
OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Optimal Award Scheme in Innovation Tournaments

Laurence Ales
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, ales@cmu.edu

Soo-Haeng Cho
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, soohaeng@andrew.cmu.edu

Ersin Körpeoğlu
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In an innovation tournament, an organizer solicits innovative ideas from a number of independent agents.

Agents exert effort to develop their solutions, but their outcomes are unknown due to technical uncertainty

and/or subjective evaluation criteria. In order to incentivize agents to make their best effort, the organizer

needs to devise a proper award scheme. While extant literature either assumes a winner-take-all scheme a

priori or shows its optimality under specific distributions for uncertainty, this paper derives necessary and

sufficient conditions under which the winner-take-all scheme is optimal. These conditions are violated when

agents perceive it very likely that only few agents receive high evaluation or when a tournament does not

require substantial increase in agents’ marginal cost of effort to develop high-quality solutions. Yet, the

winner-take-all scheme is optimal in many practical situations, especially when agents have symmetric beliefs

about their evaluation. In this case, the organizer should offer a larger winner prize when he is interested in

obtaining a higher number of good solutions, but interestingly the organizer need not necessarily raise the

winner prize when anticipating more participants to a tournament.

Subject classifications : Games/group decisions: Tournament; Research and development: Innovation

Area of review : Operations and Supply Chains

1. Introduction

In an innovation tournament (also called a contest), a tournament organizer seeks solutions to an

innovation-related problem from a number of independent agents. Before a tournament begins,

the organizer announces an award scheme and a set of evaluation criteria. Then agents who are

interested in participating in the tournament develop and submit their solutions to the problem.

After collecting all submissions, the organizer evaluates them and awards the best submissions.

Today a tournament approach has gained popularity in many industries, ranging from high-tech

industries (e.g., DARPA Grand Challenge in which participants develop autonomous vehicles) to

innovative software development (e.g., Samsung Smart App Challenge in which software develop-

ers submit apps for Samsung’s mobile products). Companies organize innovation tournaments by
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themselves or they use tournament platforms such as Ennomotive and InnoCentive which inter-

mediate thousands of innovation tournaments every year for various organizations. A primary

motivation to use a tournament approach, instead of traditional in-house development or contract-

ing with select suppliers, is that a company can potentially collect many diverse solutions to its

problem from a large number of experts outside its boundary or ecosystem. This approach may be

appealing especially when a company is uncertain about how to create innovative solutions and

what constitutes good solutions. From agents’ perspective, a tournament is attractive when they

anticipate high chances of winning a prize and when a winner’s prize is high enough to justify their

investment in effort. In order to elicit participation and best effort from agents, therefore, choosing

the right award scheme is foremost important to a tournament organizer.

The objective of this paper is to offer insights into how a tournament organizer should compensate

participants. Our first research question is when an organizer should grant the entire prize to the

best submission (i.e., select a winner-take-all (WTA) award scheme ) and when he should not. For

this question, prior literature assumes the WTA scheme a priori (e.g., Taylor 1995, Fullerton and

McAfee 1999, Kim and Lim 2015, Ales et al. 2016), proves its optimality when uncertainty in agents’

solution quality is modeled with logistic or uniform distribution (Kalra and Shi 2001), or shows that

it outperforms an alternative scheme that awards the winner and/or the runner-up under Gumbel

distribution (Terwiesch and Xu 2008).1 Yet, in practice, we observe both WTA and multiple-prize

tournaments. For example, many innovation tournaments on engineering problems at Ennomotive

and reduction-to-practice (RTP) challenges (which require submission of validated solutions, either

in the form of original data or physical samples for technical problems) at InnoCentive adopt the

WTA scheme (Ennomotive 2016, InnoCentive 2016b). In contrast, a number of ideation challenges

(for producing breakthrough ideas) at InnoCentive awards multiple prizes (InnoCentive 2016a).

Also, Samsung Apps Super Apps category in Samsung Smart App Challenge 2012 featured multiple

prizes based on the number of downloads of submitted apps (Samsung 2012).

To answer this question, we develop a general model of an innovation tournament that takes

into account the following two sources of uncertainty: (i) technical uncertainty due to an agent’s

search process for the best solution from a number of trials (e.g., a logo designer participating in

a logo design tournament for FIFA 2014 World Cup may draw multiple sketches until she chooses

the best one to submit), and/or (ii) taste uncertainty due to a subjective or unknown taste of

the organizer or other people who evaluate agents’ solutions (e.g., it is difficult for a logo designer

to predict the specific design of a logo that the organizer would prefer). Whereas existing models

consider either type of uncertainty under specific distributions, our model accounts for both types

of uncertainty under a general distribution for aggregate uncertainty. This generality not only

improves the model’s relevance to innovation tournaments in practice (in which both types of
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uncertainty are often co-present and agents can exhibit a variety of beliefs on the subjective taste of

the organizer), but also helps reconcile theory with practice. From our analysis, we derive necessary

and sufficient conditions under which the WTA scheme is optimal; it turns out that a type of a

distribution plays a crucial role in determining the optimality of the WTA scheme. When any of the

necessary and sufficient conditions is violated, thus, the WTA scheme is not optimal. For example,

in a tournament wherein submitted solutions are evaluated based on popularity among consumers

(e.g., the 2012 Samsung Smart App Challenge), an organizer may not choose the WTA scheme.

In contrast, when agents have roughly equal beliefs about the chances of getting more positive or

negative evaluations than they deserve, the WTA scheme is optimal. More generally, we establish

the optimality of the WTA scheme under a broad class of distributions for agents’ uncertainty.

We next examine how large a winner prize should be under the WTA scheme. For this question,

we first establish an intuitive result that an organizer should offer a larger winner prize when

he is interested in obtaining a higher number of good solutions. Similarly, one might expect that

an organizer should also raise the winner prize when anticipating more participants to a tourna-

ment. Yet, existing theory suggests that the winner prize should be independent of the number

of participants: Terwiesch and Xu (2008) derive this result assuming that each agent’s output is

the sum of a logarithmic function of effort and an uncertain shock that follows Gumbel distribu-

tion. In contrast, our paper shows that an optimal winner prize can be constant, increasing, or

counter-intuitively decreasing with the number of participants when modeling an agent’s output

as the sum of a general increasing, concave function of effort and an uncertain shock that follows

a general distribution. A primary reason for this result is that the concavity of the effort function

determines agents’ marginal returns from additional effort, and hence it affects agents’ incentives

to make effort in response to increased competition. Our result suggests that the organizer should

increase the winner prize with more participants in a simple ideation project, in which generating

an average-quality idea for a simple problem requires relatively low effort, yet additional effort does

not improve the quality of the idea much; but the organizer may not do so in a tournament that

requires agents to exert consistent and significant effort (i.e., slowly decreasing marginal returns

from additional effort).

2. Model and Preliminaries

Our model adopts the following framework that has been commonly used in the tournament lit-

erature. A tournament organizer (“he”) solicits innovative solutions to a specified problem from

a set of agents (“she”). The organizer first announces how participants of the tournament will be

compensated. Then agents decide whether to participate in the tournament, and if they do, they

exert effort to develop their solutions, and submit them to the organizer. Finally, the organizer

evaluates these solutions and compensates agents according to the announced rule.
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The Model of Agents. Let N denote a set of agents who can participate in the tournament, and

N = |N | (≥ 2) denote the number of agents in this set.2 Each participating agent i (∈N ) develops

a solution to the problem posed by the organizer, and generates an output yi (∈Y ⊆R∪{−∞,∞}),

which represents the quality of the solution or its monetary benefit to the tournament organizer.

The output yi is determined by three components: (i) agent i’s effort, (ii) outcomes of agent i’s

random trials and experiments, and (iii) taste of the organizer or other people who evaluate the

agent’s solution. We elaborate each of these components next.

First, each agent can enhance her output by investing “improvement effort” qi ∈ [0, q]. For exam-

ple, conducting a thorough patent search and literature review will certainly improve agents’ out-

puts (Terwiesch and Xu 2008). Effort qi leads to a deterministic improvement v(qi) of the output,

where v is an increasing and concave function of qi.

Second, to generate innovative solutions, each agent may engage in a trial-and-error process by

conducting several experiments. Most innovation processes include a concept testing process in

which an agent generates potential ideas and selects the best of them (e.g., Dahan and Mendelson

2001). In this process, each agent i determines the number of trials mi (hereafter “trial effort”). In

each trial t (= 1,2, ...,mi), the agent faces uncertainty in the outcome of a trial which is modeled

by a trial shock ε̃it. For example, a logo designer may draw multiple sketches until she chooses the

best one to submit. Following the convention of Terwiesch and Xu (2008), based on Dahan and

Mendelson (2001), we consider the specific case in which trial shocks ε̃it’s are independent random

variables that follow a Gumbel distribution with E[ε̃it] = 0 and scale parameter μ. The Gumbel

distribution is the asymptotic distribution for the maximum of multiple draws from exponential-

tailed distributions such as the normal distribution (Dahan and Mendelson 2001). Each agent i

observes the realization of (ε̃i1, ε̃i2, ..., ε̃imi
) before submitting her solution to the organizer, and

selects the best one as her solution. The main difference between the improvement effort and the

trial effort is that an agent knows the value of her improvement effort a priori, whereas she is

uncertain about the final outcome of the trial effort until the end of the development process.

Third, the output of each agent i is often subject to the taste of its evaluators, which we model

by a taste shock ε̃i. For example, it is difficult for a logo designer to predict the specific design of a

logo the organizer would prefer. Following the literature, we assume that ε̃i’s are independent and

identically distributed (i.i.d.) random variables with E[ε̃i] = 0. We use a general distribution for ε̃i

to model a variety of the agent’s belief on unknown taste. This is different from the literature which

assume uniform or logistic distributions (Kalra and Shi 2001) or Gumbel distribution (Terwiesch

and Xu 2008). Unlike trial shocks ε̃it’s, each agent i is uncertain about the taste shock ε̃i even after

the development process is over.
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Combining the three components discussed above, we represent the output of agent i as a function

of improvement effort qi, trial effort mi, trial shock (ε̃i1, ..., ε̃imi
), and taste shock ε̃i, as follows:

y(qi,mi, ε̃i1, ..., ε̃imi
, ε̃i) = v(qi)+ max{ε̃it, t = 1, ...,mi}+ ε̃i. (1)

This general output function takes existing models in the literature as special cases: (i) trial-and-

error projects in Terwiesch and Xu (2008) which assume fixed improvement effort (i.e., v(qi) = γ

for some constant γ) and no taste shock (i.e., ε̃i = 0 with probability 1); (ii) ideation projects in

Terwiesch and Xu (2008) which assume no trial-and-error experiments (i.e., ε̃it = 0 with probability

1) and a specific distribution of the taste shock ε̃i (i.e., Gumbel ε̃i); and (iii) Ales et al. (2016)

which assume no trial-and-error experiments (i.e., ε̃it = 0 with probability 1).

The utility of agent i, Ua(qi,mi, xi) :R3
+ →R, is defined over her improvement effort qi, her trial

effort mi, and the monetary compensation xi that she receives from the organizer. The utility of

the agent takes the following form: Ua(qi,mi, xi) = xi − ψ(c1qi + c2mi), where c1 > 0, c2 > 0, and

ψ is convex and increasing with ψ(0) = 0. We can interpret this function as follows. When agent i

exercises improvement effort qi and trial effort mi, her total effort is ei = c1qi + c2mi; for example,

if ei represents the total labor hours agent i spends, c1 and c2 are the time it takes for the agent to

make one unit of improvement and trial effort, respectively. The agent’s disutility or cost associated

with the total effort is ψ(ei) = ψ(c1qi + c2mi).

We next present a lemma which shows that output function y given in (1) can be simplified to

a new function that depends only on agent i’s total effort ei and aggregate shock ξ̃i. All proofs are

presented in Appendix.

Lemma 1. The output function in (1) can be simplified to y(ei, ξ̃i) = r(ei) + ξ̃i in which ei is the

total effort, r is a concave and increasing function, and ξ̃i is a random shock that is independent

of ei. For example, if v(qi) = κ log(qi) for some κ > 0, then r(ei) = γ + θlog(ei) where θ (> 0) and

γ are constants.

In the rest of this paper, we will use the simplified output function y(ei, ξ̃i) = r(ei) + ξ̃i, and

refer to ei as agent i’s “effort” and ξ̃i as her “output shock.” The output shock ξ̃i (∈ Ξ) follows

cumulative distribution H and density h with E[ξ̃i] = 0 and support Ξ = [s, s] where s∈R∪{−∞}

and s ∈ R ∪ {∞}. As shown in the proof of Lemma 1, ξ̃i is equal to ε̃i + ε̃i, where “technical

shock” ε̃i ≡ max{ε̃it, t = 1,2, ...,mi} − μ logmi follows a Gumbel distribution with E[ε̃i] = 0 and

scale parameter μ. We will interpret our results in terms of primitive technical shock ε̃i and taste

shock ε̃i as well as aggregate output shock ξ̃i. To analyze the impact of a change in the variance of

a general distribution H(s), we use the following notion of a scale transformation (e.g., Rothschild

and Stiglitz 1970): Two distribution functions H1(∙) and H2(∙) differ by a scale transformation if
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there exists parameter α such that H1(s) = H2(αs) for all s ∈ Ξ. The transformed output shock

ξ̂i = αξ̃i of the output shock ξ̃i has a mean of 0 and a variance of α2V ar(ξ̃i). Thus, ξ̂i has a larger

variance than ξ̃i when α > 1.

The Model of the Organizer. The organizer compensates agents based on the rank of their

outputs. Specifically, the organizer determines a vector of N prizes (awards) referred to as “award

scheme,” denoted by (A(1),A(2), ...,A(N)), such that the agent who produces the j-th best output

receives a prize of A(j). We refer to the agent who produces the best output as the “winner” of the

tournament, and the award scheme that grants the entire prize to the winner (i.e., A(1) > 0 and

A(j) = 0 for all j > 1) as the winner-take-all (WTA) award scheme.

The organizer maximizes his profit Πo from the tournament, where Πo is defined over his payoff

from the tournament less total prize paid to agents. As in Ales et al. (2016), we consider the general

model where the organizer benefits from K (∈ {1,2, ...,N}) best outputs,3 and refer to those agents

who produce the K best outputs as “contributors.” Letting y(j) denote the j-th best output among

N outputs, with K contributors, the organizer’s profit can be expressed as:

Πo((y(1), y(2), ..., y(K)), (A(1),A(2), ...,A(N))) =
K∑

j=1

y(j) −
N∑

j=1

A(j). (2)

We now present the organizer’s problem that maximizes Πo given in (2). Let ξ̃N
(j) be a random

variable with cumulative distribution HN
(j) and density hN

(j) that represents the j-th highest value

among N i.i.d. output shocks. Similarly, let P N
(j)[ei, e

∗] be the probability that the output of agent i

is the j-th highest output when she exerts effort ei and all other (N−1) agents exert the equilibrium

effort e∗. We can compute this probability as

P N
(j)[ei, e

∗] =
∫

s∈Ξ

(N − 1)!
(j − 1)! (N − j)!

H(s + r(ei)− r(e∗))N−j(1−H(s + r(ei)− r(e∗)))j−1h(s)ds. (3)

The organizer solves the following program:

max
(A(1),A(2),...,A(N))

Πo = Kr (e∗) + E

[
K∑

j=1

ξ̃N
(j)

]

−
N∑

j=1

A(j) (4)

s.t.
1
N

N∑

j=1

A(j) ≥ ψ(e∗) (5)

e∗ = argmax
e∈R+

N∑

j=1

P N
(j)[e, e

∗]A(j) −ψ(e). (6)

The objective of the organizer given in (4) is to choose (A(1),A(2), ...,A(N)) that maximize his

expected profit. Participation constraint (5) guarantees that agents receive non-negative utility

from the tournament in equilibrium. Constraint (6) is the incentive compatibility constraint that

incorporates the agent’s utility maximization problem into the organizer’s problem. In this problem,
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each agent chooses the effort e that maximizes her expected prize
∑N

j=1 P N
(j)[e, e

∗]A(j) less her cost

of exerting effort e, ψ(e), assuming that every other agent will choose e∗ in equilibrium.4

3. Analysis

In this section, we analyze an optimal award scheme. Let A =
∑N

j=1 A(j) be the total amount of

prizes awarded. For any given A, an award scheme (A(1),A(2), ...,A(N)) maximizes the organizer’s

profit Πo when it maximizes the first term in (4) by inducing agents to make their best effort in

equilibrium, because the second and third terms in (4) are constant. Note from the agent’s problem

given in (6) that the marginal benefit of additional effort,
∑N

j=1(P
N
(j)[e, e

∗])′A(j), depends on the

award scheme (A(1),A(2), ...,A(N)), while its marginal cost ψ′(e) is independent of this scheme. Thus,

the award scheme that maximizes agents’ marginal benefit of additional effort induces agents to

make their best effort in equilibrium. The following proposition provides a necessary and sufficient

condition under which the WTA scheme is optimal.

Proposition 1. For any A, it is optimal for the organizer to grant the entire prize to the winner,

i.e., A(1) = A and A(j) = 0 for all j ∈ {2, ...,N} if and only if (5) holds and

∂P N
(1)[e, e

∗]

∂e

∣
∣
∣
∣
∣
e=e∗

≥
∂P N

(j)[e, e
∗]

∂e

∣
∣
∣
∣
∣
e=e∗

for all j > 1. (7)

Proposition 1 states that the WTA award scheme maximizes the agent’s marginal benefit of effort

under condition (7). This condition is satisfied when a marginal increase of her effort raises her

probability of becoming the winner (P N
(1)[e, e

∗]) more than her probability of attaining any other

rank j (> 1) (P N
(j)[e, e

∗]). If condition (7) is violated, then the increased effort of an agent raises the

probability of attaining rank j (> 1) more than the probability of becoming the winner; and thus

the organizer is better off by choosing an award scheme with A(j) > 0 rather than the WTA scheme.

It is important to note that condition (7), hence the optimality of the WTA scheme, depends

crucially on the characteristics of the output shock ξ̃i. This can be seen from the definition of P N
(j)

given in (3) that shows its dependence on the density h of ξ̃i.

An important implication of Proposition 1 is that the WTA scheme is not optimal whenever any

of the necessary and sufficient conditions presented in the proposition is violated. Specifically, the

WTA scheme is not optimal when: (i) the density h of ξ̃i violates condition (7) in Proposition 1,

or (ii) agents’ participation in a tournament is not guaranteed (i.e., (5) does not hold) under this

award scheme. The following proposition provides sufficient conditions for each of these situations.

Proposition 2. For any given A, the winner-takes-all (WTA) award scheme is suboptimal when

one of the following conditions is satisfied:

(i) lims→s h(s) = 0, lims→s

∣
∣
∣h

′(s)

h(s)

∣
∣
∣<∞, and

∫

s∈Ξ

[HN
(j)(s)−HN

(1)(s)]
(

h′(s)
h(s)

)′

ds > 0, (8)
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Figure 1 (a) Frechet density with mean 0, shape parameter β = 1.2, and scale parameter μ = 1.5; (b) Gumbel

density with mean 0 and scale parameter μ = 1; and (c) The convolution of the densities in (a) and (b),

where s(j) satisfies h(s(j)) = E[h(ξ̃N−1
(j) )].

where (8) holds if h(s) is strictly log-convex (i.e., d2 logh(s)/ds2 > 0 ∀s).

(ii) A
N
−ψ

((
ψ′

r′

)−1 (
A
∫

s∈Ξ
(N − 1)H(s)N−2h(s)2ds

)
)

< 0.

We first discuss condition (i) using an example in Figure 1. Observe that the density h shown

in Figure 1(a) or Figure 1(c) features a large region that is highly convex (which guarantees (8))

and decreasing between its peak point and its fat right tail (which ensures lims→s h(s) = 0 and

lims→s |h′(s)/h(s)|<∞).5 The output shock ξ̃i can have the density h shown in Figure 1(a) when

the taste shock ε̃i has this density and the technical shock ε̃i = 0 with probability 1 as in ideation

projects; or it can have the density h shown in Figure 1(c) when the taste shock ε̃i has the density

shown in Figure 1(a) and the technical shock ε̃i features the Gumbel density shown in Figure

1(b). In these examples, due to the large, highly convex, and decreasing region of h(s), a marginal

increase of an agent’s effort could increase her probability of attaining some rank j (> 1) more than

that of becoming the winner.6 In practice, this may represent a situation where agents perceive it

very likely that only few agents receive high evaluation while most of them receive low evaluation.

For example, this may be the case in tournaments wherein agents’ outputs are evaluated based on

popularity among consumers and only few solutions are expected to be extremely popular (e.g., the

number of downloads for apps in the 2012 Samsung Smart App Challenge). It is well known that

such herding behavior can cause an upward bias in the evaluation of highly popular solutions (e.g.,

Li and Hitt 2008, Cha et al. 2007). Similarly, according to Dahan and Mendelson (2001), when

a product has a potential for “mega-hits,” a fat-tailed distribution like the Frechet distribution

shown in Figure 1(a) is a good fit for modeling its profit uncertainty.

Condition (ii) specifies when agents’ participation becomes an issue in a tournament under

the WTA scheme. The solution to the agent’s problem in (6) does not satisfy the participation

constraint (5) when each agent’s effort in equilibrium (hence, the right hand side of (5)) is too high

to be justified by the expected winner prize they may receive (i.e., the left hand side of (5)). In

this case, there will be no equilibrium under the WTA award scheme, and hence the WTA scheme
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Figure 2 Weibull density with mean 0, scale parameter μ = 1, and shape parameter β: (a) Strictly log-convex

(β = 0.5), (b) log-linear (β = 1), and (c) strictly log-concave (β = 1.5).

cannot be optimal to the organizer. Thus, the organizer may award multiple prizes in order to

induce agents to participate in a tournament, although they exert lower effort than the effort level

under the WTA scheme. In Lemma EC.2 of Online Appendix, we show that condition (ii) holds

when agents face a sufficiently low level of uncertainty and/or when the cost function ψ of agents is

not highly convex. This suggests that, ceteris paribus, the WTA scheme is less likely to be optimal

in a tournament that contains less technical uncertainty while demanding less substantial increase

in agents’ marginal costs of effort (e.g., ideation tournaments at InnoCentive).

Next, we derive sufficient conditions for ξ̃i to satisfy condition (7) under which the WTA scheme

is optimal.

Proposition 3. Suppose that (5) holds under the WTA award scheme. Then, for any given A,

the WTA award scheme is optimal when the density h(s) of the output shock ξ̃i is log-concave (i.e.,

d2 logh(s)/ds2 ≤ 0 ∀s) or increasing in s.

Proposition 3 establishes the optimality of the WTA award scheme under a broad class of dis-

tributions for agents’ uncertain outputs. To satisfy log-concavity, a density should not be highly

convex at any portion of its support (because log(h(s)) is a concave transformation). Many of

the commonly-used distributions are log-concave, including Gumbel, exponential, normal, uniform,

and logistic distributions. The Weibull distribution can be strictly log-concave, log-linear or strictly

log-convex as depicted in Figure 2, but when the Weibull distribution is not log-concave, it is

increasing, and hence satisfies condition (7). These conditions can also be interpreted in terms

of the primitive technical shock ε̃i and taste shock ε̃i. Since ε̃i has a log-concave density and

the convolution of two log-concave distributions is log-concave (e.g., Ibragimov 1956), when the

taste shock ε̃i has a log-concave density, the aggregate shock ξ̃i also has a log-concave density.

For example, when the taste shock ε̃i follows a uniform or normal distribution, the density h of

the aggregate shock ξ̃i is log-concave as illustrated in Figure 3. Uniform and normal distributions

are two popular distributions in modeling symmetric prior beliefs about an unknown value (e.g.,
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Figure 3 (a) Uniform density in [−3,3]; (b) Normal density with mean 0 and variance 1; (c) Gumbel density with

mean 0 and μ = 1; (d) The density h of the aggregate output shock ξ̃i as the convolution of the densities

in (a) and (c); (e) The density h as the convolution of the densities in (b) and (c).

Gelman et al. 2003), and thus they are appropriate for modeling the situation where agents have

roughly equal beliefs about the chances of getting more positive or negative evaluations than they

deserve for their submitted solutions. In practice, as we discuss in §1, a number of RTP Challenges

at InnoCentive and innovation tournaments at Ennomotive adopt the WTA scheme.

Lastly, we examine the optimal winner prize denoted by A∗ in a WTA tournament. Observe in

the organizer’s profit Πo given in (4) that the second term (E[
∑K

j=1 ξ̃N
(j)]) is independent of the

winner prize A and the third term (−
∑N

j=1 A(j) = −A) decreases with A. We can also show that

the effort e∗, hence the first term (Kr(e∗)) in (4), is increasing in A. Consequently, the organizer

faces the following intuitive trade-off in choosing a value of A: A larger prize motivates agents to

exert higher effort, but it costs more to the organizer. In the following proposition, we present a

condition under which a unique optimal winner prize A∗ exists, and show that A∗ increases with

the number of contributors K and it can be increasing, constant or decreasing with the number of

participants N .

Proposition 4. Let g(e) = r′(e)

ψ′(e)
. Suppose that r(∙) and ψ(∙) satisfy g(e)g′′(e)

(g′(e))2
≤ 2 for all e∈R+.

(a) For any fixed N , a unique optimal winner prize A∗ exists, and it is increasing in K.

(b) Suppose IN ≡
∫

s∈Ξ
H (r (e)− r(e∗)+ s)N−1

h (s)ds is decreasing (resp., increasing) in N . Then,

A∗ is increasing, constant, or decreasing in N if and only if g(e)r′(e)

g′(e)
(resp., g′(e)

g(e)r′(e)
) is increasing,

constant, or decreasing in e, respectively.
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The condition on g given in Proposition 4 is a sufficient condition for Πo to be concave in A; a

necessary and sufficient condition is also presented in the proof. In this case, Proposition 4(a) shows,

as expected, that the organizer should increase the optimal winner prize A∗ as he is interested

in obtaining a larger number of good solutions from a tournament. Counter-intuitively, however,

Proposition 4(b) shows that the optimal prize A∗ can be increasing, decreasing or constant with

the number of participants N . To illustrate, consider the following example.

Example 1. Suppose the effort function r(e) = γ +θ e1−a−1
1−a

and the cost function ψ(e) = ce, where

γ ∈ R, θ, c > 0, and a ≥ 0.5. Then, r′(e) = θe−a, ψ′(e) = c, g(e) = r′(e)

ψ′(e)
= θ

c
e−a, g′(e) = −aθ

c
e−a−1,

and hence g(e)r′(e)

g′(e)
=− θe1−a

a
. Also suppose that the output shock ξ̃i follows a Gumbel distribution

with mean 0 and scale parameter μ. In this case, IN = N−1
μN2 , which is decreasing in N . Thus, A∗ is

increasing in N when a > 1, constant in N when a = 1, and decreasing in N when a < 1. Note that

lima→1 r(e) = γ + θ log e, so A∗ is constant in N when r(e) takes a logarithmic form.

Example 1 includes the special case considered in Terwiesch and Xu (2008) in which a = 1, hence

optimal prize A∗ is constant with the number of participants N . Alternatively, one might expect

that as more participants enter the tournament, the organizer should increase the prize A so as

to incentivize an agent to increase effort e∗. However, Proposition 4(b) shows that this is not

necessarily true. The reason is as follows. When more participants reduce the marginal contribution

of the prize A to the organizer’s profit, the organizer should reduce the prize A. From (4), we know

this happens when increasing N reduces ∂r(e∗)

∂A
= r′(e∗)∂e∗

∂A
. If agents reduce their effort with more

participants (which happens when IN decreases with N), then more participants will increase the

marginal contribution of effort to the output r (i.e., r′(e∗)), while decreasing the marginal increase

of effort with the increased prize (i.e., ∂e∗

∂A
). In this case, the former effect of more participants

is less significant than the latter effect (so that increasing N reduces ∂r(e∗)

∂A
) when the marginal

contribution of effort to output is inelastic to a change in effort (i.e.,
∣
∣
∣d log(r′(e))

d log(e)

∣
∣
∣=− r′′(e)e

r′(e)
= a < 1).

In practice, this may correspond to situations in which the organizer seeks solutions to a large-scale

technical project (e.g., developing autonomous vehicles for DARPA Grand Challenge) rather than

a simple ideation project because solving a large-scale technical problem usually requires consistent

and significant effort, whereas generating an average-quality idea for a simple problem requires

relatively low effort, yet additional effort does not improve the quality of the idea much. In this

case, it is optimal for the organizer to reduce the prize A with more participants.

4. Conclusion

We have studied an innovation tournament in which an organizer seeks solution(s) to an innovation-

related problem from a number of agents. In order to incentivize agents to exert costly effort in

developing good solutions, the organizer should design an award scheme carefully. On the one hand,
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offering a small number of prizes reduces each agent’s individual chance of winning a prize. This

may discourage agents from exerting their best effort or even from participating in the tournament.

On the other hand, offering too many prizes may reduce agents’ effort because agents could receive

a prize even with low effort. In this paper, we provide useful insights into selecting the number and

amount of awards.

By analyzing a general model that takes into account uncertainty in both developing and eval-

uating innovative solutions, we generate the following insights. First, it may be optimal for the

organizer to offer multiple prizes when agents perceive it very likely that only few agents receive

high evaluation while most of them receive low evaluation (e.g., tournaments wherein submitted

solutions are evaluated based on the popularity among consumers) or when a tournament does not

require substantial increase in agents’ marginal cost of effort to develop high-quality solutions as in

ideation contests. Second, it is optimal for the organizer to offer one large prize to the winner than

multiple small prizes in many practical situations, especially when agents have symmetric beliefs

about the organizer’s taste. In this case, the organizer should offer a larger winner prize when he is

interested in obtaining a higher number of good solutions, but the organizer need not necessarily

raise the winner prize when anticipating more participants to a tournament. Given the limited

results in prior literature and mixed observations in practice, these insights into the optimal award

scheme provide useful guidance to practitioners who organize innovation tournaments.

There are interesting future research avenues. First, while our model assumes that N is common

knowledge, in practice, all parties in the tournament may not have perfect information about N .

Our main results extend to the case where the organizer and agents have a common distribution for

unknown N . It would be interesting to analyze the case where an organizer and agents have asym-

metric beliefs about unknown N . Second, while we have considered the case wherein the organizer

awards agents based on their relative ranks, there are other compensation rules that the organizer

may use such as awarding agents based on their absolute performance rather than relative ranks.

An interesting future research direction would be to compare the organizer’s profit under different

compensation rules, considering the impact of the number of solutions that the organizer seeks

and the uncertainty agents face. This analysis can be enriched by comparing different tournament

formats or by incorporating behavioral effects.

Appendix

Proof of Lemma 1. Let ε̃mi
i,(1) = max{ε̃it, t = 1,2, ...,mi}. Then, the output function y in (1) can be

written as y(qi,mi, ε̃
mi
i,(1), ε̃i) = v(qi)+ ε̃mi

i,(1) + ε̃i. Since ε̃it follows Gumbel distribution with mean zero

and scale parameter μ, by the property given in Dahan and Mendelson (2001) (pg 115, Appendix

B), ε̃mi
i,(1) follows a Gumbel distribution with mean μ logmi and scale parameter μ. Furthermore,
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ε̃i = ε̃mi
i,(1) − μ logmi follows a Gumbel distribution with mean 0 and scale parameter μ. Thus, the

output function simplifies to y(qi,mi, ε̃i, ε̃i) = v(qi) + μ logmi + ε̃i + ε̃i. Given total effort ei, agent

i can choose qi and mi to maximize her output by solving:

r(ei) = max
qi,mi

v(qi)+ μ logmi s.t. c1qi + c2mi = ei. (9)

It is not difficult to verify that r(ei) is concave and increasing in ei. Therefore, the agent’s output

function simplifies to y(ei, ξ̃i) = r(ei)+ ξ̃i, where ξ̃i = ε̃i + ε̃i.

Suppose that v(qi) = κ log qi. Then, (9) yields q∗
i = κei

c1(κ+μ)
and m∗

i = μei
c2(κ+μ)

. Thus, r(ei) =

κ log q∗
i + μ logm∗

i = γ + θ log ei, where θ = κ + μ and γ = κ log κ
c1(κ+μ)

+ μ log κ
c2(κ+μ)

.

Proof of Proposition 1. Suppose that (7) is satisfied, but the WTA scheme is not optimal. Then,

there exists l (> 1) such that A(l) > 0 in an optimal award scheme. Let e be the equilibrium effort

corresponding to this award scheme. Consider the following perturbation where the l-th prize is

shifted to the winner prize; i.e., let Â(l) = A(l) − A(l) = 0 and Â(1) = A(1) + A(l), while all other

A(j)’s remain unchanged. Denote with ê the corresponding equilibrium effort. Since the total prize

A remains the same, the perturbation weakly improves Πo if agents exercise weakly higher effort

under this new award scheme (i.e., ê≥ e). By (7),
∂P N

(1)

∂ei
[e, e]≥

∂P N
(j)

∂ei
[e, e] for all j > 1. Thus,

N∑

j=1

∂P N
(j)

∂ei

[e, e]Â(j) ≥
N∑

j=1

∂P N
(j)

∂ei

[e, e]A(j) = ψ′(e), (10)

where the last equation follows from the fact that e satisfies the first-order condition of (6). The

inequality in (10) implies that after the perturbation, an agent will not have lower effort. Applying

this perturbation for all l (> 1) such that A(l) > 0, we find that the organizer’s utility under the

WTA is at least as good as that under the optimal award scheme, which is a contradiction.

Next, suppose that the WTA scheme is optimal. Let e be the corresponding effort in equilibrium.

Suppose to the contrary that e violates (7). Then, there exists l (> 1) such that
∂P N

(1)

∂ei
[e, e] <

∂P N
(l)

∂ei
[e, e]. Similar to the perturbation above, let Â(l) = δ and Â1 = A1 − δ with small δ > 0. This

perturbation improves agents’ effort, and hence contradicts the optimality of the WTA scheme.

Proof of Proposition 2. To simplify the notation, let P N
(j)[e]≡ P N

(j)[e, e
∗]. From (3), we can verify

P N
(j)[e] =

∫ s

s

W N
(j)(s + r(e)− r(e∗))h(s)ds, where W N

(j)(s) =
(N − 1)!

(j − 1)! (N − j)!
H(s)N−j(1−H(s))j−1

Taking the derivative of P N
(j)[e] with respect to e, evaluating it at e∗, and using integration by parts,

∂P N
(j)

∂e
[e∗] = r′(e∗)

∫ s

s

(
W N

(j)

)′
(s)h(s)ds = r′(e∗) lim

s→s
W N

(j)(s)h(s)− r′(e∗)
∫ s

s

W N
(j)(s)h

′(s)ds.

Here lims→s W N
(j)(s)h(s) = lims→s

hN
(j)(s)

N
, where hN

(j)(s) = N !
(j−1)!(N−j)!

H (s)N−j (1−H (s))j−1
h (s).

Note that lims→s hN
(j)(s)/N = 0 for any j ∈ {2, ...,N} and lims→s hN

(1)(s)/N = w1 ≥ 0. Thus,

∂P N
(1)

∂e
[e∗]−

∂P N
(j)

∂e
[e∗] = w1+r′(e∗)

∫ s

s

[W N
(j)(s)−W N

(1)(s)]h
′(s)ds = w1+

r′(e∗)
N

∫ s

s

[hN
(j)(s)−hN

(1)(s)]
h′(s)
h(s)

ds,
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for any j ∈ {2, ...,N}. Using integration by parts, the expression above boils down to
∂P N

(1)

∂e
[e∗]−

∂P N
(j)

∂e
[e∗] = w1 +

r′(e∗)
N

(

lim
s→s

[HN
(j)(s)−HN

(1)(s)]
h′(s)
h(s)

+
∫ s

s

[HN
(j)(s)−HN

(1)(s)]

(
h′(s)
h(s)

)′

ds

)

. (11)

Suppose that h satisfies condition (i). Then in (11), w1 = 0 since lims→s h(s) = 0, and also

lims→s[HN
(j)(s)−HN

(1)(s)]
h′(s)

h(s)
= 0 because lims→s

∣
∣
∣h

′(s)

h(s)

∣
∣
∣< ∞. Thus, by (8),

∂P N
(1)

∂e
[e∗]−

∂P N
(j)

∂e
[e∗] < 0,

and hence the WTA scheme is not optimal. When h is log-convex,
(

h′(s)

h(s)

)′
> 0 for all s so (8) is

satisfied, noting that HN
(j)(s)−HN

(1)(s)≥ 0 for all s (> 0 for a measurable subset of Ξ).

Suppose that condition (ii) is satisfied. The solution to (6) under the WTA scheme, e∗ =(
ψ′

r′

)−1 (
A
∫

s∈Ξ
(N − 1)H(s)N−2h(s)2ds

)
, violates (5) because A

N
− ψ(e∗) < 0. Thus, the WTA

scheme is not feasible for the organizer’s problem, and hence it is not optimal.

Proof of Proposition 3. We will show that when h is log-concave,
∂P N

(1)

∂e
[e∗] ≥

∂P N
(j)

∂e
[e∗] for all j ∈

{2, ...,N}. When h is log-concave, in (11), lims→s[HN
(j)(s) − HN

(1)(s)]
h′(s)

h(s)
= 0. The term HN

(j)(s) −

HN
(1)(s)≥ 0 for all s (> 0 for a measurable subset of Ξ) since ξN

(1) first-order stochastically dominates

ξN
(j). Therefore, a sufficient condition for (11) to be positive is that

(
h′(s)

h(s)

)′
≤ 0 for all s. This is

indeed the case when h is log-concave.

Next, suppose that h is increasing. We will show that
∂P N

(1)

∂e
[e∗]≥

∂P N
(j)

∂e
[e∗] for any j > 1. Observe

that
∂P N

(j)

∂e
[e∗] = r′(e∗)

∫ s

s
(W N

(j))
′(s)h(s)ds, where (W N

(1))
′ = hN−1

(1) (s), (W N
(N))

′ =−hN−1
(N−1)(s), and

(W N
(j))

′(s) =
(N − 1)!

(j − 1)!(N − j)!
[(N − j)H(s)N−j−1(1−H(s))j−1 − (j − 1)H(s)N−j(1−H(s))j−2]h(s),

for j ∈ {2, ...,N − 1}. Then
(
W N

(j)

)′

(s) = hN−1
(j) (s)−hN−1

(j−1)(s)), and so
∂P N

(1)

∂e
[e∗] = r′(e∗)E

[
h(ξ̃N−1

(1) )
]
,

∂P N
(j)

∂e
[e∗] = r′(e∗)

∫ s

s

[
hN−1

(j) (s)−hN−1
(j−1)(s)

]
h(s)ds = r′(e∗)

(
E
[
h(ξ̃N−1

(j) )
]
−E

[
h(ξ̃N−1

(j−1))
])

,

for j ∈ {2, ...,N − 1}, and
∂P N

(N)

∂e
[e∗] = −r′(e∗)E[h(ξ̃N−1

(N−1))]. When h is increasing, E[h(ξ̃N−1
(1) )] ≥

E[h(ξ̃N−1
(j) )] for any j > 1 because ξ̃N−1

(1) first-order stochastically dominates ξ̃N−1
(j) . Moreover,

E[h(ξ̃N−1
(j) )]≥ 0 for any j because h≥ 0. Therefore,

∂P N
(1)

∂e
[e∗]≥

∂P N
(j)

∂e
[e∗] for any j ∈ {2, ...,N}.

Remark. Note that (7) is independent of e∗ because letting W N
(j) =

hN
(j)(s)

Nh(s)
, we have for all j > 1,

∂P N
(1)[e, e

∗]

∂e

∣
∣
∣
∣
∣
e=e∗

≥
∂P N

(j)[e, e
∗]

∂e

∣
∣
∣
∣
∣
e=e∗

⇐⇒ r′(e∗)
∫ s

s

(
W N

(1)

)′
(s)h(s)ds≥ r′(e∗)

∫ s

s

(
W N

(j)

)′
(s)h(s)ds

⇐⇒
∫ s

s

(
W N

(1)

)′
(s)h(s)ds≥

∫ s

s

(
W N

(j)

)′
(s)h(s)ds .

Proof of Proposition 4. We first derive a necessary and sufficient condition for the organizer’s

profit Πo to be concave in the winner prize A, and then show that the assumption in Proposition

4 is sufficient for concavity. From (4), ∂2Πo
∂A2 = Kr′′(e∗)

(
∂e∗

∂A

)2

+ Kr′(e∗)∂2e∗

∂A2 . Thus, we need to

characterize the equilibrium effort e∗. Under the WTA, the agent’s problem in (6) becomes

max
e∈R+

AP N
(1)[e, e

∗]−ψ(e) = max
e∈R+

A

∫

s∈Ξ

H (r (e)− r(e∗)+ s)N−1
h (s)ds−ψ(e). (12)
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Substituting e = e∗ into the first order condition of (12) yields
ψ′(e∗)
r′(e∗)

= A

∫

s∈Ξ

(N − 1)H (s)N−2
h (s)2

ds. (13)

From (13), the equilibrium effort is e∗ = g−1(1/(AIN )), where g = r′

ψ′ and IN =
∫

s∈Ξ
(N − 1)H(s)N−2h(s)2ds. This implies that ∂e∗

∂A
= − 1

g′(e∗)
1

A2IN
= − g(e∗)

Ag′(e∗)
, and hence ∂2e∗

∂A2 =
1
A

∂e∗

∂A

[
−2+ g(e∗)g′′(e∗)

(g′(e∗))2

]
. Thus, Πo is concave in A if and only if

∂2Πo

∂A2
=

1
A

∂e∗

∂A

[

r′(e∗)
(

−2+
g(e∗)g′′(e∗)

(g′(e∗))2

)

− r′′(e∗)
g(e∗)

Ag′(e∗)

]

≤ 0. (14)

Since r is concave and increasing in e, and ψ is convex and increasing in e, we have r′ > 0, r′′ ≤ 0,

g > 0, and g′ ≤ 0. Furthermore, by the assumption, −2+ g(e∗)g′′(e∗)

(g′(e∗))2
≤ 0. Therefore, ∂2Πo

∂A2 ≤ 0.

(a) Due to concavity of Πo with respect to A, the optimal prize A∗[K] when there are K con-

tributors satisfies the first order condition of the organizer’s problem with respect to A, i.e.,
∂Πo(A∗[K])

∂A
= K r′(e∗)

∂e∗

∂A

∣
∣
∣
∣
A=A∗[K]

− 1 = 0. (15)

Suppose that K increases to K +1. Suppose to the contrary that A∗[K +1]≤A∗[K] (i.e., A∗ is non-

increasing in K). Observe from (4) that Πo is concave in A if and only if r(e∗) is concave in A, which

implies that r′(e∗)∂e∗

∂A
is non-increasing in A. Then, r′(e∗)∂e∗

∂A

∣
∣
∣
A=A∗[K+1]

≥ r′(e∗)∂e∗

∂A

∣
∣
∣
A=A∗[K]

since

A∗[K + 1] ≤ A∗[K]. However, in this case, (K + 1) r′(e∗)∂e∗

∂A

∣
∣
∣
A=A∗[K+1]

> K r′(e∗)∂e∗

∂A

∣
∣
∣
A=A∗[K]

= 1,

which implies that A∗[K +1] violates (15). Therefore, A∗[K +1] > A∗[K].

(b) Let Φ = K r′(e∗)∂e∗

∂A

∣
∣
∣
A=A

. From our derivation in part (a), ∂e∗

∂A
=− g(e∗)

Ag′(e∗)
, so

Φ =−Kr′(e∗)
g(e∗)

A∗g′(e∗)
=−Kr′(g−1(1/A∗IN))

g(g−1(1/A∗IN ))
A∗g′(g−1(1/A∗IN ))

= 0. (16)

By applying Implicit Function Theorem to (16), we obtain: ∂A∗

∂N
=−

∂Φ
∂N
∂Φ

∂A∗
. As we show in part (a),

(14) holds so ∂Φ
∂A∗ ≤ 0. Thus, ∂A∗

∂N
has the same sign as ∂Φ

∂N
. Noting that e∗ = g−1(1/(AIN)),

∂Φ
∂N

=
∂

∂e∗

[

r′(e∗)
g(e∗)
g′(e∗)

]
K

A∗g′(e∗)
1

A∗(IN )2
∂IN

∂N
.

Because g′ ≤ 0, K > 0, A∗ > 0, and (1/(A∗(IN)2) > 0, the derivative ∂Φ
∂N

has the opposite sign of
∂

∂e∗

[
r′(e∗) g(e∗)

g′(e∗)

]
∂IN
∂N

. Suppose that ∂IN
∂N

< 0. Then, A∗ is increasing, constant, or decreasing in N if

and only if g(e)r′(e)

g′(e)
is increasing, constant, or decreasing in N , respectively. Suppose that ∂IN

∂N
> 0.

Note that g(e)r′(e)

g′(e)
is increasing whenever g′(e)

g(e)r′(e)
is decreasing. Thus, A∗ is increasing, constant, or

decreasing in N if and only if g′(e)

g(e)r′(e)
is increasing, constant, or decreasing in N , respectively.

Endnotes

1. In Lemma EC.1 of Online Appendix, we show that the WTA award scheme may not be optimal

even if it yields a higher profit to the organizer than awarding the winner and/or the runner-up.

Under deterministic settings, Moldovanu and Sela (2001) show that the WTA scheme is optimal

when the agents’ cost functions of effort are linear or concave, but may not be optimal when the

cost functions are convex.
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2. Here we assume that the number of agents N is common knowledge. This is the common

assumption used by all previous papers in the literature reviewed in §1. In practice, although all

parties may not have perfect information about N , there are often mechanisms that could allow

an organizer and agents to get a good estimate of N . For example, InnoCentive and Ennomotive

publish the number of participants in each tournament, and DARPA holds a Competitors Confer-

ence to gauge the number of participants. Our main results extend to the case when N is unknown

with some distribution although expressions for conditions become more complex.

3. This model takes two popular approaches in the literature as special cases: K = 1 (e.g., Taylor

1995, Che and Gale 2003) and K = N (e.g., Green and Stokey 1983, Kalra and Shi 2001). It further

considers the most practically-common cases of K ∈ (1,N).

4. Note that N is the number of agents who can participate in a tournament, and that N becomes

the number of participants when participation constraint (5) is satisfied. This is the standard

approach to analyzing an award scheme in the extant literature (Moldovanu and Sela 2001, Kalra

and Shi 2001, Terwiesch and Xu 2008). Ales et al. (2016) and Korpeoglu and Cho (2015) further

study when it is optimal for the organizer to have an open tournament with free entry or to restrict

entry under the WTA scheme. In a free-entry open tournament which allows all agents who wish

to participate to do so, N corresponds to a pool of agents who can potentially participate in the

tournament. If the organizer restricts entry to the tournament, N corresponds to the number of

agents that are allowed by the organizer to enter.

5. lims→s h(s) = 0 when s = ∞ and the density h of ξ̃i is decreasing in s as s

approaches s. lims→s |h′(s)/h(s)| < ∞ for gamma, lognormal and Frechet distributions. Likewise,

lims→s |h′(s)/h(s)| < ∞ for Pareto distribution, and similar fat-tailed distributions that satisfy

h(s)∼ s−(1+γ) and h′(s)∼−(1+ γ)s−(2+γ) for some γ > 0 as s→∞.

6. Let s(j) be such that h(s(j)) = E[h(ξ̃N−1
(j) )] (i.e., s(j) represents the certainty equivalent of

ξ̃N−1
(j) under the density h). In the proof of Proposition 3, we show that

∂P N
(1)[e

∗,e∗]

∂e
= r′(e∗)h(s(1))

and
∂P N

(2)[e
∗,e∗]

∂e
= r′(e∗)

{
h(s(2))−h(s(1))

}
. Figure 1(c) illustrates that in this example,

∂P N
(1)[e

∗,e∗]

∂e
=

r′(e∗)h(s(1)) = 0.065r′(e∗) and
∂P N

(2)[e
∗,e∗]

∂e
= r′(e∗){h(s(2)) − h(s(1))} = (0.133 − 0.065)r′(e∗) =

0.068r′(e∗). Thus, the highly convex and decreasing region of h(s) leads to
∂P N

(1)[e
∗,e∗]

∂e
<

∂P N
(2)[e

∗,e∗]

∂e
.

Acknowledgments
We appreciate helpful comments from seminar participants at Carnegie Mellon University, Duke University,

Harvard University, Massachusetts Institute of Technology, University College London, INFORMS Annual

Meeting, POM Annual Conference, and MSOM Conference. We also thank the area editor Chung Piaw Teo

and his review team for their guidance and constructive comments. This work is partially supported by the

Carnegie Bosch Research Grant, Carnegie Mellon University.
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