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Abstract:	

This	paper	investigates	phosphate	glasses	incorporating	Vanadium	and	Molybdenum	oxides	

for	 effective	 management	 of	 dissolution	 and	 drug	 release.	 These	 glass	 formulations	 are	

found	to	reduce	the	rate	of	dissolution	from	the	glass	surfaces.	The	drug	functional	groups	

of	 Vancomycin	 molecules	 loaded	 by	 immersion	 showed	 stronger	 hydrogen	 bonding	 with	

Vanadium	 doped	 glasses	 and	 consequently	 lower	 rate	 of	 drug	 release	 over	 two	 weeks	

indicating	better	surface	attachment	with	the	drug	molecules	and	slow	drug	release	profiles.	

This	can	be	explained	by	the	strong	adherence	of	drug	molecules	to	glass	surfaces	compared	

with	the	molybdenum	containing	glasses	(PM5	and	PM10).	The	strong	attachment	relates	to	

hydrogen	bonding	between	the	amino-functional	groups	of	Vancomycin	and	the	hydrated	P-

O-H	groups	in	the	glass	network.	In	conclusion,	the	rate	of	dissolution	of	doped	glasses	and	

the	rate	of	drug	release	can	be	administered	to	deliver	the	drug	molecules	over	weeks.	
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1. Introduction	

Because	of	the	increase	in	the	number	of	accidents,	multiple	trauma	victims,	and	ageing	of	

the	 population,	 the	 demand	 for	 bone	 reconstruction	 is	 constantly	 growing.	 Therefore,	

research	 and	 development	 of	 new	 bone	 grafting	 materials	 became	 the	 main	 interest	 of	

scientists.	Calcium	phosphate	ceramics,	 such	as	hydroxyapatite,	have	been	widely	used	as	

bone	grafting	materials,	due	 to	 their	 similarity	 in	 chemical	 composition	with	human	bone	

body	[1].	But,	 too	 low	bioresorbability	 rate	at	normal	physiological	conditions	 [2]	makes	a	

limitation	 to	 apply	 such	 materials	 successfully	 in	 some	 biomedical	 applications	 require	 a	

highly	 biodegradable	 and	 bioresorbable	 materials.	 However,	 bioactive	 glasses,	 such	 as	

phosphate-based	 glasses	 are	 considered	 desirable	 alternative	materials.	 Bioactive	 glasses	

have	the	ability	to	bond	with	tissue	[3]),	as	well	as,	the	flexibility	of	controlling	degradation	

by	changing	their	chemical	composition.		

Calcium	phosphate	glasses	have	demonstrated	a	superior	material	for	medical	uses	due	to	

their	 sustained	 and	 controlled	 solubility[4],	 which	 make	 them	 potentially	 useful	 for	

promoting	 the	 regeneration	 of	 soft	 and	 hard	 tissues.	 Additionally,	 their	 chemical	

composition	is	close	to	that	of	the	inorganic	part	of	bone,	which	nominated	them	for	use	as	

alternative	materials	for	silicate	bioglasses.	In	addition,	phosphate	glasses	are	bioresorbable	

and	 biodegradable	materials	 because	 of	 their	 solubility	 in	 human	 body	 [5],	 which	 allows	

them	to	be	used	as	biodegradable	suture	thread	and	as	drug	delivery	vehicles	[6].		

Recently,	 phosphate	 glasses	 have	 been	 used	 as	 suitable	 carriers	 for	 the	 delivery	 of	

therapeutic	 ions,	 such	 as	 silver	 and	 copper	 [7].	 Phosphate-based	 glasses	 have	 previously	

been	 examined	 for	 tissue	 engineering	 applications	 including	 transition	metal	 ions	 such	 as	

Fe3+,	Cu+	and	Cu2+,	Zn2+,	and	Ti2+,	which	have	shown	to	improve	cell	attachment,	activate	the	

synthesis	 of	 enzymes	 involved	 in	 the	 first	 step	 of	 protein	 biosynthesis	 and	 exhibit	

antibacterial	 properties	 [8].	 Consequently,	 phosphate	 glasses	 are	 used	 as	 potential	

substrates	in	bone	tissue	engineering	[9].	

However,	 vanadium	 and	molybdenum	 oxides	 are	 expected	 to	modify	 phosphate	 glasses’	

network,	and	control	the	degradation	rate	of	the	glasses.	From	another	view,	it	is	proposed	

that	 their	 ions	 have	 a	 therapeutic	 action	 into	 the	 body.	 Vanadium	 compounds	 (such	 as	

Polyoxovanadates)	have	demonstrated	applications	in	medicine	and	proved	efficient	effect	
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against	leukemia,	breast	adenocarcinoma,	testicular,	renal,	and	gastrointestinal	cancers	and	

hepatomas.	[10].		

As	well	as,	it	was	proved	that	vanadium	has	the	anti-diabetic	properties	which	was	initiated	

in	 1985	 by	 John	 McNeill	 [11]	 and	 used	 as	 inhibitors	 to	 various	 phosphate-metabolizing	

enzymes	 through	 binding	 to	 the	 protein	matrix.	On	 the	 other	 hand,	 peroxo-molybdenum	

complexes	have	shown	an	antitumor	effect	[12].	However,	despite	the	proven	therapeutic	

values	of	vanadium	and	molybdenum	compounds	in	biomedicine,	there	is	no	clear	evidence	

about	the	suitability	of	phosphate	glasses	as	drug	delivery	carriers.			

Thus,	the	application	of	phosphate	glasses	in	drug	delivery	systems	could	be	very	useful,	but	

their	 fast	 degradation	 behavior	 is	 hindering	 the	 application	 in	 this	 approach.	 Therefore,	

number	of	high	valency	elements	was	suggested	as	dopants	into	phosphate	glasses	in	order	

to	control	the	rate	of	dissolution	and	in	role,	improve	the	degradation	profile	of	glasses	for	a	

therapeutic	 action.	 The	phosphate	 glasses	modified	with	 the	Vanadium	and	Molybdenum	

will	be	evaluated	for	local	drug	delivery	carriers.	This	fact	would	be	successful,	if	it	could	be	

possible	to	modify	the	controlled	dissolution	and	potential	biodegradation.		

In	this	work,	vanadium	and	molybdenum	doped	phosphate	glasses	will	be	prepared	in	a	trial	

to	control	the	degradation	rates	and	ion	release	of	phosphate	glasses	and	investigate	their	

use	as	drug	delivery	carriers.	Vancomycin	antibacterial	drug	was	selected	as	a	drug	model	in	

this	study	due	to	its	broad-spectrum	antibiotic	ability	to	treat	serious	infections,	which	may	

be	 associated	 with	 application	 of	 bone-filling	 materials,	 orthopedic	 implants	 or	 bone	

replacements.			

2.	Materials	and	methods	

2.1.	Glass	preparation	

The	base	phosphate	glasses	were	prepared	by	melting.	 The	 chemical	 compositions	of	 the	

studied	phosphate	glasses	in	Mol%	are	shown	in	Table	1.	The	glass	compositions	formulated	

using	 NaH2PO4	 99.0%	 Sigma,	 calcium	 carbonate	 (CaCO3)	 99%	 Sigma	 aldrich,	 Phosphorus	

pentoxide	 (P2O5)	 99%	 Sigma	 Aldrich	 and	 Vanadium(V)	 oxide	 (V2O5)	 99.6%	 Aldrich	 and	

Molybdenum(IV)	 oxide	 (MoO2)	 99%	 Aldrich.	 The	 precursors	 were	 weighed	 to	 satisfy	 the	

proposed	 glass	 formulations	 and	 placed	 into	 a	 200ml	 platinum	 crucible.	 Care	 was	 taken	

while	weighing	 Phosphorus	 pentoxide	 in	 order	 to	 avoid	moisture	 content.	 The	 crucible	 is	
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placed	into	a	furnace	at	temperature	750-	1200oC	for	1h	according	to	the	melting	point	of	

the	glass	batches.	

The	molten	glasses	were	 then	poured	 into	a	preheated	graphite	molds	 in	order	 to	design	

glass	blocks	by	casting.	The	glass	blocks	were	annealed	at	the	right	annealing	temperature	

according	to	the	results	of	thermal	analysis,	at	350	oC/1h,	and	then	allowed	to	cool	to	room	

temperature,	 in	 order	 to	 remove	 the	 residual	 stresses	 in	 the	 glass.	 The	 glass	 rods	 were	

obtained	and	cut	into	12	mm	diameter,	2	mm	thick	discs	using	a	diamond	saw.	

2.2.	Characterization	of	glasses	

2.2.1.	DTA	

Glass	 powders	 were	 prepared	 grinding	 and	 screened	 to	 pass	 a	 75µm	 sieve.	 The	 thermal	

characterization	 was	 carried	 out	 using	 a	 Setaram	 differential	 thermal	 analyzer	 (Setaram,	

France).	Powder	glass	samples	were	scanned	at	a	heating	rate	of	10oC/min	up	to	1000oC	in	

order	to	determine	glass	transition	(Tg),	crystallization	(Tc),	and	(Tm)	melting	temperatures.	

2.2.2.	Fourier	Transform	Infrared	Spectroscopy	

The	 infrared	 absorption	 spectra	 of	 the	 phosphate	 glass	 powders	 were	 analyzed	 at	 room	

temperature	 in	 the	wave	number	 range	of	4000–400cm-1	using	Fourier	 transform	 infrared	

(JASCO	FT/IR-4600).	The	2mg	samples	were	mixed	with	200mg	KBr	in	an	agate	mortar	and	

pressed	into	a	pellet.	For	each	sample,	the	FTIR	spectrum	was	normalized	with	a	blank	KBr	

pellet.		

2.2.3.	In	vitro	degradation	test	

In	vitro	degradation	test	was	performed	by	determining	the	concentrations	of	ions	released	

from	the	glasses	upon	immersion	of	bulk	glass	discs	(13mm	diameter	and	2mm	thick)	in	tris-

HCl	buffer	solution.[13].	The	concentrations	of	ions	(calcium,	phosphorus,	molybdenum	and	

vanadium	ions)	released	into	the	solution	and	pH	of	incubated	solutions	were	measured	at	

the	predetermined	times	(1,	3,	7,	18	and	28days).	On	the	other	hand,	the	effect	of	solution	

on	the	glass	surfaces	was	examined	by	SEM-EDX	(Model	Quanta	250	FEG)	after	immersion	in	

SBF	(simulated	body	fluid)	for	1	week.	SBF	was	prepared	according	to	Kokubo	2006	[14].		

2.2.4.	Drug	delivery	experiment 

Drug	Loading:	

The	glass	powder	samples	(200	mg)	were	loaded	with	vancomycin-HCl	through	immersion	in	

10	ml	drug	 solution	 (5	mg/ml)	 for	 2	days	under	 static	 condition.	 The	drug	 solutions	were	
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collected,	 and	 the	 absorbance	 was	 measured	 by	 UV-visible	 spectroscopy	 at	 wavelength	

282nm.	 The	 concentrations	 of	 non-adsorbed	 drug	 were	 determined	 by	 plotting	 the	

absorbance	on	the	standard	curve.		

Drug	release:		

For	drug	release	evaluation,	each	sample	was	immersed	in	10	ml	of	tris-HCl	buffer	solution,	

pH	7.4,	at	37	°C	up	to	30	days.	At	each	predetermined	time	(1,	3,	6,	12	hours,	1,	3,	7,	14,	21	

and	30	days),	2	ml	of	 immersed	solution	was	collected	and	replaced	by	2	ml	fresh	tris-HCl	

buffer	 solution.	 The	 collected	 solutions	were	 kept	 at	 –20oC	 up	 till	 the	measurement.	 The	

concentrations	of	 released	drug	 in	 the	 collected	 solutions	were	determined	by	measuring	

the	absorbance	using	UV-visible	spectrophotometer	at	wavelength	282nm	(Unico	UV2000,	

n=3).	The	concentrations	were	calculated	by	comparison	with	the	standard	curve.		

3. Results	and	discussion:	

3.1. Thermal	analysis	

The	 DTA	 patterns	 shown	 in	 Table	 2	 and	 Figure	 1a	 displayed	 peak	 midpoint	 of	 the	 glass	

transition	temperature,	the	crystallization	and	melting	temperatures	of	the	different	glasses	

under	 investigation.	The	glass	transition	temperatures	 (Tg),	were	found	to	 increase	by	the	

increase	 in	 the	MoO3	 and	V2O5	 contents.	 The	 transition	 temperature	 (Tg)	 are	 405oC,	 407,	

435,	447,	and	477oC	for	P0,	PM5,	PM10,	PV5	and	PV10,	respectively.	The	obvious	increase	of	

the	 transition	 temperatures	 could	 be	 attributed	 to	 the	 higher	 ionic	 field	 strength	 (IFS)	 of	

Mo6+	 (2.15)	 and	 V5+	 cations	 compared	 with	 that	 of	 Na+	 (0.19)	 according	 to	 Dietzel	 [15].	

Therefore,	Mo6+	and	V5+	bonds	are	stronger	than	Na+	bonds.	Thus,	more	energy	would	be	

required	to	break	these	bonds.		

Moreover,	all	glass	samples	showed	two	crystallization	peaks	and	two	melting	temperatures	

peaks	 indicating	 the	 possibility	 of	 evolving	 two	 crystalline	 phases	 on	 further	 higher	

temperature	heat	treatment.	The	second	exothermic	peaks	of	crystallization	(Tc2)	of	glasses	

containing	Mo	were	stronger	and	sharper,	but	at	lower	temperature	compared	with	those	

obtained	by	V-	containing	glasses	as	shown	in	Table	2.		

Alternatively,	 both	 Tm1	 and	 Tm2	 melting	 temperatures	 of	 the	 vanadium	 containing	 group	

were	lower	than	the	corresponding	melting	temperatures	of	molybdenum	containing	group.	

Where,	Tm1temperatures	were	734,	766	oC	for	PM5	and	PM10,	and	720,	670oC	for	PV5	and	
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PV10,	 respectively,	while	Tm2temperatures	were	799,	824	oC	 for	PM5	and	PM10,	and	766,	

796	oC	for	PV5	and	PV10,	respectively,	as	shown	in	Fig.	1	and	Table	2.	

3.2. FTIR	

The	results	of	FTIR	spectra	of	P0,	PM5,	PM10,	PV5	and	PV10	glasses	in	the	frequency	region	

between	4000	and	400	cm-1	are	shown	in	Figure	2.	A	broad	band	is	located	around	3463	cm-

1.	 This	band	 could	be	attributed	 to	 symmetric	 stretching	of	O–H	groups	 in	H2O	molecules	

that	might	be	originated	from	originated	from	absorbed	water.	The	band	becomes	sharper	

and	stronger	with	increasing	the	content	of	MoO3	or	V2O5.			Furthermore,	the	band	located	

around	1636	cm-1	 is	assigned	to	bending	vibration	mode	of	P-O-H.	[16].	The	results	reflect	

the	increase	in	covalent	character	of	the	P–O	bonds	with	the	increase	of	the	MoO3	or	V2O5	

contents	and	the	increase	of	O-H	bond	length	[17].		

Moreover,	 the	 band	 appeared	 near	 to	 490	 cm-1,	 is	 attributed	 to	O-P-O	 bending	 vibration	

mode	 [18].	 The	 band	 near	 to	 509	 cm-1	 was	 assigned	 to	 harmonic	 of	 the	 P=O	 bending	

vibration	 [19].	 The	 bands	 observed	 around	 903cm-1	 and	 745	 cm-1	 are	 attributed	 to	

asymmetric	 stretching	 and	 symmetric	 stretching	 modes	 of	 the	 bridging	 oxygen	 atoms	

bonded	 to	 a	 phosphorus	 atom	 (P–O–P)	 in	 a	 Q2	 phosphate	 tetrahedron	 [20].	 Both	 bands	

were	 shifted	 to	 higher	 frequencies	 with	 the	 content	 of	 the	 MoO3	 or	 V2O5.	 The	 bands	

allocated	 around	970cm-1	 and	1093	 cm-1	were	 attributed	 to	 symmetric	 stretching	of	 non-

bridging	oxygen	(NBOs)	in	Q0	tetrahedra	[21],	and	asymmetric	stretching	vibration	of	P-O-P	

of	 the	 group	 (PO3
-2)	 [22].	 The	 band	 observed	 at	 1122	 cm-1	 is	 assigned	 to	 the	 symmetric	

stretching	 vibrations	 of	 PO3
-2	 groups	 [23].	 The	band	noted	 at	 1161	 cm-1	 attributed	 to	 the	

symmetric	stretching	vibration	mode	of	O-P-O[24].	The	band	presented	near	to	1244	cm-1	is	

assigned	to	P=O	asymmetric	stretching	vibration	of	PO2[25],	such	band	was	increased	with	

increase	of	Mo	and	V	cations.		

From	 FTIR	 results	 it	 could	 be	 noted	 that,	 the	 intensities	 of	 different	 vibration	 bands	 of	

phosphate	structures	 increased	by	 increase	 in	 the	content	of	MoO3	or	V2O5.	Such	oxides	

increased	 the	 number	 of	 non-bridging	 oxygens	 (NBOs)	 in	 the	 phosphate	 network,	 but	 in	

parallel,	 they	 acted	 as	 ionic	 cross-linker	 among	 NBOs,	 and	 thus,	 increase	 the	 ionic	 bond	

strength	and	decrease	the	P-O	bonds.	

3.3. Glass	solubility	

3.3.1. Weight	loss	
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The	weight	 loss	percentage	vs.	 the	 time	 is	 represented	 in	Figure	3.	 It	 could	be	elucidated	

that	 the	 solubility	of	 glass	decreased	with	 the	addition	of	MoO3	and	V2O5.	Moreover,	 the	

solubilities	of	vanadium-containing	glasses	are	 lower	compared	with	that	of	molybdenum-

containing	glasses.	The	weight	 loss	percentages	of	the	phosphate	glasses	(P0,	PM5,	PM10,	

PV5	 and	 PV10)	 are	 found	 26.9%,	 9.9%,	 5.5%,	 2.2%	 and	 1.7%,	 respectively	 at	 the	 end	 of	

incubation	period	(28	days).	The	fact	that	agree	with	conclusion	previously	reported	that	the	

addition	of	transition	metal	oxides	reduce	significantly	the	degradation	of	glass	[26].		

The	addition	of	MoO3	or	V2O5	oxides	increased	the	bonding	strength	of	glass	network	as	a	

result	of	the	increase	in	the	ionic	field	strength	compared	with	Na2O.		In	the	current	work	a	

progressive	 increase	 in	 the	 concentrations	 of	 released	 Mo6+	 and	 V5+	 cations	 results	 in	 a	

substantial	 increase	 in	 the	 ionic	 strength	 of	 the	 incubation	 medium.	 Therefore,	 the	

incorporation	of	MoO3	and	V2O5	in	the	phosphate	glasses	decreased	the	dissolution	rates	of	

as	a	result	of	the	spontaneous	increase	in	the	electrostatic	interactions	in	the	hydrated	layer	

[27].		

3.3.2. pH	measurements	

The	 pH	 of	 incubated	medium	of	 the	 studied	 phosphate	 glasses	 as	 a	 function	 of	 time	 are	

shown	in	Figure	4.	The	pH	values	decreased	continuously	in	all	cases	to	the	minimum	values	

after	7	days	of	incubation.	The	pH	values	were	found	5.79,	6.09,	6.03,	6.10	and	6.49	for	P0,	

PM5,	PM10,	PV5	and	PV10,	respectively.	Thereafter,	for	incubation	time	more	than	1	week,	

pH	values	were	found	continuously	 increasing	to	reach	7.00,	7.40,	7.41,	8.06	and	8.53,	for	

P0,	 PM5,	 PM10,	 PV5	 and	 PV10	 glasses,	 respectively.	 The	 incubated	medium	 of	 the	 base	

glass	showed	the	lowest	pH	values	as	a	result	of	generating	acidic	species	by	the	dissolution	

of	 phosphorus	 cations	 released	 from	 the	 breakage	 of	 P–O–P	 bonds	 associated	 with	 the	

[PO4]	units.		

According	 to	 the	previously	 stated	 theory	 of	 glass	 dissolution	 [28],	 the	phosphate	 glasses	

under	 investigation	dissolve	 in	aqueous	medium	 in	 two	steps;	 the	hydration	 step	and	 the	

breakage	step.	The	hydration	step,	where	a	hydrated	layer	is	formed	on	the	glass	surface	as	

a	result	of	Na+	and	H+	exchange,	as	represented	in	Equation(1).	The	breakage	step,	where,	

the	 continuous	 attack	 of	 water	 results	 in	 breaking	 up	 of	 P-O-P	 bonds	 and	 accordingly	

breaking	of	glass	network	and	release	of	[PO4]	units,	as	represented	in	Equation	(2).		
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Accordingly,	 the	 incorporation	of	MoO3	 and	V2O5	 oxides	 on	 the	 extent	 of	Na2O	 results	 in	

reducing	 the	 rate	 of	 hydration	 and	 the	 rate	 of	 breakdown	 of	 the	 phosphate	 bonds.	

Accordingly,	the	rate	of	dissolution	is	found	to	decrease	and	the	value	pH	is	shown	increase.	

However,	a	linear	increase	of	pH	values	might	be	attributed	to	the	release	of	Ca2+	ions	into	

the	 solution	 and	 chelation	 with	 the	 released	 phosphate	 species.	 Furthermore,	 Na+	 ions	

released	into	the	solution	due	to	the	H+	ion-exchange	might	take	part	in	an	increase	of	pH.	

Expectedly,	 the	amount	of	phosphate	 species	 chelating	with	 released	Mo6+	and	V5+	 ions	

was	larger,	because	of	their	high	valency	states.	

	

3.3.3. Ions	release	concentrations	

The	ionic	release	of	Ca2+,	P	species,	Mo6+	and	V5+	are	shown	in	Figures	5-7.	The	dissolution	

curves	 of	 Ca2+,	 P	 ions	 (Figure	 5-6)	 showed	 non-linear	 release.	 Accordingly,	 P0	 glass	

represented	 the	highest	 calcium	 ion	 release	 followed	by	PM5	 sample.	While,	 it	 showed	a	

nearly	steady	state	release	associated	with	PM10	and	PV10	glasses.	Thus,	the	incorporation	

of	Mo	and	V	oxides	into	the	glass	networks	decreased	the	degradation	of	glass,	and	hence,	

decreased	 the	 leaching	of	 ions	 from	glass	network.	On	 the	other	hand,	 for	P0,	PM10	and	

PV10,	 the	 maximum	 P-	 ion	 concentration	 recorded	 after	 7	 days,	 while,	 it	 was	 nearly	

constant	 release	 for	 PM5	 and	 PV5.	 However,	 these	 results	might	 be	 apparently	 different	

from	pH	values	mentioned	because	of	the	complex	and	repeated	dissolution-deposition	of	

phosphorus	in	the	solution.	As	it	was	expected,	the	concentrations	of	released	ions;	Mo	and	

V,	increased	linearly	with	the	progress	of	time,	Figure	7.					

	

Eq. (1) 

Eq. (2) 
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3.3.4. Effect	of	SBF	on	surfaces	of	the	studied	phosphate	glasses:	

SEM	 micrographs	 coupled	 with	 EDX	 analysis	 of	 P0,	 PM5,	 PM10,	 PV5	 and	 PV10	 after	

immersion	in	SBF	for	1	week	are	shown	in	Figure	8.	The	micrographs	represented	that	some	

spherical	 aggregates	 were	 detected	 on	 P0	 glass	 surface,	 which	 it	 might	 be	 some	 kind	 of	

precipitated	Ca-phosphate	species.		While,	the	surface	of	PM5	glass	was	smooth,	looked	like	

adjacent	air	bubbles	and	there	was	no	connected	longitudinal	grooves	like	that	observed	on	

the	surface	of	PM10	glass.	Furthermore,	there	were	no	hydroxyl	carbonate	apatite	detected	

on	the	surfaces	of	PM5	and	PM10	glass.	In	contrary,	flower-shaped	crystals	are	found	on	the	

surfaces	 of	 PV5	 and	 PV10	 glasses,	 such	 crystals	more	 likely	 formed	 by	 the	 deposition	 of	

released	 vanadium	 and	 phosphate	 ions.	 These	 results	 are	 confirmed	 by	 EDX	 elemental	

analyses	(wt%)	of	glasses	surfaces,	as	shown	in	Table	3.		

The	percentages	of	vanadium	element	on	the	surfaces	of	PV5	and	PV10	glasses	were	much	

more	 than	 the	corresponding	percentages	of	molybdenum	element	detected	on	PM5	and	

PM10	glasses	surfaces.	The	results	of	Mo	and	V	ions	concentrations	in	the	incubating	liquid	

(as	 mentioned	 before)	 were	 opposite.	 This	 proved	 that	 surfaces	 of	 V-containing	 glasses	

covered	 by	 crystal	 layer	mainly	 composed	 of	 vanadium,	 and	 the	 released	 vanadium	 ions	

consumed	to	form	such	crystals.			

3.4. Drug	release	profile		

The	 in	 vitro	 Vancomycin	 release	 of	 the	 different	 phosphate	 glasses	 (P0,	 PM5,	 PM10,	 PV5	

and	PV10)	over	a	period	of	14	days	are	shown	in	Figure	9.	All	glasses	have	the	same	drug	

release	profile,	whereas,	the	release	was	mainly	divided	into	two	stages.	The	first	stage	is	a	

burst	release	occurring	during	the	first	day	of	incubation,	and	the	second	stage	is	observed	

along	 the	 rest	 time	 of	 immersion	 showing	 a	 sustained	 drug	 release.	 The	 base	 phosphate	

glass	(P0)	showed	the	highest	rate	of	release	whereas	more	than	90%	of	the	drug	is	released	

at	the	end	of	the	incubation	period.		

Alternatively,	 the	 incorporation	 of	 the	 high	 valence	 oxides	 affected	 obviously	 the	 rate	 of	

drug	 release.	 The	phosphate	 glasses	 doped	with	Mo	and	V	oxides	 showed	 lower	 rates	 of	

drug	 release.	The	 release	percentages	of	drug	molecules	of	 the	glasses	were	 found	about	

25%,	25%,	45%,	55%	and	70%	in	PV5,	PV10,	PM5,	PM10	and	P0	respectively,	in	the	first	day	

of	 incubation.	 The	 release	 percentages	 of	 PM5,	 PM10,	 PV5	 and	 PV10	 were	 found	 about	

72.5%,	86.8%,	54.5%	and	44.8%,	respectively,	at	the	end	of	incubation	time.		Interestingly,	
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Vanadium	containing	glasses	(PV5	and	PV10)	demonstrated	lower	rate	of	drug	release.	This	

means	that	the	drug	is	strongly	adhered	to	their	surfaces	compared	with	the	Mo-containing	

glasses	 (PM5	 and	 PM10).	 The	 results	 might	 be	 explained	 by	 the	 concept	 of	 hydrogen	

bonding	 between	 the	 hydroxyl	 and	 amino-functional	 groups	 in	 the	 Vancomycin	 and	 the	

hydrated	P-O-H	groups	in	the	phosphate	glass	network	[29].		

A	 representation	 for	 the	 way	 of	 attachment	 of	 vancomycin	molecules	 to	 the	 surfaces	 of	

molybdenum	and	vanadium	doped	phosphate	glasses	are	shown	in	Figure	10.	The	diagram	

is	based	on	 the	hydrogen	bonding	of	drug	molecules	 to	 the	glass	 surfaces.	The	 ionic	 field	

strength	of	vanadium	is	stronger	than	that	of	molybdenum,	thus,	a	larger	dipole	effect	and	

therefore	a	larger	effective	negative	charge	on	the	oxygen	for	hydrogen	bonding.	When	the	

V-O	bond	became	in	contact	with	the	drug,	it	formed	stronger	hydrogen	bonding	between	

the	 oxygen	 and	 the	 drug	 functional	 groups.	 Vanadium	 doped	 glasses	 displayed	 better	

surface	attachment	with	the	drug	molecules	showing	a	sustained	drug	release	profile	over	

the	two	weeks	following	the	first	day	of	incubation.			

To	 determine	 the	 in	 vitro	 release	mechanism	 of	 Vancomycin	 drug	 from	 different	 glasses,	

different	 dissolution	 data	 were	 fitted	 to	 two	 known	 release	 models;	 Higuchi[30]	 and	

Korsmeyer-Peppas	[31].	The	kinetic	equations,	and	the	regression	coefficient,	R2,	were	used	

as	an	indication	of	data	fitting.	The	different	kinetic	equations	are;		

Higuchi	 model	 [30]	 which	 is	 useful	 for	 studying	 the	 release	 of	 water	 soluble	 and	 poorly	

soluble	drugs	from	variety	of	matrices,	including	solids	and	semi	solids	is	being	represented	

by	equation	(1):		

Qt	=	KHt1/2																																																																															(1)	

Korsmeyer-Peppas	model	[31]	is	being	represented	by	equation	(2):		

Qt	/	Q0	=	KKtn																																																							(2)	

To	find	out	the	mechanism	of	drug	release,	first	60%	drug	release	data	were	fitted	in	such	

model.	Where	Qt	is	the	amount	of	drug	released	in	time	t,	Q0	is	the	initial	amount	of	drug	in	

the	 sample,	 KH	 and	 KK	 are	 Higuchi	 and	 Korsmeyer-Peppas	 constants,	 and	 n	 is	 kinetic	

exponent.	 In	 order	 to	 determine	 which	 model	 is	 suitable	 for	 drug	 release	 kinetics,	 the	

regression	coefficients,	R2,	were	calculated	by	 regression	analysis.	Peppas	 [32]	used	 this	n	

value	 in	 order	 to	 characterize	 the	 drug	 release	 mechanism.	 The	 values	 of	 n	 and	 their	

corresponding	 release	mechanism	 are	 represented	 in	 Table	 4.	 For	 the	 case	 of	 cylindrical	
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tablets,	0.45	=	n	corresponds	 to	a	Fickian	diffusion	mechanism,	0.45<n<0.89	attributed	 to	

non-Fickian	transport,	n	=	0.89	to	Case	II	(relaxational)	transport,	and	n	>	0.89	to	super	case	

II	 transport.	 The	 kinetic	 exponent,	 n,	 can	 be	 determined	 by	 plotting	 of	 log	 cumulative	

percentage	drug	release	versus	log	time.	

The	 regression	 coefficient,	 R2,	 and	 release	 rate	 (KH)	 calculated	 from	 Higuchi	 model,	 and	

Regression	coefficient,	R2,	and	kinetic	exponent,	n,	 calculated	 from	Korsmeyer-Peppas	are	

shown	 in	Figure	9	and	Table	5.	 It	was	noted	 from	R2	 comparison	 that	 the	 in	vitro	 release	

profiles	of	Vancomycin	from	all	glass	samples	could	be	best	expressed	by	Korsmeyer-Peppas	

(R2	>	0.9),	and	the	n	values	of	this	model	for	PM5,	PM10,	PV5	and	PV10	samples	were	lower	

than	0.45.	The	drug	release	mechanism	for	all	glass	formulations	followed	Fickian	diffusion	

(i.e.	controlled	release).	On	the	other	hand,	the	values	of	n	>	0.45	for	P0	glass	indicating	that	

the	 dissolution	 of	 the	 base	 glass	 follows	 non-Fickian	 diffusion.	 Accordingly,	 two	

simultaneous	 processes	 happened;	 drug	 diffusion	 and	 glass	 erosion.	 Alternatively,	 the	

release	 profiles	 of	 PV5	 and	 PV10	 samples	 could	 be	 expressed	 by	 Higuchi	 model,	 which	

indicated	 that	 diffusion	 was	 the	 predominant	 mechanism	 of	 drug	 release	 from	 such	

samples.	 Interestingly,	 it	 could	 be	 tailored	 the	 release	 mechanism	 by	 changing	 the	 glass	

composition.	

Conclusion:	

The	dissolution	and	drug	release	profiles	of	phosphate	glasses	incorporating	vanadium	and	

Molybdenum	oxides	were	investigated.	The	rate	of	glass	dissolution	is	found	to	be	reduced	

through	the	slow	leaching	of	ions	from	the	glass	surfaces	with	the	presence	of	high	valance	

oxides.		

Vanadium	doped	 glasses	 (PV5	 and	 PV10)	 demonstrated	 lower	 rate	 of	 drug	 release	 in	 the	

period	 following	 the	 first	 day	 of	 drug	 release	 indicating	 a	 slow	 drug	 release	 profiles	

compared	with	the	molybdenum	containing	glasses	(PM5	and	PM10).	

The	 slow	 drug	 release	 rate	 relates	 to	 the	 hydrogen	 bonding	 between	 the	 hydroxyl	 and	

amino-functional	 groups	 in	 the	Vancomycin	 and	hydrated	P-O-H	 groups	 in	 the	phosphate	

glass	network.		

In	conclusion,	the	rate	of	dissolution	of	doped	glasses	and	the	rate	of	drug	release	can	be	

administered	to	deliver	the	drug	molecules	over	several	weeks.	
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Figure	1.	DTA	patterns	of	the	different	phosphate	glasses	
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Figure		2.	FT-IR	spectra	of	the	different	phosphate	glasses	
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Figure	3.	weight	loss	%	of	P0,	PM5,	PM10,	PV5	and	PV10	glass	samples	as	a	function	of	time.	
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Figure	4.	pH	of	P0,	PM5,	PM10,	PV5	and	PV10	glass	samples	as	a	function	of	time.	
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Figure	5.	Release	of	Calcium	cations	from	the	phosphate	glasses	(P0,	PM5,	PM10,	PV5	and	

PV10)	as	a	function	of	time	
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Figure	6.	Release	of	phosphorous	cations	from	the	phosphate	glasses	(P0,	PM5,	PM10,	PV5	

and	PV10)	as	a	function	of	time	
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Figure	7.	Release	of	molybdenum	and	vanadium	cations	from	the	phosphate	glasses	(P0,	
PM5,	PM10,	PV5	and	PV10)	as	a	function	of	time	
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Figure	8.	SEM	photographs	and	EDX	analysis	of	the	different	phosphate	glasses	after	

immersion	in	SBF	for	7	days		
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Figure	9.	Vancomycin	drug	release	profiles	of	the	different	phosphate	glasses	(P0,	PM5,	

PM10,	PV5	and	PV10)	using	tris-buffer	(pH	7.4)	as	incubating	medium,	and	Higuchi	and	

Korsmeyer-Peppas	models	fitting.	

	

	
Figure	10.	a	schematic	diagram	of	Vancomycin	molecules	bonded	with	Mo-	and	V-
containing	phosphate	glasses	surfaces	by	hydrogen	bonding	

	

	


