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ABSTRACT
We present and test a method that dramatically reduces variance arising from the sparse sam-
pling of wavemodes in cosmological simulations. The method uses two simulations which
are fixed (the initial Fourier mode amplitudes are fixed to the ensemble average power spec-
trum) and paired (with initial modes exactly out of phase). We measure the power spectrum,
monopole and quadrupole redshift-space correlation functions, halo mass function and re-
duced bispectrum at z = 1. By these measures, predictions from a fixed pair can be as precise
on non-linear scales as an average over 50 traditional simulations. The fixing procedure in-
troduces a non-Gaussian correction to the initial conditions; we give an analytic argument
showing why the simulations are still able to predict the mean properties of the Gaussian
ensemble. We anticipate that the method will drive down the computational time requirements
for accurate large-scale explorations of galaxy bias and clustering statistics, and facilitating
the use of numerical simulations in cosmological data interpretation.
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1 IN T RO D U C T I O N

Numerical simulations are an essential tool for cosmology, espe-
cially for interpreting observational surveys (see Kuhlen, Vogels-
berger & Angulo 2012, for a review). They can be deployed to
probe the impact of a given cosmological ingredient (e.g. Baldi
et al. 2014), create virtual galaxy populations (e.g. Overzier et al.
2009), check and develop analytic treatments for structure forma-
tion (e.g. Carlson, White & Padmanabhan 2009), and understand
systematic and statistical errors in cosmological measurements (e.g.
Manera et al. 2015). In the future, simulations could even be used
to constrain cosmological parameters (Angulo & Hilbert 2015).

However, a limitation for all the above applications is the sparse
sampling of Fourier modes due to the finite extent of the simulation
box. A given cosmological simulation is initialized to a particular
realization of a Gaussian random field. The power spectrum of the
realization, P̂ L(k), therefore differs from the ensemble mean power
spectrum, P L(k). Given a box large enough to capture all physical
effects (Bagla, Prasad & Khandai 2009), the largest scale modes
are still poorly sampled. This, together with the non-linear coupling
of small and large scales, implies that several-Gpc size boxes gen-
erate statistical errors which limit inferences on 100 or even 10 Mpc
scales.

This undersampling effect is closely connected to (though, owing
to the non-linear evolution, not precisely the same as) observational
cosmic variance. In the observational case, the finite volume that
can be achieved by a given survey constitutes an irreducible source
of uncertainty. On the other hand the computational variance can
be strongly suppressed, at least in principle, until it is smaller than
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the cosmic variance and other sources of error. This is usually
achieved by simulating huge cosmological volumes (e.g. Rasera
et al. 2014) or a large number of realizations (e.g. Takahashi et al.
2009). Finite computing resources then generate a tension between
the need for large volumes and for high resolution (the latter is
required to better resolve the distribution of individual galaxies and
their internal structure). Even as supercomputing facilities expand,
the tension is becoming more acute as surveys probe larger scales
and constrain the statistics of fluctuations to greater precision. For
instance, reaching 1 per cent accuracy over the whole range of scales
to be probed by Euclid would require the simulation of ∼105 Gpc3.

In this Letter, we propose and test a method to suppress the ef-
fect of box variance drastically. We will show that with just two
simulations we can achieve the accuracy delivered by tens to hun-
dreds of traditional simulations at the same scale, depending on the
particular problem in hand. Briefly, the two simulations:

(i) use a fixed input power spectrum, meaning that we enforce
P̂ L = P L when generating the initial conditions;

(ii) are paired, so that a hierarchy of effects due to chance phase
correlations can be cancelled (Pontzen et al. 2016).

The first condition destroys the statistical Gaussianity of the in-
put field which, at first sight, would seem to limit the usefulness of
the approach (see also Neyrinck & Yang 2013). However we will
demonstrate empirically and analytically that, by all measures ex-
plored here, the non-Gaussian corrections have a negligible effect
on ensemble mean clustering statistics.

This Letter is set out as follows. In Section 2, we implement and
test our method. We develop an analytic understanding of why the
method works in Section 3. Finally, in Section 4 we present our
conclusions.
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L2 R. E. Angulo and A. Pontzen

2 C OMPARISON W ITH A N ENSEMBLE
O F S I M U L AT I O N S

2.1 Numerical simulations

All simulations considered in this Letter contain 10243 particles of
mass 1.7 × 1012 h−1 M� inside a box of side L = 3 h−1 Gpc. The
initial particle positions are computed from an input linear density
field δL using 2LPT. The simulation particles are then evolved under
self-gravity with a COLA algorithm (Tassev, Zaldarriaga & Eisenstein
2013) using 10 steps from z = 9 to 1. The cosmological parameters
assumed correspond to those of the Millennium series (Springel
2005): �m = 0.25, σ 8 = 0.9, and h = 0.73.

The COLA algorithm is an approximate N-body method, in the
sense that the orbits inside high-density regions are not properly
integrated. However, the non-linear evolution of intermediate and
large scales is accurately captured (Howlett, Manera & Percival
2015; Koda et al. 2016), at a fraction of the computational cost of
a traditional N-body simulation. This enables the rapid simulation
of extremely large volumes, which in turn allows very precise cal-
culations of different statistics that serve as a benchmark for the
performance of our method. The total volume of our reference en-
semble is 8100 h−1 Gpc3; more details are given in Chaves-Montero
et al. (in preparation).

The only difference between the ensemble of simulations and the
pair of fixed simulations is in the input fields δL(x). Because of the
finite box size, the Fourier modes for the field are quantized;

δL(x) ≡
∑

i

eiki ·xδL
i , (1)

where i indexes the possible modes and δL
i is the Fourier amplitude

for the mode at wavevector ki . We can choose the indexing such that
k−i = −ki ; note that, for the field δL(x) to remain real, δL∗

i = δL
−i .

The reference ensemble of 300 simulations consists of boxes each
with δL

i s drawn from a Gaussian, zero-mean probability distribution
function (PDF). Decomposed into the magnitude |δL

i | and phase
θi ≡ arg δL

i , the PDF for each independent mode i is given by

Prg
(∣∣δL

i

∣∣ , θi

) ≡ |δL
i |

πPi

exp

(
−

∣∣δL
i

∣∣2

Pi

)
, (2)

where Pi is the discrete version of the power spectrum P(k). In the
fixed-power approach, the PDF for mode i is instead given by

Prf
(∣∣δL

i

∣∣ , θi

) ≡ 1

2π
δD

(∣∣δL
i

∣∣ −
√

Pi

)
, (3)

where δD indicates the Dirac delta-function. One can sample from
Prf straightforwardly by setting

δL
i =

√
Pi exp (iθi) , (4)

with θ i drawn with uniform probability between 0 and 2π, and
θ−i = −θ i. The second of the pair of simulations is then generated
by transforming θ i → π + θ i (Pontzen et al. 2016).

Sampling from Prf results in an ensemble that is not equivalent
to sampling from Prg. However, Prf can stand in place of Prg for
many practical calculations (the analytic justification is discussed in
Section 3). We verified that, despite the fixed amplitudes, the one-
point input overdensity PDF in real space, δL(x), is still a Gaussian
deviate owing to the central limit theorem. Furthermore, Fig. 1
shows the distribution of overdensities in the initial conditions at
z = 9, δIC, averaged over spheres of 8 h−1 Mpc radius for a subset of
traditional simulations (grey lines) and the two paired-and-fixed (or-
ange lines; these overlap almost perfectly). The corresponding PDF

Figure 1. The probability density function of non-linear overdensities in
spheres of radius 8 h−1 Mpc, as measured in the fixed simulations (orange
lines) and in an ensemble of Gaussian simulations (grey lines), at the starting
redshift, z = 9. The blue line and red circles show the mean of the respective
cases, as indicated by the legend.

for the combined volume of the two paired-and-fixed simulations
is shown by the red dots. There is excellent agreement between
this characterization of the density fields of traditional and fixed
simulations, with both following a near-Gaussian distribution. The
mild skewness (which also agrees between the cases) arises from
the 2LPT particle displacements.

2.2 Results

Fig. 2 shows the dark matter power spectrum measured from the
z = 1 outputs. In the top panel, the results of the fixed pair (red
circles) are indistinguishable from the traditional ensemble mean
(blue line) over all the scales plotted, confirming that the approach
correctly predicts the ensemble average power spectrum in linear
and in non-linear regimes.

The bottom panel shows deviations with respect to the ensem-
ble mean, in units of the standard deviation of the ensemble,
σ (k) = (〈P̂ NL(k)2〉 − 〈P̂ NL(k)〉2)1/2. On scales where evolution is
linear (approximately k < 0.03 h Mpc−1) the fixed simulations
should exactly coincide with linear theory by construction. As ex-
pected, the measured power spectrum agrees with the ensemble
mean to an accuracy limited only by the statistical errors of the lat-
ter, σ (k)/

√
300 � 2 per cent of P(k). At larger k, non-linear effects

– which depend not only on the initial amplitude of Fourier modes
but also on phases – become important. Accordingly, the power
spectrum of the two individual fixed simulations (orange lines) drift
away from the exact mean. However the leading order deviations
from the ensemble mean are equal and opposite in sign (Pontzen
et al. 2016) between the pair of fixed simulations, so that their aver-
age (red dots) has a reduced rms error much below 1 per cent (0.27σ

over the range 0.03 < k h Mpc−1 < 1). The accuracy of our pair of
fixed simulations by this measure is approximately equivalent to
averaging over 14 traditional simulations, allowing for a factor 7
reduction in computer time. In particular, the technique suppresses
statistical errors on all scales to the point where they are smaller
than the impact of numerical parameters (Schneider et al. 2016).

In Fig. 3, we show that the high accuracy of the method also
holds in redshift space. In this figure, we plot the monopole (red
circles) and quadrupole (green triangles) terms of an expansion
of the 2D correlation function in terms of Legendre polynomials.
Predictions from the pair of fixed simulations again agree well with
the ensemble mean. The same pattern persists where the individual
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Simulations with suppressed variance L3

Figure 2. The power spectrum of the dark matter at z = 1. In the top panel,
measurements from the ensemble of 300 traditional simulations are shown
as grey lines, with the mean shown by a blue line. The solid red circles show
the average of the two simulations in the paired-and-fixed set. Finally, the
horizontal dotted line marks the shot noise limit. In the bottom panel, we
show the differences with respect to the average ensemble measurement,
in units of the standard deviation in the ensemble. As in the top panel,
red symbols show the final estimate from the pair of fixed simulations. We
additionally show residuals in each of the two individual fixed simulations
by the orange lines. The envelopes bounded by dashed lines mark a 1 per cent
(left) and 0.1 per cent (right) uncertainty in the power spectrum. The fixed
pair produces a power spectrum estimate with an rms error of just 0.27σ on
non-linear scales 0.03 < k/h Mpc−1 < 1.

fixed simulations perform best on large scales, while on smaller
scales the pairing leads to a substantial cancellation of remaining
errors. The overall technique yields a precise prediction for the non-
linear correlation function, reaching a 2 per cent accuracy over the
whole range of scales investigated (in particular around the baryonic
acoustic oscillation peak, whose shape and location is currently
driving large simulation campaigns). With traditional ensemble-
average techniques, achieving this accuracy would require around
50 simulations of 3 h−1 Gpc box size.

Having established the accuracy of our simulations for predicting
two-point statistics, we now turn to higher-order clustering. The
bispectrum is defined (in the limit that the box size is infinite) by

B(k1, k2, θ ) δD(k1 + k2 + k3) = 〈δNL(k1)δNL(k2)δNL(k3)〉, (5)

where δNL(k) is the Fourier transform of the non-linear evolved
overdensity. We have assumed statistical isotropy in writing B as a
function of θ , the angle between the k1 and k2 vectors, and statistical
homogeneity imposes the Dirac-delta dependence on the left-hand
side. We particularly consider the case where k1 = 0.02 h−1 Mpc
and k2 = 0.04 h−1 Mpc to capture the onset of non-linearity, and
plot the reduced bispectrum

Q(θ ) = B̂(k1, k2, θ )

P̂ NL(k1)P̂ NL(k2) + P̂ NL(k1)P̂ NL(k3) + P̂ NL(k2)P̂ NL(k3)
,

(6)

Figure 3. Same as Fig. 2 but for the monopole (red circles) and the
quadrupole (green triangles) of the redshift-space correlation function. The
rms error on the paired-and-fixed result is 0.12σ and 0.17σ for the monopole
and quadrupole, respectively, meaning that around 50 traditional simulations
are required to reach the accuracy of a fixed pair of simulations.

Figure 4. Same as Fig. 2 but for the reduced bispectrum. The configuration
plotted corresponds to triangles with two sides fixed at k1 = 0.02 h Mpc−1

and k2 = 0.04 h Mpc−1, with their angle ranging from 0 to π. The rms
deviation is 0.14σ .

where B̂ is the estimated bispectrum from a simulation. The def-
inition of Q(θ ) divides out much of the sensitivity to the power
spectrum realization. Accordingly, when we plot this quantity
in Fig. 4, each of the two individual fixed simulations exhibit
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L4 R. E. Angulo and A. Pontzen

Figure 5. Same as Fig. 2 but for the abundance of FoF haloes. The rms
deviation is 0.47σ – this is a significant improvement over two randomly
chosen ensemble members (0.70σ ) albeit not as decisive as in the earlier
cases of the power spectrum, correlation function, and bispectrum.

fluctuations of an amplitude comparable to that in traditional real-
izations. However, the pairing procedure cancels the leading order
contribution to these fluctuations because they have odd parity in the
input linear density field. Therefore the final estimate from the pair
of fixed simulations has an rms deviation from the ensemble average
of only 0.14σ over all θ . Reaching this accuracy with traditional
simulations would again require averaging over 50 (as opposed to
two) realizations.

As discussed in Koda et al. (2016), the COLA N-body algo-
rithm does not resolve the internal structure of haloes but none
the less predicts accurate mass functions for the overall population.
Therefore we can meaningfully test the abundance of collapsed ob-
jects. In Fig. 5, we show the mass function of dark matter haloes
identified using a Friends-of-Friends algorithm (Davis et al. 1985)
with a linking length set to l = 0.2. The new method produces results
with suppressed fluctuations relative to two Gaussian simulations,
with strong cancellations between the pair. The average rms error is
0.47σ , roughly the level expected from four simulations randomly
picked from the traditional ensemble.

3 A NA LY T I C E X P L O R AT I O N

In the previous section, we showed that paired-and-fixed simulations
are able to predict the average properties of a traditional ensemble.
We will now explore the technique from an analytic perspective.
The pairing approach has recently been introduced and discussed
elsewhere (Pontzen et al. 2016, see particularly section II.C) and so
our focus is on the power spectrum fixing. Sampling from the P̂ (k)-
fixed PDF Prf, defined by equation (3), is not equivalent to sampling
from the true Gaussian Prg, equation (2). The aim of this section
is therefore to motivate more precisely why Prf has reproduced the
ensemble average results of Prg.

Expectation values of any n-point expression with respect to ei-
ther Prf or Prg will be denoted by 〈δi1 , . . . , δin 〉f and 〈δi1 , . . . , δin 〉g ,
respectively. In the case of the fixed distribution, we can use expres-

sion (4) to write that

〈
δL
i1
, . . . , δL

in

〉
f

=
√

Pi1 , . . . , Pin

(2π)N

×
∫ 2π

0
dNθ exp

(
iθi1 + · · · + iθin

)
, (7)

where the integral is over the possible θ values for all N modes.
For n = 1 the single phase factor exp (i θ1) averages to zero, and

consequently 〈δL
i 〉g = 〈δL

i 〉f = 0. This result extends to any n-point
correlation for n odd; we therefore need only consider the even-n
cases further.

For n = 2, the properties of the two PDFs are indistinguishable:〈
δL
i δL

j

〉
f

= 〈
δL
i δL

j

〉
g

= δi,−jPi , (8)

where δi, −j is the Kronecker delta equal to 1 when i = −j and 0
otherwise, and there is no sum implied over repeated indices. The
Gaussian result is standard, and the fixed result is obtained by seeing
that when i �= −j, the i and j phase integrals in equation (7) evaluate
to zero. For n = 4, the Gaussian result follows by Wick’s theorem:〈
δL
i δL

j δL
k δL

l

〉
g

= δi,−j δk,−lPiPk

+ δi,−kδj,−lPiPj + δi,−lδj,−kPiPj . (9)

The fixed result, again obtained through use of (7) is similar to the
Gaussian case because indices must be ‘paired up’ for their phase
integrals to be non-vanishing. The only difference arises in the case
where δiδjδkδl = |δi|4; here, the Gaussian result is 〈|δL

i |4〉g = 3P 2
i

but in the fixed case we find that 〈|δL
i |4〉f = P 2

i . The result is〈
δL
i δL

j δL
k δL

l

〉
f

= 〈
δL
i δL

j δL
k δL

l

〉
g

−2
(
δij δklδi,−k + δikδjlδi,−j + δilδjkδi,−j

)
P 2

i ,

(10)

assuming that we have P0 = 0 (otherwise a further term is necessary
to divide the correction by 3 in the i = j = k = l = 0 case).

The correction (10) is consistent with how the power spectrum
of a fixed realization must have zero variance:〈(|δL

i |2 − Pi

)2
〉

f
=

〈(|δL
i |2 − Pi

)2
〉

g
− 2P 2

i = 0. (11)

Evidently there is a dramatic difference – intentionally so – between
fixed and Gaussian statistics: in the linear regime, the fixed P(k) ap-
proach reproduces the ensemble mean with no variance. While this
also means that the input trispectrum is unavoidably non-Gaussian
by equation (10), the correction only appears when all indices al-
ways take the same value (up to sign). We can now explain why
most measures of the output non-linear density field are extremely
insensitive to this change.

The non-linear density field can be written in standard perturba-
tion theory (SPT; e.g. Bernardeau et al. 2002) as

δNL
i = δL

i +
∑
jk

F
(2)
ijk δ

L
j δL

k +
∑
ijkl

F
(3)
ijklδ

L
j δL

k δL
l + · · · , (12)

where F (n)
... for n = 2, 3, . . . are the discretized version of the SPT

kernels which in turn are homogeneous, degree-zero, continuous
functions of the wavevectors. As a concrete example of an observ-
able correlation in this formalism, we can consider the one-loop
SPT non-linear power spectrum with Gaussian statistics:

P
NL,g
i ≡ 〈

δNL
i δNL

−i

〉
g

� Pi +
∑
jklm

(
F

(2)
ijkF

(2)
−i,lm + 2δi,−jF

(3)
iklm

)

× (
δj,−kδl,−mPjPl + δj,−lδk,−mPjPk + δj,−mδk,−lPjPk

)
.

(13)
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Simulations with suppressed variance L5

Momentum conservation implicit in the F (n)
... s and explicit in the

Kronecker deltas eliminate three of the summations, so that the
overall summation is over just one index. Therefore the magnitude
of the one-loop terms scales proportionally to NkP(k) where k is
a characteristic scale and Nk is the number of modes around that
scale (as defined by the range of modes over which the relevant F is
large). In a continuum limit (i.e. as the box size L → ∞), Nk turns
into the appropriate Fourier-space volume. These simple scaling
behaviours are assured by the degree-zero homogeneity of the F(n)

functions.
In the fixed case, expression (13) must be corrected by using

relation (10), giving

P NL,f
i � P

NL,g
i − 12F

(3)
i,−i,i,−iP

2
i − 2

∑
j

F
(2)
ijj F

(2)
−i,−j,−jP

2
j , (14)

which is valid at one-loop order for the case ki �= 0. Here most of
the Kronecker deltas have already been summed out; the remaining
summation, by momentum conservation in F(2), only has a contri-
bution at the index j with kj = ki/2. The overall contribution of
the correction (14) is therefore suppressed relative to the physical
terms in equation (13) by O(Nk).

For the bispectrum with Gaussian statistics, we have

B
g
ijk ≡ 〈

δNL
i δNL

j δNL
k

〉
g

� 2F
(2)
i,−j,−kPjPk + δj,−k

∑
l

F
(2)
il,−lPjPl + cyc. perms in ijk

(15)

to one-loop order. The second term contributes only for ki = 0. The
correction is now

B
f
ijk = B

g
ijk − 4F

(2)
i,j ,−jP

2
j δjk

−2F
(2)
i,−j,−jP

2
j δjk − cyc. perms in ijk, (16)

and is non-zero only in the case where kj = kk = −ki/2 or ki = 0
(or a cyclic permutation of those configurations). All other bispectra
are unaffected by the changed statistics at this order.

For higher order perturbation theory (or higher n correlations)
the overall pattern established here will remain: the linear n-point
correction term (10) will always involve at least one extra Kronecker
delta relative to the physical part (9). For observable correlations,
this implies that either the effect is diluted by a power of a large
factor Nk (as in the case of the one-loop power spectrum) or plays
a role only in a measure-zero part of the continuous function being
studied (as in the case of the one-loop bispectrum).

4 C O N C L U S I O N S

In this Letter, we have explored a new method to suppress the impact
of undersampling Fourier modes in simulations.

By fixing the initial amplitude of Fourier modes to the ensem-
ble mean, variance has been eliminated on linear scales. In the
non-linear regime, the suppression is imperfect because phase-
correlation effects begin to impact on the evolved amplitudes. How-
ever by also pairing the simulation with a phase-reversed counterpart
we can average away the leading order imperfections of this type.

We have tested the non-linear dark matter power spectrum, the
multipoles of the redshift-space correlation function, the reduced
bispectrum and the halo mass function. In all cases, the method is
unbiased (up to the accuracy of our comparison ensemble averages)
and strongly suppresses unwanted variance. These tests were carried
out with a suite of 300 COLA simulations at z = 1. The analytic ar-
guments of Section 3 suggest that the accuracy of the results should
be maintained to all redshifts. Similarly, we do not expect results to

change when using more accurate integration methods than COLA,
especially since small-scale gravitational collapse are largely insen-
sitive to large-scale correlations. All these points deserve systematic
investigation in future.

Paired simulations can be used with purely Gaussian initial con-
ditions if desired, retaining many of the small-scale benefits we have
discussed. Conversely, single unpaired simulations with fixed am-
plitudes can be used, retaining the large-scale benefits. Whenever
fixing is applied, the ensemble statistics are not strictly Gaussian.
The local one-point PDF is, however, unaffected (Fig. 1) and fur-
thermore our numerical results directly show that a variety of statis-
tics attain the correct, unbiased ensemble mean value. We gave an
analytic discussion of why the non-Gaussianity does not impinge,
arguing that the errors are either strongly suppressed by the large
density of modes or affect only a measure-zero set of correlations.
Fixing the power spectrum does need to be approached with care
but our results underline that it can be a valuable technique.

Straightforward applications are in any comparison to analytic
models, in characterization of the performance of data modelling,
in emulators and in development of fitting functions for non-linear
statistics. It will be particularly valuable to couple the technique to
high-resolution simulations incorporating baryonic effects to mea-
sure galaxy bias, free of the usual difficulties of large-scale vari-
ance. Furthermore the method could be used in combination with
rescaling techniques to quickly predict galaxy clustering statistics
as a function of cosmological parameters (Angulo & White 2010).
All these are crucial steps towards a comprehensive exploitation of
upcoming survey data.
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