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Abstract: Three straight-bladed vertical axis turbine designs were simulated using Three-

Dimensional (3D) transient Computational Fluid Dynamics (CFD) models, using a commercial 

Unsteady Reynolds Averaged Navier-Stokes (URANS). The turbine designs differed in support strut 

section, blade-strut joint design and strut location to evaluate their effect on power output, torque 

fluctuation levels and mounting forces. Simulations of power output were performed and validated 

against Experimental Fluid Dynamics (EFD), with results capturing the impacts of geometrical 

changes on turbine power output. Strut section and blade-strut joint design were determined to 

significantly influence total power output between the three turbine designs, with strut location having 

a smaller but still significant effect. Maximum torque fluctuations were found to occur around the 

rotation speed corresponding to maximum power output and fluctuation levels increased with overall 

turbine efficiency. Turbine mounting forces were also simulated and successfully validated against 

EFD results. Mounting forces aligned with the inflow increased with rotational rates, but plateaued 

due to reductions in shaft drag caused by rotation and blockage effects. Mounting forces 

perpendicular to the inflow were found to be 75% less than forces aligned with the inflow. High 

loading force fluctuations were found, with maximum values 40% greater than average forces. 
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Highlights 

 

 Three straight-bladed turbine designs simulated using Computational Fluid Dynamics 

 Strut section, blade-strut joint design and strut location significantly impacted power output 

 Large torque fluctuations occurred around the rotation speed of maximum power 

 Turbine mounting forces were found to vary with turbine efficiency 

 

1. Introduction 
 

A combination of social, environmental and economic interests is driving research into renewable 

energy, the production of which is a central facet of sustainable human development. The energy held 

within the ocean could be harnessed in a renewable, sustainable and economic manner, with over 50 

devices proposed to extract this energy [1]. However, of these devices only a few have been 

constructed or are near commercial feasibility [2]. Vertical and horizontal axis turbines are among 

these devices being developed to transform the ocean’s kinetic energy contained within tides and 

currents into usable energy forms [2].  

 

Vertical axis turbines as shown in Figure 1 have two key advantages when compared to horizontal 

axis designs: they are flow-directional independent [3]; and all electrical components can be installed 

above the free surface of the water, thus simplifying installation and maintenance [4]. With increased 

interest in vertical axis turbines, driven in part by the plateauing of efficiency of horizontal axis 

designs [5], further research into the development of improved turbine designs is required. This has 

proven challenging due to the complexity of vertical axis turbine hydrodynamic flow fields which are 

notoriously difficult to predict [5].  
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Figure 1: Vertical Axis turbine for tidal and current power generation [6] 

 

The complexity of vertical axis turbine hydrodynamics is due to three distinct phenomena that 

generate high levels of unsteady flow and thus complex vortex shedding and flow diffusion effects: 

 continually varying blade angles of attack;  

 blade-wake interactions; and  

 strut effects. 

 

At low rotational rates the flow is dominated by high levels of static and dynamic stall as the blade 

angles of attack widely vary due to the low blade velocities relative to the inflow velocity [7]. At 

higher rotational rates the flow field is dominated by wake interaction as the blades traverse through 

the disturbed wake and shed vortices of previous blades [5]. Additionally, as rotational rates increase 

the influence of strut drag increases, reducing the overall torque generated [8]. These complex flow 

field phenomena and the resultant vortex shedding and flow diffusion effects must be accurately 

captured by the simulation models used in order to accurately simulate turbine hydrodynamics and 

thus turbine efficiency. 

 

A wide variety of numerical models can be used to simulate vertical axis turbine performance and 

hydrodynamics, ranging from reduced order blade-element based models [7-9], vortex methods [10, 

11], two-dimensional (2D) Computational Fluid Dynamics (CFD) models [12], quasi 2D or 2.5D 

Large Eddy Scale (LES) simulations which treat the blades as possessing infinite length [13], and 
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three-dimensional (3D) CFD models [14,15], with increasing levels of simulation complexity and 

computational resource requirements. Commercial CFD software such as ANSYS Fluent and CFX are 

commonly used to simulate turbine power output and hydrodynamics [3,8,12-18], with most CFD 

simulations performed in 2D as 3D models require lengthy simulation times [10,13,17]. However, 2D 

(and by extension 2.5D) CFD simulations often unsatisfactorily estimate power output, as the losses 

due to strut drag and finite blade lengths are not simulated [8,15]. To accurately capture all 

hydrodynamic phenomena, CFD models should include all significant geometrical features, 

necessitating the use of full 3D simulation approaches. Although empirical corrections for 2D CFD 

and blade-element models are available [8,10,16] in this work evaluations were conducted to 

determine whether recent advances in distributed computing now make 3D CFD simulation 

approaches feasible. 

 

In this work simulations were performed using 3D CFD models to predict the power output, torque 

fluctuations and loading characteristics of three straight-bladed vertical axis turbines. These designs 

used the same blade section but different strut sections, blade-strut joint designs and strut locations to 

evaluate the effect of geometrical changes on turbine performance. Power output curves were 

generated for all turbines, two of which were compared to Experimental Fluid Dynamics (EFD) 

results to validate simulation models. The levels of torque fluctuations and total mounting forces were 

also characterised to determine their relationship with strut location, strut section and total power 

output. All CFD methods were verified using mesh independence criteria with results validated 

against EFD where possible. 

2. Numerical Simulations 

 

Transient time-accurate 3D CFD simulations were conducted in ANSYS CFX software utilising the 

URANS based Shear Stress Transport (SST) turbulence model using an element-based finite volume 

approach [19]. Ansys CFX was utilised as it is commonly used in industry and its formulation allows 

for efficient distribution on computing clusters to reduce total simulation time [19].Unsteady models 

were used due to the high levels of unsteady flow caused by the rotation of the turbine, with the fluid 

modelled as an incompressible fluid as all flow velocities were significantly less than Mach 0.3.   

 

2.1 Turbine Geometry 
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Three straight-bladed vertical axis turbine designs were simulated, labelled turbines A, B and C, with 

the overall geometrical dimensions and configurations as outlined in Table 1, which were based on 

the EFD turbines of Rawlings [20]. These turbines were simulated as they allowed for comparisons of 

power output for varying geometrical designs as well as validation of simulation results against EFD. 

All turbines had two struts per blade, with strut section, location and blade-strut joint design details 

outlined in Figure 2. 

Table 1: Common geometrical features of the three turbine configurations [20] 

 

Geometry Dimensions 

Number of blades 3 

Number of struts 2 per blade 

Blade section NACA 634021 

Blade chord 0.065m 

Radius 0.457m 

Blade span 0.686m 

 

 

Figure 2: Turbines A, B, and C strut section, strut location and blade-strut joint detail [20] 
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2.2 Key Performance Parameters 

 

A number of performance parameters were investigated to enable the quantification of turbine 

efficiency and operating loading characteristics. Turbine power output was expressed as a non-

dimensionalised power coefficient Cp, where,  

 

𝐶𝑝 = 𝜆 𝐶𝑚 (1) 

 

where tip speed ratio λ was defined as, 

 

λ = r𝜔/V (2) 

 

where ω was the turbine rotational rate, r was the turbine radius, and V was the inflow velocity. The 

turbine torque coefficient Cm was determined as, 

 

𝐶𝑚 =
𝑀𝑜𝑚𝑒𝑛𝑡

0.5𝜌𝑉2𝑆𝑟
 

(3) 

 

where ρ was the water density (set to 1000 
kg

m3 for all simulations), S was the turbine frontal area, and 

the Moment generated by the turbine was taken from CFD or EFD results.  

 

2.3 Computational Domain and Boundary Conditions 

 

The boundary conditions used for all CFD studies are outlined in Table 2 for the boundaries shown in 

Figure 3. The boundaries conditions simulated free stream conditions ensuring that the turbine was 

isolated from any boundary layer or blockage effects and allowed full wake development. Domain 

symmetry was used to reduce overall mesh size by splitting the domain along the horizontal centre 

plane, with the resultant half domain used for all simulations. No free surface effects were simulated, 

as the turbine was assumed to operate at sufficient depth to minimise any surface effects. 
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Table 2: Domain boundary conditions for CFD models 

Wall Boundary condition 

Inlet Uniform flow: 1.5 ms-1 

Outlet Pressure:  0 Pa 

Walls Free slip walls 

Turbine No slip walls 

Symmetry Symmetry walls 

 

 

 

Figure 3: Domain boundary nomenclature and sizing, dimensions in turbine diameters D 

 

The CFX transient rotor-stator model was utilised to simulate rotation at each time step, with the 

rotation interface modelled using a General Grid Interface (GGI). The GGI method placed an 

interface between the stationary outside domain and the rotating inner domain, shown in Figures 3 

and 4, allowing flow values to be calculated on either side of the boundary by an intersection 

algorithm [19]. This GGI interface was set at a distance of 1.5 times the turbine diameter, D, from the 

turbine rotation axis, and mesh density was increased on the interface to limit interpolation errors on 

Cp predictions.  For all simulations the inner domain was rotated at the desired λ, and for validation 

purposes this corresponded with the relevant EFD rotational rates. 
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Figure 4: Mesh domain showing overall mesh domain, GGI interface, and inflation layer detail 

All CFD meshes were generated with ANSYS CFX 13.0 mesher [21] using unstructured tetrahedral 

elements. All 3D geometrical features, including all blades, hubs, shafts, struts and blade-strut joints 

were modelled, with the main mesh features shown in Figure 4. Mesh density was refined by 

specifying face sizing, cell curvature angle and expansions rates on areas of interest, such as on 

blades, struts, and the turbine wake to fully capture flow hydrodynamics, with inflation layers utilised 

to control cell heights near all surfaces to resolve the boundary layers. Conversely, the density of the 

mesh was reduced in regions such as the boundary fields where a coarse mesh was found sufficient.  

 

2.4 Turbulence Model and Discretisation Schemes 

 

The k-ω SST turbulence model was selected as it has previously been successfully used to simulate 

turbine performance [3,8,14,18,22,23] due to its ability to model both the boundary layer and the free 

stream regions, as well as offering improved prediction of flow separation and adverse pressure 

gradients by the inclusion of transport effects into the formulation of the eddy-viscosity [19,24]. The 

height of the first cell layer on all turbine surfaces was specified to ensure that it was within the 

viscous sub-layer, with resultant average y+ (the dimensionless distance from the wall) values less 

than 1. Simulations using reduced boundary layer inflation density and thus higher y+ values resulted 

in reduced simulation accuracy, as the ANSYS-prescribed wall functions [19] were unable to resolve 

the flow near the walls due to high levels of separation and adverse pressure gradients. All simulations 

were performed using a high order advection and second order backwards Euler transient scheme. 
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To reduce simulation time, simulations were initialised using previous solutions and were deemed 

completed when the magnitude of torque fluctuations over each revolution reached a quasi-steady 

state, usually taking 2-3 revolutions. Convergence was achieved when residuals converged to within 

10-4 for each time step and reduced by more than three orders of magnitude. An inlet turbulence 

intensity level of 5% was used for all simulations as commonly performed [3,8,15,17], as EFD data 

was not available. 

 

2.5 Grid Independence Studies 

 

Studies of the influence of grid resolution factors, including mesh density, time step size, domain 

length, width, height and domain symmetry were conducted to ensure grid independence. These 

investigations were performed both quantitatively, by examining relationships between mesh grid 

resolution and Cp, as well as qualitatively, with graphical methods used to evaluate any changes 

between grid resolution factors.  Quantitative independence was deemed satisfactory when changes in 

grid parameters resulted in Cp differences of less than 5%, resulting in a suitable balance between 

solution independence, speed and computational effort. 

 

2.5.1 Mesh Density Independence 

 

Mesh density independence was evaluated for five densities, shown in Figure 5, with independence 

demonstrated for turbine A at a minimum mesh density of 5x10-4 m, corresponding to 17.2 million 

elements, with a visual comparison of mesh density shown in Figure 6. Predictions of Cp were 

sensitive to changes in mesh density, with increased mesh resolution on blade surfaces needed to 

capture the complex flow structure. Using similar methods, mesh density independence for turbines B 

and C was determined corresponding to 17.3 million and 16.6 million elements respectively. 
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Figure 5: Mesh density independence study for turbine A at an inflow velocity of 1.5 ms-1 and λ=2.75 

 

 

Figure 6: Comparison of mesh density on surfaces of blades and struts between (a) 8.5 million and (b) 

27 million elements 

 

2.5.2 Time Step Independence 

 

Time step studies were performed to ensure temporal Cp independence, critical due to the highly 

transient nature of the flow. Simulations were performed for turbine A using time steps from 0.225° to 

3.6° of turbine rotation per step with 17.2 million elements, with independence determined at a time 
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step of 0.9° rotation per step, as shown in Figure 7. Using similar methods time step independence for 

turbines B and C was found at 0.9° rotation per step. 

 

Figure 7: Time step independence study for turbine A at an inflow velocity of 1.5 ms-1 and λ=2.75 

2.5.3 Domain Size Independence  

 

Domain size independence studies were performed to ensure that the turbine was isolated from any 

domain wall or blockage effects and to allow full wake development, with changes in simulation 

domain length, width, and height. Results for turbine A, shown in Table 3, indicate that a domain 

length of 20D, width of 10D and height of 2.5D, with the turbine located 5D from the inlet, allowed 

full wake development whilst minimising domain wall and blockage effects. Qualitatively domain 

wall height effects are shown in Figure 8, where the proximity of the wall to the turbine due to low 

domain height of 1.25D increased flow velocity through the domain due to flow constriction, 

artificially increasing Cp. Although not studied here this constriction effect could be harnessed to 

increase Cp through the use of shaped ducts or walls or limited water depths [12]. 

 

Table 3: Domain size independence study for turbine A at 1.5 ms-1 and λ=2.75 

Domain 

Length 

(D) 

Cp % Cp 

change 

from 20D 

case 

Domain 

Width  

(D) 

Cp % Cp 

change 

from 10D 

case 

Domain 

Height 

(D) 

Cp % Cp 

change 

from 2.5D 

case 

5 0.285 11.3% 5 0.267 4.3% 1.25 0.276 7.8% 

20 0.256 - 10 0.256 - 2.5 0.256 - 

40 0.256 0.0% 20 0.251 2.0% 5 0.249 2.7% 
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Figure 8: Comparison of flow velocity for domain heights of 1.25D and 2.5D showing increase in 

velocity due to flow constriction, turbine A at an inflow velocity of 1.5 ms-1 and λ=2.75 

2.5.4 Domain Symmetry Validation 

 

In order to validate the use of the half domain split along the horizontal mid plane, equivalent 

simulations were carried out on full and half domains, with results shown in Table 4, with differences 

in Cp of less than 0.4% between the two domains. Velocity profiles for both the half and full domain, 

shown in Figure 9, reveal minimal difference in velocity distribution, allowing the use of the half 

domain, thereby reducing overall mesh size by two. 

 

Table 4: Comparison of Cp for symmetrical and full domains at an inflow velocity of 1.5 ms-1 and 

λ=2.75 

Domain Symmetrical domain Full domain 

Cp 0.256 0.255 

% Cp change from 

symmetrical domain 

- 0.4% 
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Figure 9: Velocity in stationary frame comparisons for half domain and full domain for turbine A at 

an inflow velocity of 1.5 ms-1 and λ=2.75 

 

2.6 Numerical Simulation Time 

 

Numerous authors [11,13,18] have suggested that 3D CFD models are not practical for turbine 

performance investigations due to their excessive simulation time and computational requirements. 

However full 3D simulations are now feasible due to increases in cluster power and the increased 

efficiency of distributed CFD solutions, with Cp simulations for one revolution at each λ taking 24 

hours on an 18 core cluster comprising of Intel Core 2 Quad Q9300 processors with 2GB memory per 

core, allowing the simulation of vertical axis turbine performance in a timely and efficient manner. 

All simulations were performed using URANS models, which combined with free surface modelling 

assumptions minimised simulation time when compared to numerical methods such as LES, 

3. Results and Discussion 

 

Simulations of power output, torque fluctuations and mounting forces were obtained for turbines A, B 

and C at an inflow velocity of 1.5 ms-1 for varying rotational rates, using the simulation settings 

outlined in Table 5.  



 

Page | 14  
 

Table 5: Main CFD simulation settings 

CFD Setting 

Turbulence model k-ω SST 

Time step 0.9° rotation per time step 

Advection scheme High order 

Transient scheme Second order backwards Euler 

Domain length 20D 

Domain width 10D 

Domain height 2.5D 

 

3.1 Validation of Numerical Simulations with Experimental Fluid Dynamics 

 

Validation studies were performed against EFD tests at the University of British Columbia’s towing 

tank, an approximately 60.1m long, 3.7m wide and 2.4m deep facility [20]. Using a torque sensor and 

rotation rate encoder, Cp for varying λ were obtained at a series of flow velocities from 0.75 ms-1 to 

2.24 ms-1, with λ varied using a motor drive unit through a 20:1 gearbox. Shaft force was measured 

using two load cells mounted to the vertical shaft. The turbine models A and B simulated in this 

project were based on two of the EFD turbines tested by Rawlings [20], enabling the equivalent CFD 

simulations to be validated. 

 

Comparisons of CFD and EFD Cp–λ curves for turbines A and B are shown in Figure 10. At low λ, 

good agreement was found between CFD and EFD results for both turbines. Below λ=3 all turbine A 

results were within EFD error bars, with Cp differences between CFD and EFD results of 17% and 

0.8% at λ=1.5 and λ=2.5 respectively. Turbine B prediction accuracy at low λ was similar, with 

differences in Cp prediction of 29.2%, 14.4% and 1.7% at λ=1.5, 2 and 2.25 respectively. However, 

for both turbines Cp prediction accuracy reduced as λ increased past the location of maximum Cp, with 

CFD Cp values shifted lower. The authors suggest that this was due to over prediction of turbine blade 

airfoil drag due to the use of a fully turbulent CFD model, which over-estimated skin friction and 

hence airfoil drag [25] particularly at low angles of attack, reducing Cp at high λ where blade angles of 

attack are low [7]. Improvements of simulation accuracy at high λ may be possible using newly 

developed transitional turbulent models that can account for this laminar-turbulent transition 

behaviour [19]. Over prediction of Cp at high λ may also occur as a result of blockage errors that were 

not accounted for in EFD results which could artificially increase EFD Cp [26], and may also occur 

due to differences in the turbulence intensity levels between the CFD models and EFD testing, as high 
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turbulence intensity levels can delay stall [27], leading to increases in Cp especially at high λ [28], 

with no turbulence intensity measurements recorded during EFD testing to compare to CFD 

turbulence levels. 

 

 

Figure 10: Comparison of CFD and EFD Cp–λ curves for turbines A and B at an inflow velocity of 1.5  

ms-1. Error bars only reported for EFD turbine A [20] 

 

Significantly both CFD models were able to accurately capture the effect of geometrical changes on 

maximum Cp, which was simulated to within 14.3% and 6.3% of EFD results for turbines A and B 

respectively. This prediction accuracy is much higher than previous vertical axis turbine CFD 

predictions, which exhibit maximum Cp errors of more than 45% [12,14,29-31], possibly due to the 

inclusion of the full turbine geometry in the present study. The use of 3D models also allows for the 

direct simulation of Cp without the need for empirical correction for 2D models as previous used 

[8,10,16]. 

 

It has previously been suggested that URANS methods are unable to accurately predict vertical axis 

turbine blade vortex shedding and flow diffusion, requiring higher order CFD methods such as Large 

Eddy Simulation (LES) [13]. However the authors believe that the accuracy of 3D CFD simulations 

when compared to EFD results, as demonstrated in Figure 10, suggests that reasonable estimates of 

performance coefficients such as Cp can be obtained by URANS methods and that resolution of small-

scale flow field detail by LES or Direct Numerical Simulation (DNS) methods  may not be necessary. 

Previous URANS Cp prediction errors of more than 45% [12,14,29-31] may be influenced more by 
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their 2D nature than overall CFD approach, with the lack of strut and tip effects having a greater 

influence on Cp predictions than poor fine-scale vortex resolution. Validation of this hypothesis could 

be performed by comparing flow field simulations with EFD using Particle Image Velocimetry (PIV) 

to establish the accuracy of the simulated vortex shedding and flow diffusion effects and their 

influence on turbine performance characteristics [32] 

 

3.2 Numerical Simulation of Power Output 

 

Using the validated CFD simulation methods Cp-λ curves for turbines A, B and C were determined, 

and are shown in Figure 11. Although the turbines were the same in overall geometrical dimensions, 

there were significant Cp variations between the turbine designs for all λ as a result of the changes in 

strut section, blade-strut joint design and strut location. 

 

 

Figure 11:  Comparisons of CFD Cp-λ curves for turbines A, B, and C at an inflow velocity of 1.5 ms-1 

 

3.2.1 Influence of Strut Section and Blade-Strut Joint Design 

 

The influence of strut section and blade-strut joint design on Cp was found to be significant, as shown 

in Figure 11. The Cp for turbine C is more than double that of turbine B. This large increase in Cp is 

due to a change in strut section and blade-strut joint design, with all other geometry being identical for 

the two turbines.  As shown in Figure 2, turbine C has a NACA0012 section for the strut and faired 
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joints with the blades, whereas the turbine B struts have a machined flat bar section and small 

connection tabs for the blade-strut joints. The more streamlined hydrodynamic strut section of turbine 

C provides lower levels of strut drag than the bluffer section used for turbine B, resulting in reduced 

levels of resistive torque generated by the turbine struts. This influence can be seen in Figure 11 to 

increase as the tip speed ratio increases. The mounting tabs located at the blade-strut joints used in 

turbine B generated higher levels of parasitic drag when compared to the more streamlined design of 

turbine C, thus contributing to the Cp reduction. Although it is difficult to isolate whether the strut 

section or the blade-strut joint design had the largest impact on Cp, combined their effect on turbine 

performance was significant.  

 

These outcomes from the CFD study are supported by the EFD results, where significant changes in 

Cp were found and attributed to strut drag and blade-strut joint changes between the two designs [20]. 

The results show that to maximise Cp the selection of strut section and blade-strut joint design is 

critical. If optimisation studies are performed solely on blade section, as would occur using 2D CFD 

models, the effects on Cp of strut section and blade-strut joint design would not be captured. 

 

3.2.2 Influence of Strut Location 

 

The location of the turbine struts was found to impact on Cp, with struts located at blade tips 

increasing effective blade length and acting as end-plates, increasing maximum Cp by 12.4% as shown 

in Figure 11 when comparing turbines A and C with strut locations at blade tips and quarter span 

respectively. Although the increase Cp was less than that caused by strut section and blade-strut joint 

changes it was still considerable. This end plate effect was also found in EFD where similar Cp 

increases of up to 16% at 1.5 ms-1 were found for turbine B using NACA shaped end plates and 

circular disks [20,33].  

 

Increases in Cp caused by increased effective blade length can be seen in the differences between the 

vortex structures shown in Figure 12. Turbine C generated vortex structures at both the blade ends and 

the quarter span, whereas the location of turbine A struts at the blade tips combined the tip and blade-

strut joint vortex structures, minimising flow disturbance over the blade and thereby increasing total 

lift force and thus torque and Cp generated. 
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Figure 12: Blade tip and strut vortex structures for Turbine A and C, vorticity in stationary frame of 

25 s-1 at an inflow velocity of 1.5ms-1 and λ=2.75  

 

3.3 Vortex Shedding Visualisation 

 

Comparisons of vortex shedding strength were performed for λ=1.5 and λ=2.75 for turbine B, as 

shown in Figure 13. The influence of λ on vortex shedding as a result of the relationship between 

blade angles of attack and λ [7] can be seen. At λ=1.5, large vortices were shed from the blades, as 

they stalled in both the upstream and downstream turbine sections due to the high angles of attack 

experienced at low λ. Vortices shed from the blades traverse downstream with the water flow, 

impacting on the blades as they rotate, reducing blade efficiency and thus the torque generated. 

However, at λ=2.75 there was a marked reduction in vortex generation due to the high turbine 

rotational rate relative to the inflow velocity. This results in the blades fluctuating through lower angle 

of attack ranges [7], reducing flow separation and hence vortex generation, and thus increasing blade 

efficiency and torque generated. Shaft vortex shedding at λ=1.5 can also be seen to impact on the 

downstream blades, however at λ=2.75 again this effect was greatly reduced, as the increase in 

rotation speed of the cylindrical shaft reduces the intensity of vortex shedding [34]. Validation of 

these vortex shedding simulations was not possible as EFD results included no flow visualisation, 

although validation would be possible if EFD techniques such as PIV were performed. 
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Figure 13: Vortex structure visualisation for turbine B at λ= 1.5 and λ=2.75 showing vortex 

generation. Time series of isosurfaces of vorticity in stationary frame from 9 to 35 s-1 at an inflow 

velocity of 1.5 ms-1 on plane 0.05m from horizontal symmetry  

 

3.4 Torque Ripple Simulations 

 

The cyclic nature of the forces acting on the blades caused by the changing angles of attack resulted in 

fluctuations in torque generated. These time variations in torque are transmitted through the turbine 
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drive train and can cause shaft vibrations and potentially damage turbine components [35-36]. 

Various methods for quantifying torque fluctuations have previously been used [11,16,35-37]; in this 

work torque ripple is determined as a Torque Ripple Factor (TRF), where, 

 

𝑇𝑅𝐹 = 𝐶𝑚𝑀𝑎𝑥
− 𝐶𝑚𝑀𝑖𝑛

 

 

(4) 

 

where 𝐶𝑚𝑀𝑎𝑥
 and 𝐶𝑚𝑀𝑖𝑛

 are the maximum and minimum moment coefficients, as demonstrated in 

Figure 14 for turbine A at  λ=2.75. This formulation allows for easy comparison of the range of torque 

variations experienced and is similar to that used by Winchester and Quayle [36] and Shiono et al. 

[37] 

 

Figure 14: Torque Ripple Factor (TRF) determination for turbine A at an inflow velocity of 1.5 ms-1 

and λ=2.75 

 

The maximum TRF for each of the three turbines occurred slightly below the λ location of maximum 

Cp, as shown in Figure 15, which for turbines A, B, and C were located at λ=2, 2, and 2.25 

respectively. This was due to the forces on the blades alternating between high positive and negative 

values of lift in the upstream and downstream areas of rotation. Maximum TRF was found to increase 

with turbine efficiency, with turbine A showing increases in TRF of 53.7% and 8.7% compared to 

turbines B and C respectively, due to the increase in total lift forces. Both the location of maximum 
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TRF and its relationship with Cp are unfortunate, as turbines designed to operate at maximum Cp will 

operate near maximum TRF, which can significantly shorten turbine life due to the large alternating 

loading forces and thus fatigue [35,36]. Reductions of TRF would be possible by using helical bladed 

turbines, as the helical blade inclination angle reduces torque pulsation [37]. 

 

 

Figure 15: Comparison of CFD Torque Ripple Factor (TRF) for turbines A, B, and C at an inflow 

velocity of 1.5 ms-1 

 

3.5 Turbine Mounting Force Simulations 

 

Turbine loading forces in the inline, lateral and vertical direction shown in Figure 16 were simulated, 

with no force in the vertical direction found due to the horizontal symmetry of the turbine design. 

Both average and maximum forces were evaluated as the loading forces vary as the turbine rotates. 

The inline, lateral and maximum forces were non-dimensionalised as, 

 

𝐹𝐼 = 𝐼𝑛𝑙𝑖𝑛𝑒 𝐹𝑜𝑟𝑐𝑒 /
1

2 
𝜌𝑉2𝑆 

 

(5) 

𝐹𝑇 = 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 /
1

2 
𝜌𝑉2𝑆 

 

(6) 

𝐹𝑀𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑜𝑟𝑐𝑒 /
1

2 
𝜌𝑉2𝑆 

(7) 
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Figure 16: Definitions of lateral, inline and vertical forces 

 

3.5.1 Validation of Inline Forces with Experimental Fluid Dynamics 

 

Average CFD and EFD [20] inline force coefficients for turbine B are shown in Figure 17.  Good 

agreement between CFD and EFD was found across most λ, with differences of 8.2% and 2.5% at λ=2 

and λ=2.5 respectively. The inline force magnitude increased with λ due to increased flow velocity 

over the struts and hence increased strut drag.  However the inline force plateaued with increasing λ, 

which the authors suggest is caused by reductions in cylindrical shaft drag coefficient as λ increases, 

as shown by EFD and CFD studies on cylindrical bodies [38]. This effect may also be caused by the 

turbine acting more like a solid body at high λ [39].  Validation of lateral, vertical and maximum 

forces was not possible as EFD data was not available however close correlation between EFD and 

CFD was demonstrated for inline force coefficients simulations.  
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Figure 17: Comparison of average CFD and EFD inline force coefficients for turbine B at an inflow 

velocity of 1.5 ms-1 

 

3.5.2 Inline and Lateral Force Simulations 

 

Simulations of inline and lateral force coefficients for turbines A, B, and C were obtained and are 

shown in Figure 18. Lateral forces were found to be approximately 75% lower than inline forces, and 

were found to remain relatively constant across the λ range. Inline force rose then plateaued as λ 

increased, due to reductions in shaft drag as rotation rates increased. Notably inline forces were not 

significantly influenced by strut section, blade-strut joint design or strut location, whereas the lateral 

forces were affected by changes in both parameters due to variations in blade efficiency and thus 

blade lift force between turbine A, B and C. The maximum forces generated were found to be up to 

40% higher than the average forces due to TRF (Eqn. 4), with the average loading forces slowly 

plateauing above λ=3 due to reductions in shaft drag and changes in blockage as λ increased. Below 

λ=3, maximum mounting forces at each λ increased with turbine efficiency due to lateral force 

increases, with variations in lift force driving the difference. 
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Figure 18: Comparisons of average inline, average lateral and maximum force coefficients for 

turbines A, B, and C at an inflow velocity of 1.5 ms-1 

 

4. Conclusions 

 

Three straight-bladed vertical axis tidal turbine configurations were simulated successfully by 3D 

CFD models using the SST turbulence model. Two turbine models were successfully validated 

against EFD results, with maximum power output predictions within 15% of EFD results. These 

results demonstrate that URANS models are an effective simulation tool for predicting vertical axis 

turbine power output, and that they can accurately capture the effects of geometrical changes on 

power output between turbine designs. 

 

The selection of strut section and blade-strut joint design was found to have a crucial impact on power 

output. Power output with low drag struts with streamlined blade-strut joints was found to be more 

than 50% higher than that of high drag struts with blade-strut connection tabs. The location of the 

strut attachment point to the blade was found to impact power output to a lesser but still significant 

degree, with struts located at the blade tips increasing maximum power output by 12% when 

compared to struts located at the quarter span.  
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The relationship between torque ripple and rotation rate was investigated, with maximum torque 

ripple occurring around the rotation rate where maximum power output was generated. As turbines 

are designed to operate at maximum power output they will experience large loading fluctuations, the 

effects of which need to be further investigated 

 

Investigation of mounting forces using CFD models determined new relationships between rotational 

rate and mounting forces. The average inline force magnitude was found to be significant, with 

average lateral forces exhibiting lower values. A direct relationship between turbine efficiency and 

inline, lateral and maximum forces was determined, with more efficient turbines exhibiting increased 

lateral forces while experiencing minimal changes in inline forces. Maximum forces were found to be 

more than 40% higher than the average forces.  

 

This work has also shown that due to the continual increases of computing power available to CFD 

users, the use of full 3D CFD simulation models for vertical axis turbines is possible without the need 

for unrealistic computational resources or time requirements. When combined with the ability of the 

3D models to capture the effects of geometrical changes on power output the optimisation of turbine 

design using 3D CFD models is now possible within reasonable timeframes. 

 

The CFD simulation methods developed here will in future work be used to evaluate the performance 

of helical bladed turbines to determine any differences, and thus possible advantages, between helical 

and straight bladed designs.  

 

Nomenclature  
 

𝐶𝑚 Moment coefficient   𝑆 Blade span [m] 

𝐶𝑚𝑀𝑖𝑛
 Minimum moment coefficient   TRF Torque ripple factor 

𝐶𝑚𝑀𝑎𝑥
 Maximum moment coefficient   V Inflow velocity [ms-1] 

Cp Power coefficient   y+ dimensionless distance of 1st cell height to wall 

FI Inline force coefficient   𝜆 Tip speed ratio 

FL Lateral force coefficient   𝜌 Density [kgm-3] 

FMax Maximum force coefficient   𝜔 Rotation rate [rads-1] 

r Radius [m]     
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