers; the amplitude an index of attention and 

working memory, while the latency might be conceptualised as a correlate of basic 

speed of processing. A further conclusion of this study is that individuals with 

psychotic illnesses, their unaffected relatives, and healthy controls all show similar 

patterns of associations between all pairs of endophenotypes, endorsing the theory 

of a continuum of psychosis across the population.  
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 A polygenic score analysis Chapter 5:

of psychosis endophenotypes 

5.1 Introduction 

Psychosis has a highly polygenic architecture, involving thousands of common single 

nucleotide polymorphisms (SNPs) of very small individual effects that account for an 

estimated 32% of the heritability in psychosis (Lee et al., 2012a, 2012b; Purcell et 

al., 2009; Ripke et al., 2013, 2014; Sklar et al., 2011). Furthermore, large-scale 

genome-wide association studies have identified more than 100 SNPs that are 

significantly associated with an increased risk of developing schizophrenia (Ripke et 

al., 2014) and bipolar disorder (Sklar et al., 2011).  

As endophenotypes are thought to be related to the genetic factors underlying 

disorders, it is likely that a subset of psychosis associated SNPs also influence these 

markers (Lencz et al., 2014). This relationship between the genetics of 

endophenotypes and psychosis can be investigated using polygenic scores, where 

the combined effect of a large number of SNPs, each with a very subtle individual 

effect, is calculated (Purcell et al., 2009). Several studies have shown that such 

polygenic scores differ between patients and controls, thus providing a useful tool 

to measure genetic liability to psychosis in independent samples (Bramon et al., 

2014; Derks et al., 2012; Purcell et al., 2009). A number of studies have investigated 

the relationship between endophenotypes and polygenic scores for schizophrenia 
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and bipolar disorder (Van der Auwera et al., 2015; Hall et al., 2015; Lencz et al., 

2014; McIntosh et al., 2013; Papiol et al., 2014; Terwisscha van Scheltinga et al., 

2013a, 2013b; Whalley et al., 2012, 2013, 2015). However, these studies have 

reported mixed outcomes, and vary in discovery sample sizes used to calculate 

polygenic scores, in sample sizes used to test for associations, and in the specific 

endophenotypes investigated. 

The aim of this study is to test whether polygenic scores for schizophrenia and 

bipolar disorder influence psychosis endophenotypes, in a large sample of patients 

with psychosis, their unaffected first-degree relatives, and healthy controls. The 

polygenic scores were calculated using p-values and odds ratios from the latest 

international mega-analyses by the Psychiatric Genomics Consortium (Ripke et al., 

2014; Sklar et al., 2011).  

Following on from the previous chapter, endophenotypes of three domains were 

considered; i) the amplitude and latency of the P300 event related potential; ii) 

lateral ventricular volume; and iii) measures of working memory (digit span), spatial 

visualisation (block design) and verbal memory (the Rey Auditory Verbal Learning 

task, immediate and delayed recall). 

5.2 Methods 

5.2.1 Sample, clinical and endophenotypic assessment 

This sample is a subset of that presented in chapter 4, and overlapping methods 

have not been repeated here.  

The total sample for this study included 4242 participants: 1087 patients with 

psychotic illnesses (see Table 5-1 for breakdown of diagnoses), 822 unaffected first 

degree relatives of probands (with no personal history of a psychotic illness), and 

2333 unaffected controls (with no personal or family history of a psychotic illness).  
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The endophenotypes included were the P300 amplitude (N=510) and latency 

(N=515), lateral ventricular volume (N=789), and measures of cognition; block 

design (N=3089), digit span (N=1437), and the Rey Auditory Verbal learning task 

(RAVLT) immediate (N=2406) and delayed (N=2384) recall.  

5.2.2 Genotyping methods 

DNA was obtained from blood for all participants, and sent to the Wellcome Trust 

Sanger Institute (Cambridge, United Kingdom) for genotyping using the Affymetrix 

6.0 Genome-wide Human SNP Array (www.affymetrix.com). Standard quality 

control of the data was conducted. This included removing samples with Mendelian 

inheritance errors, SNP missing data rates >5%, departure from Hardy-Weinberg 

equilibrium (p < 10–6) or minor allele frequency (MAF) < 0.02, samples with >2% 

missing data, and divergent genome-wide heterozygosity.  

Full details of genotyping methods and quality control procedures are described in 

Appendix D and in Bramon et al (2014). 

Phasing and imputation 

Phasing was done using Shapit2 v2.r790 (Delaneau et al., 2013), with default 

parameters except for the specification of the duoHMM flag, which allows for 

incorporation of known pedigree information. Imputation with reference data from 

the 1000 genomes panel was performed with IMPUTE2 version 2.3.0 (Howie et al., 

2011, 2012), using the October 2014 release, and based on sequence data from 

2,504 samples. Phased chromosomes were split into ~4.5 Mb chunk sizes prior to 

imputation, which was run with standard parameters assuming an effective 

population size of 20,000. After imputation, SNPs with poor imputation quality 

(INFO < 0.8) and missingness of > 1% were excluded. 

Population structure analysis 

To investigate the genetic structure of the data, principal component analysis (PCA) 

of unrelated individuals was conducted using EIGENSOFT version 3.0 (Patterson et 

http://www.affymetrix.com/


Page | 98  

 

al., 2006) on a thinned set of SNPs. The following SNP pruning filters were applied 

on 695,193 SNPs, which remained after quality control: A 10% minor allele 

frequency, 10-3 Hardy-Weinberg equilibrium deviation threshold, and all SNPs 

within a 1,500 SNP window had to have r2 below 0.2 (window shift of 150 used). 

Thus, a subset of 71,677 SNPs was selected for PCA using EIGENSOFT version 3.0 

(Patterson et al., 2006).  

The first three components were included as covariates in all analyses to control for 

the confounding effects of population structure. This approach was used in previous 

work (Bramon et al., 2014), and see Appendix D for the projection of the study 

participants onto the first two principal components of genetic structure. 

5.2.3 Polygenic score analysis  

Following the method described in Purcell et al (2009), polygenic risk profile scores 

were calculated separately for schizophrenia and bipolar disorder. Summary data 

from the most recent Psychiatric Genomics Consortium genome-wide association 

studies for schizophrenia (Ripke et al., 2014) and bipolar disorder (Sklar et al., 2011) 

were used. In both cases, I used data from the Psychiatric Genomics Consortium 

that did not overlap with the sample used in the current study. For schizophrenia 

polygenic scores, the discovery sample included 31,658 cases and 42,022 controls, 

and for bipolar disorder, the discovery sample included 7,481 cases and 9,250 

controls (Ripke et al., 2014; Sklar et al., 2011). 

Polygenic scores for each individual were calculated using the --score option in 

PLINK (Purcell et al., 2007), from the number of risk alleles carried for each selected 

SNP (i.e. 0, 1 or 2), weighted by the log(OR) provided by the Psychiatric Genomics 

Consortium, and averaged across all SNPs. SNPs were selected from the Psychiatric 

Genomics Consortium’s panel using six different significance thresholds (pT < 5×10-

08, 0.001, 0.05, 0.1, 0.5, 1), hence including an increasing number of SNPs the more 

liberal the threshold (see Appendix D for the number of SNPs included at each 

threshold). 
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5.2.4 Statistical analyses 

Linear regression analyses were performed to test whether schizophrenia and/or 

bipolar disorder polygenic scores influence endophenotypes for psychosis. These 

included the P300 event related potential (amplitude and latency), lateral 

ventricular volume, and measures of cognition (digit span, block design, and the Rey 

Auditory Verbal Learning Task (RAVLT) immediate and delayed recall). 

Endophenotype measures were standardised for each site separately (using the 

overall means and standard deviations within each site) to control for differences 

between the centres. Covariates included in all analyses were clinical group 

(patient, relative, or control), study site, the first three population structure 

principal components, age and gender. Because the sample included related 

individuals, robust standard errors were used to account for effects of clustering 

within families. The change in R2 between a model only including the covariates and 

a model including covariates plus the polygenic score is reported, which represents 

the proportion of the variance explained by the score. 

Linear regression analyses were performed for each endophenotype using the 

entire sample – patients with psychosis (including schizophrenia, bipolar disorder 

and other psychotic illnesses; see Table 5-1), unaffected relatives of probands, and 

controls – examining the associations with polygenic score at the different 

significance thresholds of the Psychiatric Genomics Consortium’s SNP list. This was 

done separately for both the schizophrenia and bipolar disorder polygenic scores. 

Although the tables report uncorrected p-values, the results discussed survived an 

adjustment for multiple testing. Because the four cognitive measures were highly 

correlated, I corrected for four measures (cognition, P300 amplitude and latency, 

and lateral ventricular volume) and two polygenic scores (schizophrenia and bipolar 

disorder). Hence, the alpha threshold for significance was set to p = 0.05/8 = 0.006. 

Statistical analyses were conducted using STATA version 13. 
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5.3 Results 

5.3.1 Sample characteristics 

Demographic information and mean values of the different endophenotypes are 

presented in Table 5-1. The patient group was significantly younger compared to 

both relatives (mean diff. = -11.8, p<0.001) and controls (mean diff. = -12.3, 

p<0.001), whereas relatives and controls did not differ in mean age (mean diff. = -

0.5, p=0.4). There were more males in the patient group compared to both the 

control (χ2 = 114.4, p<0.001) and relative groups (χ2 = 144.4, p<0.001). The group of 

relatives contained more female participants than the control group (χ2 = 15.8, 

p<0.001). Age and gender are included as covariates in all analyses. 

Mean scores on the different endophenotypes followed the expected pattern of 

patients < relatives < controls, or vice versa. See Appendix D for statistics of group 

differences and distributions across groups, after correcting for covariates of age, 

gender, and study site. Also note that this is a subset of the sample analysed in 

chapter 4 where group differences were reported. 

2558 (60.3%) of individuals in this sample did not have a family member 

participating. 670 (15.8%) were part of families with 2 members in the study, 564 

(13.3%) were in three-person families, 384 (9.05%) were part of four-person 

families, 60 (1.4%) were in five-person families, and there was one family with 6 

members participating (0.14%).  
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Table 5-1. Sample characteristics (N=4242). 

 
Total  

Sample 
Controls 

Unaffected 
Relatives 

Patients with 
Psychosis 

Sample size (N, %) 4242 2333 (55.0%) 822 (19.4%) 1087 (25.6%) 

Age (mean years ± SD) 
42.5 

(±15.8) 
45.7 

(±16.3) 
45.27 

(±15.65) 
33.48 

(±10.39) 

Age range (years) 16 – 85 16 – 84 16 – 85 16 – 79 

Gender (% female) 48.5% 52.0% 60.0% 32.4% 

Diagnoses (N)     

Schizophrenia 703 - - 703 

Bipolar I Disorder 105 - - 105 

Psychosis NOS 86 - - 86 

Schizophreniform Disorder 68 - - 68 

Schizoaffective Disorder 60 - - 60 

Brief Psychotic Disorder 40 - - 40 

Other psychotic illness 25 - - 25 

Depression 273 137 136 - 

Anxiety Disorder 47 15 32 - 

Other non-psychotic illness 41 20 21 - 

No Psychiatric Illness 2794 2161 633 - 

Endophenotypes; N, mean (±SD)§     

P300 amplitude 
(μV) 

N=510 
11.9 (±6.8) 

N=139 
13.4 (±6.8) 

N=160 
12.1 (±7.5) 

N=211 
10.8 (±6.1) 

P300 latency  
(ms) 

N=515 
377.2 (±51.6) 

N=139 
358.2 (±37.8) 

N=164 
386.5 (±55.5) 

N=212 
382.3 (±53.1) 

Lateral Ventricular 
Volume  
(ml) 

N=798 
17.1 (±10.3) 

N=299 
16.1 (±9.5) 

N=166 
18.5 (±11.6) 

N=333 
17.2 (±10.2) 

Block Design  
(% of max.) 

N=3089 
57.4 (±23.8) 

N=1997 
60.0 (±21.6) 

N=603 
51.8 (±25.7) 

N=489 
54.0 (±28.0) 

Digit Span  
(% of max.) 

N=1437 
50.4 (±14.7) 

N=1115 
51.5 (±14.5) 

N=59 
41.5 (±13.3) 

N=263 
47.5 (±14.2) 

RAVLT immediate recall 
(No. words recalled) 

N=2406 
8.2 (±2.2) 

N=962 
8.7 (±2.0) 

N=633 
8.4 (±2.1) 

N=811 
7.5 (±2.2) 

RAVLT delayed recall  
(No. words recalled) 

N=2384 
2.6 (±1.0) 

N=948 
2.9 (±0.9) 

N=629 
2.8 (±1.0) 

N=807 
2.1 (±1.0) 

SD = Standard deviation; NOS = Not otherwise specified; RAVLT = Rey Auditory Verbal Learning Task;
 

§
 Raw scores presented here, for mean differences adjusted for covariates of age, gender and study 

site see Appendix D. 
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5.3.2 Schizophrenia polygenic score analysis  

The schizophrenia polygenic score differed significantly between the three groups 

(F(2,3184)=86.6, p=2.3x10-37; controls vs. patients p=1.6x10-35, controls vs. relatives 

p=3.6x10-4, patients vs. relatives p=1.1x10-16), with patients having the highest 

scores, followed by relatives and lastly controls (see Figure 5-1, left panel). 

The polygenic score for schizophrenia predicted scores on the block design task at 

the SNP p-value threshold of pT < 0.05, with 0.2% of variance explained, at a trend 

level of significance (p=0.009). Higher polygenic score was nominally associated 

with poorer performance on the block design task. No other associations 

approached significance after correcting for multiple testing. These results are 

shown in Figure 5-2a (for full results see Appendix D). 

5.3.3 Bipolar disorder polygenic score analysis  

The bipolar disorder polygenic score differed significantly between the three groups 

(F(2,3184)=21.8, p=4.0x10-10; controls vs. patients p=4.9x10-11, controls vs. relatives 

p=6.1x10-4, patients vs. relatives p=2.8x10-3), with patients having the highest 

scores, followed by relatives and lastly controls (see Figure 5-1, right panel).   

Proportions of variances explained by the bipolar disorder polygenic score were all 

< 0.2% (and mostly below 0.1%), and none of the associations were significant after 

correcting for multiple testing. These results are shown in Figure 5-2b (for full 

results see Appendix D). 
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Figure 5-1. Distribution of polygenic scores 

Distribution of schizophrenia (left panel) and bipolar disorder (right panel) 
polygenic scores at the most liberal SNP p-value threshold (pT < 1), for the whole 
sample (upper panel) and across the three groups (lower panel).  
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Figure 5-2. Polygenic score analyses results. 

Variance explained (R2) by schizophrenia (a) and bipolar disorder (b) polygenic 
scores across endophenotypes. Blue bars represent different single nucleotide 
polymorphism (SNP) p-value thresholds (pT). The lowest p-value for each 
endophenotype is displayed above the corresponding bar; the p-value in bold 
shows a trend-level finding. RAVLT = Rey Auditory Verbal Learning Task; imm = 
immediate recall; del = delayed recall.  

5.4 Discussion 

The aim of this study was to test whether polygenic scores for schizophrenia and 

bipolar disorder – based on the latest mega-analysis from the Psychiatric Genomics 
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Consortium – influence a range of endophenotypes for psychosis. This included the 

P300 event related potential amplitude and latency, lateral ventricular volume, and 

measures of cognition (block design, digit span, and the Rey Auditory Verbal 

Learning Task). No association remained significant after correction for multiple 

testing. However, the schizophrenia polygenic score predicted poorer performance 

on the block design task at a trend-level, with 0.2% of variance in block design 

explained by the polygenic score. 

Several studies have investigated the relationship between cognition and polygenic 

score for schizophrenia. Terwisscha van Scheltinga et al (2013b) failed to show an 

association with intelligence in a sample of 672 patients with schizophrenia and 

controls, but McIntosh et al (2013) found an association with cognitive change 

between the ages of 11 and 70 in 937 controls. Further, in a large sample of 4900 

controls, Lencz et al (2014) saw an association between schizophrenia polygenic 

score and general cognitive ability. Lencz and colleagues (2014) also calculated 

polygenic score for cognition (i.e. including SNPs associated with cognitive 

performance) in healthy controls, and used this to significantly predict disease 

status in a sample of over 5000 patients with schizophrenia and 5800 controls, with 

~0.5% of the variance in disease risk explained by the cognitive polygenic score. 

Hence, research suggests that there is a genetic overlap between cognitive 

performance and schizophrenia (Lencz et al., 2014; Toulopoulou et al., 2010), and 

the trend-level finding for the block design task is in line with this. This provides 

some support for the notion that this measure of spatial visualisation is an 

endophenotype for schizophrenia, and that genetic risk variants are shared 

between the traits. However, there was no association between measures of 

working and verbal memory and this polygenic score, and furthermore, no 

associations were significant for bipolar disorder polygenic score. This could be due 

to a lack of power, as these genetic effects are likely to be subtle as discussed 

below. 

Similarly to this study, Hall et al (2015) also investigated the association between 

polygenic score for schizophrenia and bipolar disorder and the P300 event related 
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potential. The total sample size was smaller than in this current study (including 392 

patients with psychosis and controls, but no unaffected relatives), but polygenic 

scores were also calculated using the latest data from the Psychiatric Genomics 

Consortium. Similarly to my results, none of their associations remained significant 

after correction for multiple testing.  

Research has suggested that the P300 has a significant genetic component. 

Abnormalities in unaffected first-degree relatives of patients have been identified 

(Schulze et al., 2008; Thaker, 2008), its heritability is around 60% (van Beijsterveldt 

and van Baal, 2002; Hall et al., 2006), and about 27% of variance in P300 amplitude 

can be accounted for by common genetic variation (Malone et al., 2014b). 

Furthermore, a significant genetic overlap of about 34% between the P300 

amplitude and bipolar disorder has been observed (Hall et al., 2007). However, it is 

possible that the overlap in common variants involved in both psychosis and the 

P300 is small, suggesting subtle effect sizes requiring very large samples. 

As for the influence of polygenic scores on measures of brain volumes, Terwisscha 

van Scheltinga et al (2013a) and Papiol et al (2014) both looked at total brain, white 

and grey matter volumes, and associations with schizophrenia polygenic score 

based on an early version of the Psychiatric Genomics Consortium data (including 

about 9400 cases of schizophrenia); the former found a significant association 

whereas the latter did not. Van der Auwera et al (2015) tried to replicate this using 

data from the latest Psychiatric Genomics Consortium analysis (including nearly 

37,000 patients with schizophrenia), and a test sample of 1470 healthy controls. 

They failed to show an association between schizophrenia polygenic score and 

whole brain, grey or white matter volumes (Van der Auwera et al., 2015). My results 

investigating lateral ventricular volume are in line with this. 

Studies have suggested that ventricular volume has a genetic basis; heritability of 

up to 70% has been observed (Carmelli et al., 2002; Kremen et al., 2010, 2012; 

Peper et al., 2009; Schmitt et al., 2007) – although not in all studies (Baaré et al., 

2001; Wright et al., 2002) – and McDonald et al (2002) found increased volumes in 

unaffected relatives of individuals with familial schizophrenia, but not in relatives of 
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individuals with a non-familial illness. However, in a meta-analysis of 1065 

unaffected relatives of schizophrenia patients and 1100 healthy controls, Boos and 

colleagues (2007) did not find an overall effect in relatives. Importantly, group 

differences in lateral ventricular volume in this chapter were not significant, 

although when including the larger sample in chapter 4, patients had significantly 

enlarged ventricles compared to controls. However, relatives and controls did not 

differ significantly from each other. Taken together, this suggests that lateral 

ventricular volume might not be strongly associated with genetic risk for psychosis, 

and this may have contributed to my negative findings. Instead, as also discussed in 

the previous chapter, the enlarged ventricles in psychosis might be due to illness 

progression, or to effects of antipsychotic medication. 

Overall, although research has shown that there is a genetic component 

contributing to variability in the biomarkers investigated here, these are all complex 

(multifactorial and heterogeneous) phenotypes, and environmental factors play 

important roles too. Abnormalities in patients might be influenced by, for example, 

illness duration, medications, and other environmental factors such as alcohol and 

drug use, diet, stress, or childhood trauma (e.g. Arseneault, 2004; McGrath et al., 

2004; Varese et al., 2012; Vassos et al., 2012). Furthermore, all complex traits are 

likely to have complex genetic influences, including a substantial polygenicity 

(Geschwind and Flint, 2015; de Geus, 2014; Munafò and Flint, 2014; Rees et al., 

2015), and only a subset of SNPs associated with psychosis will also be related to 

particular endophenotypes, and vice versa, suggesting that effect sizes for the 

associations of overlapping genetic factors might be small (Lencz et al., 2014). This 

has indeed been found for the phenotypes investigated, with the amount of 

variance explained by polygenic scores mostly below 1% (Van der Auwera et al., 

2015; Hall et al., 2015; Lencz et al., 2014; McIntosh et al., 2013; Papiol et al., 2014; 

Terwisscha van Scheltinga et al., 2013a, 2013b; Whalley et al., 2012, 2013, 2015). 

Hence, it is possible that very large samples are needed to detect such subtle 

effects.  
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That only associations approaching significance were seen with the endophenotype 

with the largest sample size of the measures tested (the block design task) suggests 

that power might indeed be an issue. For the EEG and MRI measures, that are more 

laborious to obtain, sample sizes in this study ranged from just over 500 to about 

800, which means that a variance explained of 1-1.5% or higher could be detected, 

suggesting power was limited for these phenotypes. For the cognitive 

endophenotypes, however, the sample sizes were larger and a variance explained 

of 0.25-0.55% or higher could be detected (see Appendix D for details of this power 

analysis). 

A limitation of this study – as discussed in the previous chapter – was the 

heterogeneity of methods between study sites in terms of endophenotype 

collection, processing and analysis. This might have added noise to the data and 

thus obscured any true effects. However, an important strength of this study was 

that genotyping of all samples was done at the same laboratory using the same 

platform, and that all genetic analyses and quality control were completed in a 

unified way. 

Although common variants are thought to explain up to 30% of heritability in 

psychosis, genome wide association studies to date have only significantly identified 

about 3% of this (Fernandes et al., 2013; Lee et al., 2012a). More can be captured 

by calculating polygenic scores, although false positives will also be included (Iyegbe 

et al., 2014; Wray et al., 2014). It is important to note that a larger discovery sample 

used to calculate polygenic scores is likely to include a higher proportion of true 

positive hits, and hence lead to a more reliable measure (Chatterjee et al., 2013; 

Dudbridge, 2013; Plomin, 2013; Wray et al., 2014). Compared to the discovery 

sample size used to calculate the schizophrenia polygenic score (including about 

31,700 cases; Ripke et al., 2014) the discovery sample for the  bipolar disorder score 

was more than four times smaller – including only about 7,500 cases (Sklar et al., 

2011) – and this could thus explain the lack of findings with the bipolar disorder 

polygenic score.  
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Importantly, there are highly significant differences in polygenic scores between the 

clinical groups, both in this sample and in previous studies (Bramon et al., 2014; 

Derks et al., 2012; Purcell et al., 2009; Ripke et al., 2014), indicating that this 

measure does capture genetic variants that differ between patients, unaffected 

relatives, and healthy controls. However, their predictive power at the individual 

level remains too low, and polygenic scores are not currently able to predict illness 

status reliably enough to be used clinically, for example as a screening tool. This 

would require very large discovery data sets, a large catalogue of genetic risk 

variants (potentially including both common and rare markers), and most likely the 

inclusion of a combination of genetic and non-genetic risk factors such as cognition, 

brain imaging, or family history, as well as age and gender (Chatterjee et al., 2013; 

Dima and Breen, 2015; Dudbridge, 2013; Iyegbe et al., 2014; McCarroll and Hyman, 

2013; Wray et al., 2010). 

In order for the polygenic score to be used clinically for diagnosis, its ability to 

correctly identify both patients (i.e. its sensitivity) and healthy individuals (i.e. its 

specificity) would need to be high. To evaluate the sensitivity and specificity of 

potential diagnostic tests, analysis of the Receiver Operating Curve (ROC) and the 

area under the curve (AUC) – the latter as a measure of accuracy, or the probability 

that a randomly chosen individual with the disorder is rated as more likely to be 

diseased than a randomly chosen unaffected individual – is often used (Hajian-

Tilaki, 2013; Kumar and Indrayan, 2011). An AUC of 1 indicates a perfect test, 

whereas a test with an AUC of 0.5 performs at a chance-level. It is generally 

assumed that a good diagnostic test should have an AUC of 0.8 or above (Ebell, 

2016; Tape, 2016). The polygenic score does not currently perform at this level. I am 

involved in a study where we are investigating the potential of the score to 

distinguish between patients and controls (in the same sample that I have used for 

my thesis), and the AUC for the schizophrenia and bipolar disorder polygenic scores 

are 0.66 and 0.58, respectively. Therefore, even though both schizophrenia and 

bipolar disorder risk scores can discriminate individuals with psychosis from 

controls very well and group differences are highly significant, the accuracy of this 

prediction does not support their use as either predictive or diagnostic tests. 
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Nevertheless, the polygenic scores do provide a standardised and relatively 

straightforward method to capture the contribution of common genetic variation in 

these disorders and constitute a powerful research tool.   

In future, as our understanding of the genetic architecture of psychosis improves, 

and as discovery samples become larger, the performance of the polygenic score is 

likely to be further enhanced. Polygenic scores could then be useful for testing 

hypotheses about the functional effects of risk variants, or to investigate the 

associations between disease risk and severity of illness, symptoms dimensions, and 

treatment or functional outcomes. This method could potentially be used to stratify 

populations into groups with shared genetic features, or to identify individuals at 

high-risk of developing an illness (Maier et al., 2015; Wray et al., 2014). 

Furthermore, using polygenic scores based on selected genetic risk variants 

clustering on specific functional pathways, rather than a broad selection of SNPs, 

could become beneficial in the investigation of the specific effects that genetic risk 

factors for psychosis have on brain function/structure and cognition. 

In conclusion, results from this study indicate that the combined effect of common 

genetic risk variants for schizophrenia is nominally associated with performance on 

spatial visualisation (as measures by the block design task), providing some further 

evidence that this measure is an endophenotype for the disorder with shared 

genetic risk variants. However, no other associations between polygenic scores for 

psychosis and endophenotypes approached significance. This could be due to a lack 

of power, and larger samples might be needed to detect these small effects. 

Furthermore, as discovery samples get larger, and additional and better targeted 

genetic information is included, the performance of polygenic scores will be further 

enhanced. Larger association studies using these scores on deeply phenotyped 

samples may in future provide a promising approach to investigate the functional 

effects of genetic risk variants for psychosis. 
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 General discussion Chapter 6:

This thesis has been investigating endophenotypes for psychosis in people 

diagnosed with psychotic illnesses, unaffected first degree relatives of probands, 

and controls. There were four specific aims of this thesis, corresponding to the four 

experimental chapters presented, and in short, I have shown that: 

i) Resting state EEG activity does not appear to be a promising endophenotype 

for psychosis, since no abnormalities were observed in the risk groups. 

However, low frequency abnormalities in chronic patients with psychosis 

could provide biomarkers for the disease that could be useful in non-genetic 

research. 

ii) Effective connectivity underlying the mismatch negativity event-related 

potential – specifically, the excitability of superficial pyramidal cells in 

prefrontal cortex – appears to be abnormal in psychosis as well as in 

unaffected relatives, indicating that this could be related to the genetic 

aetiology, and is a candidate endophenotype for the illness. 

iii) The P300 event-related potential amplitude and latency, as well as working 

memory and spatial visualisation are reliable endophenotypes for psychosis. 

The P300 amplitude and latency appear to be distinct mechanisms, reflecting 

attention and working memory, and basic processing speed, respectively. 

Furthermore, individuals with psychotic illnesses, their unaffected relatives, 

and healthy controls all show similar patterns of associations between pairs of 
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endophenotypes, supporting the view of a continuum of psychosis across the 

population. 

iv) The polygenic score (a combined measure of many common genetic risk 

variants) for schizophrenia predicts performance on a spatial visualisation task 

at a trend-level, suggesting shared genetic risk variants between these two 

traits. Larger samples are needed to yield further significant findings, and as 

discovery samples continue to grow the use of polygenic scores is promising. 

This thesis has thus contributed to the field of mental health research by 

investigating electrophysiological, cognitive and imaging endophenotypes for 

psychosis and their genetic influences. Well defined and reliably measured 

endophenotypes are valuable in psychiatric research for several reasons. They can 

help elucidate the functional effect of identified genetic risk factors, and they can 

provide ways of identifying groups of people with similar abnormalities, both within 

and between current diagnostic categories. This could improve the understanding 

of disease aetiology, point towards novel treatment targets, identify individuals at 

risk of developing a disorder who will benefit from early intervention, predict 

treatment and prognostic/clinical outcomes, and hopefully in the longer-term 

provide improved diagnostic tools (Braff, 2015; Braff et al., 2007; de Geus, 2010; 

Glahn et al., 2014; Hall and Smoller, 2010; Meyer-Lindenberg and Weinberger, 

2006; Munafò and Flint, 2014).  

In this final chapter I will discuss the findings from this thesis, their implications and 

future work, as well as the strengths and limitations of this research. 

6.1 Implications of findings and future work 

6.1.1 Resting state EEG activity 

The first experimental chapter investigated whether resting state EEG activity could 

act as a suitable endophenotype for psychosis. This is important because alterations 

in resting state activity could influence perceptual and cognitive processing 



Page | 113  

 

(Baldeweg and Boyd, 2008; Finnigan and Robertson, 2011; Kam et al., 2013; Malone 

et al., 2014a; Stam et al., 2002). Studies have, for example, looked at resting EEG 

and ERPs in combination, and found that the amplitude and latency of ERP peaks 

are related to resting EEG characteristics of the individual (Anokhin et al., 2001; 

Intriligator and Polich, 1994; Lee et al., 2011; Vogel et al., 1986). Hence, it is 

possible that abnormalities of resting EEG oscillations in patients with psychosis also 

influence their ERP responses, and in order to understand brain responses induced 

by cognitive processing, it is important to characterise endogenous differences that 

may influence task related responses (Phillips and Uhlhaas, 2015). Although 

patients with psychosis often show abnormalities in this measure (reviewed in 

Boutros et al., 2008), studies including risk populations have shown inconsistent 

findings (Alfimova and Uvarova, 2003; Gschwandtner et al., 2009; Hong et al., 

2012b; Narayanan et al., 2014; Venables et al., 2009; Winterer et al., 2001; 

Wuebben and Winterer, 2001), and it was unclear whether resting EEG constitute  

an endophenotype for psychosis. 

Results presented in this thesis found no abnormalities in first episode patients, 

individuals with an at-risk mental state, or unaffected relatives, and consequently, 

resting EEG activity in the frequency bands examined is unlikely to be related to 

genetic predisposition to psychosis. Rather than endophenotypes, the low 

frequency abnormalities observed in chronic patients are probably related to illness 

progression, symptom severity, or possibly to the longer term use of antipsychotic 

medication. It has been suggested that increased delta activity is associated with 

negative symptoms of psychosis (Lavoie et al., 2012), and specifically with a lack of 

motivation and anhedonia (Knyazev, 2012). Furthermore, the use of antipsychotics 

has been associated with a slowing of the EEG signal (Hyun et al., 2011; Knott et al., 

2001; Schuld et al., 2000). 

Unfortunately, data was not available for the whole of my current sample to 

investigate these factors with sufficient statistical power (discussed in limitations 

section below). This is however an important avenue for future work and 
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longitudinal studies starting with medication-naïve patients are needed to 

disentangle the medication effects from the effects of the illness progression itself.  

Nevertheless, the increased low frequency resting state EEG activity in chronic 

patients could be a useful biomarker in non-genetic research, for example as a 

prognostic or medication-response predictor. Resting EEG has several advantages 

over other electrophysiological measures: It is easy to collect and can be performed 

in a wide range of settings, it is also well tolerated by most patients as it does not 

require the participant to follow instructions or concentrate on a task (Anokhin, 

2014; Winterer et al., 2001). This contributes to its suitability as a potential clinically 

useful biomarker. 

6.1.2 Dynamic causal modelling of the mismatch negativity 

The second experimental chapter investigated brain connectivity – with a focus on 

the gain or excitability of superficial pyramidal cells – underlying the mismatch 

negativity (MMN) evoked potential, using dynamic causal modelling (DCM). The 

MMN has been linked to NMDA receptor function (e.g. Näätänen et al., 2012; 

Schmidt et al., 2012a), and glutamatergic theories of psychosis propose that 

hypofunction of NMDA receptors causes a loss of synaptic gain control (Harrison et 

al., 2011; Lisman et al., 2008; Phillips and Silverstein, 2013; Stephan et al., 2006).  

This was the first study using DCM to investigate the MMN in patients with 

psychosis as well as their unaffected relatives, and results suggested that the 

excitability of superficial pyramidal cells in response to the MMN task could be a 

potential endophenotype for psychosis. There were both context-dependent 

(condition-specific) and context-independent abnormalities in patients as well as in 

those with a genetic risk for psychosis.  

Analysing EEG data at the scalp level has provided a wealth of information about 

changes of brain function in psychosis; however, source-level analyses such as DCM 

are important complementary approaches that can capture additional information 

provided by EEG data (Anokhin, 2014; Michel and Murray, 2012). DCM can be used 
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as a tool to acquire detailed and specific measures of brain effective connectivity, 

including potential endophenotypic markers. This could in future provide clinically 

useful means of identifying individuals at risk of developing a disorder or to predict 

clinical and treatment outcomes. The use of DCM and effective connectivity is 

advantageous because it provides neurophysiologically plausible measures that can 

point towards causative processes, such as the excitability of certain neuronal 

populations. Such detailed measures of brain function could help elucidate the 

functional effects of identified genetic risk markers, provide new treatment targets 

and, eventually, novel clinically useful markers of disease (Adams et al., 2015; 

Brodersen et al., 2014; Montague et al., 2012; Stephan and Mathys, 2014; Stephan 

et al., 2006). This is in contrast to measures of functional brain connectivity, which 

refers to statistical correlations among regional activity that is not causal and 

provides only limited insight into disease mechanisms  (Brodersen et al., 2014; 

Friston, 2011).  

To produce well-defined and reliable measures using DCM would, of course, require 

careful validation work and independent replications, as well as longitudinal studies 

to test clinical predictions (Stephan and Mathys, 2014). Since DCM is a complex 

analysis method, automated analysis protocol would need to be developed, 

enabling users without high levels of expertise in DCM to process large numbers of 

individuals rapidly. In future, it might be possible to obtain EEG data from an 

individual, process it using a validated and standardised protocol in DCM, and 

extract measures of effective connectivity that could be used clinically as 

biomarkers or endophenotypes.  

Some of this work is underway. For example, using machine learning and DCM for 

fMRI during a working memory task, it has been shown that DCM measures of 

effective connectivity (within a network of visual, parietal, and prefrontal regions) 

can distinguish between patients and controls more accurately than measures of 

functional connectivity (i.e. the statistical correlation between activity of the 

sources) in the same network (Brodersen et al., 2014). Furthermore, in the same 

study,  Brodersen et al (2014) showed that patients could be subdivided into three 
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groups based on their DCM-derived measures of effective connectivity during the 

working memory task – that mapped onto three clinically distinct groups differing in 

negative symptom scores. Although this needs replication, it shows the great 

potential of DCM.  

In addition, compared to DCM for fMRI, using DCM for EEG data – a direct measure 

of brain activity, with precise temporal resolution of millisecond accuracy – provides 

a more detailed and realistic neuronal mass model. This makes it possible to 

distinguish different types of neurons and synaptic connections when using EEG, 

whereas using fMRI one is currently limited to connectivity between large neuronal 

populations (Brodersen et al., 2014; Friston, 2011; Stephan and Mathys, 2014). 

DCM for EEG can thus lead to more nuanced measures than is possible using fMRI 

data, to use as biomarkers or endophenotypes for psychosis and other psychiatric 

illnesses. 

Most DCM studies to date investigate connectivity underlying various cognitive 

processes. However, it is of course also possible to utilise resting state data for this 

type of analysis (Kiebel et al., 2009; Moran, 2015; Moran et al., 2009). It has been 

suggested that an increase in low frequency resting EEG relative to higher 

frequencies – as seen in chronic patient with psychosis – could be related to 

changes in synaptic gain (Kilner et al., 2005). This could be tested empirically using 

DCM. 

6.1.3 Associations between endophenotypes 

Moving away from the identification of new endophenotypes, the third 

experimental chapter of this thesis investigated the relationships between several 

known endophenotypes for psychosis. This included measures of cognition, 

electrophysiology, and brain structure – with the aim of, in particular, characterising 

the P300 event-related potential. This is important because to optimise the use of 

endophenotypes for future genetic studies, they need to be carefully characterised, 

for example by assessing the relationships between different multi-modal 
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endophenotypes. Furthermore, replication of group differences between patients, 

their relatives, and controls in large multi-centre studies is vital since this type of 

studies are needed to be able to acquire the large sample sizes required for genetic 

analyses. 

Results supports the notion that the amplitude and latency of the P300 are 

independent markers; the amplitude an index of attention and working memory, 

while the latency might be conceptualised as a correlate of basic speed of 

processing (Ford, 2014; Näätänen, 1990; Polich, 2007, 2011). A further conclusion of 

this study is that individuals with psychotic illnesses, their unaffected relatives, and 

healthy controls all show similar patterns of associations between all pairs of 

endophenotypes, endorsing the theory of a continuum of psychosis across the 

population (Allardyce et al., 2007; DeRosse and Karlsgodt, 2015; Esterberg and 

Compton, 2009). 

Importantly, this study replicated previous findings supporting the endophenotypic 

status of several markers, including the P300 amplitude and latency, and cognitive 

measures (digit span and block design, measuring working memory and spatial 

visualisation, respectively). However, lateral ventricular volume and verbal memory 

were not significantly different between controls and unaffected relatives of 

patients, suggesting they might not be related to genetic risk for psychosis.  

The nature of multi-centre studies inevitably leads to some heterogeneity between 

sites in the methods used to obtain and analyse the data (Costafreda, 2009; 

Shokouhi et al., 2011; Suckling et al., 2008, 2012). This is clearly a limitation by 

adding noise to the data, and work needs to be done to ensure methods are as 

uniform as possible. However, utilising data from different centres makes it possible 

to achieve the large sample sizes needed for genetic analyses. It is important to 

note the main findings seen in this study, indicating that it is indeed possible to 

merge data collected at different locations. That significant group differences were 

observed for the majority of measures in this large sample collected across several 

research centres in Europe and Australia support their robust nature as 

endophenotypes for psychosis.  
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6.1.4 Polygenic risk scores and their link to psychosis endophenotypes 

In the fourth and last experimental chapter, polygenic risk scores – a measure of the 

combined effect of a large number of common genetic risk factors of small 

individual effects – were used to investigate the relationship between genetic risk 

for schizophrenia and bipolar disorder, and several endophenotypes for psychosis. 

This is a novel method to investigate polygenic risk, and its use has increased rapidly 

in the last few years. The study presented here was one of the first to investigate 

polygenic scores and a range of endophenotypes of different modalities in 

psychosis, including a large family based sample of over 4000 individuals. Although 

endophenotypes were collected across several sites, all genetic analyses were 

conducted at the same laboratory using a unified methodology. 

Results showed that common genetic variants associated with schizophrenia predict 

performance on a spatial visualisation task at a trend-level of significance. This 

suggests some further evidence that this cognitive measure is an endophenotype 

for the disorder with shared genetic risk variants between the traits. Hence, it was 

shown that with a sufficiently large sample size, the use of polygenic scores have 

the potential to confirm hypotheses about endophenotypes, by showing that such 

traits do share genetic risk variants with the disorder as hypothesised. Furthermore, 

studies such as this can help us to understand the mechanisms through which 

common genetic variation leads to the onset of the disease. Finally, with larger 

discovery samples, which are being collected through large international 

collaborations such as the Psychiatric Genomics Consortium, the performance of 

polygenic scores is likely to improve in future (Chatterjee et al., 2013; Dudbridge, 

2013; Plomin, 2013; Wray et al., 2014). 

It is also important to acknowledge that many types of genetic risk factors have now 

been identified. The polygenic score currently only includes common variants of 

very small individual effects (odds ratios < 1.2, and present in more than 1% of the 

population (McCarthy et al., 2008)). However, rare variants of larger effects, such as 

copy number variants, associated with psychosis have also been identified (Grozeva 

et al., 2011; Stefansson et al., 2008; Stone et al., 2008; Walsh et al., 2008; Xu et al., 
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2008). These are only observed in less than 1% of the population (often in as little as 

0.1% of individuals), but they carry significantly increased risk, with odds ratios from 

3 and up to >50 (Kirov et al., 2014, 2015; Mowry and Gratten, 2013; Stefansson et 

al., 2014). Including such risk markers in the polygenic score might increase its 

predictive value. 

In combination with other measures – such as demographic (e.g. age, gender, 

family history), clinical (e.g. age of onset, symptom scores), brain structure and 

function, performance of cognitive tests, and rare genetic risk factors (e.g. copy 

number variants) – the clinical usefulness of polygenic scores is likely to be 

enhanced further (Chatterjee et al., 2013; Dima and Breen, 2015; Dudbridge, 2013; 

Iyegbe et al., 2014; McCarroll and Hyman, 2013; Wray et al., 2010). Polygenic scores 

could, for example, be used to identify individuals at high risk of developing 

psychosis that would most benefit from early assessments and interventions  

ranging from psycho-education to reduce environmental risks to early treatment 

with psychological therapies (Maier et al., 2015; Wray et al., 2014). Such uses of 

polygenic methods for stratification of individuals have come further in other fields, 

for example in cancer research (Chowdhury et al., 2013; Hawken et al., 2010; So et 

al., 2011). For breast and prostate cancer, it has been shown that including 

polygenic risk scores in addition to age can reduce the number of individuals 

screened, whilst still detecting the majority of cases that were identified using a 

predictive model only including age (Pashayan et al., 2011). 

Of course, phenotypes such as those derived from DCM could be combined with 

polygenic risk score analyses to, for example, test whether measures of brain 

connectivity share genetic risk variants with psychosis, and to investigate the 

functional effect of identified genetic risk markers2. Eventually, suitable 

endophenotypes for psychosis could be incorporated along with polygenic scores in 

a clinical prediction model including both genetic and brain functional measures.  

                                                      
2
 It is worth noting here that although cortical excitability during the MMN task appears to be an 

endophenotype for psychosis (as shown in chapter 3), it was not possible at this stage to include this 
measure in the associations with polygenic scores, because the sample size (N=84) was not large 
enough for a genetic analysis. 
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In summary, while the schizophrenia and bipolar disorder polygenic scores can 

discriminate cases from controls very well, their modest sensitivity and specificity 

precludes their use as a diagnostic or prognostic tool at the individual level in 

routine clinical practice (as discussed in chapter 5). Nevertheless, there is growing 

interest in the potential of polygenic scores in public health strategies to help 

deliver risk reduction and early treatment campaigns to those parts of the 

population who need it most (Wray et al., 2013, 2014). Furthermore, polygenic 

scores constitute a powerful research tool, which combined with large 

epidemiological studies of environmental risks is likely to bring advances in our 

understanding of the aetiology of psychotic disorders (Dudbridge, 2013; Maier et 

al., 2015). 

6.1.5 Future research goals  

The ultimate goal of this research is to improve the lives of people living with 

mental health needs, specifically psychosis. The use of endophenotypes can do this 

by investigating the functional effect of genetic risk factors, in order to improve the 

understanding of the aetiology of disorders. This, in turn, can help research move 

towards several future goals, such as improving treatment options, devising clinical 

prediction tools and personalised medicine, as well as developing new biologically-

based diagnostic systems.  

Well defined and reliably measured endophenotypes could point towards potential 

treatment targets, both biological and psychological. This could include, for 

example, cortical excitability potentially mediated by NMDA receptors – as 

estimated using DCM – or working memory dysfunction measured both using ERPs 

like the P300, and through traditional cognitive tests. In terms of medications, 

developing new treatment options for psychosis is vital, since about 30% of patients 

do not respond well to current medications (Bertelsen et al., 2009), and 

antipsychotics have significant and sometimes severe side-effects (Leucht et al., 

2012; Staring et al., 2009). 
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Endophenotypes (as well as biomarkers not related to genetic aetiology) also have 

the potential of being used as clinical tools, maybe to identify people at high risk of 

developing an illness in order to provide early interventions, to predict who will 

benefit from a particular treatment from a range of options available, and what the 

course of the illness is likely to be (Fu and Costafreda, 2013; Fu et al., 2013; 

Fuggetta et al., 2014; Turetsky et al., 2014). 

EEG has great potential here, being non-invasive, cost-effective and easy to obtain 

in a wide range of settings. It has been shown that EEG measures have some 

predictive value, and that both resting state EEG activity and event related 

potentials are able to identify individuals at risk who will later develop psychosis 

(Bodatsch et al., 2011; Gschwandtner et al., 2009; Lavoie et al., 2012; van Tricht et 

al., 2014; Zimmermann et al., 2010). In a meta-analysis of five studies and a total of 

225 at-risk individuals, Bodatsch et al (2014) found that the amplitude of the 

mismatch negativity event-related potential was significantly reduced in those who 

later converted to psychosis compared to those who did not develop the illness. 

This is early evidence that EEG parameters could be useful tools for risk prediction, 

probably in combination with clinical or other factors. 

In future, personalised medicine in psychiatry might be a possibility, with 

treatments targeted to the needs of the individual patient, based on genetic 

information as well as biomarkers/endophenotypes of, for example, physiology, 

cognition or neuroanatomy.  This could involve using biomarkers towards disease 

stratification, that is uncovering illness subtypes to improve the way individuals are 

categorised and can then choose a treatment such as a drug from several licensed 

compounds (Insel and Cuthbert, 2015). Personalised medicine has come further in 

other fields of medicine, such as in oncology, where diagnoses can now sometimes 

be made based on molecular evidence, leading to truly individualised treatment 

plans and improved outcomes (Collins and Varmus, 2015; Fenstermacher et al., 

2011). 

Machine learning methods are promising here, because such approaches can find 

patterns among large amounts of multivariate data to classify individuals into 
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groups with similar characteristics (Bone et al., 2015; Fu and Costafreda, 2013; 

Klöppel et al., 2012; Phillips, 2012). For example, Bedi and colleagues (2015) used 

language patterns during clinical assessments to predict who would develop 

psychosis in a clinical high-risk sample, and Costafreda et al (2009) used 

neuroanatomy to predict treatment response to antidepressant medication. 

Interestingly, Yang et al (2010) found that a combination of functional brain imaging 

(fMRI activity during an auditory oddball task) and genetic data (a set of selected 

SNPs) performed better that either measure alone in classifying patients with 

schizophrenia and controls. 

A longer-term goal of this research is to develop improved diagnostic measures and 

nosology. Current diagnoses are based on clinical observations, relying on the 

patient’s ability to communicate and the clinician’s expertise, and they are not 

rooted in biology and do not reflect aetiology or prognostic factors (Brodersen et 

al., 2014; Fu and Costafreda, 2013; Insel and Cuthbert, 2009; Jablensky, 2010). 

Hence, there is a pressing need to improve diagnoses, and biological markers and 

endophenotypes have great potential here. As the understanding of disease 

aetiology improves, diagnostic categories are likely to be refined. Recent genome 

wide association analyses have, for example, found that there is considerable 

genetic overlap between schizophrenia and bipolar disorder, as well as some 

overlap between these and major depressive disorder (Lee et al., 2013), and some 

SNPs and CNVs have been found that confer risk to a range of disorders including 

schizophrenia, bipolar disorder, autism spectrum disorder, attention deficit-

hyperactivity disorder, and major depressive disorder (Geschwind and Flint, 2015; 

Moreno-De-Luca et al., 2010; Smoller et al., 2013). 

It has been argued that to be able to advance the understanding of disease 

mechanisms in psychiatry, research needs to move away from current disease 

classifications to reduce heterogeneity (Owen, 2014). The Research Domain Criteria 

(RDoC) is an approach introduced by the National Institute of Mental Health in the 

United States in 2009, and an attempt to develop novel ways of classifying 

psychiatric disorders (for research purposes initially), that are based on dimensions 
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of behaviours and neurobiology (NIMH, 2015). Endophenotypes at various level of 

analysis (e.g. molecular, neurophysiological, or behavioural) fit neatly with this 

approach to investigate abnormalities implicated in psychiatry that might cut across 

or subdivide current diagnoses (Glahn et al., 2014; Insel and Cuthbert, 2009; Owen, 

2014). 

Because endophenotypes identified for psychosis are often not specific to this 

disorder (for example the P300 and working memory abnormalities, as discussed in 

chapter 4), the development of clinically useful tools will most likely require a 

combination of measures from different modalities (Borgwardt and Fusar-Poli, 

2012; Prasad and Keshavan, 2008). Some studies have now shown that this 

approach has predictive power, although replications are needed (e.g. Schubert et 

al., 2015; Shah et al., 2012). Hence, a measure combining, for example, polygenic 

scores, neurophysiological markers such as ERPs or measures of effective 

connectivity, and cognitive performance – as well as family history and key clinical 

variables such as age and gender – might in future be able to classify individuals into 

risk groups or identify those most likely to benefit from a particular treatment. Such 

a model is currently used for cardiovascular disease risk prediction, including factors 

such as age, gender, ethnicity, smoking status, cholesterol levels, weight, and blood 

pressure (Boon et al., 2014). The personalised medicine approach that is widely 

used in oncology and other fields of medicine is gradually starting to gain influence 

in mental health. As we develop a better understanding of the neurobiology of 

psychosis through imaging, genomics and other research, we are identifying 

suitable biomarkers. For psychosis, combined/composite markers could in future 

provide a tool for the identification of individuals at high risk of developing 

psychosis that would most benefit from early assessments and interventions 

ranging from psycho-education to reduce environmental risks to early treatment 

with psychological therapies, as discussed above.  

It is important here to briefly mention the many environmental risk factors for 

psychosis that have been identified and replicated. Both genetic and environmental 

factors are crucial to the development of psychiatric illnesses, and there is growing 
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interest in investigations on how they interact and influence each other (Kelly and 

Murray, 2000; van Os et al., 2010; Stilo et al., 2011). Some of the most well 

replicated environmental risk factors for psychosis include pregnancy and perinatal 

factors (Hultman et al., 1999; Suvisaari et al., 2013), growing up in an urban 

environment (Kelly et al., 2010; Krabbendam and van Os, 2005; March et al., 2008; 

McGrath et al., 2004; Vassos et al., 2012), migration and ethnic minority position 

(Bourque et al., 2010; Cantor-Graae and Selten, 2005; Fearon et al., 2006). Cannabis 

use, especially when occurring at an early age, is a well characterised risk factor for 

the development of schizophrenia (D’Souza et al., 2005; Di Forti et al., 2015; 

Minozzi et al., 2010; van Os et al., 2002), and is the focus of research investigating 

the interactions between environmental and genetic or other biological risks (Caspi 

et al., 2003; Howes and Murray, 2014; Iyegbe et al., 2014). 

Related to this is the question of resilience; how come some people with an 

increased risk for psychosis – including those with an increased genetic risk such as 

first-degree relatives of patients – do not develop the illness? One key issue to keep 

in mind here this is that genetics are not deterministic and although an individual 

might inherit an increased genetic risk for psychosis, this does not mean that they 

will develop this disorder. As per recent genome wide association studies 

(Geschwind and Flint, 2015; Harrison, 2015; Ripke et al., 2014) more than one 

hundred genetic variants have been identified reliably. These are common and 

present individually in 5% or more of the population and indeed many people are 

carriers of some of these risk variants. However, the odds ratios for these common 

variants are very small (in the region of only 1.1-1.2), thus increasing the risk only by 

10-20% individually. As per work from our group (Calafato, personal communication 

2016), even individuals with very high polygenic risk scores for schizophrenia or 

bipolar disorder might never develop the disease. Similarly, even the strongest 

known genetic risk factor for schizophrenia, namely 22q.11 deletions where the 

odds ratio is as high as 35, are in the majority of cases not affected with psychosis 

(Jonas et al., 2014; Schneider et al., 2014). Unlike rare Mendelian diseases, the 

genetics of common and complex diseases such as psychosis are far from 

deterministic and the idea of protective factors that can offer resilience is worth 
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emphasizing. Indeed, psychosis is not 100% heritable, and genetic factors are not 

the only ones involved in whether an individual develops the disorder or not. 

Environmental factors, as discussed above, are equally important. Hence, if an 

individual inherits an increased genetic risk, but grows up in a supportive family 

environment and gain adaptive coping mechanisms for dealing with stress, this 

might protect them against the genetic risk and they might not develop the disorder 

(Breitborde et al., 2007; O’Brien et al., 2006). Furthermore, although an individual 

might inherit genetic risk factors for psychosis, they might also inherit genetic 

factors that are protective against the illness (Maziade and Paccalet, 2013). There is 

more research aiming to identify risk factors compared to protective factors for 

psychosis, whereas identifying the latter is equally important and more research 

should in future focus on this. Identifying what protects individuals has the 

potential of leading to more efficient prevention in individuals at risk (Kelly et al., 

2010).  

6.2 Strengths and limitations  

There are limitations to this thesis, and although most have been stated in the 

discussions for the respective experimental chapters, some are relevant to the 

thesis as a whole and will be discussed briefly here. The strengths of this thesis will 

also be acknowledged. 

The sample studied in this thesis included a broadly defined patient group, including 

individuals diagnosed with a range of psychotic illnesses – although mostly 

schizophrenia and bipolar I disorder. All patients studied here have experienced 

psychosis as part of their illness. Although there is clear evidence for overlapping 

aetiology and risk factors (Bramon and Sham, 2001; Lee et al., 2013; Murray et al., 

2004; Smoller et al., 2013), there are also factors that are distinct between different 

psychotic illnesses, and the inclusion of a broadly defined patient group could thus 

add noise to the phenotype definition (compared to a more homogenous sample). 

Nevertheless, some analyses in this thesis were repeated to examine a more narrow 

definition of schizophrenia, which did not change the overall conclusions.  
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Furthermore, as mentioned above, since current diagnostic categories are solely 

based on clinical observation and not on any biological tests, it is highly likely that 

the true aetiology will not map neatly onto current diagnoses (Insel and Cuthbert, 

2009; Jablensky, 2010). Therefore, it is important to study this broadly defined 

group of patients, that all share some abnormalities or aspects of their illnesses 

(Weiser et al., 2005), and this can be seen as a strength of this thesis. In addition, 

studying a broader phenotype has the added advantage of larger sample sizes and 

thus greater statistical power. Hence, both studying a narrowly and a broadly 

defined group of patients are important and valid for the advancement of 

psychiatric research, and should be seen as complementary approaches.  

Another potential limitation of this thesis is the confounding effects of antipsychotic 

medications. The majority of patients included here were taking antipsychotics that 

are known to affect brain structure and function (e.g. Fusar-Poli et al., 2013; Goozée 

et al., 2014; Vita et al., 2012). In macaque monkeys, for example, it has been shown 

that administration of antipsychotics over 2 years lead to significant overall 

reductions of both white and grey matter volumes (Dorph-Petersen et al., 2005; 

Konopaske et al., 2007). Furthermore, studies into the effects of antipsychotics on 

EEG activity in humans have shown that this can lead to, for example, a slowing of 

the EEG signal (Hyun et al., 2011; Knott et al., 2001; Schuld et al., 2000).  

However, EEG abnormalities have been reported in unmedicated patients (e.g. 

Brockhaus-Dumke et al., 2008; Gallinat et al., 2004), and it has been argued that 

treatment with antipsychotics might partially normalise some EEG changes 

associated with psychosis, such as the reduced amplitudes of the MMN and P300 

event related potentials (Su et al., 2012; Zhou et al., 2013). Nevertheless, it is 

difficult to disentangle true illness effects from the effects of medications, and 

antipsychotic drugs might contribute to abnormalities found in patients with 

psychosis. This is one reason why studying unaffected relatives of patients is very 

advantageous, and a great strength of this thesis. Unaffected relatives carry an 

increased genetic risk for the illness, but do not have a diagnosis of a psychotic 

illness and are not taking antipsychotic medications. This group is thus ideal to 
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study effects related to genetic risk for an illness, without the confounding effects 

of the disease itself, including medication.  

It needs to be acknowledged, however, that relatives do not only share some of 

their genetic makeup, but often also have some environmental factors in common. 

This shared environment could potentially influence the phenotypes investigated, 

including measures of brain function such as EEG (Rasetti and Weinberger, 2011). 

There are ways of investigating this, however, including the use of adoption and 

twin designs. Adoption studies can be used to confirm a genetic basis for the family 

resemblance by comparing adoptees with their biological and adoptive parents. 

However, these studies are difficult to conduct and prenatal and early life 

environmental factors could still be shared (Cannon, 2005). Another way of 

disentangle shared environmental factors from genetic influences is using twin 

studies, comparing monozygotic twins sharing 100% of their DNA and dizygotic 

twins sharing 50% of their genetic makeup. Research using such designs has 

confirmed some EEG measures as promising endophenotypes for psychosis, 

including the P300 event-related potential (Bestelmeyer et al., 2009; Hall et al., 

2009). 

An additional limitation to this thesis was that demographic and clinical information 

were not always available for all participants, because data were collected across 

several sites and during a long time-period. For example, when investigating resting 

state EEG data (chapter 2), it would have been of interest to assess associations 

with clinical or cognitive variables, but this was only available for a subset of 

individuals leading to a lack of statistical power for such analyses. Nevertheless, this 

approach led to large sample sizes for most analyses, adding value to the main 

analyses of interest here.  

Lastly, this thesis has been utilising EEG data throughout, and this technique has 

great advantages. It is a non-invasive and safe method that is easily assessed and 

well-tolerated by participants. It is also a direct measure of brain function with 

excellent temporal resolution, and it is inexpensive (Baldeweg and Boyd, 2008; 

Cohen, 2014; Light and Makeig, 2015; Luck, 2005; McLoughlin et al., 2014). All this 
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makes EEG suitable both for the large-scale studies needed for genetic research, 

and as clinically useful markers for psychosis. 

6.3 Summary and Conclusions 

In summary, I have investigated endophenotypes for psychosis, and findings from 

this thesis have contributed to psychiatric research by providing further evidence 

that (i) resting EEG activity is not a promising endophenotype for psychosis, but that 

(ii) effective connectivity underlying an auditory perceptual task could be. 

Furthermore, it has been shown that (iii) a range of endophenotypes for psychosis 

are available encompassing cognitive and neurophysiological domains. Although 

some are highly correlated, multi-modal approaches are needed to investigate 

psychosis and its genetic basis. Lastly, (iv) the use of polygenic scores has promise 

for future research and as sample sizes continue to grow the polygenic score should 

become more accurate and a more powerful predictor of disease susceptibility.  

Well defined and reliably measured endophenotypes are valuable in mental health 

research by clarifying the functional effects of identified genetic risk factors, and by 

providing ways of identifying groups of people with similar abnormalities, both 

within and between current diagnostic categories. Findings from this thesis will 

contribute towards knowledge that can hopefully in future lead to improvements to 

the lives of people affected by psychosis. 
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Appendix A: Additional material Chapter 2 

Here I report additional analyses to the data presented in chapter 2 of this thesis.  

Correlations between outcome variables 

EEG amplitude (log transformed μV) in the four frequency bands and the three scalp 

sites were all significantly correlated (p<0.001), with correlation coefficients ranging 

between 0.29 and 0.99. Within each frequency band, correlations tended to be 

stronger between neighbouring electrodes (FZ-CZ or CZ-PZ) and weaker when FZ 

was compared to PZ. At the same location, delta and theta as well as alpha and beta 

tended to show the strongest correlations. 

Table A1. Pearson’s correlations between EEG amplitude (μV) in the four frequency bands 
and the three scalp sites. 

 

 
Delta Theta Alpha Beta 

 

 
CZ PZ m FZ CZ PZ m FZ CZ PZ m FZ CZ PZ m 

D
e

lt
a 

FZ 0.89 0.74 0.93 0.71 0.68 0.60 0.68 0.40 0.41 0.35 0.40 0.30 0.29 0.28 0.29 

CZ 
 

0.88 0.98 0.73 0.77 0.72 0.76 0.39 0.45 0.41 0.43 0.33 0.37 0.37 0.36 

PZ 
  

0.92 0.71 0.76 0.83 0.78 0.42 0.49 0.53 0.50 0.38 0.42 0.47 0.43 

m 
   

0.76 0.78 0.76 0.79 0.43 0.48 0.46 0.48 0.35 0.38 0.39 0.38 

Th
e

ta
 FZ 

    
0.97 0.88 0.97 0.49 0.48 0.43 0.48 0.43 0.42 0.41 0.43 

CZ 
     

0.93 0.99 0.48 0.50 0.45 0.49 0.44 0.47 0.45 0.46 

PZ 
      

0.96 0.51 0.54 0.55 0.56 0.46 0.49 0.53 0.51 

m 
       

0.51 0.52 0.49 0.52 0.45 0.47 0.47 0.48 

A
lp

h
a 

FZ 
        

0.96 0.84 0.96 0.58 0.54 0.59 0.58 

CZ   
        

0.89 0.98 0.56 0.57 0.62 0.60 

PZ 
          

0.95 0.48 0.50 0.63 0.55 

m 
           

0.55 0.55 0.64 0.59 

B
et

a FZ 
            

0.96 0.90 0.97 

CZ 
             

0.94 0.99 

PZ 
              

0.97 

All correlations significant, all p < 0.001. m = mean amplitudes across FZ, CZ, PZ. 

Full Statistical Results 

Delta frequency band: Amplitude was significantly higher in FZ compared to CZ 

(p=0.003) and PZ (p<0.001) in the control group. Furthermore, in the control group, 

there were significant effects of age (p<0.001), with amplitude decreasing with age, 
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and gender (p<0.001), with females showing higher amplitudes than males. There 

was no significant effect of EEG lab. 

Theta frequency band: Regional effects showed that, in the control group, the 

amplitude reduced significantly from FZ to CZ (p=0.008) and from FZ to PZ 

(p<0.001). Further, there were significant effects of age (p=0.003), with theta 

amplitude reducing with age, and gender (p=0.041), with females showing higher 

amplitudes than males. There was no significant effect of lab.  

Alpha frequency band: In the control group, there were significant regional effects, 

with the amplitude increasing from FZ to CZ (p<0.001) as well as from FZ to PZ 

(p<0.001). Further, females in the control group showed significantly higher resting 

alpha amplitudes compared to males (p=0.005). There were no significant effects of 

age or lab in the alpha frequency band.  

Beta frequency band: Regional effects showed that, in the control group, the 

amplitude increased significantly from FZ to CZ (p<0.001) and from FZ to PZ 

(p=0.035). Females showed significantly greater amplitudes than males in the 

control group (p<0.001). There were no significant age or lab effects. 
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Table A2. Full mixed model linear regression results for the four frequency bands. 

Additional post-hoc analysis: Chronic patients vs. other groups 

In the delta frequency band, the chronic patient group showed significantly 

increased resting EEG activity compared to all other groups (all p≤0.001). All such 

comparisons remained significant after correction for multiple testing. In the theta 

frequency band, again, the chronic patient group showed significantly increased 

activity compared to the other groups, surviving multiple testing (all p≤0.001). 

No group differed significantly from the chronic patient group in alpha activity. 

Lastly, in the beta frequency band, the chronic patients showed increased resting 

Delta frequency band Theta frequency band 
  Coef. p 95% CI   Coef. p 95% CI 

Controls vs.  Controls vs.  
Relatives 0.01 0.746 -0.03 0.05 Relatives 0.01 0.637 -0.04 0.07 
ARMS -0.01 0.621 -0.05 0.03 ARMS 0.00 0.891 -0.06 0.06 
First 
episodes 

0.01 0.799 -0.03 0.04 
First 
episodes 

0.01 0.679 -0.04 0.07 

Chronics 0.08 <0.001 0.05 0.12 Chronics 0.14 <0.001 0.08 0.2 
FZ vs. 

   
  FZ vs. 

   
  

CZ -0.01 0.003 -0.02 -0.01 CZ -0.01 0.008 -0.02 -0.01 
PZ -0.06 <0.001 -0.06 -0.05 PZ -0.06 <0.001 -0.07 -0.06 
Covariates 

   
  Covariates 

   
  

Age -0.01 <0.001 -0.01 -0.01 Age -0.01 0.003 -0.01 -0.01 
Gender 0.04 <0.001 0.02 0.06 Gender 0.03 0.041 0.01 0.07 
Lab 0.02 0.272 -0.02 0.06 Lab 0.01 0.945 -0.06 0.06 
Constant 0.98 <0.001 0.90 1.05 Constant 1.06 <0.001 0.95 1.17 

Alpha frequency band Beta frequency band 
  Coef. p 95% CI   Coef. p 95% CI 

Controls vs. Controls vs.  
Relatives -0.03 0.486 -0.10 0.05 Relatives 0.03 0.232 -0.02 0.09 
ARMS -0.05 0.254 -0.12 0.03 ARMS -0.02 0.457 -0.08 0.04 
First 
episodes 

0.01 0.829 -0.06 0.08 
First 
episodes 

-0.01 0.644 -0.07 0.04 

Chronics 0.04 0.319 -0.03 0.10 Chronics 0.06 0.018 0.01 0.11 
FZ vs. 

   
  FZ vs. 

   
  

CZ 0.02 <0.001 0.009 0.027 CZ 0.01 <0.001 0.01 0.02 
PZ 0.06 <0.001 0.051 0.069 PZ 0.01 0.035 0.01 0.01 
Covariates 

   
  Covariates 

   
  

Age -0.01 0.132 -0.01 0.01 Age 0.01 0.155 -0.01 0.01 
Gender 0.06 0.005 0.02 0.10 Gender 0.07 <0.001 0.04 0.10 
Lab 0.03 0.411 -0.04 0.10 Lab 0.05 0.102 -0.01 0.10 
Constant 0.90 <0.001 0.76 1.04 Constant 0.90 <0.001 0.80 1.01 
ARMS = At risk mental state; CI = confidence interval; Lab = EEG laboratory 
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EEG activity compared to healthy controls and first episode patients. The former 

comparison did not survive correction for multiple testing for 4 tests (p=0.018), but 

the difference between chronic and first episode patients remained significant 

(p=0.012).  

Table A3. Regression results with chronic patients as reference group. 

Delta frequency band Theta frequency band 

 
Coef. 

p-
value 

95% CI 
 

Coef. 
p-

value 
95% CI 

Chronic patients vs. 
  

Chronic patients vs. 
  

Controls -0.08 <0.001 -0.12 -0.05 Controls -0.14 <0.001 -0.19 -0.08 

Relatives -0.08 <0.001 -0.11 -0.04 Relatives -0.12 <0.001 -0.17 -0.07 

ARMS -0.09 0.001 -0.15 -0.03 ARMS -0.13 0.001 -0.21 -0.05 

First 
episodes 

-0.08 <0.001 -0.12 -0.03 
First 
episodes 

-0.12 <0.001 -0.18 -0.06 

Alpha frequency band Beta frequency band 

 
Coef. 

p-
value 

95% CI 
 

Coef. 
 p-

value 
95% CI 

Chronic patients vs. 
  

Chronic patients vs. 
  

Controls -0.03 0.319 -0.10 0.03 Controls -0.06 0.018 -0.11 -0.01 

Relatives -0.06 0.047 -0.12 -0.01 Relatives -0.027 0.231 -0.07 0.02 

ARMS -0.08 0.129 -0.18 0.02 ARMS -0.08 0.032 -0.16 -0.01 

First 
episodes 

-0.03 0.494 -0.10 0.05 
First 
episodes 

-0.07 0.012 -0.13 -0.02 

Mixed effects linear regression models on log transformed amplitudes with group (patient, 
relative, controls) and scalp site (FZ, CZ, PZ) as fixed effects, and family and subject as random 
effects. Covariates of age, gender and EEG laboratory included. 



Page | 146  

 

Publication: Impaired prefrontal synaptic gain in people with 
psychosis and their relatives during the mismatch negativity.  
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Appendix C: Additional material Chapter 4 

Here I present additional information to that presented in chapter 4 of this thesis. 

Study centres 

Table C1 shows the study centres included in the study, including the sample size 

for each centre and the endophenotypes collected.  

Table C1. Study sites and sample sizes. 

Affiliation Country 
Number of participants Endophenotypes 

contributed Total C R P 

The University of 
Western Australia  

Australia 893 224 260 409 P300, LVV, RAVLT 

Heidelberg University Germany 78 23 19 36 P300, LVV 

Ludwig-Maximilians, 
University of Munich 

Germany 2185 2185 - - 
Block Design, Digit 
Span 

GROUP consortium: 
University of Amsterdam, 
University of Groningen, 
Maastricht University, 
University of Utrecht 

Holland 2993 1484 722 787 
Block Design, RAVLT, 
LVV 

Universidad de 
Cantabria, Pamplona 

Spain 69 - - 69 Digit Span, RAVLT 

Universidad de 
Cantabria, Santander 

Spain 630 359 - 271 
LVV, Digit Span, 
RAVLT 

University of Edinburgh 
United 
Kingdom 

160 87 - 73 
LVV, Block Design, 
Digit Span 

Institute of Psychiatry, 
King's College London 

United 
Kingdom 

1746 693 486 567 
P300, LVV, Block 
Design, Digit Span, 
RAVLT 

C = controls; R = relatives, P = patients; LVV = lateral ventricular volume; RAVLT = Rey Auditory 
Verbal Learning Task. 
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Table C2. Clinical diagnoses across study centres. 

 

 

  

Affiliation 
Number of 

patients 
Diagnoses N (%) 

The University of 
Western Australia 
(Australia) 

409 

Schizophrenia 
Psychotic Disorder NOS 
Brief Psychotic Disorder 
Schizoaffective Disorder 
Schizotypal Personality Disorder  
Schizophreniform Disorder  
Bipolar Disorder  
Delusional Disorder   
Drug Induced Psychosis 

N=343 (83.9%) 
N=20 (4.9%) 
N=11 (2.7%) 
N=10 (2.4%) 
N=10 (2.4%) 
N=7 (1.7%) 
N=3 (0.7%) 
N=3 (0.7%)  
N=2 (0.5%) 

Heidelberg University 
(Germany) 

36 
Schizophrenia 
Schizoaffective Disorder  
Schizotypal Personality Disorder 

N=29 (80.6%) 
N=5 (13.9%) 
N=2 (5.6%) 

GROUP Consortium: 
University of 
Amsterdam, University 
of Groningen, 
Maastricht University, 
University of Utrecht 
(Holland) 

787 

Schizophrenia  
Psychotic Disorder NOS  
Bipolar Disorder  
Schizoaffective Disorder 
Brief Psychotic Disorder  
Schizophreniform Disorder  
Delusional Disorder  
Depression with Psychotic Features  
Drug Induced Psychosis  

N=464 (59.0%) 
N=105 (13.3%) 
N=76 (9.7%) 
N=61 (7.8%) 
N=24 (3.0%) 
N=24 (3.0%) 
N=19 (2.4%) 
N=8 (1.0%)  
N=6 (0.8%) 

Universidad de 
Cantabria, Pamplona 
(Spain) 

69 
Schizophrenia 
Schizoaffective Disorder  

N=61 (88.4%) 
N=8 (11.6%) 

Universidad de 
Cantabria, Santander 
(Spain) 

271 

Schizophrenia 
Schizophreniform Disorder  
Brief Psychotic Disorder  
Psychotic Disorder NOS 
Schizoaffective Disorder 
Delusional Disorder 

N=161 (59.4%) 
N=65 (24.0%) 
N=21 (7.8%) 
N=17 (6.3%) 
N=5 (1.9%) 
N=2 (0.7%) 

University of 
Edinburgh  
(United Kingdom) 

73 
Schizophrenia  
Bipolar Disorder 

N=41 (56.2%) 
N=32 (43.8%) 

Institute of Psychiatry, 
King's College London 
(United Kingdom) 

567 

Schizophrenia  
Bipolar Disorder  
Schizophreniform Disorder  
Schizoaffective Disorder  
Psychotic Disorder NOS  
Drug induced Psychosis  

N=308 (54.3%) 
N=134 (23.6%) 
N=62 (10.9%) 
N=35 (6.2%) 
N=26 (4.6%) 
N=2 (0.4%) 

NOS = Not Otherwise Specified 
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Family sizes  

The sample included in this study was of a family-design, and Table C2 shows the 

sizes of the families included. 

Table C3. Family sizes. 

Number of 
family members 

participating 

Number of 
families 

% of families 
Number of 
individuals 

% of total 
sample 

1 5545 84.00% 5545 63.34% 

2 456 6.91% 912 10.42% 

3 306 4.64% 918 10.49% 

4 214 3.24% 856 9.78% 

5 49 0.74% 245 2.80% 

6 17 0.26% 102 1.17% 

7 10 0.15% 70 0.80% 

8 2 0.03% 16 0.18% 

9 1 0.02% 9 0.11% 

11 1 0.02% 11 0.13% 
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Appendix D: Additional material Chapter 5 

Here I present additional methods and results to that presented in chapter 5 of this 

thesis. 

Genotyping details 

This study includes a subset of data from a larger sample. Genotyping methods and 

quality control details are described in full in Bramon et al (2014) and below.  

DNA Sample Preparation  

Genomic DNA obtained from blood for all participants was sent to the Wellcome 

Trust Sanger Institute, Cambridge, United Kingdom. Samples were processed in 96-

well plate format and each plate carried a positive and a negative control. DNA 

concentrations were quantified using a PicoGreen assay (Invitrogen, Life 

Technologies, Grand Island, New York) and an aliquot assayed by agarose gel 

electrophoresis. A sample passed quality control if the original DNA concentration 

was at least 50ng/mL and the DNA was not degraded. 

Genotyping Methodology and Quality Control  

To track sample identity, 30 single nucleotide polymorphisms (SNPs) including sex 

chromosome markers were typed on the Sequenom platform before entry to the 

whole genome genotyping pipeline. Of the initial 6935 samples, 347 failed quality 

control due to degraded or insufficient DNA or incorrect sex classification. The 

remaining samples were sent for genotyping with the Genome-wide Human SNP 

Array 6.0 at Affymetrix Services Lab (http://www.affymetrix.com). 

Data Quality Control  

Genotype calling was conducted using the CHIAMO algorithm (Burton et al., 2007; 

Marchini et al., 2007) modified for use with the Affymetrix 6.0 genotyping array. 

11,610 SNPs with a study-wide missing data rate over 5% were excluded. 26,858 

http://www.affymetrix.com/
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SNPs with four or more Mendelian inheritance errors identified with Pedstats were 

removed (Wigginton and Abecasis, 2005). Additional exclusion criteria were 

departure from Hardy-Weinberg equilibrium (p < 10–6) or minor allele frequency 

(MAF) <0.02 with 2404 and 145,097 SNPs removed, respectively. A total of 38,895 

SNPs from the X or Y chromosomes or mitochondrial DNA were also excluded from 

the analysis. Finally, 9499 poorly genotyped SNPs were removed following visual 

inspection of the genotyping intensity plots in the program Evoker (Morris et al., 

2010).  

214 samples were excluded with more than 2% missing data across all SNPs. 

Another 70 samples were excluded due to divergent genome-wide heterozygosity 

(inbreeding coefficients were F > 0.076 or F < -0.076 as estimated with PLINK 

(Purcell et al., 2007). Chromosomal sharing was inferred from a genome-wide 

subset of 71,677 SNPs and from each duplicate pair the sample with the most 

complete genotype data was kept. 70 duplicates and monozygotic twins were 

removed by excluding one of each pair of individuals showing identity by descent 

greater than 95%.  

Initial analysis of the genotype data identified a high fraction of samples 

(approximately 30%), which showed poor signal-to-noise ratio in the genotyping 

assay. Because the experimental source of the problem was unclear and to ensure a 

robust set of genotype calls, these samples were removed from further analysis. 

The sample loss was randomly distributed across the three clinical groups (32% of 

patients, 30% of relatives, and 30% of controls; χ2 (2 df) = 3.2; p = 0.20).  

After quality control, 4835 individuals remained. The current study included a 

subset of this larger sample, comprising 4242 individuals with endophenotypic data 

available.  



Page | 167  

 

Principal Component Analysis 

 

Figure D1. Principal component analysis. 

Plotted is the projection of the individuals included in this study (N=4242) on to 
the first two principal components (PCs) of genetic structure. Individuals are 
coloured according to recruitment locations as given in legend.  

 

Number of SNPs at each threshold 

The number of single nucleotide polymorphisms (SNPs) from the Psychiatric 

genomics Consortium’s panel included at each of the six p-value thresholds 

investigated in the study is shown in Table D1.  
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Table D1. Number of SNPs included at each p-value threshold. 

SNP p-value 
threshold (pT) 

Number of SNPs 
Schizophrenia 

Polygenic Score 
Bipolar Disorder 
Polygenic Score 

pT < 5x10-8 90 4 
pT < 0.001 3,073 733 
pT < 0.05 24,061 14,095 
pT < 0.1 35,410 23,988 
pT < 0.5 82,045 77,030 
pT < 1 103,860 108,353 
SNP = Single nucleotide polymorphism 

 

Endophenotype group differences 

Patients differed significantly from controls on all measures investigated except the 

lateral ventricular volume. Relatives differed significantly from controls on the P300 

latency, block design, digit span, and RAVLT immediate recall. These results are 

presented in Table D2 and Figure D2. Also note that this is a subset of the sample 

analysed in chapter 4 of this thesis, where group differences in that larger sample 

are presented. 
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Table D2. Endophenotype group differences.  

Endophenotype  F statistics 
T statistics (mean difference, p-value) 

Control vs 
patient 

Control vs 
relative 

Relative vs 
patient 

P300 amplitude  
F(2,504)=10.67 
p<0.001 

0.48, p<0.001 0.15, p=0.211 0.34; p=0.002 

P300 latency  
F(2,509)=6.73 
p=0.001 

-0.38, p<0.001 -0.30, p=0.002 -0.08, p=0.461 

Lateral Ventricular 
Volume 

F(2,789)=1.08 
p=0.344 

-0.12, p=0.142 -0.06, p=0.571 -0.06, p=0.524 

Block Design 
F(2,3083)=54.97 
p<0.001 

0.46, p<0.001 0.26, p<0.001 0.20, p=0.001 

Digit Span 
F(2,1431)=30.0 
p<0.001 

0.54, p<0.001 0.52, p=0.003 0.02, p=0.923 

RAVLT imm. recall 
F(2,2400)=118.3 
p<0.001 

0.74, p<0.001 0.14, p=0.003 0.60, p<0.001 

RAVLT del. recall 
F(2,2378)=92.5 
p<0.001 

0.65, p<0.001 0.07, p=0.172 0.59, p<0.001 

Analyses conducted on standardised scores, with study sites, participant age and gender included as 
covariates. RAVLT = Rey Auditory Verbal Learning Task.  
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Figure D2. Endophenotype scores across groups. 

Estimated mean values of the different endophenotypes across groups (patients, 
relatives, controls), with 95% confidence intervals, after controlling for covariates 
(age, sex and study site). LVV= Lateral Ventricular Volume; RAVLT = Rey Auditory 
Verbal Learning Task; imm. = immediate recall; del. = delayed recall. 
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Full regression results  

Linear regressions investigating the associations between polygenic scores for 

schizophrenia and bipolar disorder, and endophenotypes. All analyses are adjusted 

for covariates of age, gender, study site, group (patient, relative, controls), and 

population structure, and include robust standard errors to account for correlations 

within families. The schizophrenia polygenic score (Table D3) was nominally 

associated with performance on the block design task. No other association 

approached significance after correcting for multiple testing, and for bipolar 

disorder polygenic score (Table D4), no association was significant.  

Table D3. Schizophrenia polygenic scores full results.  

P300 Amplitude (N=510) Digit Span (N=1437) 
pT β R2  p-value pT β R2  p-value 
< 1 -402.65 0.02% 0.780 < 1 -333.5 0.01% 0.678 
< 0.5 -276.1 0.01% 0.810 < 0.5 -232.14 0.01% 0.716 
< 0.1 3.09 <0.001% 0.996 < 0.1 37.72 0.00% 0.910 
< 0.05 -177.23 0.03% 0.697 < 0.05 -24.16 0.00% 0.925 
< 0.001 -135.99 0.19% 0.289 < 0.001 -2.84 <0.001% 0.970 
< 5×10-08 2.83 0.01% 0.857 < 5×10-08 -6.23 0.03% 0.492 

P300 Latency (N=515) RAVLT immediate recall (N=2406) 
pT β R2  p-value pT β R2  p-value 
< 1 1148.7 0.13% 0.382 < 1 -99.8 0.00% 0.866 
< 0.5 912.47 0.12% 0.384 < 0.5 -137.84 0.00% 0.771 
< 0.1 561.47 0.17% 0.289 < 0.1 -271.72 0.04% 0.268 
< 0.05 384.9 0.13% 0.372 < 0.05 -147.37 0.02% 0.443 
< 0.001 59.04 0.04% 0.644 < 0.001 -54.94 0.04% 0.323 
< 5×10-08 9.64 0.07% 0.474 < 5×10-08 4.14 0.01% 0.548 

Lateral Ventricular Volume (N=795) RAVLT delayed recall (N=2384) 
pT β R2  p-value pT β R2  p-value 
< 1 1972.66 0.39% 0.068 < 1 163.2 0.00% 0.788 
< 0.5 1576.21 0.39% 0.068 < 0.5 98.11 0.00% 0.839 
< 0.1 849.52 0.41% 0.063 < 0.1 -116.66 0.01% 0.645 
< 0.05 490.98 0.23% 0.172 < 0.05 -39.63 0.00% 0.839 
< 0.001 -2.4 <0.001% 0.981 < 0.001 -48.84 0.03% 0.389 
< 5×10-08 -13.3 0.15% 0.214 < 5×10-08 2.53 0.01% 0.706 

Block Design (N=3089) 

pT = Single nucleotide polymorphism (SNP) p-
value threshold; RAVLT = Rey Auditory Verbal 
Learning Task 

pT β R2  p-value 
< 1 -1177.05 0.13% 0.035 
< 0.5 -953.24 0.13% 0.033 
< 0.1 -575.57 0.18% 0.013 
< 0.05 -465.11 0.20% 0.009 
< 0.001 -86.06 0.09% 0.091 
< 5×10-08 -6.37 0.04% 0.280 
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Table D4. Bipolar Disorder polygenic score full results. 

P300 Amplitude (N=510) Digit Span (N=1437) 
pT β R2  p-value pT β R2  p-value 
< 1 -531.35 0.08% 0.514 < 1 211.3 0.01% 0.673 
< 0.5 -443.863 0.10% 0.454 < 0.5 109.25 0.01% 0.764 
< 0.1 -142.56 0.06% 0.588 < 0.1 55.96 0.01% 0.725 
< 0.05 -77.52 0.03% 0.678 < 0.05 -62.18 0.02% 0.590 
< 0.001 -3.413 0.01% 0.783 < 0.001 -11.91 0.02% 0.599 
< 5×10-08 -1.824 0.18% 0.362 < 5×10-08 -0.63 0.02% 0.563 

P300 Latency (N=515) RAVLT immediate recall (N=2406) 
pT β R2  p-value pT β R2  p-value 
< 1 -425.696 0.05% 0.613 < 1 443.53 0.05% 0.288 
< 0.5 -331.233 0.06% 0.581 < 0.5 304.44 0.04% 0.310 
< 0.1 -231.561 0.15% 0.354 < 0.1 176.18 0.08% 0.170 
< 0.05 -123.089 0.08% 0.502 < 0.05 120.78 0.07% 0.196 
< 0.001 -13.565 0.02% 0.684 < 0.001 23.13 0.08% 0.159 
< 5×10-08 -0.37 0.01% 0.851 < 5×10-08 -0.03 <0.001% 0.966 

Lateral Ventricular Volume (N=795) RAVLT delayed recall (N=2384) 
pT β R2  p-value pT β R2  p-value 
< 1 531.45 0.07% 0.363 < 1 514.36 0.06% 0.208 
< 0.5 331.89 0.05% 0.433 < 0.5 359.35 0.06% 0.222 
< 0.1 54.88 0.01% 0.771 < 0.1 162.09 0.06% 0.198 
< 0.05 -1.70 <0.001% 0.990 < 0.05 133.91 0.08% 0.141 
< 0.001 12.78 0.02% 0.642 < 0.001 25.63 0.09% 0.123 
< 5×10-08 -1.24 0.09% 0.418 < 5×10-08 -0.63 0.02% 0.434 

Block Design (N=3089) 

pT = Single nucleotide polymorphism (SNP) p-
value threshold; RAVLT = Rey Auditory Verbal 
Learning Task. 

pT β R2  p-value 
< 1 -440.98 0.05% 0.226 
< 0.5 -344.74 0.05% 0.190 
< 0.1 -115.82 0.03% 0.309 
< 0.05 -74.87 0.03% 0.355 
< 0.001 19.49 0.05% 0.198 
< 5×10-08 1.69 0.17% 0.020 
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Post-hoc power calculation 

Table D5. Post-hoc power calculation. 

Endophenotype N Lowest R2 detectable 
P300 event related potential 515 1.52% 
Lateral Ventricular Volume 789 1.00% 
Digit Span 1437 0.55% 
Rey Auditory Verbal Learning Task 2400 0.32% 
Block Design 3089 0.25% 
Alpha level 0.05, 80% power, 7 predictor in set one (covariates) and 1 predictor in set 
two (polygenic score). Reference: Soper (2015). 

Table D5 shows a power calculation estimating the minimum effect size (i.e. 

variance explained, R2) that could be detected with the sample size obtained for 

each endophenotype.  
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