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The angular nature of road 
networks
Carlos Molinero   1, Roberto Murcio2 & Elsa Arcaute1

Road networks are characterised by several structural and geometrical properties. The topological 
structure determines partially the hierarchical arrangement of roads, but since these are networks that 
are spatially constrained, geometrical properties play a fundamental role in determining the network’s 
behaviour, characterising the influence of each of the street segments on the system. In this work, we 
apply percolation theory to the UK’s road network using the relative angle between street segments 
as the occupation probability. The appearance of the spanning cluster is marked by a phase transition, 
indicating that the system behaves in a critical way. Computing Shannon’s entropy of the cluster sizes, 
different stages of the percolation process can be discerned, and these indicate that roads integrate to 
the giant cluster in a hierarchical manner. This is used to construct a hierarchical index that serves to 
classify roads in terms of their importance. The obtained classification is in very good correspondence 
with the official designations of roads. This methodology hence provides a framework to consistently 
extract the main skeleton of an urban system and to further classify each road in terms of its hierarchical 
importance within the system.

The search for a science of urban processes has generated growing interest from many different perspectives1–5. 
One field that has particularly attracted attention, is the study of road networks, one of the most prototypical and 
studied network types6, 7. Road networks condense in its intricate configuration a countless number of inter-
ventions which result from a myriad of historical and political micro-decisions. These have paved the way to a 
hierarchical structure that can be revealed if the system is studied as a percolating process8.

Many physical processes occurring in nature can be explained as a percolating phenomenon9. As a conse-
quence, percolation theory has found a wide range of applications: e.g. for oil extraction10; for the study of the 
electrical conductivity of materials11, of polymerization processes12, of fire spreading13, of epidemiology14, and 
of other health aspects such as obesity15; and to understand the modular and integrated structure of brain net-
works16. In more technical terms, percolation theory aims to study how geometrical microscopical properties 
affect the macroscopic configuration of the ensemble. The percolation process is performed on a lattice formed by 
sites, a probability given as a parameter determines whether a site will become occupied and when two adjacent 
sites are occupied they become a cluster. These types of processes present a phase transition at a specific occupa-
tion probability, above which an infinite cluster is formed (over a theoretical infinite lattice). Below this critical 
probability only finite clusters are generated.

In the literature there are several applications of percolation to spatially constrained networks. Some efforts 
have focused on Erdös-Rényi networks17, 18; others use percolation as a means to investigate the robustness of 
the network19; and in some cases the emergence of regions20, 21. In addition, there already exists an approach to 
determine the hierarchy of main and secondary connections using percolation over the minimum spanning tree 
(MST) of a network22. This last approach performs well on the specific graphs studied in the paper (Erdös-Rényi, 
scale-free and grids), but it is not applicable to road networks since the main premise of the paper (that the MST 
contains the main roads) does not hold in road networks (the MST contains only parts of the main roads, leaving 
some or, depending on the case, even most segments of the highways out of the final graph). Within road net-
works specifically, percolation has been applied as an example to look at traffic behaviour23.

In previous work8, we considered the metric distance between intersections of roads as the threshold along 
which the percolation process occurred. In this work we propose a novel methodology, where the relative angle 
between road segments corresponds to the occupation probability in the percolation process and such percola-
tion is performed on the graph of the road network (see Methods section) for more details on the transformations 
applied to the road network, in order for it to be used as our lattice). Relative angles between road segments have 
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been part of the literature on road network analysis for a long time. These have been used to classify different 
cities’ typologies24–26, and also, they have been used to generate different representations of road networks. In  
ref. 27–29, the relative angle between segments is used to generate the dual informational graph which is then 
use to characterise the network behaviour. Moreover, a whole discipline, Space Syntax, has emerged from looking 
at road networks through centrality measures which are based on relative angles, and which serve to infer route 
choice, and urban structure30–32.

In the next section we show that we can identify different growth regimes, from which we can extract the main 
skeleton of the network, and devise a classification for each of the road segments. The methodology to obtain 
these results and the calculation of the critical exponents is described in the Methods section.

Results
Our methodology shows that the system undergoes a continuous phase transition, and hence behaves in a critical 
way. This transition marks the point at which the giant cluster appears allowing us to extract the main skeleton of 
the underlying road network. In the Methods section, we show that the transition takes place at a critical proba-
bility pc given at an angle of ≈45.76 degrees. Further details of the phenomenological and theoretical results are 
given also in such section, where we compute the critical exponents for the system, and introduce the corrections 
for the finite size effects.

Our approach shows that by applying Shannon’s entropy to the distribution of cluster sizes we can distinguish 
several growth regimes in the percolation process and that the phase transition can be used to determine the point 
at which to extract the main skeleton of the network. Moreover, we use the entropy measurements to construct a 
hierarchical index for each of the road segments which provides us with a methodology for the hierarchical clas-
sification of road networks which can be computed in O(n) (for a detailed explanation please refer to the section 
of the Supplementary Information S1, where the algorithm is described).

Growth regimes emerging from the angular percolation of road networks.  Different growth rates 
can be identified as the percolation threshold is increased. To determine the regimes that characterise the for-
mation of the giant cluster, we analyse Shannon’s entropy of the distributions of the cluster sizes at the different 
thresholds
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threshold j over the total mass of the system. Evidently, our phase space holds all the possible states (masses) that 
our system can take, including sites that do not belong to any cluster.

Plotting Hj against the probabilities of each threshold j (Fig. 1), we observe that we can relate different speeds 
of variation in the entropy levels of the distribution of the clusters, to the different slopes of the curve. The change 
in slope determines the boundaries for the different regimes in terms of its percolation threshold. We identify 5 
different regimes:

	 1.	 The initial regime in which the size of the giant cluster can be disregarded and only very small clusters are 
formed.

	 2.	 The formation regime, this corresponds to the formation and growth of the giant cluster, which will be-
come infinite at the phase transition, and span over the whole system (from Scotland to the southern part 
of England). The maximum entropy is reached at the phase transition, by the end of this regime.

	 3.	 The development regime which starts at the phase transition at 45.763 degrees and ends approximately at 
57 degrees. In this regime the giant cluster spans the whole UK incorporating the most important roads.

	 4.	 By the end of the consolidation regime all A and B roads with the most important minor roads (those with 
a dual carriageway) are incorporated to the giant cluster. This regime ends at approximately 75 degrees.

	 5.	 The next regime is the densification of the giant cluster, this marks the beginning of the incorporation of 
local roads to the network. Once this phase ends, at approx. 90 degrees, the most important local roads 
have also been included.

	 6.	 The last regime corresponds to the saturation regime, where the rest of the local roads and alley-ways are 
included into the giant cluster.

The physical process taking place during the angular percolation is illustrated in Fig. 2. As the percolation 
threshold increases, the giant cluster sequentially incorporates the roads by importance. At the phase transition, 
the main skeleton of the road network appears. This contains the main important street segments: motorways, A, 
B and minor roads. After the transition, local roads and alleys get progressively incorporated to the giant cluster. 
The differentiation of importance of each street segment is further marked by the speed of integration into the 
giant cluster.

A very interesting observation is that when the roads are disaggregated by its secondary classification into 
dual/single carriageways (DC/SC), we can see (right panel of Fig. 2) that the different regimes identified using the 
entropy analysis actually correspond to different stages in terms of the types of roads that are incorporated to the 
giant cluster. At the phase transition the percolation incorporates to the giant cluster all the motorways. The end 
of the development regime corresponds roughly to the moment where not only the motorways but also A roads 
(DC) and B roads (DC) are completely incorporated into the giant cluster. The end of the consolidation regime 
corresponds to the point where simultaneously the A roads (SC), B roads (SC), and the most important minor 
roads (DC) are incorporated into the cluster. By the end of the densification regime also the rest of the minor 
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roads (SC) and the most important local roads (DC) belong to the giant cluster. The end of the saturation regime 
corresponds to the inclusion of the rest of the roads (local roads (SC) and alleys) into the giant cluster.

Identifying the skeleton of the network.  The roads that are in the giant cluster just after the phase tran-
sition (which happens at 45.763 degrees, see Table 1 of the Methods section) are portrayed in black in the lower 
panel of Fig. 2, while the full set of roads are in light blue. It is easy to see that the giant cluster after the phase 
transition contains the main roads of the system.

Let us quantify this by looking at the percentages of roads included. Just after the phase transition, despite 
the fact that the giant cluster has a mass of only 17% of the full road network, it already contains 98.3% of the 
Motorways, 66.9% of the A roads, 47.7% of the B roads, 28.8% of the minor roads while only containing 0.50% of 
the local roads and 0.35% of the alleys. This shows that after the phase transition, the giant cluster corresponds to 
the skeleton of the road network, containing the major roads.

Furthermore, if we disaggregate the roads by their secondary classification (single or dual carriageway, SC/
DC) we observe that after the phase transition the giant cluster contains 99.5% of the Motorways (DC), 81.5% 
of A roads(DC), 71% of B roads (DC) and 52.4% of the minor roads (DC). Our approach creates a hierarchical 
division of the roads, from which we can derive in a natural way the skeleton of the network without having to use 
the road classification. The skeleton is obtained by extracting the giant cluster at the consolidation phase, as close 
as possible to the critical probability in order to include the minimum number of roads.

Hierarchical index for road segments.  The hierarchical classification of road networks is of fundamen-
tal importance to establish the routes with the highest probability to render a fast connection between nodes. 

Figure 1.  Shannon’s entropy of the distribution of the cluster sizes. We can clearly see 6 different regimes in 
the way the system behaves. Upper panel, zoom into the center of London. Center panel, giant cluster in black, 
second largest cluster in orange. Lower panel, entropy measurement and the different regimes.
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Moreover, this is used for navigational purposes, to aid drivers in the identification of the most probable routes 
between destinations33. For this reason, several algorithms for the detection of shortest routes in road networks 
have been developed, and are highly dependent on the classification and the hierarchical organisation of the road 
networks34. On top of this, when comparing road networks from different countries we are bound to find different 
classification systems rendering the quest to establish an equivalence between them extremely difficult. There is, 
therefore, a large interest in the generation of a methodology that automates the hierarchical classification of road 
networks.

Centrality measures have played a major role in the description of systems of road networks allowing to 
uncover a large number of its properties. As such, one of the most accepted methodologies to visualize the hier-
archical organisation of the road network is the use of betweenness centrality35. This gives a value for each road 
proportional to its flow through the system. A large body of research has been devoted to the analysis of flows 
using centrality measures36, 37, and, in the case of road networks, a large part of that research has been devoted 

Figure 2.  Upper panel, percentages of roads by road type that belong to the giant cluster at the different 
percolation thresholds (in right panel, DC: dual carriageway, and SC: single carriageway), the colors on top 
of the plots represent the regimes obtained with the entropy. Lower panel, giant cluster just after the phase 
transition (in black) overlaid to the full set of roads of the road network (in light blue).

Exponent Finite system Infinite system

β 0.6186(*) 0.6187(*)

γ 2.8100 2.9053(*)

ν 2.2182 2.2706(*)

τ 2.1804 2.1763

σ 0.2917 0.2849

D 1.5456(*) 1.5456

d 1.8245(*) 1.8245

pc 0.3783(*) [45.763o] 0.3766(*) [45.39o]

Table 1.  Critical exponents obtained for the UK road network: before (Finite system), and after introducing 
corrections (Infinite system) due to the finite size of the system. The values marked with (*) are the ones that 
have been calculated from the experimental results, the rest of the exponents were calculated by using the 
scaling relationships between the exponents.
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to the use of angular distances31, 38, which seems to improve the detection of these main flows39. The large draw-
back of using betweenness to generate an index is that the complexity of its computation (≈O(n3), where n is the 
number of nodes of the graph) makes infeasible its use for large systems. Another methodology that we can find 
to determine the hierarchy of reticular networks using a graph theoretic approach is the one found in ref. 40 that 
studies its application in biological networks.

In this section we propose an alternative methodology to generate a hierarchical index for each road seg-
ment that is based on the percolation process. This technique is computationally less demanding than calculating 
the betweenness index, and it is linear in complexity (≈O(n)) which means that it is fully capable of analysing 
large systems. We construct the index according to the following principle. This consists in assigning a degree 
of importance to the street segment according to its contribution to the informational content of the system. To 
do this, we weight the entropy of the system with the mass of the cluster to which the street segment belongs. Its 
total contribution needs to be considered for each percolation threshold, hence we sum over all the thresholds 
(for a discussion on how to obtain the best possible unbiased set of thresholds, please refer to the Supplementary 
Information S2.1). Given that the cluster sizes follow a power law distribution (this behaviour is further studied 
in the section of the Supplementary Information S2.2), it is more appropriate to weight the entropy with the log 
of the mass instead of the mass itself. More formally we can write that the normalised hierarchical index Ii of road 
i is:
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where j runs through all the percolation thresholds (t), Mi,j is the mass of the cluster that contains road i at the 
j-th threshold, Hj is the entropy of the distribution of the cluster sizes at the j-th threshold and max(Mj) is the 
maximum mass of all clusters at threshold j.

The results of our index are shown in Fig. 3. We can see that roads have been assigned an index that is con-
sistent with the given road classifications (the highest values correspond to Motorways, then A-roads, followed 
by B-roads, minor roads, local streets and alleys). For further granularity, we look at the sub-classifications dif-
ferentiating between DC and SC. Observing the right upper panel, we can see that the index classifies with the 
same histogram A-roads (SC) and B-roads (DC), and the same holds true for B-roads (SC) and minor roads 
(DC). Meanwhile, A-roads (DC) get closer to their classification as Motorways. These observations hint that 
though their classification is a priori different, the fact that internally (in the comparison between the secondary 

Figure 3.  UK’s road network at different scales where the thickness of the lines and the color scale correspond 
to the values of the hierarchical index as calculated using Equation (2).
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classification SC/DC) dual-carriageway roads are more important than single ones affects their hierarchical posi-
tion within the system.

Discussion
Throughout this work we have shown that the road network viewed as a percolation process behaves in a critical 
way. The phase transition marks a differentiated growth rate, and the threshold at which the giant component can 
be identified with the skeleton of the road network. Furthermore, we observed a hierarchical organisation on the 
importance of the road segments with respect to their contribution to the entropy of the system at each threshold 
of the percolation. This was used to construct a hierarchical index for each road segment that serves to classify the 
different roads in the network.

In conclusion, we have shown that the road network encounters a natural description when seen as a percola-
tion process, where the threshold corresponds to the angle between the street segments. These are very promising 
results that open up new possibilities for further studying the road network properties under this paradigm. 
Furthermore, the hierarchical index can serve as the basis for an algorithm in the spirit of contraction hierarchies 
that could improve the speed of shortest path analyses. These are properties that cannot be observed in the system 
under its metric description and that, therefore, highlights the angular nature of the road network.

A description of the percolation process in terms of the critical exponents has also been studied, including 
the corrections for the exponents taking into account the finite size effects. In future work, we intend to apply 
this process to other systems, such as road networks from different continents and natural systems, in order to 
establish a basis for comparison through the critical exponents of the infinite lattice. This will give us insight into 
whether these systems share generic properties, or whether a classification can be achieved; in addition to inves-
tigate whether growth processes can be inferred from these behaviours.

Methods
The system under consideration is the UK road network. The original data is obtained from the OS MasterMap 
database (ITN layer)41. The layer is processed and simplified as follows: roundabouts are collapsed into a single 
node, lanes are collapsed into a single link without considering directionality, and the nodes of degree 2, which 
correspond to intermediate points are removed. Only nodes corresponding to intersecting roads are kept. The 
simplified version of the network can be found in the data repository42. Note that by removing these nodes more 
emphasis is put on the structural properties of the network, since the angles within a road are not considered.

The properties of road networks can be divided into two subclasses: structural and geometrical. The former 
are studied by representing the network as a graph, where the nodes are the road intersections and the links are 
the street segments. This allows us to calculate many network features: e.g. the degree distribution, centrality 
measures, the spectrum of the graph, or to extract communities, among many. Geometrical properties, in turn, 
are related to distances over the network, to lengths of the street segments, the width of roads, the slopes formed 
by the topography, the relative angle between two street segments, and so forth. One of the most common ways 
to incorporate these geometric factors into the analysis is to include them as weights in the graph of the road 
network.

Note that these weights refer to a relationship between the nodes in the graph, as is the case of the length of 
roads, but in our case, the relative angle is a relationship between the links of the graph (the road segments). In 
order to account for this second type of relationship, we need to generate the link-node dual (or line-graph43) of 
the road network’s graph.

Let us denote by G the graph of a road network (Fig. 4a), its line-graph, denoted by G′ = L(G), is constructed 
as follows (Fig. 4b). Each link (street segment) in the original graph, is replaced by a node in the line-graph, and 
a link is created in the line-graph if two links of G share a node. The line-graph generated from the network holds 
4 million nodes and 7 million links after processed and simplified. The relative angle between road segments can 
now be mapped to the weights of the line-graph. This procedure is very similar to the one presented in ref. 31, 
although here we do not normalize the values of the relative angles.

Figure 4.  (a) Example of a primal graph of a street network (G), (b) line-graph generated from that primal 
graph (G′ = L(G)), (c) line-graph of the line-graph (G″ = L(L(G))) which is the lattice of our percolation.
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The bond percolation is then executed on the line-graph (G′) of the street network as follows. Given a certain 
angular threshold, the occupation probability for a link is the probability that a link of the line-graph has a weight 
equal or below the angular threshold (Fig. 5b). We can then associate a probability to the angular threshold by 
computing the percentage of links that are below or equal to this threshold. For example, the probability associ-
ated to 45 degrees is p = 0.376 since 37.6% of the links are below or equal to 45 degrees (see Figure S1b).

Taking into account that what we are calculating is a bond percolation on the line-graph, we can consider that 
conceptually we are performing a site percolation on the line-graph of the line-graph (Fig. 4c) where every node 
will correspond to a site of the lattice used for the percolation, and the probabilities of each site to be occupied are 
proportional to the weights of the line-graph. This L(L(G)) will serve us as the equivalent of the lattice in a typical 
percolation process and we will use it to calculate the fractal dimension of our system. Throughout the text we 
will refer to the number of links in the line graph as the mass of the system (or say of a particular cluster), which 
is equivalent to the number of nodes of the L(L(G)).

The interested reader can find all the specificities of the algorithm to calculate the percolation process in the 
section of the Supplementary Information S2.

Percolation theory and phenomenology.  Percolation processes are critical phenomena that present 
continuous phase transitions that can be characterised by critical exponents44. In this section we show how these 
exponents can be described and computed for our system. We correct for any errors arising from finite size effects 
in our calculations through the introduction of a series of subsystems of different sizes.

Critical exponents.  Critical phenomena have been largely studied in physical systems, in particular in sys-
tems where the temperature T defines the various phases, and the critical point at which the transitions take 
place45. For these systems in general, a full ordered system can be found at T = 0, and as this is increased, it 
reaches a critical point Tc at which the system undergoes a continuous phase transition, and the correlation length 
diverges ξ → ∞. As the temperature is increased, at the asymptotic limit T → ∞ the system is fully disordered. 
In percolating systems, the occupation probability takes the role of the temperature, and at a critical probability 
p = pc, the system undergoes a second order phase transition and a giant cluster appears46 spanning the whole 
space. At this point the percolation clusters become self-similar, and the system can be described as a fractal47. 
This transition can be fully characterised in terms of critical exponents which only depend on the dimension of 
the space and type of percolation46. Although several exponents can be defined, only two of them are independ-
ent, and the rest can be obtained through a series of scaling laws.

Figure 5.  Critical behaviour of the UK road network: (a) derivative of the order parameter; (b) relationship 
between each angle and its cumulative probability of occurrence; (c) order parameter P∞; (d) average cluster 
size χ; (e) critical exponent β; and (f) critical exponent γ.
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Cities are known to have a fractal structure as demonstrated a few decades ago by48, 49, and more recently they 
have been considered as multifractals50, 51. We will hence consider that our system (the road network) is a fractal 
and define the fractal dimension d of our system as the capacity dimension of the L(L(G)) of the road network 
graph. This fractal dimension will be measured by using the box-counting methodology on the nodes of the graph 
L(L(G)). This allows us to establish the relationship M = ld, where M corresponds to the mass of the system, in 
this case the number of nodes of L(L(G)) (equal to the number of links of the L(G)), and l to the theoretical lattice 
length. This equivalence allows us to calculate a theoretical lattice size (which will be needed to remove finite size 
effects later on)

=l M (3)d
1

At the percolation threshold pc, the giant component spans the whole system and becomes self-similar44, 46, 47. 
The fractal dimension D of the largest component at the percolation threshold can be obtained in a similar way

=∞M p l l( , ) (4)c
D

where M∞(pc, l) is the mass of the spanning cluster at the phase transition, and l is the size of the lattice. Moreover, 
since =∞

∞P M
M

 we can say =∞P p l( , )c
l
l

D

d
 or P∞(pc, l) = lD−d. Equation (4) can be used to calculate D given that we 

can directly measure M∞ and we can calculate l (equation (3)) then = ∞D log M
log l
( )
( )

.
In a typical percolation process, the probability of a site belonging to the giant cluster =∞

∞P M
M

 (Fig. 5c) takes 
the role of the order parameter. It is practically 0 below the phase transition and increases rapidly after, reaching 
a fully ordered system at p = 1.

This quantity will allow us to calculate the critical probability pc at which the system undergoes a phase 
transition. In order to find the location of the phase transition we detect the maximum of the derivative of our 
order parameter as shown in Fig. 5a (another methodology to calculate pc would be to look for the threshold 
that maximises the mass of the second largest cluster). For the UK road network we obtain pc at an angle of 
45.7631 ± 0.0001 degrees, which corresponds to the probability pc = 0.3783.

The behaviour of P∞ at the critical point is characterised by the critical exponent β (Fig. 5e) as follows

∝ − →β
∞

+P p p p p, (5)c c

The clusters that appear at the different probabilities p < pc are characterised by their linear dimension ξ52. This 
is one of the most important variables in critical phenomena, containing the information of the range of correla-
tions given by the interactions. At the phase transition, the correlation length diverges, ξ → ∞. Its behaviour close 
to the critical point is also a power law leading to the critical exponent ν

ξ ∝ − →ν−p p p p, (6)c c

Let us look at other important quantities in percolating processes that give rise to these exponents. The clusters 
that appear at the different probability thresholds can be characterised according to their average size χ. This is 
defined as follows

χ = ∑
∑

s n
sn (7)

s

s

2

where s is the cluster size and ns the normalised number of clusters of size s per site (the number of clusters of size 
s normalised by the total number of sites in the lattice). The average cluster size increases as p increases, until the 
critical probability pc is reached. Once this happens, the giant clusters spans the system, and the average cluster 
size drops suddenly, since above the critical probability the giant cluster is infinite and therefore is not taken into 
account, see Fig. 5d. The critical exponent γ associated with χ hence measures the increase and decay of the size 
of the finite clusters around the critical probability pc, and this is obtained from the following equation

χ ∝ − →γ−p p p p, (8)c c

see Fig. 5f. The typical size of the largest cluster sξ is referred as the characteristic cluster size, and it can be 
obtained in a similar way

∝ − →ξ
σ−s p p p p, (9)c c
1

where the exponent σ determines the speed of the variation of the characteristic cluster size. Lastly, the Fisher 
exponent τ characterizes the variation of the normalized number of clusters around pc.

∝ ⋅τ
ξ

−n s s s( / ) (10)s 

where s is the size of the cluster and sξ is the characteristic cluster size and  ξs s( / ) is the scaling function for the 
cluster number density and is defined as  = ⋅ −ξ ξ ξs s s s exp s s( / ) ( / ) ( / )2 .

These exponents are related to each other according to some scaling laws, and from all this collection, only two 
are independent. We can therefore use these scaling laws to analytically calculate the rest of the exponents once 
we have measured two of them. The scaling laws derived from taking D and β as the independent exponents are:
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ν β
=

−d D (11)

γ ν= −D d(2 ) (12)

which lead to the well-known variation of Rushbrooke inequality52

β γ ν+ = d2 (13)

In terms of σ and the Fisher exponent (τ), we have

σ
ν

=
D
1

(14)

τ βσ= + 2 (15)

The initial results are given in Table 1 under the column “Finite system”. These results do not take into account 
corrections that need to be introduced given the finite size of the system.

In the following section we introduce these.

Removing the finite size effect.  Correcting for finite size effects is not a trivial matter. One methodology 
that can be employed53 is to consider different sizes of the system and perform the analysis considering that the 
results are valid for the asymptotic limit, which in this case corresponds to having the size of the system much 
larger than the correlation length. Effectively we are re-scaling the results, so we obtain a data collapse.

We generate 32 subsets of different size of road networks from the original one. Each of those systems will have 
a different mass and lattice size, but will maintain the same fractal dimension. Following Equations (5) and (6), we 
can write P∞ as a function of the correlation length at the asymptotic limit

ξ∝ →
β
ν

∞
− +P p p, (16)c

At pc the correlation length ξ becomes larger than any of the lattice sizes of our finite systems, and the equation 
no longer holds. We solve this by capping the size of the largest cluster at pc by the lattice size as follows: 

∝∞
−β

νP p l l( , )c , which is equivalent to: P∞(pc, l) ∝ lD−d. Therefore, we can obtain an initial estimate for β
ν

 by taking 
a measure of the slope of a log-log plot of M∞ against l for all the subsystems (Fig. 6a) which gives us an estimate 
of D (equation (4), that can then be inserted into − = −β

ν
D d.

We should remark that the critical probability in an infinite lattice will probably be different from the previ-
ously calculated one in our finite system. In order to find pc for the infinite case, we use the methodology proposed 
in ref. 54. This consists in plotting ⋅

β
ν

∞P p l l( , )c  vs. p, and adjusting the value of β
ν

 until all the curves cross in one 
single point (Fig. 5b). That point will be our pc and the final value of β

ν
 will be given by this procedure.

In a similar manner, using Equations (6) and (8), and capping the size of the largest cluster at pc, we can calcu-
late χ(pc, l) at different lattice sizes at the critical probability so that

χ ∝
γ
νp l l( , ) (17)c

allowing us to determine γ
ν

, see Fig. 6c).

Let us now determine ν correcting for the finite size effect. For all the different lattices, we plot ⋅
β
ν

∞P l  vs. 
− ⋅ νp p l( )c

1
 (Fig. 6d) and adjust the value of 

ν
1  until all the data collapses. This gives us the value of ν and with the 

Figure 6.  Calculations correcting for the finite size effect (infinite theoretical system), from left to right, (a) 
calculation of D, (b) correction of β

ν
 and simultaneous determination of pc, (c) calculation of γ

ν
, (d) data collapse 

to calculate ν.
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calculated values of β
ν

 and γ
ν

 we can obtain β and γ. The fractal dimension D can be computed using Equation 12 
The scaling laws (14), (15) can be used to find σ and τ. The results for the “Infinite system” can be found in Table 1.

Software.  The Figures in the paper were generated using the following open-source software platforms and 
libraries:

•	 ggplot2 2.1.055 (Figures 1–3, 5 and 6)
•	 R 3.3.356 (Figures 1–6),
•	 RStudio 0.99.90357 (Figures 1–6),
•	 QGIS 2.458 (Figures 1–3)
•	 Inkscape 0.9159 (Figures 1–6).
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