658 Low frequency oscillating gradient spin-echo sequences improves sensitivity to axon diameter

Low frequency oscillating gradient spin-echo sequences improves sensitivity to axon diameter

An experimental validation study in viable nerve tissue

Lebina S Kakkar, Oscar F Bennett*, Bernard Siow, Tom Quick, Simon Richardson, Enrico Kaden, David Atkinson, James B Philips, Ivana Drobnjak

EPSRC

Engineering and Physical Sciences Research Council

The Leverhulme Trust

Centre for Medical Image Computing

*Shared first author

24th Annual Meeting & Exhibition • 07–13 May 2016 SMRT 25th Annual Meeting • 07–08 May SINGAPORE

Declaration of Financial Interests or Relationships

Speaker Name: Lebina Shrestha Kakkar

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Importance of axon diameter

- Axon diameter is directly proportional to conduction velocity
 - In central nervous system (CNS)
 - Performance of white matter pathways
 - o In peripheral nervous system (PNS)
 - Axon regeneration

Introduction

Imaging axon diameters

4

Introduction

Imaging axon diameters

Introduction

Low frequency OGSE improves signal sensitivity to axon diameter in practical cases

Drobnjak et al (MRM 2015);6

lebina.shrestha.11@ucl.ac.uk

Aim

To experimentally investigate the benefits of OGSEs over PGSEs

to estimate axon diameter index

in a viable rat sciatic nerve

Methods

Active Ax Framework

Methods (Active Ax framework)

PNS nerve microstructure

Tissue model

Protocol optimization

Optimized diffusion imaging protocol (PGSE and OGSE)

Scanner parameters:

- \circ G_{max}= 800 mT/m
- SNR = 10 (at TE=30ms)
- # diffusion encoding directions = 32, 16

Model parameter values:

- Volume fraction, f = 0.6
- \circ Intrinsic diffusivity, **D**_{II} = 1.7 μ m²/ms
- $\,\circ\,$ Perpendicular diffusivity, $\boldsymbol{D}_{\perp}\,$ = 0.7 $\mu m^2/ms$
- \circ Axon diameter, **a** = 2.3 µm, 4.5 µm, 6.4 µm

Alexander et al (MRM 2008); Alexander et al (NeuroImage 2010); Ikeda & Oka (Brain & Behaviour 2012)11

Hindered D Restricted $S = fS_r(D_{||}, a) + (1-f)S_h(D_{||}, D_{|})$

lebina.shrestha.11@ucl.ac.uk

Model fitting

lebina.shrestha.11@ucl.ac.uk

Alexander et al (MRM 2008); Alexander et al (NeuroImage 2010);**12**

Simulations

- CAMINO Monte Carlo simulator
- Substrates
 - \circ y distributed diameter cylinders (mean = 2 7 µm)
 - \circ *f* = 0.4 0.7
- 50 repetitions per substrate (SNR=10)

Example γ distributions at f = 0.6

Sciatic nerve experiments

• Scanner

- 9.4 T Agilent Technolgies; G = 800mT/m
- \circ Resolution = 94 μ m \times 94 μ m \times 2 mm
- NSA = 8
- Sciatic nerve
 - Male Sprague Dawley rat
- Viability
 - Ligation + Excision
 - MRI compatible incubation chamber
 - Oxygenated aCSF @ 37°C
 - Fixation

Sciatic nerve

Methods

Ground truth estimates from histology

- Transmission electron microscopy (TEM)
 - o Central slice
 - \circ Resolution = 64 μ m \times 64 μ m \times 5 μ m
 - o 28 TEM images
 - Matlab based image processing algorithm

sciatic nerve

TEM of whole sciatic nerve

Optimized protocols

PGSE

<u>OGSE</u>

32 gradient directions

Simulations: Accuracy of diameter index

Simulations: Accuracy of diameter index

Simulations: Accuracy of diameter index

PGSE OGSE ■ *f* = 0.7 14 14 f = 0.6■ *f* = 0.5 diameter estimates (µm) diameter estimates (µm) Mean fitted Mean fitted 0 2 3 5 6 7 2 3 5 6 0 0 Ground truth diameter (µm) Ground truth diameter (µm)

OGSE

Simulations: Accuracy of diameter index

<u>PGSE</u>

Simulations: Precision of diameter index

* Represents p < 0.05

Simulations: Robustness

Nerve: Accuracy of diameter index

PGSE

Nerve: Precision of diameter index

* Represents p < 0.05

Nerve: Robustness

OGSE diameter estimates are more robust

- Viable tissue
 - Avoid fixation effects
 - o Realistic diffusion coefficient

- Viable tissue
 - Avoid fixation effects
 - o Realistic diffusion coefficient
- Optimised OGSE protocols
 - More accurate diameter index

Axon diameter index estimates

- Viable tissue
 - Avoid fixation effects
 - o Realistic diffusion coefficient
- Optimised OGSE protocols
 - More accurate diameter index
 - $\circ~$ More precise diameter index

Axon diameter index estimates

- Viable tissue
 - Avoid fixation effects
 - Realistic diffusion coefficient
- Optimised OGSE protocols
 - More accurate diameter index
 - $\circ~$ More precise diameter index
 - More **robust** diameter index

Axon diameter index estimates

Acknowledgements

Investigators

Oscar F Bennett Bernard Siow Tom Quick Simon Richardson Enrico Kaden David Atkinson James B Philips Ivana Drobnjak

Microstructure imaging group (MIG)

Engineering and Physical Sciences Research Council The Leverhulme Trust

