
Hominin teeth from the Middle Pleistocene site of Yiyuan, Eastern China 
Song Xinga, Chengkai Sunb, c*, María Martinón-Torresd, e*, José María Bermúdez de Castrod,f, Fei 

Hang, Yingqi Zhanga, Wu Liua 

a Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, 

Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 
Beijing 100044, China 

b Shandong Museum, Jinan 250014, China 

c State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and 
Paleontology, Chinese Academy of Sciences, Nanjing 210008, China 

d University College London (UCL) Anthropology, 14 Taviton Street, London WC1H 0BW, UK. 

e Departamento de Ciencias Históricas y Geografía, Universidad de Burgos, Hospital del Rey s/n 
09001 Burgos, Spain. 

f Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de 
Atapuerca s/n, 09002 Burgos, Spain 

g State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake 

Administration, Beijing 100029, China 
* Corresponding authors. 

E-mail address: sunchengk@126.com (C. Sun) and maria.martinon.torres@gmail.com (M. 

Martinón-Torres) 

Keywords: Homo erectus, Dental materials, Morphology, micro-CT 
 
 

Abstract 
In 1981-1982, some hominin fossils, including a relatively complete skull and seven isolated teeth, 

were recovered from the Middle Pleistocene site of Yiyuan in Eastern China. In the present study we 

provide a detailed metric and morphological comparison of the Yiyuan dental sample in order to 

characterize the variability of the human populations that inhabited China during the Middle 

Pleistocene better. Aside from taxonomic and phylogenetic questions, the lack of understanding 

and/or knowledge about the morphological variability of these populations have caused concern about 

the human versus non-human nature of some of the hominin dental remains found in East Asia during 

the Early and the Middle Pleistocene. Thus, our study aims to present a detailed description and 

comparison of the Yiyuan isolated teeth to 1) discuss and support their human nature and 2) to explore 

their taxonomic affinities with regard to other penecontemporaneous populations from Asia. Our 

results clearly differentiate the Yiyuan sample from Pongo specimens and support a human attribution 

for the Yiyuan material. Our analyses also suggest that the Yiyuan teeth form a morphologically 

coherent group together with samples from Zhoukoudian, Chaoxian and Hexian. They are different 

from the more derived specimens from Panxian Dadong, suggesting a pattern of biogeographic 

isolation and different evolutionary trends between northern and southern China during the Middle 

Pleistocene. In addition, and despite sharing a common morphological bauplan with Homo erectus 
sensu stricto (s.s.), the Yiyuan, Zhoukoudian and Hexian teeth are also different from the Indonesian 

Early Pleistocene samples. In particular, the expression of a highly crenulated or dendritic 

enamel-dentine surface could be unique to these groups. Our study supports the notion that the 

taxonomy of the Pleistocene hominins from Asia may have been oversimplified. Futures studies 

should explore the variability of the Asian specimens and reconsider whether all the samples can be 

attributed to H. erectus s.s. 
 

Introduction 
Field seasons during 1981 and 1982 at the Yiyuan site, eastern China, yielded a nearly complete skull 

and seven isolated teeth. These human fossils were previously described by Lu et al. (1989) and 

assigned to Homo erectus, mainly because the skull displays typical features already described in the 

Zhoukoudian hominins, namely the marked frontal recession, postorbital constriction, deep postorbital 

sulcus, and strong superaorbital torus (Lu et al., 1989; Wu and Poirier, 1995). The associated mammal 

assemblage at Yiyuan was also similar to that found at Zhoukoudian Locality 1. However, some 

scholars (Wu et al., 1999) suggested that the Yiyuan hominins might represent a form of archaic 

Homo sapiens, mainly due to the absence of a cingulum in the teeth, which was thought to be a typical 

feature in Zhoukoudian H. erectus. Zhang and Liu (2002) carried out metrical and morphological 

comparisons between Chinese H. erectus and archaic H. sapiens. They pointed out that tooth crown 
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size was not useful to distinguish between these two groups, except for the buccolingual dimension of 

the upper central incisor. In addition, they stated that the primitive dental morphology displayed by H. 

erectus could also be found in archaic H. sapiens. In conclusion, Zhang and Liu (2002) proposed that 

H. erectus and archaic H. sapiens could be differentiated only at sub-species level and therefore, the 

Yiyuan hominins did not necessarily belong to H. erectus. Sun et al. (2011) specifically quantified the 

shape of the crown outline and occlusal polygon (i.e., the area formed by connecting cuspal apices, 

anterior and posterior foveae in upper premolars, see Gómez-Robles et al. [2011]) of the Yiyuan 

premolars and molars. This geometric morphometric study found that Chinese H. erectus and archaic 

H. sapiens had some morphological features in common, and that the Yiyuan hominins were less 

primitive than Chinese Early Pleistocene specimens. 

Apart from these preliminary reports and comparisons, no systematic study of dental morphology 

and metrics has been made on the Yiyuan hominins. Furthermore, since discovery of the Yiyuan fossil 

hominins, the fossil record from the Early and Middle Pleistocene around the world has significantly 

increased (e.g. Wood, 1991; Tobias, 1991; Bermúdez de Castro et al., 1997; Gabunia et al., 2000), 

providing a much wider context to understand the morphological variability of this assemblage. 

Recent dental studies have also outlined clear dental evolutionary trends (Bailey, 2002, 2004; 

Gómez-Robles et al., 2007, 2008, 2011; Martinόn-Torres et al., 2006, 2007, 2008, 2012; Zanolli, 2013), 

which allow more comprehensive investigation of the taxonomic affinities of the Yiyuan teeth. In 

addition, the recent application of micro-computed tomography (micro-CT) to the study of dental 

material (e.g., Skinner, 2008, 2009; Zanolli et al., 2010; Bailey et al., 2011; Martínez de Pinillos et al., 

2014; Martinón-Torres et al., 2014; Zanolli, 2014) has unveiled a new source of palaeobiological 

information. 
 

Some scientists have expressed concern about the accuracy of assessing whether fossil dental 

remains found in East Asia are human or non-human. Previous studies have pointed out the 

difficulties of differentiating some Asian hominin teeth from those of Pongo (e.g., Tyler, 2003, 2004; 

Smith et al., 2009, 2011; Ciochon et al., 2010; Zanolli et al., 2012, 2015) due to their overlapping 

chronologies, as well as the similarities in some morphological and metrical features. Assessing 

affinities becomes more complicated when fossil samples from the Middle Pleistocene hominins are 

considered, because of their complex occlusal surfaces at both the enamel and the dentine surfaces 

(e.g., see the molars of Hexian hominins in Xing et al. [2014]). Thus, our study presents a detailed 

metric and morphological study of the Yiyuan isolated teeth with two aims: 1) to evaluate whether the 

Yiyuan fossils are human or non-human and 2) to explore the taxonomic and phylogenetic status of 

Yiyuan hominins with regard to other penecontemporaneous populations from Asia. Our study will 

contribute to better characterization and understanding of the variability of East Asian hominins 

during the Middle Pleistocene. 

 

The Yiyuan site 
Between September 1981 and May 1982, a fossil hominin skull, seven isolated teeth, and associated 

mammal fossils were found at Qizianshan Mountain (118°09’E, 36°12’N), Yiyuan County, Shandong 

Province, Eastern China (Wu and Poirier, 1995; Fig. 1). Thirteen mammal species have been 

identified, with the most abundant being Ursus arctos, Equus sanmeniensis, Sus lydekkeri, and 

Megaloceros pachyosteus (for more details see Lu et al. [1989]). No stone artifacts were found at the 

site. Qizianshan is at an altitude of 496 m, and is geologically dominated by Ordovician limestone. So 

far, eight localities have been excavated or investigated at this site, and Localities 1, 2, and 3 have 

been explored systematically. These three localities are at the east side of Qizianshan Mountain, next 

to the River Ciyu. They are distributed within an area of 80 m (north to south) and at approximately 

the same level (4.5 – 6.0 m) above the bed of the River Ciyu). Most of the mammal fossils and all 

hominin materials came from Locality 1 and 3, and the present study will focus on them. 

[Insert Figure 1] 

Locality 1 is a cave site and its current entrance was opened by road construction. The cave is 3.2 

m high and maximally 2 m wide at the bottom (Fig. 1). The systematic excavation started from a 1.3 

m x 1.3 m area and reached the bedrock. The deposit at the west end of the cave still remains. Locality 

3 is a fissure site with its opening facing upwards (Fig. 1). Its north – south extent is 25 m and the east 

– west extent ranges from 0.25 to 0.75 m. The excavation focused on the 7 southernmost meters of 

Locality 3. The final excavation was 3.5 m deep, 0.7 m wide at the top, and 0.3 m wide at the bottom. 

The stratigraphic sequences for Localities 1 and 3 are illustrated and described in Figure 1. Lu et al. 



 

(1989) proposed that there was a good correlation layer by layer between Localities 1 and 3. Aside 

from differences in the thickness or the color of the deposits, the main components of the 

corresponding layers are similar. All hominin fossils and most faunal remains were recovered from 

reddish brown or dark brown silty clay in Layer 3. Although a systematic faunal study has not been 

performed to date, the mammal taxa in the two localities are similar. Based on the similarities of the 

deposits, Lu et al. (1989) assumed that all the hominin fossils belonged to the same geological time. 

Combined electron spin resonance and uranium-series dating performed on three animal teeth from 

Locality 1 and six animal teeth from Locality 3 (all of them from the layers where hominins were 

found) revealed that hominin occupation of the two Yiyuan localities occurred about ~420 to 320 

thousands of years before present (ka BP) (Han et al., 2015). 

 

Materials and methods 

 

Samples 
The seven Yiyuan isolated teeth (Sh.y.003, 004, 005, 007, 008, 071, and 072) represent five dental 

classes, P3, P4, M2, C1, and M2. According to the fitting of the interproximal wear facets and/or the 

degrees of occlusal wear, Sh.y.003, 004, 008, and 071 from Locality 3 were assigned to the same 

individual. Sh.y.003 is the antimere of Sh.y.004, and there is a good interproximal fit between 

Sh.y.004 and Sh.y.071. Sh.y.005 and Sh.y.007 were recovered from Locality 1 together with the skull. 

Their color and degree of occlusal wear indicated that they probably belonged to the same individual 

(Table 1, also see Sun et al. [2014]). The Sh.y.072 from Locality 3 has a similar color to the other four 

teeth from this site, but its heavier occlusal wear and smaller crown size (especially compared to 

Sh.y.008) suggest that Sh.y.072 might represent a third individual. 

[Insert Table 1] 

To be consistent with the aim of this study, the Yiyuan fossil hominins were mainly compared to 

those from East Asian Early and Middle Pleistocene hominins, as well as other fossils from the same 

continent or those grouped under the taxon H. erectus sensu lato. In addition, in order to understand 

the polarity of the observed features better, a wider Homo sample from Africa, Asia and Europe was 

considered, including recent modern human collections from Henan and Hubei Province (Central 

China) that range from the Neolithic to the time of the Qing Dynasty (Table 2). 

Grouping of the comparative samples follows the same criteria employed in Liu et al. (2013) and 

Xing et al. (2014), mainly based on the geographic locations and geological ages of the samples, 

except for H. sapiens and Neanderthals that, on dental grounds, are generally well recognized groups. 

For a detailed list see Table 2. 
 

In order to support the human nature of the Yiyuan teeth and to emphasize their differences from 

Pongo teeth, up to 144 teeth belonging to fossil Pongo (Table 2) were added as a comparative sample 

in some of the analyses. All fossil Pongo teeth used in this study are curated at the Institute of 

Vertebrate Paleontology and Paleoanthropology (IVPP), Beijing. Some of the fossil Pongo teeth were 

collected from Guangxi Zhuangzu Autonomous Region in 1956 and 1957. The precise chronological 

age of these teeth is unknown due to the lack of stratigraphic information. The rest were unearthed at 

Baxiandong, Daxin Heidong, and Sanhe Caves (Guangxi region) between 2009 and 2013. The 

depositional age of fossil Pongo at Daxin Heidong could be traced back to the Middle Pleistocene 

(380 – 310 ka according to Rink et al. [2008]). Paleomagnetic dating of the fossil-bearing strata in 

Sanhe Cave gives an age of approximately 1.2 millions of years ago (Ma) (Jin et al., 2008; Wang et al., 

2014). No exact dates are available for the materials from Baxiandong. However, the composition of 

the fauna recovered from these sites indicates that the Pongo teeth could be Pleistocene in age. 

[Insert Table 2] 

 

Methods 
Tooth wear stages were scored according to the standard proposed by Molnar (1971). The terms 

employed for the morphological descriptions and comparisons came from Weidenreich (1937), 

Bermúdez de Castro (1988), Turner et al. (1991), Scott and Turner (1997), and Martinón-Torres et al. 

(2008). Some of the non-metric features were scored following the Arizona State University Dental 

Anthropology System (ASUDAS) (Turner et al., 1991). 

Mesiodistal (MD) and buccolingual (BL) dimensions of the crown were measured with a standard 



sliding caliper and recorded to the nearest 0.1 mm following Wolpoff (1971). 

Measurement of the relative cuspal area Each M2 was photographed with its cemento-enamel junction 

parallel to the camera lens (Bailey, 2004). The area of each cusp was measured in each picture by 

tracing the outline and main occlusal grooves with ImageJ. If the main occlusal grooves were too 

worn to be identified, the specimens were eliminated from the study. When a main occlusal groove 

did not reach the crown margin, this groove was manually extended to intersect with the crown margin 

based on its orientation. Where necessary, interproximal wear was corrected based on wear extent and 

the orientation of the crown outline (Wood et al., 1983). Most of the M2s had four cusps: paracone, 

protocone, metacone, and hypocone. However, when an accessory cusp (C5) was present, it was 

divided equally and added to the areas of the adjacent cusps (i.e., metacone and hypocone). All 

measurements were taken by the same person (X.S.). After each cusp was measured, the total crown 

base area (TCBA) was obtained by adding the cusp base areas. Relative cusp base area was calculated 

by dividing each individual cusp base area by the total crown base area. 

Microcomputed tomography, enamel-dentine junction surface reconstruction, and measurement of 
relative dentine horn height of M2 The Yiyuan teeth display different degrees of occlusal wear. In 

some cases, several morphological features at the outer enamel surface (OES) are lost. In order to 

maximize the morphological information, digital three-dimensional surface models of the 

enamel-dentine junction (EDJ) were reconstructed from the high-resolution micro-computed 

tomography (micro-CT) scan. Each tooth was scanned using a 225kV-μCT scanner (designed by the 

Institute of High Energy Physics, Chinese Academy of Sciences, and housed at the Institute of 

Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences) equipped with a 

1.0-mm aluminum filter under settings of 120kV, 120uA, 0.5 rotation step, 360 degrees of rotation, 4 

frames averaging (four times of scanning for each angle, and the four raw projections were coalesced). 

Isometric voxel size is 12.5 microns. Raw projections were converted into image stacks of raw file 

format (tomographic slices) with IVPP225kVCT_Recon. The image stacks were saved at a resolution 

of 2048 x 2048 pixels. The VGstudio Program was employed to remove the empty spaces from the 

image stack to reduce data size and to save the data as raw volumes, which were then imported into 

Mimics 16.0 to complete the segmentation of enamel and dentine and to visualize the EDJ surface. 

During the process of enamel/dentine segmentation, 3D Livewire tools (an interactive segmentation 

method by adding points along the object’s boundary on multiple slices), single/multiple slices 

modification, and thresholding were employed. 

[Insert Figure 2] 

In addition, of particular relevance in assessing whether the Yiyuan sample was human, we calculated 

the relative dentine horn height (RDHH) of Sh.y.008 (M2) and compared it to a wide sample of Pongo 

and H. sapiens specimens, as RDHH has been shown to be a useful taxonomic discriminator among a 

wide variety of extinct and extant primates (e.g., Olejniczak et al., 2008; Zanolli et al., 2015). A 

mesial sectional plane (Fig. 2) was prepared following Olejniczak (2006). First, a horizontal plane was 

defined by three dentine horn tips (paracone, metacone, and protocone). Then, we defined a sectional 

plane, perpendicular to the previous one that simultaneously cuts through the dentine horn tips of the 

paracone and the protocone. Based on the mesial sectional plane, we measured the RDHH of the 

paracone and the protocone of Yiyuan M2 (Sh.y.008) following the protocol outlined by Olejniczak et 

al. (2008). As indicated in Figure 2, the RDHH was calculated as Yx100/(X+Y), where X was the 

dentine horn height defined as the perpendicular distance from the dentine horn to the line parallel to 

the bi-cervical diameter and coursing through the lowest point of enamel in the mid-occlusal basin, 

and X+Y was the total height of the dentine crown measured as the perpendicular distance from the 

dentine horn to the bi-cervical diameter. The RDHHs of Sh.y.008 were compared to the values 

obtained in this study (10 Pongo and 48 recent modern humans), as well as the values for Pongo and 

H. sapiens from Olejniczak et al. (2008). In Olejniczak et al. (2008), all maxillary molars were 

combined to produce a mean RDHH because “the metameric variation in the molar row were unlikely 

to contribute to the overall variation within each taxon’s RDHH” (Olejniczak et al., 2008, p. 89; see 

also Smith et al. [2005]). Therefore, the mean RDHH for all the maxillary molars is comparable to the 

RDHH of each tooth from the maxillary molar row. 

Geometric morphometric (GM) analysis A Cannon EOS 5D digital camera equipped with a 100 

mm lens was used to take a high resolution photo of each tooth with the plane formed by its 

cemento-enamel junction (CEJ) parallel to the camera lens (Martinón-Torres et al., 

2006; Gómez-Robles et al., 2007, 2008, 2011). When both antimeres were present and equally well 

preserved in the comparative sample, only the same side as that represented at the Yiyuan site was 



chosen. If only one antimere was preserved and happened to be from the opposite side to the one 

preserved at Yiyuan, the tooth was mirror-imaged using Adobe Photoshop®. 

Geometric morphometrics allows shape variation among specimens to be analyzed quantitatively 

based on landmark and/or semi-landmark coordinate data (Adams et al., 2004; Zelditch et al., 2004). 

Landmarks are homologous anatomical points that could be defined repeatedly among specimens 

(Zelditch et al., 2004). Semi-landmarks are defined as “loci that have no anatomical identifiers but 

remain corresponding points in a sense satisfactory for subsequent morphometric interpretation” 

(Bookstein, 1999, p. 74). They can be used to examine the outline shape in lack of the real landmarks 

(Bookstein, 1997, 1999). During the GM analysis, non-shape elements such as position, size, and 

orientation will be eliminated through the processes of translation, scaling and rotation 

(superimposition) (Zelditch et al., 2004). Among the different ways of superimposition, we used 

generalized least squares or GLS method. GLS iteratively minimizes the difference in shapes or 

landmark configurations by maximally reducing the Procrustes distance (the square root of the sum of 

squared distances between the coordinates of corresponding landmarks) (Zelditch et al., 2004). 

Geometric morphometric analysis was carried out on standardized occlusal surface pictures of P3, 

P4, M2, C1, and M2 to examine the crown outline shapes, the relative position of the anterior and 

posterior foveae, and the orientation of the occlusal grooves (Fig. 3). Due to the heavy occlusal and 

interproximal wear of Sh.y.072 (M2), the GM analysis was carried out on only the dentine surface of 

the crown reconstructed from the micro-CT scan. Though the occlusal wear on one of the P4s 

(Sh.y.007) is heavy, the crown basal area and anterior/posterior foveae, on which the GM analysis is 

based, were not affected. 

 [Insert Figure 3] 

Landmarks on the P3s and P4s were chosen following the protocol of Gómez-Robles et al. (2011), 

namely the tips of buccal and lingual cusps, anterior and posterior foveae. However, since the apices 

of both buccal and lingual cusps of the Yiyuan P3s and P4s have been flattened by wear, only the 

anterior and posterior foveae (Type 1 in Bookstein. [1991]) were used. The crown outlines of P3 and 

P4 were divided into forty equidistant parts by the TpsDig2 program (Rohlf, 1998a), and the dividing 

points were treated as semi-landmarks (Fig. 3). Equidistantly spaced semi-landmarks do not 

necessarily guarantee geometric or biological correspondence across specimens. Therefore, the 

spacing of curve semi-landmarks is arbitrary (Gunz and Mitteroecker, 2013). However, the effect of 

the arbitrary spacing can be removed by the sliding technique through “optimizing” the positions of 

the semi-landmarks related to the average shape of the entire sample (Gunz and Mitteroecker, 2013). 

On the M2s, three landmarks (Type 1 in Bookstein. [1991]) were chosen: the two points where the 

extensions of the buccal and mesial occlusal grooves intersect with the crown outline and the central 

fovea, respectively. The outlines of the protocone, metacone, and hypocone were equidistantly divided 

with the TpsDig2 program (Rohlf, 1998a) into twenty-one parts, and the paracone outline into nine 

parts. Four points equidistantly divided the buccal and mesial occlusal grooves into five equal parts. 

The division follows the principle that each part of the crown outline or occlusal grooves had a 

roughly equal length, and the dividing points were treated as semi-landmarks (Fig. 3). Wood et al. 

(1983) showed that the variation in the main fissure pattern in the M1s and M2s of a large hominin 

sample was useful for taxonomic inferences. In Wood et al. (1983), the landmarks are located at the 

intersections of groove-groove and groove-crown outline. To quantify the groove orientation more 

precisely, semi-landmarks dividing equally the main occlusal grooves are also used in the present 

study (Fig. 3). The reason for not using lingual occlusal groove in our analysis is due to the variable 

occurrence of hypocones in all M2s. 

On the C1s, no landmark could be defined on the occlusal surfaces. Instead, forty equidistant 

semi-landmarks were chosen along the outline of the crown using the TpsDig2 program (Rohlf, 

1998a). 

After the reconstruction of the dentine surface of the M2s, each 3D model was adjusted with the 

plane formed by its cemento-enamel junction maximally parallel to the computer monitor. Then a 

picture of the occlusal view was captured and stored as a JPEG file. At the dentine surface of the M2s, 

two landmarks (Type 1 in Bookstein. [1991]) were chosen: the two intersection points between the 

crown outline and the mesiobuccal and lingual grooves. The outlines of the trigonid and talonid were 

divided equally, using the TpsDig2 program (Rohlf, 1998a), into twenty parts (Fig. 3). The division 

follows the principle that each part of the crown outline was roughly equal in length. The dividing 

points were treated as semi-landmarks. 
 



The TpsDig2 program (Rohlf, 1998a) was employed to digitize landmarks and semi-landmarks, 

and the whole process was completed by the same person (X.S.). The TpsRelw program (Rohlf, 1998b) 

was used to undertake superimposition on the raw coordinate data and the relative warp analysis (or 

principal component analysis) of shape variables. 

Description of the Yiyuan teeth 

Upper right first premolar (Sh.y.003) 
This tooth (Figs. 4 and 5) is well preserved and only the apical third of the lingual root is broken. 

Occlusal wear corresponds to grade 3 (Molnar, 1971). Both mesial and distal interproximal wear 

facets are large and ellipsoid in shape. In the distal aspect, at the level of the cement-enamel junction, 

there is a buccolingually elongated interproximal groove as a result of tooth-picking (Sun et al., 2014). 

[Insert Figure 4] 

[Insert Figure 5] 

The crown outline is oval and slightly asymmetrical, with the mesial half more buccolingually 

elongated than the distal half. There is no sign of a transverse crest. The essential ridge of the buccal 

cusp is bifurcated. Both mesial and distal accessory ridges are present. Due to occlusal wear, 

morphological details of the lingual cusp, as well as the presence/absence of accessory tubercles, 

cannot be assessed. On the buccal surface, a moderately deep mesial vertical groove runs towards the 

apex of the buccal cusp, while there is no clear distal vertical groove. 

At the EDJ, the occlusal surface is strongly crenulated. The essential crest of the buccal cusp is 

bifurcated, with the mesial ridge being more pronounced than the distal one. The mesial accessory 

ridge of the buccal cusp is conspicuous, while the distal accessory ridge is composed of two ridges of 

different sizes. At the EDJ, we also observe the bifurcation of the essential ridge of the lingual cusp 

and both mesial and distal accessory ridges. No marginal accessory tubercle is present. On the buccal 

surface, the mesial vertical groove is relatively deep, while there are two faint distal vertical grooves 

that circumscribe a shallow V-shaped depression. From the lateral aspect, the buccal side is curved 

and lacks a cingulum. On the mesial side, the cement-enamel junction runs almost horizontally for 

most of its length and then suddenly ascends in the direction of root apex at a pronounced angle. The 

root is composed of a buccal and a lingual radical, which bifurcate from the second third of the root. 

The roots are robust and rounded in section and they do not narrow until the tip. 

Upper left first premolar (Sh.y.004) 
 

This tooth (Figs. 4 and 5) is the antimere of Sh.y.003. Its crown is well preserved, while only half of 

the buccal root and a small portion of the lingual root remain. The occlusal wear corresponds to grade 

3 (Molnar, 1971). Both mesial and distal interproximal wear facets are ellipsoid in shape. There are 

several enamel pits on the mesial aspect of the buccal surface, probably of taphonomic origin. A distal 

interproximal groove along the cervical line has been interpreted as a result of tooth-picking (Sun et 

al., 2014). 

Similar to its antimere, this tooth has an oval and asymmetrical crown outline with a more 

elongated mesial half. No transverse crest is developed. The expression of several secondary fissures 

complicates the occlusal surface. Whether the essential ridge of the buccal cusp is bifurcated is not 

clear due to occlusal wear. The preservation of faint secondary grooves suggests that the essential 

crest of the lingual cusp is bifurcated. Both mesial and distal accessory ridges of the lingual cusp are 

well developed. On the buccal surface of the crown, a mesial vertical groove is well developed, while 

the distal vertical groove is shallow. A prominent basal eminence is visible at about 4 mm from the 

cervical line. 

At the EDJ, the essential crest of the buccal cusp is bifurcated, and both mesial and distal 

accessory ridges are present. The lingual essential crest is also bifurcated and both the mesial and the 

distal accessory ridges of the lingual cusp are well developed. On the buccal surface, the mesial 

vertical groove is deep and associated with an enamel elevation, whereas the distal groove appears as 

a shallow V-shaped depression. The preserved part of the root is deeply furrowed by a broad 

longitudinal groove on its mesial surface. Two independent canals are visible on the cross-section of 

the broken roots. 

Upper left second premolar (Sh.y.007) 
This is a nearly complete tooth (Figs. 4 and 5) with a well-preserved crown and root, except for a 

mesiobuccal-distolingual crack along the whole tooth. Occlusal wear has considerably reduced the 

crown height and the pattern of dentine exposure corresponds to grade 4 (Molnar, 1971). Both the 

mesial and the distal interproximal facets are large and elliptical in shape. 



From the occlusal aspect, the crown has an oval and slightly asymmetrical outline, with an 

abbreviated distolingual corner due to the mesial shift of the lingual cusp. No transverse crest is 

developed. Due to heavy occlusal wear, only the distal accessory ridge of the buccal cusp and the 

mesial accessory ridge of the lingual cusp can be identified. On the buccal surface of the crown, the 

basal prominence is faintly developed. The distal vertical groove is moderately deep, while the 

identification of its mesial counterpart is obscured by the fracture. 

At the EDJ, the essential ridge of the buccal cusp is bifurcated. Both mesial and distal accessory 

ridges are present. Next to the mesial marginal ridge, two marginal accessory tubercles are identified. 
 

On the buccal surface, the mesial vertical groove is moderately developed, while the distal vertical 

groove is represented by a weak triangular depression. 

A broad and deep longitudinal groove runs along the distal surface of the root, whereas the 

groove in the mesial surface is weaker. The root is composed of two well-differentiated radicals that 

are joined by a dentine/cementum lamina except for the tip. The root is robust, with the buccal radical 

being longer than the lingual one. The root does not narrow until the tip. 

Upper left second premolar (Sh.y.071) 
A complete crown and a small segment of the root are preserved on Sh.y.071 (Figs. 4 and 5). The 

pattern of dentine exposure corresponds to occlusal wear of grade 3 (Molnar, 1971). Both mesial and 

distal interproximal wear facets are large and oval-shaped. 

From the occlusal view, the crown has an oval and slightly asymmetrical outline, with an 

abbreviated distolingual corner due to the mesial shift of the lingual cusp. There is no transverse crest. 

The essential crest of the buccal cusp is bifurcated. There is a distal accessory ridge on the buccal cusp 

but no mesial accessory ridge. In the mesial marginal ridge there are four accessory tubercles. On the 

buccal surface face, the mesial vertical groove is moderately developed, while the distal one is weak. 

At the EDJ, the essential crest of the buccal cusp is composed of three small ridges and distal to it 

there is a well-developed distal accessory ridge. The essential crest of the lingual cusp is bifurcated 

and bordered by well-developed mesial and distal accessory ridges. There are five mesial accessory 

ridges of different sizes. On the buccal surface, the mesial vertical groove is moderately developed, 

while the distal one is weakly expressed. The cross section of the preserved root is constricted by the 

expression of both mesial and distal longitudinal developmental grooves. 

Upper right second molar (Sh.y.008) 
The crown of Sh.y.008 (Figs. 5 and 6) is complete and presents occlusal wear of grade 2 (Molnar, 

1971). There are clear mesial and distal interproximal wear facets. Less than half of the lingual radical 

and a small part of the mesiobuccal radical are preserved. The enamel shows a mottled defect of 

pathological/taphonomic origin, particularly evident on the buccal and occlusal surfaces. 

[Insert Figure 6] 

In occlusal view, the crown outline shape is trapezoidal and mesiodistally compressed, with an 

obviously abbreviated distobuccal corner and slightly reduced distolingual aspect. The buccolingual 

dimension of the mesial cusps is predominant over the distal ones. The hypocone is medium-sized 

(grade 3.5 of ASUDAS). At the mesial aspect, three accessory ridges are detected. The crista obliqua 

is partially notched by the groove but it is continuous. There is no sign of a transverse crest. 

At the EDJ, there are two small ridges next to the distal marginal edge that could correspond to a 

C5 although it cannot be identified at the enamel surface. In the mesial marginal ridge, there are three 

accessory ridges of varying sizes. The dentine surface is highly crenulated with the development of 

several secondary grooves and ridges. There is no transverse crest and the crista obliqua is continuous. 

On the buccal surface of the paracone, a dentine shelf is moderately developed, and it probably 

corresponds to the projection of the mesial marginal ridge onto the buccal surface. In the mesiolingual 

corner of the protocone, two faint vertical grooves could be identified as grade 1 of Carabelli’s trait 

(Ortiz et al., 2012). The preserved fragment of the lingual root is inclined lingually and presents a 

shallow longitudinal groove on its lingual surface. 

Lower right canine (Sh.y.005)) 
The crown of this tooth (Figs. 5 and 6) is well preserved. The apical third of the root was broken off 

and reconstructed later. There is some superficial loss of cementum along the root surface. The degree 

of occlusal wear corresponds to grade 4 (Molnar, 1971). A long crack is evident over the distal aspect 

of the labial surface. There is a small and round interproximal wear facet on the mesial surface, while 
the distal interproximal wear facet is missing, likely because of occlusal wear. 

From the lingual view, both mesial and distal marginal ridges are thickened and strongly elevated 



(shovel shape, grade 4 of ASUDAS), with the distal one being slightly more prominent than the 

mesial. The basal eminence is moderately developed and from it, a moderately elevated central ridge 

emerges. On the labial surface, the mesial vertical groove is weak but the distal one is remarkably 

deep. The vertical grooves at the distal margin of both the labial and lingual surfaces almost delimit a 

cuspule-like distal marginal ridge. 

At the EDJ, the lingual central ridge is also moderately elevated. On the labial surface, a 

pronounced distal vertical groove is detected. Viewed distally, the marginal ridge almost adopts a 

cuspule-like aspect due to the development of strong distal vertical grooves on both buccal and lingual 

faces. The root is robust and thick, with an elliptical cross-section. 

Second right lower molar (Sh.y.072) 
The crown of this tooth (Figs. 5 and 6) is well preserved, but most of the root is missing. Wear has 

reduced the occlusal surface to a nearly flat plane and the pattern of dentine exposure corresponds to 

grade 4 (Molnar, 1971). The interproximal facet can be seen on both the mesial and distal aspects. The 

mesial interproximal facet is more extensive than the distal. There is an evident interproximal groove 

along the cervical line formed as a result of tooth-picking (Sun et al., 2014). 

 

In occlusal aspect, the crown has a relatively round outline, markedly elongated buccolingually. 

The buccal contour of the crown is rounded and smooth and the lingual one is relatively straight. 

Despite the heavy occlusal wear, it is possible to distinguish the five main cusps on the enamel surface. 

The hypoconulid is well developed (grade 4 of ASUDAS) and completely buccally displaced. The 

distal groove bifurcates shortly after originating from the central fovea and encloses a cusp 6, which is 

smaller than the hypoconulid (grade 2 of ASUDAS). The main five cusps are arranged in a “Y” 

pattern. However, this pattern is not symmetrical, because the hypoconulid stems from the central 

fovea and contacts the metaconid through a short groove. A longitudinal fissure in the metaconid 

delimits a pronounced deflecting wrinkle (grade 2 of ASUDAS). On the buccal surface of the 

protoconid, there is a secondary groove extending mesially from the buccal groove that defines a 

prominent protostylid (grade 6 of ASUDAS). No middle or distal trigonid crest (MTC or DTC) is 

expressed (Type D of Martínez de Pinillos et al., 2014). 

At the EDJ, a C6 and a deflecting wrinkle can be detected. The EDJ surface is profusely 

crenulated due to the existence of extra cusps and several interconnected secondary ridges. There is no 

sign of a middle or distal trigonid crest. Because of the occlusal dental wear we cannot assess the 

presence/absence of a middle trigonid crest, but the Yiyuan M2 probably has either a Type 2 or a Type 

4 (Martínez de Pinillos et al., 2014). The protostylid is expressed as a prominent shelf running on the 

whole buccal surface of the protoconid. There is a conspicuous vertical ridge running from the base of 

the protostylid cleft to the tip of the protoconid. Judging from the preserved portion of the root, we 

ascertain the existence of at least two roots bifurcating at about 5 mm away from the cervical line in 

the lingual view. A broad and deep longitudinal furrow is evident on the mesial surface of the mesial 

radical. 

 

Results and preliminary discussion 

Homo versus Pongo features of Yiyuan teeth 
At present, the only Chinese Pleistocene sites where Pongo fossils have been discovered are restricted 

to the Guizhou, Guangxi, Guangdong, and Yunnan districts (see Zhao et al., 2009). The northern limit 

of this region is the Yanhui Cave (28°15’N) in Tongzi (Guizhou Province) (see Zhao et al., 2009), 

~1300 kilometers from the Yiyuan site of Shandong Province. On the basis of this biogeographic 

pattern, the teeth are not likely to be Pongo. There is also evidence of tooth picking, a behavior argued 

to be unique to the genus Homo (Ungar et al., 2001; Hlusko, 2003) as to date tooth-picking habits 

have been documented exclusively in the genus Homo, including in Homo habilis (Ungar et al., 2001), 

Homo erectus (Holden, 2000), Homo heidelbergensis (Bermúdez de Castro et al., 1997), Homo 
neanderthalensis (e.g., Lozano et al., 2013), and Homo sapiens (e.g., Berryman et al., 1979). 
 

Binocular microscopy and Scanning Electron Microscopy (SEM) on the interproximal surfaces of 

Yiyuan teeth showed that five out of seven Yiyuan teeth (Sh.y.003, 004, 007, 008, and 072) exhibited 

different degrees of interproximal wear, ranging from multiple fine striae to deep interproximal 

grooves (Sun et al., 2014). The locations, morphology and dimensions of both the fine striae and 

grooves are consistent with artificial wear generated by habitual tooth-picking behavior. The presence 

of tooth-picking marks in the Yiyuan teeth is thus strong cultural evidence in support of their 



assignment as human (Sun et al., 2014). 

Metric data are also in support of the teeth being best assigned to Homo. In general, the diameters 

of the Yiyuan teeth are smaller than those of Pongo, and most of them are out of the range of Pongo 

variation (Fig. 7). In those cases where the Yiyuan measurements overlap with the Pongo distribution 

(MD of M2, BL of P3, M2, and M2), they consistently fall in the lower limit of the range of variation 

and also overlap with the dimensions in a wide range of hominins, particularly those from East Asian 

Early and Middle Pleistocene hominins. 

[Insert Figure 7] 

The results of the present study show that the mean RDHH of the paracone and the protocone of 

Pongo specimens are 27.9% and 23.9%, respectively (Table 3). Comparatively, recent modern 

humans are characterized by higher dentine horns, on average, for both the paracone (39.7%) and the 

protocone (36.6%). Our values are consistent with those obtained by Olejniczak et al. (2008), where 

mean RDHHs of the protocone and the paracone of H. sapiens are 35.3% and 36.2%, respectively, and 

for Pongo 28.2% and 27.1% respectively. For Yiyuan Sh.y.008 we obtained a RDHH of 35.5% for the 

protocone and 37.4% for the paracone. 

Our results indicate that the Yiyuan Sh.y.008 values are closer to H. sapiens than to Pongo. In 

particular, the RDHH of the Sh.y. 008 protocone is higher than the upper limit of the range of 

variation in Pongo for this cusp. The Yiyuan M2 shows relatively higher dentine horns, as is typical of 

H. sapiens and in contrast to the lower horns of Pongo (Olejniczak et al, 2008). 

[Insert Table 3] 

For P3, and as shown in Figure 8, all Pongo specimens are distributed in the negative-value area of 

RW1, while both fossil hominins and recent modern humans are plotted at the opposite end. This 

analysis indicates that Pongo P3s have a highly distorted crown outline, with the mesiobuccal corner 

being strongly bulged, contrasting with the more symmetrical shapes found in hominins. The anterior 

and posterior foveae in Pongo specimens are widely separated from each other and very close to the 

marginal ridges, in contrast with the more centered foveae in the rest of the specimens analyzed. 
 

For P4 (Fig. 8), Pongo specimens are mainly plotted towards the negative-value pole of the 

relative warp (RW) 1 axis, whereas fossil hominins and recent modern humans cluster in the 

positive-value area. Unlike some hominin specimens, the Yiyuan P4s are distributed outside the range 

of variation of Pongo specimens, falling at the positive-value end of the RW1 axis. Compared to most 

of the hominin specimens, Pongo P4s present a relatively wider lingual half, and the foveae are 

well-separated and very close to the marginal ridges. 

GM analyses of the M2 crown outline shape and orientation of the occlusal grooves show that 

most of the Pongo specimens cluster in the upper left quadrant of the graph, although overlap with 

other fossil hominins and recent modern humans exists (see Figure 8). The Yiyuan M2 falls at the 

extreme right of the range of variation of the Pongo sample, in the upper right quadrant, where most 

of the specimens are hominins. This analysis shows that the occlusal outline and groove orientation of 

the M2 are not the best discriminators, so other features, such as the RDHH or the expression of 

tooth-picking grooves, should be employed to distinguish between Homo and Pongo. 

As shown in Figure 8, the Yiyuan C1 falls in an area that is occupied exclusively by hominin 

fossils and recent modern humans. Pongo specimens are distributed in the positive-value pole of RW1 

with a few fossil hominin and recent modern human specimens, but there is barely any overlap 

between Pongo and hominins. This analysis shows that Pongo lower canines tend to show a strongly 

asymmetrical crown outline with a bulged distolingual corner. The maximum diameter is the BL and 

it is oblique in a mesiobuccal to distolingual direction. In contrast, most recent modern humans are 

characterized by an oval and more symmetrical crown outline, where the BL and MD diameters are 

more balanced, although the MD tends to predominate. The Yiyuan specimen falls within the range of 

variation of recent modern humans, and is separated from Pongo by presenting a more symmetrical 

crown outline. 

For M2, recent modern humans predominantly occupy the left half of the graph (Fig. 8) and, with 

a few exceptions, they are well separated from Pongo specimens. Homo sapiens is characterized by 

mesiodistally short and rounded crown outlines. In contrast, all but one of the Pongo specimens are 

distributed in the right half of the graph. The Pongo M2s tend to have a mesiodistally elongated crown 

with a pronounced constriction at the point of contact between trigonid and talonid. The Yiyuan tooth 

displays the same pattern as modern humans, and occupies the upper left corner of the graphic, far 

from the Pongo area of distribution. 



[Insert Figure 8] 

In humans, lower canine morphology has evolved from primitive states, characterized by an 

asymmetrical crown outline, cuspule-like marginal ridges, and a highly elevated lingual central ridge 

(Moggi-Cecchi et al., 2006; Martinón-Torres et al., 2008) to more simple and incisor-like canines. The 

canine from Yiyuan, together with most specimens of H. ergaster, East Asian Early and Middle 

Pleistocene hominins (e.g., KNM WT-15000, KNM ER-992, Sangiran 7-59, ZKD 70 and 73) present 

an intermediate state, with almost cuspal-like marginal ridges and/or elevated lingual central ridges, 

though to a less extent than the earliest hominins such as Australopithecus (Weidenreich, 1937; Wood, 

1991; Walker and Leakey, 1993; Grine and Franzen, 1994; Xing, 2012). In contrast, the shape of the 

Pongo C1 is close to a cone, and displays a bulged distolingual corner when viewed occlusally (Fig. 9). 

The maximum diameter is oblique in a mesiobuccal to a distolingual direction and is remarkably 

different from canines of the genus Homo, even in those that preserve a primitive pattern and where 

the projection of the distal marginal ridge provides a more asymmetrical contour. Unlike in the 

Yiyuan teeth, in Pongo canines we cannot find a shovel shape because marginal ridges cannot be 

identified and lingual fossa is occupied by a strongly elevated lingual central ridge with longitudinal 

grooves. 

[Insert Figure 9] 

Pongo molars are generally characterized by a highly crenulated occlusal surface at the OES, 

particularly due to the expression of several secondary grooves that define numerous ridges. The 

Yiyuan teeth also present complicated and crenulated surfaces as an expression of a primitive feature 

for the genus Homo that has been ascertained in other hominin assemblages such as those from 

Sangiran, Zhoukoudian, Hexian or Atapuerca-TD6 (Weidenreich, 1937; Grine and Franzen, 1994; 

Bermúdez de Castro et al., 1999; Kaifu et al., 2005). At the EDJ, the Yiyuan molars also present a 

very complicated surface with the definition of a net of interconnected secondary grooves and ridges. 

This dendritic EDJ surface is different from the one evident in Pongo teeth (Fig. 10), where the ridges 

are less pronounced and elevated and significantly thinner or hair-like. As it has been pointed out, for 

some primary-definitive traits such as C6, C7, trigonid crest pattern, and protostylid expression, there 

is a consistent match between OES and EDJ in the presence/absence of a feature (Skinner et al., 2008). 

However, Skinner et al. (2010) stated that the morphology of the EDJ of Pongo was less complicated 

than the OES. Conversely, the EDJ surfaces of Yiyuan molars are more complicated than the OES and 

display strong crenulations, and multiple essential crests and ridges that are relatively elevated (Fig. 

10). Interestingly, the same type of dendritic EDJ surface found on the Yiyuan molars has been 

identified in the Zhoukoudian and Hexian specimens and could be a peculiarity of some continental 

Asian Middle Pleistocene fossils (Fig. 10; Xing et al., 2014). 

[Insert Figure 10] 
 

Comparisons between the Yiyuan teeth, other samples of fossil hominins and recent modern 

humans 

Upper first premolar (P3) The transverse crest and bifurcated essential crest of P3 tend to decrease in 

frequency over time (Wood, 1991; Moggi-Cecchi et al., 2006; Martinón-Torres et al., 2008, 2012; 

Xing et al., 2014). While the transverse crest is rare, the bifurcation of the essential crest is a relatively 

common feature in East Asian Middle Pleistocene specimens (e.g., Zhoukoudian, Hexian, Chaoxian or 

Panxian Dadong; Bailey and Liu, 2010; Xing, 2012; Liu et al., 2013; Xing et al., 2014, 2015) as well 

as the in the Sangiran Early Pleistocene hominins (but see NG9505 in Zanolli, 2013). A furrowed 

buccal surface is usually present in earlier hominins including Australopithecus, African early Homo, 

H. ergaster, Sangiran Early Pleistocene, and Chinese mid-Middle Pleistocene hominins 

(Moggi-Cecchi et al., 2006; Martinón-Torres et al., 2008, 2012; Gómez-Robles et al., 2011; Xing et al., 

2014, 2015), but not in the Chinese late Middle Pleistocene sample from Panxian Dadong (Liu et al., 

2013) and the early Late Pleistocene hominins from Xujiayao (Xing et al., 2015). Although a 

continuous transverse crest is absent, the Yiyuan P3s resemble other East Asian Early and mid-Middle 

Pleistocene hominins in possessing bifurcated essential crests and marked marginal grooves on the 

buccal surface. The roots of the Yiyuan P3 are widely divergent, and they barely narrow until the tip, 

resembling East Asian Early and mid-Middle Pleistocene specimens (Kaifu, 2006; Xing et al., 2014) 

but being unlike Dmanisi (Martinón-Torres et al., 2008). 

Geometric morphometric analysis of P3 crown shape (Fig. 11) indicates that RW1 and RW2 

account for 29.68% and 17.54% of the total shape variation of the crown outline and the distance 

between anterior and posterior foveae. Specimens at the negative values of RW1 are characterized by 



an asymmetrical crown outline, where the mesiobuccal and mesiolingual corners bulge and anterior 

and posterior foveae are widely separated. This area is exclusively occupied by Australopithecus, 

early Homo, and H. erectus sensu lato. The positive-value area of RW1 is occupied by specimens 

where the crown outline is wider on the buccal side. The distance between anterior and posterior 

foveae is shortened. This region is mainly occupied by H. sapiens specimens. Compared to those in 

the negative-value extreme of RW2, specimens at the RW2 positive-value area tend to have a crown 

outline with the contour of the buccal cusp being bulged and wider than the lingual one. The anterior 

and posterior foveae are also closer. 

The Yiyuan P3s are displayed in the lower left quadrant (Fig. 11). Except for a few specimens of 

H. sapiens, in this area we find the majority of the Australopithecus and early Homo, and some H. 
ergaster, East Asian Early and mid-Middle Pleistocene, European Early and Middle Pleistocene 

specimens. This analysis reveals the primitive character of the Yiyuan specimens and emphasizes the 

similarities with other Asian Middle Pleistocene samples (except for Panxian Dadong), although the 

Zhoukoudian, Chaoxian, and one of the Hexian specimens fall in the positive-value end of the RW2 

axis. 

[Insert Figure 11] 

Upper second premolar (P4) As was observed in the P3s, the transverse crest and bifurcated essential 

crest in P4 s are more frequent in earlier hominins compared to the later H. sapiens (Martinón-Torres 

et al., 2008, 2012; Xing et al., 2014). The Yiyuan P4s show primitive features such as several marginal 

accessory tubercles that are relatively frequent in Homo specimens before the Middle Pleistocene 

(Martinón-Torres, 2006; Martinón-Torres et al., 2008). The Yiyuan P4s also display bifurcated 

essential crests, which are moderately frequent in East Asian Middle Pleistocene hominins such as 

Zhoukoudian and Chaoxian (Bailey and Liu, 2010; Xing, 2012; Xing et al., 2014), but not in the early 

Late Pleistocene hominins from Xujiayao (Xing et al., 2015). 

The number of premolar roots in H. ergaster, East Asian Early and mid-Middle Pleistocene, and 

European Early Pleistocene ranges from three to two (White, 1980; Johanson et al., 1982; Ward et al., 

1982; Wood, 1991; Walker and Leakey, 1993; Moggi-Cecchi et al., 2006; Kaifu et al., 2011; 

Martinón-Torres et al., 2012; Xing et al., 2014). The Yiyuan P4 presents two roots that are joined by a 

dentine/cementum lamina except for the apical tip, as also occurs in the Early Pleistocene specimens 

from Atapuerca-TD6 (Bermúdez de Castro et al., 1999). The roots are robust, without narrowing 

towards the tip, and unlike European Middle Pleistocene specimens and modern humans (Kaifu, 2006; 

Martinón-Torres et al., 2012; Xing, 2012). 

Geometric morphometric analysis of the P4 (Fig. 12) indicates that RW1 and RW2 account for 

23.91% and 22.75% of the total shape variation of the crown outline and the distance between anterior 

and posterior foveae. Teeth distributed along the positive-value end of RW1 tend to have 

bucco-lingually elongated crowns, and a relatively large inter-foveae distance. This area is mostly 

occupied by Australopithecus and East Asian Early and Middle Pleistocene specimens, including 

Yiyuan. In contrast, at the negative end of the RW1 axis, specimens tend to show more balanced BL 

and MD diameters, a relatively narrower lingual half and a reduced inter-fovea distance. Specimens 

plotted against the positive-value of RW2 tend to have a crown outline that is bucco-lingually 

shortened and relatively wide in its lingual half. The anterior and posterior foveae are widely 

separated from each other. Apart from a few specimens of East Asian Early and mid-Middle 

Pleistocene and fossil H. sapiens, most fossil hominins are distributed in the positive-value area of 

RW2 whereas the negative-value area is mostly occupied by recent modern humans. In relation to 

other Early and Middle Pleistocene hominins, the Yiyuan P4s fall closer to the Sangiran and 

Zhoukoudian specimens, and have more negative values along the RW2 axis than most of the early 

Homo, H. ergaster, and European Middle Pleistocene specimens. 
 

[Insert Figure 12] 

Upper second molar (M2) The hypocone size of the Yiyuan M2, scored by the ASUDAS (not 

measured as follows), can be included in the variation of H. ergaster and East Asian Early and 

mid-Middle Pleistocene samples. The early Late Pleistocene hominin from Xujiayao could also fit 

within this (Xing et al., 2015). The hypocone size in H. ergaster and East Asian and mid-Middle 

Pleistocene hominins is clearly reduced compared to those of Australopithecus and African Early 

Homo (Suwa, 2007; Martinón-Torres et al., 2008; Xing et al., 2014), but is still larger than in 

European Middle Pleistocene specimens, Neanderthals, and modern humans (Martinón-Torres et al., 

2012; Xing, 2012). 



The M2 relative cusp areas (Fig. 13) indicate that relative paracone size tends to increase in later 

Homo compared to the earliest hominins (Australopithecus and early Homo), although a certain 

degree of overlap among taxa exists. The relative paracone area of Yiyuan M2 falls into the range of 

variation of the earliest hominins, H. ergaster, East Asian Early and mid-Middle Pleistocene, 

European Middle Pleistocene, Neanderthals, and H. sapiens. The relative metacone area of Yiyuan M2 

is distributed within the range of variation of Australopithecus, East Asian Early Pleistocene, 

Neanderthals, and H. sapiens. However, it is out of the range of variation of H. ergaster and East 

Asian mid-Middle Pleistocene specimens. The relative protocone area of the Yiyuan M2 is larger than 

all specimens of the East Asian Early and Middle Pleistocene, as well as those of the West Asian 

Early Pleistocene. In the hypocone, there is a trend of decreasing relative size from earliest hominins 

to later Homo species. The size of the Yiyuan M2 hypocone falls into the range of variation of H. 

ergaster, East Asian mid-Middle Pleistocene, European Middle Pleistocene, and H. sapiens. It is 

larger than the hypocones of East Asian and West Asian Early Pleistocene specimens. 

The relative size sequence of the M2 cusps also exhibits intergroup variations. In 

Australopithecus, the protocone is the largest cusp of all, and the relative size of the other three vary 

among specimens. The relative protocone area is largest in early Homo. The paracone is smaller than 

protocone, but larger than both the metacone and hypocone. The relative size sequence of H. ergaster 

and Sangiran Early Pleistocene is either protocone>paracone>metacone>hypocone, or 

protocone>paracone>hypocone>metacone. Together with the samples of East Asian mid-Middle 

Pleistocene, Neanderthal lineage, and other later H. sapiens, the Yiyuan M2 sequence of relative 

cuspal size is protocone>paracone>metacone>hypocone. 

[Insert Figure 13] 
 

The GM analysis of the M2 (Fig. 14) shows that the first two relative warps account for 40.51% 

and 19.50% of the total variation of the crown outline shape and the orientation of occlusal grooves, 

respectively. The specimens at the positive-value half of RW1 present a wider buccal contour and a 

bulging larger paracone in comparison to the specimens at the negative-value, where the lingual 

contour is wider because of an expanded hypocone and a reduced paracone. In the positive area of 

RW1, the buccal and mesial grooves are oblique in relation to the buccolingual and mesiodistal axis of 

the crown, respectively, and form an obtuse angle between them, whereas in the negative pole the 

angle between the buccal and the mesial grooves is almost 90°. At the positive-value area of RW2, 

specimens are characterized by a trapezoidal crown outline with a symmetrically reduced distal half. 

Both buccal and lingual contours converge distally. Specimens at the negative-value of RW2 show a 

strongly oblique buccal contour due to a reduced metacone and a bulging paracone. The angle 

between the buccal and mesial grooves is obtuse in these specimens. 

As seen in Figure 14, earliest hominins (i.e., Australopithecus and early Homo) can generally be 

separated from recent modern humans along the RW1 axis, with the former being distributed in the 

left half. Early modern humans, European Early and Middle Pleistocene hominins, and Neanderthals 

are scattered on the four quadrants, but they tend to present positive values on RW1. The Yiyuan tooth 

is located in the upper right quadrant (Fig. 14), together with most of the mid-Middle Pleistocene 

hominins from East Asia, except for Chaoxian, and is separated from most of the H. ergaster and East 

Asian Early Pleistocene samples. 

[Insert Figure 14] 

The EDJ surface of Yiyuan M2 is as crenulated as the EDJ surfaces reported for the Hexian 

hominins (Fig. 10). The surface is characterized by the expression of several mesial marginal tubercles, 

secondary furrows, and bifurcated essential crests that conform to a dendritic pattern similar to that 

found in Zhoukoudian and Hexian specimens. 

Lower canine (C1) As stated above, the canine from Yiyuan, together with other H. ergaster, East 

Asian Early and Middle Pleistocene specimens (e.g., KNM WT-15000, KNM ER-992, Sangiran 7-59, 

ZKD 70 and 73) and H. antecessor (Bermúdez de Castro et al., 1999) present an intermediate state, 

with nearly cuspal-like marginal ridges and an elevated lingual central ridge, though to a lesser extent 

than Australopithecus, African early Homo and the Dmanisi specimens (Weidenreich, 1937; Wood, 

1991; Walker and Leakey, 1993; Grine and Franzen, 1994; Xing, 2012). The Yiyuan canine is also 

different to that found in other samples such as in specimens from the East Asian late Middle 

Pleistocene site of Panxian Dadong, European Middle Pleistocene populations, Neanderthals, and 
modern humans, where more simple and incisor-like patterns can be identified (Martinón-Torres et al., 

2012; Xing, 2012; Liu et al., 2013). 
 



Lower second molar (M2) The combination of a well-developed hypoconulid in a clear buccal 

position, C6, and deflecting defecting wrinkle, as occurs in the Yiyuan specimen, is more frequent in 

Australopithecus, African Early Homo, H. ergaster, East Asian Early and mid-Middle Pleistocene 

samples than in the European Middle Pleistocene hominins, Neanderthals, and modern human 

assemblages (Martinón-Torres et al., 2012; Xing et al., 2014, but see the Bapang M2s reported in 

Zanolli, 2013). Although the groove pattern of Sh.y.072 is a “Y” type, the pattern is asymmetrical due 

to the contact between the hypoconulid and the metaconid. This type of arrangement is rare and could 

be detected in the Dmanisi sample (Martinón-Torres et al., 2008) and some East Asian Early and 

mid-Middle Pleistocene specimens from Sangiran and Zhoukoudian (Sangiran 5 and 7-78, ZKD 107) 

(Grine and Franzen, 1994, Xing, 2012). 

The protostylid of Sh.y.072 is cleft-like and occupies almost the whole buccal surface of the 

protoconid. Besides those found in Australopithecus and African Early Homo (Hlusko, 2004), this 

conspicuous, long, and band-like protostylid is generally found in Early Pleistocene samples such as 

those from Dmanisi (Martinón-Torres et al., 2008) and Sangiran 6, and some mid-Middle Pleistocene 

specimens from Zhoukoudian (Weidenreich, 1937). However, the most remarkable feature of the 

Yiyuan protostylid is found at the EDJ. The EDJ surface of Yiyuan M2 is as crenulated as those 

reported in Zhoukoudian and Hexian hominins (Fig. 10), and more complicated than those from the 

European Middle Pleistocene, Neanderthals, and H. sapiens (Bailey et al., 2011; Martínez de Pinillos 

et al., 2014; Martinón-Torres et al., 2014; Xing et al., 2014), and Sangiran (as reported by Zanolli 

[2015]). Although available data on the EDJ surface from hominins are limited, it seems that the 

Yiyuan EDJ is also more crenulated than in some Australopithecus specimens (Skinner et al., 2008) 

and the Tighenif specimens (Zanolli et al., 2010). The crenulated dental surface common in the 

Yiyuan, Hexian, and Zhoukoudian M2s involves the expression of a C6 or/and C7, the bifurcation of 

the essential crests, and the expression of accessory ridges. In the case of the Sangiran M2s (NG0802.3 

and NG92 D6 ZE 57s/d 76; Zanolli, 2015), both teeth have only four main cusps, and along with the 

hypoconulid, the C6 and the C7 are also absent. In addition, the essential crest and accessory ridges of 

the main cusps in this Sangiran subsample are much less developed than those in Yiyuan, Hexian, and 

Zhoukoudian. On the buccal surface, the pronounced to moderately-expressed protostylid in Yiyuan, 

Hexian, and Zhoukoudian contrasts with its weak expression in the Sangiran M2s studied by Zanolli 

(2015). Particularly, there is a vertical and conspicuous crest running from the base of the protostylid 

shelf to the protoconid that has been noted only in Hexian (Xing et al., 2014) and Zhoukoudian molars 

(Xing et al., 2015), and in a less pronounced form in a few Middle Pleistocene specimens from 

Atapuerca SH (AT-100, AT-1473, AT-2271; Martínez de Pinillos et al., 2014). This feature is not 

reported in either Indonesian H. erectus molars (Zanolli, 2015) or in the East African late Early 

Pleistocene H. erectus/ergaster specimen MA 93 (Zanolli et al., 2014). The evolutionary significance 

of this feature requires further study in larger samples. 

It is noteworthy that a continuous mid-trigonid crest as is typically documented in European 

Middle Pleistocene hominins and Neanderthals (Bailey et al., 2011; Martínez de Pinillos et al., 2014) 

is not found in the Yiyuan, Hexian, and Zhoukoudian samples. The Type D of MTC at the enamel and 

Types 2 or 4 at the EDJ are among the least frequent types for the Neanderthal lineage (Bailey et al., 

2011; Martínez de Pinillos et al., 2014, 2015). 

Metric comparison Except for the canine, the size of the other four dental elements from Yiyuan is 

outside the range of variation of the European Early and Middle Pleistocene specimens, Neanderthals, 

and early and recent modern humans (SI Fig. 1). Compared to Zhoukoudian, the Yiyuan hominins 

have a relatively larger M2, and smaller C1 and M2 (mainly in the MD dimension). The smallest of the 

Yiyuan M2s is also outside the range of the East Asian Early Pleistocene sample. The main differences 

between the Yiyuan specimens and H. ergaster are larger Yiyuan M2 BL dimension, and smaller MD 

dimension for the C1 and the M2. For P3, P4, and M2, the Yiyuan teeth have a similar crown size to 

those from Chaoxian. The Panxian Dadong hominins, despite belonging to the East Asian Late Middle 

Pleistocene, present smaller P3s and C1s than do Yiyuan specimens. 

Discussion and conclusion 
Based on the varied array of analyses performed (as summarized in Table 4), the Yiyuan hominins can 

be differentiated from those of fossil Pongo from Pleistocene China. The crown sizes of Yiyuan teeth 

are generally smaller than those of Pongo, except for the M2, although for this dental class the overlap 

affects almost all the studied hominin groups. In addition, evidence of tooth-picking, which has been 
found exclusively in Homo, is found on five out of seven teeth and in all the individuals. The relative 

dentine horn height in the Yiyuan M2 is particularly discriminatory and characteristic of humans 



(Olejniczak et al, 2008). Geometric morphometric analyses on the crown outline of OES/EDJ, the 

relative position of the foveae, and groove orientation also differentiate the Yiyuan teeth from those of 

fossil Pongo, except for the M2, where there is an overlap among Pongo and fossil hominins. However, 

although GM analysis of M2 shape does not differentiate Pongo and human species, the RDHH and 

the expression of a tooth-pick groove in the Yiyuan M2 remain strong evidence in favor of the Yiyuan 

teeth being human. 

We acknowledge that the particular EDJ morphology of the Yiyuan teeth is not commonly seen in 

other Pleistocene hominins and modern humans. However, we have shown that the dendritic pattern 

shown by the Yiyuan hominins is different from that of Pongo and very similar to that displayed by 

other Middle Pleistocene hominins from continental Asia, such as Zhoukoudian and Hexian, and 

could be a peculiarity of the hominin populations from this period and region (see below). In sum, the 

Yiyuan dental sample can be distinguished from fossil Pongo teeth based on geographic, behavioral, 

morphological (internal and external) and morphometric features. 

[Insert Table 4] 

In comparison with other hominin groups, and in particular with the East Asian Early and Middle 

Pleistocene hominins, the Yiyuan teeth display several primitive traits relative to the Homo clade, 

which mainly involve complexity of the occlusal surface, crown buttressing features, robust root 

structure, crown outline shape, and large crown size. More precisely, the occlusal surfaces are 

complicated due to the expression of C6, deflecting wrinkles, and the development of several 

secondary grooves that define the expression of bifurcated essential crests in upper premolars. The 

buttressing system refers to features that add morphological robusticity, also called mass-additive 

traits by Irish (1998). We include in these the elevation of the lingual central ridge, the cuspule-like 

distal marginal ridge of the C1, the buccal vertical grooves of the P3s as a type of cingulum-derived 

feature, and the protostylid of the M2. The root structure of the Yiyuan P3 is represented by two 

independent, robust and highly divergent radicals. The asymmetrical crown outlines of Yiyuan P3s and 

P4s are also primitive owing to a conspicuous talon. 

The primitive morphological pattern exhibited by the Yiyuan specimens distinguishes them from 

the European Middle Pleistocene hominins, Neanderthals, and modern humans. The European Early 

Pleistocene teeth (H. antecessor) are similar to those of the Yiyuan specimens in the expression of 

some primitive traits, such as the extensive development of secondary grooves on the occlusal surface 

of posterior teeth and the two-rooted premolars (Bermúdez de Castro et al., 1999). However, some of 

the buttressing features, such as the vertical grooves on the buccal surface of P3, are more pronounced 

in the Yiyuan specimens. Features that have been classically considered as typical of the Neanderthal 

lineage (Bailey, 2002, 2004; Martinón-Torres et al., 2006; Gómez-Robles et al., 2007, 2008; Bailey et 

al., 2011), such as the high and continuous mid-trigonid crest of lower molars, are not observed in the 

Yiyuan M2. In addition, the Yiyuan teeth are different from those of H. ergaster (or African H. erectus) 

in shape and size. Comparatively, the Yiyuan P4, M2, and M2 are bucco-lingually elongated. The 

measurement of the relative cuspal area also shows that the Yiyuan M2 has a relatively smaller 

protocone than H. ergaster. 

The Yiyuan teeth retain similar primitive morphologies to other East Asian mid-Middle 

Pleistocene hominins. In addition, the skull recovered with the Yiyuan teeth exhibits features that are 

considered typical of East Asian H. erectus, namely the marked frontal recession, postorbital 

constriction, deep postorbital sulcus, and strong supraorbital torus (Lu et al., 1989; Wu and Poirier, 

1995). However, a series of dental studies on East Asian Middle Pleistocene hominins (i.e., 

Zhoukoudian, Chaoxian, Hexian, Panxian Dadong) recently revealed that the morphological diversity 

of East Asian Middle Pleistocene hominins is greater than previously thought (Zhang and Liu, 2002; 

Bailey and Liu, 2010; Xing, 2012; Liu et al., 2013; Xing et al., 2014). Except for the smaller canine 

dimensions, the morphology of the C1 and the P4 (Sh.y.005 and 007) from Yiyuan Locality 1 are 

similar to those from Zhoukoudian and Chaoxian although different from the more derived canine 

from Panxian Dadong (Liu et al., 2013; this study). The occlusal outlines of the P4s recovered at both 

Yiyuan and Chaoxian are more buccolingually elongated compared to those of H. ergaster. Except for 

having a relatively larger M2 and a relatively smaller M2, the Yiyuan teeth from this locality are 

similar to those of Zhoukoudian as shown by the GM analysis. Compared to the Hexian sample, the 

morphology of the P3 and the M2, as well as the crown outline shape of the P3, the M2, and the M2 are 

quite similar, although the Yiyuan P3 is not three-rooted as in Hexian (Xing et al., 2014). Also, the 

long, shelf-like protostylid of the Yiyuan M2 is not observed in the Hexian sample but its morphology 

at the EDJ presents some interesting resemblances. The relative protocone and metacone areas of the 



Yiyuan M2 cannot be included in the range of variation represented by the Zhoukoudian and Hexian 

teeth. The Yiyuan and Chaoxian hominins resemble each other in the external morphology of the P3, 

the P4, and the M2, as well as in the crown outline shapes of the P3 and the P4, but they are different 

regarding the crown outline shape of the M2. In contrast, the P3 of Panxian Dadong has been described 

as having some modern human-like features (Liu et al., 2013), and its symmetrical crown outline and 

simplified occlusal surface are clearly more derived than those of the Yiyuan teeth. Some of these 

derived features can be also found in the Late Pleistocene fossils from Xujiayao, but the Xujiayao P4 

and M2 are notably more primitive and closer to the Yiyuan specimens (Xing et al., 2015). 

Based on dental morphology, the East Asian Middle Pleistocene hominins (Yiyuan, Zhoukoudian, 

Chaoxian, Hexian, and Panxian Dadong) could be classified into two types. The first type includes 

specimens that are usually interpreted as representative of classic H. erectus such as those from 

Zhoukoudian Locality 1 and Hexian. In this context, Hexian would share more primitive features with 

the chronologically older Sangiran specimens (but see Zanolli, 2013) than either Yiyuan or 

Zhoukoudian. The Chaoxian teeth from late Middle Pleistocene could also group with the 

Zhoukoudian H. erectus. However, other skeletal parts recovered at Chaoxian (i.e., maxilla and 

occipital; see Xu et al., 1984) have been interpreted as less typical of Asian H. erectus in presenting a 

weak occipital torus, a depression similar to the fossa supratoralis, a large occipital curvature angle 

and thinner bone. These differences were the reason that some researchers identified the Chaoxian 

material as archaic H. sapiens (Xu et al., 1984). Although our study does not follow the same 

terminology and interpretive framework as that employed by Zhang and Liu (2002) and Sun et al. 

(2011), we acknowledge that the term “archaic H. sapiens” can refer to “intermediate” forms that are 

morphologically more advanced than H. erectus, but still more primitive than modern humans. 

However, and despite some differences in the preservation/loss of primitive features, the Yiyuan skull 

has been described as being similar to Zhoukoudian H. erectus, in the marked frontal recession, 

postorbital constriction, deep postorbital sulcus, and strong supraorbital torus (Lu et al., 1989, Wu and 

Poirier, 1995).Thus, from a dental perspective, and with the preservation of more primitive features in 

the case of Hexian, we find that Zhoukoudian, Chaoxian, and Hexian samples form a morphologically 

coherent group. 

The second type of dental morphology in the Chinese Middle Pleistocene is currently represented 

by the Panxian Dadong fossils (Liu et al., 2013; Martinón-Torres et al., 2016). Liu et al. (2013) found 

that some features of the Panxian Dadong teeth fall into the range of variation of modern humans, 

including the symmetrical crown outline shape and the simplified occlusal surface of upper and lower 

premolars, the incisor-like lower canine, and the reduced talonid of the P3. Compared to these two 

groups, our study shows that the Yiyuan hominins are closer to the Zhoukoudian, Hexian, and 

Chaoxian hominins than to the Panxian Dadong sample. The differences between these samples and 

Panxian Dadong may be related to a complex evolutionary scenario in continental Asia with 

fragmentation and/or regional variation by isolation (see Dennell, 2009; Zanolli, 2013, 2015; Xing et 

al., 2014; Martinón-Torres et al., 2016). It would also be in line with the differences found between 

Northern and Southern China during the Late Pleistocene (Liu et al., 2015). 

In our opinion, Zhoukoudian, Yiyuan, Chaoxian and Hexian show a general dental bauplan that 

could be typical of Asian Early and Middle Pleistocene samples and that includes relatively 

bucco-lingually elongated mesial cusps compared to the distal ones in the upper and lower molars, as 

well as the stout, round in section and non-narrowing roots (Kaifu et al., 2005; Xing et al., 2014, 2015; 

Martinón-Torres et al., 2016). However, Yiyuan, Zhoukoudian and Hexian also present some features 

that may be unique to these groups, such as the development of a network of interconnected secondary 

grooves and ridges at the EDJ, especially in the molars. This complex dendritic EDJ surface has not 

been documented in the currently available EDJ images of other hominins such as Australopithecus, 

North Africa Middle Pleistocene hominins, European Early and Middle Pleistocene hominins, 

Sangiran H. erectus (Zanolli, 2015), Panxian Dadong (Liu et al, 2013), Neanderthals, and H. sapiens 
(Skinner et al., 2008; 2010; Bailey et al., 2011; Martínez de Pinillos et al., 2014, 2015; 

Martinón-Torres et al., 2014; Zanolli, 2015). In addition, the Yiyuan lower molar also presents a clear 

vertical ridge running from the protoconid to the protostylid-cleft at the buccal surface. This feature 

has so far been identified only in Hexian (Xing et al., 2014), Zhoukoudian and some isolated 

specimens from Atapuerca-SH (see Martínez de Pinillos et al., 2014), and could represent either 

another shared feature of continental Eurasian Middle Pleistocene humans (see also Martinón-Torres 

et al., 2007) or one acquired independently in European and continental Asian demes. The EDJ 



morphologies of some Sangiran specimens were different from those of Yiyuan, Zhoukoudian, andHexian, 

as they are not highly crenulated, they lack any protostylid expression and buccal vertical 

ridge, and show higher dentine horns (Zanolli, 2015). 

Future and systematic studies with micro-CT and/or more dental findings will contribute to a 

better understanding of the evolutionary meaning of the EDJ pattern of Yiyuan, Zhoukoudian, and 

Hexian hominins. If confirmed to be exceptional, this uniqueness will be relevant for reconstruction of 

the evolutionary history of genus Homo in Asia. The severe climatic oscillations and the vast desert 

areas that dominated Asia during the Middle Pleistocene (Dennell, 2009; Dennell, 2013; Zanolli, 2013, 

2015; Martinón-Torres et al., 2016) have likely favored a pattern of isolation and regional variation. 

Thus, the possibility that mid-latitude continental Asian groups had a different evolutionary trajectory 

compared to the penecontemporaneous southeastern Asian H. erectus sensu stricto (s.s.) groups should 

be considered. Our study supports the notion that the taxonomy of the Pleistocene hominins from Asia 

may have been oversimplified. Futures studies should explore the variability of the Asian specimens 

and reconsider whether all these samples can be assigned to H. erectus s.s. 
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Figure legends 
Figure 1. The geographic location of Yiyuan compared to other major Chinese sites, and the 

stratigraphic sequences (upper left) of Localities 1 and 3 of Yiyuan site (after Lu et al., 1989). From 

top to bottom, Locality 1 comprises: brownish silty clay, 50 – 60 cm thick, in Layer 1; brownish red 

clay (55 – 85 cm thick) containing a few calcareous concretions with irregular shapes in Layer 2; 

reddish brown silty clay (15 – 40 cm thick) in Layer 3, in which the hominin skull, two isolated teeth 

(Sh.y.005, 007), and abundant faunal remains were found; brownish red silty clay (30 – 55 cm thick) 

in Layer 4, which starts from a calcareous bed 10 cm thick and includes limestone breccia, a quartz 

cube, and petrosilex fragments; dark brown and brownish red sand overlain by a thin calcareous bed 

(90 – 130 cm thick) in Layer 5, with the main component of the brownish red sand being a plentiful 

round breccia, in addition to a few breccia and mammal fossils found in the upper dark brown sand 

(Lu et al., 1989). From top to bottom, Locality 3 comprises: brownish silty clay (15 – 50 cm thick) in 

Layer 1; brownish yellow clay (35 – 45 cm thick) in Layer 2; dark brown silty clay containing a few 

calcareous concretions, breccia, and manganese nodules (190 cm thick) in Layer 3, which yielded five 

isolated hominin teeth (Sh.y.003, 004, 008, 071, and 072), as well as abundant faunal remains; 

brownish clay (100 cm thick) in Layer 4, from which a few mammal fossils was recovered; brownish 

yellow sand (120 cm thick), including a breccia and gravel mainly made of quartz, in Layer 5 (Lu et 

al., 1989). The images and descriptions of stratigraphic sequences were based upon Lu, Z., Huang, W., 

Meng, Z. (1989). These materials were used with the permission from Acta Anthropologica Sinica. 

Figure 2. The measurement of RDHH based on the 2D mesial sectional plane of Yiyuan M2 (Y: the 

dentine horn height which is defined as the perpendicular distance from the dentine horn to the line 

parallel to the bi-cervical diameter and coursing through the lowest point of enamel in the 

mid-occlusal basin. X+Y: the total height of the dentine crown which is measured as the perpendicular 

distance from the dentine horn to the bi-cervical diameter). B: buccal; L: lingual. 

Figure 3. Illustration of the landmarks (circles) and semi-landmarks (squares) chosen in the GM 

analyses of the occlusal surfaces of premolars (I), M2 (II), C1 (III), and M2 (IV). D: distal, L: lingual. 

Figure 4. Sh.y.003, 004, 007, and 071 from the Yiyuan site. All teeth are aligned in a similar fashion 

(from left to right: occlusal, buccal, mesial, lingual, and distal). B: buccal; M: mesial; D: distal. 

Figure 5. The EDJ surfaces of Yiyuan teeth obtained from micro-CT scanning. The images are not 

scaled. 
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Figure 6. Sh.y.008, 005, and 072 from Yiyuan. All teeth are aligned in a similar fashion (from left to 

right: occlusal, labial or buccal, mesial, lingual, and distal). B: buccal; La: labial; M: mesial; D: distal. 

Figure 7. Mesiodistal (upper row) and buccolingual (lower row) dimensions of the Yiyuan and Pongo 

teeth. Outliers are indicated by circles. Yiyuan values are represented by a single band on each plot. 

Figure 8. Geometric morphometric analyses of P3, P4, M2, C1, and M2 (TPS-grids correspond to the 

positive-value or negative-value extremes of the RW axis). All fossil hominins and recent modern 

humans are combined into a large comparative group. B: buccal; D: distal; M: mesial. 

Figure 9. Morphological comparisons between the Yiyuan C1 and comparative specimens (I: Yiyuan 

Sh.y.005; II: Australopithecus africanus Stw 222; III: Dmanisi D2678; IV: Atapuerca SH AT-276; V: 

recent modern humans; VI: fossil Pongo). L: lingual; M: mesial. The Stw 222 and AT-276 are 

originally left lower canines, and have been mirror-imaged using Adobe Photoshop® to facilitate their 

comparisons with the Yiyuan tooth. 

Figure 10. Comparison of M2 (upper row) and M2 (lower row) dentine surfaces of Yiyuan, Hexian, 

Zhoukoudian and Pongo teeth (the Zhoukoudian, Hexian, and Pongo specimens were mirror-imaged 

to facilitate the comparison with the Yiyuan M2). 
Figure 11. Geometric morphometric analyses of P3 crown outline shapes and the position of anterior 

and posterior foveae (TPS-grids correspond to the positive-value or negative-value extremes of the 



RW axis). B: buccal; M: mesial. 

Figure 12. Geometric morphometric analyses of P4 crown outline shapes and the position of anterior 

and posterior foveae (TPS-grids correspond to the positive-value or negative-value extremes of the 

RW axis). B: buccal; D: distal. 

Figure 13. Measurement of relative cuspal areas of the Yiyuan M2 and comparative specimens (YY: 

Yiyuan; AUS: Australopithecus; AEH: African Early Homo; HER: H. ergaster; NAMP: North 

African Middle Pleistocene; EAEP: East Asian Early Pleistocene; EAmMP: East Asian mid-Middle 

Pleistocene; EAlMP: East Asian late Middle Pleistocene; EALP: East Asian Late Pleistocene; WAEP: 

West Asian Early Pleistocene; WALP: West Asian Late Pleistocene; EEP: European Early Pleistocene; 

EMP: European Middle Pleistocene; NEA: Neanderthal; ELP: European Late Pleistocene; RMH: 

Recent modern humans). Outliers are indicated by circles. Groups represented by a single individual 
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are represented by a single band. A line corresponding to the Yiyuan value extends horizontally across 

each plot to facilitate visual comparisons. 

Figure 14. Geometric morphometric analyses of M2 crown outline shapes and the orientation of 

occlusal grooves (TPS-grids correspond to the positive-value or negative-value extremes of the 

relative warp [RW] axis). B: buccal; M: mesial. 

 

Table 1. Fossil hominin teeth from the Yiyuan site.  

Specimen No. Tooth category Individual 

Crown 

measurements (mm) 
Occlusal 

wear 
score 

MD BL 

Sh.y.003 Upper right third premolar (RP3) I 8.6(8.7) 12.4 3 

Sh.y.004 Upper left third premolar (LP3) I 8.7 12.4 3 

Sh.y.005 Lower right canine (RC1) II 7.8(7.9) 8.4 4 

Sh.y.007 Upper left second premolar (LP4) II 7.7(7.9) 11.2 4 

Sh.y.008 Upper right second molar (RM2) I 11.4(11.6) 14.3 2 

Sh.y.071 Upper left second premolar (LP4) I 8.2 12.3 3 

Sh.y.072 Lower right second molar (RM2) III 10.9(11.1) 12.0 4 

*The crown measurements in the parentheses are corrected values for the interproximal wear. MD: 

mesiodistal dimension, BL: buccolingual dimension. 

 

Table 2. Specimens used in the metric and morphological comparisons. 

Geography/ Chronology Specimens Sources of metrics 

Africa   

Pliocene (Australopithecus) Hadar, Laetoli, Makapansgat*, Sterkfontein* 1, 13 

Late Pliocene and Early 

Pleistocene (Early Homo) 

East Rudolf*, Olduvai, Omo Valley, Sterkfontein* 1, 13, 14, 20 

Late Pliocene and Early 

Pleistocene (H. ergaster)** 

East Rudolf*, West Turkana* 1, 17, 20 



North African Middle 

Pleistocene  

Rabat, Sidi Abderrhaman, Ternifine*, Thomas Quarry 

 

1, 2 

 

East Asia   

Pongo pygmaeus  

Early Pleistocene 

Guangxi* 

Jianshi*, Sangiran*  

This study 

3, 7, 8, 9, 15, 16, 23 

Mid-Middle Pleistocene  Hexian*, Zhoukoudian (ZKD) Locality 1***  18, 19, 21 

Late Middle Pleistocene  Chaoxian*, Panxian Dadong*, Xujiayao* 4, 10, 23 

Early modern human Liujiang*, Zhiren Cave*, Zhoukoudian (ZKD) Upper 

Cave  

1 

Holocene (Recent modern 

human) 

Henan Province*, Hubei Province* This study 

West Asia   

Early Pleistocene Dmanisi* 11 

Early modern human Qafzeh*, Skhul 1 

Europe    

Early Pleistocene Atapuerca-TD6* 5, 6 

Middle Pleistocene Arago*, Atapuerca SH*, Mauer, Montmaurin*, 

Petralona, Steinheim 

1, 12 

Neanderthals Amud, Arcy Grotte Renne*, Arcy Hyene*, Arcy sur Cure 

(Mousterian), Chateauneuf, Ehringsdorf, Genay (Côte 

d'Or), Gibraltar, Hortus*, Krapina, Kulna, La Chaise, La 

Ferrassie, La Quina*, Monsempron*, Le Moustier, 

Ochoz, Petit Puymoyen*, Regourdou*, Saccopastore*, 

Sakajia, Shanidar, Spy, St. Césaire, Subalyuk, Tabun, 

Vindija 

1 

Early modern human 

 

 

 

Abri Pataud*, Brno, Combe Capelle, Dolní Vĕstonice*, 

Cro-Magnon, Isturitz*, Le Rois*, Les Vachons, Mladeč, 

Pavlov*, Predmostí, Saint Germain-La Riviere*, Zlaty 

Kun 

1 

 

 

 

Note: “*” means that we examined the original fossils. For the rest, we employed high resolution casts.  

1: contributed by Wolpoff; 2: Arambourg and Biberson, 1956; 3: Arif et al., 2002; 4: Bailey and Liu, 2010; 5: Bermúdez de 

Castro et al., 1999; 6: Carbonell et al., 2005; 7: Grine and Franzen, 1994; 8: Jacob, 1973; 9: Kaifu et al., 2005; 10: Liu et al., 

2013; 11: Martinón-Torres et al., 2008; 12: Martinón-Torres et al., 2012; 13: Moggi-Cecchi et al., 2006; 14: Tobias, 1991; 

15: Tobias and von Koenigswald, 1964; 16: Tyler, 2004; 17: Walker and Leakey, 1993; 18: Weidenreich, 1937; 19: Woo and 

Chia, 1954; 20: Wood, 1991; 21: Xing et al., 2014; 23: Xing et al., 2015; 24: Zaim et al., 2011. 

** For some authors: African H. erectus 

*** Three of the Zhoukoudian specimens are original fossils found in excavations of 1949-1951 and 1953. See Woo and 

Chia (1954) for more details. 

 



Table 3. Relative dentine horn height (RDHH) of the paracone and the protocone of Yiyuan M2 and 

comparative samples.  

 Paracone(%) Protocone(%) 

Data source 1 2 1 2 

Yiyuan 37.4 - 35.5 - 

Pongo 27.9(17.8-

37.6) 

27.1 23.9(18.6-

31.4) 

28.2 

Recent Modern Human 39.7(30.2-

50.7) 

36.2 36.6(29.0-

48.9) 

35.3 

*1: the present study; 2: Olejniczak et al. (2008) 

 

Table 4. Summary of features presented in the text that differentiate or support the human 

versus Pongo nature of the Yiyuan teeth.  

Individual Specimen Geography 
Tooth-

picking 

Crown 

size 
RDHH GM 

Descriptive 

Morphology 

I Sh.y.003 (P3) Yes Yes Yes - Yes - 

 Sh.y.004 (P3) Yes Yes Yes - Yes - 

 Sh.y.071 (P4) Yes No Yes - Yes - 

 Sh.y.008 (M2) Yes Yes No Yes No Yes 

II Sh.y.005 (C1) Yes No Yes - Yes Yes 

 Sh.y.007 (P4) Yes Yes Yes - Yes - 

III Sh.y.072 (M2) Yes Yes Yes - Yes Yes 

*“-” means missing value. 
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