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Abstract

Two new x-ray imaging modalities exploiting the phase delay elec-

tromagnetic waves experience when travelling through matter are in-

troduced in this work. The first, called beam tracking, allows the

measurement of three different physical properties of an object: ab-

sorption, refraction and ultra-small-angle scattering. This is achieved

by tracking the variations induced to a reference beam by a sample

through a multi-Gaussian interpolation. Beam tracking can be im-

plemented with both monochromatic, coherent radiation (available at

e.g. synchrotron facilities) and polychromatic, incoherent radiation

produced by standard laboratory sources. The nature of the three

extracted signals allows the implementation of beam tracking in com-

puted tomography, resulting in the three-dimensional reconstruction

of the real and imaginary part of the sample refractive index, alongside

its local scattering power. The second proposed method, called one

dimensional ptychography, exploits the coherent properties of syn-

chrotron radiation to retrieve the sample complex refractive index.

The peculiar feature of this method is the strongly asymmetric beam

used to illuminate the sample. Unlike standard ptychographic tech-

niques, this enables scanning the sample in one direction only, which

can lead to a possible reduction in exposure time when large field of
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views are covered. At the same time, ptychographic, sub-pixel reso-

lution can be obtained only in the scan direction, while pixel-limited

resolution is obtained in the orthogonal one. Prior to the introduction

of these methods, the theoretical foundations are laid down, and the

development of a fast and effective simulation software allowing their

implementation is described.
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Introduction

The term x-ray is used to identify a part of the electromagnetic spectrum char-

acterised by small wavelength (. 10 nm) and high energy (& 100 eV), just above

the ultraviolet range. Depending on their energy, x-rays are usually classified as

soft (energy . 5 keV) and hard (energy & 5 keV). Photons belonging to the high

energy part of the hard x-ray spectrum (& 100 keV) start on occasions to be

referred to as gamma rays. The distinction between x-rays and gamma rays can

be done with reference to their origin: while x-rays are generated by electrons,

gamma rays are emitted by atomic nuclei, as the product of nuclear reactions.

Hard x-rays are characterised by a large penetration depth in matter, which

makes them an excellent tool to study and investigate the internal structures of

materials in a large variety of fields. One of the main applications of hard x-rays

is imaging. As they travel through matter x-rays are partially absorbed, and the

amount of absorbed radiation depends on the chemical composition, density and

thickness of the traversed material. By sending an x-ray beam trough a sample

and measuring the fraction of transmitted radiation, in the plane perpendicular

to the x-ray propagation direction, it is possible to visualise the internal struc-

tures of the sample on the basis of their different absorption properties. X-ray

absorption imaging has been performed along this same principle since x-rays
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were discovered in 1895 by Röntgen, with innovations mainly coming from tech-

nological improvement of sources and detectors. One of the main limitations of

x-ray imaging is low contrast when light-absorbing materials are imaged. In this

context, an important example is the low contrast obtained from soft tissue (i.e.

muscles, cartilage) in medical imaging. An other important limitation is the radi-

ation damage induced by x-rays to biological specimens. Due to their high energy

x-rays can ionize atoms along their path, which can lead to biological damage.

It is important to note that these two problems are strictly related: to reduce

the radiation damage, less radiation should be absorbed by the sample, but this

would affect the very mechanism at the basis of image formation and therefore

reduce image quality.

In the last decades, different approaches have been developed to overcome the

above problems. The common feature of these approaches is that they are not

based on x-rays absorption as the main mechanism to generate contrast. X-rays,

in fact, are not only absorbed in matter, but also refracted (i.e. deflected). Re-

fraction is caused by variations in the phase shift that electromagnetic waves, like

x-rays, experience when travelling in matter. For this reason this area of research

is called x-ray phase contrast imaging (XPCi). XPCi techniques have greatly im-

proved the performance of x-ray imaging, and they are currently implemented in

several fields of research. Despite the important benefits brought by XPCi, there

are still some important limitations that need to be addressed. The main limita-

tion regards the implementation of XPCi methods with laboratory sources. XPCi

performance, in fact, usually depends strongly on a particular feature of x-ray

radiation called coherence. Coherent x-ray radiation is available at synchrotron

facilities, or through microfocal x-ray sources. While synchrotron facilities are
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large in size, usually hundreds of meters in diameter, and expensive, microfocal

sources are characterized by a very low x-ray flux. In both cases, practical im-

plementation in fields such as medical imaging or security is prevented. For this

reason, one of the main aims in XPCi has become the development of techniques

which could be implemented in x-ray imaging systems already in use for practical

applications like the above. At the same time, more synchrotron facilities are

being built and improved around the world, resulting in a fast growth of their

performance. It is therefore still of primary importance to continue the develop-

ment of new imaging techniques that can exploit the peculiar features offered by

these sources, especially coherence.

The work presented here tackles both these aspects of XPCi. Starting from

the underlying physical principles of an established XPCi technique, called edge

illumination, two new approaches are developed, namely beam tracking and one-

dimensional ptychography. Advantages and problems of these methods, together

with strategies to further improve their performance, will be presented and dis-

cussed. In the first chapter, the wave theory of x-ray propagation in free space

and matter is introduced, together with the concept of coherence. This will pro-

vide the basis for the theoretical considerations of the following chapters. The

second chapter is focused on the description of existing x-ray imaging methods,

with particular emphasis on XPCi. In the third chapter, a rigorous wave-optics

simulation, and the problems arising from its numerical implementation, are dis-

cussed. In the forth chapter the beam tracking approach is presented in its first

implementation, with synchrotron radiation. The fifth chapter is focused on the

laboratory implementation of beam tracking, while its tomographic implementa-

tion, with synchrotron radiation, will be presented in the sixth chapter. Finally
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one-dimensional ptychography is described in the seventh and last chapter.
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1

X-ray wave-field in free space and

matter

In this chapter elements of the classical theory of electromagnetic waves will be

introduced. In particular we will focus our attention on the description of waves

propagating in free-space and in matter, and on the concept of coherence. This

subject is discussed in more detail in several textbooks [3, 4, 5], while here only

the main results will be presented.

1.1 X-ray propagation in free space

The starting point to describe the evolution of electromagnetic waves in free space

are the Maxwell equations, expressed here in the International System of Units

25



1.1 X-ray propagation in free space

(SI), in vacuum and away from charges and currents [3]:

∇ · E(x, y, z, t) = 0; (1.1)

∇ ·B(x, y, z, t) = 0; (1.2)

∇× E(x, y, z, t) = − ∂

∂t
B(x, y, z, t); (1.3)

∇×B(x, y, z, t) = ε0µ0
∂

∂t
E(x, y, z, t). (1.4)

E is the electric field, B the magnetic induction, ε0 the electrical permittivity in

vacuum, µ0 the magnetic permeability in vacuum, (x, y, z) Cartesian coordinates

in three-dimensional space, and t time. Bold letters are used to indicate vectors.

Applying the curl operator to Eq. 1.3, and using the operator identity ∇ ×

∇× = ∇∇ · −∇2 and Eqs. 1.1 and 1.4 in the obtained expression, it is possible

to derive the following equation:

(
ε0µ0

∂2

∂t2
−∇2

)
E(x, y, z, t) = 0. (1.5)

Using a similar line of reasoning, one can obtain an identical equation for the

magnetic induction B:

(
ε0µ0

∂2

∂t2
−∇2

)
B(x, y, z, t) = 0. (1.6)

Equations 1.5 and 1.6 are the d’Alembert wave equations, and describe waves

propagating at speed c = 1/
√
ε0µ0. In the presented forms, Eqs. 1.5 and 1.6

are vector equations, however, each component of the electric field and magnetic

induction satisfies a scalar form of the d’Alambert wave equation. It is therefore
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1.1 X-ray propagation in free space

possible to describe the electromagnetic field in free space by means of a single

scalar wave equation:

(
1

c2

∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0, (1.7)

where Ψ characterizes the electromagnetic field.

Let us consider, now, a monochromatic wave, i.e. a wave whose amplitude

varies sinusoidally in time with a fixed frequency ω:

Ψ(x, y, z, t) = ψω(x, y, z) exp(−iωt). (1.8)

Substituting Eq. 1.8 in Eq. 1.7, we obtain, for the spatial component ψω of the

electromagnetic field Ψ, the following time-independent equation:

(
∇2 + k2

)
ψω(x, y, z) = 0, (1.9)

with k = ω/c. Equation 1.9 is known as the Helmholtz equation. Let us assume a

monochromatic wave is propagating in a portion of free space in the z direction,

and that its wave function is known for each point of the plane z = 0, i.e.

ψω(x, y, 0) is known for each value of x and y. The Helmholtz equation can be

used to determine the wave function ψω(x, y, z) in any other plane. ψω(x, y, z)

can be expressed in terms of a two-dimensional Fourier integral:

ψω(x, y, z) =
1

2π

∫∫
ψ̌ω(kx, ky, z) exp [i(kxx+ kyy)] dkxdky, (1.10)

where ψ̌ω(kx, ky, z) denotes the two dimensional Fourier transform of ψω(x, y, z)
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1.1 X-ray propagation in free space

with respect to x and y, and kx, ky are the Fourier space variable, conjugate to

x and y. Substituting Eq. 1.10 in the Helmholtz equation 1.9, we obtain:

∂2

∂z2
ψ̌ω(kx, ky, z) = −(k2 − k2

x − k2
y)ψ̌ω(kx, ky, z), (1.11)

which has the following solution:

ψ̌ω(kx, ky, z) = ψ̌ω(kx, ky, 0) exp
(
iz
√
k2 − k2

x − k2
y

)
. (1.12)

The electromagnetic field ψω(x, y, z) can therefore be expressed as:

ψω(x, y, z) = F−1
{
F [ψω(x, y, 0)] exp

(
iz
√
k2 − k2

x − k2
y

)}
, (1.13)

where F indicates the two dimensional Fourier transform with respect to x and

y.

To obtain Eq. 1.13 we expressed the wave field ψω(x, y, z) in terms of its two

dimensional Fourier transform ψ̌ω(kx, ky, z). ψω(x, y, z) can also be expanded in

its three dimensional Fourier transform:

ψω(x, y, z) =
1

(2π)3/2

∫∫∫
ψ̃ω(kx, ky, kz)

× exp [i(kxx+ kyy + kzz)] dkxdkydkz. (1.14)

The last equation is a solution of the Helmholtz equation if ψ̃ω(kx, ky, kz) = 0 for

every vector (kx, ky, kz) for which k2 6= k2
x + k2

y + k2
z . A physical interpretation

of Eq. 1.14 is that each wave function ψω(x, y, z) can be seen as a superposition

of plane waves exp [i(kxx+ kyy + kzz)] with different amplitude ψ̃ω(kx, ky, kz).
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1.1 X-ray propagation in free space

ψω(x, y, z) is therefore a solution of the Helmholtz equation if all its plane wave

components that are different from 0 satisfy k2 = k2
x + k2

y + k2
z . For a plane

wave, the vector (kx, ky, kz) indicates its propagation direction; if we consider

only waves whose propagation direction makes a small angle with respect to the

z axis, then k2
z � k2

x + k2
y and k2

x + k2
y � k2. In this situation we can do the

following approximation:

√
k2 − k2

x − k2
y ≈ k −

k2
x + k2

y

2k
, (1.15)

and Eq. 1.13 becomes:

ψω(x, y, z) = exp(ikz)F−1

{
F [ψω(x, y, 0)] exp

[
−iz

k2
x + k2

y

2k

]}
. (1.16)

Equation 1.15 is referred to as paraxial approximation. Using the convolution

theorem, it is possible to rewrite Eq. 1.16 as:

ψω(x, y, z) = ψω(x, y, 0) ∗Hz(x, y), (1.17)

where ∗ indicates the convolution operation and:

Hz(x, y) =
exp(ikz)

iλz
exp

[
ik

2z
(x2 + y2)

]
, (1.18)
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1.2 X-ray propagation in matter

Figure 1.1: Scheme of the reference frame used to calculate the effect of propa-
gation in free space on electromagnetic waves.

or explicitly as:

ψω(x, y, z) =
exp(ikz)

iλz

∫∫
ψω(x′, y′, 0)

× exp

{
ik

2z
[(x− x′)2 + (y − y′)2]

}
dx′dy′. (1.19)

Eqation 1.19 is called Fresnel diffraction integral, and describe the wave propa-

gation in free space in the paraxial approximation. Equations 1.13, 1.17 and 1.19

allow the calculation of the electromagnetic field at any plane (x, y) at a distance

z from the origin (Fig. 1.1), provided that the field ψω(x, y, 0) in the plane z = 0

is known.

1.2 X-ray propagation in matter

To describe how electromagnetic waves, and in particular x-rays, interact with

matter we need to consider Maxwell equations in matter, away from charges and
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1.2 X-ray propagation in matter

currents [3]:

∇ · [ε(x, y, z)E(x, y, z, t)] = 0; (1.20)

∇ ·B(x, y, z, t) = 0; (1.21)

∇× E(x, y, z, t) = − ∂

∂t
B(x, y, z, t); (1.22)

∇×
[

B(x, y, z, t)

µ(x, y, z)

]
= ε(x, y, z)

∂

∂t
E(x, y, z, t). (1.23)

ε(x, y, z) and µ(x, y, z) are the electrical permittivity and the magnetic perme-

ability of the material, respectively. In writing the above equations we implicitly

assumed that the material is linear and isotropic and that its electrical permit-

tivity and magnetic permeability are constant in time. Let us further assume

that the material is non-magnetic, i.e. µ(x, y, z) = µ0, and consider the following

vector identity:

∇ · [ε(x, y, z)E(x, y, z, t)] = ε(x, y, z)∇ · E(x, y, z, t)

+ [∇ε(x, y, z)] · E(x, y, z, t). (1.24)

If ε(x, y, z) is slowly varying over length scales comparable to the wavelength of

the radiation, the last term in the above equations can be neglected. Following

the same procedure described in the previous section it is now possible to derive

a single scalar wave equations to describe the electromagnetic field in a medium:

(
ε(x, y, z)µ0

∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0. (1.25)
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1.2 X-ray propagation in matter

Considering a monochromatic wave Ψ(x, y, z, t) = ψω(x, y, z) exp(−iωt), and sub-

stituting it in Eq.1.25, we obtain the following inhomogeneous Helmholtz equa-

tion: (
∇2 + n2(x, y, z)k2

)
ψω(x, y, z) = 0, (1.26)

where n(x, y, z) = c
√
ε(x, y, z)µ0 is the refractive index of the material.

Within the paraxial approximation, we can consider solutions of Eq. 1.26 of

the form:

ψω(x, y, z) = ψ̄ω(x, y, z) exp(ikz). (1.27)

This equation, in fact, can be seen as a plane wave exp(ikz) travelling in the z

direction, perturbed by an envelope ψ̄ω(x, y, z), which will be assumed to vary

slowly in z. Substituting Eq. 1.27 in Eq. 1.26 we obtain:

{
2ik

∂

∂z
+∇2

⊥ +
∂2

∂z2
+ k2

[
n2(x, y, z)− 1

]}
ψ̄ω(x, y, z) = 0, (1.28)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. In the paraxial approximation, ψ̄ω(x, y, z) varies

slowly in z, compared to x and y, allowing us to neglect the term ∂2/∂z2. The

term ∇2
⊥ is responsible for variations along the x and y directions of the wave

function ψ̄ω(x, y, z), during its propagation along the z direction. If, however,

the object is thin enough, those effects can be neglected. This is called the thin

object approximation. The previous equation becomes:

∂

∂z
ψ̄ω(x, y, z) =

k

2i

[
1− n2(x, y, z)

]
ψ̄ω(x, y, z), (1.29)
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1.2 X-ray propagation in matter

which has the following solution:

ψ̄ω(x, y, z) = exp

{
k

2i

∫ z

0

[
1− n2(x, y, z′)

]
dz′
}
ψ̄ω(x, y, 0). (1.30)

For x-rays, the refractive index is usually expressed in the form n(x, y, z) =

1− δ(x, y, z) + iβ(x, y, z), where δ and β are real, positive quantities, both much

smaller than unity. It is therefore possible to approximate 1 − n2(x, y, z′) ≈

2[δ(x, y, z)− iβ(x, y, z)] and write:

ψ̄ω(x, y, z) = exp

{
−ik

∫ z

0

[δ(x, y, z′)− iβ(x, y, z′)] dz′
}
ψ̄ω(x, y, 0). (1.31)

A part from a constant phase factor, the field in the plane after the sample can

be expressed as the field on the plane before the sample multiplied by a complex

transmission function T (x, y):

T (x, y) = exp

[
−ik

∫ z

0

δ(x, y, z′)dz′
]

exp

[
−k
∫ z

0

β(x, y, z′)dz′
]
. (1.32)

The object will therefore introduce a phase shift in the incoming wave equal to

φ(x, y) = k
∫ z

0
δ(x, y, z′)dz′, and reduce its amplitude by a factor dependent on

M(x, y) = k
∫ z

0
β(x, y, z′)dz′.

1.2.1 Absorption and refraction

We will now interpret the equations derived in the previous sections in terms of

two “simple” physical phenomena that are usually encountered in the ray theory

of optics: absorption and refraction. Let us consider an object in the plane z = 0

illuminated by a paraxial wave propagating in the z direction. Let ψi0(x, y) be
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1.2 X-ray propagation in matter

the field on the plane z = 0 incident on the object. The field observed on the

plane z = D, after the object, will be:

ψtD(x, y) =
exp(ikD)

iλD

∫∫
ψi0(x′, y′)T (x′, y′)

× exp

{
ik

2D
[(x− x′)2 + (y − y′)2]

}
dx′dy′, (1.33)

where T (x, y) = exp [−M(x, y)− iφ(x, y)] is the complex transmission function

of the object. The domain of integration in Eq. 1.33 can be divided into a series

of squares An, centred around (x′n, y
′
n), so that:

ψtD(x, y) =
∑
n

ψtD,n(x, y), (1.34)

with:

ψtD,n(x, y) =
exp(ikD)

iλD

∫∫
An

ψi0(x′, y′)T (x′, y′)

× exp

{
ik

2D
[(x− x′)2 + (y − y′)2]

}
dx′dy′. (1.35)

The propagated field, on the same plane, without the object, would instead be:

ψiD,n(x, y) =
exp(ikD)

iλD

∫∫
An

ψi0(x′, y′)

× exp

{
ik

2D
[(x− x′)2 + (y − y′)2]

}
dx′dy′. (1.36)

ψtD,n(x, y) and ψiD,n(x, y) can be pictured as “beamlets” coming from the region

An of the plane z = 0 (Fig. 1.2). The width of the squares can be chosen

small enough so that, within each square, the following approximations can be
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1.2 X-ray propagation in matter

Figure 1.2: Schematic representation of three beamlets travelling in free space
(a), and of the effect of refraction caused by a sample (b).

performed:

M(x′, y′) = M(x′n, y
′
n) = Mn, (1.37)

φ(x′, y′) = φ(x′n, y
′
n) + (x′ − x′n)

∂φ

∂x′
(x′n, y

′
n) + (y′ − y′n)

∂φ

∂y′
(x′n, y

′
n) =

= φn + (x′ − x′n)∂xφn + (y′ − y′n)∂yφn. (1.38)

Ignoring the constant phase factors in the expression for φ(x′, y′), it is possible

to write:

ψtD,n(x, y) =
exp(ikD)

iλD
exp [−Mn]

×
∫∫

An

ψi0(x′, y′) exp [−i(x′∂xφn + y′∂yφn)]

× exp

{
ik

2D
[(x− x′)2 + (y − y′)2]

}
dx′dy′. (1.39)
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1.2 X-ray propagation in matter

Rearranging the terms in the exponentials of Eq. 1.39, it is possible to relate

ψtD,n(x, y) and ψiD,n(x, y) with the following expression:

ψtD,n(x, y) = exp [−i(x∂xφn + y∂yφn)] exp

{
−i D

2k

[
(∂xφn)2 + (∂yφn)2

]}
× exp [−Mn]ψiD,n

(
x+D

∂xφn
k

, y +D
∂yφn
k

)
. (1.40)

The field ψtD,n(x, y) resulting from the region An in presence of an object can

be expressed as the field ψiD,n(x, y), observed without the object, shifted by the

vector (D∂xφn/k,D∂yφn/k) and with amplitude reduced by the factor exp [−Mn].

The first exponential term in Eq. 1.40 ensures that a further propagation of the

beam will result in an additional deflection, while the second exponential accounts

for the additional path length of the deflected field with respect to the reference

field, without the object. The lateral shift of the field corresponds to an angular

deflection αx = ∂xφn/k in the x direction and αy = ∂yφn/k in the y direction.

This is equivalent to the phenomenon of refraction encountered in ray optics.

From Eq. 1.34 and 1.40, we can therefore interpret the total field at a distance D

from an object as the superposition of a series of “beamlets” that are absorbed

and refracted by the sample. The main difference between this interpretation

and the ray optics one is that here the total intensity on the plane z = D will,

in general, be different from the sum of the intensities of all the “beamlets”, i.e.∣∣∑
n ψ

t
D,n(x, y)

∣∣2 6= ∑n

∣∣ψtD,n(x, y)
∣∣2.
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1.3 Coherence

1.3 Coherence

The electromagnetic field emitted by a real source presents random fluctuations,

due to the probabilistic nature of the processes that govern the emission of x-

rays. The same experiment, repeated multiple times, will results in a different

electromagnetic field ψ(x, t), where x = (x, y, z). Such an electromagnetic field

can be considered a stochastic process. The set of all the possible realizations{
ψ(i)(x, t)

}
i

of the process is called ensemble, where ψ(i)(x, t) indicates the i-th

realization.

Let us define the two-point correlation function of the process as:

Γ(x1,x2, t1, t2) = 〈ψ(x1, t1)ψ∗(x2, t2)〉, (1.41)

where the angle brackets indicates the average over the ensemble. Γ is usually

called mutual coherence function, and indicates the correlation between the sta-

tistical fluctuation of the field in the points (x1, t1) and (x2, t2). It is useful, in

this context, to introduce the so-called complex degree of coherence:

γ(x1,x2, t1, t2) =
Γ(x1,x2, t1, t2)√

Γ(x1,x1, t1, t1)Γ(x2,x2, t2, t2)
, (1.42)

From the Schwarz inequality, it follows that:

|γ(x1,x2, t1, t2)| ≤ 1. (1.43)

If the fluctuations of the fields at (x1, t1) and (x2, t2) are completely uncorrelated,

then 〈ψ(x1, t1)ψ∗(x2, t2)〉 = 〈ψ(x1, t1)〉〈ψ∗(x2, t2)〉 = 0, and |γ(x1,x2, t1, t2)| = 0.
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1.3 Coherence

Figure 1.3: Frame of reference for two waves emitted from x′1 and x′2, and
superimposing in x.

In this case the field is said to be completely incoherent. On the other hand, for an

ideal monochromatic plane wave ψ(x, t) = exp [i(kx− ωt)], |γ(x1,x2, t1, t2)| = 1.

In this case the field is said to be completely coherent.

To better understand the concept of coherence, let us consider Eq. 1.19. The

field ψω(x, y, z) can be seen as the superposition of spherical waves emitted from

each point (x′, y′, 0) of the plane z = 0 with amplitude ψω(x′, y′, 0), and that

have travelled a distance r =
√

(x− x′)2 + (y − y′)2 + z2 ≈ z + [(x− x′)2 + (y −

y′)2]/(2z). With reference to Fig. 1.3, let us analyse the superposition of two of

these waves, emitted from the points x′1 = (x′1, y
′
1, 0) and x′2 = (x′2, y

′
2, 0) on the

plane z = 0, within the context of coherence, i.e. considering the electromagnetic

field as a stochastic process. If a polychromatic wave is considered, it is possible

to write the time-dependent field at the point x = (x, y, z) as [3]:

Ψ (x, t) = K1Ψ (x′1, t1) +K2Ψ (x′2, t2) , (1.44)

38



1.3 Coherence

where t1 = t−|x− x′1| /c, t2 = t−|x− x′2| /c, and K1 and K2 are pure imaginary

numbers. The intensity I(x) measured at the point x is equal to the time average

of the square modulus of Ψ (x, t):

I(x) =
〈
|K1Ψ (x′1, t1)|2

〉
t
+
〈
|K2Ψ (x′2, t2)|2

〉
t

+ 2 Re [〈K1K
∗
2Ψ (x′1, t1) Ψ∗ (x′2, t2)〉t] (1.45)

Let us define I1(x) as the intensity measured when only the wave coming from

x′1 is present:

I1(x) =
〈
|K1Ψ (x′1, t1)|2

〉
t
, (1.46)

with an analogous definition for I2(x). Let us assume now that the process is

ergodic, so that the average over time can be replaced by the average over the

ensemble. It is, then, possible to write:

I(x) = I1(x) + I2(x) + 2
√
I1(x)I2(x) Re [γ (x′1,x

′
2, t1, t2)] = (1.47)

= I1(x) + I2(x) + 2
√
I1(x)I2(x) |γ (x′1,x

′
2, t1, t2)| cos [Φ (x′1,x

′
2, t1, t2)] ,

where we used γ (x′1,x
′
2, t1, t2) = |γ (x′1,x

′
2, t1, t2)| exp [iΦ (x′1,x

′
2, t1, t2)]. The last

term of Eq. 1.47 is usually called interference term, and expresses the variation

between the total intensity I(x) and the sum of the intensities I1(x) and I2(x).

For a perfectly incoherent field, the interference term is equal to 0 and the total

intensity in x can be expressed as the sum of the intensities produced by the

fields in x′1 and x′2; this result can be generalized to an arbitrary number N of

points {x′i}, with i = 1, . . . , N . In a perfectly coherent field, instead, there are
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1.3 Coherence

no statistical fluctuations and the results obtained in the previous sections can

be used to calculate the intensity distribution of a field in a given geometry.
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2

X-ray imaging

In this chapter the main methods for x-ray imaging will be introduced and de-

scribed in the theoretical framework developed in the previous chapter. First

absorption-based imaging is discussed; this represents the most used x-ray imag-

ing modality, with the simplest experimental setup. Then some of the most used

phase-contrast imaging methods are introduced, each offering different advantages

and capabilities. Last coherent diffraction imaging is described, where high reso-

lution images can be obtained by solving an inverse problem. The focus here will

be on methods currently employed in x-ray imaging, however it is important to

note that the concept of phase contrast was first introduced in optical microscopy

by Zernike [6], and that later other methods have been presented exploiting phase

contrast with visible light [7]. Another important imaging modality not discussed

in this chapter, which employs lenses to focus the beam on a small spot on the

sample, is scanning x-ray microscopy [8, 9, 10, 11, 12].
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2.1 Absorption-based imaging

Figure 2.1: Schematic diagram of an absorption-based imaging system.

2.1 Absorption-based imaging

A typical setup for absorption-based x-ray imaging is shown in Fig. 2.1. An x-ray

source is used to illuminate a sample of interest, and an x-ray detector is placed

immediately after the sample to detect the transmitted intensity. Using Eq. 1.31,

the ratio between the transmitted intensity I t and the intensity incident on the

sample I i is:

I t(x, y)

I i(x, y)
= exp

[
−2k

∫ l

0

β(x, y, z)dz

]
= exp [−2M(x, y)] . (2.1)

where l is the sample thickness and M(x, y) = k
∫ l

0
β(x, y, z)dz. The last equation

is the well-known Beer-Lambert law. Since x-ray detectors are only capable of

measuring the wave intensity (proportional to the square modulus of the electro-

magnetic field), rather than its complex amplitude, the phase term in Eq. 1.31

is lost.
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2.2 Phase-contrast imaging

2.2 Phase-contrast imaging

Phase contrast imaging includes all the imaging modalities in which the phase

term φ(x, y) of the object complex transmission function T (x, y) contributes to

image contrast.

2.2.1 Free-space propagation

In this imaging modality x-rays coming from a source and going through a sample,

are detected at a certain distance D after the sample. A scheme of the setup is

shown in Fig. 2.2; note that D = 0 is equivalent to the absorption-based system

described above. Let ψi0(x, y) be the field incident on the sample in the plane

z = 0, and ψt0(x, y) the field just after the sample in the same plane z = 0. From

Eq. 1.31, we have:

ψt0(x, y) = ψi0(x, y) exp [−M(x, y)− iφ(x, y)] (2.2)

where M(x, y) = k
∫ l

0
β(x, y, z)dz, and φ(x, y) = k

∫ l
0
δ(x, y, z)dz. Propagating

the electromagnetic field after the sample for a distance D in free space, we

obtain:

ψtD(x, y) = exp(ikD)F−1

{
F
[
ψt0(x, y)

]
exp

[
−iD

k2
x + k2

y

2k

]}
, (2.3)

If the propagation distance is small, it is possible to approximate exp[−iD(k2
x +

k2
y)/(2k)] ≈ 1− iD(k2

x + k2
y)/(2k), and Eq. 2.3 becomes:

ψtD(x, y) = exp(ikD)

[
1 +

iD

2k
∇2

]
ψt0(x, y), (2.4)
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2.2 Phase-contrast imaging

Figure 2.2: Schematic diagram of a free-space propagation imaging system.

and the intensity I tD(x, y) measured at a distance D from the sample will be:

I tD(x, y) = I t0(x, y) +
D

k
∇ ·
[
I t0(x, y)∇φ(x, y)

]
=

= I t0(x, y) +
D

k

[
∇I t0(x, y) · ∇φ(x, y) + I t0(x, y)∇2φ(x, y)

]
, (2.5)

where I t0(x, y) is the intensity measured just after the sample. If I t0(x, y) is slowly

varying in x and y, the term proportional to its gradient can be neglected, and

Eq. 2.5 can be simplified as:

I tD(x, y)

I i0(x, y)
= exp [−2M(x, y)]

[
1 +

D

k
∇2φ(x, y)

]
, (2.6)

where I i0(x, y) is the intensity of the radiation incident on the sample. The

recorded intensity differs from the absorption-based case for the presence of the

phase term ∇2φ(x, y). This term has two important consequences: even for low

absorbing materials (exp [−2M(x, y)] ≈ 1) the image contrast can be high due

to the additional phase term; the effect of this term is particularly strong at the

edges of sample structures, where the phase φ(x, y) varies rapidly. The resulting
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2.2 Phase-contrast imaging

image appears as an absorption image in which the boundaries between different

materials are enhanced, due to the phase term. Free-space propagation x-ray

phase contrast imaging was first demonstrated in 1995 [13] with synchrotron

radiation and in 1996 with a polychromatic source [14]. Later several techniques

have been developed to separate M(x, y) and φ(x, y) from one or multiple images

acquired at different propagation distances D; some important examples can be

found in [15, 16, 17, 18]. The main advantage offered by this imaging modality

is the simple experimental setup, and the increased image contrast due to the

phase term. It is possible to show, however, that the increased contrast due to

the phase term rapidly decreases, with respect to the absorption contrast, as a

function of the source size and of the detector spatial resolution [12].

2.2.2 Grating interferometry

An interesting features of periodic objects, like gratings, is that the intensity dis-

tribution downstream of the object can replicate itself at some specific distances.

Let us consider an absorption grating of period a illuminated by a plane wave,

and let the width of the transmitting regions in the x direction be equal to a/2.

Let ψg0(x, y) and ψgD(x, y) be the fields at a distance 0 and D after the grating,

respectively:

ψgD(x, y) = exp(ikD)F−1

{
F [ψg0(x, y)] exp

[
−iD

k2
x + k2

y

2k

]}
. (2.7)

Because of its periodicity, the Fourier transform of ψg0(x, y) will be different from

0 only at some specific points in the Fourier space of coordinates (kx, ky) =

(2πp/a, 0), with p ∈ Z. If the Fourier transform of the Fresnel propagator in these
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Figure 2.3: Schematic diagram of a grating-based imaging system.

points is equal to one, then the propagated field will be equal to the starting one:

exp

[
−iD

k2
x + k2

y

2k

]
= exp

[
−iπλD

a2
p2

]
= 1. (2.8)

The above condition is satisfied for propagation distances Dn = nDt; where Dt =

2a2/λ is called the Talbot distance, and n is an integer. For these propagation

distances, the intensity of the field is:

IgDn
(x, y) = Ig0 (x, y), (2.9)

where Ig0 (x, y) = |ψg0(x, y)|2 is equal to a square wave of period a.

The same intensity distribution can be obtained using a phase grating (i.e. a

grating which periodically modifies the phase of the incoming wave, rather than

its amplitude). In this case the theoretical description is more complicated, and

it depends on the amount of phase modulation imposed by the grating. When

the phase shift oscillates by π, the characteristic intensity profile has period equal

to a/2 and is formed at distances Dn = nDt/16. When, instead, the phase shift
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2.2 Phase-contrast imaging

is π/2, the period is equal to a and the intensity pattern is formed at distances

Dn = nDt/4. In both the π and π/2 configurations, n in an odd integer.

The phenomenon just described can be used as the basis for the phase contrast

imaging setup shown in Fig. 2.3. The first grating creates the periodic intensity

pattern described before. The second grating, which has the same period as the

intensity pattern, is used as an analyser. The absorption grating is scanned along

x, and for each position the intensity is recorded by the detector. The curve

describing the variation of the intensity with respect to the grating position is

called phase-stepping curve. When an object is place just before or after the phase

grating, the intensity profile is locally modified by absorption and refraction,

as described in the previous chapter. This has a direct impact on the phase-

stepping curve: the mean intensity will decrease due to absorption, and its lateral

position will be shifted due to refraction. Note that the period of the intensity

pattern and the shift induced by refraction are usually too small to be spatially

resolved by standard detectors, which is why the absorption grating is required.

By acquiring and comparing two phase-stepping curves, with and without the

sample, it is possible to reconstruct the absorption A(x, y) and refraction R(x, y)

signals, which can be related to the sample transmission function by the following

equations:

A(x, y) = 2M(x, y), (2.10)

R(x, y) =
1

k

∂φ

∂x
(x, y). (2.11)

The firsts methods for x-ray phase contrast imaging exploiting the interference

pattern created by a periodic grating were demonstrated in 2002 [19] and 2003
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Figure 2.4: Schematic diagram of a Talbot-Lau imaging system.

[20]. The first demonstration with a laboratory source has been presented in 2006

[21]; in this case, a third absorption grating was used just after the source, in the

so-called Talbot-Lau configuration (Fig. 2.4). If the wave illuminating the phase

grating is not fully coherent, in fact, a decrease in the visibility of the intensity

pattern at the detector plane is observed. The decrease in visibility, however, can

be mitigated introducing the additional source grating.

2.2.3 Analyser based imaging

An ideal crystal is characterized by the periodic repetition, over a set of points

(called crystal lattice) in the three dimensional space, of one or a group of atoms

(called the unit cell). Due to this periodicity, it is possible to identify sets of

parallel and equally spaced planes that pass through all the points of the crystal

lattice. Let us consider one of these sets of planes, with inter-plane distance d,

and a plane wave with wave-vector k0, forming an angle θ with the considered

planes. It can be shown [3] that the wave is totally reflected by the crystal if the
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following condition holds:

2d sin θ = mλ, (2.12)

where λ = 2π/|k0| is the wavelength of the plane wave, and m an integer. Equa-

tion 2.12 is the Bragg Law. Let us consider two frames of reference (xi, yi, zi)

and (xt, yt, zt) (Fig. 2.5), so that zi and zt are the propagation directions of an

incident and reflected wave which satisfy the Bragg law. To simplify the nota-

tion, we will omit the i and t subscripts in the coordinates, assuming that the

(xi, yi, zi) system is used for the incident wave, and (xt, yt, zt) for the reflected

wave. We will also assume that all the distances are small enough so that the ef-

fects of propagation on the wave front can be neglected. Let us consider a generic

monochromatic wave of wavelength λ incident on the crystal. Its wave function

on a plane perpendicular to its propagation direction can be expressed in terms

of its Fourier components:

ψi(x, y) =
1

2π

∫∫
ψ̌i(kx, ky) exp [i(kxx+ kyy)] dkxdky, (2.13)

with an analogous definition for the reflected wave ψt(x, y). Of all the different

Fourier components of ψi(x, y), only the ones for which kx = 0 satisfy the Bragg

law; it is therefore possible to write:

ψ̌t(kx, ky) = ψ̌i(kx, ky)R(kx) = ψ̌i(kx, ky)δD(kx), (2.14)

where we introduced the crystal transfer function R(kx), in this case equal to

the Dirac delta δD(kx). A more accurate description of the propagation of an

electromagnetic wave in a crystal [3] shows that its transfer function is not exactly
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Figure 2.5: Schematic diagram of an analyser-based imaging system.

a Dirac delta, but a narrow function, of finite width, centred around kx = 0. When

kx is close, but different from 0, waves will be diffracted by the crystal, but with

a decreased intensity.

Let us now consider a simple object that absorbs and refract the incoming

radiation with transfer function T (x, y) = exp [−M ] exp [−iφ′x]. If the object is

placed just before the crystal, we will have, for the reflected wave:

ψt(x, y) = exp [−M ]F−1
[
ψ̌i(kx + φ′, ky)R(kx)

]
=

= exp [−M ] exp [−iφ′x]F−1
[
ψ̌i(kx, ky)R(kx − φ′)

]
. (2.15)

Let us assume, for simplicity, that the incident wave on the sample is a plane wave

propagating with a small angle with respect to the z direction, i.e. ψ̌i(kx, ky) =

2πδ(kx − k̄x, ky). In this case we can derive a simple expression for the reflected
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wave and its intensity:

ψt(x, y) = exp [−M ] exp [−iφ′x]R(k̄x − φ′) (2.16)

I t(x, y) = exp [−2M ]
∣∣R(k̄x − φ′)

∣∣2 (2.17)

As described in the previous chapter, the phase term exp [−iφ′x] describes a

refraction of the propagating beam. |R(kx)|2 has a maximum for kx = 0 (the

condition for which the Bragg law is satisfied), and decreases rapidly to 0 for

|kx| > 0. Assuming |φ′| < |k̄x|, the role of φ′ is to change the crystal reflectivity

by bringing k̄x − φ′ closer (φ′ > 0) or farther (φ′ < 0) from 0. In other words, a

crystal can be used as a fine angular filter for the incoming radiation, so that small

refraction angles induced by an object can be detected as intensity variations at

the detector.

Analyser-based x-ray phase contrast imaging was first demonstrated in 1980

[22], but became popular only in the mid-nineties, especially thanks to the work

presented in 1995 by Davis et al [23]. Later, algorithms able to separate the

contribution of absorption and refraction from Eq. 2.17 have been developed

[24]. When this technique is implemented with polychromatic sources, its main

disadvantage is that the Bragg condition is satisfied only from one specific wave-

length of the incoming radiation. The crystal acts therefore as monochromator

and reflects only a small percentage of the radiation produced by the source.

2.2.4 Edge Illumination

The edge illumination setup is schematically represented in Fig. 2.6. A small,

laminar beam is created using an absorbing slit placed before the sample (sample
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slit). After the sample, and a propagation in free-space, the beam reaches a second

slit, placed just before a single detector pixel. The two slits are usually misaligned,

so that an edge of the detector slit absorbs half of the incident radiation, when

the sample is not in the beam. Let us neglect the effects of propagation in the y

direction; this is generally accurate in this imaging configuration as the blurring

due to the finite source size and the limited detector resolution strongly limits

the visibility of coherent effects caused by the free space propagation between the

two slits. Let ψi0(x, y) be the field created by the slit, and incident on the sample,

at the plane z = 0. If the sample transfer function varies slowly compared to the

size of the slit in the x direction, it is possible to assume:

M(x, y) = M(x0, y), (2.18)

φ(x, y) = φ(x0, y) + (x− x0)∂xφ(x0, y), (2.19)

and the field at the detector plane will be:

ψtD(x, y) = exp [−M(x0, y)]ψiD

(
x+D

∂xφ(x0, y)

k
, y

)
, (2.20)

where ψiD(x, y) is the field at the detector plane when the sample is removed.

The sample reduces the amplitude of the beam and shifts its position along the

x axis. The detector slit will allow only part of the beam to be detected; if A(x)

is the intensity transmission function of this slit, the intensity measured by the
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Figure 2.6: Schematic diagram of an edge illumination imaging system.

detector pixel is:

I tD(x0, y0) = exp [−2M(x0, y0)]

∫
I iD

(
x+D

∂xφ(x0, y0)

k
, y0

)
A (x− p0) dx =

= exp [−2M(x0, y0)] IC

(
p0 +D

∂xφ(x0, y0)

k

)
. (2.21)

I iD(x, y) = |ψiD(x, y)|2; p0 is the misalignment between the slits; (x0, y0) is the pixel

position; IC(x) = [I iD ? A] (−x), where ? indicates the cross-correlation operator,

is called the illumination curve, and is conceptually equivalent to the reflectivity

curve |R(kx)|2 in Eq. 2.17. A refraction of the beam in the positive (negative) x

direction will result in an increased (decreased) intensity detected by the pixel.

Edge illumination was first demonstrated in 2001 by Olivo et al [25], using

synchrotron radiation, and has been later implemented with laboratory sources

in 2007 [26]. Recently, algorithms capable of separating the contribution of ab-

sorption and refraction have been proposed [27, 28]. The main advantage of

the edge illumination method is that it can work with standard incoherent [29],

polychromatic [30] sources, and with large pixel sizes, overcoming the main limi-
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tations of some of the alternative phase contrast methods described above, such

as free-space propagation and analyser based imaging.

2.3 Coherent diffraction imaging

The imaging modalities described in the previous sections belong to the class of

direct imaging methods. In all these modalities the measured intensity is directly

related to the absorption properties of the sample (M(x, y)), or the first or second

derivative of its phase (φ(x, y)), or a combination of the two. Coherent diffraction

imaging is, instead, an indirect imaging method, in the sense that the measured

intensity does not directly represent features of the sample.

Let us consider the experimental setup in Fig. 2.7. Let ψi0(x, y) be the field

incident on the sample, ψt0(x, y) the field after the sample at the plane z = 0,

and ψtD(x, y) the field at the detector on the plane z = D. Using Eq. 1.19, it is

possible to write:

ψtD(x, y) =
exp(ikD)

iλD
exp

[
ik

2D
(x2 + y2)

] ∫∫
ψt0(x′, y′)

× exp

[
ik

2D
(x′2 + y′2)

]
exp

[
−ik
D

(x′x+ y′y)

]
dx′dy′ (2.22)

Let us suppose that the beam incident on the sample is spatially limited, for

example by the presence of a pinhole (Fig. 2.7). If the propagation distance

D is large enough so that k(x′2 + y′2)/(2D) � 1, for (x′, y′) within the pinhole

aperture, the corresponding exponential term in Eq. 2.22 can be neglected, and
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2.3 Coherent diffraction imaging

Figure 2.7: Schematic diagram of a coherent diffraction imaging system.

the detected intensity can be expressed as:

I tD(x, y) =

∣∣∣∣∫∫ ψt0(x′, y′) exp

[
−ik
D

(x′x+ y′y)

]
dx′dy′

∣∣∣∣2 =

=

∣∣∣∣F [ψt0](kxD ,
ky

D

)∣∣∣∣2 . (2.23)

In the described configuration, it is therefore possible to directly measure the

modulus of the Fourier transform of the field at the sample plane. The so called

phase problem consists in reconstructing the function ψt0(x, y) from the measure-

ment of the modulus of its Fourier transform [I tD(x, y)]
1/2

. The phase problem is

encountered not only in x-ray coherent diffraction imaging, but also in other fields

such as electron microscopy, wave front sensing, astronomy and crystallography;

more details can be found in [31, 32] and references therein. It is clear that the

measured diffraction pattern alone is not sufficient to solve the phase problem,

i.e. an infinite number of different wave functions exist that would result in the

same diffracted intensity. To restrict the number of possible solutions, additional

information about the function ψt0(x, y) needs to be available. Provided this ad-
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ditional information is available, and that a unique solution exist, a method that

combines the information provided by the diffraction pattern I tD(x, y) with the a

priori information about the function ψt0(x, y) is required to find the solution.

For example, the phase problem can be solved when ψt0(x, y) is equal to 0 out-

side a region S, called support, and if S is known and sufficiently small. The prob-

lem is then solved iteratively, through specific reconstruction algorithms [33, 34].

A different approach consists in acquiring multiple diffraction patterns from differ-

ent, but partially overlapping, regions of the sample. This is achieved by shifting

the sample with respect to the incident radiation between each acquisition. This

approach is called ptychography, and the additional information comes from the

fact that the same region of the sample contributes to more than one diffrac-

tion pattern. ψt0(x, y) is given by the product of the field incident on the sample

ψi0(x, y) and the sample transmission function T (x, y). In ptychography, each

diffraction pattern I tD,n(x, y) comes from a different wave ψt0,n(x, y), which can be

expressed as ψi0(x, y)T (x− xn, y− yn). From a set of measurements
{
I tD,n(x, y)

}
,

specifically designed algorithms [35, 36] can be use to retrieve both the illumi-

nation function ψi0(x, y) and the sample complex transfer function T (x, y). The

peculiar features of coherent diffraction imaging are that:

• it makes possible to retrieve T (x, y), providing direct access to the quantities

M(x, y) and φ(x, y),

• the final resolution of the reconstructed function does not depend on the

detector resolution, as it is usually the case with direct imaging methods.

The measurement, in fact, happens in the Fourier space, i.e. the modulus of

the Fourier transform of ψt0(x, y) is measured, and the final resolution depends
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on the largest angle for which the diffraction pattern is measured. Alternative

ways to increase the resolution beyond the limits imposed by the detector pixel

size consist in the use of lenses to create a magnified image of the sample on

the detector. In this case the final resolution is usually limited by the numerical

aperture of the lens. This can represent an important limitation in x-ray imaging,

where lenses with high numerical aperture are difficult to fabricate. Coherent

diffraction imaging removes this limitation and it is, therefore, a valuable tool for

high resolution x-ray imaging, allowing resolutions of the order of few nanometers

[37]. Another important possibility offered by coherent diffraction imaging is

its implementation in tomography [38, 39, 40], allowing high resolution three-

dimensional reconstructions of the sample refractive index.
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Wave optics simulation

In this chapter we describe a framework for the simulation of the x-ray phase

contrast imaging systems discussed in the previous chapter. The simulation of

x-ray propagation in vacuum and of their interaction with matter can be per-

formed with different methods, which can be divided in two main groups: ray

tracing and wave optics. In ray tracing, the electromagnetic field is described in

terms of rays, or photons. The simulation starts at the source focal spot where

photons are created with a random position and propagation direction. Each

photon is then propagated in empty space and matter, until, if it is not absorbed

by the sample or any component of the experimental setup, it is detected. The

final intensity measured by the detector is given by the sum of all the intensities

of the individual photons. The main advantage of ray tracing methods is that

each photon is independent from the others, and the simulation can be easily

parallelized on multi-CPU or GPU systems. The main disadvantage of standard

ray tracing simulations is that they are based on geometrical optics and cannot

take coherence effects into account, i.e. interference between waves is neglected.
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Recently, however, new methods are being developed to include coherence effects

in ray tracing simulations [41]. On the other hand, wave optics simulations are

developed to numerically solve the diffraction integrals described in the first chap-

ter. This approach is more accurate than ray tracing, especially when coherent

radiation is considered, and can predict experimental results with high accuracy.

Care has to be taken with regards to the specific implementation parameters used

in wave optics simulations, otherwise they can result in significant artefacts, as

discussed below.

In the following we will focus our attention on the simulation of an edge illu-

mination system. Our study, however, can be easily adapted to different phase

contrast imaging systems. The results discussed in this chapter are based on the

work presented in [42]. In the previous chapter, we described the edge illumina-

tion system for a single row of detector pixels (Fig. 2.6). In this configuration, an

image can be obtained by scanning the sample through the beam. The system,

however, can be parallelized for use with a two dimensional area detector, and the

edge illumination condition can be repeated for each row of the detector pixels,

as shown in Fig. 3.1. The first mask (sample mask) creates a series of secondary

beams each of which propagates towards a single detector pixel; the second mask

(detector mask) acts as a series of edges that intercept a fixed portion of each

beam. When a sample is placed between the two masks, each secondary beam

is deflected by an angle α (in the direction x perpendicular to the mask lines)

proportional to ∂φ/∂x, where φ is the phase shift caused by the sample; this

increases or decreases the signal of each pixel in proportion with ∂φ/∂x. At the

same time, each beam is partially absorbed by the sample and its total intensity

decreases.
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Figure 3.1: Schematic diagram of an edge illumination setup.

3.1 Theoretical framework

The system shown in Fig. 3.1 can be effectively described as a series of free

space propagations and transmissions through objects (an “object” being a mask

or the sample). Let us consider, in the reference frame shown in Fig. 3.1, a

monochromatic wave with wavelength λ propagating in the z direction. Free

space propagation can be described by means of the Fresnel diffraction integral

(Eq. 1.19), so that if ψA(x, y) and ψB(x, y) are the complex amplitude of the

electromagnetic field on two planes z = zA and z = zB respectively, with no

objects in between, it is possible to write:

ψB(x, y) = ψA(x, y) ∗H∆z(x, y), (3.1)

where ∆z = zB− zA, ∗ indicates the convolution operation, and Hz is the Fresnel

propagator:

Hz(x, y) =
exp(ikz)

iλz
exp

(
ik
x2 + y2

2z

)
, (3.2)

with k = 2π/λ. For an edge illumination setup, Eq. (3.1) allows us to describe

the free space propagation of x-rays between the source and the sample mask and
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between the two masks.

The propagation through an object can be taken into account through its

complex transfer function Tobj:

ψout(x, y) = Tobj(x, y)ψin(x, y), (3.3)

where ψin and ψout are the complex amplitudes of the incoming and outgoing

fields, respectively. For an ideal mask, TM(x, y) = 1 within the apertures and

TM(x, y) = 0 in the absorbing septa.

Let us assume, for simplicity’s sake, that the system we want to describe has

no dependence upon y; in this case, by neglecting a constant factor arising from

the integration over y [1], we can consider the one-dimensional case (y = 0).

With reference to Fig. 3.1, it is possible to write the expression for the complex

amplitude of the electromagnetic field at the detector mask, in the case of a point

source placed in the position xs = 0 (ψ0(x) = A0δD(x), where δD is the Dirac

delta), as:

ψM2(x) = A0 [H1(x)TM1(x)Tobj(x)] ∗H2(x), (3.4)

where H1 ≡ Hz1 , H2 ≡ Hz2 , and the object and the sample mask are assumed to

be in the same plane. In the general case of xs 6= 0, H1(x) must be replaced with

H1(x − xs) to obtain the complex amplitude of the electromagnetic field on the

detector mask ψM2(x, xs). Noting that:

Hz(x− xs) =
iλz

exp(ikz)
Hz(x)Hz(xs) exp(−ikxxs/z), (3.5)
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it is possible to express ψM2(x, xs) in terms of ψM2(x) as:

ψM2(x, xs) = C(x)ψM2

(
x+

z2

z1

xs

)
, (3.6)

where C(x) is a phase factor:

C(x) = exp

[
i
k

2z1

(
1− z2

z1

)
x2
s − i

k

z1

xxs

]
. (3.7)

Eq. (3.6) can be used to take into account an incoherent source of finite size;

in this case, in fact, the intensity on the detector can be expressed as the sum of

the intensities coming from each point of the source:

ID(x) =

∫ ∞
−∞

S(xs)|ψM2(x, xs)TM2(x)|2dxs, (3.8)

where S(xs) is the source spatial intensity distribution. Indicating by Ip(x) =

|ψM2(x)|2 the intensity that would be measured on the detector mask with a

point source placed in xs = 0, and with Sr(x) = (z1/z2)S(−xz1/z2) the rescaled

source intensity distribution, Eq. (3.8) becomes:

ID(x) = [Sr(x) ∗ Ip(x)] |TM2(x)|2 (3.9)

and the final intensity measured by the n-th pixel will be given by:

In =

∫ xn+P

xn

ID(x)dx, (3.10)

where xn is the pixel position and P is the pixel dimension.
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It is therefore possible to describe the entire edge illumination setup by means

of a series of convolutions and products. Finally, it is important to remember that

the convolution theorem allows calculating convolutions as products by means of

the Fourier Transform (FT):

f(x) ∗ g(x) = F−1 {F [f(x)]F [g(x)]} , (3.11)

where F is the FT operator. The convolution theorem plays a basic role in the

development of a computationally efficient simulation.

3.2 Implementation

To simulate an edge illumination experiment it is necessary to solve Eq. (3.4),

Eq. (3.9) and Eq. (3.10); this can be done by sampling each of the considered

functions and performing convolutions and products numerically, rather than an-

alytically. Convolutions can be performed by means of the Fast Fourier Transform

(FFT) algorithm, which is computationally very efficient. Nonetheless, it is im-

portant to pay attention to some problems that are typically encountered when

using this approach. In the following sections of this chapter, we will adopt the

following definition of Fourier transform:

f̂(ξ) =

∫
f(x) exp (−2πiξx) dx, (3.12)

where f̂(ξ) is the Fourier transform of f(x). This definition, in fact, is the anal-

ogous of the discrete FFT, used in numerical calculations.
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3.2.1 Sampling considerations

Let us consider a bandlimited function f(x) and let Wf be the width of its fre-

quency spectrum. Sampling f(x) at a rate 1/∆x implies that its FFT is confined

to the frequency range [−1/(2∆x), 1/(2∆x)] of width 1/∆x: if 1/∆x < Wf , alias-

ing will occur [43]. One way to avoid aliasing problems is to increase the sampling

rate until 1/∆x > Wf . The first step is thus to identify the frequency bandwidth

of each function considered in the algorithm, in order to set a sufficiently high

sampling rate.

Let us consider the Fresnel propagator and its Fourier transform:

Hz(x) ∝ exp

(
i2π

x2

2zλ

)
; Ĥz(ξ) ∝ exp

(
−iπzλξ2

)
; (3.13)

Ĥz(ξ) is not bandlimited, which means that it should not be possible to use

the FFT without altering the original frequency spectrum. Since Hz(x) is an

imaginary exponential of argument x2, the frequency at which it varies increases

with the position x; however, the simulated object and masks typically have

finite dimensions, so that only a limited portion of space needs to be considered

in the simulation. We can therefore assume that the frequency spectrum we are

considering is effectively limited.

Mathematically, it is possible to describe the limited portion of space by intro-

ducing the rect(x) function, which is equal to 1 for |x| ≤ 0.5 and 0 for |x| > 0.5.

If the width of the simulated space is L, the function we are dealing with is:

Hz,eff (x) ∝ exp

(
i2π

x2

2zλ

)
rect

(x
L

)
(3.14)
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Figure 3.2: Modulus of Ĥz,eff (ξ): the blue curve is calculated numerically, while
the green curve is calculated analytically with the approximation discussed in the
text. Parameters used in the simulation: z = 2 m, L = 2 mm, λ = 0.31 Å(E = 40
KeV).

and thus:

Ĥz,eff (ξ) ∝ exp
(
−iπzλξ2

)
∗ sin(πLξ)

πξ
=

=

∫ ∞
−∞

exp
[
−iπzλ(ξ − η)2

] sin(πLη)

πη
dη. (3.15)

We are interested in calculating Ĥz,eff (ξ) for high frequency values (i.e. � 1/L);

at the same time, due to the sin(πLη)/(πη) term, the main contribution inside

the integral is due to values of η of the order of 1/L. We can then make the

approximation (ξ − η)2 ≈ ξ2 − 2ξη for small values of η, and the modulus of Eq.

(3.15) becomes:

∣∣∣Ĥz,eff (ξ)
∣∣∣ ∝ ∣∣∣∣∫ ∞

−∞
exp (i2πzλξη)

sin(πLη)

πη
dη

∣∣∣∣ = rect

(
zλξ

L

)
. (3.16)

The convolution product in the Fourier space acts here as a “low-pass” filter with

a cut-off frequency ξcut = L/(2zλ).

Fig. 3.2 shows a comparison between the functions |Ĥz,eff (ξ)| (calculated
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numerically) and rect(zλξ/L); the approximation made to perform the analytical

calculation does not allow describing the oscillations of |Ĥz,eff (ξ)| around its

mean value, but it does allow the correct derivation of its average behaviour.

Furthermore, it provides an important parameter, ξcut = L/(2zλ), which is the

frequency at which |Ĥz,eff (ξ)| reaches half its average value near ξ = 0. For

frequency values greater than 2ξcut, |Ĥz,eff (ξ)| can be effectively considered equal

to 0; for this reason, we consider the frequency bandwidth of the effective Fresnel

propagator to be:

WH = 2L/(zλ). (3.17)

Let us consider now the complex transfer function of a sample mask with a

single aperture of width A and its Fourier transform:

TM(x) = rect
( x
A

)
; T̂M(ξ) =

sin(πAξ)

πξ
; (3.18)

T̂M(ξ) is also a non-bandlimited function. However, |T̂M(ξ)| < 10−3|T̂M(0)| for

ξ > 103/(πA); hence, the error made by neglecting frequencies greater than

103/(πA) can be considered negligible. This leads us to set:

WM =
2× 103

πA
. (3.19)

The above condition still holds for the general case of a mask with several aper-

tures of width A. Note that the selected threshold (10−3|T̂M(0)|) is arbitrary, and

other values can in principle be used. A higher threshold would result in a less

restrictive condition for ∆x, but also in possible numerical artefacts.

Let us now consider a general object obtained as the convolution of a rect
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function with a Gaussian function and its Fourier transform:

Tobj(x) ∝ exp

(
− x2

2σ2
o

)
∗ rect

( x
O

)
;

T̂obj(ξ) ∝ exp
(
−2π2σ2

oξ
2
) sin(πOξ)

πξ
; (3.20)

the rect function allows us to take into account the object dimension O, while

the Gaussian function does the same for its smoothness through σo. Following

the previous argument, |T̂obj(ξ)| < 10−3|T̂obj(0)| if ξ > 103/(πO) and/or ξ >

[3ln10/(2πσ2
o)]

1/2
. We can then set:

Wobj = min

{
2× 103

πO
,

[
6 ln10

πσ2
o

]1/2
}
. (3.21)

Comparing Eq. (3.19) and Eq. (3.21), we can see that WM is greater than Wobj if

A < O and/or if A . 300σo. In a typical edge illumination setup, A ≈ 1÷50 µm

and we can therefore conclude that, for objects with micrometric and/or larger

internal structures, Wobj < WM ; in the following this condition will be assumed

to be true.

Let us finally consider a Gaussian distributed source with standard deviation

σs. The rescaled source intensity distribution is then:

Sr(x) ∝ exp

(
− x2

2σ2
r

)
; Ŝr(ξ) ∝ exp

(
−2π2σ2

rξ
2
)

; (3.22)

where σr = (z2/z1)σs. Following the previous argument, it is then possible to set:

WSr =

[
6 ln10

πσ2
r

]1/2

. (3.23)
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Studying every function separately does not ensure that aliasing problems

are avoided; when we multiply two functions, in fact, the frequency bandwidth

changes. Let us consider two bandlimited function f(x) and g(x) and the product

h(x) = f(x)g(x); in the Fourier space, ĥ(ξ) = f̂(ξ) ∗ ĝ(ξ), and Wh = Wf + Wg.

In this case it is then necessary that (Wf +Wg) < 1/∆x. Taking into account all

the multiplications in the algorithm, one obtains the following conditions:

max (WH1 + 2WM1,WH2,WSr) < 1/∆x,

WIp = 2 min (WH1 + 2WM1,WH2) < 1/∆x, (3.24)

min (WSr,WIp) + 2WM2 < 1/∆x.

In the first inequality, the term WH1 + 2WM1 is derived from the multiplication

of H1, TM1 and Tobj in Eq. (3.4), having applied the condition Wobj < WM1; WH2

and WSr take into account H2 and Sr in Eq. (3.4) and Eq. (3.9), respectively. In

the second equation, WIp is the bandwidth of Ip: the factor of 2 derives from the

square modulus of EM2, while the minimum between WH1 + 2WM1 and WH2 is

taken because of the convolution product in Eq. (3.4). The last equation derives

from Eq. (3.9).

Fig. 3.3 shows a comparison among various simulations of the same experi-

mental conditions, the only difference being the sampling rate. As the sampling

rate decreases, aliasing increasingly alters the original signal, and only when the

conditions expressed in Eq. (3.24) are satisfied, correct results are obtained.
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Figure 3.3: Simulations of profiles of a polypropylene wire with an edge illumi-
nation system, obtained with different numbers of sampling points: δxblue = 3.4
nm is derived in accordance with Eq. (3.24), δxgreen = 15 δxblue, δxred = 30 δxblue.
Only the first simulation (blue) provides correct results. Parameters used in the
simulation: monochromatic Gaussian distributed source (FWHM = 60 µm, E
= 30 KeV); z1 = 1.6 m, z2 = 0.4 m; sample mask with 12 µm apertures and a
period of 80 µm; detector mask with 20 µm apertures and a period of 100 µm;
50% illuminated fraction; pixel size = 100 µm; wire diameter = 140 µm; number
of dithering steps (number of sub-pixel sample displacements) = 10 (each step =
8 µm).

3.2.2 Circular convolution considerations

Let us consider Eq. (3.11) and let fl = f(l∆x) and gl = g(l∆x) be sampled

version of the functions f and g, with −N/2 ≤ l ≤ N/2 − 1; where the number

of sampling points N is assumed to be even. The discretized version of the

convolution theorem can be expressed as:

fl∗̄gl = FFT−1 {FFT [fl]FFT [gl]} ; (3.25)

where ∗̄ indicates a type of discrete convolution operation, called circular convolu-

tion. Circular convolution implicitly assumes periodicity at the boundaries of the

sampled space: rather than a sampled version of f ∗ g, fl∗̄gl is a sampled version
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of fp ∗ gp, where fp is a periodic function consisting of the repetition of a series of

infinite copies of f(x)rect(x/L) shifted by the length L = N∆x of the sampled

space, i.e. fp(x) =
∑

n f(x − nL)rect(x/L − n), while gp(x) = g(x)rect(x/L).

The presence of the rect(x/L) term in the previous equations derives from having

sampled a limited portion of space of width L.

Thus, the result of the discrete convolution between f and g, performed

through the discrete Fourier transform, is fp ∗ gp rather that f ∗ g. To obtain

correct results from the simulation, it is thus necessary to understand in which

circumstances fp ∗ gp = f ∗ g.

Let the supports of f and g be finite, and let Rf and Rg be the widths of their

supports; if the support of one of the functions, for example f , is not finite or

is greater than L, the sampling procedure allows us to consider Rf = L. When

Rf + Rg < L, fp ∗ gp = f ∗ g in every point of the sampled space. If the last

condition is not met, fp ∗ gp 6= f ∗ g in two regions at the boundaries of the

sampled space, where the different copies in fp interfere with each other due to

the convolution with gp; the total width of these regions is equal to Rf +Rg −L.

In the case of our simulations, two convolution products are performed in Eq.

3.4 and in Eq. 3.9. In Eq. 3.4 the support of H1TM1Tobj is equal to the dimension

of the sample mask RM1, while H2 extends over the entire sampled space L; in

this condition, the width of the region of error is equal to RM1. In Eq. 3.9, the

support RSr of the rescaled source intensity distribution Sr is limited due to the

finite source size, while Ip extends over the entire sampled space L; the width of

the region of error here is then equal to RSr. Let LD be the width of the detector

we want to simulate. In order for the simulation to give a correct result, it is then

necessary to extend the sampled space width L until the entire detector length

70



3.2 Implementation

Figure 3.4: Simulations of profiles of a polypropylene wire with an edge illumina-
tion system, obtained using different dimensions for the sampled space. The blue
curve is calculated considering a sampled space L = LD +RM1 +RSr, which leads
to correct results; the green curve is calculated with a sampled space L = LD,
which causes errors in the simulated profile. Parameters used in the simulation:
monochromatic Gaussian distributed source (FWHM = 1 µm, E = 30 KeV); z1

= 100 m, z2 = 0.1 m; sample mask with 20 µm apertures and a period of 120
µm; detector mask with 20 µm apertures and a period of 120 µm; 50% illuminated
fraction; pixel size = 120 µm; wire diameter = 160 µm; number of dithering steps
= 10 (each step = 12 µm).

LD is contained in the zone within which circular and conventional convolution

provide the same result, so that Eq. (3.10) can be evaluated correctly. It is easy

to demonstrate that, if L > LD +RM1 +RSr, the simulation gives correct results.

Fig. 3.4 shows a comparison between results obtained by simulating the same

experimental conditions, with the only difference being the sampled space. Arte-

facts induced by circular convolution are evident in the profile calculated using

an insufficient sampled space (green curve), while they do not affect the profile

calculated with a sufficiently large sampled space (blue curve). By appropriately

handling sampling and circular convolution problems along the lines described

above, we can ensure that numerical implementation errors do not affect the

results of our simulations.
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3.3 Comparison with another algorithm

Figure 3.5: Comparison between simulated results obtained with the proposed
algorithm (blue curves) and the one described in [1] (green curves). (a) Polypropy-
lene wire: monochromatic Gaussian distributed source (FWHM = 60 µm, E =
30 KeV); z1 = 1.6 m, z2 = 0.4 m; sample mask with 20 µm apertures and 80 µm
period; detector mask with 50 µm apertures and 100 µm period; 50% illuminated
fraction; pixel size = 100 µm; wire diameter = 260 µm; number of dithering steps =
40 (each step = 2 µm). (b) Aluminium wire: monochromatic Gaussian distributed
source (FWHM = 1 µm, E = 20 KeV); z1 = 0.1 m, z2 = 1 m; sample mask with
3.4 µm apertures and 13.6 µm period; detector mask with 75 µm apertures and
150 µm period; 50% illuminated fraction; pixel size = 150 µm; wire diameter = 14
µm; dithering steps = 40 (each step = 0.34 µm).

3.3 Comparison with another algorithm

In this section, we compare our algorithm with the one described in reference

[1], which is also based on wave optics. The most important difference between

the two algorithms is the way in which the forward propagation in free space

is computed. The propagation in free space is described by Eq. 3.4, and in

the presented implementation is solved in Fourier space using the convolution

theorem. In the algorithm presented in [1], instead, the convolution product is

solved in the real space (see Eq. 1.19) using numerical integration.

Although different samples and acquisition conditions are considered in Fig.
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Figure 3.6: Ratio between the computational times for the algorithm described in
[1] and the one presented here, as a function of the sample dimension. Parameters
used in the simulation: monochromatic Gaussian distributed source (FWHM =
60 µm, E = 30 KeV); z1 = 1.6 m, z2 = 0.4 m; sample mask with 40 µm apertures
and 80 µm period; detector mask with 50 µm apertures and 100 µm period; 50%
illuminated fraction; pixel size = 100 µm; polypropylene wire sample; dithering
steps = 5 (each step = 16 µm).

3.5, no appreciable differences can be seen between the results provided by the

two algorithms. Such comparison has been repeated for a large number of cases

simulating a wide range of different experimental conditions, and the same agree-

ment was obtained. This is an expected result, as the algorithm described in

reference [1] was validated experimentally several times; rather than different re-

sults, we are aiming here for achieving the same results with a substantial gain

in computation time, as well as higher flexibility and adaptability to different

experimental conditions.

Fig. 3.6 shows the ratio between the computation times required by the two

algorithms as a function of the dimensions of the simulated sample: for the in-

vestigated cases, the time reduction obtained through the new algorithm was

between 20 and 110 fold. The algorithm in [1], in fact, uses Gaussian quadra-

ture numerical integration to solve diffraction integrals, which is computationally
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Figure 3.7: Image of different wires acquired with synchrotron radiation using
the edge illumination method.

Figure 3.8: Comparison between experimental data (intensity profiles along the
black vertical line in Fig. 3.7) and simulation results.

inefficient compared to computing convolution products using FFT.

The gain in terms of computational time is higher than one order of magni-

tude, which is crucial when the sample dimension increases or when it is necessary

to simulate a large number of images like, for example, in computed tomography.

3.4 Comparison with experimental data

Finally, we compare the results of our simulation with experimental measurements

performed at the SYRMEP beamline of the Elettra synchrotron facility (Trieste,
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Table 3.1: Properties of wires highlighted in Fig. 3.7. PEEK stands for
polyetheretherketone. The boron wire contains a thin tungsten core with an esti-
mated diameter of 14 µm.

Wire Material
Nominal
diameter

(µm)

Estimated
diameter

(µm)
δ [44] β [44]

A Titanium 250 ± 10 % 250 2.19×10−6 3.46×10−8

B PEEK 450 ± 20 % 464 7.15×10−7 2.74×10−10

C Boron 200 ± 20 % 204 1.12×10−6 2.84×10−10

Italy). A detailed description of the used experimental setup and acquisition

conditions can be found in reference [27].

Fig. 3.7 shows an image acquired for a series of different wires. These were

chosen as their symmetry properties enable a straightforward comparison with

the one-dimensional simulation approach described here.

The vertical FWHM of the virtual x-ray source was 80 µm, and a Si (1,1,1)

crystal reflection was used to select a quasi-monochromatic beam with an energy

of 20 KeV (bandwidth ≈ 0.2%). The image was acquired through a scanning

procedure [27], and two single slits were used as sample and detector masks with

apertures in the vertical direction equal to 20 µm and 150 µm, respectively. The

source to sample distance was 20 m, the sample to detector distance was 0.55 m,

and the detector featured a single row of pixels with dimensions equal to 300×50

µm2 in the vertical and horizontal directions, respectively. The specifications for

the wires highlighted with white circles in Fig. 3.7 are listed in Table 3.1.

To test the developed method under a wide range of conditions, we selected

wires with very different characteristics: titanium presents very strong absorp-

tion, PEEK is almost transparent, and the boron wire presents an additional
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complication in the fact that it contains a tungsten core. The comparison be-

tween the intensity measured along the black vertical line in Fig. 3.7 and the

intensity simulated with our code is shown in Fig. 3.8; a very good agreement is

found for all considered wires.

3.5 Chapter conclusions

The developed simulation algorithm, based on Fresnel wave optics, has been

proven to be capable of correctly simulating an edge illumination setup. The

method is very general and can be easily adapted to a wide range of other x-

ray imaging techniques. Numerical implementation problems such as sampling

rate and sampled space have been studied in detail, and simple rules to avoid

simulation errors and artefacts have been provided.

Comparisons with both a previously validated, different algorithm [1] and ex-

perimental data [27] have been carried out, resulting in very good agreement in

both cases. The presented algorithm is therefore able to accurately predict ex-

perimental results, and presents the advantage of a gain greater than one order of

magnitude in terms of computation time compared to previous implementations.

The discussed simulation framework has been the main tool for the prelim-

inary investigation of the alternative implementations of x-ray phase contrast

imaging developed in this project and that will be presented in the following

chapters.
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4

From edge illumination to beam

tracking

In this chapter more details about the edge illumination method will be discussed

and, from the same principles, a new imaging approach will be presented, called

beam tracking. In edge illumination, three different physical processes contribute

to the image contrast, namely absorption, refraction and ultra-small-angle scat-

tering. These quantities can be retrieved through specific algorithms, which will

be described in the next section. It will be then demonstrated how, by using a

high resolution detector, the same information can be retrieved without the need

of an absorbing mask placed before the detector. This can result in a reduc-

tion of exposure time and delivered dose, together with a simplified experimental

setup. The results presented in this chapter are based on the work presented in

[45]. In this chapter, the concept of ultra-small-angle x-ray scattering is intro-

duced and used to describe the sample together with the concepts of absorption

and refraction introduced in chapter 1. It is important to clarify that even if
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x-ray scattering and refraction contribute differently to the signal detected, as it

will be shown in the following sections, they are ultimately generated from the

same physical mechanism: the diffraction of electromagnetic waves perturbed by

a phase variation due to the sample.

4.1 Quantitative edge illumination

In the second chapter we described how the signal recorded in the edge illumina-

tion configuration can be expressed, for the n-th pixel, as:

In = exp [−2Mn] IC

(
p0 +D

∂xφn
k

)
= TnIC (p0 −∆xn) . (4.1)

It is important to note that the measured intensity depends not only on the ab-

sorption (Tn) and refraction (∆xn) caused by the sample, but also on the relative

position p0 between the two slits. To be able to extract quantitative information

about the sample, it is important to retrieve Tn and ∆xn; this procedure is usu-

ally called phase retrieval. Let us consider the case in which two intensities are

recorded for two different positions p1 and p2 of the detector slit with respect to

the sample slit:

I(1)
n = TnIC (p1 −∆xn) ; (4.2)

I(2)
n = TnIC (p2 −∆xn) . (4.3)
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The two measured intensities can be combined to obtain:

I
(1)
n − I(2)

n

I
(1)
n + I

(2)
n

=
IC (p1 −∆xn)− IC (p2 −∆xn)

IC (p1 −∆xn) + IC (p2 −∆xn)
= Fp1,p2 (∆xn) . (4.4)

If the illumination curve IC is known and the function Fp1,p2 is injective, the last

equation can be solved inverting the function Fp1,p2 [27]:

∆xn = F−1
p1,p2

(
I

(1)
n − I(2)

n

I
(1)
n + I

(2)
n

)
; (4.5)

substituting this value in Eq. 4.2, Tn can be calculated as:

Tn =
I

(1)
n

IC (p1 −∆xn)
. (4.6)

Other approaches can be used to retrieve Tn and ∆xn [28, 46], but in all cases

two images with two different relative positions between the absorbing slits are

required.

Equation 4.1 describes the effect of the sample in terms of absorption (Tn) and

refraction (∆xn). This description is correct if the sample transmission function

varies slowly within the aperture. A third effect can appear when the sample is in-

homogeneous on a scale smaller than the aperture; this is called ultra-small-angle

x-ray scattering or dark-field signal. Each inhomogeneity within the aperture can

be seen as a source of further refraction of the beam:

In = TnIC (p0 −∆xn − r) , (4.7)

where r describes the additional refraction from the inhomogeneity. The con-
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tribution of all the inhomogeneities can be considered by summing over all the

possible r values, each with a specific weight Sn(r):

In = Tn

∫
IC (p0 −∆xn − r)Sn(r)dr = Tn [IC ∗ Sn] (p0 −∆xn) ; (4.8)

Sn(r) is also called scattering distribution. Let us assume that the illumination

function IC can be approximated by a Gaussian function:

IC(p0) = A0 exp

[
− p2

0

2σ2
0

]
; (4.9)

that the scattering distribution Sn is a normalized Gaussian function with stan-

dard deviation σn, and that three acquisitions are performed with p0 = [−x1, 0, x1]:

I(1)
n = TA0

√
σ2

0

σ2
0 + σ2

n

exp

[
−(−x1 −∆xn)2

2(σ2
0 + σ2

n)

]
; (4.10)

I(2)
n = TA0

√
σ2

0

σ2
0 + σ2

n

exp

[
− (−∆xn)2

2(σ2
0 + σ2

n)

]
; (4.11)

I(3)
n = TA0

√
σ2

0

σ2
0 + σ2

n

exp

[
−(x1 −∆xn)2

2(σ2
0 + σ2

n)

]
. (4.12)

Tn, ∆xn and σ2
n can be found from the following analytical equations [47]:

Tn =

√
2x2

1

σ2
0(C +D)

I2

A0

exp

[
(C −D)2

16(C +D)

]
; (4.13)

∆xn =
x1

2

C −D
C +D

; (4.14)

σ2
n =

2x2
1

C +D
− σ2

0; (4.15)

where C = −2 log
[
I

(1)
n /I

(2)
n

]
and D = −2 log

[
I

(3)
n /I

(2)
n

]
. In this case three images
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Figure 4.1: Schematic diagram of an edge illumination setup.

are required, instead of two, with three different misalignment between the sample

and detector slits to extract the three parameters Tn, ∆xn and σ2
n.

4.2 Virtual edge illumination

Figure 4.1 shows the scheme of an edge illumination setup. Here we assume that

the detector slit aperture is much larger than the beam incident on the detector,

so that only the effect of the edge that intercepts the beam is relevant. The

importance of the detector edge comes from the fact that refraction induced by

samples is usually too small to be resolved with standard detectors. When a high

resolution detector is available, however, this is no longer true, and the intensity

profile can be directly measured. In this configuration the detector edge can be

physically removed, and its effect can be simulated through a multiplication of

the intensity profile by an Heaviside function. The resulting profile can then be

integrated along the x direction, providing the same result as a standard edge

illumination system. The main advantage of this approach is that it is possible,

from a single sample exposure, to simulate all the possible relative positions be-

tween this “virtual” edge and the beam by shifting and/or inverting the Heaviside
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Figure 4.2: Intensity pattern produced by the pre-sample slit and acquired with
the high resolution detector without (a) and with (b) a sample present in the beam.
The refraction induced by the sample is evident in the right part of the image in
(b).

function. Figure 4.2 shows an example of the intensity pattern acquired in the

experimental configuration described below, and how this changes when a sample

is introduced in the beam. Figures 4.3 (a) and (b) show a comparison between

the refraction signals of a polyetheretherketone (PEEK) monofilament of 160 µm

diameter immersed in water, retrieved from data acquired in the “classical” (i.e.,

with an absorbing edge physically present) and virtual edge illumination con-

figurations. Experimental data were acquired at the beam line I13 (Coherence

branch) of the Diamond Synchrotron Radiation (SR) facility (Didcot, UK) [48].

An x-ray energy of 9.7 keV was selected through a Si(111) crystal monochromator

and a 10 µm slit was used as pre-sample aperture. The detector, placed at 58

cm from the sample, consisted of a scintillation screen, an 8× magnifying visible

light optics and a PCO Edge sCMOS camera, with effective pixel size of 0.8 µm.

The difference in absorption between PEEK and water at 9.7 keV is only 0.02
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4.2 Virtual edge illumination

Figure 4.3: Refraction signals of a PEEK monofilament immersed in water using
the real (a) and virtual (b) edge configurations, and the beam tracking (c) method.
In (d), (e) and (f) a vertical profile extracted from each image is compared to the
theoretical refraction angle.

%, and, for the sample in Fig. 4.3, the absorption signal is below the noise level

in our acquisitions. Scattering is assumed to be negligible, and the procedure

described in [46] was used for the retrieval. This retrieval procedure can be seen

as a particular case of the more general retrieval approach described in the pre-

vious section, and considers the situation in which the detector slit aperture is

larger than the incident beam. With reference to Fig. 4.1, two different images

are required, one in which the upper edge of the detector slit absorbs the upper

half of the incident beam and vice versa [46]. Two separate scans of the sample

are therefore needed with the classical edge illumination, while with the virtual

edge approach two different Heaviside functions are applied to the same experi-

mental dataset. This results in a similar image quality, but with a reduction of

exposure time and delivered dose by a factor of 2 in the latter case. Most im-

portantly, a single scan of the sample is performed, which minimizes the effects

of possible sample movements (e.g. for in vivo or dynamic applications). Figs.
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4.3 (d) and (e) show the comparison between a vertical profile of the images (a)

and (b), respectively, and the theoretical refraction angle: in both cases, a good

agreement is found. The described approach has the advantage of being easily

implementable in previously developed techniques for absorption and refraction

retrieval [27, 28, 46].

4.3 Beam tracking

The edge illumination technique was designed to detect beam variations on the

detector by using an edge as analyser [25], and the virtual edge approach imple-

ments the same concept via software. However, the beam intensity profile, and

the changes it suffers when a sample is introduced, can be detected directly by an

high resolution detector. By tracking the beam variations in the x direction (with

respect to Fig. 4.1) through interpolation techniques it is possible to reconstruct

absorption, refraction and scattering maps of the sample. A similar concept was

presented in a 1995 patent by Wilkins [49], where he proposed an adaptation

of the Shack-Hartmann wavefront sensor for x-ray radiation, and in the works

presented in [2, 50], using, however, different phase retrieval approaches. More

recently, other techniques have been proposed to track the changes introduced

by a sample to a known reference field by means of a high resolution detector

[51, 52, 53, 54]. More details about these methods will be discussed in the next

chapter.

In our case, with reference to Fig. 4.1, following a similar analysis to the one

that lead to Eq. 4.8, the effects of absorption, refraction and scattering on the
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4.3 Beam tracking

recorded intensity profile can be expressed as:

I(x) = T [I0 ∗ S] (x−∆x), (4.16)

where I and I0 are the intensity patterns measured by the detector with and with-

out the sample, respectively; T is the fraction of the beam transmitted through

the sample, ∆x is the lateral shift of the beam at the detector plane caused by

refraction, and the effect of scattering is described by means of a convolution with

the scattering function S. It is worth noting that the illumination curve IC in Eq.

4.8 is equal to the intensity profile incident on the detector convolved with the

intensity transmission function of the detector mask. The intensity profile I0 in

Eq. 4.16, instead, is equal to the same intensity profile incident on the detector,

convolved this time with the detector point spread function. With the pixel point

spread function playing the role of the detector mask aperture, beam tracking is

therefore mathematically equivalent to edge illumination. The aperture position

p0 in Eq. 4.8 corresponds to the pixel position x in Eq. 4.16, and the illumination

curve IC to the intensity I0 measured without the sample. In reference [47], a

normalized Gaussian distribution is assumed for S(x), with standard deviation

σS, and a Gaussian profile is also assumed for IC ; under these hypotheses, Eq.

4.8 can be solved analytically for T , ∆x, and σS by measuring the intensity In

for three different values of p0. If the same hypothesis is applied to Eq. 4.16,

i.e. I0 and S are assumed to be Gaussian functions, then also the intensity I will

be a Gaussian function. In this case, through a Gaussian interpolation of the

experimental intensity profiles acquired with (I) and without (I0) the sample, it

is possible to determine T , ∆x, and σS. In the more general case, I0 can be
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4.3 Beam tracking

Figure 4.4: Comparison between experimental and interpolated beam intensity
profile.

effectively approximated by a sum of Gaussian terms:

I0(x) =
N∑
n=1

An exp

[
−(x− µn)2

2σ2
n

]
, (4.17)

with the total number of terms N depending on the specific case. In the assump-

tion of a normalized Gaussian distribution for S(x), Eq. 4.16 becomes:

I(x) = T

N∑
n=1

An

√
σ2
n

σ2
n + σ2

s

exp

[
−(x− µn −∆x)2

2 (σ2
n + σ2

S)

]
. (4.18)

T can be calculated from the ratio between the integrals of I and I0 along x, while

a N-Gaussian interpolation of I and I0 allows retrieving ∆x and σS. Usually

the summations in Eq. 4.17 and Eq. 4.18 present one dominant term which

describes the general shape of the intensity profile, while the other terms provide

a refinement of the interpolation. In principle, a better description of I and I0

can be obtained by increasing the number of terms in Eq. 4.17 and Eq. 4.18.
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4.3 Beam tracking

Figure 4.5: Absorption (a) refraction (b) and scattering (c) images of a bamboo
wood slice obtained with the beam tracking method.

However, in the practical cases we explored, one Gaussian term was sufficient

to accurately interpolate the beam profile. An example of the adequacy of this

approximation is shown in Fig. 4.4, where an experimental beam intensity profile

is compared with the corresponding Gaussian fit.

We first applied the beam tracking method to the PEEK monofilament im-

mersed in water. Figures 4.3 (c) and (f) show the retrieved refraction image and

the comparison with the theoretical value, demonstrating good agreement. We fi-

nally tested the method on a more complex sample, a slice of bamboo wood with

approximately 500 µm thickness from a “nature-inspired” engineering project

currently underway at UCL. In this case, a 3 µm slit was used as pre-sample

aperture, and the sample to detector distance was reduced to 30 cm. Fig. 4.5

shows the reconstructed absorption, refraction and scattering signals. These im-

ages could also be fused together in, for example, a single RGB image (Fig. 4.6),
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4.3 Beam tracking

Figure 4.6: Colour rendering of the three signals in Fig. 4.5. Red represents
absorption, blue the absolute value of refraction and green scattering.

to better appreciate the different contributions of the three signals. Each signal is

in fact sensitive to different features of the object: usually absorption signal offers

the best contrast for the low frequency part of the image, refraction is stronger at

the edges of the sample structures, and scattering reveals the presence of strong

variations in the sample transmission function not resolved in the absorption and

refraction images. Given the relatively small thickness of the object, other tech-

niques might be used to investigate its properties as, for example, visible light

or electron microscopy, that are sensitive to the surface structures of the sample.

The use of x-rays, however, opens the possibility to investigate thicker samples.

In particular, a tomographic implementation of the technique would allow the

extraction of the same type of images showed in Fig. 4.5 from a much thicker

sample, without the need to physically section it in thin slices.

In summary, the beam tracking approach, through a simple modification of the
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4.3 Beam tracking

edge illumination setup, provides an effective method to retrieve absorption, re-

fraction and scattering signals of a sample from the beam intensity profile acquired

through a high resolution detector. Additionally, it simplifies the experimental

setup and reduces the total number of images required to retrieve absorption,

refraction and scattering. Like edge illumination, beam tracking does not rely on

coherence to generate contrast, which allows its implementation with laboratory

sources.
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5

Beam tracking: laboratory

implementation

In this chapter we will discuss the implementation of the beam tracking approach

with a laboratory setup. The main differences with the synchrotron implementa-

tion described before are that the projected source size on the detector and the

detector pixel size are considerably larger, and the radiation is polychromatic.

While the first point is important for the design of the experimental apparatus,

polychromaticity plays an important role in the physical information contained in

the retrieved signals (absorption, refraction and scattering). In particular it will

be shown that, if the model used in the synchrotron case is not properly modi-

fied to account for polychromatic radiation, the retrieved signals are affected by

artefacts. A method to correct for these artefacts is here proposed, and tested

through simulations and experiments. The results presented in this chapter are

based on the work presented in [55].
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Figure 5.1: Schematic diagram of the beam tracking setup implemented with a
laboratory source.

5.1 Experimental apparatus

As for the edge illumination method, the beam tracking approach is implemented

in a laboratory system using an absorbing mask with a series of apertures (Fig.

5.1). In this configurations, x-rays emitted from the source create a magnified

image of the mask on the detector, when no sample is present. From simple

geometrical considerations, it can be shown that the magnification between the

mask and the detector is M = (z1 +z2 +z3)/z1, which can be modified by varying

the relative positions of source, mask and detector. When a high resolution

detector is not available, a high magnification between mask and detector is

needed in order to track each beam (Fig. 5.1). High magnification configurations

have been extensively studied in the past for absorption-based x-ray microscopy

[56]. It is however important to remember that the intensity measured at the

detector plane is given by the one produced by a point source convolved with

the rescaled source intensity distribution (Eq. 3.9). This means that the source
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5.1 Experimental apparatus

Figure 5.2: Intensity pattern produced by the absorbing mask and acquired by
the detector without (a) and with (b) a sample present in the beam. The period
of the intensity pattern is equal to 4 pixels (200 µm).

is effectively magnified on the detector by a factor equal to (M − 1). A high

magnification, therefore, implies a large projected source on the detector plane.

To avoid possible ambiguity in the retrieval procedure, it is important that the

beamlets created by the different apertures, and blurred due to the finite source

size, remain physically separated. This results in the need of a small, micro-focal

source when high magnification is used in the beam tracking approach.

The experimental setup is based on a microfocus transmission tungsten target

x-ray tube, operating at 80 kVp with source size of about 3 µm. The employed

distances are: source to mask z1 = 13.2 cm, mask to sample z2 = 2.1 cm, and

sample to detector z3 = 116.7 cm. The mask is made of a 200 µm thick gold

layer on a silicon substrate, with aperture size and period of 3 µm and 20 µm, re-

spectively. The detector is a passive pixel CMOS sensor (Hamamatsu Photonics

C9732DK), with pixel size of 50 µm. The geometrical magnification between the

mask and the detector is M = 10. The period of the intensity pattern at the de-
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5.2 Phase retrieval with polychromatic radiation

tector plane is thus 200 µm, equal to four pixels (Fig. 5.2). The system is aligned

so that each beamlet hits the center of a pixel by using compact piezoelectric

motors [57], and five pixels are used to track the variations of each beam.

5.2 Phase retrieval with polychromatic radia-

tion

In this section we will analyse the role of polychromaticity in the recorded signal.

This will be done by first considering the monochromatic case, for which the

same image formation model derived in the previous chapter is used, and then

by summing the contributions of all the energy components of the polychromatic

spectrum. By doing so, we will see how radiation that is partially transmitted

through the absorbing septa of the mask (due to a physical limitation of its

maximum thickness) is characterized by a different spectrum with respect to the

radiation that travels through the mask apertures, and it is therefore affected by

the sample in a different way. This difference, if not properly considered, can be

the cause of artefacts in the retrieved signals, which will be analysed in detail.

Let us first consider monochromatic radiation of energy E. An ideal absorbing

mask can be described by the following complex transmission function:

G(x,E) =
∑
n

rect [(x− nP )/W ] , (5.1)

where P is the period of the mask, W is the dimension of the mask aperture, and

rect(x) is equal to 1 for |x| < 1/2 and 0 elsewhere. The transmission function

of an ideal mask does not depend on the energy E of the incoming radiation;
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however, when a real mask is used, part of the beam can be transmitted through

the absorbing septa. Referring for simplicity to one aperture only, the intensity

transmitted through a real mask can be expressed as:

|G(x,E)|2 = [1− o(E)] rect [x/W ] + o(E). (5.2)

where o(E) = exp [−2kβm(E)Tm], with βm(E) the imaginary part of the mask

refractive index, Tm the mask thickness, and k = 2π/λ, with λ the x-ray wave-

length. In the geometrical optics approximation, which is sufficiently accurate for

our experimental setup [29], the intensity recorded by each pixel can be expressed

as:

i(x,E) = p′(E)if (x,E) + p′′(E) (5.3)

where p′(E) = p(E) [1− o(E)], p′′(E) = p(E)o(E), and if (x,E) = rect [x/(MW )]∗

PSF (x,E). p(E) describes the source spectral distribution combined with the

detector response at energy E, and ∗ indicates the convolution with respect to

the x variable. PSF (x,E) is the convolution between the source intensity dis-

tribution projected at the detector plane and the detector point spread function,

normalized such that
∫
PSF (x,E)dx = 1. When a sample is introduced, the

intensity distribution measured by the detector can be expressed as [45]:

i′(x,E) = t(E) [i(x−∆(E), E) ∗ S(x,E)] =

= t(E)p′(E)if (x−∆(E), E) ∗ S(x,E) + t(E)p′′(E), (5.4)

where t(E) is the transmission through the sample, ∆(E) the shift of the beam

caused by refraction, and S(E) the sample scattering function. S(E) is assumed
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as a normalized Gaussian with standard deviation σS(E). The intensities mea-

sured in the polychromatic case, with and without the sample, are then calculated

by integrating Eqs. 5.3 and 5.4 over energy:

I(x) =

∫
p′(E)if (x,E)dE +

∫
p′′(E)dE = IF (x) + CF , (5.5)

I ′(x) =

∫
t(E)p′(E)if (x−∆(E), E) ∗ S(x,E)dE

+

∫
t(E)p′′(E)dE = ID(x) + CD. (5.6)

The intensity I(x) (I ′(x)) is expressed as the sum of a function IF (x) (ID(x))

that approaches 0 as x approaches ±∞, and a constant offset CF (CD). For the

case when the sample is not present, let us consider the total intensity AF , mean

value µF and variance σ2
F of IF (x), defined as follow:

AF =

∫
IF (x)dx, (5.7)

µF =

∫
xIF (x)dx∫
IF (x)dx

, (5.8)

σ2
F =

∫
x2IF (x)dx∫
IF (x)dx

− µ2
F . (5.9)

For AF we have:

AF =

∫
IF (x)dx =

∫
p′(E)

[∫
if (x,E)dx

]
dE. (5.10)

From the definition of if (x,E) and the properties of convolution, it follows that:
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∫
if (x,E)dx =

∫
rect [x/(MW )] dx

∫
PSF (x,E)dx = MW, (5.11)

and finally:

AF = MW

∫
p′(E)dE. (5.12)

To calculate µF , let us first consider the following integral:

∫
xIF (x)dx =

∫
p′(E)

[∫
xif (x,E)dx

]
dE. (5.13)

Assuming that PSF (x,E) is a symmetric function of x,
∫
xif (x,E)dx = 0 and:

µF = 0. (5.14)

To calculate σ2
F , let us consider:

∫
x2IF (x)dx =

∫
p′(E)

[∫
x2if (x,E)dx

]
dE. (5.15)

With the following definition:

σ2
f (E) =

∫
x2if (x,E)dx∫
if (x,E)dx

, (5.16)

we have:

σ2
F =

∫
p′(E)σ2

f (E)dE∫
p′(E)dE

. (5.17)

Let us now consider the total intensity AD, mean value µD and variance σ2
D
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of ID(x) when the sample is present. For AD we have:

AD =

∫
ID(x)dx =

∫
t(E)p′(E)

[∫
if (x−∆(E), E)dx

]
×
[∫

S(x,E)dx

]
dE = MW

∫
t(E)p′(E)dE. (5.18)

To calculate µD, let us consider:

∫
xID(x)dx =

∫
t(E)p′(E)

{∫
x [if (x−∆(E), E) ∗ S(x,E)] dx

}
dE. (5.19)

The term in curly brackets can be expressed as:

∫
x

∫
if (y −∆(E), E)S(x− y, E)dydx =

=

∫
if (y −∆(E), E)

[∫
xS(x− y, E)dx

]
dy =

=

∫
yif (y −∆(E), E)dy =

∫
(z + ∆(E))if (z, E)dz = MW∆(E), (5.20)

where we used
∫
xS(x− y, E)dx = y. Substituting the last result in Eq. 5.19, we

have: ∫
xID(x)dx = MW

∫
t(E)p′(E)∆(E)dE, (5.21)

and:

µD =

∫
t(E)p′(E)∆(E)dE∫
t(E)p′(E)dE

. (5.22)

To calculate σ2
D, let us consider:

∫
x2ID(x)dx =

∫
t(E)p′(E)

{∫
x2 [if (x−∆(E), E) ∗ S(x,E)] dx

}
dE. (5.23)
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The term in curly brackets can be expressed as:

∫
x2

∫
if (y −∆(E), E)S(x− y, E)dydx =

=

∫
if (y −∆(E), E)

[∫
x2S(x− y, E)dx

]
dy. (5.24)

The integral over x can be written as:

∫
x2S(x− y, E)dx =

∫
(z + y)2S(z, E)dz =

=

∫
z2S(z, E)dz + y2 = σ2

S(E) + y2, (5.25)

where σ2
S(E) =

∫
z2S(z, E)dz is the variance of S(z, E). Substituting the last

result in Eq. 5.24, we have:

∫
x2

∫
if (y −∆(E), E)S(x− y, E)dydx =

=

∫
y2if (y −∆(E), E)dy +MWσ2

S(E) =

=

∫
(z + ∆(E))2 if (z, E)dz +MWσ2

S(E) =

=

∫
z2if (z, E)dz +MW∆2(E) +MWσ2

S(E), (5.26)

and:

σ2
D =

∫
t(E)p′(E)σ2

f (E)dE∫
t(E)p′(E)dE

+

∫
t(E)p′(E)∆2(E)dE∫

t(E)p′(E)dE

+

∫
t(E)p′(E)σ2

S(E)dE∫
t(E)p′(E)dE

−
[∫

t(E)p′(E)∆(E)dE∫
t(E)p′(E)dE

]2

. (5.27)

The variations between these parameters can be used to retrieve the sample
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transmission (T ), refraction (R) and scattering (σ2
S) signals, given by the following

expressions:

T =
AD
AF

=

∫
t(E)p′(E)dE∫
p′(E)dE

, (5.28)

R = µD − µF =

∫
t(E)p′(E)∆(E)dE∫
t(E)p′(E)dE

, (5.29)

σ2
S = σ2

D − σ2
F =

∫
t(E)p′(E)σ2

s(E)dE∫
t(E)p′(E)dE

(5.30)

+

∫
t(E)p′(E)∆2(E)dE∫

t(E)p′(E)dE
−
[∫

t(E)p′(E)∆(E)dE∫
t(E)p′(E)dE

]2

+

∫
t(E)p′(E)σ2

f (E)dE∫
t(E)p′(E)dE

−
∫
p′(E)σ2

f (E)dE∫
p′(E)dE

.

T is the ratio between the total intensity of the beam with and without the

sample, and is effectively the weighted average of t(E) over the spectrum p′(E).

R indicates the average shift of the beam induced by refraction, and is equal to the

weighted average of ∆(E) over the spectrum p′(E) multiplied by t(E), which can

be seen as an “effective spectrum” in the presence of the sample. The expression

for the scattering signal is more complex, and consists of different terms. The

first term in the first line of Eq. 5.30 is the weighted average of σ2
S(E) over the

effective spectrum t(E)p′(E), and represents the “pure” scattering term. The

second line of Eq. 5.30 is equal to the variance of ∆(E) calculated over the

effective spectrum t(E)p′(E), and explains how the variation of the refraction

angle with energy results in an overall broadening of the beam, which will be

measured as a scattering signal. The third line of Eq. 5.30 is a residual error in

the normalization by the flat field signal σ2
F , and depends on the difference in the

spectrum without (p′(E)) and with (p′(E)t(E)) the sample. For a non-absorbing

99



5.3 Comparison with other phase retrieval methods

sample this term would be equal to 0.

Let us assume that IF (x) and ID(x) can be approximated by Gaussian func-

tions [45, 47], that the system is aligned so that µF = 0, and that AF and σF

are known from an independent measurement without the sample. With these

hypotheses, it is possible to retrieve T , R and σ2
S by interpolating the intensity

distribution I ′(x) measured by the detector with a Gaussian function, represent-

ing ID(x), plus a constant term, representing CD.

5.3 Comparison with other phase retrieval meth-

ods

In chapter 2 we described some of the main phase contrast imaging methods.

Recently, however, alternative “single-shot” methods have been proposed [51, 52,

53, 54], in which a reference pattern is created using either a sheet of sandpaper or

the Talbot self-image from a phase grating, and correlation methods are used to

analyse the local pattern distortions caused by a sample. While most of these were

implemented at synchrotrons, Zanette et al [54] extracted absorption, refraction,

and dark-field (i.e. scattering) signals from a speckle pattern using a laboratory

setup. However, a speckle pattern will, in general, have a wide range of features

with different size and intensity, resulting in a change of resolution and sensitivity

across the image which could be difficult to control. This is not the case if

the Talbot self-image of a grating is used; however, gratings employed at x-ray

wavelengths typically have pitches of few micron, and a very high resolution

detector is needed to resolve the intensity pattern. Moreover, the distance from
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the grating at which the self-image is created is energy dependent, resulting in a

reduced pattern visibility when polychromatic sources are used.

Methods similar to beam tracking have also been proposed [2, 50], using, how-

ever, different phase retrieval approaches. In the method proposed by Krejci et

al [50], two pixels per beam are illuminated (four in the 2-D case), and analytical

formulae are derived to calculate absorption and refraction. These, however, are

based on a simplified description of the experimental setup that does not take

into account important parameters such as source size, transmission through the

mask, and pixel point spread function. In the method proposed by Wen et al [2],

the above signals plus dark-field are retrieved by performing a Fourier-analysis of

the intensity pattern.

Let us consider in more details this method. The Fourier-analysis considers

the entire intensity pattern measured by the detector, while in beam tracking each

individual beam is analysed independently from the others. The intensity pattern

created by a perfect mask is periodic, and its Fourier transform is different from

zero only for spatial frequencies multiples of the basic harmonic ξ̄ = 1/(MP ).

Let us indicate this intensity pattern with Iw(x), and its Fourier transform with

Îw(ξ). It is possible to write:

Îw(ξ) =
∞∑

n=−∞

cnδD
(
ξ − nξ̄

)
, (5.31)

where δD is the Dirac delta, and:

cn = ξ̄

∫ 1/ξ̄

0

Iw(x) exp
(
−2πinξ̄x

)
dx. (5.32)
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It is important to stress that Iw(x) indicates the intensity measured by the entire

detector, while for the beam tracking case I(x) was used to indicate the local

intensity distribution generated by one aperture of the mask. Absorption, re-

fraction and scattering caused by the sample distort the periodic pattern. Let

us consider the simple case in which only absorption is present; in the Fourier-

analysis method this is modelled as a multiplication by a sample transmission

function. In this case the intensity pattern I ′w(x) and its Fourier transform Î ′w(ξ)

can be written as:

I ′w(x) = Tw(x)Iw(x), (5.33)

Î ′w(ξ) = T̂w(ξ) ∗ Îw(ξ) =
∞∑

n=−∞

cnT̂w
(
ξ − nξ̄

)
=

∞∑
n=−∞

Î ′w,n
(
ξ − nξ̄

)
, (5.34)

where Tw(x) indicates the sample transmission function, and T̂w(ξ) its Fourier

transform. Î ′w(ξ) is equal to the sum of the harmonic spectra Î ′w,n(ξ), each shifted

by a quantity nξ̄. If the different harmonic spectra do not overlap, i.e. if the

bandwidth of each spectrum is smaller than ξ̄, it is possible to retrieve the n-th

spectrum by isolating a region of width ξ̄ around nξ̄. By performing an inverse

Fourier transform of the n-th harmonic spectrum one obtains an harmonic image

I ′w,n(x) of the sample. In the simple example considered, in which the sample

only absorbs radiation, all the harmonic spectra are equal, apart from a con-

stant factor, to the Fourier transform T̂w(ξ) of the sample transmission function

Tw(x), and all the harmonic images will therefore be proportional to the sample

transmission function. The harmonic images will in general be different when
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transmission, refraction and scattering are considered, and these quantities can

be extracted using the following equations:

Tw(x) =
I ′w,0(x)

c0

; (5.35)

Rw(x) = − 1

2πiξ̄
arg

[
I ′w,1(x)

I ′w,0(x)

c0

c1

]
; (5.36)

σ2
S,w(x) = − 1

2π2ξ̄2
log [Vw(x)] ; (5.37)

where:

Vw(x) = abs

[
I ′w,1(x)

I ′w,0(x)

c0

c1

]
. (5.38)

In the above equations the transmission Tw corresponds to a local variation of

the mean value of the periodic pattern, the refraction Rw is equal to the local

lateral displacement of the pattern caused by the sample, while the scattering

signal is derived from the quantity Vw. In a simplified case in which the intensity

distribution can be expressed as Iw(x) = a0 + a1 sin(2πξ̄x + φ1), Vw is equal to

the variation of the visibility of this intensity distribution, which is defined as

V = (Iw,max − Iw,min)/(Iw,max + Iw,min), with Iw,max and Iw,min the maximum

and minimum values of the intensity pattern, respectively. When this model is

applied to the theoretical framework developed in the previous section, it implies

that locally the intensity distribution with and without the sample can be related

by the following equation:

I ′w(x) = TwIw(x−Rw) ∗ Sw(x), (5.39)

where Sw is the scattering function. Equation 5.39 is used here to describe the
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5.3 Comparison with other phase retrieval methods

effect of the sample on a limited region of the intensity pattern, on the order

of one period of the mask, so that Tw, Rw and the standard deviation σ2
S,w =∫

x2Sw(x)dx can all be considered constant. Note that the loss in visibility, as

described for the Fourier-analysis, comes naturally from the convolution with

the scattering function Sw. Equation 5.39 is equivalent to Eq. 5.4, the main

difference being that Eq. 5.4 refers to a single, monochromatic component of

the electromagnetic radiation, while Eq. 5.39 describes the full polychromatic

spectrum. Let us write Eq. 5.39 as:

I ′w(x) = TwIF (x−Rw) ∗ Sw(x) + TwCF = ID(x) + CD. (5.40)

The quantity R in Eq. 5.29 is equivalent to Rw, as both represent the difference

in the mean values between IF and ID. It is importance to note, instead, how in

the Fourier-analysis method the reduction due to absorption between IF and ID

and between CF and CD is the same, equal to Tw. In our model, the absorption

between IF and ID (T ) and between CF and CD are, in general, different. Let

us compare the two models in a simplified case in which no refraction and/or

scattering are present. In this case our model predicts:

I ′(x) = TIF (x) + T0CF , (5.41)

with T0 =
∫
t(E)p′′(E)dE/

∫
p′′(E)dE. The Fourier-analysis model predicts:

I ′w(x) = TwIF (x) + TwCF . (5.42)

According to our model, when T 6= T0 the visibility between I ′(x) and I(x) varies,
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and this visibility variation is not related to the presence of a scattering signal.

In the Fourier-analysis method, however, it is implicitly assumed T = T0 = Tf ,

and any variation in the visibility of the intensity pattern will be retrieved as

a scattering signal. Finally, it is important to note that the model expressed

in Eq. 5.39 is also assumed in other phase contrast methods such as grating

interferometry [58] and edge illumination [47].

5.4 Simulation results

We compared our phase retrieval method and the Fourier-analysis on simulated

data. The simulation is based on the wave theory of x-ray propagation in matter

and free space described in chapter 2. We considered a tungsten target x-ray

source operating at 80 kVp with 3 µm FWHM, placed at 13.2 cm from the mask

and 132 cm from the detector. The sample, a 2.56 mm diameter glass sphere, is

assumed to be in the same plane as the mask. The mask period and aperture

size are 20 µm and 3 µm, respectively. The absorbing septa are assumed to

be made of a 200 µm thick gold layer. The detector pixel size is 50 µm. The

intrinsic resolution of the system is comparable to the aperture width of the mask

[59, 60], and is therefore smaller than the mask period (which represents the rate

at which the signal is sampled in a single exposure). To illuminate all the sample

and avoid aliasing, a 16-step sub-pixel scan along the direction orthogonal to

the aperture lines is simulated. This scan procedure is called dithering, and is

very often used in edge illumination systems. The steps were then averaged in

groups of 4 and recombined together in a single, oversampled, image. While the

average of the dithering steps is not necessary, it was performed to simulate the
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Figure 5.3: Absorption (− log T ) (a,d), refraction (R/z3) (µrad) (b,e), and scat-
tering (σ2

S/z
2
3) (µrad2) (c,f) signals retrieved from the simulation. The sample is

a glass sphere of 2.56 mm diameter for the profiles (a-c), while for (d-f) the same
sphere is convolved with a Gaussian function of σ = 50 µm. The retrieved signal
for the Fourier-analysis, Gaussian interpolation, and its modified version are shown
in red (circular markers), blue (triangular markers), and green (square markers),
respectively; while the expected signal is shown in black.

experimental acquisition described in the next section. All the parameters used

in the simulation, in fact, are chosen to resemble the experimental conditions of

the data presented in the next section.

The simulated data are then processed with three different phase retrieval

algorithms: the Fourier-analysis method, the Gaussian interpolation described

above, and a modified version in which we assume that the absorption T between

ID(x) and IF (x), and T0 between CD and CF are equal. The Fourier-analysis

method assumes that the harmonic spectra of the measured periodic pattern do

not overlap [2]. To understand how the retrieved signal is altered when this

condition is not satisfied, we performed two series of simulations: one simulating
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a perfect sphere, and one in which the sphere projected thickness is convolved

with a Gaussian function of σ = 50 µm. In the first case we expect the harmonic

spectra to overlap due to the sharp thickness variation at the edges of the sphere,

while in the second case the smoothing effect of the convolution with the Gaussian

allows us to avoid this. The results and the comparison with the expected values

are presented in Fig. 5.3. Figs. 5.3 (a-c) show the results obtained for the perfect

sphere, while Figs. 5.3 (d-f) show those for the “smoothed” sphere. The retrieved

signals for the Fourier-analysis, Gaussian interpolation, and its modified version

are shown in red (circular markers), blue (triangular markers), and green (square

markers), respectively; while the expected signal is shown in black. As expected,

when the Fourier-analysis is applied to the perfect sphere case, artefacts coming

from the overlap of the Fourier spectra are visible in the reconstructed profiles as

high frequency oscillations; those are particularly evident in the scattering profile.

The main shape of the signal, however, remains unchanged. Most importantly,

a spurious scattering signal is observed with the Fourier-analysis method and

with the modified version of the Gaussian interpolation both in the perfect and

smoothed sphere case; as explained before, this depends on the assumption T =

T0. It is also possible to note how the retrieved absorption signal is lower than

the expected one for these two methods, while the refraction signal is correctly

retrieved in all cases.

5.5 Experimental results

We tested our method on a series of glass spheres, the leg of a beetle, and a wood

sample. A 16-step sub-pixel scan along the direction orthogonal to the aperture
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Figure 5.4: Absorption (− log T1) (a), refraction (R/z3) (µrad) (b), and scat-
tering (σ2

S/z
2
3) (µrad2) (c) signals retrieved from glass spheres using the proposed

method. (d), (e) and (f) show the same signals retrieved using Fourier-analysis [2].
In (g), (h) and (i) line profiles are extracted from the images (blue line and tri-
angular marker for our method, red line and circular marker for Fourier-analysis),
and compared with the expected value (black line).

lines was performed (dithering). The steps were then averaged in groups of 4, to

obtain a final image with equal sampling step in the two directions (5.8 µm), and

to reduce the noise. While this means that more than one exposure was acquired,

the sub-pixel scan can be avoided in those cases where a final resolution in the
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Figure 5.5: Absorption (− log T ) (a), refraction (R/z3) (µrad) (b), and scattering
(σ2
S/z

2
3) (µrad2) (c) signals retrieved from the leg of a beetle.

scanning direction equal to the mask period can be accepted. 20 exposures of 10

s were acquired for each step. Two flat field images were acquired, one before and

one after the sample acquisition, with 40 exposures of 10 s each. IF was measured

by scanning the sample mask over 20 µm (one mask period) with 12 steps of 10 s

each. The detector dark current was estimated by averaging 10 exposures of 10 s

without x-rays, then subtracted from all the acquired images. To reduce artefacts

from mask imperfections, the images acquired with the sample were normalized

by the flat field.

The result of the retrieval procedure using the Gaussian interpolation on the
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5.5 Experimental results

Figure 5.6: Absorption (− log T ) (a), refraction (R/z3) (µrad) (b), and scattering
(σ2
S/z

2
3) (µrad2) (c) signals retrieved from a wood section.

spheres sample is shown in Figs. 5.4 (a-c). No scattering signal is visible, as

expected for a homogeneous sample. The results obtained with the Fourier-

analysis are shown in Fig. 5.4 (d-f). A quantitative comparison between retrieved

and theoretical signals is shown in Fig. 5.4 (g-i), with transmission and refraction

calculated using Eqs. 5.28 and 5.29, and the theoretical scattering signal assumed

to be 0. While our method yields good agreement, Fourier-analysis provides a

signal lower than expected in absorption, and a relatively strong spurious scatter

signal. As explained in the previous sections, this is an artefact caused by the

visibility variation caused by absorption.

Fig. 5.5 shows the results obtained from the beetle leg. No scattering signal

is visible, and absorption is very weak; however, a strong refraction signal is

detected, highlighting the importance of phase-contrast imaging for low absorbing

materials. Finally, Fig. 5.6 shows the signals extracted from the wood sample,

which we imaged because it is known to contain structures at different length

scales. This results in features with dimensions smaller than the mask aperture

producing the signal visible in the scatter image, while larger features produce a

refraction signal.
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5.6 Discussion

Our study shows how the beam tracking approach can be implemented with a

laboratory setup. For this proof-of-concept experiment, a micro-focal source was

used with a high magnification, primarily to use a standard detector with 50 µm

pixel size. This results in long exposure times and relatively noisy final images.

The method, however, can be easily extended to lower magnification values by

using a detector with a smaller pixel size. Future studies will be directed towards

the optimization of the experimental parameters, with the aim to establish the

optimum trade-off between source size and detector resolution.

An important result obtained in our study regards the role of polychromaticity

on the retrieved values of absorption, refraction and scattering. We showed, in

particular, how the model generally used to describe the effect of the sample on

the reference beam can result in severe artefacts when polychromatic radiation is

used, and we proposed a new model which corrects for these artefacts.

The high magnification used in the presented setup results in a relatively high

final resolution, of the order of ≈ 3 µm (equal to the mask aperture). Similar and

even better resolution values can be easily achieved with other imaging techniques,

and in particular in visible light microscopy. However, the key advantage of the

proposed method is the possibility to investigate the internal structure of samples

that are not transparent to visible light.
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6

Beam tracking: tomographic

implementation

Computed tomography is a technique which is extensively used in standard

absorption-based x-ray imaging, from which it is possible to reconstruct the three-

dimensional map of the imaginary part of the sample refractive index β(x, y, z).

As described in chapter 2, a single image acquired in the absorption-based con-

figuration provides the quantity M(x, y) = k
∫ l

0
β(x, y, z)dz, where k = 2π/λ, λ

is the x-ray wavelength, l is the object thickness, and z is the x-ray propagation

direction. M(x, y) is usually called “projection”, as it is the result of a line inte-

gral of β(x, y, z) along the x-ray propagation direction. In computed tomography

several projections Mθ(x, y) are acquired rotating the sample along an axis per-

pendicular to the x-ray propagation direction, for different values of the rotation

angle θ. From this set of projections, it is then possible to reconstruct β(x, y, z).

Computed tomography is not only implemented in standard absorption imag-

ing, but also in phase contrast and ultra-small-angle-scattering imaging. In this
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6.1 Mathematical background

Figure 6.1: Frame of reference for a rotating object in a tomographic configura-
tion.

chapter we will present the tomographic implementation of the beam-tracking

approach using synchrotron radiation. The results shown are based on the work

presented in [61]. In particular, we will show how the three signals retrieved from

a single projection can all be used to reconstruct three dimensional maps of three

complementary properties of the sample.

6.1 Mathematical background

We introduce here the main mathematical concepts of tomographic reconstruc-

tions. A more detailed description can be found in standard textbooks [62, 63, 64].

Let us consider an object and two frames of reference (x, y, z) and (xo, yo, zo) as

shown in Fig. 6.1. (xo, yo, zo) is obtained by rotating (x, y, z) by an angle θ around

the y axis; note that y0 ≡ y. The object rotates together with the (xo, yo, zo) refer-

ence frame, and let us assume that the function f(xo, yo, zo) describes a particular

property of the object (for example f could be equal to the imaginary part β of

the complex refractive index). In the (x, y, z) reference frame the object can be

described by a function fθ(x, y, z), which varies with the rotation angle θ. Let us
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6.1 Mathematical background

consider a single plane y ≡ yo = ȳ and let us assume that in this plane, for any

value of the angle θ, we can measure the integral over every line parallel to the z

axis of f :

R [f(xo, zo)] (x, θ) = g(x, θ) =

∫
fθ(x, z)dz =

=

∫
f(x cos θ − z sin θ, x sin θ + z cos θ)dz. (6.1)

where the dependency on y ≡ yo = ȳ has been omitted. g is called the Radon

transform, or sinogram, of f and is indicated here with the operator R. The prob-

lem of computed tomography consists in inverting the Radon transform operator

in order to reconstruct the function f from the knowledge of its Radon transform

g. An analytical solution to this problem is offered by the filtered back projection

operator, defined as follow:

f(xo, zo) = FBP [g(x, θ)] (xo, zo) =

=
1

2π

∫ π

0

F−1
k {|k|Fx [g(x, θ)] (k)} (xo cos θ + zo sin θ)dθ, (6.2)

where FBP indicates the filtered back projection operator, and Fx and F−1
k

indicate the Fourier transform with respect to the x variable and the inverse

Fourier transform with respect to the k variable, respectively. Introducing the

function:

h(x, θ) = F−1
k {|k|Fx [g(x, θ)] (k)} (x), (6.3)
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6.1 Mathematical background

Eq. 6.2 can be written as:

f(xo, zo) =
1

2π

∫ π

0

h(xo cos θ + zo sin θ, θ)dθ. (6.4)

h(x, θ) can be seen as a sinogram obtained by filtering g(x, θ) in the Fourier

space using the so-called Ram-Lak filter |k|. Equation 6.4 is usually called back

projection, and represents the dual operator of R.

Alternative approaches exists, which solve the tomographic problem within

the theory of linear inverse problems, using iterative reconstruction algorithms.

Iterative methods can offer substantial advantages over filtered back projection,

at the cost of a more complex and computationally demanding reconstruction

procedure. Investigating the use of iterative methods was considered beyond

the scope of this work, and the more conventional approach based on the FBP

operator will be used, instead.

The key point of x-ray tomography is that, provided we can measure a quantity

that can be expressed as a line integral along the photons path of a function f

describing a fundamental property of the sample, it is possible to reconstruct the

three dimensional map of the function f , by performing a series of acquisition

varying the angle between the photons path and the sample. In the next section

it will be shown how tomographic reconstructions can be applied to all three

signal extracted with the beam tracking method.
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Figure 6.2: Schematic diagram of the experimental setup.

6.2 Beam tracking tomography

Let us consider the beam tracking setup in Fig. 6.2. Each beam, created by

the absorbing mask, passes through the object and, after a propagation zp, is

recorded by a high resolution detector. The sample is allowed to rotate around

the y axis. From the analysis of each beam, it is possible to reconstruct the

transmission T , refraction R, and scattering σ2
S signals of the sample. These

quantities are calculated assuming that for each individual beam the intensity

profile I(r), measured with the sample, and I0(r), measured without the sample,

can be related by the following equation:

I(r) = TI0(r −R) ∗ S(r), (6.5)

where r is the coordinate of the detector pixels, used to measure the beam profile,

and σ2
S is the variance of the scattering distribution S.

Let us consider a single plane y = ȳ, which allows us to omit the dependency

on y in the following equations. For a given angle θ, let T (x, θ), R(x, θ) and

S(x, θ, r) be the transmission, refraction and scattering distribution, respectively,
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relative to a beam passing through the sample in the x position. T (x, θ) can be

used to calculate the absorption coefficient µ(x, θ), which can be expressed as:

µ(x, θ) = − log T (x, θ) =
4π

λ

∫
βθ(x, z)dz = (6.6)

=
4π

λ

∫
β(x cos θ − z sin θ, x sin θ + z cos θ)dz =

4π

λ
R [β(xo, zo)] (x, θ),

from which it follows:

β(xo, zo) = FBP

[
− λ

4π
log T (x, θ)

]
(xo, zo). (6.7)

Similarly, from the lateral shift R(x, θ) of the beam it is possible to calculate

the refraction angle α(x, θ), which can be expressed as:

α(x, θ) =
R(x, θ)

zp
=

∂

∂x

∫
δθ(x, z)dz = (6.8)

=
∂

∂x

∫
δ(x cos θ − z sin θ, x sin θ + z cos θ)dz =

∂

∂x
R [δ(xo, zo)] (x, θ).

The above relationship can be written in the Fourier space as:

Fx [α(x, θ)] (k) = ikFx {R [δ(xo, zo)] (x, θ)} (k). (6.9)

Substituting the above equation in the FBP formula (Eq. 6.2) for δ(xo, zo), we

find that:

δ(xo, zo) =
1

2π

∫ π

0

F−1
k {H(k)Fx [α(x, θ)] (k)} (xo cos θ + zo sin θ)dθ, (6.10)

where H(k) = −i sign(k) is called the Hilbert filter. sign(k) = |k|/k for k 6= 0 and
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sign(k) = 0 for k = 0. This result was first derived in 1988 for beam-deflection

optical tomography [65], and later applied to x-ray phase contrast imaging in

2007 [66]. The above equation is conceptually equivalent to the FBP formula,

with the exception that the Ram-Lak filter is replaced with the Hilbert filter. We

can rewrite Eq. 6.10 as:

δ(xo, zo) = FBPH

[
R(x, θ)

zp

]
(xo, zo), (6.11)

where FBPH indicates a filtered back projection performed using the Hilbert

filter instead of the Ram-Lak filter.

Following the work in [67], the scattering distribution S(x, θ, r) can be inter-

preted as the probability density function of a photon to be scattered at an angle

r/zp from its original direction. Let us divide the photon path within the sample

in a series of small regions [zi, zi + dzi], with i = 1, . . . , N , in each of which the

scattering properties of the object can be considered homogeneous. The proba-

bility density function of a photon to be scattered at an angle r/zp when passing

through the i-th region can be written as Sθ(x, zi, r) = sθ(x, zi, r)dzi. The total

probability density function S(x, θ, r) is equal to the convolution of all the local

probability density functions Sθ(x, zi, r):

S(x, θ, r) = sθ(x, z1, r) ∗ sθ(x, z2, r) ∗ . . . ∗ sθ(x, zN , r)dz1dz2 . . . dzN . (6.12)

The variance σ2
S(x, θ) of the total probability density function S(x, θ, r) is equal

to the sum of the variances of the local probability density functions Sθ(x, zi, r);
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in the limit for dzi → 0, this can be written as:

σ2
S(x, θ) =

∫
σ2
s,θ(x, z)dz = (6.13)

=

∫
σ2
s(x cos θ − z sin θ, x sin θ + z cos θ)dz = R

[
σ2
s(xo, zo)

]
(x, θ),

from which it follows:

σ2
s(xo, zo) = FBP

[
σ2
S(x, θ)

]
(xo, zo). (6.14)

The same process can be applied to all the planes perpendicular to the y axis,

thus making it possible to reconstruct the three dimensional maps β(xo, yo, zo),

δ(xo, yo, zo) and σ2
s(xo, yo, zo), describing the absorption, phase shift and scattering

properties of the sample.

6.3 Experimental results

The tomographic implementation of the beam tracking method was experimen-

tally validated at the I13 (Coherence branch) beamline of the Diamond Syn-

chrotron Radiation facility (Didcot, UK) [48]. A scheme of the experimental

setup is shown in Fig. 6.2. A Si(111) crystal monochromator was used to select

an x-ray energy of 9.7 keV. The mask is made of a gold layer electroplated on a

graphite substrate, with aperture size and period of 10 µm and 85 µm, respec-

tively. The detector consisted of a scintillation screen, an 8× magnifying visible

light optics and a PCO 4000 CCD camera, with effective pixel size of 1.1 µm. An

example of the intensity pattern produced by the mask at the detector in shown
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Figure 6.3: Intensity pattern produced by the absorbing mask and acquired by
the high resolution detector without (a) and with (b) a sample present in the beam.
The period of the intensity pattern is equal to 85 µm.

in Fig. 6.3. Projections were acquired in the angular range [0◦ 180◦], as required

by the FBP operator (see Eq. 6.4), with 3 s exposure time per projection. For

each angular position, 10 dithering steps were performed. This results in an effec-

tive sampling step of 8.5 µm along the x axis. Data were re-binned by a factor of

8 in the y direction in order to obtain an effective sampling step of 8.8 µm along

this axis. Three dimensional reconstructions of the parameters of interest were

performed through a numerical implementation of the FBP operator, resulting

in a final voxel size of 8.5×8.8×8.5 µm3 in x, y and z, respectively.

We first tested the quantitativeness of the method on a sample made of three

cylindrical test objects of different, but known, materials: polyetheretherketone

(PEEK), aluminium and sapphire. For this sample, 181 projections were acquired

with 1◦ step, and the distance between the detector and the sample was 18.5 cm.

The value of absorption, refraction and scattering were extracted from a multi-

gaussian interpolation of each beam created by the absorbing mask. To reduce
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Figure 6.4: Reconstructed slices of (a) β and (b) δ from a test object made of
three wires of different materials. In (c) the mean values calculated in the central
region of each wire are compared with the theoretical ones (black). The error bars
for the experimental data are equal to ±1 standard deviation, while an error of
±5% is assumed on the theoretical values to account for potential impurities and
density variations. Resolution is reduced by approximately a factor of 2 compared
to the intrinsic resolution of the system ( ≈10 µm, equal to a mask aperture),
due to the Gaussian filter applied to each projection to reduce noise in the final
reconstruction (see text).

high-frequency noise in the reconstructed slices, a Gaussian filter was applied to

the retrieved signals. The standard deviation of the Gaussian filter, chosen in

relation to the noise level in the retrieved projection, is equivalent to 8.5 µm.

Results of the retrieval procedure and CT reconstruction are shown in Fig. 6.4.

Figures 6.4 (a) and (b) show a reconstructed slice of β and δ, respectively. Figure

6.4 (c) shows a quantitative comparison between the retrieved values in the central

region of each wire, and the theoretical ones. A good agreement is found for

all materials, proving that the parameters extracted from the three dimensional

reconstructions are quantitatively reliable.

The second sample we imaged was a piece of wood, which contains a complex

internal structure arranged on different length scales. This sample was chosen
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Figure 6.5: Reconstructed slices of β (a), δ (b), and σ2
s (c) from a wood sample,

and volume renderings of β and δ (d), β and σ2
s (e), δ and σ2

φ (f). The volume
renderings has been sectioned to show three inner planes of the sample. Resolution
is reduced by approximately a factor of 3 for (a) and (b), and 4 for (c), compared
to the intrinsic resolution of the system ( ≈10 µm, equal to a mask aperture),
due to the Gaussian filter applied to each projection to reduce noise in the final
reconstruction (see text).

because its sub-micrometric structures are expected to show a strong scattering

signal, which might significantly distort the incoming beamlets. In this situation

other methods [51, 54], based on the tracking of a speckle pattern, might present

problems. The distortions induced by the sample on the reference pattern might,

in fact, be so severe as to make it impossible to track the original speckle effec-

tively. The advantage of our method, in this case, is to create a known, periodic

reference pattern through a non-interferometric technique, whose variations can

be tracked even for high values of the refraction and scattering signals. In this

case 361 projections were acquired with 0.5◦ step, with sample-to-detector dis-

tance of 17.5 cm. The standard deviation of the Gaussian filter for this sample is
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equivalent to 12.75 µm for the absorption and refraction signals, and 17 µm for

the scattering signal. Figures 6.5 (a), (b) and (c) show reconstructed slices of β,

δ and σ2
s , respectively, displayed with different colors. As expected, absorption

and phase present similar features, as both these signals are ultimately related to

the electron density of the sample. However, the contrast between different parts

of the sample is locally different, and can be used to better identify regions of

different composition within the sample. The scattering signal is not uniformly

distributed within the sample. This signal, in fact, originates only from regions

in which the refractive index is inhomogeneous on a scale smaller than the mask

aperture. To better display the fact that these three channels provide complemen-

tary information about the sample, three volume renderings are shown in Figs.

6.5 (d), (e) and (f), where absorption, phase and scattering are superimposed in

pairs.

6.4 Discussion

The obtained results show how the beam tracking approach can be used to per-

form quantitative x-ray phase-contrast and ultra-small-angle scattering computed

tomography. The method presents the advantages of a simple experimental setup,

with only one optical element placed before the sample, and that absorption, re-

fraction and scattering can be extracted from a single exposure of the sample,

without the need to scan or even displace the optical element. A scan of the

sample, instead, is needed to increase the final resolution and avoid possible

aliasing artefacts. As has been demonstrated in the previous chapter, the pre-

sented method does not rely on spatial and/or temporal coherence to generate
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contrast, suggesting the possibility of a future CT implementation with labora-

tory sources [55]. Attention, however, should be paid to possible beam-hardening

artefacts that might arise when the tomographic implementation is performed

with polychromatic radiation. In this case, in fact, the retrieved signals are

weighted averages over the energy spectrum of the corresponding monochromatic

ones, and they can no longer be expressed as line integrals along the photon paths

of fundamental properties of the sample.

The quantitative accuracy of the method was experimentally tested on a sam-

ple consisting of three different objects of known composition and size, and a good

agreement was found between the retrieved and the theoretical value of the sam-

ple refractive index. Finally, a CT reconstruction from a complex sample was

presented, showing the robustness of the method against highly scattering mate-

rials, and that the three different signals can highlight different properties of the

sample.

For this proof-of-concept experiment, each beam was tracked with a relatively

large number of pixels, through a Gaussian fit. Future developments will involve

using masks with smaller apertures and periods; this will result in a higher final

resolution of the reconstructed images, and higher sensitivity to refraction and

scattering signals. The assumption of a Gaussian profile was sufficiently accurate

for the present experimental conditions, as the quantitative agreement in Fig.

6.4 (c) demonstrates; however, this might not always be true in the general case.

The use of more refined fitting functions and of alternative retrieval method (e.g.

through direct deconvolution of the beam profiles) will be investigated in future

developments.
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One-dimensional ptychography

The beam tracking approach, as presented in chapter 4, consists in creating a

small laminar beam through an absorbing slit and using a high resolution detector

to track its variations, induced by a sample. To be able to extract quantitative

information about the sample a model that describes its interaction with the

beam is needed. In beam tracking the same model used in edge illumination and

other phase contrast imaging techniques is employed, which describes the sample

in terms of absorption, refraction and ultra-small-angle scattering. In this model

it is assumed that absorption and refraction are constant within the slit aperture.

However, it should be noted that the scattering signal comes from a violation of

this assumption, and it describes variations of the complex refractive index on

a scale smaller than the aperture. In this chapter we will present an alternative

method, that aims at retrieving the complex transmission function of the sample

at a resolution higher than the aperture size, which is the resolution limit in

beam tracking. This is possible by formulating the problem within the theory of

coherent diffraction imaging. After a description of this new approach, results
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based on simulations and experiments are presented and discussed. These results

are based on the work presented in [68].

7.1 Preliminary considerations

In the field of coherent diffraction imaging, the term phase retrieval indicates all

those techniques aimed at reconstructing the phase of a complex electromagnetic

wave impinging on a detector from the measured intensity [33, 34]. Once the

phase has been retrieved, it is possible to back propagate the wave to the sample

plane to obtain the complex transmission function of the sample, which describes

the absorption and the phase shift it introduced on the x-ray beam. Coherent

diffraction algorithms allow the retrieval of the phase from a single diffraction

pattern, provided that some conditions are met: namely, the sample [33, 69] or

the illuminating beam [70] must be isolated and small enough to avoid the so

called undersampling problem at the detector plane. Moreover, some degree of a

priori knowledge must normally be available, such as, for example, the support of

the isolated sample or beam. These limitations can be overcome in ptychography

by acquiring several diffraction patterns of different and partially overlapping

regions of the sample. This is achieved by scanning a small pencil beam, called

probe, through the sample and measuring the corresponding diffraction pattern.

All collected patterns are then combined by means of a suitable reconstruction

algorithm [35, 36], from which the complex transmission function of the area

of the sample scanned by the probe, and the probe itself are retrieved. The

degree of overlapping between the different regions of the sample is a key factor in

ptychography. The lack of information coming from measuring only the amplitude
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of the diffracted field, and not its phase, is overcome by the fact that a certain

region of the sample contributes to more than one diffraction pattern. This creates

a “redundancy” of information that enables the solution of the phase problem.

The main advantage of ptychography is that it enables imaging extended objects

at high resolution without requiring any a priori information on the sample or

the probe.

Ptychography is normally implemented in the far-field regime, i.e. when the

propagation distance is large enough as to enable the diffracted field at the de-

tector plane to be expressed as the Fourier transform of the field at the sample

plane. This configuration allows the achievement of very high and virtually noise-

limited resolution. More recently, an extension to the near-field regime has been

proposed [71], in which the resolution is limited by the (demagnified) pixel size.

While in the far-field case a small, pencil beam, created through one or more

optical elements (lenses, mirrors, pinholes) is used to illuminate the sample, in

the near-field one the beam is not limited, and the sample is completely illumi-

nated. In the beam tracking setup, described in chapter 4, a small, laminar beam

is created by means of an absorbing slit. This beam is strongly asymmetric: the

sample is completely illuminated along one direction, while only a small portion

of it is covered along the orthogonal one. The sample is then scanned through

the beam, and several intensity pattern are recorded. If the scanning step is

small enough, the overlap between the regions illuminated by the beam in two

successive acquisitions can enable the adopting of a ptychographic approach to

retrieve the complex transmission function of the sample. Due to the asymmetric

shape of the beam, this configuration requires a “mixed” approach that combines

far-field and near-field ptychography. Since the sample is completely illuminated
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Figure 7.1: Schematic diagram of 1D-PIE methods.

in the horizontal direction, in fact, only a one-dimensional scan is required; at the

same time, noise-limited resolution can be achieved only in the scan direction.

In the following, we will refer to this approach as “1D-PIE” (one dimensional

ptychographic iterative engine).

7.2 Reconstruction algorithm

Figure 7.1 shows a schematic representation of a typical experimental setup for

1D-PIE. An x-ray beam, asymmetrically shaped by one or more optical elements,

passes through the sample and propagates to the detector, where its intensity is

recorded. Let O(x, y) and B(x, y) be the sample complex transmission function

and the complex amplitude of the probe impinging on the sample, respectively.

For a particular position in the scan, the wave exiting from the sample can be
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7.2 Reconstruction algorithm

expressed as:

ψj(x, y) = O(x, y)B(x− xj, y − yj), (7.1)

where (xj, yj) is the relative position between the beam and the sample. After

propagation in free space over a distance D, the wave on the detector plane will

become:

Ψ(x, y) = Pxy [ψj] (x, y) = ψj(x, y) ∗HD(x, y), (7.2)

where Pxy is the operator describing the propagation, ∗ denotes two-dimensional

convolution, and HD is the Fresnel propagator:

HD(x, y) =
exp (ikD)

iλD
exp

(
ik
x2 + y2

2D

)
, (7.3)

where λ is the x-ray wavelength and k = 2π/λ. Neglecting the constant factor,

Eq. (7.3) can be factorized in the product of two one dimensional functions:

HD(x, y) ∝ exp

(
ik
x2

2D

)
exp

(
ik
y2

2D

)
= hD(x)hD(y). (7.4)

This allows us to rewrite Eq. (7.2) in the form:

Ψ(x, y) = Px [Py [ψj]] (x, y), (7.5)

where, if f is a generic function of two variables:

Px [f ] (x, y) =

∫
f(r, y)hD(x− r)dr, (7.6)
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with an analogous definition for Py. The integral in Eq. (7.6) can be written

in various mathematically equivalent forms, but since we will eventually have

to deal with a discrete data matrix (as acquired by the detector pixels), it is

important to choose one that enables avoiding numerical problems (such as for

example undersampling). In particular, along the lines discussed in reference [72],

we choose the following, different expressions for Px and Py:

Px [f ] (x, y) = hD(x)Fr [f(r, y)hD(r)]
( x

λD

)
, (7.7)

Py [f ] (x, y) = F−1
η

[
Fs [f(x, s)] (η)ĥD(η)

]
(y), (7.8)

where Fi and F−1
i indicate the one dimensional Fourier and inverse Fourier trans-

forms with respect to the i coordinate, respectively, and ĥD is the Fourier trans-

form of hD. The distinction between the description of the propagation effects in

the x and y directions arises from the extremely asymmetric shape of the x-ray

probe. In the scanning direction (x), the beam is very narrow, resulting in a

small field of view (≈10 µm) that enables preventing sampling problems on the

detector plane when Eq. (7.7) is implemented numerically. In the y direction,

instead, the field of view is much larger (≈1 mm), and a different numerical im-

plementation is needed. Referring to the Fresnel number NF = W 2/(λD), where

W is the lateral extent of the illumination [71], we found that, in the experimental

conditions described in the following, NF ≈ 1 in the x direction, and NF ≈ 104 in

the y direction. Equation (7.7) is actually a generalization to the Fresnel regime

(NF ≈ 1) of the well-known equation P [f ] = F [f ] (x/(λD)) used to describe

x-ray diffraction; indeed, in the far field condition hD(r) ≈ 1 and the propagated

field is proportional to the Fourier transform of the initial field. Equation (7.8),
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instead, uses the “angular spectrum propagation” method, which solves the con-

volution product in Eq. (7.2) in the Fourier space by means of the convolution

theorem, and is numerically well-behaved in the near field regime (NF � 1).

The 1D-PIE uses a modified version of the ePIE algorithm [36], with the

key difference lying in the description of the forward propagation through Eqs.

(7.5), (7.7) and (7.8). The ePIE algorithm can be summarized with the following

scheme:

Start n cycle

- Sample and probe functions initialization:

O(n)(x, y) = O(n−1)(x, y);

B(n)(x, y) = B(n−1)(x, y);

Start j cycle

- Wave function after the sample:

ψ
(n)
j (x, y) = O(n)(x, y)B(n)(x− xj, y − yj);

- Forward propagation:

Ψ
(n)
j (x, y) = Pxy

[
ψ

(n)
j

]
(x, y);

- Modulus constrain:

Ψ̄
(n)
j (x, y) =

√
Ij(x, y)Ψ

(n)
j (x, y)/|Ψ(n)

j (x, y)|;

- Backward propagation:

ψ̄
(n)
j (x, y) = P−1

xy

[
Ψ̄

(n)
j

]
(x, y);

- Sample and probe function update:

Ō(n)(x, y) = O(n)(x, y) + α
[
ψ̄

(n)
j (x, y)− ψ(n)

j (x, y)
]
B

(n)
N (x− xj, y − yj);

O(n)(x, y) = Ō(n)(x, y);

B̄(n)(x, y) = B(n)(x, y) + β
[
ψ̄

(n)
j (x, y)− ψ(n)

j (x, y)
]
O

(n)
N (x+ xj, y + yj);
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7.2 Reconstruction algorithm

B(n)(x, y) = B̄(n)(x, y);

End j cycle

End n cycle

The algorithm iteratively reconstruct the sample and probe functions O(x, y)

and B(x, y). Starting guesses O(0)(x, y) and B(0)(x, y) are required for both these

functions. The algorithm consists of a main loop (n cycle), which is usually

stopped when the variation between two consecutive reconstructions of the sam-

ple is smaller that a certain threshold or after a certain number of iterations,

and a sub-loop (j cycle), in which the index j runs over all the relative po-

sitions between the sample and the probe. At every step of the main cycle,

the guesses O(n)(x, y) and B(n)(x, y) are updated from the previous iteration.

Then, for each j value, the wave after the sample ψ
(n)
j (x, y) is calculated and

propagated at the detector plane to obtain Ψ
(n)
j (x, y). The so called modulus

constrain is applied: the amplitude of Ψ
(n)
j (x, y) is set equal to the square root

of the measured intensity Ij(x, y). The new wave function Ψ̄
(n)
j (x, y) is back-

propagated at the sample plane to obtain ψ̄
(n)
j (x, y). The back-propagation op-

erator P−1
xy is obtained by substituting D → −D in the expression of Pxy. The

cycle is concluded by updating the sample and probe functions with the for-

mulas displayed above, where B
(n)
N (x, y) = conj

[
B(n)(x, y)

]
/max

[
|B(n)

N (x, y)|2
]
,

O
(n)
N (x, y) = conj

[
O(n)(x, y)

]
/max

[
|O(n)

N (x, y)|2
]
, conj indicates the complex

conjugate operation, and max takes the maximum value of the considered func-

tion. α and β are arbitrary constant that can be adjusted to alter the step-size of

the update; their value is usually set to 1. Additionally, at each n iteration, the

intensity of the propagated reconstructed beam can be set equal to a flat field im-
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age (i.e. an intensity pattern acquired without the sample). This last feature can

help decoupling the contribution of the probe and the sample to the diffraction

pattern, and it also avoids possible twin solutions consisting, for example, of the

sum of two opposite phase gradients in the sample and beam complex functions.

7.3 Simulations

The simulated system presents the same features as the experimental setup de-

scribed in the following section: x-ray energy of 9.7 keV, sample to detector dis-

tance of 58 cm and detector pixel size of 0.8 µm. Figures 7.2 (a) and (b) show the

sample amplitude and phase maps used in the simulations, with amplitude and

phase values lying in the intervals [0.6, 1] and [-1, 0] rad, respectively. Figures 7.2

(c) and (d) show, instead, the amplitudes and the phases of the simulated probe,

respectively. While the phase is constant, the amplitude assumes the shape dis-

tribution that would be caused by an inhomogeneous horizontal slit, i.e. a degree

of inhomogeneity in the beam is created through a random variation, along the

horizontal direction, of the vertical size and central position of the slit in the in-

tervals 15±5 µm and 1.25±1.25 µm, respectively. This was introduced to enable

a closer representation of the actual experimental conditions, where an imperfect

slit was used. 136 scans were simulated with a 2.3 µm scanning step, resulting in

an overlap between two subsequent probe positions of about 80%. It is important

to note that there is no theoretical limitation for the horizontal extension of the

beam, the only drawback being the increased computational time required to run

the corresponding simulation. The presence of noise is included in the simulation

in the following way: a constant offset of about 1/50 of the maximum recorded
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Figure 7.2: Simulated sample amplitude (a) and phase shift (b) maps. Simulated
beam amplitude (c) and phase (d) maps. Retrieved sample (e, f) and beam (g,
h) in the case of 1% Gaussian noise. Retrieved sample (i, l) and beam (m, n) in
the case of 10% Gaussian noise. All the original photographs used to simulate the
sample amplitude and phase shift maps were taken by the author.

intensity value, simulating the detector dark signal (i.e. the signal recorded when

the source is off), is added to the theoretical diffraction patterns, and a 1-10%

Gaussian noise is then generated. On top of this, the constant offset (which in

the real case is measured experimentally) is then subtracted, and the negative

intensity values are set to 0. The chosen offset and noise levels resemble the ones

obtained in experimental data.

Figures 7.2 (e)-(n) show the results of the 1D-PIE reconstruction algorithm in

the presence of 1% (Figs. 7.2 (e)-(h)) and 10% (Figs. 7.2 (i)-(n)) Gaussian noise,

respectively. In both cases, the algorithm converges to the right solution, despite
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the use of a wide laminar beam and scanning being performed in one direction

only. The latter case, in particular, demonstrates the substantial robustness of

the method against increasing noise levels, although these will inevitably lead

to noisier reconstructed images. We found that introducing a degree of inhomo-

geneity in the probe is of primary importance for this method. Previous findings

indicate that a “structured” illumination can improve the overall performance of

ptychographic algorithms [73], and that this structuring of the probe becomes

even more important when ptychography is applied in the near field regime [71],

as in this case the illumination extends over most of the reconstructed field of

view and its structure becomes the only source of diversity in the dataset. An

additional advantage for the 1D-PIE brought by structuring the beam is that it

helps coupling the effects of propagation in the vertical and horizontal directions,

so that a strong degree of diversity is introduced in the diffraction pattern also

in the horizontal direction by the vertical scan procedure.

We monitored the convergence of the algorithm [36] using the normalized

root mean square error εn between the reconstructed and real sample transfer

functions:

εn =

∑
x,y|O(x, y)−O(n)(x, y)|2∑

x,y|O(x, y)|2
. (7.9)

Figure 7.3 shows the evolution of εn over 1000 iterations of the algorithm for the

two simulations previously described. The error continuously decreases with the

number of iterations in both cases, reaching smaller values for lower noise level,

as expected.

A closer analysis of the reconstructed images of the sample shows the presence

of some artefacts. In particular, structured noise, in the form of vertical stripes, is
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Figure 7.3: Evolution of the RMS error εn. The solid (blue) line refers to the
case of 1% noise, the dashed (black) line refers to the case of 10% noise.

visible, especially in the amplitude image in the 10% noise case (Fig. 7.2(i)), and

the value of the phase shift is not fully retrieved in the dark, bottom left part of

the image (Fig. 7.2(f) and (l)). Similar considerations apply to the experimental

images presented in the next section. In particular, structured noise can be seen

both in Fig. 7.5, near the boundaries of the sample, and in Fig. 7.8 along the

entire image. These problems will be discussed later in this chapter.

7.4 Experiments

Experimental data were acquired at the coherence branch of I13 at the Diamond

Light Source (Didcot, UK). The source size of about 400×13 µm2 (horizontal and

vertical FWHM, respectively), jointly with the large source to sample distance

of about 210 m, provide a high degree of coherence at the sample plane [48]. An

x–ray energy of 9.7 keV was selected for the experiment using a Si(111) crystal
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Figure 7.4: Reconstructed (dotted, green) and theoretical (solid, black) phase
shift of a PEEK monofilament in water.

monochromator. For the first experiment, a 10 µm slit was used to define the

beam in the vertical direction. The sample and the detector were placed 6.3 cm

and 64.3 cm downstream of the slit, respectively. A scintillation microscope was

used as detector, consisting of a scintillation screen, an 8×magnifying optics and a

PCO Edge sCMOS camera with 2560×2160 (horizontal and vertical, respectively)

pixels. The effective pixel size was 0.8 µm.

Our first experimental aim was to demonstrate that the proposed method is

capable of retrieving phase values which are quantitatively correct. For this, we

used a weakly perturbing sample consisting of a polyetheretherketone (PEEK)

monofilament of 160 µm diameter immersed in 0.5 cm of water. Figure 7.4 shows

the comparison between theoretical and experimentally retrieved phase shifts; a

good quantitative agreement is obtained. Note that the corresponding sample

absorption signal is practically negligible at this energy (≈0.02%). For this sam-

ple, 500 scans were performed with scanning step of 1 µm and 2 s exposure time
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Figure 7.5: Reconstructed results of a spider leg. Retrieved sample amplitude
(a) and phase shift (b) maps. Retrieved beam amplitude (c) and phase (d) maps.
The lateral inserts show an enlargement of the regions in the white squares; red
arrows show some small details (≈5µm) visible in the reconstructed images, and
how these appear sharper in the phase image.

for each scan, for a total exposure time of about 17 minutes.

We then tested the method on a more complex biological sample, i.e. the leg

of a tiny spider; the reconstructed amplitude and phase maps are shown in Fig.

7.5. In this case, since the real sample transfer function O is unknown, the error

between the measured and reconstructed intensities on the detector plane was
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Figure 7.6: Evolution of the RMS error En.

computed as:

En =

∑
j

∑
x,y|
√
Ij(x, y)− |Ψj(x, y)||2∑
j

∑
x,y Ij(x, y)

. (7.10)

Figure 7.6 shows En as a function of the iteration number. The results resemble

those obtained in the simulations: the error continuously decreases, leading to a

high final image quality. The phase image, in particular, presents a high level

of detail, and very small features of the spider leg are resolved, as highlighted in

the lateral insert in Fig. 7.5. For this sample, 688 scans were performed with

scanning step of 1.6 µm and 0.5 s exposure time for each scan, for a total exposure

time of about 6 minutes.

For this first proof-of-concept experiment, the structuring of the probe was

implemented by using the slit imperfections on top of the beam inhomogeneities

caused by imperfect optical transfer through the beamline. From simulations, an

increase in robustness and image quality, together with a reduction of artefacts,

can be predicted when a stronger degree of perturbation is introduced in the

probe. The photon statistics was also limited in this case, resulting in relatively
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Figure 7.7: Logarithm of the intensity pattern recorded by the detector using a
thin wood section to increase the beam inhomogeneity without (a) and with (b) a
sample present in the beam.

high levels of noise (≈5-10%).

Following the above considerations, a second experiment was performed with

a different experimental configuration, aimed at experimentally measuring the

resolution of this method. In this case, a beam of approximately 20 µm in the

vertical direction was defined through an absorbing slit. A compound refractive

lens, placed close to the x-ray source, was used to increase the total flux in the slit

aperture. To increase the beam inhomogeneity, a thin wood section was placed

close to the slit, before the sample. The sample to detector distance was 94

cm. A scintillation microscope was used as detector, consisting of a scintillation

screen, an 8× magnifying optics and a PCO 4000 CCD camera with 4008×2672

(horizontal and vertical, respectively) pixels. The effective pixel size was 1.1 µm.

An example of the diffraction pattern acquired in this configuration is shown in

Fig. 7.7. 180 scans were performed with scanning step of 0.5 µm. To increase the

diversity in the dataset, the horizontal position of the probe was regularly varied
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Figure 7.8: Reconstructed phase shift of the resolution star pattern.

by [−33, 0, 55] µm along the scan. To reduce noise in the final data, 30 frames,

each of 0.5 s exposure time, were acquired for each scan position, for a total

exposure time of about 45 minutes. To correct for possible errors in the nominal

position of the motor used to scan the sample across the beam, the procedure

described in [74] was adopted in the reconstruction procedure. The sample was a

resolution star pattern, and the result of the retrieval procedure is shown in Fig.

7.8. The asymmetry in the spatial resolution is evident in the central region of

the image, where the period of the star pattern is smaller. Note that to reduce

the scan and reconstruction time, only the central part of the star, from which

the resolution can be measured, was illuminated and reconstructed.
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7.5 Spatial resolution

The resolution achievable in 1D-PIE is different along the x (scanning) and y

directions. In the x direction, it is limited by the maximum scattering angle for

which diffraction data are collected above the noise level, as for any other CDI

technique. In the y direction, where a near-field approach is used, the resolution

is limited by the (demagnified) pixel size. Different approaches can be used to

measure, or at least estimate, the resolution of the reconstructed images. In

particular, for the simulated case, we compared the Fourier transforms of the

simulated sample transfer function with the reconstructed one for both the 1%

and the 10% noise cases, using the Fourier ring correlation (FRC) criterion [75].

To distinguish between the x and y directions, we selected two angular regions

of the Fourier space along the x and y directions (Fig. 7.9(a)). The FRC was

then computed in the first region (upper and lower parts of the Fourier space)

to estimate the resolution in the x direction, and in the second region (left and

right-hand parts) for the resolution in the y direction. We arbitrarily chose an

angular width of 30◦ for the two regions: a larger angle would include a greater

part of the Fourier spectrum, in which, however, the contribution of the x and y

directions would be largely mixed. The maximum frequency for which the sample

is reconstructed correctly was found using the 2σ criterion [75] (Fig. 7.9), and

the results are shown in Table 7.1. This result shows that the 1D-PIE has the

potential to offer an enhanced resolution, and therefore increased sensitivity to

small details, in the x direction.

A similar approach could be used to estimate the resolution of the experi-

mental data, when two independent reconstructions are available. For the ex-
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Figure 7.9: (a) Division of the Fourier space for the calculation of the FRC curves.
FRC curves (solid) and 2σ criterion (dashed) for 1% noise along x (b) and y (c),
and for 10% noise along x (d) and y (e).

Table 7.1: Estimated resolution values of the reconstructed sample transmission
function for the simulated case, using the FRC and the 2σ criterion.

Noise Resolution x (µm) Resolution y (µm) Detector pixel (µm)
1% 0.6 0.9 0.8
10% 0.9 1.4 0.8

perimental results shown in Fig. 7.5, however, only one dataset, and thus one

reconstruction, was available. Nonetheless, a first estimation of the experimental

resolution can be obtained by analysing the Fourier spectrum of the spider leg

transmission function, and its noise level, in the same x and y regions indicated

in Fig. 7.9(a). In the high frequency parts of the spectrum, in fact, noise dom-

inates: we can therefore use these parts of the spectrum to estimate the mean

noise value n̄ and its standard deviation σn in the x and y regions of the spec-

trum. Assuming that all the frequency components above n̄ + σn are correctly

reconstructed, we can estimate the resolution along the x and y directions to be
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Figure 7.10: Mean radial Fourier spectrum of the spider leg transmission function
(Fig. 7.5) along the x (a) and y (b) directions (solid lines) and relative thresholds
(dashed lines) used to estimate the experimental resolution.

approximately 1.2 µm and 2.0 µm, respectively. This is done by comparing the

radial integrations of the Fourier spectrum (Fig. 7.10, solid lines) in the x and

y regions with the relative thresholds (Fig. 7.10, dashed lines) n̄ + σn, calcu-

lated in the same regions. Note that the values of σn are calculated from the

two-dimensional Fourier spectrum, and thus they appear to be higher that the

noise levels of the one-dimensional Fourier profiles in Fig. 7.10; this, however,

only depends on the radial integration process that reduces the noise level of

the resulting one-dimensional profiles. Note also that the thresholds for the two

regions are different, since the noise level is higher in the y region than in the x

region. Using a more conservative threshold of n̄+ 2σn, we obtain a resolution of

1.5 µm and 2.6 µm for the x and y direction, respectively.

The resolution obtained for the star pattern in Fig. 7.8, instead, can be

directly measured from the reconstructed image. In particular, the phase modu-

lation in the reconstructed image was measured as a function of the period of the

star pattern (proportional to the distance from the centre of the star), along the

horizontal and the vertical directions. The result is shown in Fig. 7.11. When the
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Figure 7.11: (a) Central region of the reconstructed image. Circles corresponding
to a semi-period of the star pattern of 0.45 µm and 2.6 µm are shown, representing
the final resolution in the x and y direction, respectively. Profiles of the phase
modulation in the final reconstruction along the x (b) and y (c) directions (solid
lines) and relative thresholds (dashed lines), used to estimate the experimental
resolution, as a function of the semi-period of the star pattern.

period is much greater than the resolution, the modulation is maximum (100%);

as the period decreases, the modulation approaches 0%. By using a threshold

equal to 20%, a value of 0.45 µm and 2.6 µm for the resolution in the vertical

and horizontal direction was found, respectively. Note that we define here the

resolution equal to the semi-period of the pattern for which the modulation is

equal to the chosen threshold (20%). The results obtained for the experimental

resolution are summarized in Table 7.2. It is important to note how, by increasing

the photon statistic and the probe inhomogeneity, a substantial improvement in

the resolution in the vertical direction is observed in comparison with the results

obtained for the spider leg. The same improvement is not found for the resolu-

145



7.6 Discussion

Table 7.2: Estimated resolution values of the reconstructed sample transmission
function for the experimental case.

Sample Resolution x (µm) Resolution y (µm) Detector pixel (µm)
Spider leg 1.2 2.0 0.8

Star pattern 0.45 2.6 1.1

tion in the horizontal direction. In the two cases, in fact, the resolution in the y

direction is 2.5 and 2.4 times larger than the pixel size, respectively. These values

are compatible with the intrinsic resolution of the detector, which is larger than

the pixel size, due to its point spread function.

7.6 Discussion

The presented results show how the 1D-PIE approach allows the reconstruction

of the complex transmission function of relatively large samples, with enhanced

resolution in the scanning direction. The technique has been applied to simu-

lated data, showing excellent robustness against increasing noise levels, and to

experimental data, confirming the method’s ability to correctly reconstruct the

quantitative values of amplitude and phase for large fields of view. A peculiar

feature of the method is the intrinsic asymmetric resolution of the reconstructed

images, and both simulation and experiment show that sub-pixel resolution is

achievable along the scanning direction.

The images obtained through this approach, however, can present artefacts

that need to be further investigated. In particular, some structured noise can ap-

pear in the reconstructed images. This can be attributed to an incorrect retrieval

of the probe function. In fact, as this is scanned through the sample, an error
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7.6 Discussion

in the probe would induce a corresponding error in the retrieved sample trans-

mission function, with a structure determined by the scan pattern. This problem

can be seen in both simulated (Fig. 7.2(i)) and experimental (Figs. 7.5 and 7.8)

results. Another limitation we observed is the slow convergence of the algorithm,

as well as possible stagnations. This can result in regions of the object where the

correct value of the transmission function is retrieved only after a high number

of iterations, or where the value of the phase shift is not fully retrieved. This

problem usually appears in uniform regions of the reconstructed images (see, for

example, the background in Fig. 7.2(f) and (l)).

It is interesting to compare the 1D-PIE approach to beam tracking. In beam

tracking, the resolution in the scanning direction is comparable to the aperture

of the slit used to define the beam. For images of the star pattern, the resolution

obtained with beam tracking would therefore be 20 µm, almost 45 fold the one

obtained with 1D-PIE. Additionally, with the beam tracking approach only the

gradient of the phase shift is directly reconstructed; while this signal enhances

the borders of a sample structures, it provides limited “area” contrast. On the

other hand 1D-PIE cannot be implemented with incoherent laboratory sources,

and, in general, the convergence of the retrieval procedure is not guaranteed. If,

for example, the overlap between subsequent scan positions in not sufficient, the

algorithm can fail to converge. We found that this could also be the case if the

distortion induced by the scattering element to the probe is too high. Further

studies are therefore necessary to address the above problems, encountered in the

development of the 1D-PIE method.
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Conclusions

X-ray phase contrast imaging (XPCi) is an important tool in the study and char-

acterization of specimens in different research fields. Its advantages in terms of

image contrast and information content have been demonstrated in the last two

decades and are currently exploited in different facilities around the world, both

with synchrotron and laboratory setups. New techniques are currently being de-

veloped, aiming at increasing the performances of XPCi and gradually replacing

absorption-based systems. To achieve this goal, it is of primary importance to

develop techniques based on simple experimental configurations, which can be

implemented with standard laboratory systems. At the same time, new syn-

chrotron facilities are being built, and existing one updated, offering increased

performances in terms of photon flux and coherence. This promotes the devel-

opment of innovative imaging techniques that can achieve enhanced performance

by benefiting from the above features. In this context, techniques such as edge

illumination and ptychography represent an excellent example of how XPCi is

exploited in laboratory and synchrotron environments. While edge illumination

has demonstrated high phase sensitivity also with laboratory sources, ptychog-

raphy, and more in general coherent diffraction imaging, currently allows the

achievement of extremely high resolutions with coherent sources.
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Based on recent achievements in the field of XPCi, two new methods have

been presented in this work: beam tracking and one dimensional ptychography

(1D-PIE). Beam tracking allows the quantitative reconstruction of absorption,

refraction and ultra-small-angle scattering signals. In its first implementation, it

relied on a high resolution detector to analyse the variations induced by a sam-

ple to a reference beam. The complementary nature of the above three signals,

together with the simple experimental setup, makes beam tracking a valuable

tool for multi-modal x-ray imaging of specimens in a large variety of fields. A

deeper analysis of the method showed its very significant analogies with edge

illumination: the role played by detector mask apertures in edge illumination is

replaced by the pixel point spread function in beam tracking. This opens the

possibility to implement beam tracking with laboratory setups and standard de-

tectors, and to adopt phase retrieval methods already developed in the context

of edge illumination. Removing the detector mask results in a more efficient use

of the radiation dose delivered to the sample, and in a reduction of the total

exposure time. On the other hand, unlike in edge illumination, the sensitivity

to the refraction and scattering signal in beam tracking strongly relies on the

detector performances. While this poses restrictions in terms of suitable detector

technology, it leaves promising room for improvement, related to the develop-

ment of improved photon-counting, direct conversion detector systems, currently

a very active area of research. The last step in the development of beam track-

ing presented in this work is its implementation in computed tomography (CT).

The first experimental demonstration of beam tracking CT was obtained using

synchrotron radiation. Results demonstrate the quantitative nature of CT recon-

structions obtained with this technique, its applicability to complex samples, and
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suggest steps for further improvements.

The second method presented here, 1D-PIE, has been developed with the aim

to maximize the amount of informations extracted from the intensity patterns

recorded with a beam tracking setup. In beam tracking, the extracted parame-

ters refer to average properties of the sample refractive index within the aperture.

Conversely, 1D-PIE aims at retrieving the variations of the complex refractive in-

dex within the aperture, rather than average quantities. To achieve this result

the x-ray beam, the sample, and their interaction need to be described by means

of the wave theory of x-ray propagation. This allows us to relate variations of

the complex refractive index of the sample within the aperture to variations in

the detected intensity pattern. However, the inverse problem of reconstructing

the sample refractive index from a measured intensity pattern is challenging, and

several approaches to its solution have been developed over the years. Ptychogra-

phy is one of them, and presents some similarities with our first implementation

of beam tracking, with a single absorbing slit placed before the sample. 1D-PIE

combines beam tracking and ptychography, leading to a significant improvement

in terms of image resolution with respect to the former. 1D-PIE reconstruc-

tions, however, are more complex than the phase retrieval method used in beam

tracking, and some problems are still open that need to be addressed. If prop-

erly developed, however, 1D-PIE could provide an important improvement of the

beam tracking approach when coherent radiation and high resolution detectors

are available.

It is finally important to point out some of the possible future developments

of the two techniques presented here. In beam tracking, a Gaussian beam as-

sumption has been used for all the results presented in this work. This assump-
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tion, however, is merely a tool to simplify the retrieval procedure, and can be

relaxed: alternative, and more general retrieval methods should therefore be in-

vestigated. This is particularly important in the synchrotron implementation,

where the diffracted beam profile can significantly vary from a Gaussian func-

tion. Concerning the laboratory implementation, different geometries, allowing

the use of “standard”, non micro-focal, sources should be studied. This should

allow a substantial reduction in exposure time, due to the much greater flux avail-

able, thus making for example laboratory based CT implementations simpler and

faster. In both configurations, refined optimisation of the experimental param-

eters (such as propagation distances, mask period and aperture size) should be

pursued. Finally, the possibility of using iterative reconstruction algorithm for

beam tracking CT should be investigated.

Future studies on one dimensional ptychography should be focused on the

convergence properties of the algorithm, and in particular on how this is affected

by parameters such as scan geometry, degree of overlap between probe positions,

and degree of inhomogeneity of the probe. At the same time, a direct compari-

son of 1D-PIE with the more conventional far-field approach of ptychography and

with its recently presented near-field implementation should be conducted, to un-

derstand its potential advantages and disadvantages. 1D-PIE would also benefit

from a detailed study of the optimization of the experimental setup, which would

enable understanding how parameters such as propagation distance, slit aperture

size, and detector pixel size affect the method’s performances. Finally, the CT

implementation of 1D-PIE, together with its advantages and disadvantages with

respect to similar techniques, should be investigated.
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