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Abstract4

This paper introduces provenance, a software package within the statistical programming environ-5

ment R, which aims to facilitate the visualisation and interpretation of large amounts of sedimentary6

provenance data, including mineralogical, petrographic, chemical and isotopic provenance proxies, or7

any combination of these. provenance comprises functions to: (a) calculate the sample size required to8

achieve a given detection limit; (b) plot distributional data such as detrital zircon U-Pb age spectra as9

Cumulative Age Distributions (CADs) or adaptive Kernel Density Estimates (KDEs); (c) plot compo-10

sitional data as pie charts or ternary diagrams; (d) correct the effects of hydraulic sorting on sandstone11

petrography and heavy mineral composition; (e) assess the settling equivalence of detrital minerals and12

grain-size dependence of sediment composition; (f) quantify the dissimilarity between distributional data13

using the Kolmogorov-Smirnov and Sircombe-Hazelton distances, or between compositional data using14

the Aitchison and Bray-Curtis distances; (e) interpret multi-sample datasets by means of (classical and15

nonmetric) Multidimensional Scaling (MDS) and Principal Component Analysis (PCA); and (f) simplify16

the interpretation of multi-method datasets by means of Generalised Procrustes Analysis (GPA) and17

3-way MDS. All these tools can be accessed through an intuitive query-based user interface, which does18

not require knowledge of the R programming language. provenance is free software released under the19

GPL-2 license and will be expanded based on user feedback.20
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1 Introduction22

Sedimentary provenance analysis, in which chemical, mineralogical and isotopic properties of siliciclastic23

sediments are used to trace the flow of sand (or silt) through a sediment routing system, has entered an era24

of ‘Big Data’ (Vermeesch and Garzanti, 2015). Thanks to technological improvements, it is now common25

practice to analyse thousands of grains in dozens of samples. These large datasets can be prohibitively difficult26

to interpret without statistical aids. Over the past few years, sedimentary geologists and geochronologists27

have developed a plethora of methods to address this issue, which are scattered in many different places and28

implemented in a variety of different software environments (e.g., Ludwig, 2003; Marshall, 1996; Sircombe and29

Hazelton, 2004; Sircombe, 2004; Resentini et al., 2013; Templ et al., 2011; van den Boogaart and Tolosana-30

Delgado, 2008; Vermeesch, 2004, 2012, 2013; Vermeesch and Garzanti, 2015). This paper aims to group some31

of the most useful tools under a common umbrella, the provenance package. The various sections of this32

article are arranged in order of increasing complexity and dimensionality, using a published dataset from33

Namibia for examples (Section 2).34
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Section 3 covers some functions that deal with a single provenance proxy applied to a single sample of35

sediment. This includes sample size calculations (Section 3.1) and functions to plot detrital age distributions36

as Kernel Density Estimates and Cumulative Age Distributions (Section 3.2). Sections 3.3 and 3.4 show how37

the effects of selective entrainment of dense minerals can be undone and how mineralogical and petrographic38

provenance proxies are affected by hydraulic sorting. Section 4 introduces Principal Component Analysis and39

Multidimensional Scaling as dimension reducing techniques which facilitate the interpretation of multi-sample40

datasets analysed by a single method. This Section also presents a brief overview of different approaches41

to quantify the ‘dissimilarity’ between distributional and compositional data. Finally, section 5 covers42

functionality to combine large datasets comparing multiple samples analysed with multiple methods, using43

Procrustes analysis and 3-way Multidimensional Scaling. The various functions in this paper are illustrated44

with many code snippets. Further examples are provided at http://provenance.london-geochron.com45

and in the built-in documentation. To run these examples and use the provenance package, one should first46

install R. This is an increasingly popular programming environment similar in scope and purpose to Matlab,47

which is available free of charge on any operating system at http://r-project.org. The actual package48

can then be installed by typing49

install.packages(’provenance’)50

at the command prompt. Once installed, the package can be loaded by typing51

library(provenance)52

The easiest way to use provenance is by typing:53

provenance()54

which brings up a query-based user interface, removing the need to master the syntax of the R pro-55

gramming language (Figure 1). The provenance() user interface is self explanatory and won’t be discussed56

further in this paper. Instead, the different tools within the provenance package will be illustrated with57

short code snippets which more advanced users may incorporate in their own R scripts for enhanced flexibility58

and automation. Internal documentation of these functions can be accessed through the ? command. For59

example, to display the documentation for the procrustes function (Section 5):60

?procrustes61

2 Data handling62

Over the years, geologists have tried and tested literally dozens of provenance proxies (e.g., Basu and Moli-63

naroli, 1989; Matter and Ramseyer, 1985; Morton, 1985; Owen, 1987; Renne et al., 1990; Hurford and Carter,64

1991; McLennan et al., 1993; Vermeesch and Garzanti, 2015). Most of these can be diviced into two broad65

classes:66

1. distributional data cover single-mineral proxies such as detrital zircon U-Pb or mica 40Ar/39Ar67

ages, in which samples can be summarised as lists of ordinal values.68

2. compositional data cover multi-mineral proxies such as petrography, heavy mineral analysis and69

bulk geochemistry, in which samples can be summarised as one-way tables in which each row can be70

(re)normalised to unity.71

provenance reads raw data as .csv files and casts these into two classes by separate functions. For72

example:73

DZ <- read.distributional(DZ.fname.csv,DZ.err.fname.csv)74

HM <- read.compositional(HM.fname.csv)75
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Here DZ.fname.csv and DZ.err.fname.csv stand for the file names of some U-Pb age data and their76

analytical uncertainties (where the latter argument is optional). Different columns of these files correspond to77

different samples, with the rows containing the numerical values of the single grain analyses. HM.fname.csv78

stands for the file name of a heavy mineral dataset, stored as a table with samples arranged by row and each79

column corresponding to a different type of mineral. The data objects produced by the two read functions80

are treated differently by all subsequent functions.81

2.1 Built-in datasets82

To illustrate provenance’s functionality, the package is bundled with a published dataset from Namibia83

(Vermeesch and Garzanti, 2015). Entering84

data(Namib)85

loads a variable called Namib into memory, which is comprised of one distributional and five compositional86

datasets: (1) Namib$DZ contains the zircon U-Pb ages and their analytical uncertainties; (2) Namib$PT the87

bulk petrography; (3) Namib$HM the heavy mineral compositions less the opaque minerals; (4) Namib$PTHM88

the combined petrography and heavy minerals, including micas and opaque minerals, normalised to unity; (5)89

Namib$Major the major element composition of the bulk sediment; and (6) Namib$Trace the trace element90

composition of the bulk sediment. To avoid having to repeatedly type the preamble Namib$, we can attach91

the dataset to the search path:92

attach(Namib)93

After which we can access its data members as DZ, PT etc. Additionally, provenance also includes94

a table of mineral and rock densities (densities) as well as the petrographic/mineralogical end-member95

compositions (endmembers) of various tectonic settings which will be used to evaluate the settling equivalence96

of detrital components (Section 3.4). Also these two datasets can be loaded with the data function:97

data(densities,endmembers)98

The built-in datasets are based on the following ten files: DZ.csv, DZ.err.csv, PT.csv, HM.csv, PTHM.csv,99

Major.csv, Trace.csv, densities.csv and endmembers.csv. The system paths of these files can be re-100

trieved as follows:101

HM.fname.csv <- system.file("HM.csv",package="provenance")102

Further details about these datasets can be obtained from the built-in help functions ?Namib, ?densities103

and ?endmembers.104

2.2 Basic data manipulation105

provenance includes a number of basic operations to query and manipulate the large datasets contained106

within distributional and compositional data objects. For example, to extract the coastal samples of107

the Namibian geochronology and heavy mineral datasets:108

coast.samples <- c(’N1’,’N2’,’T8’,’T13’,’N12’,’N13’)109

coast.DZ <- subset(DZ,select=coast.samples)110

coast.HM <- subset(HM,select=coast.samples)111

For compositional data, the subset function also allows the user to extract subcompositions. For example,112

to extract the zircon, tourmaline and rutile content of all samples in the heavy mineral dataset:113

ZTR <- subset(HM,components=c(’zr’,’tm’,’rt’))114
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Of course, both options can also be combined:115

coast.ZTR <- subset(HM,select=coast.samples,components=c(’zr’,’tm’,’rt’))116

which returns the zircon, tourmaline and rutile contents of the coastal samples alone. For compositional117

data, it is often useful to add several components together, an operation which is referred to as ‘amalga-118

mation’ (Aitchison, 1986). This is useful for removing missing components (‘zero counts’) prior to logratio119

analysis (Section 4.2). For example, to extract the QFL (Quartz – Feldspar – Lithics) composition from the120

petrographic dataset by amalgamation:121

QFL <- amalgamate(PT,Q=’Q’,F=c(’KF’,’P’),L=c(’Lm’,’Lv’,’Ls’))122

where KF and P stand for K-feldspar and plagioclase, and Lm, Lv and Ls refer to the lithic fragments of123

metamorphic, volcanic and sedimentary origin respectively. In the special case of a three component system,124

amalgamation can also be achieved by a different function:125

QFL.tern <- ternary(PT,’Q’,c(’KF’,’P’),c(’Lm’,’Lv’,’Ls’))126

This produces an object of class ternary which is handled by a special, overloaded version of the plot127

function (Section 3.2). The statistical field of compositional data analysis is very rich, and provenance128

does not attempt to cover all but its most basic operations. The user is referred to other R packages such129

as compositions (van den Boogaart and Tolosana-Delgado, 2008) and robCompositions (Templ et al.,130

2011) for a more comprehensive toolset. Three functions are provided to facilitate the interaction between131

provenance and these other packages. as.acomp and as.data.frame convert compositional datasets to132

objects of class acomp and data.frame, for use in robCompositions and compositions, repectively. For133

example:134

PT.acomp <- as.acomp(PT) # can be used in ’compositions’135

PT.data.frame <- as.data.frame(PT) # can be used in ’robCompositions’136

Conversely, the as.compositional function translates acomp or data.frame objects to compositional137

data for use in provenance. For example, using the Kongite and skyeLavas datasets which are built into138

compositions and robCompositions:139

library(compositions)140

data(Kongite)141

Kongite.comp <- as.compositional(Kongite)142

library(robCompositions)143

data(skyeLavas)144

skyeLavas.comp <- as.compositional(skyeLavas)145

where Kongite.comp and skyeLavas.comp can be further analysed by the functions described later in146

this paper.147

3 Functions applying to a single sample148

3.1 Sample size calculations149

On the most basic level, provenance analysis requires the geologist to identify certain properties in a rep-150

resentative number of grains from each sample. The question then arises how many grains constitute a151

‘representative’ number of grains. The answer to this question depends on the geological problem of interest.152

If the main purpose of the study is merely to characterise the general shape of the distribution (e.g., ‘young’153

vs. ‘old’ or ‘narrow’ vs. ‘wide’), then a few dozen grains may be enough (Avdeev et al., 2011). If instead154
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one is looking for a particular component comprising, say, a fraction f=1/N of the total population (where155

N is an integer denoting the number of fractions), then the likelihood of missing this fraction is given by156

(1 − f)n, where n is the number of grains (Dodson et al., 1988). Finally, if, we are interested in collecting157

all fractions of a sample (Vermeesch, 2004), then the likelihood of missing any of them is given by158

p =

N∑
i=1

(−1)i−1

(
N

i

)
(1− if)n (1)

where
(
N
i

)
is the Binomial coefficient. To calculate the probability that at least one 10% fraction is159

missing from a 60-grain sample in provenance:160

p <- get.p(n=60,f=0.1)161

Conversely, to estimate the largest fraction (f) which one can be 95% confident not to have missed in the162

same 60-grain sample:163

f <- get.f(n=60,p=0.05)164

Finally, to compute the number of grains needed to be 95% certain that no fraction greater than 5% of165

the total population is missed:166

n <- get.n(p=0.05,f=0.05)167

which is 117 (Vermeesch, 2004).168

3.2 Plotting individual samples169

The geologically meaningful information carried by distributional data does not so much lie in their values170

as, like their name suggests, in their distribution. A first step towards interpreting such data in provenance171

is to plot them as either cumulative or density plots. To illustrate this, consider an infinite population172

characterised by a uniform distribution between 100 and 110 Ma. Plotting an infinite number of values173

collected from this population on a histogram with infinitessimal binwidth yields a simple step function (red174

line in Figure 2.a). This is the probability density function of the population. The corresponding cumulative175

distribution (red line in Figure 2.b) is a straight line rising from 0 at 100 Ma (0% of the population falls176

below 100 Ma) to 1 at 110 Ma (100% of the population falls below 110 Ma). Of course, in real life geologists177

never have the luxury of exhaustively collecting an entire population. Instead, they must work with a178

representative subset of that population, the sample. Suppose that we have collected a random sample179

of 100 values from our uniform population (black ticks on Figure 2.a). Further suppose that these values180

are analysed with infinite analytical precision. From this sample of random values, we cannot reconstruct181

the step function. Instead, the density must be estimated using histograms or kernel density estimates182

(KDEs). For a sample of limited size, these estimates never exactly agree with the true age distribution,183

but are smooth approximation thereof (black line in Figure 2.a). In contrast, the Empirical Cumulative184

Distribution Function (ECDF, a.k.a. ‘Cumulative Age Distribution’ or CAD in a geochronological context,185

Vermeesch, 2007) is a method to visualise distributional datasets without the need for any smoothing. Let186

x = {x1, x2, ..., xn} be a sample of distributional data, then the cumulative distribution Fx is defined as187

follows:188

Fx(t) =
1

n
(#xi ≤ t) (2)

where ‘#x ≤ t’ stands for “the number of items in x that are smaller than or equal to t”. In contrast with189

density estimates, CADs do not suffer from oversmoothing (Figure 2.b). Despite this significant advantage190

of CADs over KDEs, the latter are still preferred by many practitioners of detrital geochronology because191
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they are more intuitive to interpret.192

193

In real life, analytical precision is never infinite, but measured ages are offset from their true values by194

some experimental error. Suppose that this error is characterised by a Normal distribution with standard195

deviation σ = 2 Ma. Convolution of the error distribution with the uniform distribution of the true ages196

yields a smooth probability density function which spreads into values beyond the 100-110 Ma interval (red197

line in Figure 2.c). The corresponding cumulative distribution rises gently from 0 at ∼95 Ma (0% of the198

distribution falls below 95 Ma) to 1 at ∼115 Ma (100% of the distribution falls below 115 Ma), with a linear199

section in between (red line in Figure 2.d). Like before, the KDE of the measurements (black line in Figure200

2.c) oversmooths the theoretical probability density function (red line). And like before, the correpond-201

ing CAD (black line in Figure 2.d) does not suffer from this problem. Note that Probability Density Plots202

(PDPs), which are a popular way to account for the variable precision of detrital data by using the analytical203

uncertainty as a bandwidth estimator (Ludwig, 2003; Sircombe, 2004) unfortunately suffer from significant204

levels of undersmoothing for small datasets and oversmoothing for large datasets (Vermeesch, 2012). For205

this reason, PDPs are not implemented in provenance.206

207

Figure 2 here.208

209

In provenance, CADs are obtained using an overloaded plot function. For example, for detrital zircon210

U-Pb sample N1 (Figure 3a):211

plot(DZ,snames=’N1’,CAD=TRUE)212

Both histograms and KDEs are implemented in standard R as the hist and density functions, respec-213

tively. These built-in functions work very well for relatively simple, unimodal distributions (Silverman, 1986).214

However, the distributions occurring in detrital geochronology tend to be more complex than that, causing215

the density function to overestimate the kernel bandwidth and oversmooth the resulting distribution. For216

this reason, the provenance package includes a separate function for kernel density estimation using a hybrid217

adaptive kernel density algorithm, adopted from DensityPlotter (version 3.0 and above, Vermeesch, 2012).218

This algorithm consists of two steps. First, the fixed bandwidth algorithm by Botev et al. (2010) is used to219

calculate a ‘pilot’ density. Then, the bandwidth is adjusted at each sample point to scale with the square220

root of the local density, normalised by the geometric mean of the entire distribution (Abramson, 1982).221

Thus, the fixed bandwidth estimate is converted into an adaptive density estimate, which assigns a narrower222

bandwidth to densely sampled segments of the age distribution and a wider bandwidth to those segments223

which are sparsely sampled. This increases the resolution of the density estimates where sufficient data are224

available, whilst smoothing out those parts with insufficient data. As an example, the following code plots225

the U-Pb age distribution of sample N1 from the Namibian dataset with the default settings (Figure 3b):226

N1 <- DZ$x$N1 # extract the ages of sample N1227

dens <- KDE(N1) # create the density estimate228

plot(dens) # plot the density estimate229

The appearance of the plot can be changed by modifying the optional arguments. The following example230

plots the data on a logarithmic scale from 10 to 3,000 Ma with a fixed bandwidth of 50 Ma and turns off231

the sample point indicators on the x-axis (Figure 3c):232

dens <- KDE(N1,bw=50,from=100,to=4000,adaptive=FALSE,log=TRUE)233

plot(dens,pch=NA ) # pch = the symbol used for the sample points234

provenance also includes some basic functionality to plot compositional data on ternary diagrams. For235

example, to plot the petrography of the Namib dataset on Dickinson et al. (1983)’s QFL diagram (Figure236

3d):237

plot(QFL.tern,type=’QFL.dickinson’)238
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where QFL.tern was produced by the ternary() function (Section 2.2). The graphical output can be239

saved as a vector-editable PDF for further processing in software such as Adobe Illustrator c©, CorelDraw c©or240

Inkscape:241

dev.copy2pdf(file="QFL.tern.pdf")242

Figure 3 here.243

3.3 The SRD correction: a simple way to correct for environmental bias244

To facilitate the comparison of detrital modes for provenance analysis or stratigraphic correlation, we need245

to first remove the often significant compositional differences among sediment samples that are caused by246

hydrodynamic processes in the depositional environment. Intersample modal variability can be corrected for247

by a simple principle. In the absence of provenance changes and environmental bias, the weighted average248

Source Rock Density (SRD) of terrigenous grains should be equal, for each sample and each grain-size class249

of each sample, to the weighted average density of source rocks. By correcting relative abundances of detrital250

minerals in proportion to their densities, we can restore the appropriate SRD index for any provenance and251

subprovenance type in each sample or grain-size class (Garzanti et al., 2009). Modal variability is effectively252

reduced by this procedure, which can be applied confidently to modern sediments deposited by tractive253

currents in any environment. Good results are obtained even for placer sands and finest grain-size fractions254

where heavy-mineral concentration is strongest. Such ‘SRD correction’ also successfully compensates for255

biased narrow-window modes, thus providing a numerical solution of general validity to the problem of en-256

vironmental bias in sedimentary petrology.257

258

The SRD index, used to assess average density of source rocks in the absence of hydrodynamic effects or259

to detect hydraulic-controlled concentration of denser minerals, is defined as the weighted average density260

of terrigenous grains (spurious and intrabasinal particles such as bioclasts are neglected in the calculation;261

Garzanti and Andò, 2007):262

SRD =

n∑
i=1

(%mi ρmi
) = 1/

n∑
i=1

(%Mi/ρmi
) (3)

where %m and %M are the volume and weight percentages of mineral m, and ρm its density. In order to263

compensate for selective-entrainment effects, we must recalculate detrital modes for each sample until the264

same SRD index is restored for each. The mathematical procedure is similar to that used to convert volume265

percentages to weight percentages, and vice-versa:266

%M = %m ρm/SRD = %m ρm/

n∑
i=1

(%mi ρmi) (4)

%m = %M SRD/ρm = %M/

[
ρm

n∑
i=1

(%Mi/ρmi
)

]
(5)

The ‘SRD correction’ assumes the form of Equation 4 for heavy-mineral-poor samples:267

%m∗ = %m ρm/

n∑
i=1

(%mi ρmi
) (6)

and the form of Equation 5 for heavy-mineral-rich samples:268

%m∗ = %m/[ρm

n∑
i=1

(%mi/ρmi
)] (7)
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To remove environmental bias by the SRD correction we need to assume an appropriate common SRD269

value for all samples. Such a value may be determined empirically, by averaging SRD indices of ‘normal’270

samples with the same provenance. Or we may proceed in reverse, and find through successive approxima-271

tions the SRD value which minimizes the residual variance in the data set. In any case, we need criteria272

to tell us which SRD value is appropriate and which should be considered anomalous. In the absence of273

hydrodynamic effects, the SRD index faithfully reflects the average density of source rocks (Garzanti et al.,274

2006). With the exception of less dense glass-rich volcanic and porous sedimentary rocks, and of denser mafic275

and ultramafic rocks, rocks densities typically lie in the 2.6-2.8 g/cm3 range (Daly et al., 1966). Therefore,276

besides monogenic detritus supplied locally by specific rock types (e.g., ignimbrite, gypsum, gabbro, peri-277

dotite, granulite, eclogite), SRD indices of homogenized detritus derived long-distance from diverse crustal278

sources must lie in a narrow range (2.70 ± 0.05). Given the regional geology and geomorphology of southern279

Africa, we can confidently rule out exotic compositions and safely assume an SRD of ∼ 2.71. Restoring all280

samples from the Namib dataset to this reference value:281

rescomp <- restore(PTHM,dens=densities,target=2.71)282

HMcomp <- c("zr","tm","rt","sph","ap","ep","gt","st","amp","cpx","opx")283

PHO <- amalgamate(rescomp,Plag="P",HM=HMcomp,Opq="opaques")284

plot(ternary(PHO),showpath=TRUE)285

where HMcomp is a list of heavy minerals and amcomp amalgamates the restored PTHM composition to the286

reference SRD density. Setting showpath=TRUE in the overloaded plot function displays the intermediate287

steps of the iterative SRD correction algorithm on the ternary diagram. In the above example, plagioclase, the288

amalgamated transparent heavy minerals and the opaque minerals are plotted together because they cover289

a wide range of densities (2.67, ∼3.5 and 5 g/cm3, respectively). For the Namib dataset, the correction path290

clearly shows that samples N8 and N9 are most strongly affected by the SRD correction and, hence, hydraulic291

sorting effects. This is entirely consistent with the interpretations of Garzanti et al. (2012), Vermeesch and292

Garzanti (2015), and Section 5. Finally, to illustrate the combined use of provenance with the compositions293

package, the following code adds an ellipse from the mean and the variance to the SRD-corrected data, using294

the compositions package’s ellipses function:295

PHO.acomp <- as.acomp(PHO) # convert to class ’acomp’296

ellipses(mean(PHO.acomp),var(PHO.acomp),r=2)297

Figure 4 here.298

3.4 Size-density sorting of detrital grains and intrasample variability299

The settling velocity of a detrital particle represents the balance between gravitational forces and drag300

resistance due to both turbulence and viscosity. Settling of clay and silt particles in water is resisted by301

viscosity, whereas turbulence is the dominant drag component during settling of pebbles or in air. Different302

empirical formulas have been proposed to model settling of particles by tractive currents, accounting for the303

wide range of grain sizes displayed by sedimentary deposits and their diverse depositional facies (aeolian vs.304

fluvial vs. marine). The settling velocity of clay and silt particles can be calculated by Stokes’ Law:305

v = gRxD
2
x/18η (8)

where g is the gravitational constant, Rx is the submerged density (ρgrain-ρfluid), Dx is the diameter306

of the particle, and η is the fluid viscosity. The settling velocity of sand-sized particles in water must be307

calculated by empirical formulas, such as the relatively simple one proposed by (Cheng, 1997):308

v = (η/Dx)

[√
25 + 1.2(gRxD3

x/η
2)2/3 − 5

]3/2
(9)

The settling velocity of granules and pebbles can be described by Newton’s Impact Law:309
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v =
√

2gRxDx/(3ρf ) (10)

where ρf is the fluid density. The same formula has been shown empirically to be sufficiently accurate310

also to calculate the settling of particles of any grain size in air (Garzanti et al., 2008). These three formulas311

allow us to calculate the difference in nominal diameter (the ‘size shift’, SS) between two settling-equivalent312

particles for any size, in any transporting medium, and usually referred to quartz. For clay and silt particles,313

size shifts between any mineral x and a reference mineral or the bulk sediment are calculated as:314

SSx = log2(Rx/Rref )/2 (11)

For sand sized particles:315

SSx = log2(Rx/Rref )− (3/2)log2(Ξm/Ξref ) (12)

where Ξ = v/η +
√

(v/η)2 + 48(g Rx/η2)2/3. For granules and pebbles or any sediment settling in air,316

size shifts are twice those predicted by Stokes’ Law:317

SSx = log2(Rx/Rref ) (13)

The average settling velocity for each given sediment sample can be calculated with formulas 8, 9 or318

10 according to its mean grain size, grain density (SRD index of the bulk sediment, see Section 3.3) and319

depositional environment (air, freshwater or seawater). For each detrital mineral or rock fragment, the size320

shift referred to the bulk-sediment (SRD index) is calculated with formulas 11, 12 or 13. To account for321

shape effects (Komar et al., 1984), the density of micas is lowered by 0.5 g/cm3 (Garzanti et al., 2008).322

Finally, a Gaussian size-frequency distribution is calculated for each detrital component by combining its323

size shift referred to the mean size of the bulk sediment and the sorting value of the latter.324

325

In provenance, all these calculations are performed by the minsorting function, so named after the326

spreadsheet application of Resentini et al. (2013) on which it is based. To illustrate the use of the minsorting327

function, the following code snippet applies it to one of the end-member compositions included with the328

package, assuming a mean grain size of (Krumbein) Φ=2 and standard deviation Φ=1:329

data(endmembers,densities)330

distribution <- minsorting(endmembers,densities,sname=’ophiolite’,331

phi=2,sigmaphi=1,medium="seawater",by=0.05)332

plot(distribution,components=c(’F’,’px’,’opaques’))333

Which yields the grain size distribution of feldspar, pyroxene and opaque minerals (in 0.05 Φ intervals),334

so chosen because of the great contrast in density between them (Figure 5). When - as is commonly done335

in geochronological analysis - one specific mineral is targeted (e.g., apatite or zircon), we can use such in-336

formation to choose the most suitable size window for laboratory treatment and analysis, and thus obtain a337

most faithful characterization of the sediment sample.338

339

Figure 5 here.340

4 Jointly considering multiple samples341

provenance allows multiple samples to be plotted together. For example, to plot all 16 detrital age distri-342

butions from the Namibian dataset on a scale from 0 to 3,000 Ma in four columns:343

UPb <- KDEs(DZ,from=0,to=3000,normalise=TRUE)344

summaryplot(UPb,ncol=4)345
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where the normalise flag sets the area under each of the KDEs to the same value. The resulting plot346

contains 16 kernel density estimates, resulting in 16 × 15 / 2 = 120 pairwise comparisons (Figure 6). The347

first step towards simplifying this multi-sample comparison problem is to convert the raw data into a table348

of pairwise distances. This can be achieved using a number of different dissimilarity measures.349

350

Figure 6 here.351

4.1 Dissimilarity measures352

A crucial first step towards simplifying the interpretation of multi-sample datasets is to replace the visual353

comparison of age distributions, histograms and pie charts with numerical values expressing the ‘dissimilarity’354

between samples. For distributional data, the default method is the Kolmogorov-Smirnov (K-S) statistic355

(δksAB), which uses the maximum absolute difference between two cumulative distributions (Feller, 1948).356

Given two samples A and B, the K-S distance is defined as357

δksAB = max
t
|FA(t)− FB(t)| (14)

where FA and FB are defined by Equation 2 and | · | stands for the absolute value. One nice feature of358

the K-S distance is that it obeys the triangle inequality, which states that, for any three samples A, B and359

C, the distance between A and C is less than or equal to the distance between A and B plus the distance360

between B and C. The triangle inequality makes the K-S distance behave like the physical distances which361

we are familiar with in the real world. On the other hand, the K-S statistic also has limitations, such as362

its inability to take into account the effect of unequal analytical uncertainties. This makes it difficult to363

objectively compare samples acquired on different mass spectrometers characterised by differing analytical364

precision. This problem was addressed by Sircombe and Hazelton (2004) using the squared overlap between365

so-called Kernel Functional Estimates (KFEs):366

δshAB =

√∫
(fA(t)− fB(t))

2
dt (15)

where fA and fB are the KFEs of samples A and B. KFEs are a special type of KDEs, in which a367

variable degree of deliberate oversmoothing is applied to the different samples to account for the differing368

analytical uncertainties between them (Sircombe and Hazelton, 2004). Although KFEs are useful as a369

point of comparison between different samples, they have limited value as a data visualisation tool due to370

the oversmoothing. To use the S-H dissimilarity, the user needs to supply the analytical uncertainties in371

a separate .csv file. The following code demonstrates the calculation of K-S and S-H dissimilarities in372

provenance:373

KS.diss <- diss(DZ,method=’KS’)374

SH.diss <- diss(DZ,method=’SH’)375

For compositional proxies such as petrographic, heavy mineral or chemical data, provenance provides a376

further two dissimilarity measures. If the dataset is free of zero values, Aitchison’s central logratio distance377

is used by default:378

δaitAB =

√√√√ n∑
i=1

[
ln

(
Ai

g(A)

)
− ln

(
Bi

g(B)

)]2
(16)

where ‘g(x) stands for ‘the geometric mean of x (Aitchison, 1986; Vermeesch, 2013). Note that the379

same distance is obtained irrespective of whether the input data are expressed as fractions or percentages.380

The Aitchison distance breaks down for datasets comprising ‘zero counts’ (Ai = 0 or Bi=0 for any i).381

This problem can be solved by pooling several categories together (see Section 2.2), or by using a different382

dissimilarity measure such as the Bray-Curtis distance:383
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δbcAB =

n∑
i=1

|Ai −Bi|
/ n∑

i=1

(Ai +Bi) (17)

The following example yields the dissimilarity matrices of the heavy mineral and major element compo-384

sitions using the Bray-Curtis and Aitchison measures, respectively:385

HM.diss <- diss(HM,method=’bray’)386

Major.diss <- diss(Major,method=’aitchison’)387

4.2 Principal Component Analysis and Multidimensional Scaling388

Although the dissimilarity matrices introduced in the previous section make the comparison of two samples389

more objective, it remains difficult to discern any meaningful patterns in large numbers of such pairwise390

comparisons. Multidimensional Scaling (MDS) is a dimension-reducing technique which can make the com-391

parison of multiple samples more objective (Borg and Groenen, 2005). MDS is widely used in other scientific392

disciplines and can easily be adapted for provenance studies (Vermeesch, 2013). Given a table of pairwise dis-393

tances between samples, MDS produces a configuration of points in which similar samples plot close together394

and dissimilar samples plot far apart. provenance implements both classical MDS, in which the physical dis-395

tances between the different points in the MDS configuration are directly proportional to the dissimilarities396

between the corresponding samples; and nonmetric MDS, which merely aims to reproduce the relative ranks397

of the dissimilarities (Borg and Groenen, 2005). In the latter case, provenance allows the user to graphically398

assess the goodness of fit by plotting the dissimilarities against the fitted distances on a so-called ‘Shepard399

Plot’ (Kruskal and Wish, 1978). provenance uses nonmetric MDS by default because it produces better fits400

than classical MDS and accepts a wider range of dissimilarity measures (Kruskal and Wish, 1978; Borg and401

Groenen, 2005). The MDS function accepts as input either data of class compositional or distributional,402

or a dissimilary matrix (class diss). The following two lines of code are therefore equivalent to each other:403

MDS.DZ.1 <- MDS(DZ)404

MDS.DZ.2 <- MDS(diss(DZ))405

In contrast with nonmetric MDS, classical MDS can only be used for dissimilarity measures are proper406

distances and therefore fulfil the triangle inequality (Borg and Groenen, 2005), which is the case for the407

Kolmogorov-Smirnov and Aitchison distances. For example, using the latter dissimilarity measure, the408

major element composition can be plotted as a classical MDS configuration:409

Major.diss <- diss(Major,method=’aitchison’)410

MDS.Major <- MDS(Major.diss,classical=TRUE)411

plot(MDS.Major,xaxt=’s’,yaxt=’s’)412

Where the xaxt and yaxt flags add tick marks and labels to the x and y axes (these are turned off by413

default). By definition, the Aitchison distance does not only fulfil the triangle inequality but is a Euclidean414

distance as well. In this case, MDS is equivalent to Principal Component Analysis (PCA, Aitchison, 1983;415

Cox and Cox, 2000). This equivalence can be demonstrated by the fact that:416

PCA.Major <- PCA(Major)417

plot(PCA.Major)418

produces identical output as the previous code snippet (Figure 7). The main advantage of PCA over419

MDS is that it can be visualised as a ‘biplot’, in which the configuration is accompanied by a set of vector420

‘loadings’ showing the relationship between the categorical input variables (Figure 7.b). Thus, the PCA421

biplot facilitates the interpretation of the configuration in terms of underlying processes (Aitchison and422

Greenacre, 2002). In this respect, compositional biplots are similar to a 3-way extension of the MDS method423

called INDSCAL, which is discussed in the next section. One limitation of compositional PCA is its inability424
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to handle datasets containing zero values, which is due to its dependence on logratios (see Section 4.1).425

Various ways have been proposed to deal with this problem (e.g., Mart́ın-Fernández et al., 2003), but none426

of these are implemented in provenance (yet). Instead, the user is presented with two options. The zero-427

value problem can either be circumvented by employing non-metric MDS using the Bray-Curtis dissimilarity;428

or by resorting to the PCA functionality implemented in the compositions and robCompositions packages.429

430

Figure 7 here.431

5 Combining multiple methods in multiple samples432

The entire 5-proxy dataset can be visualised together with the summaryplot command, producing a diagram433

with 16 KDEs and 64 pie charts:434

PT$colmap <- ’cm.colors’435

Trace$colmap <- ’rainbow’436

UPb <- KDEs(DZ,from=0,to=3000,normalise=TRUE)437

summaryplot(UPb,HM,PT,Major,Trace,ncol=2)438

Which assigns a different colour map to the pie charts of the petrographic and trace element data from439

the default heat.colors. The summary plot manages to squeeze 16,125 numerical values into a single dia-440

gram, which provides a good visual illustration of the term ‘Big Data’, but is next to impossible to interpret441

geologically. Using the methods introduced in Section 4, we can produce five MDS maps and thereby fa-442

cilitate the multi-sample comparison for each dataset (Vermeesch and Garzanti, 2015). Unfortunately, the443

subtle differences between these maps present a second type of multiple comparison problem, which calls444

for second layer of statistical simplification. The provenance package provides two alternative solutions for445

this: Procrustes analysis and 3-way MDS.446

447

Procrustes analysis is the process by which a combination of shape-preserving transformations is used to448

match the shape of one object with that of another. Generalised Procrustes Analysis (GPA) is a generalisation449

of this procedure to multiple objects. In a provenance context, GPA extracts a single ‘consensus’ view from450

a collection of MDS configurations, by rotating, reflecting and scaling them to minimise a least squares451

criterion (Gower, 1975; Vermeesch and Garzanti, 2015). The following code applies this method to the452

Namib dataset:453

proc <- procrustes(DZ,HM,PT,Major,Trace)454

plot(proc)455

GPA is a two step process, in which the individual datasets are first subjected to an MDS analysis, and456

the resulting configurations are then transformed into a group configuration. Alternatively, the same type of457

graphical output can be generated in a single step, using the final technique discussed in this paper, 3-way458

MDS.459

460

As the name suggests, 3-way MDS is a generalisation of the methods discussed in Section 4.2 from two-461

to three-dimensional dissimilarity matrices. For the Namib dataset, the combination of 16 samples and462

5 methods results in a dissimilarity matrix of size 15 × 15 × 5. There exist many types of 3-way MDS463

algorithms, the oldest and most widely used of which is called INdividual Differences SCALing (INDSCAL,464

Carroll and Chang, 1970). In contrast with 2-way MDS and GPA, INDSCAL produces not one but two465

pieces of graphical output: the ‘group configuration’ and the ‘source weights’. For the Namib dataset, the466

former reproduces the relative dissimilarities between the samples, whereas the latter displays the relationship467

between the provenance proxies (Vermeesch and Garzanti, 2015). This is similar in a way to the compositional468

biplots produced by PCA (Section 4.2), which simultaneously display the configuration of the samples and469

the relationship between the variables (e.g. minerals or chemical elements). In the case of INDSCAL, the470
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‘source weights’ quantify the relative importance attached by each of the data sources (i.e. provenance471

proxies) to the horizontal and vertical axis of the ‘group configuration’ (Carroll and Chang, 1970; De Leeuw472

and Mair, 2011; Vermeesch and Garzanti, 2015). In provenance:473

IND <- indscal(DZ,HM,PT,Trace,Major)474

plot(IND)475

Note that the resulting group configuration (Figure 8.a) looks significantly different from that presented476

by Vermeesch and Garzanti (2015). This is due to an error in the original petrographic data table, which has477

been fixed in the present paper. The ‘source’ weights (Figure 8.b) show that the major and trace element478

compositions attach much greater weight to the horizontal axis of the group configuration than the other479

proxies. This is attributed to hydraulic sorting, which affects bulk compositions more than it does mineral480

separates (Vermeesch and Garzanti, 2015). This is entirely consistent with Figure 4, which showed that481

samples N8 and N9 are particularly affected by winnowing effects.482

483

Figure 8 here.484

485

Although, in principle, 3-way MDS yields more insightful output than GPA, in practice things do not486

always work out so well. The problem is that the output of INDSCAL is often very sensitive to subtle487

changes in the input data. For example, running INDSCAL on the same data as before, but using the488

S-H dissimilarity instead of the K-S distance for the DZ data and the Bray-Curtis distance instead of the489

Aitchison distance for the bulk chemistry results in a similar looking group configurations (Figure 8.c), but490

a significantly different subject weights (Figure 8.d).491

DZ$method <- "SH"492

Major$method <- "bray"493

Trace$method <- "bray"494

IND.SH <- indscal(DZ,HM,PT,Trace,Major)495

plot(IND.SH)496

It is therefore advisable not to overinterpret these weights, and thus in practice INDSCAL often does not497

outperform GPA as might be hoped.498

6 Conclusions499

It is increasingly being recognised that, in order to truly understand sediment routing systems, the combina-500

tion of multiple proxies teaches more than the sum of its parts (Garzanti, 2015). This paper introduced an R501

package named provenance to facilitate the joint interpretation of large datasets comprising many samples502

and several provenance proxies. Technological advances such as fast scanning electron microscopes (e.g,503

QEMSCAN, Allen et al., 2012) and high-throughput LA-ICP-MS (e.g., Frei and Gerdes, 2009) promise to504

fully unlock the power of multi-method provenance analysis and further increase the need for the ‘Big Data’505

analysis tools provided by provenance. Much work remains to be done to extend the methods presented506

in this paper. One example is the incorporation of dissimilarity measures to compare distributional data507

of higher dimensionality, such as paired U-Pb ages and Hf- or O-isotopic compositions (e.g., Owen, 1987).508

Another example is the introduction of weighted MDS (de Leeuw and Mair, 2009) to handle, say, datasets509

containing samples of widely different sizes.510

511

We would like to conclude this paper with the advice not to rely exclusively on statistics for the in-512

terpretation of provenance data. It is our opinion that statistical provenance analysis should be used as a513

complement to rather than a substitute for expert geological knowledge. It is sometimes found that pet-514

rographic information, especially the composition of the lithic fragments, allows an experienced analyst to515

unequivocally constrain provenance with much greater confidence than any machine or computer algorithm516
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(Garzanti, 2015). Like any ‘black box’ technique, statistical methods such as MDS or INDSCAL can easily517

be abused. By exhaustively going through all the options provided by provenance, it may be possible to518

‘cherry pick’ a configuration that supports a pre-conceived model. Paraphrasing Andrew Lang, we would like519

to urge the user to resist the temptation of using provenance in the same way that a drunk uses lamp-posts520

– for support rather than illumination. It is important to keep in mind that good scientific practice involves521

testing and rejecting rather than ‘proving’ hypotheses (Popper, 1959). We hope that provenance will be522

used according to this philosophy, along with all the other techniques at the disposal of sedimentary geologist523

today.524
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Figure 1: The query-based user interface.

17



a.
95 100 105 110 115

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

age [Ma]

| |||| | ||| || | || || | || | ||| || || || | || || || || || ||| || | || |||| ||| | ||| || | || || ||| || | || |||| ||| || | || || | ||| | || ||| ||

b.
95 100 105 110 115

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age [Ma]

c.
95 100 105 110 115

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

age [Ma]

| || || | || | || ||| || | || | ||| || || || | || || |||| || ||| || | || |||| ||| |||| || ||| || ||| || | || | ||| | || || | |||| | ||| | || ||| ||

d.
95 100 105 110 115

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age [Ma]

Figure 2: a. red – a uniform distribution between 100 and 110 Ma, black – a kernel density estimate (KDE) of
100 randomly selected values, which oversmooths the theoretical distribution; b. red – cumulative version of
a., black – Cumulative Age Distribution (CAD) of the 100 random samples, which does not oversmooth the
theoretical curve; c. red – theoretical sampling distribution in the presence of normally distributed analytical
uncertainties (σ=1), black – the KDE of 100 random samples which again oversmooth the theoretical curve; d.
red – the cumulative measurement distribution, black – the CAD of the 100 randomly selected measurements
is an unbiased estimator of the theoretical distribution.
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Figure 3: Graphical output generated by provenance for distributional and compositional data. a. the
CAD of sample N1; b. the KDE of sample N1, using a the hybrid adaptive bandwidth algorithm outlined
in Section 3.2, plotted on a linear scale; c. a KDE using a fixed bandwidth of 50 Ma and a log scale; d. the
quartz - feldspar - lithic composition of the Namib samples on Dickinson et al. (1983)’s QFL diagram.
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Figure 4: The effect of the Source Rock Density (SRD) correction on the Namib dataset, shown on a ternary
diagram with P = plagioclase (ρ = 2.67 g/cm3), HM = heavy minerals (ρ = 3.5 g/cm3), and Opq = opaque
minerals (ρ = 5 g/cm3). Circles mark the restored compositions, lines connect the intermediate values of
the SRD correction algorithm. It is evident that samples N8 and N9 are most strongly affected by hydraulic
sorting and benefit from the SRD correction the most. The ellipse was drawn using the compositions

package’s ellipses function.
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Figure 5: Graphical output of the minsorting routine applied to an ophiolitic end-member composition.
Different colours show the inferred grain-size distribution of feldspars (‘F’, red), pyroxene (‘px’, blue) and
opaque minerals (green) in Krumbein’s Φ units, assuming a mean grain size for the bulk sediment of Φ=2
with standard deviation Φ=1. It can be seen that relatively coarse grains of the comparatively light minerals
are hydraulically equivalent with finer grains of the dense minerals.
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Figure 6: Graphical output of the summaryplot function, applied to the detrital zircon U-Pb age data. The
areas under the KDEs have been normalised to the same value.
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Figure 7: Illustration of the equivalence of Multidimensional Scaling (MDS, a) and Principal Component
Analysis (PCA, b) for compositional data using the Aitchison dissimilarity, using the major element com-
position of the Namib samples as an example. The two configurations are identical apart from an arbitrary
rotation.
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Figure 8: a. group configuration of an INDSCAL analysis of the Namib dataset using the Kolmogorov-
Smirnov dissimilarity for the U-Pb data (DZ), the Bray-Curtis dissimilarity for the heavy mineral (HM) and
bulk petrography (PT) data, and the Aitchison distance for the major and trace element compositions; b.
the source weights, which show the relative importance which each of the five provenance proxies attach
to the horizontal and vertical axis of the group configuration (Vermeesch and Garzanti, 2015); note that
samples N8 and N9 plot on the far right of the group configuration, indicating that they have significantly
different Major and Trace element compositions. This is consistent with these samples being affected by
hydraulic sorting, as was previously shown in Figure 4. c. the group configuration of the same data, but
using the Sircombe-Hazelton dissimilarity for the U-Pb data, and the Bray-Curtis dissimilarity for the major
and trace compositions; d. the correponding source weights. Although the two configurations look very
similar, the actual weights attached to each of the proxies are very different.
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