## Analysis of brain volume in a 19 year-old extremely-preterm born cohort

Andrew Melbourne<sup>1</sup>, Eliza Orasanu<sup>1</sup>, Zach Eaton-Rosen<sup>1</sup>, Manuel J Cardoso<sup>1</sup>, Joanne Beckmann<sup>2</sup>, Lorna Smith<sup>3</sup>, David Atkinson<sup>1</sup>, Neil Marlow<sup>2</sup>, and Sebastien Ourselin<sup>1</sup>

<sup>1</sup>University College London, London, United Kingdom, <sup>2</sup>Institute for Women's Health, University College London, London, United Kingdom, <sup>3</sup>University College Hospital, London, United Kingdom

### Synopsis

# This adustract presents an analysis of brain tissue volume in a cohort of 69 extremely preterm born young adults and 50 term-born controls at 19 years of age.

### Introduction

The consequences of extremely preterm birth are a global health concern. Rates of prematurity are increasing throughout the world and long-term sequelae range from physical impairments such as cerebral palsy or blindness to social and executive function impairments such as autism. In the UK, studies have shown that although survival rates at the lowest gestations are increasing, rates of disability remain unchanged [1]. The long-term impact of these deficits on adolescence is currently poorly understood and the adolescent brain phenotype of extreme prematurity is currently unknown. Our work comprises a study of 69 extremely preterm born 19 year olds and 50 of their age-matched peers, social-economically matched at 6 years of age. Neuroimaging carried out on this cohort will enable us to establish the long-term effects of extreme prematurity on the appearance and structure of the brain. This work investigates how brain tissue volumes differ in this extremely preterm born group of young adults.

#### Methods

Imaging data were acquired for a cohort of 119 adolescents at 19 years of age. Data for 69 extremely preterm adolescents (F/M=41/28, mean birth gestation=25.0±0.8wks) and 50 (F/M=41/28, mean birth gestation=25.0±0.8wks) and 50 (F/M=40 zero) term-born socio-e-conomically matched peers were acquired on a 3T Phillips Achieva. We acquired 3D T1-weighted MPRAGE (TR/TE-6.937.1 shure) volumes at 1 mm isotropic resolution to obtain a tissue segmentation and region labels using the Geodesic Information Flows framework [2]. This method produces a state-of-the-art segmentation and regional labeling by voxel-wise voting between several propagated atlases guided by the local image similarly. Region labels in this routine are specifically defined for the cerebellum (combining both grey and white matter components). We investigate how these pure tissue volumes vary between preterm status and by gender and correlate our results with information on height and weight. Rescultes

#### Results

Figure 1 shows an example segmentation of an extremely preterm born adolescent with tissue volumes labeled. Figure 2 shows tissue volume results grouped by EP/term status and by gender. Grey and white matter absolute volumes are both significantly reduced in the EP relative to the term groups. White matter volume is between 22.4-59.5cm3 (95%c)) lower in preterm females (371 cm339.2cm3) than term females (142 cm3327.5cm3) white matter volume is between 40.0-478.cm3 lower in preterm males (399cm346.4cm3) than their term-born counterparts (646.4cm3) than term females (3142 cm3327.5cm3) and white matter volume is a between 40.0-478.cm3 lower in preterm males (399cm346.4cm3) than their term-born counterparts (646.4cm3) than term females (610 cm3427.5cm3) grey matter volume is between 33.6-96.7cm3 lower in preterm males (600 cm3427.5cm3) grey matter volume is between 33.6-96.7cm3 lower in preterm males (610 cm3427.5cm3) grey matter volume is between 33.6-96.7cm3 lower in preterm males (610 cm3427.5cm3) grey matter volume is also significantly lower in term-born females than term-born males (1.52±0.07). Similarly this ratio is also higher (0.02-0.13,p=0.006) in preterm males (51.52±0.07). Similarly this ratio is also higher (0.02-0.13,p=0.006) in preterm males (1.53±0.09) than in term males (1.54±0.07). Similarly this ratio is also higher (0.02-0.13,p=0.006) in preterm males (1.53±0.09) than in term males (1.45±0.08). Differences between preterm males and preterm females (p=0.86) and between term males (p=0.97) are not significant, suggesting that this feature may be preternt males and preterm females (p=0.86) and between term males (p=0.97) are not significant, suggesting that this feature may be distributions for each group are reduced such that the results no longer reach significance, suggesting that distred proportion is not detectably altered. Differences between normalised crebellum volumes also do not reach significance. Differences between normalised white matter volumes do remain significant, sug

### Conclusion

The analysis in this work has allowed a characterisation of the adolescent preterm brain to be made. The results suggest that the white matter component of the preterm brain is more significantly reduced than the cortical grey and cerebellar volumes. Analysis by both age and gender has allowed us to separate effects due to natural variability in head size from those due to extreme prematurity. Across groups, the most variable results are seen in the EP male group, perhaps suggesting a more variable response to extremely preterm birth. This might be borne out by future studies of neurocognitive function [4]. Our future work will investigate how the observation of a relative white matter reduction reveals itself on microstructural imaging and how these features manifest in neuropsychological examinations.

Acknowledgements

We would also like to acknowledge the MRC (MRJ01107X/1), the National Institute for Health Research (NIHR), the EPSRC (EP/H046410/1) and the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative- BW.mn.BRC10269). This work is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1).

#### References

[1] Volpe, J. J., 2009. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8 (1), 110-124.

[2] Moore, T., et al 2012. Neurological and developmental outcome in extremely preterm children born in england in 1995 and 2006: the EPICure studies. BMJ 345, e7961.

[3] Cardoso, M. J. et al. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Trans Med Imaging, 2015, 34, 1976-1988

[4] Northam, G. B. et al. Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol, 2011, 69, 702-711

Abstract ID: 744



Multi-class brain tissue volume estimation

Volumetric results for total intracranial volume, grey and white matter, cerebellum, normalise results against TIV, height and weight.