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ABSTRACT.  The pervasive deployment of “smart building” projects world-wide is driving innovation on many fronts including; technol-
ogy, telematics, engineering and entrepreneurship. This paper focuses on the technical and engineering perspectives of BIM, by extending 
building morphology studies as to respond to the challenges posed by Big Data, and smart infrastructure. The proposed framework incorpo-
rates theoretical and modelling descriptions to verify how network-based models can act as the backbone skeletal representation of building 
complexity, and yet relate to environmental performance and smart infrastructure. The paper provides some empirical basis to support data 
information models through building dependency networks as to represent the relationships between different existing and smart infrastruc-
ture components. These dependency networks are thought to inform decisions on how to represent building data sets in response to differ-
ent social and environmental performance requirements, feeding that into void and solid descriptions of data maturity models. It is conclud-
ed that network-based models are fundamental to comprehend and represent the complexity of buildings and inform architectural design 
and public policy practices, in the design and operation phases of infrastructure projects.. 

 
 
 

1 INTRODUCTION 

There is a vast amount of data that are made avail-
able through technology. Yet, there is no comprehen-
sive regulatory framework by which different types 
of data can be grouped and organised in response to 
performance requirements. On a building scale, 
Building Information modelling (BIM) schemes of-
ten account for the solid built “atomic” elements and 
their associated supply and operational infrastructure. 
Where there are “abstract” void descriptions (Jeong 
& Ban, 2011), they need to be organised and system-
ised to relate to social, cognitive and behavioural per-
formance criteria (Schultz & Bhatt, 2011). One could 
argue that, with a structured and semantic data 
(LOD) the best possible “fidelity” of any output 
would be proportional to the lowest quality data. 
There is therefore a need for structuring information 

about the built form in such a way as to improve on 
delivering performance indicators. A proposition for 
a network description of built spaces that is perhaps 
associated or complemented by a shape description 
might hence be sensible in this context. A combined 
spatial and shape descriptions of the built environ-
ment that are compatible with and complementary to 
energy and lighting performance requirements would 
enable forecasting user behaviour and comfort during 
the design stage. The key issue is to really outline the 
set of performance requirements for buildings, hence 
find the reduced set of variables and parameters that 
are essential for analysing and forecasting the per-
formance of built assets. There is also a need to iden-
tify a priority structure for different performance cri-
teria depending on what is essential for a building to 
function and what would improve the comfort of the 
built environment. 
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This paper aims to outline key aspects of the na-
ture of building dependencies, in an effort to build a 
dependency network description of the variables that 
make up their complexity. At essence, we plan to 
model the network of relationships that characterize; 
how the physical infrastructure and its configurations 
relate to different types of performance criteria and 
how a smart infrastructure corresponds to perfor-
mance requirements. 

With this objective, this paper addresses how net-
work-based descriptions of built environment might 
be incorporated in BIM frameworks, through estab-
lishing a relationship between the configurations of 
built form and social structures, as well as environ-
mental performance. For that, a methodology for vis-
ualising dependency networks is introduced, along 
with some propositions on how to integrate frame-
works and incorporate empirical models of depend-
ency networks as to inform data information models 
and public policies. 

2 A DATA MATURITY MODEL FOR BIM 

Construction contributes with 90BN to the UK 
economy (6.7% of the national GDP) (2013). About 
10% of the UK population works in the construction 
sector. Construction 2025 set targets of 33% lower 
costs, 50% faster delivery, 50% lower emissions, 
50% improvement in exports. In the current govern-
ment strategy, and due to funding restrictions, the de-
livery of BIM level’2, level’3 and level’4 strategies 
needed to be separated (Bew & Underwood, 2009). 
Ideally, this separation should have been avoided, 
particularly in what concerns the link to human be-
haviour in built assets and the cultural aspects of 
smart buildings and smart cities, but the need to ef-
fectively communicate with the 3M people involved 
in the industry a managed migration was seen as es-
sential.  

To complement the vision for data analytics, there 
is a need to attend to the value of the social perfor-
mance embedded in the description of building lay-
outs, e.g. how room spaces connect through adjacen-
cy relationships, and how these adjacencies influence 
social interactions on the long term. It might be ar-
gued that any improvements made on the perfor-
mance of building layouts, would have positive im-

pact on the social and economic performance of 
buildings during the operational phase.  

In the model proposed by Mark Bew1 for BIM 
level 3 strategy, the design and operation of buildings 
needed to account for dependency analytics, in order 
to better outline the performance requirements of in-
frastructure. From these requirements stems the rela-
tionship between existing building infrastructure and 
the smart systems that are designed to improve its 
function. It is usually argued that performance re-
quirements might be mined from smart building pro-
jects.  However, in order not to be limited to current 
descriptions of smart infrastructure projects, there is 
a need to go beyond the smart layer to reveal intelli-
gent relational descriptions in the physical built envi-
ronment, and perhaps expose how the smart layers 
might be integrated with building infrastructure to 
improve its overall performance. In this context, a 
network description of building layouts might be 
used, but need to also have a complementary descrip-
tion of solid surfaces that envelope spaces. This is 
mainly to do with the impact of data fidelity when 
dealing with more than one performance criteria. For 
example, if we have a complete data model of the 
built environment, where BIM values are filled in 
along with the spatial attributes of each room space 
(e.g. network configurations (space syntax), shape 
proportions), the values for each component will fall 
into the same attribute and entity positions with dif-
ferent provenance, to make a data maturity model of 
the built environment (figure 1). The analytics de-
vised to measure performance will need to be 
adapted to provide a tolerance of error value so the 
user can interpret potential uses of data analytics. 

For the purpose of building a universal and inte-
grative framework that brings together BIM and so-
cial performance indicators, there is a need to outline 
an extended network-based representation, account-
ing for the dependencies between different layout at-
tributes and the temporal, operational and economic 
dimensions. For BIM models and tools, a network-
based description of building space that accounts for 
the shape parameters of each room might perhaps of-
fer the inverted void description of buildings.  

                                                           
1 See Digital Built Britain plan; 

https://www.gov.uk/government/uploads/system/uploads/attachme
nt_data/file/410096/bis-15-155-digital-built-britain-level-3-
strategy.pdf [accessed 23 April 2015] 

 
Figure 1 A data maturity model for Building Information Model-
ling; accounting for void and solid descriptions of the built envi-
ronment (Source of GLA data: Foster and Partners, 2007).  

3 RESEARCH ON DEPENDENCY ANALYTICS 
IN BUILDINGS  

There are multiple performance criteria in buildings; 
some are intended and some are a by-product of their 
size, shape and configurations (Al_Sayed, 2014a). It 
is possible perhaps to describe buildings as organised 
complex systems, but this description is restricted 
and incorporates limited dynamics; in that the dy-
namics are mostly affiliated with the way the smart 
grid and supply networks operate, and with human 
occupation and behaviour in facilities, and perhaps 
with changes on furniture and temporary structures. 
This is less the case with the physical structure of 
building; unless the building incorporates dynamic 
components in its structure. 
It is perhaps useful to start from the implicit depend-
encies in the void descriptions of buildings, and 
move further to explain how the shape, configura-
tions and size of spaces in buildings might have 
many implications on different performance criteria; 
such as sensed social behaviour (Sailer & Penn, 
2007), social media (Conroy Dalton et al., 2013), 
Behavioural psychology, wayfinding and cognition 
(Kuliga et al., 2013; Orellana & Al_Sayed, 2013), 
morphological and typological parameters (Shayes-
teh & Steadman, 2005; Steadman, 2014), and energy 
performance (Steadman et al., 1991; Batty et al., 
2008; Salat, 2009). It is then important to 
acknowledge dependencies between the atomic void 
and solid elements of buildings and different utility 
networks that supply buildings with water, gas and 
electricity.  
Interdependencies between shapes and configurations 
in buildings can be described discursively, through 

relating the network structure of spaces in a building 
to the shape proportions and size (Al_Sayed, 2014a; 
2014b). These basic dependencies might have many 
implications on the social and energy performance of 
buildings, hence the need to distinguish between core 
dependencies that characterise other more specific 
dependencies. An understanding of these fundamen-
tal compositions and performance criteria of void de-
scriptions is much needed to complement the solid 
descriptions of buildings. 

4 USING PARTIAL CORRELATIONS FOR 
CAUSAL INFERENCE IN SPATIAL 
DATASETS 

Previous sections have discussed how dependence 
between pairs of variables was investigated separate-
ly in the literature. For the purpose of representing 
relationships between larger groups of variables in 
the built environment, there needs to be a methodo-
logical intervention that explains the sequence and 
structure of interactions between performance varia-
bles and the affordances of the physical infrastruc-
ture. To reveal networks of dependencies between 
different data sets in buildings, a methodological 
framework was adapted from biomedical research 
(De La Fuente et al., 2004)2 to outline the relation-
ships between different spatial components in archi-
tectural layouts. The Pearson product3 moment corre-
lation coefficient was used in measuring associations 
between continuous random variables. For this pur-
pose, a partial correlation coefficient was used to re-
veal dependencies and identify independence be-
tween built environment data sets. A partial 
correlation coefficient4 quantifies the correlation be-
tween two variables (e.g. temperature x and humidity 
y) when conditioning on one z or several other varia-

                                                           
2 Please refer to this paper for further details about the algo-

rithms. The associated software was used to calculate the Pearson 
coefficients. 

3 As an alternative, Spearman rank correlation could be used 
for this analysis since it does not depend on normality and linearity 
of interactions, thus can be useful for a variable like Choice (Be-
tweenness Centrality) in street networks which follows an expo-
nential distribution. 

4 See Appendix  
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tween two variables (e.g. temperature x and humidity 
y) when conditioning on one z or several other varia-

                                                           
2 Please refer to this paper for further details about the algo-

rithms. The associated software was used to calculate the Pearson 
coefficients. 

3 As an alternative, Spearman rank correlation could be used 
for this analysis since it does not depend on normality and linearity 
of interactions, thus can be useful for a variable like Choice (Be-
tweenness Centrality) in street networks which follows an expo-
nential distribution. 

4 See Appendix  
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bles (z1, z2, z3, … zi)5. If a correlation between two 
variables yields a zero partial correlation (or a corre-
lation not significantly different from zero), the algo-
rithm removes that edge (representing a relationship 
between two variables) from the correlation network. 
The recursive application of this algorithm on all 
possible edges results in a network that represents 
putative direct interactions (a second-order UDG ap-
proximation graph). In this study, we propose to use 
a 0 to 2nd –order correlation coefficient to interpret 
relationships between spatial components in build-
ings. The application of partial correlation coeffi-
cients to represent dependencies between spatial var-
iables in the built environment can reveal some 
interesting patterns that might help understanding 
different types of social, configurational, functional 
and environmental performance and link it to existing 
and smart infrastructure. 

4.1 Revealing dependency networks in buildings  

 
This section will demonstrate the possibility of ap-
plying graph theoretic models of dependency net-
works to represent relationships between building da-
ta sets (configurations and room size), and 
environmental datasets that are collected from 7 sen-
sors reporting a set of environmental qualities6  of a 
6th form school building7. In the context of buildings, 
social performance variables can be inferred from 
building configurations using convex representations8 
of space (Hillier & Hanson, 1984). The topological 
connections between different convex spaces might 
be represented by an adjacency graph (figure 2). 
Spaces with high connections might have more ac-
cessibility and afford higher likelihood of people 
moving through them to reach others. Hypothetically, 
the accessibility of a convex space along with its 
physical area might have implications on the sensed 
environmental and comfort qualities of the environ-
ment.  
                                                           

5 A partial correlation coefficient between rxy.z  is the correla-
tion between the parts of x and y that are uncorrelated with z. To 
obtain these parts of x and y, they are both regressed on z. The re-
siduals of the regression are then the parts of x and y that are un-
correlated with z. 

6 Environmental performance is calculated based on average 
sensed values during normal workday operational hours. 

7 The data belongs to Mark Bew, EC Strategies. 
8 Fewest and fattest spaces in a layout 

Through applying the Pearson product coefficient 
(De La Fuente et al., 2004), it was possible to visual-
ise an undirected dependency network that represents 
the relationships between lighting, area of convex 
spaces and spatial integration of building configura-
tions, noise, pressure, humidity, VOC, and relative 
temperature of interior to exterior (table 1). The rela-
tionships were visualised using the energy model of 
Kamada Kawai (separate components) in figure 3, 
revealing that temperature, pressure and noise are 
strongly related. Integration, humidity and VOC form 
another cluster; where humidity seems to bear a 
strong connection to noise. The analysis yields nega-
tive correlations between the physical area of build-
ing spaces, and integration, pressure, temperature, 
and VOC. The analysis also yields that light bears 
significant positive correlations with integration and 
noise, and less significant with pressure and tempera-
ture. It is not clear whether these performance criteria 
do actually relate to each other in reality. Due to the 
limited number of observations and issues with accu-
racy of the data being generated at present, the results 
of this approach should be seen as an initial estimate 
of the real underlying network, enabling us to devel-
op new hypotheses for interactions between configu-
rations, physical characteristics of building compo-
nents, and environmental performance. 

 
Figure 2 A topological network description9 of a 6th Form school 
building, with the locations of sensors identified. Darker colours 
indicate higher levels of centrality closeness. 

 
                                                           

9 The topological network was visualized using DepthmapX, 
UCL. 

Table 1 zeroth10 order Pearson correlation matrix for school data 

 
 

 
Figure 3 Dependency network11 of the school building dataset (see 
figure 2), revealing relationships between eight variables. Darker 
edges indicate higher values for zero-order partial correlation coef-
ficient between each two variables. The green coloured nodes rep-
resent the physical and configurational variables of rooms, the rest 
of the nodes represent environmental variables. 

                                                           
10 The order of the partial correlation coefficient is determined 

by the number of variables it is conditioned on. The zero-order For 
example, rxy.z is a first-order partial correlation coefficient, be-
cause it is conditioned solely on one variable (z). 

11 The dependency network was visualized using PAJEK soft-
ware (De Nooy et al., 2005). 

5 CONCLUSION 

This paper introduced a theoretical framework on 
how to address the use of social performance analysis 
(using space syntax) in data maturity models. The 
paper has also demonstrated a method on how to em-
pirically represent dependencies between different 
building data sets by adapting a novel Pearson Corre-
lation technique -used previously in biomedical re-
search (De La Fuente et al., 2004)– and exploring its 
application in the context of buildings. Using this 
method, it was possible to derive dependency net-
work representations from partial correlation coeffi-
cients. 

There are nontrivial benefits for dependency net-
work representations in the context of smart build-
ings; some are to do with testing the degree of fitness 
between artificial smart systems and existing infra-
structure, whilst others are to do with outlining re-
dundancies, disruptions, and cascading effects in 
building systems. On a building scale, complexity 
might also have some underlying universal princi-
ples; in how spatial structures relate to shape and size 
of spaces, and in how a combined description of 
shapes and configurations bears a relationship to en-
ergy consumption, carbon emissions, lighting, and 
noise. 

At this stage, it is important to raise some caveats 
with regards to the interpretation of our findings, 
considering the small data set we had for buildings 
and the variance in environmental performance 
measures that have much to do with the operation of 
buildings alongside many other factors. It is also im-
portant to recognise that, whilst partial correlation 
coefficients do not necessarily indicate causality, 
their ability to exclude weak correlations legitimises 
their use as indicators for causal inference, hence 
their use makes it possible to rule out primary from 
secondary datasets. There is a need to emphasise here 
that “spurious” correlation models of building rela-
tionships must not be explained as matters of causali-
ty (Simon, 1957), since many different causal rela-
tionships can be mapped onto a correlation. 
Therefore, the application of zero-order to 2nd order 
correlation networks in the context of buildings need 
to be cautiously interpreted. Pearson correlations 
might fail in some occasions to correctly identify a 
system of significant relationships between different 

R_Temp VOC Light Noise Humidity Pressure Integ Area
R_Temp 1.00 -0.49 0.21 0.62 -0.20 0.96 -0.52 -0.46
VOC -0.49 1.00 0.13 0.21 0.42 -0.47 0.66 0.07
Light 0.21 0.13 1.00 0.36 0.13 0.21 0.41 0.00
Noise 0.62 0.21 0.36 1.00 0.43 0.66 0.11 -0.74
Humidity -0.20 0.42 0.13 0.43 1.00 0.00 0.80 -0.42
Pressure 0.96 -0.47 0.21 0.66 0.00 1.00 -0.35 -0.61
Integ -0.52 0.66 0.41 0.11 0.80 -0.35 1.00 -0.03
Area -0.46 0.07 0.00 -0.74 -0.42 -0.61 -0.03 1.00
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10 The order of the partial correlation coefficient is determined 

by the number of variables it is conditioned on. The zero-order For 
example, rxy.z is a first-order partial correlation coefficient, be-
cause it is conditioned solely on one variable (z). 

11 The dependency network was visualized using PAJEK soft-
ware (De Nooy et al., 2005). 

5 CONCLUSION 

This paper introduced a theoretical framework on 
how to address the use of social performance analysis 
(using space syntax) in data maturity models. The 
paper has also demonstrated a method on how to em-
pirically represent dependencies between different 
building data sets by adapting a novel Pearson Corre-
lation technique -used previously in biomedical re-
search (De La Fuente et al., 2004)– and exploring its 
application in the context of buildings. Using this 
method, it was possible to derive dependency net-
work representations from partial correlation coeffi-
cients. 

There are nontrivial benefits for dependency net-
work representations in the context of smart build-
ings; some are to do with testing the degree of fitness 
between artificial smart systems and existing infra-
structure, whilst others are to do with outlining re-
dundancies, disruptions, and cascading effects in 
building systems. On a building scale, complexity 
might also have some underlying universal princi-
ples; in how spatial structures relate to shape and size 
of spaces, and in how a combined description of 
shapes and configurations bears a relationship to en-
ergy consumption, carbon emissions, lighting, and 
noise. 

At this stage, it is important to raise some caveats 
with regards to the interpretation of our findings, 
considering the small data set we had for buildings 
and the variance in environmental performance 
measures that have much to do with the operation of 
buildings alongside many other factors. It is also im-
portant to recognise that, whilst partial correlation 
coefficients do not necessarily indicate causality, 
their ability to exclude weak correlations legitimises 
their use as indicators for causal inference, hence 
their use makes it possible to rule out primary from 
secondary datasets. There is a need to emphasise here 
that “spurious” correlation models of building rela-
tionships must not be explained as matters of causali-
ty (Simon, 1957), since many different causal rela-
tionships can be mapped onto a correlation. 
Therefore, the application of zero-order to 2nd order 
correlation networks in the context of buildings need 
to be cautiously interpreted. Pearson correlations 
might fail in some occasions to correctly identify a 
system of significant relationships between different 

R_Temp VOC Light Noise Humidity Pressure Integ Area
R_Temp 1.00 -0.49 0.21 0.62 -0.20 0.96 -0.52 -0.46
VOC -0.49 1.00 0.13 0.21 0.42 -0.47 0.66 0.07
Light 0.21 0.13 1.00 0.36 0.13 0.21 0.41 0.00
Noise 0.62 0.21 0.36 1.00 0.43 0.66 0.11 -0.74
Humidity -0.20 0.42 0.13 0.43 1.00 0.00 0.80 -0.42
Pressure 0.96 -0.47 0.21 0.66 0.00 1.00 -0.35 -0.61
Integ -0.52 0.66 0.41 0.11 0.80 -0.35 1.00 -0.03
Area -0.46 0.07 0.00 -0.74 -0.42 -0.61 -0.03 1.00
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variables, and might on other occasions coincidental-
ly show unrealistic correlations between variables 
that don’t have any shared performance require-
ments. Despite these deficiencies, the method can be 
used to develop, with reasonable degree of confi-
dence, plausible hypotheses of interactions between 
physical, configurational and performance variables, 
whilst also revealing correspondence between exist-
ing and smart infrastructure. The use of dependency 
networks will therefore be very helpful in building an 
empirical basis for building information models, and 
in structuring performance data to enable better pre-
dictions about design and operation of buildings. 
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APPENDIX  

A partial correlation can be calculated to any pre-defined order 
(table 2). Partial correlation coefficients can be used to distinguish 
between causal type of correlations and correlations between two 
variables that originate via intermediate variables (sequential 
pathways) or those that embed direct relationship to other variables 
(common causes). The following three Equations (1,2, and 3) can 
be used to calculate partial correlation coefficients of orders 0–2. 
Similar type of equations can also be used to calculate higher order 
partial correlation coefficients. 

Table 2. Different orders for the partial correlations. 

0th order correlation 
 

(1) 

1st order correlation 
 

(2) 

2nd order correlation 
 

(3) 

 

zeroth-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 =
𝑐𝑐𝑜𝑜𝑣𝑣(𝑥𝑥𝑦𝑦)

 𝑣𝑣𝑎𝑎𝑟𝑟 𝑥𝑥 𝑣𝑣𝑎𝑎𝑟𝑟(𝑦𝑦)
 (1) 

first-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 =
𝑟𝑟𝑥𝑥𝑦𝑦 − 𝑟𝑟𝑥𝑥𝑧𝑧 𝑟𝑟𝑦𝑦𝑧𝑧

 (1− 𝑟𝑟𝑥𝑥𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑧𝑧2 )
 (2) 

second-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧𝑞𝑞 =
𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧

 (1 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧2 )
 (3) 

 

zeroth-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 =
𝑐𝑐𝑜𝑜𝑣𝑣(𝑥𝑥𝑦𝑦)

 𝑣𝑣𝑎𝑎𝑟𝑟 𝑥𝑥 𝑣𝑣𝑎𝑎𝑟𝑟(𝑦𝑦)
 (1) 

first-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 =
𝑟𝑟𝑥𝑥𝑦𝑦 − 𝑟𝑟𝑥𝑥𝑧𝑧 𝑟𝑟𝑦𝑦𝑧𝑧

 (1− 𝑟𝑟𝑥𝑥𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑧𝑧2 )
 (2) 

second-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧𝑞𝑞 =
𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧

 (1 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧2 )
 (3) 

 

zeroth-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 =
𝑐𝑐𝑜𝑜𝑣𝑣(𝑥𝑥𝑦𝑦)

 𝑣𝑣𝑎𝑎𝑟𝑟 𝑥𝑥 𝑣𝑣𝑎𝑎𝑟𝑟(𝑦𝑦)
 (1) 

first-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 =
𝑟𝑟𝑥𝑥𝑦𝑦 − 𝑟𝑟𝑥𝑥𝑧𝑧 𝑟𝑟𝑦𝑦𝑧𝑧

 (1− 𝑟𝑟𝑥𝑥𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑧𝑧2 )
 (2) 

second-order correlation 𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧𝑞𝑞 =
𝑟𝑟𝑥𝑥𝑦𝑦 .𝑧𝑧 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧

 (1 − 𝑟𝑟𝑥𝑥𝑞𝑞 .𝑧𝑧2 )(1− 𝑟𝑟𝑦𝑦𝑞𝑞 .𝑧𝑧2 )
 (3) 
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ABSTRACT. The increase in average speeds with the predominance of the automobile has led to a geographical expansion of megalopo-
leis in the form of longer distances travelled. This paradigm has emphasised the systemic shortcomings of public transport systems. Current 
metro infrastructures are inherently hindered by a paradox between the time to access stations and the average speed on the line, which pre-
vents them offering sufficient door-to-door speeds to compete with the car. The solution proposed in this paper comprises an operational 
strategy where autonomous vehicles stop in different patterns at stations along a line. It is proposed that vehicles will travel in platoons and 
are controlled by vehicle-to-vehicle communication algorithms similarly to automated highways. Simulations show that this strategy can 
reduce the time to access stations by 50% while increasing average speed on the line by 65% and reduce door-to-door journey times by ap-
proximately 42% compared to conventional metro operations. In addition, capacity is also increased by 30% within the conventional plat-
form lengths.

1 TRAVEL TIME BUDGETS AND THE 
GROWTH OF CITIES

It is widely agreed that the limits to urban growth 
are intrinsically related to the speed of movement,
under stable budgets of time and cost. Several studies 
show historical and geographical stability on travel 
time expenditures in cities of approximately 1.2
hours a day on average (Zahavi and Ryan, 1980; Za-
havi and Talvitie, 1980; Laube et al, 1999; Schäfer 
and Victor, 2000; Zahavi, 1974; Bieber et al, 1994; 
Schäfer, 2000; van Wee et al, 2006). Consequently, 
the average distance travelled across a whole popula-
tion will be a product of the travel time budget and 
the absolute speed of the transport network (Laube et 
al, 1999). It logically follows that under a constant 
time budget, people will try to maximise the speed 
that their budget can afford so they can increase their 
area of potential exploration. Based on these premis-
es, Marchetti (1994) suggests an “anthropological in-
variant” relationship between travel speeds and urban 
scale. His research shows evidence that, throughout 
history, cities have always been one-hour wide. 

It can be said, therefore, that transport system ca-
pability has been the main driver of urban growth.
Just as the railway transformed the city into the me-

tropolis, the car was responsible for the birth of the 
megalopolis. The late nineteenth century, with the 
advent of the railways, witnessed the emergence of a 
city that was based on quite different spatial, social 
and economic relations than the walking city that 
preceded it (Schaeffer and Sclar, 1980). Subsequent-
ly, once the automobile became widely affordable in 
the twentieth century, cities grew even further to ac-
commodate even longer distances covered by the car. 
As cars within cities have an average speed of 6 or 7 
times greater than a pedestrian, they expand daily 
connected space 6 or 7 times in linear terms, or about 
50 times in area (Marchetti, 1994).

Nowadays, the average area of the 75 cities with 
more than 5 million inhabitants is 2,241 km², which 
results in an average radius of 26.7 km were they per-
fectly round (Cox, 2015). The dominance of the car 
in the twentieth century has resulted in a geograph-
ical sprawl that makes public transport systems such 
as the metro less efficient and attractive than private 
modes. Because of their size, metropolitan areas gen-
erally tend to impose longer journey times than their 
smaller counterparts (Knox, 2014; Schwanen and Pe-
reira, 2013; McKenzie and Rapino, 2011; TUC,
2014), and because of their operations, metro systems 
cannot offer the same journey times as private modes 
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